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Preface

The most important and well known result in fixed point theory is the Banach
fixed point theorem [2] also known as “Contraction mapping principle” which guar-
antees the existence and uniqueness of a fixed point for a contraction mapping from
a complete metric space to itself. A number of authors extended and generalized
Banach contraction principle in many ways. One of the extension is in the abstract
spaces in which more than one, in particular, when two metrics are defined. This
work was initially due to Maia [13] and many generalizations were made by different
authors(see [1], [10] and [12]). Hardy and Rogers [10] generalized and used these re-
sults in considering the solutions of differential equations in abstract spaces. These
results were further generalized by Agarwal et al. [1] and Kiran et al. [12].

On the other hand Samet et al. [23] introduced the concept of α-ψ-contractive
mapping and obtained some fixed point results which generalized Banach contraction
principle. Branciari [8] generalized this notion by introducing integral version of α-
ψ-contractive mapping. Various generalizations of α-ψ-contractive mapping and
hence Banach principle were made by different authors(see [11], [24] and references
therein). Furthermore, Salimi et al. [22] introduced twisted (α-β)-ψ-contractive
type mappings and established some fixed point results.

This thesis is organized as follows. Chapter 1 is devoted to fundamental notions
which are used in understanding and development of fixed point theory. We illus-
trate the concepts by some examples. In Chapter 2, we discuss fixed point results
for contraction mappings in spaces with two metrics in such a way that the under-
lying spaces are assumed to be complete with respect to one metric and satisfies a
contractive condition with respect to another metric. Chapter 3 consists of two sec-
tions. In Section I, fixed point results related to the α-ψ-contractive mappings and
generalizations of α-ψ-contractive mappings are discussed. In section II, fixed point
theorems related to twisted (α, β)-ψ-contractive mappings are presented. In chap-
ter 4, we establish some new fixed point theorems. This chapter consists of three
sections. In section I, the established theorems generalize and extend the results of
Samet et al. [23] and Karapinar et al. [11] related to α-ψ-contractive mappings and
hence Banach principle. Moreover, this established theorems also generalize some
of the results of Agarwal et al. [1] and Kiran et al. [12]. In the second section of
this chapter, fixed point theorems are obtained which generalize and extend some of
the results related to twisted (α, β)-ψ-contractive mappings of Salimi et al. [22]. At
the end of this chapter, we also present some concluding remarks and future work.



Chapter 1

Basic Concepts and Notations

1.1 Fixed points and contraction mappings

Given a nonempty set X and a map T : X → X, the problem of finding a point
x ∈ X such that x = Tx is called Fixed Point Problem and the point x ∈ X is
known as Fixed Point of the map T . The term Metric Fixed Point Theory refers to
those fixed point theoretic results in which geometric conditions on the underlying
spaces and/or mappings play a crucial role. In this chapter some basic concepts of
metric fixed point theory are presented which are used throughout this thesis. All
the necessary notations and the terminologies used in the sequel are also introduced.
Throughout this thesis, by X we denote a metric space with the metric d, unless
stated otherwise. If X is non-empty set and T is a self map, then Tx denotes the
image of x under T and FixT denotes the set containing all the fixed points of a
self map T .

Definition 1.1.1. Let T : X → X be a map then x ∈ X is said to be a fixed point
of T if x = Tx.

Example 1.1.1. Let X = [0, 1) and T be a self mapping from X defined by Tx = x2.
Then x = 0 is the fixed point of T .

Not all the functions have fixed points. For example let T1, T2 : R → R defined
by T1x = ex and T2x = x + c where 0 6= c ∈ R then T1 and T2 have no fixed
points. Furthermore, the fixed point of a map may not be unique. For example let
X = [−1, 1] and T3 and T4 are self mappings from X to X defined as T3x = x2 and
T4x = x3. Then FixT3 = {0, 1} and FixT4 = {−1, 0, 1} respectively.

Definition 1.1.2. A function T : X → X is said to be Lipschitzian or Lipschitz
function if there exists a positive real number L ≥ 0 such that

d(Tx, Ty) ≤ Ld(x, y); ∀ x, y ∈ X.
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Such a smallest L ≥ 0, which satisfy the above inequality, is called Lipschitz con-
stant.

Example 1.1.2. All the linear functions are Lipschitzian.

Example 1.1.3. Let X = [−2, 2] with usual metric d(x, y) = |x−y|; for all x, y ∈ X
and T : X → X defined by Tx = x2 then T is Lipschitzian map with Lipschitz
constant L = 4.

The definition of Lipschitz function is due to the German mathematician Rudolph
Lipschitz (1832-1903), who used this concept of continuity to prove existence and
uniqueness of solutions to some important differential equations for example in
Picard-Lindelöf theorem. In this theorem Lipschitz function plays an important
role.

Proposition 1.1.1. Let T : [a, b] ⊂ R → R be differentiable on (a, b). Suppose T ′

is continuous on [a, b]. Then T is a Lipchitz continuous.

The following example shows that Lipchitzian mapping may not be differentiable.

Example 1.1.4. Let X = [−1, 1] and T a mapping from X to X defined as Tx = |x|.
Then T is Lipchitzian mapping with L = 1 but T is not differentiable at x = 0.

Remark 1.1.1. Note that Lipschitzian map is uniformly continuous but the converse
is not true.

Proof. Let (X, d) be a metric space and T : X → X be a Lipschitzian mapping,
then

d(Tx, Ty) ≤ Ld(x, y).

Choosing an ε > 0, then for all x, y ∈ X there exists a δ = δ(ε) > 0 such that

d(x, y) < δ =
ε

L
,

which implies that
Ld(x, y) < ε.

But since
d(Tx, Ty) ≤ Ld(x, y),

thus
d(Tx, Ty) < ε.

Which shows that T is uniform continuous(and hence continuous).

The following two examples show that uniform continuity does not imply Lipchitz
continuity.
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Example 1.1.5. Let X = [−1
π
, 1
π
] and T : X → X is defined by

Tx =

{
0, if x = 0
x
2

sin( 1
x
), if x 6= 0.

Then T is continuous(uniform continuous) but not Lipchitz continuous.

Example 1.1.6. Suppose that X = [0, 1] and d(x, y) = |x− y|. Then T : X → X
defined as Tx =

√
x is uniform continuous by the uniform continuity criterion but is

not Lipschitian since we cannot find a constant L ≥ 0 such that the above inequality
holds. Thus every uniform continuous function may not be Lipschitzian.

Definition 1.1.3. A Lipschitzian mapping T : X → X with L < 1 is called
Contraction mapping or simply Contraction. Geometrically this means that any two
points in the range of T are closer than the corresponding pre-images in domain.
More precisely, the ratio d(Tx, Ty)/d(x, y) does not exceed a Lipschitz constant
L < 1.

Example 1.1.7. Let (X = [0, 1], d) be the usual metric space and T a self map from
X into X define by Tx = 1

2+x
, then

d(Tx, Ty) = | 1

2 + x
− 1

2 + y
| = | y − x

(2 + x)(2 + y)
|

=
d(x, y)

|2 + x||2 + y|
≤ 1

4
d(x, y).

Hence, T is contraction with Lipschitz constant L = 1
4
.

Definition 1.1.4. A function T : X → X is called Contractive if for all x, y ∈ X
and x 6= y,

d(Tx, Ty) < d(x, y).

Example 1.1.8. Let T : X → X defined as Tx = x + 1
x

with usual metric and
X = [1,+∞), then

|x+
1

x
− y − 1

y
| = |x− y||1− 1

xy
| < |x− y|.

Hence T is contractive.

Remark 1.1.2. Not all contraction(and hence contractive) mappings have fixed
points.
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Example 1.1.9. Let us consider X = (0, 1] with usual metric and T : X → X
defined by Tx = x

2
, then

|Tx− Ty| = 1

2
|x− y|,

and hence T is contraction(and hence contractive), has no fixed point because X is
not complete.

It is worth noting that every Contraction is Contractive but the converse is not
true.

Theorem 1.1.1. (Banach contraction principle [2]) Let (X, d) be a complete metric
space and let T be a mapping from X into X. If there exists a real number L with
0 ≤ L < 1 satisfying

d(Tx, Ty) ≤ Ld(x, y)

for all x, y ∈ X, then T has a unique fixed point x∗. Moreover, for each x ∈ X:

(i) The iterative sequence (T nx) converges to x∗;

(ii) For n ≥ 1 the following apriori estimates holds;

d(T nx, x∗) ≤ Ln

1− L
d(x, Tx);

(iii) For n ≥ 1 the following aposteriori estimates holds;

d(T n+1x, x∗) ≤ d(T n+1x, T nx).

1.2 Some extensions of Banach contraction prin-

ciple using gauge functions

Banach contraction principle was extended in many ways. One of the extension of
this principle was to consider a gauge function. Here we mention some of the well
known (related to our work) extensions.

Definition 1.2.1. A function ψ : R+ → R+, where R+ is the set of all non-negative
real numbers, is said to be a gauge function if one of the following conditions is
satisfied:

(i) ψ is non-decreasing;

(ii) ψ(t) < t, ∀ t > 0;

(iii) ψ(0) = 0;
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(iv) limn→+∞ ψ
n(t) = 0, ∀ t ≥ 0;

(v)
∑+∞

n=0 ψ
n(t) < +∞, ∀ t > 0;

(vi) ψ is continuous;

(vii) t− ψ(t)→∞ as t→ +∞;

(viii) ψ is sub-additive.

Definition 1.2.2. A function ψ : I → I where I is an interval of the form
[0, R], [0, R) or [0,+∞) and r ≥ 1 is said to be a gauge function of order r if
it satisfies the following conditions:

(a) ψ(θt) ≤ θrψ(t), θ ∈ (0, 1), t ∈ I;

(b) ψ(t) < t; ∀ t ∈ I/{0}.

If (i) and (iv) are satisfied then ψ is called comparison function. If (i) and (v)
are satisfied then ψ is called (c)-comparison function. Note that the last type of
function is also known as Bianchini-Grandolfi [6] gauge function in the literature.
Moreover, Ptak [18] observed that gauge functions satisfy the following functional
equation:

σ(t) = σ(ψ(t)) + t; σ(t) =
+∞∑
n=0

ψn(t) <∞, ∀ t ∈ R+. (1.1)

Example 1.2.1. Let ψ : R+ → R+ defined by ψ(t) = qt, where q ∈ (0, 1) then ψ is
gauge function.

Example 1.2.2. Let ψ : R+ → R+ be defined as ψ(t) = t
t+1

; t ∈ R+ is a comparison
function but not a (c)-comparison function.

Example 1.2.3. Let ψ(t) = t
2

when t ∈ [0, 1] and ψ(t) = t− 1
2

, when t ∈ (1,+∞)
is a (c)-comparison function.

One can easily deduce from the above examples that any (c)-comparison function
is a comparison function but converse may not be true. Rakotch [19] generalized
Banach contraction principle, using a gauge function, in the following way:

Theorem 1.2.1. [19] Let X be a complete metric space and suppose that T : X → X
satisfies

d(Tx, Ty) ≤ ψ(d(x, y))d(x, y),

for each x, y ∈ X where ψ : R+ → [0, 1) is monotonically non decreasing. Then T
has a unique fixed point, λ, and (T n(x)) converges to λ for each x ∈ X.
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A more general result was obtained by Boyd and Wong [7].

Theorem 1.2.2. [7] Let X be a complete metric space and suppose that T : X → X
satisfies

d(Tx, Ty) ≤ ψ(d(x, y)),

for each x, y ∈ X where ψ : R+ → [0,+∞) is upper semicontinuous from the right
and satisfies 0 ≤ ψ(t) < t for t > 0. Then T has a unique fixed point λ, and (T n(x))
converges to λ for each x ∈ X.

The above result of Boyd and Wong was generalized by Browder [9] in the fol-
lowing way:

Theorem 1.2.3. [9] Let X be a metric space and let D be a bounded subset of X.
Suppose T : D → D satisfies

d(Tx, Ty) ≤ ψ(d(x, y)),

for each x, y ∈ D, where ψ : R+ → R+ is a monotone non decreasing and continuous
from the right, such that ψ(t) < t for all t > 0. Then there is a unique element
λ ∈ D such that (T nx) converges to λ for each x ∈ D. Moreover, if κ is the diameter
of D, then

d(T nx, λ) ≤ ψ(κ),

and ψ(κ)→ 0 as n→ +∞.

The following variant is due to Matkowski [14] where the continuity condition
on ψ is replaced with another condition.

Theorem 1.2.4. [14] Let X be a complete metric space and suppose that T : X → X
satisfies

d(Tx, Ty) ≤ ψ(d(x, y)),

for each x, y ∈ X, where ψ : R+ → R+ is a monotone non decreasing and sat-
isfies limn→+∞ ψ

n(t) = 0 for t > 0. Then T has a unique fixed point λ, and
limn→ d(T n(x), λ) = 0 for every x ∈ X.

Banach principle was also extended using gauge function of higher order by
many authors in the literature. For example Proinov [17] generalized the Banach
contraction principle by using a gauge function of order greater or equal to 1.

1.3 α-admissible mappings

Samet et al. [23] on the other hand generalized Banach [2] contraction principle by
introducing very interesting notion of α-admissible and α−ψ-contractive mapping.
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Definition 1.3.1. [23] Assume that T : X → X be given mapping and α : X ×
X → [0,+∞), then T is called α-admissible mapping if, ∀ x, y ∈ X such that
α(x, y) ≥ 1 implies that α(Tx, Ty) ≥ 1.

Example 1.3.1. Let T : X → X with X = [0,+∞) and Tx =
√
x and let us define

α as α(x, y) = 2; ∀ x, y ∈ X. Then, since α(x, y) ≥ 1 so α(Tx, Ty) ≥ 1. Hence T
is α-admissible.

Remark 1.3.1. Not all the maps are α-admissible and is shown in the below exam-
ple.

Example 1.3.2. Let X = [0,+∞) and T : X → X defined by Tx = 1
x+2

and

α(x, y) =

{
0, if x ≥ y

ey−x, if x < y,

then α(x, y) ≥ 1 implies x < y and since T is decreasing, so we get Tx > Ty. But
from the definition of α, we deduce that

α(Tx, Ty) = 0 � 1.

Thus, T is not α-admissible mapping.

1.4 Twisted (α,β)-admissible mappings

Salimi et al. [22] generalized the α − ψ-notion introduced by Samet et al. [23]
and hence Banach [2] principle by introducing twisted (α, β)-admissible and twisted
(α, β)-ψ-contractive mappings.

Definition 1.4.1. [22] Let T : X → X be given mapping and α, β : X × X →
[0,+∞). Then T is said to be twisted (α,β)-admissible mapping if,

∀ x, y ∈ X and α(x, y) ≥ 1 and β(x, y) ≥ 1 then α(Ty, Tx) ≥ 1 and β(Ty, Tx) ≥ 1.

Note that chapter 3 is devoted to the fixed point results related to α − ψ and
twisted (α, β)-ψ-contractive type mappings.
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Chapter 2

Generalized contractions on spaces
with two metrics

The aim of this chapter is, to discuss the techniques used in the extension of Banach
principle [2] on spaces with two metrics. Banach fixed point theorem is extended
and generalized in different ways. One of these extensions, is in those abstract
spaces upon which there is more than one, in particular, when two metrics are
defined. Banach principle [2] was first extended on the spaces with two metrics by
Maia [13] which was further generalized by Precup [16] in order to find the solution
of differential equation in abstract spaces. These results were later generalized by
Agarwal et al. [1] and Kiran et al. [12].

2.1 Fixed point results on the spaces with two

metrics

Definition 2.1.1. Let (X, d) be a metric space and d′ be another metric on X which
is complete and x0 ∈ X, r > 0 then by S(x0, r), we denote the open ball centered
at x0 with radius r defined as:

S(x0, r) = {x ∈ X : d(x, x0) < r},
and by S(x0, r)d and S(x0, r)d

′ the d-closure and d′-closure of S(x0, r) respectively.

Agarwal et al. [1] established some fixed point theorems in spaces with two
metrics in the following way.

Theorem 2.1.1. [1] Let (X, d′) be a complete metric space and d be another metric
on X, x0 ∈ X, r > 0 and T : S(x0, r)d

′ → X. Suppose there exists q ∈ (0, 1) such
that, for x, y ∈ S(x0, r)d

′ we have

d(Tx, Ty) ≤ qmax

{
d(x, y), d(x, Tx), d(y, Ty),

[d(x, Ty) + d(y, Tx)]

2

}
.
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In addition assume the following three properties hold:

d(x0, Tx0) < (1− q)r. (2.1)

If d � d′ assume T is uniformly continuous from (S(x0, r), d) into (X, d′);

If d 6= d′ assume T is continuous from (S(x0, r)d
′ , d′) into (X, d′);

Then T has a fixed point. That is, there exists x ∈ S(x0, r)d with x = Tx.

We take in account the special case of the above theorem when d = d′.

Theorem 2.1.2. [1] Let (X, d) be a complete metric space, x0 ∈ X, r > 0 and
T : S(x0, r)d → X. Suppose there exists q ∈ (0, 1) such that for x, y ∈ S(x0, r)d we
have

d(Tx, Ty) ≤ qmax

{
d(x, y), d(x, Tx), d(y, Ty),

[d(x, Ty) + d(y, Tx)]

2

}
.

In addition assume that the following the property holds;

d(x0, Tx0) < (1− q)r.

Then there exists x ∈ S(x0, r)d
′ with x = Tx.

Proof. Let x1 = Tx0. Now from (2.1) we have
d(x0, x1) < (1− q)r < r and so we have x1 ∈ S(x0, r).
Next x2 = Tx1 then

d(x1, x2) = d(Tx0, Tx1)

≤ qmax

{
d(x0, x1), d(x1, x2),

[d(x0, x2)]

2

}
≤ qmax

{
d(x0, x1), d(x1, x2),

d(x0, x1) + d(x1, x2)

2

}
We claim that max

{
d(x0, x1), d(x1, x2), d(x0,x1)+d(x1,x2)

2

}
= d(x0, x1). Otherwise, as-

sume that

max

{
d(x0, x1), d(x1, x2),

d(x0, x1) + d(x1, x2)

2

}
=
d(x0, x1) + d(x1, x2)

2
.

Then, we have

d(x1, x2) ≤ q

{
d(x0, x1) + d(x1, x2)

2

}
(1− q

2
)d(x1, x2) ≤ q

2
d(x0, x1)

d(x1, x2) ≤ q

2− q
d(x0, x1) ≤ qd(x0, x1).
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The other cases are simple. Thus

d(x1, x2) ≤ qd(x0, x1)

< q(1− q)r.

Notice that x2 ∈ S(x0, r) since from triangular inequality and (2.1) we have

d(x0, x2) ≤ d(x0, x1) + d(x1, x2)

≤ (1− q)r + q(1− q)r
= (1− q)r[1 + q]

≤ (1− q)r[1 + q + q2 + . . .] = r.

Proceeding inductively, we obtain xn+1 = Txn with

d(xn+1, xn) ≤ qd(xn, xn−1)

≤ qnd(x0, x1)

< qn(1− q)r. (2.2)

Since q ∈ (0, 1), so qn → 0 as n→ +∞ which further shows that limn→+∞ d(xn+1, xn) =
0 and xn+1 ∈ S(x0, r). Now, we show that (xn) is a Cauchy sequence. Let m,n ∈ N
such that m > n then, from triangular inequality and (2.2) we infer that,

d(xn, xm) ≤
m∑

i=n+1

d(xi−1, xi)

≤ [qn + qn+1 + ...+ qm−n−1]d(x0, x1)

= qn[
1− qm−n−1

1− q
]

<
qn

1− q
d(x0, x1).

Letting n→ +∞ in the above inequality, we get that (xn) is Cauchy sequence. Thus
from the completeness of X we have xn → x and also (xn) is a sequence in S(x0, r)
so x ∈ S(x0, r). Finally we claim that x = Tx, then

d(x, Tx) ≤ d(x, xn) + d(Txn−1, Tx)

≤ d(x, xn) + qmax

{
d(x, xn−1), d(x, Tx), d(xn−1, Txn−1),

d(x, Txn−1) + d(xn−1, Tx)

2

}
. (2.3)

Taking limit as n→ +∞ in the above inequality, we deduce that x = Tx.
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The following global result can easily be deduced from Theorem 2.1.1.

Theorem 2.1.3. [1] Let (X, d′) be a complete metric space and d be another metric
on X and T : X → X. Suppose there exists q ∈ (0, 1) such that for x, y ∈ X we
have

d(Tx, Ty) ≤ qmax

{
d(x, y), d(x, Tx), d(y, Ty),

[d(x, Ty) + d(y, Tx)]

2
.

}
In addition assume that the following three properties hold:

if d � d′ assume T is uniformly continuous from (X, d) into (X, d′), and

if d 6= d′ assume T is continuous from (X, d′) into (X, d′).

Then T has a fixed point. That is, there exists x ∈ X with x = Tx.

Now we consider some of the results of Kiran et al. [12] which generalize and
extend the above results of Agarwal et al. [1].

Theorem 2.1.4. [12] Let (X, d′) be complete metric space and d be another metric
on X, x0 ∈ X, r > 0 and T : S(x0, r)→ X satisfies;

d(Tx, T 2x) ≤ ψ(d(x, Tx)); ∀ x, Tx ∈ S(x0, r) with d(x, Tx) ∈ J, (2.4)

where ψ is a Bianchini-Grandolfi gauge function on the interval J = [0,∞). Then
starting from x0 the iterative sequence

xn+1 = Txn; ∀ n ≥ 0, (2.5)

converges to a fixed point λ ∈ S(x0, r)d
′. Which will be the fixed point of T if the

following conditions are satisfied:

(i) d(x0, Tx0) < δ,

where δ > 0 is such that σ(δ) ≤ r.

(ii) If d � d′ assume T is uniformly continuous from (S(x0, r), d) into (X, d′)

(iii) If d 6= d′ then T is continuous from (S(x0, r)d
′ , d′) into (X, d′).

(iv) If d = d′ then T is continuous at λ.
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Proof. Let x1 = Tx0. Then from (i)

d(x0, Tx0) < δ ≤ σ(δ) ≤ r.

Next let x2 = Tx1. Then from (2.4) we have

d(x1, x2) = d(Tx0, Tx1) = d(Tx0, T
2x0) ≤ ψ(d(x0, Tx0)

Note that d(x1, x2) ∈ J . Further, x2 ∈ S(x0, r)d since from triangular inequality
and using (1.1) and (i), we have

d(x0, x2) ≤ d(x0, x1) + d(x1, x2)

≤ d(x0, x1) + ψ(d(x0, x1))

< δ + σ(ψ(δ))

= σ(δ) ≤ r.

Let x3 = Tx2. Then again using (2.4), we have

d(x2, x3) = d(Tx1, Tx2) = d(Tx1, T
2x1)

≤ ψ(d(x1, Tx1))

= ψ(d(Tx0, T
2x0))

≤ ψ2(d(x0, x1)).

Note that d(x2, x3) ∈ J . Further x3 ∈ S(x0, r)d, since

d(x0, x3) ≤ d(x0, x1) + d(x1, x2) + d(x2, x3)

≤ d(x0, x1) + ψ(d(x0, x1)) + ψ2(d(x0, x1))

<
∞∑
k=0

ψk(δ)

= σ(δ) ≤ r.

Proceeding in the same way, we obtain a sequence (xn) in S(x0, r)d such that

d(xn, xn+1) ≤ ψn(d(x0, x1)). (2.6)

We now show that (xn) is Cauchy sequence with respective d. Let n, p ∈ N then
from (2.6) together with triangular inequality we infer that,

d(xn+p, xn) ≤ d(xn+p, xn+p−1) + ...+ d(xn+1, xn)

≤ ψn+p−1 (d(x0, x1) + ...+ ψn(d(x0, x1))

≤
∞∑
k=n

ψk (d(x0, x1))→ 0.

12



Thus, there is an N ∈ N satisfying

d(xn, xm) < ξ whenever n,m ≥ N. (2.7)

We claim that (xn) is Cauchy sequence with respect to d′. If d ≥ d′ then our claim
is trivially true. If d � d′ and let ε > 0 then (ii) guarantees that, there is an ξ > 0
such that

d′(Tx, Ty) < ε whenever x, y ∈ S(x0, r), d(x, y) < ξ. (2.8)

Now (2.7) and (2.8) imply that

d′(xn+1, xm+1) = d′(Txn, Txm) < ε whenever n,m ≥ N,

which proves our claim. Since (x, d′) is complete, so there exists λ ∈ S(x0, r)d
′ with

d(xn, λ)→ 0 as n→∞. We further claim that λ = Tλ. First considering the case
when d 6= d′

d′(λ, Tλ) ≤ d′(λ, xn) + d′(xn, Tλ) = d′(λ, xn) + d′(Txn−1, Tλ). (2.9)

Letting n→∞ and the continuity of T follows from (iii) insures that d′(λ, xn)→ 0
implies d′(Txn−1, Tλ)→ 0 which further shows that λ = Tλ. Next assume the case,
when d = d′ then

d(λ, Txn) ≤ d(λ, xn) + d(xn, Txn) = d(λ, xn) + d(xn, xn+1).

Taking limit n→∞ we get,

lim
n→∞

d(λ, Txn) ≤ 0.

From (iv) since T is continuous at λ so we have d(λ, Tλ) = 0 which implies that
λ = Tλ.

Remark 2.1.1. Theorem 2.1.4 remains true if ψ is a gauge function of order r ≥ 1.

The following global results can easily be deduced from Theorem 2.1.4 and re-
mark 2.1.1.

Theorem 2.1.5. [12] Let (X, d′) be a complete metric space, d be another metric
on X and T : X → X is an operator satisfying (2.4) with gauge function ψ of
order r ≥ 1 on an interval J = [0,∞). Then T has a fixed point provided that, the
following three conditions are satisfied:

(a) If d � d′ assume that T is uniformly continuous from (X, d) into (X, d′);

(b) If d 6= d′ then T is continuous from (X, d′) into (X, d′);

(c) If d = d′ then T is continuous at λ.

13



Proof. Fix x0 ∈ X and choose δ > 0 such that d(x0, Tx0) < δ, and take r = σ(δ).
Now Theorem 2.1.4 guarantees that there exists λ ∈ S(x0, r)d

′ such that λ = Tλ.

Theorem 2.1.6. [12] Let (X, d′) be a complete metric space, d be another metric
on X, x0 ∈ X, r > 0 and T : S(x0, r)→ X is an operator satisfying

d(Tx, Ty) ≤ ψ(M(x, y)); ∀ x, y, Tx, Ty ∈ S(x0, r), (2.10)

where ψ is a gauge function of order r ≥ 0 on an interval J = [0,∞) and

M(x, y) = max

{
d(x, y), d(x, Tx), d(y, Ty),

d(x, Ty) + d(y, Tx)

2

}
. (2.11)

Then the iterative sequence (2.5) converges to a unique fixed point λ of T provided
that (i)− (iv) of Theorem 2.1.4 hold. Moreover, if ψ is continuous, then continuity
of T in (iv) of Theorem 2.1.4 can be omitted.

Proof. Let x1 = Tx0. Then from (i)

d(x0, Tx0) < δ ≤ r.

Next let x2 = Tx1 then from (2.10), we have

d(x1, x2) = d(Tx0, Tx1) ≤ ψ(M(x0, x1))

where

M(x0, x1) = max

{
d(x0, x1), d(x0, Tx0), d(x1, Tx1),

d(x0, Tx1) + d(x1, Tx0)

2

}
= max

{
d(x0, x1), d(x0, x1), d(x1, x2),

d(x0, x2) + d(x1, x1)

2

}
= max

{
d(x0, x1), d(x1, x2),

d(x0, x2)

2

}
.

We claim that
d(x1, x2) ≤ ψ(d(x0, x1)). (2.12)

CaseI. If M(x0, x1) = d(x0, x1) our claim is trivially true.
CaseII. If M(x0, x1) = d(x1, x2). Then we have, d(x1, x2) ≤ ψ(d(x1, x2) < d(x1, x2)
since ψ(t) < t leads to a contradiction.

CaseIII. Finally suppose M(x0, x1) = d(x0,x−2)
2

. Then we have, from the triangular
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inequality and considering the property of gauge function ψ(t) < t that

d(x1, x2) ≤ ψ(
d(x0, x2)

2
)

<
d(x0, x2)

2

≤ d(x0, x1) + d(x1, x2)

2

d(x1, x2)− d(x1, x2)

2
<

d(x0, x1)

2
d(x1, x2) < d(x0, x1).

Which further leads to the conclusion that,

M(x0, x1) =
d(x0, x2)

2

≤ d(x0, x1) + d(x1, x2)

2
< d(x0, x1),

which is not true since M(x0, x1) is maximum and this proves our claim. Proceeding
in a same way as in Theorem 2.1.4 we obtain the iterative sequence (2.5) converges
to the fixed point λ of T . Now we show that this fixed point λ is unique. Let γ be
another fixed point such that λ 6= γ , then d(λ, γ) 6= 0 then from (2.10) and (2.11)
we have M(λ, γ) = d(λ, γ) since Tλ = λ and Tγ = γ and

d(λ, γ) = d(Tλ, Tγ)

≤ ψ(M(λ, γ)

= ψ(d(λ, γ))

< d(λ, γ)

which is not possible. This contradiction arises due to our wrong supposition that
λ 6= γ. Hence λ = γ. Finally, suppose that d = d′ and ψ is continuous then it follows
from (2.10), that

d(xn+1, Tλ) = d(Txn, Tλ)

≤ ψ(M(xn, λ))

= ψ

(
max

{
d(xn, λ), d(xn, Txn), d(λ, Tλ),

d(xn, Tλ) + d(λ, Txn)

2

})
.

Taking limit as n → ∞ in the above inequality we obtain d(λ, Tλ) ≤ ψ(d(λ, Tλ))
which is possible only if λ = Tλ.

15



The following global result can be easily deduced from Theorem 2.1.6.

Theorem 2.1.7. [12] Let (X, d′) be a complete metric space on X and T : X → X
is an operator satisfying (2.10) with gauge function ψ of order r ≥ 1 on an interval
J = [0,∞) and M(x, y) is defined in (2.11). Then T has a unique fixed point
provided that the following conditions are satisfied;
(I) If d � d′ assume T is uniformly continuous from (X, d) into (X, d′).
(II) If d 6= d′ then T is continuous from (X, d′) into (X, d′).
(III) If d = d′ then T is continuous at λ.
Moreover, if ψ is continuous, then continuity of T in (III) can be omitted.

Proof. Fix x0 ∈ X and choose δ > 0 such that d(x0, Tx0) < δ and take r = σ(δ).
Then from Theorem 2.1.6, we deduce that there exists λ ∈ S(x0, r)d

′ such that
λ = Tλ.
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Chapter 3

α-ψ-contractive and twisted
(α,β)-ψ-contractive type mappings

Banach contraction principle [2] is the simplest and one of the most versatile ele-
mentary result in nonlinear analysis especially in fixed point theory. It produces
approximations of any required accuracy, and moreover, even the number of iter-
ations needed to get a specified accuracy can be determined. This principle has
various applications and has been extended by many authors in different ways.
Samet et al. [23] introduced a new concept of α-ψ-contractive type mapping and
established various fixed point theorems for such a mapping in context of complete
metric spaces. These theorems extend, generalize and improve many existing results
in literature, in particular, the Banach contraction principle and the results of Ran
and Reurings [20], Nieto and Rogriguez-Lopez [15] and Bhasker and Lakshmikan-
tham [5]. Recently, Shahi et al. [24] gave the integral version of α-ψ-contractive type
mapping and proved some related fixed point theorems. As a consequence of main
results of Shahi et al. [24] the well known Branciari [8] fixed point theorem, in which
the mapping was considered to satisfy the integral version of contraction condition
and hence Banach contraction principle were obtained. Very recently, Karapinar
et al. [11] introduced two new classes of generalized α-ψ-contractive mappings of
integral type and obtained some fixed point results. Salimi et al. [22] introduced
the concept of twisted (α, β)-ψ-contractive mappings and obtained some fixed point
results. The results of Salimi et al. [22] also generalize and extend the results of
Samet et al. [23] and hence Banach contraction principle [2]. The basic aim of this
chapter is, to review some important fixed point results related to α-ψ and twisted
(α,β)-ψ-notions. This chapter consists on two sections. In section one, fixed point
results related to α−ψ-notion are discussed. In second section of this chapter, fixed
point results of twisted (α, β)-ψ-contractive mappings are discussed.
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3.1 α-ψ-contractive type mappings

Definition 3.1.1. [23] Let (X, d) be a metric space and T : X → X be given
mapping. We say that T is α-ψ-contractive mapping if there exist two functions
α : X ×X → [0,+∞) and ψ ∈ Ψ such that

α(x, y)d(Tx, Ty) ≤ ψ(d(x, y)), ∀ x, y ∈ X.

Example 3.1.1. Let X = R is a metric space with standard metric d(x, y) =
|x− y|; ∀ x, y ∈ X. Define the self map T from X by

Tx =


2x− 3

2
, if x > 1

x
2
, if 0 ≤ x ≤ 1

0, if x < 0.

Then T is not contraction, since d(T1, T2) > d(1, 2) and let α be defined as;

α(x, y) =

{
1, if x, y ∈ [0, 1]

0, otherwise.

If α(x, y) = 0 then T is α-ψ-contractive mapping. Now let α(x, y) = 1 then x, y ∈
[0, 1] and hence Tx = x

2
and Ty = y

2
from which we have

d(Tx, Ty) =
1

2
|x− y| = ψ(d(x, y), with ψ(t) =

1

2
t,

and hence we get

α(x, y)d(Tx, Ty) ≤ ψ(d(x, y)), ∀ x, y ∈ X = R.

Theorem 3.1.1. [23] Let (X, d) be a complete metric space and T : X → X be an
α-ψ-contractive mapping satisfying the following conditions:
(i) T is α-admissible;
(ii) there exists x0 ∈ X such that α(x0, Tx0) ≥ 1;
(iii) T is continuous.
Then T has a fixed point, that is, there exists x ∈ X such that Tx = x.

Example 3.1.2. Let X = (−∞,+∞) endowed with usual metric d(x, y) = |x− y|,
∀ x, y ∈ X. Defining the map T : X → X by;

Tx =


−x2, if x < 0,
x
2
, if 0 ≤ x ≤ 1,

2x− 3
2
, if x > 1.
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Here, we can observe that the mapping T is continuous but we cannot apply Banach
contraction principle since for x = −1 and y = −2 in R, we have

d(T−1, T−2) = 3 > 1 = d(−1,−2).

Although, the mapping T is not a contraction but T is an α-ψ-contractive type
mapping and taking α as defined below:

α(x, y) =

{
1, if x, y ∈ [0, 1]

0, otherwise,

together with ψ(t) = t
2

for all t ≥ 0. As we have, for x, y ∈ [0, 1],

α(x, y)d(Tx, Ty) ≤ 1

2
d(x, y).

Other case is trivial. Finally x0 = 1 ∈ X such that α(x0, Tx0) = 1. Since all the
hypotheses of Theorem 3.1.1 are satisfied. Thus T has at least one fixed point. Hence
FixT = {−1, 0, 3

2
}.

Notice that the above theorem does not guarantee the uniqueness of the fixed
point. To assure the uniqueness of fixed point, the authors in [23] added the following
condition to Theorem 3.1.1.
(U): For all x, y ∈ X, there exists z ∈ X such that α(x, z) ≥ 1 and α(y, z) ≥ 1.

Theorem 3.1.2. [23] Adding condition (U) to the hypotheses of Theorem 3.1.1, we
obtain uniqueness of the fixed point of T .

Karapinar et al. [11] introduced two new classes of generalized α-ψ-contractive
mappings of integral type and established some fixed point theorems in the following
way:

Definition 3.1.2. Define Φ = {φ | φ : R+ → R} such that φ is nonnegative,
Lebesgue integrable and satisfies∫ ε

0

φ(t)dt > 0; ∀ ε > 0.

Definition 3.1.3. [4] Let N ∈ N, we say that α is N -transitive (on X) if

xo, x1, ..., xN+1 : α(xi, xi+1) ≥ 1; ∀ i ∈ {0, 1, ..., N}
then α(xo, xN+1) ≥ 1.

In particular, we say that α is transitive if it is 1-transitive that is
if x, y, z ∈ X : α(x, y) ≥ 1 and α(y, z) ≥ 1 then α(x, z) ≥ 1
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Remark 3.1.1. If α is transitive, then it is N-transitive for all N ∈ N.

Remark 3.1.2. If α is N-transitive, then it is not necessarily transitive for all
N ∈ N.

Definition 3.1.4. [11] Let T : X → X be given mapping, we say that T is gener-
alized α-ψ-contractive mapping of integral type I if

α(x, y)

∫ d(Tx,Ty)

0

φ(t)dt ≤ ψ

(∫ M(x,y)

0

φ(t)dt

)
, (3.1)

where

M(x, y) = max

{
d(x, y), d(x, Tx), d(y, Ty),

[d(x, Ty) + d(y, Tx)]

2

}
;

∀ x, y ∈ X, ψ ∈ Ψ and φ ∈ Φ.

Definition 3.1.5. [11] Let T : X → X be given mapping , we say that T is
generalized α-ψ-contractive mapping of integral type II if

α(x, y)

∫ d(Tx,Ty)

0

φ(t)dt ≤ ψ

(∫ M(x,y)

0

φ(t)dt

)
, (3.2)

M(x, y) = max

{
d(x, y),

[d(x, Tx) + d(y, Ty)]

2
,
[d(x, Ty) + d(y, Tx)]

2

}
;

∀ x, y ∈ X, ψ ∈ Ψ and φ ∈ Φ.

Theorem 3.1.3. [11] Let (X, d) be a complete metric space and α : X × X →
[0,+∞) be a transitive mapping. Suppose that T : X → X is a generalized α-ψ-
contractive mapping of integral type I and satisfies the following conditions :
(i) T is α-admissible;
(ii) there exists x0 ∈ X such that α(x0, Tx0) ≥ 1;
(iii) T is continuous.
Then T has a fixed point, that is, there exists z ∈ X such that Tz = z.

Proof. Let x0 be an arbitrary element of X such that α(x0, Tx0) ≥ 1. We construct
an iterative sequence (xn) ∈ X in the following way

xn+1 = Txn; ∀ n ∈ N ∪ {0}.

If there is a natural number n0 ∈ N such that xn0 = Txn0 then xn0 is a fixed point
of T and we are finished. Assume otherwise, let xn 6= Txn for all n. Then since T
is α-admissible, we find that

α(x0, Tx0) = α(x0, x1) ≥ 1.
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Proceeding inductively we get

α(xn, xn+1) ≥ 1; ∀ n ∈ N. (3.3)

Taking x = xn−1 and y = xn in inequality (3.1) and using (3.3), we infer that∫ d(xn,xn+1)

0

φ(t)dt =

∫ d(Txn−1,Txn)

0

φ(t)dt

≤ α(xn−1, xn)

∫ d(Txn−1,Tx)

0

φ(t)dt

≤ ψ(

∫ M(xn−1,xn)

0

φ(t)dt), (3.4)

where

M(xn−1, xn) = max

{
d(xn−1, xn), d(xn−1, xn)

d(xn, xn+1),
d(xn−1, xn+1) + d(xn, xn)

2

}
≤ max

{
d(xn−1, xn), d(xn, xn+1),

d(xn−1, xn+1)

2

}
≤ max {d(xn−1, xn), d(xn, xn+1)} . (3.5)

By using (3.5) and regarding the property of gauge function ψ, we derive from (3.4)
that ∫ d(xn,xn+1)

0

φ(t)dt =

∫ d(Txn−1,Txn)

0

φ(t)dt

≤ α(xn−1, xn)

∫ d(Txn−1,Txn)

0

φ(t)dt

≤ ψ

(∫ max{d(xn−1,xn),d(xn,xn+1)}

0

φ(t)dt

)

≤ ψ

(
max

{∫ d(xn−1,xn)

0

φ(t)dt,

∫ d(xn,xn+1)

0

φ(t)dt

})
.

We claim that M(xn−1, xn) = d(xn−1, xn). Assume otherwise, then since ψ(t) < t
for all t > 0, we deduce from the above inequality that∫ d(xn,xn+1)

0

φ(t)dt ≤ ψ

(∫ d(xn,xn+1)

0

φ(t)dt

)
<

∫ d(xn,xn+1)

0

φ(t)dt,

21



which is not possible and so our claim is true and we get∫ d(xn,xn+1)

0

φ(t)dt ≤ ψ

(∫ d(xn,xn−1)

0

φ(t)dt

)
. (3.6)

By using mathematical induction, we get, for all n ∈ N∫ d(xn,xn+1)

0

φ(t)dt ≤ ψn

(∫ d(x0,x1)

0

φ(t)dt

)
= ψn(ς), (3.7)

where ς =
∫ d(x0,x1)

0
φ(t)dt. Taking limit as n → +∞ in (3.7) together with the

property of ψ as a gauge function we get that

lim
n→+∞

∫ d(xn,xn+1)

0

φ(t)dt = 0. (3.8)

Using the definition of φ ∈ Φ, implies that

d(xn, xn+1)→ 0 whenever n→ +∞. (3.9)

Note that (3.9) is not sufficient condition for the sequence (xn) to be a Cauchy
sequence in general (see the definition of Cauchy sequence). We now show that
(xn) is a Cauchy sequence. Assume on contrary, that (xn) is not Cauchy. Then
there exists an ε > 0 and subsequences (m(k)) and (n(k)) with the property that
m(k) < n(k) < m(k + 1) with

d(xm(k), xn(k)) ≥ ε, d(xm(k), xn(k)−1) < ε. (3.10)

Using the definition of M(x, y) with x = xm(k)−1 and y = xn(k)−1 we have that

M(xm(k)−1, xn(k)−1) = max

{
d(xm(k)−1, xn(k)−1), d(xm(k)−1, xm(k)), d(xn(k)−1, xn(k))

d(xm(k)−1, xn(k)) + d(xn(k)−1, xm(k))

2

}
. (3.11)

From (3.9) it follows that

lim
k→+∞

∫ d(xm(k)−1,xm(k)

0

φ(t)dt = lim
n→+∞

∫ d(xn(k)−1,n(k)

0

φ(t)dt = 0 (3.12)

from the triangular inequality and using (3.10), we infer that

d(xm(k)−1, xn(k)−1) ≤ d(xm(k)−1, xm(k)) + d(xm(k), xn(k)−1)

≤ ε+ d(xm(k)−1, xm(k)).
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Taking limit as k → +∞ we get

lim
k→+∞

∫ d(xm(k)−1,xn(k)−1)

0

φ(t)dt ≤
∫ ε

0

φ(t)dt. (3.13)

For x0, x1, . . . xm(k)−1, xm(k), . . . , xn(k)−2, xn(k)−1, . . . together with (3.3) and using the
transitivity of α, we deduce that

α(x0, x1) ≥ 1, . . . , α(xm(k)−1, xm(k)) ≥ 1, . . . , α(xn(k)−2, xn(k)−1) ≥ 1, . . .

then
α(xm(k)−1, xn(k)−1) ≥ 1. (3.14)

From (3.1) and (3.13), we get∫ d(xm(k),xn(k))

0

φ(t)dt =

∫ d(Txm(k)−1,Txn(k)−1)

0

φ(t)dt

≤ α(xm(k)−1, xn(k)−1)

∫ d(Txm(k)−1,Txn(k)−1)

0

φ(t)dt

≤ ψ

(∫ M(xm(k)−1,xn(k)−1)

0

φ(t)dt

)
. (3.15)

Regarding (3.10) and from the triangular inequality, we get

ω(m(k), n(k)) =

d(xm(k)−1, xn(k)) + d(xn(k)−1, xm(k))

2
(3.16)

≤
d(xm(k)−1, xm(k)) + d(xm(k), xn(k)−1) + d(xn(k)−1, xn(k)) + d(xm(k), xn(k)−1)

2

=
d(xm(k)−1, xm(k)) + 2d(xm(k), xn(k)−1) + d(xn(k)−1, xn(k))

2

≤
d(xm(k)−1, xm(k)) + d(xn(k)−1, xn(k))

2
+ ε. (3.17)

Letting k → +∞ in (3.17) and regarding (3.9), we deduce that

lim
k→+∞

ω(m(k), n(k)) < ε,

which gives

lim
k→+∞

∫ ω

0

φ(t)dt ≤
∫ ε

0

φ(t)dt. (3.18)
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From (3.1), (3.10)-(3.14) and (3.17) we deduce that∫ ε

0

φ(t)dt ≤
∫ d(xm(k),xn(k))

0

φ(t)dt

≤ α(xm(k)−1, xn(k)−1)

∫ d(Txm(k)−1,Txn(k)−1)

0

φ(t)dt

≤ ψ

(∫ M(xm(k)−1,xn(k)−1)

0

φ(t)dt

)
.

Now since ψ is nondecreasing, so we infer from the above inequality that,∫ ε

0

φ(t)dt ≤ ψ

(∫ ε

0

φ(t)dt

)
, (3.19)

which is a contradiction to the property of ψ as a gauge function that is ψ(t) < t.
Hence (xn) is a Cauchy sequence in X. Now as (X, d) is complete, so there is z
in X such that xn → z. From the continuity of T it follows that Txn → Tz that
is xn+1 → Tz but (xn) is convergent in X and as limit of convergent sequence is
unique so we get z = Tz and hence z is the fixed point of T .

Theorem 3.1.4. [11] Let (X, d) be a complete metric space and α : X × X →
[0,+∞) be a transitive mapping. Suppose that T : X → X is a generalized α-ψ-
contractive mapping of integral type II and satisfies the following conditions:
(i) T is α-admissible;
(ii) there exists x0 ∈ X such that α(x0, Tx0) ≥ 1;
(iii) T is continuous.
Then there exists z ∈ X such that Tz = z.

Proof. Proof of this theorem runs on the same line as the proof of the above theorem.

Notice that the above theorems do not assure the uniqueness of the fixed point
of T . To assure the uniqueness of the fixed point, the following theorem is proved.

Theorem 3.1.5. Adding condition (U) to the hypotheses of Theorem 3.1.4 (resp.
Theorem 3.1.3 guarantees uniqueness of the fixed point x of T .

Proof. We prove the theorem by contradiction method. Assume that, x is not the
only fixed point of T . That is there is also y in X such that Ty = y and x 6= y.
From hypothesis (U), we obtain that there exists µ ∈ X so that

α(x, µ) ≥ 1, α(y, µ) ≥ 1. (3.20)
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Taking α-admissibility of T in account we deduce from (3.20) that, for all n ∈ N

α(T nx, T nµ) ≥ 1, α(T ny, T nµ) ≥ 1.

But since x and y are fixed points, so we have

α(x, T nµ) ≥ 1, α(y, T nµ) ≥ 1. (3.21)

Considering a sequence (µn) in X defined by µn+1 = Tµn; ∀ n ∈ N ∪ {0} with
µ0 = µ, then from (3.2) and (3.21), we have∫ d(x,µn+1)

0

φ(t)dt ≤ α(x, µn)

∫ d(Tx,Tµn)

0

φ(t)dt

≤ ψ

(∫ M(x,µn)

0

φ(t)dt

)
. (3.22)

where

M(x, µn) = max

{
d(x, µn),

d(x, Tµ) + d(µn, Tµn)

2
,
d(x, Tµn) + d(µn, Tx)

2

}
= max

{
d(x, µn), d(µn, Tµn),

d(x, Tµn) + d(µn, Tx)

2

}
≤ {d(x, µn), d(µn, µn+1), d(x, µn+1)} . (3.23)

Since ψ is nondecreasing monotone, it follows from (3.22) and (3.23) that∫ d(x,µn+1)

0

φ(t) ≤ ψ

(∫ M(x,µn)

0

φ(t)dt

)

≤ ψ

(∫ max{d(x,µn),d(µn,µn+1),d(x,µn+1)}

0

φ(t)dt

)
(3.24)

≤ ψ

(
max

{∫ d(x,µn)

0

φ(t)dt,

∫ d(µn,µn+1)

0

φ(t)dt,

∫ d(x,µn+1)

0

φ(t)dt

})
.

We examine the following three possibilities in (3.24) and since ψ is nondecreasing
together with ψ(t) < t and let us assume for simplicity that

A(x, µn) = max

{∫ d(x,µn)

0

φ(t)dt,

∫ d(µn,µn+1)

0

φ(t)dt,

∫ d(x,µn+1)

0

φ(t)dt

}
.

Case 1 : If A(x, µn) =
∫ d(x,µn+1)

0
φ(t)dt, then∫ d(x,µn+1)

0

φ(t)dt ≤ ψ

(∫ d(x,µn+1)

0

φ(t)dt

)
<

∫ d(x,µn+1)

0

φ(t)dt,
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is a contradiction due to the property of ψ that ψ(t) < t.

Case 2 : If A(x, µn) =
∫ d(x,µn)

0
φ(t), then∫ d(x,µn)

0

φ(t)dt ≤ ψ

(∫ d(x,µn)

0

φ(t)dt

)
,

which further shows that∫ d(x,µn+1)

0

φ(t)dt ≤ ψn
(∫ d(x,µ0)

0

φ(t)dt

)
; ∀ n ∈ N ∪ {0}. (3.25)

Taking limit n → +∞ in (3.25) and regarding the properties of φ ∈ Φ and ψ ∈ Ψ,
we get that

lim
n→+∞

d(x, µn) = 0 (3.26)

Case 3: If A(x, µn) =
∫ d(µn,µn+1)

0
φ(t)dt then utilizing the triangular inequality we

get

d(µn, µn+1) ≤ d(µn, x) + d(x, µn+1)

≤ 2 max{d(x, µn), d(x, µn+1)}. (3.27)

Notice that
d(x, µn+1) ≤ d(x, µn),

so the inequality (3.27) will reduce to the case

d(µn, µn+1) ≤ 2d(x, µn). (3.28)

Otherwise, let d(x, µn) ≤ d(x, µn+1), then we have a contradiction as in Case 1 and
hence from (3.24) and (3.28) we infer that∫ d(x,µn+1)

0

φ(t)dt ≤ ψ

(∫ d(µn,µn+1)

0

φ(t)dt

)
.

Which from triangular inequality the monotone property of ψ implies that∫ d(x,µn+1)

0

φ(t)dt ≤ ψ

(∫ d(µn,x)+d(x,µn+1)

0

φ(t)dt

)
≤ ψ

(∫ 2 max{d(µn,x)+d(x,µn+1)}

0

φ(t)dt

)

≤ ψ

(∫ 2d(x,µn)

0

φ(t)dt

)
; ∀ n ∈ N.
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Consequently, we find that∫ d(x,µn+1)

0

φ(t)dt ≤ ψn

(∫ 2d(x,µ0)

0

φ(t)dt

)
; ∀ n ∈ N. (3.29)

Taking limit in the above inequality we obtain

lim
n→+∞

∫ d(x,µn+1)

0

φ(t)dt = 0, (3.30)

which from the definition of φ, implies that

lim
n→+∞

d(x, µn) = 0. (3.31)

Similar is the case considering y, we will obtain

lim
n→+∞

d(y, µn) = 0. (3.32)

Which further from the uniqueness of the limit of convergent sequence gives that
x = y. Hence T has a unique fixed point.

3.2 Twisted (α,β)-ψ-contractive type mappings

Let T : X → X be a contraction mapping from a nonempty complete metric space
X to itself then Banach contraction principle [2] states that there must be a unique
element x ∈ X such that x = Tx. Although, this principle is very powerful tool
in nonlinear analysis especially in metric fixed point theory, but what will happen
if T is not contraction or is not continuous? To give answer to this question many
authors generalized this result for the sake to make the contraction condition on
T weakened and so on. One of this generalization was the introduction of α-ψ-
notion by Samet et al. [23], which was recently extended by Salimi et al. [22], by
introducing three new twisted (α,β)-ψ-contractive type mappings. In this section,
some results regarding twisted (α,β)-ψ-contractive type mappings by Salimi et al.
[22] are presented, which will be used in the last chapter.

Definition 3.2.1. [22] Let (X, d) be a metric space and T : X → X be twisted
(α, β)-admissible mapping. Then T is said to be
(a) twisted (α, β)-ψ-contractive mapping of type I, if

α(x, y)β(x, y)d(Tx, Ty) ≤ ψ(d(x, y)), ∀ x, y ∈ X and ψ ∈ Ψ, (3.33)

(b) twisted (α, β)-ψ-contractive mapping of type II, if there is 0 < r ≤ 1 such that(
α(x, y)β(x, y) + r

)d(Tx,Ty)

≤
(

1 + r

)ψ(d(x,y))

, ∀ x, y ∈ X and ψ ∈ Ψ, (3.34)
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(c) twisted (α, β)-ψ-contractive mapping of type III, if there is r ≥ 1 such that(
d(Tx, Ty) + r

)α(x,y)β(x,y)

≤ ψ
(
d(x, y)

)
+ r, ∀ x, y ∈ X and ψ ∈ Ψ. (3.35)

Theorem 3.2.1. [22] Let (X, d) be a complete metric space and let T : X → X
be a continuous twisted (α,β)-ψ-contractive mapping of type I, II or III. If there is
u0 ∈ X such that α(u0, Tu0) ≥ 1 and β(u0, Tu0) ≥ 1. Then there exists λ ∈ X such
that λ = Tλ.

Proof. As u0 ∈ X such that α(u0, Tu0) ≥ 1 and β(u0, Tu0) ≥ 1. Defining an
iterative sequence (un) starting from u0 in X by un+1 = Tun; ∀ n ∈ N ∪ {0}.
Now the twisted (α,β)-admissibility of T implies that α(u0, Tu0) = α(u0, u1) ≥
1 and β(u0, Tu0) = β(u0, u1) ≥ 1 then α(Tu1, Tu0) ≥ 1 = α(u2, u1) ≥ 1 and
β(Tu1, Tu0) = β(u2, u1) ≥ 1 which further implies α(u2, u3) ≥ 1 and β(u2, u3) ≥ 1.
Proceeding inductively, we get

α(u2n, u2n−1) ≥ 1 and α(u2n, u2n+1) ≥ 1 (3.36)

β(u2n, u2n−1) ≥ 1 and β(u2n, u2n+1) ≥ 1. (3.37)

1) Taking T to be a twisted (α,β)-ψ-contractive of type I and considering x = u2n,
y = u2n+1 in (3.33) and utilizing (3.36) and (3.37) we get

d(Tu2n, Tu2n+1) = d(u2n+1, u2n+2)

≤ α(u2n, u2n+1)β(u2n, u2n+1)d(u2n+1, u2n+2)

≤ ψ(d(u2n, u2n+1))

d(u2n+1, u2n+2) ≤ ψ(d(u2n, u2n+1). (3.38)

Taking x = u2n, y = u2n−1 in (3.33) and utilizing (3.36) and (3.37) again, we get

d(Tu2n, Tu2n−1) = d(u2n+1, u2n)

≤ α(u2n, u2n−1)β(u2n, u2n−1)d(u2n+1, u2n)

≤ ψ(d(u2n, u2n−1))

d(u2n+1, u2n) ≤ ψ(d(u2n, u2n−1)). (3.39)

From (3.38) and (3.39), we have

d(un, un+1) ≤ ψn(d(u0, u1)); ∀ n ∈ N. (3.40)

2) Assume that T be a twisted (α,β)-ψ-contractive mapping of type II. Then taking
x = u2n and y = u2n+1 in (3.34) together with (3.36) and (3.37), we get(

1 + r
)d(u2n+1,u2n+2)

= (1 + r)d(Tu2n,Tu2n+1)

≤ (α(u2n, u2n+1)β(u2n, u2n+1) + r)d(u2n+1,u2n+2)

≤ (1 + r)ψ(d(u2n,u2n+1))
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(
1 + r

)d(u2n+1,u2n+2) ≤ (1 + r)ψ(d(u2n,u2n+1)). (3.41)

Taking x = u2n, and y = u2n−1 in (3.34) and using (3.36) and (3.37) again, we get(
1 + r

)d(u2n,u2n+1)
=

(
1 + r

)d(Tu2n−1,Tu2n)

≤ (α(u2n−1, u2n)β(u2n−1, u2n) + r)d(u2n,u2n+1)

≤
(
1 + r

)ψ(d(u2n−1,u2n))

which implies that (
1 + r

)d(u2n,u2n+1) ≤
(
1 + r

)ψ(d(u2n−1,u2n))
. (3.42)

From (3.41) and (3.42) we get, since r ≥ 0 is constant and proceeding inductively
that,

d(un, un+1) ≤ ψn(d(x0, x1)). (3.43)

3) Finally let T be twisted (α,β)-ψ-contractive of type III. Then taking x = u2n and
y = u2n+1 in (3.35), we get

d(u2n+1, u2n+2) + r = d(Tu2n, u2n+1) + r

≤ (d(u2n+1, u2n+2) + r)α(u2n,u2n+1)β(u2n,u2n+1)

d(u2n+1, u2n+2) ≤ ψ((d(u2n, u2n+1) + r), (3.44)

similarly considering x = u2n and y = u2n−1 in (3.35) we have

d(u2n+1, u2n) ≤ ψ((d(u2n, u2n−1) + r). (3.45)

Hence from (3.44) and (3.45), we get

d(un, un+1) ≤ ψn(d(x0, x1)). (3.46)

From all the above three cases, we infer that

d(un, un+1) ≤ ψn(d(x0, x1)).

Taking limit as n→ +∞ in above inequality we get that

lim
n→+∞

d(un, un+1) = 0

Now, we show that (un) is a Cauchy sequence. Let ε > 0 be fixed then there exists
n0 ∈ N such that ∑

n≥n0

ψn(d(x0, x1)) < ε.
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Let m,n ∈ N with m > n > n0. Then from the triangular inequality we deduce that

d(un, um) ≤
m−1∑
p=n

d(up, up+1)

≤
∑
n≥n0

ψn(d(u0, u1)) < ε.

Which implies that (un) is Cauchy sequence. Now since (X, d) is complete. Hence
there exists λ ∈ X such that un → λ as n→ +∞ and also since T is continuous, so
un+1 = Tun → Tλ and from the uniqueness of the limit of convergent sequence, we
have that λ = Tλ that is λ is the fixed point of T .

Notice that if T : X → X is α-β-admissible then it is a special case of twisted
(α,β)-admissibility of T . But the converse is not true. In the following theorem
continuity condition on T has been replaced by another parallel condition.

Theorem 3.2.2. [22] Let T : X → X be twisted (α,β)-contractive mapping of type
I, II or III and assume that the following conditions are satisfied
(i) there exists u0 ∈ X such that α(u0, Tu0) ≥ 1 and β(u0, Tu0) ≥ 1;
(ii) (un) is a sequence in X such that α(u2n, u2n+1) ≥ 1 and β(u2n, u2n+1) ≥ 1,
∀ N and un → λ as n→ +∞, then α(u2n, λ) ≥ 1 and β(u2n, λ) ≥ 1 for all n.
Then T has a fixed point.

To assure the uniqueness of the fixed point, the authors in [22] added the follow-
ing condition to the hypotheses of Theorem 3.2.2 (resp. Theorem 3.2.1).
(H): For all x, y ∈ X and x 6= y, there exists ν ∈ X such that α(x, ν) ≥ 1 and
α(y, ν) ≥ 1 , β(x, ν) ≥ 1 and β(y, ν) ≥ 1.

Theorem 3.2.3. Assume that all the conditions of Theorem 3.2.2 (resp. Theorem
3.2.1) together with (H) are satisfied. Then T has a unique fixed point.

Example 3.2.1. Let X = R with usual metric d(u, v) = |u − v|, for all u, v ∈ X
and T is defined as

T (u) =

{
−1

4
u, if − 1 ≤ u ≤ 1

3

√
u+1
u2+1

, otherwise,

and ψ(t) = 1
2
, for all t ≥ 0.

Defining α and β as

α(u, v) = β(u, v) =

{
1, if u ∈ [0, 1] and v ∈ [−1, 0]

0, otherwise.
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If α(u, v) ≥ 1 for u, v ∈ X. Then we have, u ∈ [0, 1] and v ∈ [−1, 0], which implies
that, Tv ∈ [0, 1] and Tu ∈ [−1, 0]. If β(u, v) ≥ 1 for u, v ∈ X. Then u ∈ [0, 1] and
v ∈ [−1, 0] and hence again Tv ∈ [−1, 0] and Tu ∈ [0, 1]. Let u0 = 0 ∈ [0, 1] then
Tu0 = 0 ∈ [−1, 0] and so α(u0, Tu0) ≥ 1 and β(u0, Tu0) ≥ 1. Now, let (un) be a
sequence in X such that α(u2n, u2n+1) ≥ 1 and β(u2n, u2n+1) ≥ 1 for all n ∈ N∪{0}
and un → λ as n → +∞. This implies that (u2n+1) is a sequence in [−1, 0] and
(u2n) is a sequence in [0, 1]. Thus λ = 0 and so α(u2n, λ) ≥ 1 and β(u2n, λ) ≥ 1 for
all n ∈ N ∪ {0}. Moreover, for u ∈ [0, 1] and v ∈ [−1, 0] we have

α(u, v)β(u, v)d(Tu, Tv) = |Tu− Tv|

=
1

4
|u− v|

≤ 1

2
|u− v| = ψ(d(u, v)).

Otherwise
α(u, v)β(u, v) = 0

and (3.33) is trivially true. Then T is twisted (α, β)-ψ-contractive mapping of type
I and from Theorem 3.2.2, T has a fixed point.

Example 3.2.2. Let (X, d) and α and β be defined as in the above example and
T : X → X is defined as;

T (u) =

{
− 1

4π
(u+ u2), if u ∈ [−1, 1]

u2−cos(u5)
2+sin(u)

, otherwise.

Defining ψ(t) = 1
4
t. Let α(u, v) ≥ 1 then u ∈ [0, 1] and v ∈ [−1, 0] and so we

have Tu ∈ [−1, 0] and Tv ∈ [0, 1] and so α(Tv, Tu) ≥ 1, similarly β(Tv, Tu) ≥ 1.
Moreover, there exists u0 = 0 ∈ [0, 1] and Tu0 = 0 ∈ [−1, 0] such that by the
definition of α and β we have α(u0, Tu0 ≥ 1 and β(u0, Tu0) ≥ 1. Similarly the
condition (ii) of Theorem 3.2.2 also holds. Furthermore, let u ∈ [0, 1] and v ∈ [−1, 0]
together with 0 ≤ r ≤ 1 then we have

(α(u, v)β(u, v) + r)d(Tu,Tv) = (1 + r)d(Tu,Tv)

where

d(Tu, Tv) =
1

4π
|u− v||u+ v + 1|

≤ 3

4π
|u− v|

≤ 1

4
|u− v|
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and so

(α(u, v)β(u, v) + r)d(Tu,Tv) ≤ (1 + r)
1
4
|u−v|

= (1 + r)ψ(d(u,v)),

and otherwise α(u, v) = β(u, v) = 0 and so (3.34) is true for all u, v ∈ X. Hence all
the hypotheses of Theorem 3.2.2 are satisfied, so T has a fixed point.

Example 3.2.3. Let X = [0,+∞) with usual metric d(u, v) = |u−v| for all u, v ∈ X
and T : X → X be defined as

T (u) =

{
1
8
u4, if u ∈ [0, 1]

1
u
− 1

1+u
, if u ∈ (1,+∞).

Defining α and β as;

α(u, v) = β(u, v) =

{
1, if u, v ∈ [0, 1]

0, otherwise,

and ψ : [0,+∞)→ [0,+∞) by ψ(t) = 1
2
t for all t. As from the above two examples

it is easy to show that T is (α,β)-admissible and conditions (i) and (ii) of Theorem
3.2.2 also hold. Furthermore, u, v ∈ [0, 1] and r ≥ 1 then α(u, v) = β(u, v) = 1 and
T is twisted (α,β)-ψ-contractive mapping of type III and has a fixed point.

(d(Tu, Tv) + r)α(u,v)β(u,v) =
1

8
|u4 − v4|+ r

=
1

8
|u− v||u+ v||u2 + v2|+ r

≤ 1

2
|u− v|+ r.

Thus T has a fixed point.

Note that in the last example, since uniqueness hypothesis does not satisfied, so
the fixed points of T are not unique.
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Chapter 4

Generalized α-ψ and twisted
(α, β)-ψ-contractive mappings of
integral type in spaces with two
metrics

This chapter consists on two sections. The motivation behind the first section is,
to investigate fixed point results related to the generalized contractive mappings of
integral type in spaces with two metrics. In the second section of this chapter, some
new generalization of integral types of twisted (α, β)-ψ-contractive mappings are
obtained in the spaces with two metrics.

4.1 Generalized α-ψ-contractive mappings of in-

tegral type in spaces with two metrics

In this section, some new fixed point results are presented which generalize and
extend many existing results in literature.

Theorem 4.1.1. Let (X, d′) be a complete metric space and d be another metric on
X. Let T : X → X and α : X ×X → [0,+∞) be such that α is transitive and T is
generalized α-ψ-contractive map of integral type I with respect to d and satisfies the
following conditions:
(i) T is α-admissible and there exists x0 ∈ X such that α(x0, Tx0) ≥ 1;
(ii) If d � d′ assume T is uniformly continuous from (X, d) to (X, d′);
(iii) If d 6= d′ assume T is continuous from (X, d′) into (X, d′);
(iv) If d = d′ then T is simply continuous.
Then there exists λ ∈ X such that λ = Tλ.
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Proof. Let x0 be an arbitrary point of X such that α(x0, Tx0) ≥ 1. We construct
an iterative sequence (xn) in X as xn+1 = Txn; for all n ∈ N ∪ {0}. If xn0+1 = xn0

for some n0 ∈ N then Txn0 = xn0 and hence x′ = xn0 is the fixed point of T . Now,
we will consider that xn+1 6= xn. Then from (i) and the admissibility of T , we infer
that

α(x0, Tx0) ≥ 1 implies α(Tx0, T
2x0) ≥ 1.

Proceeding inductively, we get

α(xn, xn+1) ≥ 1; ∀ n ∈ N ∪ {0}. (4.1)

By taking x = xn and y = xn+1, we deduce from inequality (3.33) that∫ d(xn,xn+1)

0

φ(t)dt =

∫ d(Txn−1,Txn)

0

φ(t)dt

≤ α(xn−1, xn)

∫ d(Txn−1,xn)

0

φ(t)dt

≤ ψ

(∫ M(xn−1,xn)

0

φ(t)dt

)
, (4.2)

where

M(xn−1, xn) = max

{
d(xn−1, xn), d(xn−1, xn), d(xn, xn+1),

[d(xn−1, xn+1) + d(xn, xn)]

2

}
≤ max

{
d(xn−1, xn), d(xn, xn+1),

d(xn−1, xn+1)

2

}
≤ max{d(xn−1, xn), d(xn, xn+1)}.

By using (4.1) and regarding the property of ψ together with M(xn−1, xn), we deduce
from (3.1) that∫ d(xn,xn+1)

0

φ(t)dt =

∫ d(Txn−1,Txn)

0

φ(t)dt

≤ α(xn−1, xn)

∫ d(Txn−1,Txn)

0

φ(t)dt

≤ ψ

(∫ max{d(xn−1,xn),d(xn,xn+1)}

0

φ(t)dt

)

≤ ψ

(
max

{∫ d(xn−1,xn)

0

φ(t)dt,

∫ d(xn,xn+1)

0

φ(t)dt

})

≤ ψ

(∫ d(xn−1,xn)

0

φ(t)dt

)
. (4.3)
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Notice that the case∫ d(xn,xn+1)

0

φ(t)dt ≤ ψ

(∫ d(xn,xn+1)

0

φ(t)dt

)
<

∫ d(xn,xn+1)

0

φ(t)dt,

is not possible because ψ(t) < t; ∀ t > 0. Proceeding inductively we get, for
n ∈ N ∪ {0} ∫ d(xn,xn+1)

0

φ(t)dt ≤ ψn

(∫ d(xo,x1)

0

φ(t)dt

)
. (4.4)

Taking limit as n → +∞ in (4.4) and taking the property of ψ as gauge function.
Also, since every gauge function is Bianchini-Grandolfi gauge function so, we get∫ d(xn,xn+1)

0
φ(t)dt = 0 as n→ +∞. Now, since φ is non negative. This implies that

d(xn, xn+1)→ 0 as n→ +∞. (4.5)

Which further, show that (xn) is a Cauchy sequence. Suppose, on the contrary, that
(xn) is not Cauchy and for some ε > 0 and m, p ∈ N the following inequality holds:

d(xm, xm+p) ≥ ε, d(xm−1, xm+p) < ε. (4.6)

Then from (4.6 and triangular inequality we get

d(xm−1, xm+p−1) ≤ d(xm+p−1, xm+p) + d(xm−1, xm+p). (4.7)

Letting p→ +∞ in (4.7) and from (4.5) and (4.6), we deduce that

lim
p→+∞

d(xm−1, xm+p−1) < ε. (4.8)

From transitivity of α and (4.1), it then follows

α(xm+p−1, xm−1) ≥ 1. (4.9)

From (4.8), we deduce that

lim
p

∫ d(xm−1,xm+p−1)

0

φ(t)dt <

∫ ε

0

φ(t)dt. (4.10)

From (4.7) and triangular inequality we infer that, let

Θ(m, p) =
d(xm−1, xm+p) + d(xm+p−1, xm)

2

≤ d(xm−1, xm) + d(xm, xm+p−1) + d(xm+p−1, xm+p) + d(xm+p−1, xm)

2

≤ d(xm−1, xm) + 2d(xm, xm+p−1) + d(xm+p−1, xm)

2

<
d(xm−1, xm) + d(xm+p−1, xm+p)

2
+ ε.
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Therefore, we deduce that

lim
p

∫ Θ(m,p)

0

φ(t)dt ≤
∫ ε

0

φ(t)dt.

From (4.8)-(4.10), it follows that∫ ε

0

φ(t) ≤
∫ d(xm,xm+p)

0

φ(t)dt

≤ α(xm−1, xm+p−1)

∫ d(xm−1,xm+p−1)

0

φ(t)dt

≤ ψ(

∫ M(xm−1,xm+p−1)

0

φ(t)dt

≤
∫ ε

0

φ(t)dt.

Which is a contradiction. Hence (xn) is Cauchy sequence with respect to d. Thus
by definition of Cauchy sequence for each δ > 0, there exists N0 ∈ N depending on
δ such that

d(xn, xm) < δ whenever n,m ≥ N0.

We claim that (xn) is Cauchy with respect to d′. If d ≥ d′ then our claim is trivially
true. Next assuming d � d′ then (ii) guarantees that for each ρ > 0 there exists
δ > 0 such that

d′(Tx, Ty) < ρ whenever d(x, y) < δ.

Now, taking x = xn and y = xm in above inequality, we deduce that

d′(xn+1, xm+1) = d′(Txn, Txm) < ρ whenever n,m ≥ N0.

This shows that our claim is true. Now since (X, d′) is complete, then there exists
λ ∈ X endowed with the metric d′ such that d′(xn, λ) → 0 as n → +∞. We claim
that λ is a fixed point of T , that is Tλ = λ. First consider the case when d 6= d′ and
taking triangular inequality in account we have

d′(λ, Tλ) ≤ d′(λ, xn) + d′(xn, Tλ) = d′(λ, xn) + d′(Txn−1, Tλ).

Let n → +∞ then (iii) insures that d′(λ, xn) → 0 implies d′(Txn−1, Tλ) → 0 and
so λ = Tλ. Next assume that d = d′ then

d(λ, Txn) ≤ d(λ, xn) + d(xn, Txn) = d(λ, xn) + d(xn, xn+1).

Letting n→ +∞ we get
lim

n→+∞
d(λ, Txn) ≤ 0.

From (iv) as T is continuous at λ so we have d(λ, Tλ) = 0 which means λ = Tλ.
Thus λ is the fixed point of T .
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Theorem 4.1.2. Let (X, d′) be a complete metric space and d be another metric
on X. Suppose that α : X × X → [0,+∞) be a transitive mapping and T is
generalized α-ψ-contractive mapping of integral type II with respect to d and satisfies
the following conditions;
(i) T is α-admissible and there exists x0 ∈ X such that α(x0, Tx0) ≥ 1;
(ii) If d ≥ d′ assume T is uniformly continuous from (X, d) to (X, d′);
(iii) If d 6= d′ assume that T is continuous from (X, d) to (X, d′);
(iv) If d = d′ then T is simply continuous.
Then there exists λ ∈ X such that λ = Tλ.

Proof. Let x0 ∈ X be such that α(x0, Tx0) ≥ 1 and (xn) be the iterative sequence
xn+1 = Txn = T nx0; for all n ∈ N∪{0}. Then (i) and admissibility of T imply that

α(x0, Tx0) ≥ 1 then α(Tx0, T
2x0) ≥ 1,

which further implies that

α(xn, xn+1) ≥ 1; ∀ n ∈ N ∪ {0}. (4.11)

Taking x = xn and y = xn+1, we infer from inequality (3.2) that∫ d(xn,xn+1)

0

φ(t)dt =

∫ d(Txn−1,Txn)

0

φ(t)dt

≤ α(xn−1, xn)

∫ d(Txn−1,Txn)

0

φ(t)dt

≤ ψ

(∫ M(xn−1,xn)

0

φ(t)

)
dt. (4.12)

Where

M(xn−1, xn) =

max

{
d(xn−1, xn),

d(xn−1, xn) + d(xn, xn+1)

2
,
d(xn−1, xn+1) + d(x− n, xn)

2

}
= max

{
d(xn−1, xn),

d(xn−1, xn) + d(xn, xn+1)

2
,
d(xn−1, xn+1)

2

}
. (4.13)

We claim that M(xn−1, xn) = d(xn−1, xn) then consider the following three cases:

Case(I). If M(xn−1, xn) = d(xn−1, xn), then our claim is trivially true.

Case(II). If M(xn−1, xn) =
[
d(xn−1,xn)+d(xn,xn+1)

2

]
,
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then from (4.12), we deduce that

∫ d(xn,xn+1)

0

φ(t)dt ≤ ψ

(∫ [d(xn−1,xn)+d(xn,xn+1)]

2

0

φ(t)dt

)

<

∫ [d(xn−1,xn)+d(xn,xn+1)]

2

0

φ(t)dt.

Since φ is non-negative, we have

d(xn, xn+1) <
[d(xn−1, xn) + d(xn, xn+1)]

2
d(xn, xn+1)

2
<

d(xn−1, xn)

2
.

So we get

M(xn−1, xn) = [
d(xn−1, xn) + d(xn, xn+1)

2
] < d(xn−1, xn),

this implies that
M(xn−1, xn) < d(xn−1, xn),

which is contradiction to the definition of M(xn−1, xn).

Case(III). Let M(xn−1, xn) = d(xn,xn+1)
2

, then from (4.12) we have,

∫ d(xn,xn+1)

0

φ(t)dt ≤ ψ

(∫ d(xn,xn+1)

2

0

φ(t)dt

)

<

∫ d(xn,xn+1)

2

0

φ(t)dt.

Which is contradiction due to ψ(t) < t; ∀ t > 0. Hence, our claim is true and
M(xn−1, xn) = d(xn−1, xn) and proceeding in the same way as in the above theorem,
we get that, (xn) is Cauchy sequence with respect to d and also with respect to d′.
But d′ is complete, hence xn → λ ∈ X from which we have that λ = Tλ that is λ is
the fixed point of T .

To assure the uniqueness of the fixed point of T in the above theorems, we
consider the following result.

Theorem 4.1.3. Adding condition (U) to the hypotheses of Theorem 4.1.1 (resp.
Theorem 4.1.2), we obtain the unique fixed point of T .
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Proof. Let us suppose, to the contrary that, λ and λ∗ be two distinct fixed points
of T and consider a sequence (zn) in X defined by T nz = zn+1. From (U), there
exists z ∈ X such that α(λ, z) ≥ 1 and α(λ∗, z) ≥ 1. Since T is α-admissible, so
proceeding inductively, we get

α(λ, zn+1) ≥ 1 and α(λ∗, zn+1) ≥ 1.

Taking x = λ and y = zn+1 and considering T to be generalized contractive mapping
of integral type I, we infer that∫ d(λ,zn+1)

0

φ(t)dt ≤ α(λ, zn)

∫ d(λ,zn+1)

0

φ(t)dt

≤ ψ

(∫ M(λ,zn)

0

φ(t)dt

)
. (4.14)

Where M(λ, zn) = max
{
d(λ, zn), d(zn, zn+1), [d(λ,zn+1)+d(λ,zn)]

2

}
.

We claim that M(λ, zn) = d(λ, zn) and consider the following three cases:
(i’) If M(λ, zn) = d(λ, zn), then our claim is trivially true.

(ii’) If M(λ, zn) = d(zn,zn+1)
2

, then using triangular inequality, we get

d(zn, zn+1)

2
≤ d(λ, zn) + d(λ, zn+1)

2
. (4.15)

If d(λ, zn+1) ≤ d(λ, zn), then we have

d(zn, zn+1)

2
< d(λ, zn).

Which is a contradiction to the definition of M(λ, zn). Now Let d(λ, zn) ≤ d(λ, zn+1),

then from (4.14), it follows that d(zn,zn+1)
2

< d(λ, zn+1) and hence we infer that

∫ d(λ,zn+1)

0

φ(t)dt ≤ ψ

(∫ d(zn,zn+1)

2

0

φ(t)dt

)

≤ ψ

(∫ d(λ,zn+1)

o

φ(t)dt

)

<

∫ d(λ,zn+1)

0

φ(t)dt.
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Which is again a contradiction due to the property of gauge function ψ(t) < t.

(iii’) Let assume that, M(λ, zn) = d(λ,zn+1)+d(λ,zn)
2

, then from (4.14) it follows that

∫ d(λ,zn+1)

0

φ(t)dt ≤ ψ

(∫ d(λ,zn+1)+d(λ,zn)

2

0

φ(t)dt

)

≤
∫ d(λ,zn+1)+d(λ,zn)

2

0

φ(t)dt.

Since φ is nonnegative, thus we get from the above inequality that

d(λ, zn+1) <
d(λ, zn+1) + d(λ, zn)

2
d(λ, zn+1) < d(λ, zn)

M(λ, zn) =
d(λ, zn+1) + d(λ, zn)

2
< d(λ, zn).

Which is again a contradiction to the definition of M(λ, zn). Hence our claim is true
and from (4.14), it follows that∫ d(λ,zn+1)

0

φ(t)dt ≤ ψ

(∫ M(λ,zn)

0

φ(t)dt

)
= ψ

(∫ d(λ,zn)

0

φ(t)dt

)
.

Proceeding inductively, we get∫ d(λ,zn+1)

0

φ(t)dt ≤ ψn
(∫ d(λ,z0)

0

φ(t)dt

)
.

Taking n → +∞ in the above inequality and since ψ is gauge function, so we get

limn→+∞
∫ d(λ,zn+1)

0
φ(t)dt = 0 and taking the property of φ on account, we deduce

that
lim

n→+∞
d(λ, zn+1) = lim

n→+∞
d(λ, Tzn) = 0. (4.16)

Similarly for x = λ∗ and y = zn+1, we have

lim
n→+∞

d(λ∗, zn+1) = d(λ∗, T zn) = 0 (4.17)

Thus from (4.16) and (4.17) we deduce that λ = λ∗, that is λ is the unique fixed
point of T .
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4.2 Generalized twisted (α, β)-ψ-contractive map-

pings of integral type in spaces with two met-

rics

In this section, we establish three new fixed point results for twisted (α, β)-ψ-
contractive mappings of integral type as a generalization of many existing results in
the literature especially results of Salimi et al. [22].

Definition 4.2.1. Let (X, d) be a metric space and T : X → X be twisted (α, β)-
admissible mapping. Then T is said to be a
(a’) generalized twisted (α, β)-ψ-contractive mapping of integral type I, if

α(x, y)β(x, y)

∫ d(Tx,Ty)

0

φ(t)dt ≤ ψ

(∫ d(x,y)

0

φ(t)dt

)
, (4.18)

for all x, y ∈ X, ψ ∈ Ψ and φ ∈ Φ,
(b’) generalized twisted (α, β)-ψ-contractive mapping of integral type II, if there is
0 < r ≤ 1 such that(

α(x, y)β(x, y) + r

)∫ d(Tx,Ty)
0 φ(t)dt

≤ (1 + r)ψ(
∫ d(x,y)
0 φ(t)dt), (4.19)

for all x, y ∈ X, ψ ∈ Ψ and φ ∈ Φ,
(c’) generalized twisted (α, β)-ψ-contractive mapping of integral type III, if there is
r ≥ 1 such that(∫ d(Tx,Ty)

0

φ(t)dt+ r

)α(x,y)β(x,y)

≤ ψ

(∫ d(x,y)

0

φ(t)dt

)
+ r, (4.20)

for all x, y ∈ X, ψ ∈ Ψ and φ ∈ Φ.

Theorem 4.2.1. Let (X, d′) be a complete metric space and d be another metric on
X. Let T : X → X be a continuous generalized twisted (α, β)-ψ-contractive mapping
of integral type I, type II or type III with respect to d and α, β are transitive. Then
T has a fixed point if the following conditions are satisfied:
(i) there exists x0 ∈ X such that α(x0, Tx0) ≥ 1 and β(x0, Tx0) ≥ 1;
(ii) if d � d′ assume T is uniformly continuous from (X, d) to (X, d′).

Proof. Let x0 ∈ X such that α(x0, Tx0) ≥ 1 and β(x0, Tx0) ≥ 1. Defining a sequence
(xn) by xn = T nx0 = Txn−1; for all n ∈ N. Then twisted (α, β)-admissibility of T
implies that if α(x0, x1) = α(x0, Tx0) ≥ 1 then α(x2, x1) = α(Tx1, Tx0) ≥ 1 which
implies α(x2, x3) = α(Tx1, Tx2) ≥ 1. Proceeding inductively, we get α(x2n, x2n+1) ≥
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1 and α(x2n, x2n−1) ≥ 1, for all n ∈ N. In the same way we have, β(x2n, x2n+1) ≥ 1
and β(x2n, x2n−1) ≥ 1, for all n ∈ N. Now we consider the following three cases:
(a) Let T be twisted (α, β)-ψ-contractive mapping of type I. Then by (4.18) with
x = x2n and y = x2n+1, we get∫ d(x2n+1,x2n+2)

0

φ(t)dt ≤ α(x2n, x2n+1)β(x2n, x2n+1)

∫ d(x2n+1,x2n+2)

0

φ(t)dt

≤ ψ

(∫ d(x2n,x2n+1)

0

φ(t)dt

)
.

Similarly from (4.18) with x = x2n and y = x2n−1, we have∫ d(Tx2n,Tx2n−1)

0

φ(t)dt =

∫ d(x2n+1,x2n)

0

φ(t)dt

≤ α(x2n, x2n−1)β(x2n, x2n−1)

∫ d(x2n+1,x2n)

0

φ(t)dt

≤ ψ

(∫ d(x2n,x2n−1)

0

φ(t)dt

)
; ∀ n ∈ N.

We get from the above inequalities and using mathematical induction, that∫ d(xn,xn+1)

0

φ(t)dt ≤ ψn

(∫ d(x0,x1)

0

φ(t)dt

)
.

(b) Let T be a generalized twisted (α, β)-ψ-contractive mapping of integral type II.
Then with x = x2n and y = x2n+1 we have, from (4.19) that(

1 + r

)∫ d(x2n+1,x2n+2)

0

φ(t)dt ≤
(
α(x2n, x2n+1)β(x2n, x2n+1) + r

)∫ d(x2n+1,x2n+2)

0 φ(t)dt

≤
(

1 + r

)ψ(
∫ d(x2n,x2n+1)

0 φ(t)dt)

.

Similarly from (4.19) with x = x2n and y = x2n−1, we have∫ d(x2n+1,x2n)

0

φ(t)dt ≤ ψ

(∫ d(x2n,x2n−1)

0

φ(t)dt

)
.

Again for all n ∈ N we infer, from the above inequalities and using mathematical
induction that ∫ d(xn+1,xn)

0

φ(t)dt ≤ ψn

(∫ d(x0,x1)

0

φ(t)dt

)
. (4.21)
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(c) Let T be a twisted (α, β)-ψ-contractive mapping of integral type III . Then by
(4.20) with x = x2n and y = x2n−1, we have

∫ d(x2n+1,x2n+2)

0

φ(t)dt+ r ≤

(∫ d(x2n+1,x2n+1)

0

φ(t)dt+ r

)α(x2n,x2n+1)β(x2n,x2n+1)

≤ ψ

(∫ d(x2n,x2n+1)

0

φ(t)dt

)
+ r.

Then ∫ d(x2n+1,x2n+2)

0

φ(t)dt ≤ ψ

(∫ d(x2n,x2n+1)

0

φ(t)dt

)
.

Similarly by (4.20) with x = x2n and y = x2n−1, we get∫ d(x2n+1,x2n)

0

φ(t)dt ≤ ψ

(∫ d(x2n,x2n−1)

0

φ(t)dt

)
.

Thus in all the cases we have, for all n ∈ N;∫ d(xn+1,xn)

0

φ(t)dt ≤ ψn

(∫ d(x0,x1)

0

φ(t)dt

)
.

Taking limn→+∞ in the above equation and we get

lim
n→+∞

∫ d(xn+1,xn)

0

φ(t)dt = 0.

Which from the definition of φ, implies that

lim
n→+∞

d(xn, xn+1) = 0.

We now prove that (xn) is a Cauchy sequence. Suppose, on the contrary, that there
exist ε > 0 and subsequences{m(k)} and {n(k)} such that k < m(k) < n(k) with

d(xm(k), xn(k)) ≥ ε, d(xm(k), xn(k)−1) < ε. (4.22)

From the above and triangular inequalities, we deduce that

d(xm(k)−1, xn(k)−1) ≤ d(xm(k)−1, xm(k)) + d(xm(k), xn(k)−1)

< ε+ d(xm(k)−1, xm(k)).

43



Taking limit as k → +∞ in above inequality, we infer that

lim
k→+∞

d(xm(k)−1, xn(k)−1) < ε,

lim
k

∫ d(xm(k)−1,xn(k)−1)

0

φ(t)dt ≤
∫ ε

0

φ(t)dt.

(a) Consider the first case:∫ d(xm(k),xn(k))

0

φ(t)dt =

∫ d(Txm(k)−1,Txn(k)−1)

0

φ(t)dt

≤ α(xm(k)−1, xn(k)−1)β(xm(k)−1, xn(k)−1)∫ d(Txm(k)−1,Txn(k)−1)

0

φ(t)dt

≤ ψ

(∫ d(xm(k)−1,xn(k)−1)

0

φ(t)dt

)
∫ d(xm(k)−1,xn(k)−1)

0

φ(t)dt ≤ ψ

(∫ ε

0

φ(t)dt

)
. (4.23)

From (4.23), it then follows∫ ε

0

φ(t)dt ≤
∫ d(xm(k),xn(k))

0

φ(t)dt

≤ ψ

(∫ ε

0

φ(t)dt

)
.

Which is contradiction to the definition of ψ as a gauge function.
(b) From (4.19), we deduce that(

1 + r

)∫ ε
0 φ(t)dt

≤
(

1 + r

)∫ d(xm(k),xn(k))

0 φ(t)dt

=

(
1 + r

)∫ d(Txm(k)−1,Txn(k)−1)

0 φ(t)dt

≤
(
α(xm(k)−1, xn(k)−1)β(xm(k)−1, xn(k)−1) + r

)∫ d(Txm(k)−1,Txn(k)−1)

0 φ(t)dt

≤
(

1 + r

)∫ d(xm(k)−1,xn(k)−1)

0 φ(t)dt

≤
(

1 + r

)∫ ε
0 φ(t)dt

,
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which again leads to the contradiction that ψ(t) < t. Considering the third case
will also leads to a contradiction. Hence from all the cases we infer that (xn) is a
Cauchy sequence in (X, d). Thus for each ε > 0 there exists N ∈ N such that

d(xn, xm) < ε whenever n,m ≥ N. (4.24)

We claim that (xn) is also Cauchy with respect to d′. If d ≥ d′ then our claim is
trivially true. If d � d′ then from the uniform continuity of T we have, for all η > 0
there exists an ε > 0 such that

d′(Tx, Ty) < η; ∀ d(x, y) < ε. (4.25)

Considering (4.24) and from (4.25), with x = xn and y = xm we get

d′(xn+1, xm+1) = d′(Txn, Txm) < η ; ∀ n,m ≥ N.

Hence (xn) is Cauchy with respect to d′. Since (X, d′) is complete so there exists
λ ∈ X such that xn → λ. Finally since T is continuous so xn+1 = Txn → Tλ.
Which gives λ = Tλ.

In the following result, we omit the continuity condition on T in the case when
d = d′.

Theorem 4.2.2. Let (X, d′) be a complete metric space and d be another metric
on X. Let T : X → X be a generalized twisted (α, β)-ψ-contractive map of integral
type I, type II or type III with respect to d and α,β are transitive. Also suppose that
the following conditions hold;
(i) T is twisted (α, β)-admissible and there exists x0 ∈ X such that α(x0, Tx0) ≥ 1
and β(x0, Tx0) ≥ 1;
(ii) if d′ > d assume that T : (X, d)→ (X, d′) is uniformly continuous;
(iii) if d′ 6= d assume that T : (X, d)→ (X, d′) is continuous;
(iv) if (xn) is a sequence in X such that α(x2n, x2n+1) ≥ 1 and β(x2n, x2n+1) ≥ 1 for
all n ∈ N ∪ {0} and n→ +∞ then α(x2n, x) and β(x2n, x), for all n ∈ N ∪ {0}.
Then T has a fixed point.

Proof. Let x0 ∈ X such that α(x0, Tx0) ≥ 1 and β(x0, Tx0) ≥ 1. Proceeding as in
the Theorem 4.2.1 we have that the iterative sequence xn = T nx0 = Txn−1 converges
to λ ∈ X as n → +∞ and also α(x2n, x2n+1) ≥ 1 and β(x2n, x2n+1) ≥ 1. We shall
prove that λ = Tλ. Suppose, on the contrary, that λ 6= Tλ and assume that d′ = d
then from (iv) we have α(x2n, λ) ≥ 1 and β(x2n, λ) ≥ 1 for all n ∈ N∪{0}. Now we
consider the following three cases:
(a) Let T be twisted (α, β)-ψ-contractive mapping of integral type I. Then by (4.18)
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with x = x2n and y = λ, we infer that∫ d(Tx2n,Tλ)

0

φ(t)dt ≤ α(x2n, λ)β(x2n, λ)

∫ d(Tx2n,Tλ)

0

φ(t)dt

≤ ψ

(∫ d(x2n,λ)

0

φ(t)dt

)
.

(b) Let T be a twisted (α, β)-ψ-contractive mapping of integral type II. Then by
(4.19) with x = x2n and y = λ, we have(

1 + r

)∫ d(Tx2n,Tλ)
0 φ(t)dt

≤
(
α(x2n, λ)β(x2n, λ) + r

)∫ d(Tx2n,Tλ)
0 φ(t)dt

≤
(

1 + r

)ψ(∫ d(x2n,λ)0 φ(t)dt
)
.

Last inequality further gives∫ d(Tx2n,Tλ)

0

φ(t)dt ≤ ψ

(∫ d(x2n,λ)

0

φ(t)dt

)
.

(c) Let T be a twisted (α, β)-ψ-contractive mapping of integral type III. Then by
(4.20) with x = x2n and y = λ, we have(∫ d(Tx2n,Tλ)

0

φ(t)dt+ r

)
≤

(∫ d(Tx2n,Tλ)

0

φ(t)dt+ r

)α(x2n,λ)β(x2n,λ)

≤ ψ

(∫ d(x2n,λ)

0

φ(t)dt

)
+ r,

which gives ∫ d(Tx2n,Tλ)

0

φ(t)dt ≤ ψ

(∫ d(x2n,λ)

0

φ(t)dt

)
.

Therefore in all the cases we get∫ d(Tx2n,Tλ)

0

φ(t)dt ≤ ψ

(∫ d(x2n,λ)

0

φ(t)dt

)
.

Taking limit as n→ +∞ in the last inequality we infer that∫ d(λ,Tλ)

0

φ(t)dt ≤ ψ(0),
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which is possible only if d(λ, Tλ) = 0 that is λ = Tλ. Next consider d′ 6= d, then
from triangular inequality, we have

d′(λ, Tλ) ≤ d′(λ, xn) + d′(xn, Tλ) = d′(λ, xn) + d′(Txn−1, Tλ),

taking limit as n → +∞ and using the continuity assumption in (iii), we obtain
from the above inequality that d′(λ, Tλ) = 0 that is λ = Tλ.

Theorem 4.2.3. Assume that all the hypotheses of Theorem 4.2.2(resp. Theorem
4.2.1) hold together with condition (H), then there exists a unique fixed point of T .

Proof. Suppose that λ and λ∗ are two fixed point such that λ 6= λ∗ that is d(λ, λ∗) 6=
0. From condition (H), there exists ν ∈ X such that α(λ, ν) ≥ 1, α(λ∗, ν) ≥ 1 and
β(λ, ν) ≥ 1, β(λ∗, ν) ≥ 1. Now since T is twisted (α,β)-admissible mapping, we
deduce that α(T 2nλ, T 2nν) ≥ 1, α(T 2n−1ν, T 2n−1) ≥ 1 and α(T 2nλ∗, T 2nν) ≥ 1,
α(T 2n−1ν, T 2n−1λ∗) ≥ 1. Similar is the case for β. Since T is twisted (α,β)-ψ-
contractive of integral type I, II, or III, we consider the very first case, then taking
x = T 2nλ and y = T 2nν, in (4.18), we get∫ d(T (T 2nλ),T (T 2nν))

0

φ(t)dt ≤ α(T 2nλ, T 2nν)β(T 2nλ, T 2nν)

∫ d(T (T 2nλ),T (T 2nν))

0

φ(t)dt

≤ ψ

(∫ d((T 2nλ),(T 2nν))

0

φ(t)dt

)
. (4.26)

Similarly from (4.18) with x = T 2n−1ν and y = T 2n−1λ, we infer that∫ d(T (T 2n−1λ),T (T 2n−1ν))

0

φ(t)dt ≤ α(T 2n−1λ, T 2n−1ν)β(T 2n−1λ, T 2n−1ν)∫ d(T (T 2n−1λ),T (T 2n−1ν))

0

φ(t)dt

≤ ψ

(∫ d((T 2n−1λ),(T 2n−1ν))

0

φ(t)dt

)
. (4.27)

Hence, from (4.26) and (4.27) we get that, for all n ∈ N∫ d(T (Tnλ),T (Tnν))

0

φ(t)dt ≤ ψ

(∫ d(Tnλ,Tnν)

0

φ(t)dt

)
.

Proceeding inductively, we get∫ d(Tn+1λ,Tn+1ν)

0

φ(t)dt ≤ ψn

(∫ d(λ,ν)

0

φ(t)dt

)
.
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But since λ is the fixed point of T , so we have∫ d(λ,Tn+1ν)

0

φ(t)dt ≤ ψn

(∫ d(λ,ν)

0

φ(t)dt

)
.

Taking limit as n → +∞ in the above inequality, and since ψ is a gauge function
and using definition φ ∈ Φ, we came across the conclusion that

lim
n→+∞

d(λ, T n+1ν) = 0. (4.28)

Similar is the case for λ∗, hence we have,

lim
n→+∞

d(λ∗, T n+1ν) = 0 (4.29)

from (4.28) and (4.29) together with triangular inequality, we have

d(λ, λ∗) ≤ limn→ +∞
[
d(λ, T n+1ν) + d(T n+1ν, λ∗)

]
.

Thus d(λ, λ∗) ≤ 0 and d(λ, λ∗) ≥ 0 imply that λ = λ∗ that is T has a unique fixed
point λ.

Example 4.2.1. Let X = [0,+∞) and T : X → X be defined as Tx = x
4

+ 1 and
let X be endowed with usual metric d = d′. Let ψ(t) = t

8
, and α = β = 1 then T is

not twisted (α, β)-ψ-contractive mapping of type I, II or III since

α(x, y)β(x, y)d(Tx, Ty) =
1

4
|x− y|,

and

ψ(d(x, y)) =
1

8
|x− y|.

But T is generalized twisted (α, β)-ψ-contractive mapping of integral type I, II or III
with φ(t) = t. since α = β = 1, so we have

α(x, y)β(x, y)

∫ d(Tx,Ty)

0

tdt =
1

32
|x− y|2, (4.30)

and

ψ

(∫ d(x,y)

0

tdt

)
= ψ

(
d(x, y)2

2

)
=

1

16
|x− y|2. (4.31)

From (4.30) and (4.31), we get that T is generalized twisted (α, β)-ψ-contractive of
integral type and also T satisfy all the conditions of Theorem 4.2.1 with the unique-
ness hypothesis (H) and so we have that x = 4

3
is the unique fixed point of T .
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Now, we shall list some of the existing results in the literature that can be
deduced easily from our theorems in Chapter 4.

Corollary 4.2.1. (Banach [2]) Let (X, d) be a complete metric space and T : X →
X be given mapping satisfying

d(Tx, Ty) ≤ γd(x, y); ∀ x, y ∈ X,

where γ ∈ [0, 1). Then T has a unique fixed point.

Proof. Let α(x, y) = 1, M(x, y) = d(x, y), d = d′, φ(t) = 1 and ψ(t) = γt where
γ ∈ [0, 1) in Theorem 4.1.1. Then all the conditions of Theorem 4.1.1 are satisfied
and so T has a unique fixed point.

Notice that condition (U) immediately follows from the fact that α = 1 which
guarantees the uniqueness of fixed point.

Corollary 4.2.2. (See Agarwal and O’Regan [1])

Theorem 2.1.1 of Agarwal et al. [1] can be easily obtained by α(x, y) = 1, ψ(t) =
qt; q ∈ (0, 1), φ(t) = 1. It is important to note that our results (Theorem 4.1.1 and
Theorem 4.1.2) together with the uniqueness condition (U) gives the unique fixed
point of T .

Corollary 4.2.3. (See Kiran et al. [12])

Theorem 2.1.3, Theorem 2.1.4 and more importantly Theorem 2.1.5 of Kiran et
al. [12] can easily be obtained from Theorem 4.1.1 by just taking φ(t) = 1.

Corollary 4.2.4. (See Karapinar et al. [11])

Theorem 2.2(resp. Theorem 2.3) are special cases of our result Theorem 4.1.1
(resp. Theorem 4.1.2) taking d = d′.

Corollary 4.2.5. (See Samet et al. [23]) Let (X, d) be a complete metric space
and T : X → X be an α-ψ-contractive mapping satisfying the following conditions
together with hypothesis (U):
(i) T is α-admissible;
(ii) there is x0 ∈ X such that α(x0, Tx0) ≥ 1;
(iii) T is continuous.
Then T has a unique fixed point. That is, there is an x∗ ∈ X such that Tx∗ = x∗

and such an x∗ is unique.

This result can be easily deduced from our Theorem 4.1.1 by simply taking
φ(t) = 1; ∀ t ≥ 0 and M(x, y) = d(x, y) and d = d′.
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Corollary 4.2.6. (See Branciari [8]) Let (X, d) be a complete metric space, κ ∈
[0, 1), and let T : X → X be a mapping such that for each x, y ∈ X,∫ d(Tx,Ty)

0

φ(t)dt ≤ κ

∫ d(x,y)

0

φ(t)dt.

This result can be easily deduced from Theorem 4.1.1 by considering α(x, y) = 1,
ψ(t) = κt and d = d′, M(x, y) = d(x, y).
Notice that, since α(x, y) = 1; ∀ x, y ∈ X, so condition (U) holds and fixed point is
unique.

Corollary 4.2.7. (See Rhoades and Abbas [21]) Let T be a self mapping of a com-
plete metric space (X, d) satisfying;∫ d(Tx,Tx2)

0

φ(t)dt ≤ ξ

∫ d(x,Tx)

0

φ(t)dt

then T has a unique fixed point.

This result follows from Theorem 4.1.1 and also from Theorem 4.1.2 taking
M(x, y) = d(x, Tx), d = d′, α(x, Tx) = 1; ∀ x, y ∈ X and ψ(t) = ξt and φ ∈ Φ,
where ξ ∈ [0, 1) and t ∈ [0,+∞).

Corollary 4.2.8. (See Berinde [3]) Let (X, d) be a complete metric space and T :
X → X be a given mapping satisfying

d(Tx, Ty) ≤ λd(x, y)

for all x, y ∈ X where λ ∈ [0, 1). Then T has unique fixed point.

This result can be easily deduced from our result Theorem 4.1.1 considering
d = d′, M(x, y) = d(x, y), ψ(t) = λt; t ∈ [0,∞), λ ∈ [0, 1) and φ(t) = 1.

Corollary 4.2.9. (See Salimi et al. [22])

In the main results of Salimi et al. [22], Theorem 2.1, Theorem 2.2 and The-
orem 2.3 can be easily obtained from our results Theorem 4.2.1, Theorem 4.2.2
and Theorem 4.2.3 respectively by taking φ(t) = 1 corresponding to the fact that
φ(0) = 0.

Corollary 4.2.10. (See [7]) Let (X, d) be a complete metric space let T : X → X
is continuous mapping. If there exists ψ ∈ Ψ such that

d(Tx, Ty) ≤ ψ(d(x, y)); ∀ x, y ∈ X.

Then T has a unique fixed point.

The above result of Boyd and Wong [7] can be easily obtained from our result
Theorem 4.2.1 by taking φ(t) = 1, M(x, y) = d(x, y) and α = β = 1.
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4.3 Some concluding remarks and future work

In this dissertation, an attempt has been made to investigate generalized α − ψ-
contractive mappings of integral type in those abstract spaces upon which two met-
rics are defined. Furthermore, the Integral type generalizations of twisted (α,β)-ψ-
contractive type mappings are also discussed. Hopefully this discussion is a stimulus
and simplify some results in Fixed Point Theory. In this thesis, we were just able to
extend some theorems regarding contractive type mappings. We invite the readers
to investigate the followings:

� to introduce multi-valued contractive type mappings on spaces with two metrics

� to introduce α-ψ-contractive multi-valued mappings of integral types

� to replace one of the two metrics by generalized metric (b-metric)

� finally to check the validation of the above results in best proximity fixed point.
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