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Abstract

In this dissertation, fluid flow and heat transfer analysis of fully developed flow through annular

sector duct is numerically carried out. The duct consists of two concentric pipes in which hot

fluid is flowing in the inner pipe and the cold fluid is flowing through the annulus. The annulus

is filled with Darcy-Brinkman’s porous media. Longitudinal fins are attached in the annulus in

such a way that fins cover full radial width of the annulus. Therefore, the annulus becomes a

multi-passage channel in which each passage is an annular sector in shape.

Constant properties incompressible Newtonian fluid is considered. The problem is modeled

subject to constant heat flux boundary conditions, H1 condition, applied at the inner surface of

the inner pipe. The resulting mathematical model, momentum and energy equations are solved

by a fully implicit finite difference method.

The dimensionless bulk mean velocity ŵm, the product of friction factor with Reynolds number

fRe, the dimensionless bulk mean temperature τb and the Nusselt number Nu are obtained

for clear passage and porous media. The effect of ratio of radii of inner and outer pipe (R̃ =

0.25, 0.5), sector angle (α = 1.047, 0.524, 0.349, 0.262, 0.209, 0.175, 0.15, 0.131) and permeability

(K̂ = 0.001, 0.01, 0.1, 1, 10, 100) on ŵm, fRe, τb and Nu is observed. The results for the clear

passage are verified from the literature. Furthermore, the results are graphically analyzed and

conclusions are drawn.

It is seen that the use of porous media enhances heat transfer but friction factor is also increased.

Fluid flow and heat transfer can be optimized by maintaining appropriate sector length, sector

angle and permeability.
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3.7 ŵmp values for (a): R̃ = 0.25 (b): R̃ = 0.5 . . . . . . . . . . . . . . . . . . . . . . 28

3.8 Effect of permeability on velocity profile for α = 0.524, (a): R̃ = 0.25 (b): R̃ = 0.5 29

3.9 Effect of permeability on velocity profile for α = 0.524, R = 0.75, (a): R̃ = 0.25

(b): R̃ = 0.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.1 Temperature profile for R̃ = 0.25, α = 0.524 and (a): K̂ = 100 (b): K̂ = 10 (c):

K̂ = 1 (d): K̂ = 0.1 (e): K̂ = 0.01 (f): K̂ = 0.001 . . . . . . . . . . . . . . . . . . 36

4.2 Temperature profile for R̃ = 0.5, α = 0.524 and (a): K̂ = 100 (b): K̂ = 10 (c):

K̂ = 1 (d): K̂ = 0.1 (e): K̂ = 0.01 (f): K̂ = 0.001 . . . . . . . . . . . . . . . . . . 37

4.5 Nup values for (a): R̃ = 0.25 (b): R̃ = 0.5 . . . . . . . . . . . . . . . . . . . . . . 39

4.3 Temperature profile for R̃ = 0.25, K̂ = 0.01 and (a): α = 1.047 (b): α = 0.524

(c): α = 0.349 (d): α = 0.262 (e): α = 0.209 (f): α = 0.175 (g): α = 0.15 (h):

α = 0.131 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

vi



vii

4.4 Temperature profile for R̃ = 0.5, K̂ = 0.01 and (a): α = 1.047 (b): α = 0.524

(c): α = 0.349 (d): α = 0.262 (e): α = 0.209 (f): α = 0.175 (g): α = 0.15 (h):

α = 0.131 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.6 τbp values for (a): R̃ = 0.25 (b): R̃ = 0.5 . . . . . . . . . . . . . . . . . . . . . . . 42

4.7 Effect of permeability on temperature profile for (a): R̃ = 0.25 (b): R̃ = 0.5 . . . 42

4.8 Effect of permeability on temperature profile for α = 0.524, R = 0.75, (a):

R̃ = 0.25 (b): R̃ = 0.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43



Chapter 1

Introduction and Literature Review

1.1 Introduction

The concept of boundary layer has central importance in the study of convective heat and mass

transfer between surface and the fluid flowing over it. The velocity boundary layer is formed

by the the presence of velocity gradients and shear stresses while the thermal boundary layer

is due to temperature gradients and heat transfer [1]. The process of heat exchange, which

occur due to the difference in temperature between two fluids, has always been given a great

importance. A heat exchanger is a device built for efficient heat transfer from one medium

to another. The two media can be in direct contact or can be separated by a solid wall.

Heat exchangers are useful in almost every industry. For example, space heating, refrigeration,

air conditioning, power production, chemical plants, prochemical plants, petroleum refineries,

natural gas processing and waste heat recovery etc. In early times parallel plate channels and

cylindrical heat exchangers were used. With the passing time, the need of more efficient heat

exchangers increased and the researchers came up with the different geometrical designs for

heat exchangers such as circular and polygonal tubes.

In the present study, a heat exchanger consisting of two concentric pipes is modeled. Heated

fluid is flowing through the inner pipe whereas, the fluid to be heated is flowing through the

annulus. Longitudinal fins are attached in the annulus extending from the inner pipe to the

outer pipe and the annulus is filled with porous medium in order to enhance the heat transfer.

The plan of dissertation is as follows: Chapter 2 consists of fundamental concepts of fluid

dynamics and heat transfer. In chapter 3, the fluid flow model is discussed in detail. Momentum

equation is solved to get the velocity profile. The bulk mean velocity and fRe are calculated and

1
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the effect of sector length, sector angle and permeability on these parameters is studied. Chapter

4 includes a detailed study of heat transfer model. Bulk mean temperature and Nusselt number

is calculated and the effect of sector length, sector angle and permeability on these quantities is

discussed. In chapter 5, the research work is concluded and the directions are given for which

further research can be done.

1.2 Literature Review

Fluid flow and heat transfer through ducts has been studied by many researchers. Syed et

al. [2] studied hydrodynamically fully developed flow and convective heat transfer in the ther-

mal entrance region of finned double-pipe subjected to uniform heat flux thermal boundary

condition. They used marching procedure based on finite difference method and computed

the numerical solutions of momentum and energy equations. They concluded that the average

Nusselt number and the thermal entrance length depends non-monotonically on the ratio of

radii, the number of fins and the fin height which indicates that there exist certain values of

these parameters for which the total heat transfer within the entry region is maximum. Wang

and Tao [3] studied developing steady laminar and constant-property forced-convection flow

and heat transfer in annular sector ducts in the entrance region and solved momentum and

energy equations numerically using a general marching procedure with both T1 and H1 bound-

ary conditions. They computed Nusselt number and friction factor. Results show that the

hydrodynamic entrance length and the thermal entrance length decrease with the increase in

sector angle and the ratio of diameters of inner and outer pipe. Moreover the thermal boundary

layer develops more rapidly than the hydrodynamic boundary layer. Li et al. [4] studied the

fully developed turbulent flow in annular sector ducts. They used mixing length theory, k − ε

model and Reynolds stress model with five apex angles (18, 20, 24, 30, 40o), four radius ratios

(2,3,4,5) and Reynolds number range 104 − 105. They concluded that none of the turbulence

model predict well the fully developed friction factor and the mixing length theory gives best

results for the fully developed heat transfer. Syed et al. [5] optimized configuration of annulus

in a double pipe with trapezoidal fins augmented to the outer surface of the inner pipe with

a fully developed steady, laminar and incompressible flow. They used finite element method

for the numerical solution where parameters are number of fins, fin height, fin thickness and

the ratio of radii of inner and outer pipes. Constant heat flux condition is imposed and the

inner pipe is made up of highly conductive material. Results show that when no parameter is
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specified, optimal Nusselt number is obtained when smaller number of shorter and thinner fins

augmented to the outer surface of an inner pipe of as smaller a radius as possible.

Researchers have also probed the problem of fluid flow and heat transfer through channels filled

with porous medium. Kaviany [6], studied laminar flow through a porous channel bounded by

two parallel plates maintained at a constant and equal temperature. The modified Darcy model

for transport of momentum is applied but the velocity square term in the momentum equation

and the axial conduction term in the energy equation are neglected. The results show that

the Nusselt number for fully-developed fields increases with an increase in the porous media

shape parameter, γ =
√
W 2ε/K, where W is channel width, ε is porosity and K is perme-

ability. Sung et al. [7], studied forced convection from an isolated heat source in a channel

with porous medium. They calculated ratio of thermal conductivities, Reynolds number, Re

and Darcy number, Da and studied their variations. They concluded that as the thickness

of the porous substrate, S increases, the flow rate through the opening between the porous

layer and the channel wall is increased. A decrease of Da for certain value of S also causes an

increase of flow rate, while the flow rate through the porous layer is decreased. For the case

when the porous block is attached to the upper surface wall vertically above the heating zone,

a decrease of Da results in a decrease of maximum local temperature. For the case when the

porous block is connected to the heating zone on the bottom surface wall, however, maximum

local temperature increases as Da decreases. It was evident that supportable or unsupportable

conditions for heat transfer exist according to the changes in S as well as in the geometric

arrangement. Kurtbas and Celik [8] investigated the forced and mixed convection heat transfer

in a different metallic foam-filled horizontal rectangular channel. They calculated the average

and local Nusselt numbers as functions of Reynolds and the Richardson numbers. The results

showed that the average Nusselt number increases proportional to pore density and the num-

ber increases rapidly with respect to a critic value of Reynolds number. In the region with

foam heat transfer increases due to fin effect of foam and the foam behaves as a turbulator.

Hooman et al. [9] studied heat transfer and entropy generation optimization. They proposed

analytical solutions for temperature distribution and the Nusselt number that envelop three

different boundary conditions (all heated, one insulated and two insulated sides cases). They

solved the problem numerically and compared the results. They concluded that if the porous

media shape parameter s < 10 then the best heat transfer rate is achieved in the case when

the sides along the width are heated and other are insulated. When s > 10 best results are
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achieved in the case when one side is insulated. Wang [10] studied fully developed laminar

forced convection in a semi-circular channel filled with a Brinkman-Darcy porous medium. He

obtained analytical solutions for flow and constant flux heat transfer using a mixture of carte-

sian and cylindrical coordinates. The problem depends on a parameter s, which is proportional

to the inverse square of the Darcy number. He determined friction factor-Reynolds number

product and Nusselt number. He concluded that for small s, the velocity profile is rounded

similar to the case without the porous medium while for large s, the profile becomes blunted,

and a boundary layer exists near the walls. Wang [11] studied the fully developed flow and H1

heat transfer through a polygonal duct filled with a Brinkman-Darcy porous medium. He used

boundary collocation method. The non-dimensional parameter used is s which characterizes

the inverse square root of permeability. He used The point match method and concluded results

for triangular, square and circular ducts and compared with published results. Poulikakos and

Kazmierczak [12] studied fully developed forced convection in parallel plates and circular pipe

partially filled with a porous material considering both the cases, constant wall heat flux and

constant wall temperature. The results show that impact of the parameters (thickness of the

porous region adjacent to the wall, the Darcy number and the ratio of the effective thermal

conductivity of the porous medium to the fluid thermal conductivity on the heat and fluid

flow characteristics of the channel) are similar qualitatively for both channel geometries and

boundary conditions. The Nusselt number dependence on the thickness of the porous region

is not monotonic. A critical value of the porous region thickness exists at which the Nusselt

number value reaches a minimum. Nakayama et al. [13] studied forced convection in a channel

filled with a Brinkman-Darcy porous medium the uniform wall heat flux boundary condition.

The Brinkman-extended Darcy model is employed to study the effect of the boundary viscous

frictional drag on hydrodynamic and heat transfer characteristics. An exact expression is de-

rived for the Nusselt number and approximate results are obtained by exploiting a momentum

integral relation. Results show that the approximate formula agree with the exact solution.

Hajipour and Dehkordi [14] studied nano-fluid heat transfer in parallel-plate vertical channels

partially filled with porous medium. The Brinkmane-Forchheimer extended Darcy model is

used. With constant wall temperature, velocity and temperature profiles and expressions for

the Nusselt number values are obtained for fully-developed fluid flow. The results show that

presence of nano-particles in the base fluid causes a noticeable increase in the velocity and the

temperature. Jiang et al. [15] studied forced convection heat transfer of air in plate channels
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filled with glass or non-sintered steel spherical particles. They studied the thermal dispersion,

variable properties caused by the pressure variation, particle diameter, particle thermal conduc-

tivity and the fluid velocity. The experimental results and numerically calculated values for the

friction factor in porous media agree with the literature results. The non-sintered porous media

increased the heat transfer coefficients. Sheikh and Vafai [16] studied flow and heat transfer in

porous media and found the temperature solutions in channels having different cross sectional

geometries (parallel plate channel and circular duct). They modified Graetz problem and nu-

merically solved the Brinkmans model. They used another numerical based on the method of

weighted residuals. They concluded that the new numerical method improves numerical accu-

racy. Du et al. [17] conjugated heat transfer in metal foam filled double-pipe. They used two

equation numerical model. They concluded that the distributions of excess temperature depend

on the relative variation of thermal resistance of inner and annular space in the conjugated heat

transfer process.

So far to the knowledge of this author no area has been done on the fluid flow and heat transfer

analysis of annular sector duct filled with porous medium.



Chapter 2

Preliminaries

This chapter contains some fundamental concepts. An introduction to fluid flow, different types

of fluid flows, the governing equations for the fluid flow and heat transfer are discussed in this

chapter. Furthermore, an introduction to heat transfer, the modes of heat transfer and some

useful dimensionless quantities are discussed.

2.1 Fluid Flow

A fluid is any substance that deforms continuously when subjected to a shear or tangential

stress, no matter how small the stress may be. In other words fluid is something that is capable

of flowing and conforms to the shape of containing vessel. Fluids include liquids and gases [18].

2.1.1 Steady and Unsteady Flows

The flow is said to be steady, if all properties of the flow are independent of time i.e.

∂λ

∂t
= 0 (2.1)

where ∂/∂t is a derivative with respect to time and λ represents any fluid property. Otherwise,

the flow is said to be unsteady or transient flow [18].

2.1.2 Laminar and Turbulent Flows

The flow in which the trajectories followed by fluid particles are regular and smooth and does

not change their directions is known as laminar flow. Whereas the flow in which the fluid

particles change directions continuously is called a turbulent flow [18].

6
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2.1.3 Compressible and Incompressible Flow

A flow is said to be incompressible if the density of the fluid within the flow is considered to

be constant, otherwise the flow is said to be compressible. The mathematical representation of

incompressibility of the fluid is given by

Dρ

Dt
= 0 (2.2)

where ρ is density of the fluid and D/Dt is the material time derivative given by

D

Dt
=

∂

∂t
+ V.∇ (2.3)

In equation (2.3), V represents the velocity of the flow and ∇ is differential operator. In

cartesian coordinate system ∇ is given by

∇ =
∂

∂x
î+

∂

∂y
ĵ +

∂

∂z
k̂ (2.4)

where (̂i, ĵ, k̂) are the unit vectors in their respective directions. In cylindrical coordinate system

∇ is given by

∇ =
∂

∂r
er +

1

r

∂

∂θ
eθ +

∂

∂z
ez (2.5)

where (er, eθ, ez) are the unit vectors in (r, θ, z) directions.

2.1.4 Viscosity

Viscosity is that fluid property by virtue of which a fluid offers resistance to shear stresses.

Viscosity of the fluid is measured by the coefficient of viscosity, µ, which is the constant of

proportionality between the rate of shear and the tangential force per unit area when parallel

plane layers of fluid slide over one another.

2.1.5 Viscous and Inviscid Fluid

A fluid is known as viscous fluid, if it possesses a finite viscosity. While if the dynamic viscosity

(a resistance to the flow between layers of a fluid flowing at a given speed) of a fluid is zero

than it is said to be inviscid fluid. In general, viscosity of a fluid is never zero but for the

experimental purpose in some cases, low values of viscosities can be neglected [18].
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2.1.6 Newtonian and Non-Newtonian Fluids

Newtonian fluids obey Newtonian law of viscosity. This means, a fluid in which the shear stress

is linearly proportional to the velocity gradient is called a Newtonian fluid. Mathematically, we

can write

τ = µ
∂v

∂y
(2.6)

where µ is the coefficient of viscosity. While a fluid whose flow properties differ in any respect

from those of Newtonian fluids is known as non-Newtonian fluid. In non-Newtonian fluids stress

versus strain rate curve is not linear. The expression that describes the fluid behavior is given

by

τ = k

(
∂u

∂y

)n
(2.7)

where k is the consistency index (the measure of the consistency of the fluid) and n is the flow

behavior index (a measure of how the fluid deviates from the Newtonian fluid). If n = 1, then

the fluid is Newtonian, otherwise non-Newtonian [18].

2.1.7 Velocity Boundary Layer

When fluid particles interact with a surface, they exhibit a zero velocity. These fluid particles

decrease the velocity of next layer of the fluid particles which decreases the velocity of fluid

particles of the layer flowing over it. This process goes on until at a certain distance from the

flat surface, this retardation effect becomes negligible. Thus, a region is developed in the fluid

through which the velocity varies from zero at the surface to some finite value, affiliated with

the flow. This region of the fluid is called the hydrodynamics or velocity boundary layer [1].

2.1.8 Bulk Mean Velocity

As the velocity varies over a cross-section during the fluid flow, some unique value of velocity

is needed for the calculations. In order to do so, the bulk mean velocity is used when dealing

with internal flows which is a very useful quantity. The bulk mean velocity is defined in such a

way that it gives mass flow rate ṁ, through a tube when it is multiplied by the fluid density ρ

and cross-sectional area of the tube Ac. The mass flow rate ṁ is defined as [1].

ṁ = ρumAc (2.8)

where um is the bulk mean velocity which is defined as

um =
1

Ac

∫ ∫
u r drdθ (2.9)



9

2.1.9 Mathematical Model Governing Fluid Flow

In this section, we will discuss the generalized mathematical models that govern the fluid flow.

These equations are derived on the basis of two fundamental laws: Law of conservation of mass

and Law of conservation of momentum.

Generalized Continuity Equation

Continuity equation is based upon Law of conservation of mass which states, ”The rate of mass

entering and leaving the system is the same”. The differential form of continuity equation is

given as [19]

∂ρ

∂t
+∇.(ρV) = 0 (2.10)

where V represents the velocity of the flow and ∇ is differential operator given in equation

(2.4).

Generalized Momentum Equations

The momentum equations are the generalized form of Law of conservation of momentum, which

is derived from Newton’s second law of motion. Mathematical form of this law, commonly known

as Navier-Stokes equations is given by [19]

ρ
Du

Dt
= −∂P

∂x
+
∂τxx
∂x

+
∂τyx
∂y

+
∂τzx
∂z

+ ρfx (2.11)

ρ
Dv

Dt
= −∂P

∂y
+
∂τxy
∂x

+
∂τyy
∂y

+
∂τzy
∂z

+ ρfy (2.12)

ρ
Dw

Dt
= −∂P

∂z
+
∂τxz
∂x

+
∂τyz
∂y

+
∂τzz
∂z

+ ρfz (2.13)

In equations (2.11)-(2.13) fx, fy and fz are body forces in x, y and z directions respectively, P

is the pressure applied on the fluid and τ is the stress tensor whose components are given by

Stokes for Newtonian fluids as [19]

τxx = λ(∇.V) + 2µ
∂u

∂x
(2.14)

τyy = λ(∇.V) + 2µ
∂v

∂y
(2.15)

τzz = λ(∇.V) + 2µ
∂w

∂z
(2.16)

τxy = τyx = µ

(
∂v

∂x
+
∂u

∂y

)
(2.17)
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τxz = τzx = µ

(
∂w

∂x
+
∂u

∂z

)
(2.18)

τyz = τzy = µ

(
∂w

∂y
+
∂v

∂z

)
(2.19)

In equations (2.14)-(2.19) µ is molecular viscosity and λ is the second viscosity coefficient.

According to Stokes

λ = −2

3
µ (2.20)

The vector form of the momentum equations for the Newtonian fluid are given by

ρ

(
∂V

∂t
+ V.∇V

)
= −∇P + µ∇2V + f (2.21)

where V is velocity of the fluid and ∇ is differential operator.

2.2 Heat Transfer

Heat transfer is the process of the transport of thermal energy due to the spatial temperature

difference. The role of heat transfer is to provide the thermodynamic analysis (which consider

only the systems in equilibrium), with additional laws that predict the rates of energy transfer

[1].

There are three different kinds or processes of heat transfer known as modes of heat transfer

i.e. conduction, convection and radiation.

2.2.1 Conduction

Conduction refers to an atomic and molecular heat exchange. It is the transfer of energy (in

this case heat energy) from more aggressive to less aggressive particles of a substance due to

interaction between particles.

Heat transfer processes can be estimated in terms of rate equations which can be used to compute

the amount of energy being transferred per unit time. The rate equation for conduction is

referred as the Fourier’s law which for one-dimensional plane wall with temperature distribution

T (x), is expressed as [1]

q′′x = −κdT
dx

(2.22)

where q′′x is the heat flux (W/m2), κ is the thermal conductivity (W/m.K) (characteristic of the

wall material which tells how quickly the thermal energy diffuses through the medium). The

minus sign shows that heat transfer has occurred in the direction of decreasing temperature.
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2.2.2 Convection

The convection heat transfer mode consists of two mechanisms. Because of the molecules on the

whole retain their random motion, the total convection happens due to a superposition of energy

transport by the random motion of the molecules (diffusion) and by the bulk or microscopic

motion of the fluid [1].

Convection heat transfer occurs between a fluid in motion and a bounding surface when the two

are at different temperatures due to the formation of velocity boundary layer (described in 2.1.7)

and thermal boundary layer (formed whenever there is a temperature difference between the

surface and the fluid flowing over that surface. The fluid particles in contact with the surface,

achieve equilibrium at the surface’s temperature and exchange heat energy with the next layer

and so on. In this way, temperature gradients are developed in the fluid. Thus, the area of the

fluid containing these temperature gradients is known to be the thermal boundary layer [1].

Since the convection heat transfer mode is due to both the random molecular motion and the

bulk motion of the fluid, the contribution due to random molecular motion is more near the

surface where the fluid velocity is low. In fact at the interface between the surface and the fluid,

the fluid velocity is zero and heat is transferred only by diffusion. The boundary layer grows

as the flow progresses in the flow direction and there the heat transfer is due to the bulk fluid

motion. As a result, the heat that is conducted into this layer is passed over and is ultimately

transferred to the fluid outside the boundary layer.

Classification of convective heat transfer is based upon the nature of the flow. If the flow

is caused by external means, it’s called forced convection. For example by a fan, a pump or

atmospheric winds. While in free (Natural) convection heat transfer, the transport of heat is

not due to some external force but only by density differences in the fluid occurring due to the

temperature gradients. For example, hot balloon rising and the chimney effect.

Convection may also occur due to latent heat exchange. This latent heat exchange is generally

affiliate with a phase change between the liquid and vapor states of the fluid. This may include

processes of boiling and condensation.

Regardless of the particular nature of the convection heat transfer process the rate equation

representing the process, termed as Newton’s law of cooling, will be [1]

q′′ = h(Ts − T∞) (2.23)
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where q′′, the convective heat flux (W/m2), Ts and T∞ are the surface and fluid temperatures

respectively whereas h (W/m2.K) is the convection heat transfer coefficient. It depends on

the boundary layer conditions which depend upon the surface geometry, the nature of the fluid

motion and selection of fluid thermodynamic and transport properties.

2.2.3 Radiation

The energy emitted by the matter at non-zero temperature is known as Radiation [1]. The

process of radiation can be seen in both solids and fluids. The energy emitted during the

process of radiation is transported by electromagnetic waves. Unlike conduction and convection,

radiation does not require any material medium. It is more effective in a vacuum. In the present

study we have only considered the forced convection.

2.2.4 Bulk Mean Temperature

Like velocity, temperature also varies over a cross-section during the fluid flow and heat transfer

process. So we need some mean temperature for the calculation purpose. This bulk mean

temperature Tb, is defined as

Tb =
1

umAc

∫ ∫
uTr drdθ (2.24)

where um is the bulk mean velocity, T is temperature of the fluid and Ac is cross-sectional area

of the tube.

2.2.5 Generalized Energy Equation

Energy equation is the generalized form of The first law of thermodynamics according to which

the rate of change of energy inside fluid element is equals the sum of net flux of heat into element

and rate of work done on the element due to body and surface forces. The non-conservation

form of energy equation is given by [19]

ρ
D

Dt

(
e+

V 2

2

)
= ρq̇ +

∂

∂x

(
k
∂T

∂x

)
+

∂

∂y

(
k
∂T

∂y

)
+

∂

∂z

(
k
∂T

∂z

)
− ∂up

∂x
− ∂vp

∂y
− ∂wp

∂z
+
∂uτxx
∂x

+
∂uτyx
∂y

+
∂uτzx
∂z

+
∂vτxy
∂x

+
∂vτyy
∂y

+
∂vτzy
∂z

+
∂wτxz
∂x

+
∂wτyz
∂y

+
∂wτzz
∂z

+ ρf.V (2.25)

where T is the temperature, ρ is density of the fluid and components of the stress tensor, τ in

equation (2.25) are given by equations (2.14)-(2.19).
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2.3 Flow and Heat Transfer Parameters

Few important flow and heat transfer parameters which will help to understand the work in the

upcoming chapters, are described in this section.

2.3.1 Hydraulic Diameter

The hydraulic diameter is used as the characteristic length of ducts of any shape. It’s a ratio

between cross-sectional flow area and wetted perimeter [1].

Dh = 4
cross-sectional flow area

wetted perimeter
= 4

Ac
pw

2.3.2 Reynolds Number

Reynolds number Re is a dimensionless number which is the ratio of inertia to viscous forces.

A small Reynolds number represents that the inertia forces are a lesser than that of viscous

forces resulting a laminar flow. A large Reynolds number however shows the inertia forces are

greater than that of viscus forces resulting disturbances resulting into a turbulent flow.

The Reynolds number is represented by the ratio [1]

Re =
umDh

υ

where um is the bulk velocity and υ = µ/ρ

2.3.3 Fanning Friction Factor

Fanning friction factor is commonly used in fluid flow calculations. It is related to the shear

stress at wall. The Fanning friction factor is defined as [1]

f =
τs

ρu2m/2

where τ is the stress at wall, defined by,

τs = −µ
(
du

dr

)
r=ro

The product of Fanning friction factor and Reynolds number is commonly used for calculating

the friction in a fluid flow. This product is given by,

fRe = −1

2

1

µ

dP

dz

D2
h

um
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2.3.4 Nusselt Number

The Nusselt number, Nu, is a dimensionless parameter which is the ratio of convection to pure

conduction heat transfer. Convective heat transfer is due to the mass motion in the fluid while

conduction is due to the particle motion. The increase in Nusselt number means convective

heat transfer is relatively more than conductive heat transfer. The increase in Nusselt number

show the increase in heat transfer. The Nusselt number is defined as [1]:

Nu =
hL

Kf
=
∂T ∗

∂y∗
|y∗=0

It can be noted that Nusselt number is actually equal to the dimensionless temperature gradient

at the surface and it measures the amount of convective heat transfer at the surface.

2.3.5 Prandtl Number

Prandtl number Pr is a ratio of the momentum to the thermal diffusivity (the thermal conduc-

tivity divided by density and specific heat capacity at constant pressure). It roughly estimates

either conduction or convection is dominating during the flow. It is defined as [1]:

Pr =
cpµ

K
=
υ

α

2.4 Boundary Conditions

Boundary conditions play an important role to determine a mathematical solution of a physical

problem. A few boundary conditions are given below.

2.4.1 Velocity Boundary Condition

When an inviscid fluid comes in contact with a rigid stationary obstacle during the flow then the

normal fluid velocity at the surface of the obstacle must be zero. But in general, the tangential

component of the velocity is not zero.In reality, all physical fluids are viscous. Moreover, when

a viscous fluid comes in contact with a rigid stationary obstacle during the flow both the normal

and the tangential components of the fluid velocity are found to be zero at the obstacles surface.

The condition that vertical as well as tangential component of the fluid velocity is zero at a

rigid stationary boundary is known as no slip condition.
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2.4.2 Thermal Boundary Condition

H1 condition includes constant axial heat flux per unit length of the duct with constant periph-

eral temperature of the heated wall. This condition suggests that infinite conductivity of heated

wall in the radial and transverse directions with zero conductivity in the axial direction [20].

Whereas T1 condition includes constant axial temperature of the duct with constant peripheral

temperature of the heated wall. This condition has the same implications for conductivity of

the heated wall as in H1 condition [20].



Chapter 3

Analysis of Fluid Flow Through The

Annular Sector

3.1 Introduction

The study of fluid flow models is quite important in the area of heat exchangers. Different

geometric structures for the fluid flow models are being examined but circular pipes are oftenly

used for this purpose. In this chapter the fluid flow in a heat exchanger consisting of two

concentric pipes joined by a number of longitudinal fins extending between the inner and outer

pipe is modeled and simulated. Heated fluid is flowing through the inner pipe, while the fluid

to bo heated is flowing through the annulus. Furthermore the annulus is filled with the porus

media which may lead the increase in friction and decrease in velocity of the fluid. The bulk

mean velocity and fRe are calculated for the flow and the effects of sector length, sector angle

and permeability of the fluid are discussed. Results are presented in tabular form as well as

graphically.

3.2 Mathematical Modeling

The system consists of two concentric pipe joined by longitudinal fins extending from the inner

pipe to the outer (shown in figure (3.1a)). The radius of inner pipe is ri and that of outer pipe

is ro and the angle between two consecutive fins is 2α. Because of geometric symmetry, we

choose half of the region between two consecutive fins as our computational domain as shown in

figure (3.1b). So, the resulting sector angle is α and the sector length is ro − ri. Heated fluid is

flowing through the inner pipe while the fluid under consideration is flowing through the outer

16
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pipe with velocity (u,v,w) in a concurrent manner.

(a) (b)

Figure 3.1: (a) Cross-section of the double pipe (b): Computational domain

The fluid flowing through the annulus is considered to be viscous, incompressible, Newtonian

and with constant properties. The flow is assumed to be steady, laminar and hydrodynamically

fully-developed. All body forces and viscous dissipations are neglected. The only driving force

is constant pressure gradient in axial direction. The governing model for the fluid flow in

cylindrical polar co-ordinates can be written as,

Continuity equation (in cylindrical polar co-ordinates):

∂P

∂t
+

1

r

∂(rρu)

∂r
+

1

r

∂ρv

∂θ
+
∂ρw

∂z
= 0 (3.1)

Navier-Stokes equations (in cylindrical polar co-ordinates):

ρ

(
∂u

∂t
+ u

∂u

∂r
+
v

r

∂u

∂θ
+ w

∂u

∂z
− v2

r

)
= −∂P

∂r
+ µ

[
1

r

∂

∂r

(
r
∂u

∂r

)
+

1

r2
∂2u

∂θ2

]
+ µ

[
∂2u

∂z2
− u

r2
− 2

r2
∂v

∂θ

]
+ ρgr (3.2)

ρ

(
∂v

∂t
+ u

∂v

∂r
+
v

r

∂v

∂θ
+ w

∂v

∂z
− uv

r

)
= −1

r

∂P

∂θ
+ µ

[
1

r

∂

∂r

(
r
∂v

∂r

)
+

1

r2
∂2v

∂θ2

]
+ µ

[
∂2v

∂z2
− v

r2
+

2

r2
∂u

∂θ

]
+ ρgθ (3.3)

ρ

(
∂w

∂t
+ u

∂w

∂r
+
v

r

∂w

∂θ
+ w

∂w

∂z

)
= −∂P

∂z
+ µ

[
1

r

∂

∂r

(
r
∂w

∂r

)]
+ µ

[
1

r2
∂2w

∂θ2
+
∂2w

∂z2

]
+ ρgz (3.4)
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where gr, gθ and gz are body forces (gravities) along respective directions. For a porous medium

in the sector, according to Darcy-Brinkman model equations (3.2), (3.3) and (3.4) become

ρ

(
∂u

∂t
+ u

∂u

∂r
+
v

r

∂u

∂θ
+ w

∂u

∂z
− v2

r

)
= −∂P

∂r
+ µ

[
1

r

∂

∂r

(
r
∂u

∂r

)]
+ µ

[
1

r2
∂2u

∂θ2
+
∂2u

∂z2
− u

r2
− 2

r2
∂v

∂θ
+
u

K

]
+ ρgr (3.5)

ρ

(
∂v

∂t
+ u

∂v

∂r
+
v

r

∂v

∂θ
+ w

∂v

∂z
− uv

r

)
= −1

r

∂P

∂θ
+ µ

[
1

r

∂

∂r

(
r
∂v

∂r

)]
+ µ

[
1

r2
∂2v

∂θ2
+
∂2v

∂z2
− v

r2
+

2

r2
∂u

∂θ
− v

K

]
+ ρgθ (3.6)

ρ

(
∂w

∂t
+ u

∂w

∂r
+
v

r

∂w

∂θ
+ w

∂w

∂z

)
= −∂P

∂z
+ µ

[
1

r

∂

∂r

(
r
∂w

∂r

)]
+ µ

[
1

r2
∂2w

∂θ2
+
∂2w

∂z2
− w

K

]
+ ρgz (3.7)

where K is the permeability of the medium.

As the flow is assumed to be steady there will be no time dependent derivative in continuity

and momentum equations. The continuity equation for incompressible flow can be written as

[19],

1

r

∂(ru)

∂r
+

1

r

∂v

∂θ
+
∂w

∂z
= 0 (3.8)

The momentum equations (3.5), (3.6) and (3.7) after applying the above mentioned conditions

becomes

∂P

∂r
= 0 (3.9)

∂P

∂θ
= 0 (3.10)

µ

[
1

r

∂

∂r

(
r
∂w

∂r

)
+

1

r2
∂2w

∂θ2
− w

K

]
− ∂P

∂z
= 0 (3.11)

Equation (3.9) and (3.10) shows that there is no pressure gradient along r or θ direction.

Therefore governing equation reduces to

∂2w

∂r2
+

1

r

∂w

∂r
+

1

r2
∂2w

∂θ2
− w

K
=

1

µ

∂P

∂z
(3.12)

with respect to boundary conditions

at r = ri, w = 0 (3.13)

at r = ro, w = 0 (3.14)
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at θ = 0,
∂w

∂θ
= 0 (3.15)

at θ = α, w = 0 (3.16)

The above equation and boundary conditions are made dimensionless by using following dimen-

sionless quantities

R =
r

ro
, ŵ =

w
1
µr

2
o
∂P
∂z

(3.17)

R̃ =
ri
ro
, K̂ =

K

r2o
(3.18)

So, the dimensionless form of equation (3.12) can be written as

∂2ŵ

∂R2
+

1

R

∂ŵ

∂R
+

1

R2

∂2ŵ

∂θ2
− ŵ

K̂
= 1 (3.19)

and the boundary conditions become

atR = R̃, ŵ = 0 (3.20)

atR = 1, ŵ = 0 (3.21)

atθ = 0,
∂ŵ

∂θ
= 0 (3.22)

atθ = α, ŵ = 0 (3.23)

3.3 Discretization

Second order finite difference approximations are used to discretize the governing equation as

under.

∂2w

∂R2
=
w(i+ 1, j)− 2w(i, j) + w(i− 1, j)

h2
+O(h2)

∂2w

∂θ2
=
w(i, j + 1)− 2w(i, j) + w(i, j − 1)

k2
+O(k2)

and

∂w

∂R
=
w(i+ 1, j)− w(i− 1, j)

2h
+O(h2)

where h is the step size in r-direction and k is step size in θ-direction. By putting these

approximations in equation (3.19) and solving for w(i, j), the discretized form of equation



20

(3.19) becomes

w(i, j) =
h2k2R(i)2

2(R(i)2k2 + h2)

(
1

h2
+

1

2R(i)h

)
w(i+ 1, j)

+
h2k2R(i)2

2(R(i)2k2 + h2)

(
1

h2
− 1

2R(i)h

)
w(i− 1, j) +

h2(w(i, j + 1)− w(i, j − 1))

2(R(i)2k2 + h2)

− h2k2R(i)2

2(R(i)2k2 + h2)

u(i− 1, j) + u(i+ 1, j)

2K̂
+

h2k2R(i)2

2(R(i)2k2 + h2)
(3.24)

3.4 Results and Discussion

In this section results pertaining to the flow parameters like velocity profile bulk mean velocity

and fRe are presented in tabular as well as in graphical form. For this purpose the discretized

equation (3.24) is solved by SOR method. The effect of parameters like R̃, K̂ and α is discussed

by varying their values as under:

• R̃ = 0.25, 0.5

• K̂ = 0.001, 0.01, 0.1, 1, 10, 100

• α = 1.047, 0.524, 0.349, 0.262, 0.209, 0.175, 0.15, 0.131

In order to study the characteristics of the flow, we find the product of fanning friction factor

and the Reynolds number as

fRe =
4α2(1− R̃2)2

[α(1 + R̃) + (1− R̃)]2

Tables 3.1-3.2 show the effect of permeability K̂, bulk mean velocity ŵm and fRe for a given

sector angle α and ratio of radii R̃. Percentage change in both, the mean velocity through

porous media ŵmp and the friction factor multiplied with Reynolds number for porous media

fRep is given corresponding to their values for clear passage (K̂ = ∞). Table 3.1 shows the

effect of permeability on bulk mean velocity and fRe when R̃, α are taken as 0.25 and 1.047

respectively. The clear passage mean velocity ŵmc and fRec in this case are 0.0298 and 15.2530

respectively.
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Table 3.1: Effect of permeability on ŵm and fRe for R̃ = 0.25

K̂ ŵmp
% change

in ŵm

fRep
% change

in fRe

100 0.0298 0.0404 15.2591 0.0404

10 0.0297 0.4029 15.3147 0.4045

1 0.0287 3.8822 15.8690 4.0390

0.1 0.0213 28.5019 21.3334 39.8639

0.01 0.0063 78.7884 71.9087 371.4411

0.001 0.0009 97.0655 519.7828 3307.7512

It can be seen from the table that the bulk mean velocity decreases substantially as K̂

decreases from 100 to 0.001. The percentage change in wm with K̂ = 100 is only 0.0404 and

the change is as high as 97.0655 percent with K̂ = 0.001. This is due to the retardation of fluid

particles as the permeable space is decreased and friction is increased.

The fRe increases as permeability decreases by keeping other parameters constant. This trend is

inline with the physics of the problem because the permeable space in the medium is decreased

causing the increase in friction. For K̂ = 100, fRe is 15.5291 and that for K̂ = 0.001 it is

519.7828 which is 3307.7512 % more than the fRe for clear passage.

Table 3.2 shows the effect of permeability on bulk mean velocity and fRe when R̃ = 0.5 whereas

α remains same. The ŵmc and fRec in this case are 0.0167 and 17.2398 respectively.

Table 3.2: Effect of permeability on ŵm and fRe for R̃ = 0.5

K̂ ŵmp
% change

in ŵm

fRep
% change

in fRe

100 0.0167 0.0218 17.2436 0.0218

10 0.0167 0.2180 17.2775 0.2185

1 0.0163 2.1367 17.6162 2.1834

0.1 0.0137 17.8254 20.9795 21.6921

0.001 0.0008 94.9670 342.5348 1886.8829

It can be seen that the trend remains same for larger R̃, however, the numerical values in

the case of larger R̃ are relatively small. The sector length decreases as R̃ increases because
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R̃ = ri/ro and sector length is ro − ri.

Thus the ratio of the permeable space to the whole space in the sector decreases as R̃ increases

causing an increase in friction and retardation. Now we study the effect of change in perme-

ability on the velocity profile. Figures (3.2a) to (3.2f) show the velocity contours for R̃ = 0.25

and α = 1.047.

It can be seen from the figures (3.2a) to (3.2f) that the velocity gradients increase among the

adjacent layers in the fluid as K̂ decreases. That is why decreasing permeability decreases the

bulk velocity and increases the fRe. We can observe that the maximum velocity region also

increases with decreasing permeability enhancing the fluid flow.

We see the same pattern when we change ratio of radii by keeping other parameters constant.

This trend can be observed in figures (3.3a) to (3.3f).

Now we study the effect of sector angle by keeping other parameters constant. The effect of

change of sector angle on ŵm and fRe is shown in table 3.3, which shows the values for K̂ = 1

and R̃ = 0.25.

Table 3.3: Effect of sector angle on ŵm and fRe for R̃ = 0.25, K̂ = 1

α ŵmp ŵmc
% change

in ŵm

fRep fRec
% change

in fRe

1.047 0.0287 0.0298 3.8822 15.8690 15.2530 4.0390

0.524 0.0164 0.0168 2.2489 14.8897 14.5548 2.3007

0.349 0.0101 0.0102 1.3856 15.1133 14.9039 1.4051

0.262 0.0067 0.0068 0.9313 15.4344 15.2907 0.9401

0.209 0.0048 0.0048 0.6685 15.7097 15.6047 0.6730

0.175 0.0036 0.0036 0.5029 15.9322 15.8521 0.5054

0.15 0.0028 0.0028 0.3921 16.1125 16.0493 0.3937

0.131 0.0022 0.0022 0.3142 16.2605 16.2094 0.3152

It can be noted that by varying sector angle, the fRe first decreases and then increases with

the decrease in sector angle. This change is due to the fact that the ratio of permeable space to

total space of the sector first increases and then goes on decreasing with the decrease in sector

angle. Therefore friction first decreases and then increases so the fRe decreases then increases
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(a) (b)

(c) (d)

(e) (f)

Figure 3.2: Velocity profile for (a): K̂ = 100 (b):K̂ = 10 (c): K̂ = 1 (d): K̂ = 0.1 (e): K̂ = 0.01

(f): K̂ = 0.001
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(a) (b)

(c) (d)

(e) (f)

Figure 3.3: Velocity profile for (a): K̂ = 100 (b): K̂ = 10 (c): K̂ = 1 (d): K̂ = 0.1 (e):

K̂ = 0.01 (f): K̂ = 0.001
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with decreasing sector angle.the velocity decreases as the friction increases with the decrease of

sector angle.

If we change R̃ to 0.5 from 0.25 the trend of ŵm and fRe remains identical. This can be

observed from table 3.4.

Table 3.4: Effect of sector angle on wm and fRe for R̃ = 0.5, K̂ = 1

α ŵmp ŵmc
% change

in ŵm

fRep fRec
% change

in fRe

1.047 0.0163 0.0167 2.1367 17.6162 17.2398 2.1834

0.524 0.0123 0.0125 1.6786 15.1360 14.8820 1.7072

0.349 0.0090 0.0091 1.2383 14.5106 14.3309 1.2538

0.262 0.0066 0.0067 0.9083 14.6082 14.4755 0.9166

0.209 0.0050 0.0050 0.6795 14.9602 14.8585 0.6841

0.175 0.0038 0.0039 0.5220 15.3811 15.3008 0.5247

0.15 0.0030 0.0030 0.4110 15.7990 15.7341 0.4127

0.131 0.0025 0.0025 0.3315 16.1884 16.1347 0.3326

Now we study the effect of sector angle on the velocity profile in figures (3.4a) to (3.5h).

From the figures (3.4a) to (3.5h) we can conclude that the velocity decreases as the friction

increases and a boundary layer formation is more clear (that is, velocity gradients between

layers of the fluid increases) with the decrease of sector angle. Now we will discuss the fRep

corresponding to different values of α and K̂ figures (3.6a) and (3.6b) show the fRe values for

different α and K̂ when R̃ is taken to be as 0.25 and 0.5 respectively.

(a) (b)

Figure 3.6: fRep values for (a): R̃ = 0.25 (b): R̃ = 0.5
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3.4: Velocity profile (a): α = 1.047 (b): α = 0.524 (c): α = 0.349 (d): α = 0.262 (e):

α = 0.209 (f): α = 0.175 (g): α = 0.15 (h): α = 0.131
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3.5: Velocity profile (a): α = 1.047 (b): α = 0.524 (c): α = 0.349 (d): α = 0.262 (e):

α = 0.209 (f): α = 0.175 (g): α = 0.15 (h): α = 0.131
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It can be seen that for a particular sector angle, by decreasing permeability, fRe increases.

While for a particular permeability value less than 0.01, by changing sector angle, fRe increases.

But for permeability value greater than 0.01, by changing sector angle, fRe first decreases and

then increases. This is due to the fact that the ratio of permeable space to the total space in

the fluid for permeability greater than 0.01 first increases with the sector angle and then goes

on decreasing causing friction to show this pattern. Comparison of figures (3.6a) and (3.6b)

shows that response of fRep is invariant to R̃.

Now we will observe the effect of permeability and sector angle on the bulk velocity.

(a) (b)

Figure 3.7: ŵmp values for (a): R̃ = 0.25 (b): R̃ = 0.5

We can easily see in the figures (3.7a) and (3.7b) that for a particular sector angle, by

decreasing permeability, um decreases. While for a particular permeability, um increases with

the increase of sector angle.

Now we study the effect of permeability on velocity profile. For this purpose the velocity is

plotted for a particular R and θ value. Figures (3.8a) and (3.8b) show the effect of permeability

for R̃ = 0.25 and R̃ = 0.5 respectively for θ = 0.2618 and given α. Whereas figures (3.9a) and

(3.9b) show the same effect for R = 0.75 and for a given α.
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(a) (b)

Figure 3.8: Effect of permeability on velocity profile for α = 0.524, (a): R̃ = 0.25 (b): R̃ = 0.5

(a) (b)

Figure 3.9: Effect of permeability on velocity profile for α = 0.524, R = 0.75, (a): R̃ = 0.25 (b):

R̃ = 0.5

The figures clearly indicate the retardation in the velocity as the value of K̂ is decreased.

3.5 Validation

In this section a comparison of the fRe values calculated in the present study for clear passage

with that available in literature [21] are discussed. Table 3.5 show the comparison for R̃ = 0.25

and R̃ = 0.5 respectively where K̂ is considered to be infinity.
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Table 3.5: Validation with literature for K̂ =∞

fRe

R̃ α Calculated Literature
% change

in fRe

0.25

0.524 14.5548 14.546 0.06

0.262 15.2907 15.281 0.063

0.175 15.8520 15.839 0.082

0.131 16.2094 16.193 0.1

0.5

0.524 14.8820 14.872 0.067

0.262 14.4755 14.467 0.059

0.175 15.3008 15.291 0.064

0.131 16.1347 16.123 0.073

It can be seen from the tables that percentage change in fRe is within 1% which shows

that the procedure adopted in this study is valid and the results obtained are compatible with

literature.



Chapter 4

Heat Transfer Through the Annular

Sector

Energy in the form of heat is transferred from a system to its surroundings due to temperature

difference. The study of the heat transfer has always been of great importance. In this chapter

we will model the fully developed heat transfer phenomenon in the same computational domain

as discussed in the previous chapter. Results will be presented for the temperature profile,

bulk mean temperature and Nusselt number. The effect of sector length, sector angle and

permeability will be studied. Moreover, validation of the model will be carried out with the

literature results.

4.1 Mathematical Model

In this section we will present the mathematical model of the forced convective heat transfer

mechanism through the annular sector. The heat transfer is assumed to be steady and thermally

fully developed. The viscous dissipations and axial heat conduction effect in the fluid as well

as in solids are neglected. Furthermore the heat transfer surface is considered to be isothermal.

The assumptions for the fluid flow are same as discussed in the previous chapter. The problem is

modeled subject to constant heat flux boundary conditions known as H1 boundary conditions.

The transfer of heat energy through the flowing fluid is calculated by the energy equation which

in cylindrical polar co-ordinates is represented as

ρcp

(
∂T

∂t
+ u

∂T

∂r
+
v

r

∂T

∂θ
+ w

∂T

∂z

)
= µ

(
∂2T

∂r2
+

1

r

∂T

∂r
+

1

r2
∂2T

∂θ2
+
∂2T

∂z2

)
(4.1)
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According to assumptions the energy equation (4.1) reduces to

ρcp
µ
w
∂T

∂z
=
∂2T

∂r2
+

1

r

∂T

∂r
+

1

r2
∂2T

∂θ2
(4.2)

Taking energy balance over a small element we have

q̇′dz = Acρcpw̄dTb (4.3)

dTb
dz

=
q̇′

Acρcpw̄
(4.4)

where q̇′ be the heat transfer rate per unit length. Let τ be a dimensionless quantity defined by

τ =
T − Tw
q̇′/λf

(4.5)

As the fluid is thermally fully developed, therefore

∂τ

∂z
= 0 (4.6)

this yields

∂

∂z

(
T − Tw
q̇′/λf

)
= 0 (4.7)

Thus

∂T

∂z
=
∂Tw
∂z

(4.8)

also

∂

∂z

(
Tb − Tw
q̇′/λf

)
= 0 (4.9)

Therefore

∂Tb
∂z

=
∂Tw
∂z

(4.10)

Comparing equations (4.4), (4.8) and (4.10) we have

∂T

∂z
=

q̇′

Acρcpw̄
(4.11)

Equations (4.2) and (4.11) become

∂2T

∂r2
+

1

r

∂T

∂r
+

1

r2
∂2T

∂θ2
=

w

Acw̄

q̇′

λ
(4.12)

The boundary conditions are

at r = ri, T = Tw, 0 < θ < α (4.13)

at r = ro,
∂T

∂r
= 0, 0 < θ < α (4.14)
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at θ = 0,
∂T

∂θ
= 0, ri < r < ro (4.15)

at θ = α, T = Tw, ri < r < ro (4.16)

In equation (4.5) we have defined a dimensionless quantity τ as

τ =
T − Tw
q̇′/λf

(4.17)

Using transformations defined in equations (4.5), (3.17) and (3.18), the above model is is made

dimensionless. The dimensionless form of equation (4.12) is

∂2τ

∂R2
+

1

R

∂τ

∂R
+

1

R2

∂2τ

∂θ2
=

ŵ

Acŵm
(4.18)

with respect to boundary conditions

atR = R̃, τ = 0, 0 < θ < α (4.19)

atR = 1,
∂τ

∂r
= 0, 0 < θ < α (4.20)

atθ = 0,
∂τ

∂θ
= 0, R̃ < R < 1 (4.21)

atθ = α, τ = 0, R̃ < R < 1 (4.22)

4.2 Results and Discussion

The equation (4.18) is solved subject to the boundary conditions using the second order finite

difference method as the same grid layout as discissed in chapter 4.2. The resulting system of

algebraic equation is solved with the help of SOR method. Results are presented for temperature

profile, bulk mean temperature and the Nusselt number and in effect of the parameters like R̃,

α and K̂ is discussed in both tabular as well as graphical manner. For this purpose we have

used same values of these parameters as discussed in chapter 4.2.

The velocity profile required to solve the energy equation (4.12) has already been obtained in

chapter . In order to study the characteristics of heat transfer during the flow, we find the

average Nusselt number as follows

Nu = −
D∗h
h∗pτb

(4.23)
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where

D∗h =
2α(1− R̃2)

α(R̃+ 1) + (1− R̃)
, h∗p = αR̃+ (1− R̃) (4.24)

and

τb =

∫ ∫
RwτdRdθ∫ ∫
Rw dRdθ

(4.25)

Table 4.1 show the effect of permeability on the bulk mean temperature τbp and the Nusselt

number Nup in porous media for R̃ = 0.25 and α = 0.524. The corresponding values of τbc and

Nuc for clear passage are 0.2369 and 3.3493 respectively.

Table 4.1 shows that the Nusselt number increases by a small amount as permeability decreases

by keeping other parameters constant. The Nusselt number is the ratio of convective to conduc-

tive heat transfer. The increase in Nusselt number means convective heat transfer is relatively

more than conductive heat transfer. It can be seen that the bulk temperature increases as as

permeability decreases due to increase in friction and velocity remains constant which means

that the heat transfer is increasing.

Table 4.1: Effect of permeability on τb and Nu for R̃ = 0.25, α = 0.524

K̂ τbp
% change

in τb

Nup
% change

in Nu

100 -0.2369 0.0014 3.3494 0.0014

10 -0.2369 0.0135 3.3498 0.0135

1 -0.2366 0.1343 3.3538 0.1343

0.1 -0.2339 1.2858 3.3924 1.2858

0.01 -0.2171 9.1169 3.6547 9.1169

0.001 -0.1875 26.3368 4.2315 26.3368

The effect of permeability on τbp and Nup for R̃ = 0.5 and α = 0.524 is shown in table

4.2. The general trend of increase in Nusselt number and bulk mean temperature can also be

observed in this table. Therefore, we conclude that altering the value of R̃ does not change the

heat transfer pattern.
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Table 4.2: Effect of permeability on τb and Nu for R̃ = 0.5, α = 0.524 with τbc=-0.2609,

Nuc=3.0739

K̂ τbp
% change

in τb

Nup
% change

in Nu

100 -0.2609 0.0011 3.0740 0.0011

10 -0.2609 0.0109 3.0743 0.0109

1 -0.2606 0.1079 3.0772 0.1079

0.1 -0.2582 1.0373 3.1058 1.0373

0.01 -0.2425 7.6173 3.3081 7.6173

0.001 -0.2108 23.7800 3.8049 23.78
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(a) (b)

(c) (d)

(e) (f)

Figure 4.1: Temperature profile for R̃ = 0.25, α = 0.524 and (a): K̂ = 100 (b): K̂ = 10 (c):

K̂ = 1 (d): K̂ = 0.1 (e): K̂ = 0.01 (f): K̂ = 0.001
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(a) (b)

(c) (d)

(e) (f)

Figure 4.2: Temperature profile for R̃ = 0.5, α = 0.524 and (a): K̂ = 100 (b): K̂ = 10 (c):

K̂ = 1 (d): K̂ = 0.1 (e): K̂ = 0.01 (f): K̂ = 0.001



38

Figures (4.1a) to (4.2f) show the temperature profile for R̃ = 0.25 and R̃ = 0.5 respectively.

When α is taken to be 0.524. The subfigures show the permeability on the temperature profile.

The markings in the figures show the difference of temperature from the heated sides (i.e.

the inner pipe and the fin) of the sector. It can be seen that as permeability decreases the

temperature difference between heated wall and the fluid at a certain point increases indicating

enhancement in heat transfer. The trend remains same for both values of R̃.

Now we study the effect of sector angle on the bulk mean temperature and the Nusselt number

for the given value of permeability. Tables 4.3 and 4.4 show the effect of sector angle when R̃ is

taken to be 0.25 and 0.5 respectively.It can be observed that τb and Nu has monotonic behavior

for R̃ = 0.25 whereas this monotonic behavior seizes to exist for R̃ = 0.5. This suggests the

existence of an optimized geometry for which heat transfer rate is maximum.

Table 4.3: Effect of sector angle for R̃ = 0.25, K̂ = 0.01

α τbp τbc
% change

in τb

Nup Nuc
% change

in Nu

1.047 -0.2795 -0.3107 11.1519 3.3722 3.0339 11.1519

0.524 -0.2171 -0.2369 9.1169 3.6547 3.3493 9.1169

0.349 -0.1707 -0.1849 8.3263 3.8606 3.5638 8.3263

0.262 -0.1418 -0.1529 7.8230 3.9407 3.6548 7.823

0.209 -0.1223 -0.1311 7.2209 3.9551 3.6887 7.2209

0.175 -0.1081 -0.1152 6.5570 3.9401 3.6976 6.557

0.15 -0.0972 -0.1029 5.9015 3.9134 3.6953 5.9015

0.131 -0.0884 -0.0931 5.2931 3.8833 3.6881 5.2931
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Table 4.4: Effect of sector angle for R̃ = 0.5, K̂ = 0.01

α τbp τbc
% change

in τb

Nup Nuc
% change

in Nu

1.047 -0.2129 -0.2297 7.8776 3.4800 3.2259 7.8776

0.524 -0.2425 -0.2609 7.6173 3.3081 3.0739 7.6173

0.349 -0.2147 -0.2276 6.0050 3.5320 3.3319 6.005

0.262 -0.1837 -0.1928 4.9319 3.7953 3.6169 4.9319

0.209 -0.1583 -0.1651 4.2522 4.0298 3.8654 4.2522

0.175 -0.1229 -0.1271 3.4131 4.2252 4.0713 3.7787

0.15 -0.1229 -0.1271 3.4131 4.2252 4.0713 3.7787

0.131 -0.1105 -0.1139 3.1089 4.5143 4.3782 3.1089

Figures (4.3a) to (4.4h) show the effect of sector angle on the temperature profile for R̃ = 0.25

and R̃ = 0.5 respectively. When K̂ is taken to be 0.01.

It can be observed that the colder region decreases with the sector angle. As the sector

angle decreases, the value of τb decreases for a certain region, i.e., the temperature difference

from the wall decreases enhancing the heat transfer. Same pattern is seen for R̃ = 0.5.

The graphical representation of the effect of sector angle on Nup and τbp for different values of

K̂ is given in figures (4.5a) and (4.6b). The figures substantiate the observation of presence of

an optimal geometry for which heat transfer rate is maximum.

(a) (b)

Figure 4.5: Nup values for (a): R̃ = 0.25 (b): R̃ = 0.5
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.3: Temperature profile for R̃ = 0.25, K̂ = 0.01 and (a): α = 1.047 (b): α = 0.524 (c):

α = 0.349 (d): α = 0.262 (e): α = 0.209 (f): α = 0.175 (g): α = 0.15 (h): α = 0.131
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.4: Temperature profile for R̃ = 0.5, K̂ = 0.01 and (a): α = 1.047 (b): α = 0.524 (c):

α = 0.349 (d): α = 0.262 (e): α = 0.209 (f): α = 0.175 (g): α = 0.15 (h): α = 0.131
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(a) (b)

Figure 4.6: τbp values for (a): R̃ = 0.25 (b): R̃ = 0.5

Now we see the effect of permeability on the isotherms for a given θ and R values. Figures

(4.7a) and (4.7b) show the effect of permeability for R̃ = 0.25 and R̃ = 0.5 respectively when α

is fixed at 0.524 and θ is taken as 0.2618. Whereas figures (4.8a) and (4.8b) show the effect of

permeability for R = 0.75 whereas the other parametric values kept same.

(a) (b)

Figure 4.7: Effect of permeability on temperature profile for (a): R̃ = 0.25 (b): R̃ = 0.5
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(a) (b)

Figure 4.8: Effect of permeability on temperature profile for α = 0.524, R = 0.75, (a): R̃ = 0.25

(b): R̃ = 0.5

It can be observed from the above figures that temperature rise with the decreasing values

of K̂.

4.3 Validation

In this section a comparison of the Nu values calculated from the present study for clear passage

with the literature values [21] are given. Table 4.5 show the comparison for R̃ = 0.25 and R̃ = 0.5

respectively where K̂ is considered to be infinity.

Table 4.5: Validation with literature for K̂ =∞

Nu

R̃ α Calculated Literature
% change

in Nu

0.25

0.524 3.3493 3.6491 0.6

0.262 3.6548 3.6523 0.068

0.175 3.6976 3.6919 0.15

0.131 3.6881 3.5791 0.24

0.5

0.524 3.0739 3.0727 0.039

0.262 3.6169 3.6149 0.055

0.175 4.0713 4.0684 0.071

0.131 4.3782 4.3742 0.091
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It can be seen from the tables that percentage change in Nu is within 1% which shows

that the procedure adopted in this study is valid and the results obtained are compatible with

literature.



Chapter 5

Conclusion and Future Work

In the present study we have carried out the fluid flow and heat transfer analysis of the Newto-

nian fluid flowing through the annular sector duct filled with Darcy-Brinkman porous medium.

The problem is modeled subject to the H1 boundary condition applied at the inner surface of

the heat transferring walls. The heat transferring surfaces are taken as isothermal. Results

are presented for bulk mean velocity, bulk mean temperature , fRe and Nu for both the clear

passage and the porous medium. Furthermore, the effect of sector length, sector angle and

permeability of the fluid on the flow and heat transfer are discussed.

5.1 Conclusion

The summary of the conclusions made are as under.

• Bulk velocity is decreased and fRe is increased when varying only permeability. Same

trend prevails for both values of R̃.

• Sector angle has mixed effect on bulk velocity and fRe.

• Bulk temperature and Nu number are increased but increase in Nu number is lesser than

the increase in fRe for different values of K̂.

• The effect of sector angle is non-monotonic on the Tb and Nu.

5.2 Future Work

We can extend the study in the following directions.

45
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• The above trend suggests a presence of an optimal geometry for which heat transfer rate

is maximum which can be an interesting further extension of this thesis.

• Conduction effect through the heated walls can be considered to make the problem real-

istic.
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