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Abstract

Overall analysis of fixed point theory in terms of fuzzy metric spaces and intu-

itionistic fuzzy metric spaces are presented. Some fixed point theorems are obtained

for generalized contraction mapping in complete intuitionistic fuzzy metric spaces.

These fixed point theorems are generalization of well known results Kannan’s and

Chatterjee’s fixed point theorems, which are then generalized for a new ∆ type

contraction mappings.
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Introduction

The origin of fixed point theory was found in the earlier part of nineteenth cen-

tury. Fixed point theory has been revealed as a burgeoning field of pure and applied

mathematics. Fixed point techniques has been applied to establishing the existence

and uniqueness of solution to nonlinear phenomena, differential and integral equa-

tions [1].

In 1922 S. Banach [23] make a great achievement in fixed point theory for contrac-

tion mapping by publishing most famous result Banach fixed point theorem which

is also known as Banach contraction principle. Thereafter extension of these results

were obtained by Edelstein [26], Reich [27], Kannan’s [11] in 1968, and chatterjee’s

[12] in 1972.

The word fuzzy set was firstly investigated by L. A. Zadeh [5] in 1965 to han-

dle the imprecise and uncertain data. Fuzzy set can be specified by membership

degree of each element by allocating its value between 0 and 1. Fuzzy set theory

is a generalization of classical set theory. It has tremendous applications in many

fields like computer science, economics and mathematics etc. After the progressive

development in the field of Fuzzy set theory, Intuitionistic fuzzy sets were presented

in 1983 by K. T. Atanassov [ [9], [10] ] as a generalization of fuzzy set. Intuitionistic

fuzzy set is a veritable tool, which has a wide range of applications in decision mak-

ing [30], electoral system [28] medical diagnosis [29], etc. Intuitionistic fuzzy sets

are more appropriate than fuzzy sets because it allocate both membership and non

membership degree. An intuitionistic fuzzy set A can be expressed as

A = {x, µA(x), νA(x), |x ∈ X}

where µA(x), νA(x) both belongs to real unit interval [0, 1] and their sum also lies in

this interval. Sets µA(x) and νA(x) characterizing membership and non membership

degree respectively. Degree of hesitation or uncertainty can be defined as

πA(x) = 1− µA(x)− νA(x),



where 0 ≤ πA(x) ≤ 1. Framework of fuzzy sets provide a new direction to many

authors like Deng [24], Erceg [25], Kaleva & Seikkala [15] and Kramosil & Michalek

[14] to extend these concepts into fuzzy metric spaces. Notion of intuitionistic fuzzy

metric spaces after the systematic development of fuzzy metric spaces were initiated

by Park [8], with the help of triangular norms.

A couple of results has been established for a variety of contraction mappings in

Intuitionistic fuzzy metric spaces by M. Rafi & M. S. M. Noorani [19], A. Mohamad

[2], W. Sintunavarat & P. Kumam [18], C. Alaca, D. Turkoglu & C. Yildiz [21], and

T. K. Samanta, S. Mohinta & I. H. Jebril[7]. M. Rafi & M. S. M. Noorani’s[19] con-

traction mappings[see definition 2.3.1] for complete intuitionistic fuzzy metric spaces

were redefined by W. Sintunavarat & P. Kumam [18] and showed that their contrac-

tive constant is more general. Considering the techniques of W. Sintunavarat & P.

Kumam [18] in intuitionistic fuzzy metric spaces known results Kannan’s [11] and

Chatterjee’s [12] fixed point theorems are obtained in this thesis. It is interesting

to note that Kannan’s and Chatterjee’s results are independent of Banach contrac-

tion principle and it also characterizes metric completeness , another reason for the

importance of these theorems that it does not enforce a mapping to be continuous.

Thesis is organized as follows. Chapter 1 provides a brief description of fixed

point theory and results involving fuzzy metric spaces. These concepts will helpful in

understanding of next chapters. In chapter 2 section I and II contains some notions

and results of Intuitionistic fuzzy metric spaces. A couple of fixed point theorems for

different contractive mappings are discussed in section III by many authors. Some

fixed point theorems are also obtained in section IV which generalize Kannan’s [11],

and Chattrejea’s [12] results using the (TS-IF) contractive mapping[see definition

2.3.3]. These Kannan’s and Chatterjee’s type (TS-IF) results provides the partially

answer of open problem discussed by T. K. Samanta, S. Mohinta & I. H. Jebril[7].

In chapter 3 we obtained the most general case of Kannan’s and Chatterjee’s results

in Intuitionistic fuzzy metric followed by some techniques of W. Sintunavarat & P.

Kumam[18] with new contractive constant ∆.
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Chapter 1

Preliminaries

This chapter is concerned to a concise introduction, elementary concepts, definitions

and some essential theorems related to fixed point theory and fuzzy metric spaces.

Fundamental concepts of cauchy sequences, contraction mapping and Banach fixed

point theorems are extended in terms of fuzzy metric spaces. These definitions and

theorems will be helpful in next chapters.

1.1 Fixed points of single valued mappings

1.1.1 Fixed point

Definition 1.1.1. [1] A fixed point of a mapping T : X → X of a set X into itself

is an x ∈ X which is mapped onto itself, that is,

Tx = x

the image Tx coincides with x.

A self mapping of a set can have no fixed points, a unique fixed point, and infinitely

many fixed points. as illustrated by the following examples:
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Example 1.1.1. [1] A translation has no fixed points.

Example 1.1.2. Let T : N→ N, be defined as T (x) = x+ 2 for all x ∈ N. Then T

has no fixed point.

Example 1.1.3. [1] A rotation of the plane has a single fixed point(the center of

rotation)

Example 1.1.4. Given a natural number n, Let T : R→ R be defined as follows

T (x) =


x, x ∈ {1, 2, · · · , n}

x2 + 1, x /∈ {1, 2, · · · , n}

Then T has exactly n fixed points.

1.2 Fixed point Theorems

Fixed point theorems has a enormous impact in the development of basic mathe-

matical settings. Several fixed point theorems has been presented in many years

dealing with various types of contractive mapping.

In this section Banach [1], Kannan’s [11], Chatterjee’s [12] fixed point theorems

are presented which have a tremendous applications in many fields.

Definition 1.2.1. [1] Let X = (X, d) be a metric space. A mapping T : X → X

is called contraction on X if there is a positive real number α < 1 such that for all

x, y ∈ X

d(Tx, Ty) ≤ αd(x, y) (1.2.1)

Lemma 1.2.1. [1] A contraction T on a metric space X is a continuous mapping.

Theorem 1.2.2. [1]Banach Fixed point theorem

Consider a metric space X = (X, d) where X 6= φ. Suppose that X is complete and

let T : X → X be a contraction on X. Then T has precisely one fixed point.
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Corollary 1.2.3. [1] From the conditions of Banach fixed point theorem following

result holds:

(i) Iterative sequence

x0, x1 = Tx0, x2 = Tx1 = T 2x0, · · · , xn = T nx0 · · ·

with x0 ∈ X converges to x(fixed point of T ).

(ii) Prior estimate

d(xm, x) ≤ αm

1− α
d(x0, x1)

(iii) Posterior estimate

d(xm, x) ≤ α

1− α
d(xm−1, xm)

Theorem 1.2.4. [11]Kannan’s fixed point theorem

Let (X, d) be a complete metric space and T : X → X is a contractive mapping

with k ∈
[
0, 1

2

)
such that for all x, y ∈ X

d(T (x), T (y)) ≤ k[d(x, T (x)) + d(y, T (y))]

Then T has unique fixed point in X.

Theorem 1.2.5. [12]Chatterjee’s fixed point theorem

Let (X, d) be a complete metric space and T : X → X is a contractive mapping

with k ∈
[
0, 1

2

)
such that for all x, y ∈ X

d(T (x), T (y)) ≤ k[d(x, T (y)) + d(y, T (x)]

Then T has unique fixed point in X.
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1.3 Fuzzy metric spaces

1.3.1 Fuzzy sets

The term fuzzy set was initiated by Zadeh [5] in 1965. Fuzzy set is an extension of

classical notation of set. It consist of class of objects which characterized degree of

membership of each element in close interval [0, 1].

Definition 1.3.1. [5] let X be a space of points(objects), with a generic element of

X denoted by x. Thus, X = x. A fuzzy set A in X is characterized by a membership

function fA(x) which associates with each point in X a real number in the interval

[0, 1].

1.3.2 Fuzzy metric spaces

A number of authors have discussed the term fuzzy metric spaces in different ways

[3], [13], [14], [15]. Structure of fuzzy metric spaces in this section is presented in

the sense of George and Veeramani [3].

Definition 1.3.2. [3]

A binary operation ∗ :[0, 1]×[0, 1] → [0, 1] is continuous t-norm if ∗ satisfies the

following conditions:

(a) ∗ is commutative and associative;

(b) ∗ is continuous;

(c) a ∗ 1 = a for all a ∈ [0, 1]

(d) a ∗ b ≤ c ∗ d whenever a ≤ c and b ≤ d ∀ a, b, c, d ∈ [0, 1]

Example 1.3.1. [3]

(1) a ∗ b = ab
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(2) a ∗ b=min (a, b)

Definition 1.3.3. [3] (Fuzzy metric space)

A 3-tuple (X, M , ∗) is said to be a fuzzy metric space if X is an arbitrary set, ∗ is

a continuous t-norm and M is a fuzzy set on X2 × (0, ∞) satisfying the following

conditions;

(1) M(x, y, t)> 0,

(2) M(x, y, t)=1 ⇔ x = y,

(3) M(x, y, t)=M(y, x, t)

(4) M(x, y, t)∗ M(y, z, s)≤ M(x, z, t+ s)

(5) M(x, y, ·) :(0, ∞)→ [0, 1] is continuous x, y, z ∈ X and t, s > 0

Example 1.3.2. [3] Let X=R, Define a∗b=a b and

M(x, y, t) =

[
exp

(
| x− y |

t

)]−1

for all x, y ∈ X and t ∈ (0, ∞). Then (X, M , ∗) is a fuzzy metric space.

Proof. (1) M(x, y, t) > 0

(2) M(x, y, t)=1 ⇔ x = y

(3) M(x, y, t)= 1

[exp( |x−y|
t )]

−1 = 1

[exp( |y−x|
t )]

−1

Hence M(x, y, t)=M(y, x, t)

(4) M(x, y, t) ∗ M(y, z, s)≤ M(x, z, t+ s)

we know that

| x− z | ≤
(
t+ s

t

)
| x− y | +

(
t+ s

t

)
| y − z |

| x− z |
t+ s

≤ | x− y |
t

+
| y − z |

s

5



therefore

exp(
| x− z |
t+ s

) ≤ exp(
| x− y |

t
) + exp(

| y − z |
s

)

Thus

M(x, y, t) ∗M(y, z, s) ≤M(x, z, t+ s)

(5) M(x, y, ·) :(0, ∞) → [0, 1] is continuous.

Hence (X, M , ∗) is a fuzzy metric space.

Remark 1.3.1. [3] We can replace R by any metric space X and | x−y | by d(x, y)

in above example. Above example also hold with other t-norm a ∗ b=min (a, b).

Lemma 1.3.1. [4] M(x, y, ·) is non decreasing for all x, y, z ∈ X.

Example 1.3.3. [3] Let (X, d) be a metric space. Define a ∗ b = ab and

M(x, y, t) =
ktn

ktn +md(x, y)
, k, m, n ∈ R+

Then (X, M , ∗) is a fuzzy metric space.

Remark 1.3.2. [3] Note that the above example holds even with the t-norm

a ∗ b=min(a, b). In the above example by taking k = m = n = 1 we get

M(x, y, t) =
t

t+ d(x, y)

We call this fuzzy metric induced by a metric d the standard fuzzy metric.

Example 1.3.4. [3] Let X = N. Define a ∗ b = ab and

M(x, y, t) =


x
y
, if x ≤ y;

y
x
, if y ≤ x, ∀t > 0

Then (X, M, ∗) is a fuzzy metric space.
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Remark 1.3.3. [3] It is interesting to note that there exist no metric on X satisfying

M(x, y, t) =
t

t+ d(x, y)

Where M(x, y, t) is as defined in the above example. Also note that the above

function M is not a fuzzy metric with the t-norm defined as a ∗ b=min(a, b).

1.4 Cauchy sequences and contractive mappings

in fuzzy metric spaces

Definition 1.4.1. [3] A sequence xn in a fuzzy metric space (X, M, ∗) is said to

be cauchy sequence ⇔

lim
n→∞

M(xn+p, xn, t) = 1 , t > 0, p > 0.

Remark 1.4.1. [3] A fuzzy metric space in which every Cauchy sequence is conver-

gent is called a complete Fuzzy metric space.

Example 1.4.1. [17] Let X = R+, with the metric d defined by d(x, y) =| x− y |,
and t-norm a ∗ b=min(a, b), we define

M(x, y, t) =
t

t+ d(x, y)
, ∀ x, y ∈ X, t > 0.

Clearly (X, M, ∗) is a complete fuzzy metric space.

Remark 1.4.2. [3] We note that with the above definition, even R fails to be

complete. For example, consider

Sn = 1 +
1

2
+

1

3
+ · · ·+ 1

n
in (R, M, ·)

where

M(x, y, t) =
t

t+ d(x, y)
, d is metric on R.
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Now

M(Sn+p, Sn, t) =
t

t+ | Sn+p − Sn |

=
t

t+ ( 1
n

+ 1) + ( 1
n

+ 2) + · · ·+ ( 1
n

+ p)

Therefore

lim
n→∞

M(xn+p, xn, t) = 1.

Thus Sn is a cauchy sequence in the fuzzy metric space R. If R is fuzzy complete

then there exist x ∈ R such that

M(Sn, x, t)→ 1 as n→∞.

From this it follows that

t

t+ | Sn − x |
→ 1 as n→∞.

Further,

| Sn − x |→ 0 as n→∞

and so Sn → x in R which is not true.

Hence to make R complete fuzzy metric spaces we redefine Cauchy sequence as

follows.

Definition 1.4.2. [3] A sequence xn in a fuzzy metric space (X,M, ∗) is a cauchy

sequence iff for each ε > 0, t > 0 there exists n0 ∈ N such that

M(xn, xm, t) > 1− ε ∀ n, m ≥ n0.

Definition 1.4.3. [13] Let (X, M, ∗) be a fuzzy metric space. We will say that

mapping T : X → X is continuous if for given r, t > 0, 0 < r < 1 we can find

r0 ∈ (0, 1), t0 > 0, such that

M(x, y, t0) > 1− r0,⇒M(Tx, Ty,
t

2
) > 1− r

8



Definition 1.4.4. [6] Let (X, M, ∗) be a fuzzy metric space. We will say that

mapping T : X → X is t uniformly continuous if for each ε, with 0 < ε < 1, there

exist 0 < r < 1 such that

M(x, y, t) ≥ 1− r,⇒M(Tx, Ty, t) ≥ 1− ε

for each x, y, ∈ X and t > 0.

Proposition 1.4.1. [6] Let (X, M, ∗) be a fuzzy metric space. We will say that

mapping T : X → X is t uniformly continuous if for each δ > 0, there exist η > 0,

such that

1

M(x, y, t)
− 1 ≤ η, ⇒ 1

M(Tx, Ty, t)
− 1 ≤ δ

for each x, y, ∈ X, and t > 0.

Definition 1.4.5. [6] Let (X, M , ∗) be a fuzzy metric space. We say that the

mapping T : X → X is fuzzy contractive if there exist k ∈ (0, 1) such that

1

M(Tx, Ty, t)
− 1 ≤ k

(
1

M(x, y, t)
− 1

)
(1.4.1)

for each x, y, ∈ X and t > 0. Where k is called fuzzy contractive constant of T .

Definition 1.4.6. [6] Let (X, M, ∗) be a fuzzy metric space. We will say that the

sequence (xn) in X is fuzzy contractive if there exist k ∈ (0, 1) such that

1

M(xn+1, Txn+2, t)
− 1 ≤ k[

1

M(xn, xn+1, t)
− 1] (1.4.2)

for all t > 0, n ∈ N .

Proposition 1.4.2. [13] Every fuzzy contraction mapping on a fuzzy metric space

is continuous.

Remark 1.4.3. Converse of above proposition need not to be true. i-e a continuous

mapping is not fuzzy contractive. It is illustrated by the following example.
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Example 1.4.2. Let X = R and consider (X, M, ∗) fuzzy metric space as following

M(x, y, t) =

[
exp

(
| x− y |

t

)]−1

for all x, y ∈ X and t ∈ (0, ∞). Now define T (x) = x2. Then

M(x, y, t) =
1[

exp
(
|x−y|

t

)]
⇒M(x, y, t) ≥ 1− r0

Where

⇒ r0 ≥

[
exp

(
|x−y|

t

)]
− 1[

exp
(
|x−y|

t

)]
Then

M(Tx, Ty,
t

2
) =

1[
exp

(
|x2−y2|

t
2

)] ≥ 1− r

where

r ≥
exp

(
|x2−y2|

t
2

)
− 1

exp
(
|x2−y2|

t
2

)
Hence by definition T is continuous.

But

M(Tx, Ty, t) =

[
exp

(
| x2 − y2 |

t

)]−1

Now consider
1

M(Tx, Ty, t)
− 1 =

[
exp

(
| x2 − y2 |

t

)]
− 1 (1.4.3)

k[
1

M(x, y, t)
− 1] = k

[
exp

(
| x− y |

t

)
− 1

]
(1.4.4)

From these two equations, we observe that definition 1.4.5 does not hold.

Hence T is not fuzzy contractive.
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Proposition 1.4.3. [6] Let (X, M, ∗) be a fuzzy metric space. If mapping

T : X → X is fuzzy contractive then T is uniformly continuous.

1.5 Fixed point theorems in fuzzy metric spaces

A number of authors have made valuable contribution by extending Banach’s [23]

result in fuzzy metric spaces. George & Veeramani [3], Gregori & Sapena [6], S.

Heilpern [20], Nadler [22], M. Grabiec [4] have been obtained these results for dif-

ferent contractive conditions in fuzzy metric spaces.

In this section Banach fixed point theorem are presented in sense of M. Grabiec [4]

and Gregori & Sapena [6].

Theorem 1.5.1. [4] Let (X, M, ∗) be a complete fuzzy metric space such that

lim
n→∞

M(xn+p, xn, t) = 1, ∀ x, y ∈ X.

Let T : X → X be a mapping satisfying

M(Tx, Ty, kt) ≥M(x, y, t) ∀ x, y ∈ X, 0 < k < 1.

Then T has unique fixed point.

Theorem 1.5.2. [6] Let (X, M, ∗) be a complete fuzzy metric space in which fuzzy

contractive sequences are Cauchy. Let T : X → X be a fuzzy contractive mapping

such that

1

M(Tx, Ty, t)
− 1 ≤ k

(
1

M(x, y, t)
− 1

)
where k ∈ (0, 1) is contractive constant. Then T has a unique fixed point.
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Chapter 2

Intuitionistic fuzzy metric spaces

This chapter consist of three sections. In the first section we shall present fun-

damental concepts and notations of intuitionistic fuzzy metric spaces which is a

generalization of fuzzy metric spaces. In the sections two we redefined the primitive

results of cauchy sequences and contractive mappings. Last section consist of the

fixed point theorems with variety of contractive mapping and Banach fixed point

theorem is also proved with TS − IF contractive mapping in intuitionistic fuzzy

metric spaces. Intuitionistic fuzzy metric spaces are denoted by IFMS throughout

this thesis.

2.1 Basic definitions and Notations

Definition 2.1.1. [2] A binary operation �:[0, 1] × [0, 1] → [0, 1] is continuous

t-conorm if � satisfies the following conditions:

(a) � is commutative and associative;

(b) � is continuous;

(c) a�0=0 for all a ∈ [0, 1];

12



(d) a�b≤ c�d whenever a ≤ c and b ≤ d

Example 2.1.1. [16]

(1) a � b=max(a, b)

(2) a � b=min(1, a+ b)

Remark 2.1.1. [2]

(a) for any r1, r2 ∈ (0, 1) with r1 > r2, there exists r3, r4 ∈ (0, 1) such that

r1 ∗ r3 ≥ r2 and r1 ≥ r4 � r2

(b) for any r5 ∈ (0, 1) there exists r6, r7 ∈ (0, 1) such that r6 ∗ r6 ≥ r5 and

r7 �r7 ≤ r5.

Definition 2.1.2. [2] A 5-tuple (X, M , N , ∗, �) is said to be Intuitionistic Fuzzy

metric space if X is an arbitrary set, ∗ is continuous t-norm � is continuous t-conorm

and M , N are fuzzy sets on X2 × (0, ∞) satisfying the following conditions: for all

x, y, z ∈ X, s, t > 0;

(1) M(x, y, t)+ N(x, y, t)≤ 1;

(2) M(x, y, t) > 0;

(3) M(x, y, t)=1 ⇔ x = y;

(4) M(x, y, t)=M(y, x, t);

(5) M(x, y, t) ∗ M(y, z, s)≤ M(x, z, t+ s);

(6) M(x, y, ·) :(0, ∞) → [0, 1] is continuous;

(7) N(x, y, t) > 0;

(8) N(x, y, t)=0 ⇔ x = y;

13



(9) N(x, y, t)=N(y, x, t);

(10) N(x, y, t) � N(y, z, s) ≥ N(x, z, t+ s);

(11) N(x, y, ·) :(0, ∞)→ [0, 1] is continuous;

Then (M, N) is called an intuitionistics fuzzy metric onX. The functionsM(x, y, t)

andN(x, y, t) denotes the degree of nearness and the degree of non nearness between

x and y with respect to t, respectively.

Remark 2.1.2. [2] Every fuzzy metric space (X,M, ∗) is an IFMS of the form

(X, M, 1−M, ∗, �) such that t-norm ∗ and t-conorm � are associated. i.e.

x � y = 1− ((1− x) ∗ (1− y))

for any x, y ∈ X.

Remark 2.1.3. [2] In intuitionistic fuzzy metric space X, M(x, y, ·) is non de-

creasing and N(x, y, ·) is non increasing for all x, y ∈ X.

Example 2.1.2. [2] Let (X, d) be a metric space. Denote a ∗ b =ab and

a�b=min(1, a+b) for all a, b ∈ [0, 1] and let Md and Nd be fuzzy sets on X2×(0,∞)

defined as follows:

Md(x, y, t) =
htn

htn +md(x, y)

Nd(x, y, t) =
d(x, y)

ktn +md(x, y)
∀ h, k, n ∈ R+.

Then (X, Md, Nd, ∗, �) is an IFMS.

Remark 2.1.4. [2] Above example also hold with t-norm a ∗ b=min(a, b) and the

t-conorm a � b=max(a, b) and hence (M, N) is an intuitionistic fuzzy metric with

respect to any continuous t-norms and continuous t-conorm. In above example by
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taking h = k = m = n = 1, we get

Md(x, y, t) =
t

t+ d(x, y)

Nd(x, y, t) =
d(x, y)

t+ d(x, y)

We call this intuitionistic fuzzy metric induced by a metric d the standard IFM.

Example 2.1.3. [2] Let X = N. Define a∗ b=max(0, a+ b−1) and a� b=a+ b−ab
for all a, b ∈ [0, 1] and let M and N be fuzzy sets on X2 × (0, ∞) as follows:

M(x, y, t)=

{
x
y
, if x ≤ y;

y
x
, if y ≤ x;

N(x, y, t)=

{
y−x
y
, if x ≤ y;

x−y
x
, if y ≤ x;

for all x, y ∈ X and t > 0. Then (X, M, N, ∗, �) is an IFMS.

Remark 2.1.5. [2] Note that in the above example, t-norms ∗ and t-conorms � are

not associated. And there exists no metric d on X satisfying

Md(x, y, t) =
t

t+ d(x, y)

Nd(x, y, t) =
d(x, y)

t+ d(x, y)

where M(x, y, t) and N(x, y, t) are as defined in above example.

Remark 2.1.6. [2] If we define t− norms and t− conorms as a ∗ b=min(a, b) and

a � b=max(a, b) with

Md(x, y, t) =
t

t+ d(x, y)
, Nd(x, y, t) =

d(x, y)

t+ d(x, y)

then (M, N) is not an intuitionistic fuzzy metric space.
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2.2 Cauchy sequences and contractive mappings

in IFMS

Definition 2.2.1. [7] A sequence (xn)n in an IFMS is said to be cauchy sequence

⇔ for each r ∈ (0, 1) and t > 0 there exist n0 ∈ N 3

M(xn, xm, t) > 1− r and N(xn, xm, t) < r ∀ n, m ≥ n0.

A sequence (xn) in an IFMS is said to converge to x ∈ X ⇔ for each r ∈ (0, 1) and

t > 0 there exist n0 ∈ N 3

M(xn, x, t) > 1− r and N(xn, x, t) < r ∀ n, m ≥ n0.

Definition 2.2.2. [7] A sequence (xn)n in an intuitionistic fuzzy metric space is a

cauchy sequence ⇔

lim
n→∞

M(xn, xn+p, t) = 1 and lim
n→∞

N(xn, xn+p, t) = 0

A sequence (xn) in an intuitionistic fuzzy metric space is said to converge to x ∈ X

⇔ lim
n→∞

M(xn, x, t) = 1 and lim
n→∞

N(xn, x, t) = 0

Example 2.2.1. [21] Let X = { 1
n

: n ∈ N} ∪ {0} with the metric d defined by

d(x, y) = | x− y |

for all x, y ∈ X and t ∈ [0, ∞) then define

M(x, y, t) =


0, if t = 0

t
t+|x−y| , if t > 0
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N(x, y, t) =


1, if t = 0

|x−y|
kt+|x−y| , if t > 0, k > 0

Clearly (X, M, N, ∗, �) is complete IFMS on X.

Definition 2.2.3. [7] Let (X, M, N, ∗, �) be a IFMS. We will say the mapping

T : X → X is t uniformly continuous if for each ε with 0 < ε < 1, there exists

0 < r < 1, such that

M(x, y, t) ≥ 1− r and N(x, y, t) ≤ r

⇒M(T (x), T (y), t) ≥ 1− ε and N(T (x), T (y), t) ≤ ε

for each x, y ∈ X and t > 0.

Proposition 2.2.1. [7] Let (X, M, N, ∗, �) be a IFMS. A mapping T : X → X

is fuzzy contractive then T is uniformly continuous.

Definition 2.2.4. [2] Let (X, M, N, ∗, �) be a IFMS. We will say that the sequence

(xn) in X is intuitionistic fuzzy contractive if there exists k ∈ (0, 1) such that

1

M(xn+1, xn+2, t)
− 1 ≤ k

(
1

M(xn, xn+1, t)
− 1

)
1

N(xn+1, xn+2, t)
− 1 ≥ 1

k

(
1

N(xn, xn+2, t)
− 1

)
∀ t > 0, n ∈ N

2.3 Fixed point theorems in IFMS

This section based on the results that are helpful in developing the fixed point

theorems in IFMS. Comparison of different contractive conditions are presented by

many authors [2, 19, 18, 7].
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Lemma 2.3.1. [7] Let (X, M, N, ∗, �) be IFMS and T : X → X is t uniformly

continuous on X. If

(xn) −→ x as n −→ ∞.

then

T (xn) −→ T (x) as n −→ ∞.

Lemma 2.3.2. [7] Let (X, M, N, ∗, �) be IFMS. If

(xn) −→ x and (yn) −→ y.

then

M(xn, yn, t) −→ M(x, y, t)

and

N(xn, yn, t) −→ N(x, y, t) as n −→ ∞.

for all t > 0 in R.

Definition 2.3.1. [19] Let (X, M , N , ∗, �) be intuitionistic fuzzy metric space. We

say that the mapping T : X −→ X is intuitionistic fuzzy contractive if there exist

k ∈ (0, 1) such that

1

M(Tx, Ty, t)
− 1 ≤ k

(
1

M(x, y, t)− 1

)

N(Tx, Ty, t) ≤ kN(x, y, t)

for all x, y ∈ X and t > 0.

Theorem 2.3.3. [19] Let (X, M , N , ∗,�) be complete IFMS and T : X → X be

intuitionistic fuzzy contractive mapping. Then T has a unique fixed point.
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Definition 2.3.2. [18] Let (X, M , N , ∗, �) be intuitionistic fuzzy metric space.

A mapping T : X −→ X is called an intuitionistic fuzzy contraction depend on ∆

(IFC∆) if there exists a mapping ∆ : X → [0, 1) where ∆(Tx) ≤ ∆(x) such that

1

M(Tx, Ty, t)
− 1 ≤ ∆(x)

(
1

M(x, y, t)− 1

)
and

N(Tx, Ty, t) ≤ ∆(x)N(x, y, t)

for all x, y ∈ X and t > 0.

Theorem 2.3.4. [18] Let (X, M , N , ∗,�) be complete IFMS and T : X → X be

(IFC∆) mapping, then T has a unique fixed point.

Definition 2.3.3. [7] Let (X, M , N , ∗, �) be IFMS and T : X → X. T is said to

be TS − IF contractive mapping if there exists k ∈ (0, 1) such that

kM(T (x), T (y), t) ≥M(x, y, t) (2.3.1)

and

1

k
M(T (x), T (y), t) ≤M(x, y, t) (2.3.2)

for all t > 0.

Theorem 2.3.5. [7] Let (X, M , N , ∗, �) be complete IFMS and T : X → X be

TS − IF contractive mapping with k its contractive constant. Then T has a unique

fixed point.
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Proof. Let x ∈ X and xn = T n(x) for all n ∈ N. Now for each t > 0

kM(x2, x1, t) = kM(T (x1), T (x), t)

≥M(x1, x, t)

i− e., kM(x2, x1, t) ≥M(x1, x, t)

1

k
N(x2, x1, t) =

1

k
N(T (x1), T (x), t)

≤ N(x1, x, t)

i− e., 1

k
N(x2, x1, t) ≤ N(x1, x, t)

Again

kM(x3, x2, t) = kM(T (x2), T (x1), t)

≥M(x2, x1, t)

⇒ k2M(x3, x2, t) ≥ kM(x2, x1, t) ≥M(x1, x, t)

i− e., k2M(x3, x2, t) ≥M(x1, x, t)

1

k
N(x3, x2, t) =

1

k
N(T (x2), T (x1), t)

≤ N(x2, x1, t)

⇒ 1

k2
N(x3, x2, t) ≤

1

k
N(x2, x1, t) ≤ N(x1, x, t)

i− e., 1

k2
N(x3, x2, t) ≤ N(x1, x, t)

By mathematical induction, we have

knM(xn+1, xn, t) ≥M(x1, x, t) and

1

kn
N(xn+1, xn, t) ≤ N(x1, x, t), for all t > 0.

(2.3.3)

We now verify that {xn} is a cauchy sequence in (X, M , N , ∗, �). Let t1 = t
p

and
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from equations 2.3.3

M(xn, xn+p, t) ≥M(xn, xn+1, t1) ∗M(xn+1, xn+2, t1) ∗ · · · ∗M(xn+p−1, xn+p, t1)

=

(
1

kn
knM(xn, xn+1, t1)

)
∗
(

1

kn+1
kn+1M(xn+1, xn+2, t1)

)
∗ · · ·

∗
(

1

kn+p−1
kn+p−1M(xn+p−1, xn+p, t1)

)
≥
(

1

kn
M(x, x1, t1)

)
∗
(

1

kn+1
M(x, x1, t1)

)
∗ · · · ∗

(
1

kn+p−1
M(x, x1, t1)

)
≥
(

1

kn
M(x, x1, t)

)
∗ · · · ∗

(
1

kn
M(x, x1, t)

)
=

(
1

kn
M(x, x1, t)

)

⇒ 1 < lim
n→∞

(
1

kn
M(x, x1, t)

)
≤ lim

n→∞
M(xn, xn+p, t) ≤ 1

⇒ lim
n→∞

M(xn, xn+p, t) = 1 (2.3.4)

N(xn, xn+p, t) ≤ N(xn, xn+1, t1) �N(xn+1, xn+2, t1) � · · · �N(xn+p−1, xn+p, t1)

≤
(

1

kn
knN(xn, xn+1, t1)

)
�
(

1

kn+1
kn+1N(xn+1, xn+2, t1)

)
� · · ·

�
(

1

kn+p−1
kn+p−1N(xn+p−1, xn+p, t1)

)
≤
(

1

βn
N(x, x1, t1)

)
�
(

1

kn+1
N(x, x1, t1)

)
� · · · �

(
1

kn+p−1
N(x, x1, t1)

)
≤
(

1

kn
N(x, x1, t)

)
� · · · �

(
1

kn
N(x, x1, t)

)
=

(
1

kn
N(x, x1, t)

)

⇒ 0 > lim
n→∞

(
1

kn
N(x, x1, t)

)
≥ lim

n→∞
N(xn, xn+p, t) ≥ 0
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⇒ lim
n→∞

N(xn, xn+p, t) = 0 (2.3.5)

Hence from equations 2.3.4, and 2.3.5 {xn}n is a cauchy sequence. So, there exist

y ∈ X such that xn −→ y as n→∞.

Now,

kM(T (xn, T (y), t) ≥M(xn), y, t)

i− e., M(T (xn), T (y), t) ≥ 1

k
M(xn), y, t)

⇒ lim
n→∞

M(T (xn), T (y), t) ≥ lim
n→∞

1

k
M(xn), y, t) =

1

k
= 1

⇒ 1 < lim
n→∞

M(T (xn), T (y), t) ≤ 1

⇒M(T (xn), T (y), t) = 1

Again

N(T (xn), T (y), t) ≤ kN(xn), y, t)

⇒ lim
n→∞

N(T (xn), T (y), t) ≤ lim
n→∞

kN(xn), y, t) = 0

⇒ lim
n→∞

N(T (xn), T (y), t) = 0

Thus applying the definition of IFMS i-e. , M(x, y, t) = 1 and N(x, y, t) = 0 ⇔
x = y

lim
n→∞

M(T (xn), T (y), t) = 1 and lim
n→∞

N(T (xn), T (y), t) = 0, for all t > 0.

⇒ lim
n→∞

T (xn) = T (y)⇒ lim
n→∞

xn+1 = T (y)

i-e. , y = T (y), ⇒ y is a fixed point of T .
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To prove the uniqueness, assume T (z) = z for some z ∈ X then for t > 0, we have

M(y, z, t) = M(T (y), T (z), t)

≥ 1

k
M(y, z, t)

=
1

k
M(T (y), T (z), t)

≥ 1

k2
M(y, z, t)

...

≥ 1

kn
M(y, z, t) −→∞ as n −→ ∞

⇒ 1 < lim
n→∞

1

kn
M(y, z, t) ≤M(y, z, t) ≤ 1⇒M(y, z, t) = 1

N(y, z, t) = N(T (y), T (z), t)

≤ kN(y, z, t)

= kN(T (y), T (z), t)

≤ k2N(y, z, t)

...

≤ knN(y, z, t) −→ 0 as n −→ ∞

⇒ 0 < lim
n→∞

1

kn
N(y, z, t) ≤ N(y, z, t) ≤ 0⇒ N(y, z, t) = 0

Hence by definition of IFMS i-e. , M(x, y, t) = 1 and N(x, y, t) = 0 ⇔ x = y

⇒ y = z.

This completes the proof.
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Chapter 3

Fixed point theorems for

generalized contraction mapping

in IFMS

In 2012 Sintunavarat and Kumam [18] redefined the contractive constant of Rafi

and Noorani’s theorem in 2.3.3. New defined contractive constant is more general

and easier to find.

Motivated by the work of Sintunavarat and Kumam [18]in this chapter we have

develop some new contractive mapping and thereafter we proved well known kan-

nan’s [11] and chatterjee’s [12] type (TS − IF∆) Banach fixed point theorem for

these mappings.

3.1 Main Results

Definition 3.1.1. Let (X, M , N , ∗, �) be IFMS and T : X → X. T is said to be

TS − IF contractive mapping depend on ∆ (TS − IF∆) if there exists a mapping
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∆ : X → (0, 1) where

∆(Tx) ≤ ∆(x) (3.1.1)

such that

∆(x)M(T (x), T (y), t) ≥M(x, y, t) (3.1.2)

and

1

∆(x)
N(T (x), T (y), t) ≤ N(x, y, t) (3.1.3)

for all t > 0.

Theorem 3.1.1. Let (X, M , N , ∗,�) be complete IFMS and T : X → X be

(TS − IF∆) mapping with ∆ its contractive constant. Then T has a unique fixed

point.

Proof. Let x0 be an arbitrary point in X. We can construct the sequence xm in X

by

xm = Tmx0 = Txm−1

for m = 1, 2, · · · Now for each t > 0 and using equations 3.1.1 and 3.1.2 We obtain

M(xm+1, xm, t) = M(Txm, Txm−1, t) ≥
1

∆(xm)
M(xm, xm−1, t)

=
1

∆(Txm−1)
M(Txm−1, Txm−2, t) ≥

1

∆(xm−1)

1

∆(xm−1)
M(xm−1, xm−2, t)

=
1

∆(Txm−2)

1

∆(Txm−2)
M(Txm−2, Txm−3, t)

≥ 1

∆(xm−2)

1

∆(xm−2)

1

∆(xm−2)
M(xm−2, xm−3, t)

...

≥ 1

(∆(x1))m
M(x1, x0, t)
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Now to verify that xm is a cauchy sequence for positive integer m and n such that

n ≥ m let t1 = t
p

and applying triangular inequality

M(xm, xn+p, t) ≥M(xm, xm+1, t1) ∗M(xm+1, xm+2, t1) ∗ · · · ∗M(xn+p−1, xn+p, t1)

=

(
1

(∆(x1))m
(∆(x1))mM(xm, xm+1, t1)

)
∗
(

1

(∆(x1))m+1 (∆(x1))m+1M(xm+1, xm+2, t1)

)
∗ · · ·

∗
(

1

(∆(x1))m+p−1 (∆(x1))m+p−1M(xn+p−1, xn+p, t1)

)
≥
(

1

(∆(x1))m
M(x1, x0, t1)

)
∗ · · · ∗

(
1

(∆(x1))m+p−1M(x1, x0, t1)

)
≥
(

1

(∆(x1))m
M(x1, x0, t1)

)
∗ · · · ∗

(
1

(∆(x1))m
M(x1, x0, t1)

)
=

(
1

(∆(x1))m
M(x1, x0, t1)

)

⇒ 1 ≤ lim
m→∞

(
1

∆(x1)m
M(x1, x0, t1)

)
≤ lim

m→∞
M(xm, xn+p, t) ≤ 1

⇒ lim
m, n→∞

M(xm, xn+p, t) = 1

Again for positive integer m and t > 0 and using equations 3.1.1 and 3.1.3. We have

N(xm+1, xm, t) = N(Txm, Txm−1, t)

≤ ∆(xm)N(xm, xm−1, t)

= ∆(Txm−1)N(Txm−1, Txm−1, t)

≤ ∆(xm−1)∆(xm−1)N(xm−1, xm−1, t)

= ∆(Txm−2)∆(Txm−2)N(Txm−2, Txm−2, t)

≤ ∆(xm−2)∆(xm−2)∆(xm−2)N(xm−2, xm−2, t)

...

≤ (∆(x1))mN(x1, x0, t)
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for n ≥ m let t1 = t
p

and applying triangular inequality

N(xm, xn+p, t) ≤ N(xm, xm+1, t1) �N(xm+1, xm+2, t1) � · · · �N(xn+p−1, xn+p, t1)

=

(
1

(∆(x1))m
(∆(x1))mN(xm, xm+1, t1)

)
�
(

1

(∆(x1))m+1 (∆(x1))m+1N(xm+1, xm+2, t1)

)
� · · ·

�
(

1

(∆(x1))m+p−1 (∆(x1))m+p−1N(xn+p−1, xn+p, t1)

)
≤
(

1

(∆(x1))m
N(x1, x0, t1)

)
� · · · �

(
1

(∆(x1))m+p−1N(x1, x0, t1)

)
≤
(

1

(∆(x1))m
N(x1, x0, t1)

)
� · · · �

(
1

(∆(x1))m
N(x1, x0, t1)

)
=

(
1

(∆(x1))m
N(x1, x0, t1)

)

⇒ 0 ≥ lim
m→∞

(
1

∆(x1)m
N(x1, x0, t1)

)
≥ lim

m→∞
N(xm, xn+p, t) ≥ 0

⇒ lim
m, n→∞

N(xm, xn+p, t) = 0

Hence xm is a cauchy sequence in IFMS X. As X is a complete, there exists a point

z ∈ X such that xm −→ z as m −→∞ , which implies that

M(xm, z, t) −→ 1 and N(xm, z, t) −→ 0 as m −→∞

Now we show that z is a fixed point of T . Since T is (IFC∆) for all m ∈ N we get

M(Tz, Txm, t) ≥
1

∆(z)
M(z, xm, t)

lim
m→∞

M(Tz, Txm, t) ≥ lim
m→∞

1

∆(z)
M(z, xm, t) =

1

∆(z)
> 1

⇒ 1 < lim
m→∞

M(Tz, Txm, t) ≤ 1

⇒ lim
m→∞

M(Tz, Txm, t) = 1
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Again using the fact that T is (IFC∆), We have

N(Tz, Txm, t) ≤ ∆(z)N(z, xm, t)

Now for t > 0 and for all m ∈ N . Taking m −→∞, We get

N(Tz, Txm, t) −→ 0

In both case, it can be concluded that Txm −→ Tz. Therefore, xm+1 −→ Tz and

then z = Tz.

Now we show that z is a unique fixed point of T . Assume T (z1) = z1 for z1 ∈ X.

We use the notation of (IFC∆), for t > 0, and using equations 3.1.1 and 3.1.2. We

have

M(z, z1, t) = M(Tz, Tz1, t)

≥ 1

∆(z)
M(z, z1, t)

=
1

∆(Tz)
M(Tz, Tz1, t)

≥ 1

(∆(z))2M(z, z1, t)

...

≥ 1

(∆(z))m
M(z, z1, t) −→ 1 as m −→∞

⇒ 1 < lim
m→∞

1

(∆(z))m
M(z, z1, t) ≤M(z, z1, t) ≤ 1

⇒M(z, z1, t) = 1
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Similarly using equations 3.1.1 and 3.1.3. We have

N(z, z1, t) = N(Tz, Tz1, t)

≤ ∆(z)N(z, z1, t)

= ∆(Tz)N(Tz, Tz1, t)

≤ (∆(z))2N(z, z1, t)

...

≤ (∆(z))mN(z, z1, t) −→ 0 as m −→∞

⇒ 0 ≤ N(z, z1, t) ≤ lim
m→∞

(∆(z))mN(z, z1, t) < 0

⇒ N(z, z1, t) = 0

This shows that z = z1. Hence z is a unique fixed point of T .

This completes the proof.

Remark 3.1.1. Note that if we take ∆(x) = k in above Theorem 3.1.1 then these

results provide the generalization of Theorem 2.3.5. Theorem 3.1.1 results illustrated

by the example given below.

Example 3.1.1. Let (X, M, N, ∗, �) be complete IFMS defined as

M(x, y, t) =
t

t+ | x− y |
, N(x, y, t) =

| x− y |
t+ | x− y |

, for all t ∈ (0, ∞)

Take a mapping T : X −→ X with α(x) = 2
x2 such that

T (x) =

{
1
x
, 0 < x ≤ 1

0, x = 0

Then mapping T is (TS − IF∆) contractive mapping.

Proof. Case I: When x ∈ (0, 1] and y=0

M(Tx, Ty, t) =
t

t+ | Tx− Ty |
=

t

t+ | 1
x
− 0 |

=
xt

xt+ 1
=

x2t

x2t+ x
(3.1.4)
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since we can write

x ≤ 1⇒ x2t+ x ≤ t+ x⇒ t

x2t+ x
≥ t

t+ x
(3.1.5)

from equations 3.3.1 and 3.3.2

M(Tx, Ty, t) = x2 t

x2t+ x
≥ x2 t

t+ x
≥ x2

2

t

t+ x

M(T (x), T (y), t) ≥ 1

∆(x)
M(x, y, t)

now

x2 ≤ 1⇒ xt+ x2 ≤ xt+ 1⇒ 1

xt+ 1
≤ 1

xt+ x2
(3.1.6)

from equation 3.1.6

N(Tx, Ty, t) =
| Tx− Ty |

t+ | Tx− Ty |
=

1

xt+ 1
≤ 1

xt+ x2
=

1

x2

x

t+ x
≤ 2

x2

x

t+ x

N(Tx, Ty, t) ≤ ∆(x)N(x, y, t)

Case II: When x=0 and y ∈ (0, 1]

It can be proved similar approach of case I by replacing x = y

Case III: When x ∈ (0, 1] and y ∈ (0, 1]

M(Tx, Ty, t) =
t

t+ | 1
x
− 1

y
|

=
xyt

xyt+ | x− y |
(3.1.7)

Since

xy ≤ 1⇒ xyt+ | x− y |≤ t+ | x− y |⇒ xyt

xyt+ | x− y |
≥ xyt

t+ | x− y |
(3.1.8)

from equation 3.1.7 and 3.1.8

M(Tx, Ty, t) =
xyt

xyt+ | x− y |
≥ xyt

t+ | x− y |
≥ x2

2

t

t+ | x− y |
(3.1.9)
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M(T (x), T (y), t) ≥ 1

∆(x)
M(x, y, t)

N(Tx, Ty, t) =
| 1
x
− 1

y
|

t+ | 1
x
− 1

y
|

=
| x− y |

xyt+ | x− y |
(3.1.10)

since for our convenience we take x ≤ y

x2 ≤ xy ⇒ xyt+ | x− y |≥ x2t+ | x− y | (3.1.11)

also we can write

x2 ≤ 1⇒ x2t+ | x− y |≥ x2 | x− y | +x2t (3.1.12)

from equations 3.1.11 and 3.1.12

xyt+ | x− y |≥ x2(t+ | x− y |)

N(Tx, Ty, t) =
| x− y |

xyt+ | x− y |
≤ 1

x2

| x− y |
t+ | x− y |

≤ 2

x2

(
| x− y |

t+ | x− y |

)
which can be written as

N(Tx, Ty, t) ≤ ∆(x)N(x, y, t)

Case IV: When x = 0 and y = 0

It’s trivial case. Thus all conditions of Theorem 3.1.1 are satisfied so T have the

fixed point 1.

3.2 Fixed point theorems for Kannan’s and Chat-

terjee’s type (TS − IF∆) contractive mapping

Generalization of classical results Kannan’s[11] and Chatterjee’s[12] type (TS−IF∆)

are obtained followed by new contractive constant ∆.
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Definition 3.2.1. Let (X, M , N , ∗, �) be IFMS and T : X → X. T is said to be

TS − IF contractive mapping depend on ∆ (TS − IFK∆) if there exists a mapping

∆ : X → (0, 1
2
) where

∆(Tx) ≤ ∆(x) (3.2.1)

such that

∆(x)M(T (x), T (y), t) ≥ [M(x, Tx, t) +M(y, Ty, t)] (3.2.2)

and

1

∆(x)
N(T (x), T (y), t) ≤ [N(x, Tx, t) +N(y, Ty, t)] (3.2.3)

for all t > 0.

Theorem 3.2.1. Let (X, M , N , ∗, �) is a complete IFMS and T : X → X is an

(TS − IFK∆) mapping Then T has a unique fixed point.

Proof. Let x0 be an arbitrary point in X. We can construct the sequence xn in X

by

xn = T nx0 = Txn−1

for all n ∈ N . Now for each t > 0, and using equations 3.2.1 and 3.2.2 We have

∆(x1)M(x1, x2, t) = ∆(x1)M(T (x0), T (x1), t)

≥ [M(x0, T (x0), t) +M(x1, T (x1), t)]

≥M(x1, T (x1), t)

M(x1, x2, t) ≥
1

∆(Tx0)
M(Tx0, T (x1), t)

≥ 1

∆(x0)
[M(x0, T (x0), t) +M(x1, Tx1, t)]

≥ 1

∆(x0)
M(x0, T (x0), t)

=
1

∆(x0)
M(x0, x1, t)
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M(x1, x2, t) ≥
1

∆(x0)
M(x0, x1, t) (3.2.4)

Now again,

∆(x2)M(x2, x3, t) = ∆(x2)M(T (x1), T (x2), t)

≥ [M(x1, T (x1), t) +M(x2, T (x2), t)]

M(x2, x3, t) ≥
1

∆(x2)
M(x2, T (x2), t)

=
1

∆(Tx1)
M(Tx1, T (x2), t)

≥ 1

∆(x1)
[M(x1, T (x1), t) +M(x2, Tx2, t)]

≥ 1

∆(x1)
M(x1, T (x1), t)

=
1

∆(Tx0)
M(Tx0, Tx1), t)

≥ 1

∆(x0)
[M(x0, T (x0), t) +M(x1, Tx1, t)]

≥ 1

∆(x0)
M(x1, T (x1), t)

=
1

∆(x0)
M(x1, (x2), t)

from equation 3.2.4. We have

M(x2, x3, t) ≥
1

(∆(x0))2M(x0, x1, t) · · · (3.2.5)

By Mathematical induction. We get

M(xn, xn+1, t) ≥
1

(∆(x0))n
M(x, x1, t)
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Again Let x ∈ X and for each t > 0, and using equations 3.2.1 and 3.2.3

1

∆(x1)
N(x1, x2, t) =

1

∆(x1)
N(T (x0), T (x1), t)

≤ [N(x0, T (x0), t) +N(x1, T (x1), t)]

≤ [N(x0, x1, t) +N(x1, x2, t)]

N(x1, x2, t)

(
1

∆(x1)
− 1

)
≤ N(x0, x1, t)

N(x1, x2, t) ≤
(

∆(x1)

1−∆(x1)

)
N(x0, x1, t)

Let β =
(

∆(x1)
1−∆(x1)

)
where 0 <

(
∆(x1)

1−∆(x1)

)
≤ 1 for ∆(x1) ∈ (0, 1

2
) We can write above

equation as

N(x1, x2, t) ≤ βN(x0, x1, t) (3.2.6)

Now again,

1

∆(x2)
N(x2, x3, t) =

1

∆(x2)
N(T (x1), T (x2), t)

≤ [N(x1, T (x1), t) +N(x2, T (x2), t)]

≤ [N(x1, x2, t) +N(x2, x3, t)]

N(x2, x3, t)

(
1

∆(x2)
− 1

)
≤ N(x1, x2, t)

N(x1, x2, t) ≤
(

∆(x2)

1−∆(x2)

)
N(x1, x2, t)

N(x1, x2, t) ≤ βN(x1, x2, t)

Where β =
(

∆(x2)
1−∆(x2)

)
From equation 3.2.6. We have

N(x1, x2, t) ≤ (β)2N(x0, x1, t) · · ·
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By Mathematical induction, We have,

N(xn, xn+1, t) ≤ (β)nN(x0, x1, t)

We now verify that xn is a cauchy sequence in (X, M , N , ∗, �).
Let t1 = t

p

M(xn, xn+p, t) ≥M(xn, xn+1, t1) ∗M(xn+1, xn+2, t1) ∗ · · · ∗M(xn+p−1, xn+p, t1)

=

(
1

(∆(x0))n
(∆(x0))nM(xn, xn+1, t1)

)
∗
(

1

(∆(x0))n+1 (∆(x0))n+1 M(xn+1, xn+2, t1)

)
∗ · · ·

∗
(

1

(∆(x0))n+p−1 (∆(x0))n+p−1M(xn+p−1, xn+p, t1)

)
≥
(

1

(∆(x0))n
M(x0, x1, t1)

)
∗
(

1

(∆(x0))n+1M(x0, x1, t1)

)
∗ · · ·

∗
(

1

(∆(x0))n+p−1M(x0, x1, t1)

)

≥
(

1

(∆(x0))n
M(x0, x1, t)

)
∗ · · · ∗

(
1

(∆(x0))n
M(x0, x1, t)

)
=

(
1

(∆(x0))n
M(x0, x1, t)

)

⇒ 1 < lim
n→∞

(
1

(∆(x0))n
M(x0, x1, t)

)
≤ lim

n→∞
M(xn, xn+p, t) ≤ 1

⇒ lim
n→∞

M(xn, xn+p, t) = 1
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Now again Let t1 = t
p

N(xn, xn+p, t) ≤ N(xn, xn+1, t1) �N(xn+1, xn+2, t1) � · · · �N(xn+p−1, xn+p, t1)

≤
(

1

(β)n
(β)nN(xn, xn+1, t1)

)
�
(

1

(β)n+1 (β)n+1N(xn+1, xn+2, t1)

)
� · · ·

�
(

1

(β))n+p−1
(β)n+p−1N(xn+p−1, xn+p, t1)

)
≤
(

1

(β)n
N(x0, x1, t1)

)
�
(

1

(β)n+1N(x0, x1, t1)

)
� · · ·

�
(

1

(β)n+p−1N(x0, x1, t1)

)
≤
(

1

(β)n
N(x0, x1, t)

)
� · · · �

(
1

(β)n
N(x0, x1, t)

)
=

(
1

(β)n
N(x0, x1, t)

)

⇒ 0 > lim
n→∞

(
1

(β)n
N(x0, x1, t)

)
≥ lim

n→∞
N(xn, xn+p, t) ≥ 0

⇒ lim
n→∞

N(xn, xn+p, t) = 0

Hence (xn)n is a cauchy sequence in IFMS X. As X is complete there exist a point

y ∈ X such that xn −→ y as n→∞. Which implies that

M(xn, y, t)→ 1 and N(xn, y, t)→ 0 as n→∞

Now we show that y is a fixed point of T .

∆(y)M(T (y), T (xn), t) ≥ [M(y, T (y), t) +M(xn, T (xn), t)]

M(T (y), T (xn), t) ≥ 1

∆(y)
[M(y, T (y), t) +M(xn, T (xn), t)]
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⇒ lim
n→∞

M(T (y), T (xn), t) ≥ lim
n→∞

1

∆(y)
[M(y, T (y), t) +M(xn, T (xn), t)]

⇒ lim
n→∞

M(T (y), T (xn), t) ≥ 1

∆(y)
[M(y, T (y), t)] + lim

n→∞

1

∆(y)
[M(xn, T (xn), t)]

⇒ lim
n→∞

M(T (y), T (xn), t) ≥ 1

∆(y)
[M(y, T (y), t)] +

1

∆(y)
[M(y, T (y), t)]

⇒ lim
n→∞

M(T (y), T (xn), t) ≥ 2

∆(y)
[M(y, T (y), t)]

⇒ lim
n→∞

M(T (y), T (xn), t) ≥ 2

∆(y)
> 1

⇒ 1 < lim
n→∞

M(T (y), T (xn), t) ≤ 1

⇒ lim
n→∞

M(T (y), T (xn), t) = 1

Again,

N(T (y), T (xn), t) ≤ ∆(y)[N(y, T (y), t) +N(xn, T (xn), t)]

⇒ lim
n→∞

N(T (y), T (xn), t) ≤ lim
n→∞

∆(y)[N(y, T (y), t) +N(xn, T (xn), t)]

⇒ lim
n→∞

N(T (y), T (xn), t) ≤ 2∆(y)N(y, T (y), t)

⇒ lim
n→∞

N(T (y), T (xn), t) ≤ 2∆(y)

⇒ lim
n→∞

N(T (y), T (xn), t) < 0

⇒ 0 ≥ lim
n→∞

N(T (y), T (xn), t) > 0

⇒ lim
n→∞

N(T (y), T (xn), t) = 0

Hence we can see that

lim
n→∞

M(T (y), T (xn), t) = 1 and lim
n→∞

N(T (y), T (xn), t) = 0 ∀ t > 0

⇒ lim
n→∞

T (xn) = T (y) =⇒ lim
n→∞

xn+1 = T (y)

i− e, y = T (y)

⇒ y is a fixed point of T . Now to prove uniqueness, assume that T (z) = z for some

z ∈ X.
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Then for t > 0, and from equation 3.2.2 We have

1 ≥M(y, z, t) = M(T (y), T (z), t)

≥ 1

∆(y)
[M(y, T (y), t) +M(z, T (z), t)]

≥ 1

∆(y)
[M(y, y, t) +M(z, z, t)]

≥ 1

∆(y)
[1 + 1]

≥ 2

∆(y)

> 1

⇒M(y, z, t) = 1

Similarly, from equation 3.2.3

0 ≤ N(y, Z, t) = N(T (y), T (z), t)

≤ ∆(y)[N(y, T (y), t) +N(z, T (Z), t)]

≤ ∆(y)[N(y, y, t) +N(z, z, t)]

≤ ∆(y)[0 + 0]

≤ 0

⇒ N(y, z, t) = 0

This shows that y = z. Hence y is a unique fixed point of T .

This completes the proof.

Definition 3.2.2. Let (X, M , N , ∗, �) be IFMS and T : X → X. T is said to be

TS − IF contractive mapping depend on ∆ (TS − IFC∆) if there exists a mapping

∆ : X → (0, 1
2
) where

∆(Tx) ≤ ∆(x) (3.2.7)
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such that

∆(x)M(T (x), T (y), t) ≥ [M(x, Ty, t) +M(y, Tx, t)] (3.2.8)

and

1

∆(x)
N(T (x), T (y), t) ≤ [N(x, Ty, t) +M(y, Tx, t)] (3.2.9)

for all t > 0.

Theorem 3.2.2. Let (X, M , N , ∗, �) is a complete IFMS and T : X → X be

(TS − IFC∆) mapping Then T has a unique fixed point.

Proof. Let x0 be an arbitrary point in X. We can construct the sequence xn in X

by

xn = T nx0 = Txn−1

for all n ∈ N . Now for each t > 0, and from equation 3.2.8 We have

∆(x1)M(x1, x2, t) = ∆(x1)M(T (x0), T (x1), t)

≥ [M(x0, T (x1), t) +M(x1, T (x0), t)]

≥ [M(x0, x2, t) +M(x1, x1, t)]

≥M(x0, x2, t) + 1

≥M(x0, x2, t)

M(x1, x2, t) ≥
1

∆(x1)
M(x0, x2, t) (3.2.10)
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Now again for t > 0. and from equations 3.2.7, 3.2.8 We have

∆(x2)M(x2, x3, t) = ∆(x2)M(Tx1, Tx2, t)

≥ [M(x1, Tx2, t) +M(x2, Tx1. t)]

≥ [M(x1, x3, t) +M(x2, x2. t)]

≥ [M(x1, x3, t) + 1]

≥ 1

∆(x2)
M(x1, x3, t)

=
1

∆(Tx1)
M(Tx0, Tx2, t)

≥ 1

∆(x1)
[M(x0, Tx2, t) +M(x2, Tx0, t)]

=
1

∆(x1)
[M(x0, x3, t) +M(x2, x1, t)]

≥ 1

∆(x1)
M(x2, x1, t)

From equation 3.3.3, We get

M(x2, x3, t) ≥
1

(∆(x1))2M(x0, x2, t)

By Mathematical induction. We get

M(xn, xn+1, t) ≥
1

(∆(x1))n
M(x0, x2, t)

Again let for x ∈ X and for each t > 0

1

∆(x1)
N(x1, x2, t) =

1

∆(x1)
N(T (x0), T (x1), t)

≤ [N(x0, T (x1), t) +N(x1, T (x0), t)]

= [N(x0, x2, t) +N(x1, x1, t)]

= N(x0, x2, t) + 0

≤ N(x0, x2, t)
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N(x1, x2, t) ≤ ∆(x1)N(x0, x2, t) (3.2.11)

Again for t > 0, and from 3.2.7 and 3.2.8 We have

∆(x2)N(x2, x3, t) = ∆(x2)N(Tx1, Tx2, t)

≤ [N(x1, Tx2, t) +N(x2, Tx1, t)]

= [N(x1, x3, t) +N(x2, x2, t)] = [N(x1, x3, t) + 0]

≤ ∆(x2)N(x1, x3, t)

= ∆(Tx1)N(Tx0, Tx2, t)

≤ ∆(x1)[N(x0, Tx2, t) +N(x2, Tx0, t)]

≤ ∆(x1)N(x2, x1, t)

From equation 3.3.4, We get

N(x2, x3, t) ≤ (∆(x1))2N(x0, x2, t)

By Mathematical induction, We have,

N(xn, xn+1, t) ≤ (∆(x1))nN(x0, x2, t)

We now verify that xn is a cauchy sequence in (X, M , N , ∗, �).
Let t1 = t

p

M(xn, xn+p, t) ≥M(xn, xn+1, t1) ∗M(xn+1, xn+2, t1) ∗ · · · ∗M(xn+p−1, xn+p, t1)

=

(
1

(∆(x1))n
(∆(x1))nM(xn, xn+1, t1)

)
∗
(

1

(∆(x1))n+1 (∆(x1))n+1 M(xn+1, xn+2, t1)

)
∗ · · ·

∗
(

1

(∆(x1))n+p−1 (∆(x1))n+p−1M(xn+p−1, xn+p, t1)

)
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≥
(

1

(∆(x1))n
M(x0, x2, t1)

)
∗
(

1

(∆(x1))n+1M(x0, x2, t1)

)
∗ · · ·

∗
(

1

(∆(x1))n+p−1M(x0, x2, t1)

)
≥
(

1

(∆(x1))n
M(x0, x2, t)

)
∗ · · · ∗

(
1

(∆(x1))n
M(x0, x2, t)

)
=

(
1

(∆(x1))n
M(x0, x2, t)

)

⇒ 1 < lim
n→∞

(
1

(∆(x1))n
M(x0, x2, t)

)
≤ lim

n→∞
M(xn, xn+p, t) ≤ 1

⇒ lim
n→∞

M(xn, xn+p, t) = 1 (3.2.12)

Now again Let t1 = t
p

N(xn, xn+p, t) ≤ N(xn, xn+1, t1) �N(xn+1, xn+2, t1) � · · · �N(xn+p−1, xn+p, t1)

≤
(

1

(∆(x1))n
(∆(x1))nN(xn, xn+1, t1)

)
�
(

1

(∆(x1))n+1 (∆(x1))n+1N(xn+1, xn+2, t1)

)
� · · ·

�
(

1

(∆(x1))n+p−1 (∆(x1))n+p−1N(xn+p−1, xn+p, t1)

)

≤
(

1

(∆(x1))n
N(x0, x2, t1)

)
�
(

1

(∆(x1))n+1N(x0, x2, t1)

)
� · · ·

�
(

1

(∆(x1))n+p−1N(x0, x2, t1)

)
≤
(

1

(∆(x1))n
N(x0, x2, t)

)
� · · · �

(
1

(∆(x1))n
N(x0, x2, t)

)
=

(
1

(∆(x1))n
N(x0, x2, t)

)

42



⇒ 0 > lim
n→∞

(
1

(∆(x1))n
N(x0, x2, t)

)
≥ lim

n→∞
N(xn, xn+p, t) ≥ 0

⇒ lim
n→∞

N(xn, xn+p, t) = 0 (3.2.13)

Hence from equation 3.2.12 and 3.2.13, (xn)n is a cauchy sequence in IFMS X. As

X is complete there exist a point y ∈ X such that xn −→ y as n → ∞. Which

implies that

M(xn, y, t)→ 1 and N(xn, y, t)→ 0 as n→∞

Now we show that y is a fixed point of T .

∆(y)M(T (y), T (xn), t) ≥ [M(y, T (xn), t) +M(xn, T (y), t)]

M(T (y), T (xn), t) ≥ 1

∆(y)
[M(y, T (xn), t) +M(xn, T (y), t)]

⇒ lim
n→∞

M(T (y), T (xn), t) ≥ lim
n→∞

1

∆(y)
[M(y, T (xn), t) +M(xn, T (y), t)]

≥ lim
n→∞

1

∆(y)
[M(y, T (xn), t)] + lim

n→∞

1

∆(y)
[M(xn, T (y), t)]

≥ 2

∆(y)
[M(y, T (y), t)]

≥ 2

∆(y)
> 1

⇒ 1 < lim
n→∞

M(T (y), T (xn), t) ≤ 1

⇒ lim
n→∞

M(T (y), T (xn), t) = 1
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Again,

N(T (y), T (xn), t) ≤ ∆(y)[N(y), T (xn), t) +N(xn, T (xn), t)]

⇒ lim
n→∞

N(T (y), T (xn), t) ≤ lim
n→∞

∆(y)[N(y), T (xn), t) +N(xn, T (xn), t)]

⇒ lim
n→∞

N(T (xn), T (y), t) ≤ lim
n→∞

∆(y)[N(y), T (xn), t)] + lim
n→∞

∆(y)N(xn, T (xn), t)]

⇒ lim
n→∞

N(T (y), T (xn), t) ≤ 2∆(y)N(y, T (y), t)

⇒ lim
n→∞

N(T (y), T (xn), t) ≤ 2∆(y)

⇒ lim
n→∞

N(T (y), T (xn), t) < 0

⇒ 0 ≥ lim
n→∞

N(T (y), T (xn), t) > 0

⇒ lim
n→∞

N(T (y), T (xn), t) = 0

Hence we can see that

lim
n→∞

M(T (y), T (xn), t) = 1 and lim
n→∞

N(T (y), T (xn), t) = 0 ∀ t > 0

⇒ lim
n→∞

T (xn) = T (y) =⇒ lim
n→∞

xn+1 = T (y)

i− e, y = T (y)

⇒ y is a fixed point of T .

To prove uniqueness, assume T (z) = z for some z ∈ X.
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Then for t > 0, and from equation 3.2.8 We have

1 ≥M(y, z, t) = M(T (y), T (z), t)

≥ 1

∆(y)
[M(y, T (z), t) +M(z, T (y), t)]

≥ 1

∆(y)
[M(y, z, t) +M(z, y, t)]

≥ 1

∆(y)
[2M(y, z, t)]

≥ 2

∆(y)
M(y, z, t)

=
2

∆(y)
M(T (y), T (z), t)

≥ 2

(∆(y))2 [M(y, T (z), t) +M(z, T (y), t)]

≥
(

2

∆(y)

)2

[M(y, z, t)]

...

≥
(

2

∆(y)

)n

[M(y, z, t)] −→∞ as n −→∞

⇒ 1 < lim
n→∞

(
2

∆(y)

)n

M(y, z, t) ≤M(y, z, t) ≤ 1

⇒M(y, z, t) = 1
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Similarly, from equation 3.2.9. We have

0 ≤ N(y, Z, t) = N(T (y), T (z), t)

≤ ∆(y)[N(y, T (z), t) +N(z, T (y), t)]

≤ ∆(y)[N(y, z, t) +N(z, y, t)]

≤ ∆(y)[2N(y, z, t)]

≤ 2∆(y)[N(y, z, t)]

= 2∆(y)[N(T (y), T (z), t)]

≤ 2 (∆(y))2 [N(y, T (z), t) +N(z, T (y), t)]

≤ (2∆(y))2 [N(y, z, t)]

...

≤ (2∆(y))n [N(y, z, t)] −→ 0 as n −→∞

⇒ 0 ≤ [N(y, z, t)] ≤ lim
n→∞

(2∆(y))n [N(y, z, t)] < 0

⇒ N(y, z, t) = 0

Hence y = z. y is a unique fixed point of T . This completes the proof.

3.3 Kannan’s and Chatterjee’s Fixed point theo-

rem in IFMS

In T. K. Samanta, S. Mohinta & I. H. Jebril paper [7] the authors have posed some

open problem that Kannan’s and Chatterjee’s fixed point theorems can be proved

with the help of TS−IF contractive mapping. We have given this answer in Section

3.2 as a generalization of these results. Now by taking ∆(x) = k in Theorem 3.2.2

and Theorem 3.2.1 with TS − IF contractive mapping results hold as a following

corollaries.
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Corollary 3.3.1. Kannan’s fixed point theorem

Suppose (X, M , N , ∗, �) is a complete IFMS and T : X → X be TS-IF contractive

mapping such that

kM(T (x), T (y), t) ≥ [M(x, T (x), t) +M(y, T (y), t)] (3.3.1)

N(T (x), T (y), t) ≤ k[N(x, T (x), t) +N(y, T (y), t)] (3.3.2)

where k is contractive constant and k ∈ (0, 1/2). Then T has a unique fixed point.

Corollary 3.3.2. Chatterjee’s fixed point theorem

Suppose (X, M , N , ∗, �) is a complete IFMS and T : X → X be TS-IF contractive

mapping such that

kM(T (x), T (y), t) ≥ [M(x, T (y), t) +M(y, T (x), t)] (3.3.3)

N(T (x), T (y), t) ≤ k[N(x, T (y), t) +N(y, T (x), t)] (3.3.4)

where k is contractive constant and k ∈ (0, 1/2). Then T has a unique fixed point.
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