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Abstract

This dissertation deals with the continuity and differentiability of convex func-

tions and quasiconvex functions. We emphasis on the Gâteaux and the Fréchet

differentiability of convex and quasiconvex functions. This has been discussed ear-

lier by Daryoush Behmardi, Encyeh Dehghan Nayeri, Oswaldo González Gaxiola

and Jean-Pierre Crouzeix. We reviewed their work which shows some algebraic

properties and the relation of Gâteaux and Fréchet differentiation.
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Chapter 1

Introduction

The study of convex functions begins in the context of real valued functions of a

real variable. Here we find a rich variety of results with significant applications.

More importantly they will serve as a model for deep generalizations in the setting

of several variables.

This chapter is a brief introduction of convex functions on the Real line R and

their continuity and differentiability.

We take our functions f : I → R to be defined on some interval I of real line

R. We mean to allow I to be open, half open, or closed, bounded or unbounded, we

even allow the possibility that I may be a point.

1.1 Definitions

Definition 1.1.1. A function f : I → R is called convex function if

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y) (1.1)

for all x, y ∈ I and λ is in open interval (0, 1). We could equivalently take λ to be

in closed interval [0, 1].

1
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Figure 1.1

Definition 1.1.2. A function f : I → R is called strictly convex function

provided that the inequality (1.1) is strict for x 6= y.

Geometrically, (1.1) means that if P , Q and R are any three points on the graph

of f with Q between P and R, then Q is on or below the chord PR shown in the

Figure 1.1. In terms of slopes, it is equivalent to

slopePQ 6 slopePR 6 slopeQR (1.2)

with strict inequalities when f is strictly convex.

Example 1.1.3. Simple examples of convex functions are f(x) = x2 on (−∞,∞),

g(x) = sinx on [−π, 0], and h(x) = |x| on (−∞,∞). The first two are in fact strictly

convex, the third one is not.

Definition 1.1.4. If −f : I → R is a convex function, then we say that f : I → R

is a concave function .

Definition 1.1.5. We say that f : R→ R is linear if f satisfies

f(αx+ βy) = αf(x) + βf(y)
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Figure 1.2

for all α, β, x, y ∈ R.

It is known and is easy to show that f is linear if and only if f(x) = mx for some

constant m.

Definition 1.1.6. We say that f : I → R is an affine function if it is of the form

f(x) = mx+ b on I. In the form of convexity, a function f : I → R is called affine

if it is convex and concave both, i.e.,

f(λx+ (1− λ)y) = λf(x) + (1− λ)f(y).

Definition 1.1.7. The epigraph of a function f : Rn → R is the set of points in

Rn+1, lying on or above its graph and is written by:

epif = {(x, µ) : x ∈ Rn, µ ∈ R, µ ≥ f(x)} ⊆ Rn+1.

The strict epigraph of the function is defined by:

epiSf = {(x, µ) : x ∈ Rn, µ ∈ R, µ > f(x)} ⊆ Rn+1.
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Theorem 1.1.8. Let f : I → R be a convex function on I if and only if epigraph

of f is a convex set.

Proof. Let f be convex and (x1, µ1) and (x2, µ2) ∈ epif , that is f(x1) ≤ µ1 and

f(x2) ≤ µ2. Take λ ∈ (0, 1). From the convexity of f and the definition of the

epigraph of f we have:

f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2)

≤ λα1 + (1− λ)α2.

This means that (λx1+(1−λ)x2, λα1+(1−λ)α2) ∈ epif or λ(x1, α1)+(1−λ)(x2, α2) ∈

epif, hence epif is convex.

Conversely, let epif be convex and this implies that the I is convex because it is

the projection of epigraph on R. It is sufficient to verify (1.1) over I. Thus, let us

take x1, x2 ∈ I and choose a and b such that f(x1) ≤ a and f(x2) ≤ b respectively.

Since (x1, a), (x2, b) ∈ epif . By the assumptions it follows that

λ(x1, a) + (1− λ)(x2, b) ∈ epif,

for all λ ∈ (0, 1). This implies that

f(λx1 + (1− λ)x2) ≤ λa+ (1− λ)b.

If f(x1) and f(x2) are finite, we can take a = f(x1) and b = f(x2) to conclude the

assertion (1.1). If either f(x1) or f(x2) is −∞ we can let tend a or b to −∞ and

thus (1.1) is also fulfilled.
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1.2 Continuity and Differentiability

A convex function which is finite on a closed interval [a, b] is bounded from above

by M = max{f(a), f(b)}, since for any z = λa+ (1− λ)b in interval [a, b]

f(z) 6 λf(a) + (1− λ)f(b) 6 λM + (1− λ)M = M.

It is also bounded from below since by writing an arbitrary point x in the form

x = a+b
2

+ t, with a−b
2
≤ t ≤ b−a

2
, we see that x lies in [a, b]. Thus

f
(a+ b

2

)
≤ 1

2
f
(a+ b

2
+ t
)

+
1

2
f
(a+ b

2
− t
)

or

f
(a+ b

2
+ t
)
≥ 2f

(a+ b

2

)
− f

(a+ b

2
− t
)
.

Using M as an upper bound, f [(a+ b)/2− t] ≤M or −f [(a+ b)/2− t] ≥ −M , so

f
(a+ b

2
+ t
)
≥ 2f

(a+ b

2

)
−M = m.

Where m denoting a lower bound of f .

Definition 1.2.1. For any closed subinterval [a, b] of the interior of the domain of

the convex function f : I → R, there is a constant K so that for any two points

x, y ∈ [a, b], we have

|f(x)− f(y)| ≤ K|x− y|. (1.3)

A function that satisfies (1.3) for some constant K and all x and y in [a, b] is said

to satisfy Lipschitz condition (or to be Lipschitz) on the interval [a, b].

Definition 1.2.2. A function f : I → R is said to be absolutely continuous on

I if for every ε > 0, there is a δ > 0 such that whenever a finite sequence of pairwise

disjoint sub-intervals (xk, yk) of I satisfies

∑
k

|yk − xk| < δ,
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then ∑
k

|f(yk)− f(xk)| < ε.

In the following example we see the absolute continuity of a function defined on

real line R.

Example 1.2.3. Let f : R→ R and f(x) = 3x+7. Then f is absolutely continuous

on R.

Proof. Choose ε > 0 and set δ = ε/3. Then a finite sequence of non-overlaping open

subintervals (ak, bk) of R (1 ≤ k ≤ n), satisfies:

n∑
k=1

|bk − ak| < δ.

Then

n∑
k=1

|f(bk)− f(ak)| =
n∑
k=1

|3bk + 7− 3ak − 7|

= 3
n∑
k=1

|bk − ak| < 3δ = ε.

Remark 1.2.4. Every absolutely continuous function is continuous but the converse

is not always true.

We illustrate it by the following example.

Example 1.2.5. Let f : [0, 1]→ R be a function such that

f(x) =


x sin(π

x
) x 6= 0

0 x = 0.

Then f is continuous on [0, 1] but not absolutely continuous.
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Proof. Continuity of the given function can be obtain easily. But for disproving

absolute continuity we have to take some steps. So let us suppose ε = 1 then for

each δ > 0, we may pick some M,N ∈ N, when 1
δ
< M < N such that:

N∑
k=M

ak > 1, (1.4)

where

ak =
2

4k + 1
.

Furthermore we can take

bk =
2

4k
.

Now we are able to consider the non-overlaping open subintervals (ak, bk), with

M ≤ k ≤ N , which satisfies:

N∑
k=M

|bk − ak| =
N∑

k=M

∣∣∣∣ 2

4k
− 2

4k + 1

∣∣∣∣ .
Now by simplifying and applying summation on later expression we get:

N∑
k=M

|bk − ak| < δ.

Then

N∑
k=M

|f(bk)− f(ak)| =
N∑

k=M

∣∣∣∣bk sin

(
π

bk

)
− ak sin

(
π

ak

)∣∣∣∣
=

N∑
k=M

∣∣∣∣ 2

4k
sin(2πk)− 2

4k + 1
sin
(π

2
(4k + 1)

)∣∣∣∣ .
Since sin(2πk) = 0 and sin

(
π
2
(2k + 1)

)
= 1 for all k, which implies that:

N∑
k=M

|f(bk)− f(ak)| =
N∑

k=M

(
2

4k + 1

)
> 1 = ε,

by our assumption (1.4).
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Now we can say that absolute continuity is stronger then continuity.

It is easily seen that a convex function may not be continuous at the boundary

points of its domain. It may, in fact, have upward jumps there. On the interior,

however, it is not only continuous, but it satisfies a stronger condition.

Theorem 1.2.6. [18] If f : I → R is a convex function, then f satisfies a Lipschitz

condition on any closed interval [a, b] contained in the interior I0 of I. Consequently,

f is absolutely continuous on [a, b] and continuous on I0.

Proof. Choose ε > 0 so that a − ε and b + ε remain in I, and let m and M be the

lower and upper bounds for f on [a − ε, b + ε]. Then by taking two distinct points

x and y of [a, b], set

z = y +
ε

|y − x|
(y − x)

and

λ =
|y − x|

ε+ |y − x|
.

Then by the above definitions of z and λ we can see that z ∈ [a − ε, b + ε] and

y = λz + (1− λ)x. Also we have

f(y) ≤ λf(z) + (1− λ)f(x) = λ[f(z)− f(x)] + f(x),

f(y)− f(x) ≤ λ(M −m) <
|y − x|
ε

(M −m) = K|y − x|,

where K = (M −m)/ε. Since this is true for all x, y ∈ [a, b], we conclude that

|f(y)− f(x)| ≤ K|y − x| (1.5)

as desired.

Now for the absolute continuity of f on [a, b], we choose δ = ε/K and let (ai, bi)

is a finite sequence of pairwise disjoint sub-intervals of [a, b], which satisfies∑
i

|bi − ai| < δ =
ε

K
.
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Then by using (1.5) we get:

∑
i

|f(bi)− f(ai)| ≤ K
∑
i

|bi − ai| < K
ε

K
= ε.

Finally, the continuity of f on I0 is a consequence of the arbitrariness of [a, b].

The derivative of a convex function is best studied in terms of the left and right

derivatives defined by

f ′−(x) = lim
y↑x

f(y)− f(x)

y − x

and

f ′+(x) = lim
y↓x

f(y)− f(x)

y − x
,

respectively. Here y ↑ x means y approaches to x from left and y ↓ x means y

approaches to x from right.

Theorem 1.2.7. [18] If f : I → R is convex (strictly convex), then f ′−(x) and f ′+(x)

exist and are increasing (strictly increasing) on I0.

Proof. Consider four points w < x < y < z in I0 and let P,Q,R, and S be the

corresponding points on the graph of f shown in the Figure 1.3. Then the inequality

(1.2) can be extended to four points which gives

slopePQ 6 slopePR 6 slopeQR 6 slopeQS 6 slopeRS, (1.6)

with strict inequalities if f is strictly convex. Since

slopeQR 6 slopeRS,

it is clear that the slope QR increases as x ↑ y and similarly the slope RS decreases

as z ↓ y. Thus the left side of the inequality

f(x)− f(y)

x− y
6
f(z)− f(y)

z − y
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Figure 1.3

increases as x ↑ y and the right side decreases as z ↓ y. This implies that f ′−(x) and

f ′+(y) exist and satisfy

f ′−(x) 6 f ′+(y). (1.7)

The result (1.7) holds for all y ∈ I0. Moreover, using (1.6), we see that

f ′+(w) 6
f(x)− f(w)

x− w
6
f(y)− f(x)

y − x
6 f ′−(y) (1.8)

with strict inequalities prevailing if f is strictly convex. This combined with (1.7)

yields

f ′−(w) 6 f ′+(w) 6 f ′−(y) 6 f ′+(y),

establishing the monotone nature of f ′− and f ′+.

In fact the results of Theorem 1.2.7 are valid for all of I, not just its interior.

For example, if I = (a, b], then f ′−(b) exists at least in the infinite sense and f ′−

is increasing on (a, b]. We can restate the Theorem 1.2.7 for the case I = [a, b] to

describe the behavior of f at the end points when I = [a, b]. In this case, f ′+(a) and
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f ′−(b) exist at least in the infinite sense, f ′+ is increasing on [a, b) and f ′− is increasing

on (a, b].

There are a number of other important facts having to do with the continuity

properties of f ′+ and f ′−. The monotone character of f ′+ means that the limit of

f ′+(x) exists as x ↓ w. From the inequality (1.8) we have

f ′+(x) 6
f(y)− f(x)

y − x
. (1.9)

The inequality (1.9) along with the continuity of f gives

lim
x↓w

f ′+(x) 6 lim
x↓w

f(y)− f(x)

y − x
=
f(y)− f(w)

y − w
.

Thus

lim
x↓w

f ′+(x) 6 lim
y↓w

f(y)− f(w)

y − w
= f ′+(w).

On the other hand, since x > w, monotonicity of f ′+ implies f ′+(x) > f ′+(w). Thus

lim
x↓w

f ′+(x) = f ′+(w). (1.10)

Similar arguments show that

lim
x↑w

f ′+(x) = f ′−(w). (1.11)

Indeed (1.10) and (1.11) are also valid at the left and right endpoints of I, respec-

tively, provided that f is defined and continuous there. Finally, we remark that

statements analogous to (1.10) and (1.11) hold for the left and right limits of f ′−(x).

Theorem 1.2.8. [18] If f : I → R is a convex function on the open interval I, then

the set E where f ′ fails to exist is countable. Moreover, f ′ is continuous on I \ E.

Proof. From (1.10) and (1.11), we conclude that f ′+(w) = f ′−(w) if and only if f ′+ is

continuous at w. Thus E consists specifically of the discontinuities of the increasing
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Figure 1.4

function f ′+, then by the well known result of real analysis i.e, the set of points

of discontinuities of a monotonic function is at most countable [20], since f ′+ is

monotonic function, then the set E is countable. On I \E, f ′+ is continuous, so that

f ′ which agrees with f ′+ on I \ E, is also continuous there.

Definition 1.2.9. A function f is defined on I has a support at x0 ∈ I if there

exists an affine function A(x) = f(x0) +m(x− x0) such that A(x) ≤ f(x) for every

x ∈ I. The graph of the support function A is called a line of support for f at x0

(see Figure 1.4).

Theorem 1.2.10. [18] A function f : (a, b)→ R is convex if and only if there is at

least one line of support for f at each x0 ∈ (a, b).

Proof. If f is convex and x0 ∈ (a, b), choose m ∈ [f ′−(x0), f
′
+(x0)]. Then as we saw

before

f(x)− f(x0)

x− x0
≥ m
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or

f(x)− f(x0)

x− x0
≤ m

according as x > x0 or x < x0. In either case,

f(x)− f(x0) ≥ m(x− x0),

that is,

f(x) ≥ f(x0) +m(x− x0).

Conversely, suppose that f has a line of support at each point of (a, b). Let x, y ∈

(a, b). If x0 = λx+ (1− λ)y for λ ∈ [0, 1] and let A(x) = f(x0) +m(x− x0) be the

support function for f at x0. Then

f(x0) = A(x0) = λA(x) + (1− λ)A(y) ≤ λf(x) + (1− λ)f(y)

as desired.

Theorem 1.2.11. [18] Let f : (a, b) → R be a convex function. Then f is differ-

entiable at x0 if and only if the line of support for f at x0 is unique. In this case,

A(x) = f(x0) + f ′(x0)(x− x0) provides this unique support.

Proof. It is clear from the proof of the above theorem that complimentary to each

m ∈ [f ′−(x0), f
′
+(x0)], there exist a line of support for f at x0. Accordingly the

uniqueness of the line means f ′−(x0) = f ′+(x0), that is, f ′(x0) exists.

On the other hand, suppose f ′(x0) exists. Any line of support A(x) = f(x0) +

m(x− x0) gives us

f(x)− f(x0) ≥ m(x− x0).

Then, for x1 < x0 < x2, we have

f(x1)− f(x0)

x1 − x0
≤ m ≤ f(x2)− f(x0)

x2 − x0
.
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On taking limits as x1 ↑ x0 and x2 ↓ x0 we have

f ′−(x0) ≤ m ≤ f ′+(x0). (1.12)

Since f is differentiable at x0, thus inequality (1.12) infers that m is unique. Hence

the support A at x0 is unique.

Example 1.2.12. We can see that for the function f : R→ R+ defined by

f(x) = |x|,

the line of support is not unique at x0 = 0 so f is not differentiable at x0 = 0.



Chapter 2

Convex Functions On Real Banach

Spaces

2.1 Introduction

In this chapter we study the continuity and differentiability of real valued convex

functions defined on an open convex set in a Banach space. Note that in finite-

dimensional spaces such functions are always locally bounded. In the first section

we recall some useful definitions. The second section presents the continuity of

convex functions on real Banach spaces. In third section of this chapter we shall

study the Gâteaux differentiability of convex functions in first part and the Fréchet

differentiability in second part. Then we will end up by discussing the algebraic

properties of both differentials and conditions on which both coincide. The similar

results for the quasiconvex functions will be discussed in the next chapter.

The letter E will always denote a real Banach space, D will be a nonempty open

convex subset of E and f will be a convex function on D throughout this chapter.

15
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The definition of a convex function has a very natural generalization to a real-

valued function defined on an arbitrary real Banach Space E. We merely require

that the domain D of f be convex. This assures us that for x, y ∈ D, t ∈ (0, 1), f

will always be defined at tx+ (1− t)y.

Definition 2.1.1. Let f : D → R be a function defined on a nonempty open convex

set D ⊆ E is called convex on D if, for each x, y ∈ D and t ∈ (0, 1)

f [tx+ (1− t)y] 6 tf(x) + (1− t)f(y). (2.1)

We assume convex functions to be finite valued and defined on convex sets.

If the equality in (2.1) always holds then f is said to be affine. A function

f : D → R is said to be concave if −f is convex.

We note immediately that for three points x1, x2, x3 ∈ D and three positive

numbers t1, t2 and t3 such that t1 + t2 + t3 = 1, a convex function satisfies

f(t1x1 + t2x2 + t3x3) =f

(
t1x1 + (t2 + t3)

(
t2

t2 + t3
x2 +

t3
t2 + t3

x3

))
≤t1(f(x1)) + (t2 + t3)f

(
t2

t2 + t3
x2 +

t3
t2 + t3

x3

)
≤t1(f(x1)) + t2(f(x2)) + t3(f(x3)).

(2.2)

Following the same pattern, one easily establishes inductively the inequality (2.3).

Definition 2.1.2. For n points in D and n positive numbers ti with
∑n

1 ti = 1, a

convex funtion satisfies

f

(
n∑
1

tixi

)
≤

n∑
1

tif(xi). (2.3)

The relation (2.3) is known as Jensen’s inequality. Sometimes (2.3) is taken as

the definition of the convex function.
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Definition 2.1.3. A function f : E → R is called Sublinear funtional if it satisfies

the following two conditions:

f(x+ y) 6 f(x) + f(y),

f(tx) = tf(x)

whenever t > 0.

Example 2.1.4. There are some examples of convex functions defined on real Ba-

nach space.

1. The norm function f(x) = ‖x‖ is a simple example. More generally if S is a

nonempty convex subset of E, then we can define a distance function on S as:

dS(x) = inf {‖x− y‖ : y ∈ S} ,

x ∈ D, which is continuous and convex on D ⊆ E. (Note that dS(x) = ‖x‖ if

S = {0}.)

Proof. Let z = tx1 + (1− t)x2 ∈ D, as x1, x2 ∈ D and t ∈ (0, 1), then

dS(z) = inf {‖z − y‖ : y ∈ S}

= inf {‖tx1 + (1− t)x2 − ty − (1− t)y‖}

≤ inf {‖tx1 − ty‖+ ‖(1− t)x2 − (1− t)y‖}

= inf{‖tx1 − ty‖}+ inf{‖(1− t)x2 − (1− t)y‖}

= t inf{‖x1 − y‖ : y ∈ S}+ (i− t) inf{‖x2 − y‖ : y ∈ S}

= t dS(x1) + (1− t) dS(x2)

2. The Minkowski gauge functional is another generalization of the norm function.

This is also a good example of convex function. Suppose G is a convex subset
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Figure 2.1

of E, with 0 ∈ intG, defined by:

pG(x) = inf{λ > 0 : x ∈ λG},

when x ∈ E. In other words, pG(x) is the smallest factor by which the set G

must enlarged to contain the point x, which can be seen in Figure 2.1. The

functional pG is sublinear and non-negative.

Proof. Clearly pG is non-negative and positively homogeneous, let t > 0, then

for all x, y ∈ E we can write:

pG(tx) = inf{λ > 0 : tx ∈ λG}

= t inf{λ > 0 : x ∈ λG}.
(2.4)

Now let α, β > 0 satisfy x ∈ αG and y ∈ βG, which implies that

x+ y ∈ αG+ βG = (α + β)G.
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Figure 2.2

Then the subadditive property of pG can be seen as:

pG(x+ y) = inf{α + β > 0 : x+ y ∈ (α + β)G}

≤ inf{α + β > 0 : x ∈ αG+ y ∈ βG}

= inf{α > 0 : x ∈ αG}+ inf{β > 0 : y ∈ βG}

pG(x+ y) ≤ pG(x) + pG(y).

(2.5)

So the convexity immediately follows from (2.4) and (2.5).

Definition 2.1.5. A subset C of Rn is called cone if it is closed under positive

scalar multiplication, i.e.,

λx ∈ C when x ∈ K and λ > 0.

Such a set is a union of half lines emanating from origin. The origin itself may or

may not be included.

Definition 2.1.6. Cone defined on a subset C of Rn is called convex cone if C

is a convex set. Algebraically, convex cone is defined as follows: For any positive
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scalars α, β and any x, y ∈ C,

αx+ βy ∈ C.

As an example we can see in the Figure 2.5 that, a cone (light one). Inside of

it (dark one) convex cone consists of all points αx + βy with α > 0 and β > 0, for

the depicted x and y. The curves on the upper right symbolize that the regions are

infinite in extent.

One of the first thing we learned about the real valued convex functions on an

open interval is that they are continuous. This is not generally true on an infinite-

dimensional Banach space E, but a convex function defined on an open set D ⊆ E

when E is finite-dimensional, is continuous. In section 2.2 we prove this fact and

explore related ideas.

2.2 Continuity of Convex Functions

There are two directions to go for the continuity of convex functions on real Banach

spaces. One can ask what additional conditions need to be put on a convex function

in order to guarantee its continuity. Or, one can ask what further restrictions must

be placed on E in order to guarantee that a function convex on D will be continuous

there. We will take some steps in both directions.

We have seen in first chapter that in order to prove the continuity of a real valued

convex function f on (a, b) ⊆ R we have to establish boundedness of f on each closed

subinterval of (a, b). Then we are able to establish a Lipschitz condition and thus

to conclude that f is continuous. It turns out that it is sufficient here to take f to

be bounded in a neighborhood of atleast one point of D. Which finally leads us to

Lipschitz condition and then continuity.
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Figure 2.3

Theorem 2.2.1. [18] Let f be a convex function on D. If f is bounded from above

in a neighborhood of one point x0 ∈ D, then it is locally bounded; that is, each

x ∈ D has a neighborhood on which f is bounded.

Proof. We first show that if f is bounded above in an ε-neighborhood of some point,

it is bounded below in the same neighborhood. Taking the point to be 0 (origion)

for convenience, suppose f is bounded above by M in a neighborhood Nε of the

origion. Since

O =
1

2
x+

1

2
(−x)

f(O) ≤ 1

2
f(x) +

1

2
f(−x),

and therefore

f(x) ≥ 2f(O)− f(−x).

Now ‖x‖ < ε implies ‖ − x‖ < ε, so −f(−x) ≥ −M and f(x) ≥ 2f(O) −M , this

shows that f is bounded from below. We now return to our theorem, we take f

to be bounded from above by M on an ε-neighborhood Nε of the origin. We will
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show f to be bounded in neighborhood of y ∈ D, y0 = 0. Choose ρ > 1 so that

z = ρy ∈ D and let λ = 1
ρ
. Then

H = {v ∈ E : v = (1− λ)x+ λz, x ∈ Nε}

is a neighborhood of λz = y with radius (1− λ)ε. Moreover

f(v) ≤ (1− λ)f(x) + λf(z) ≤M + f(z)

that is, f is bounded above on H; and by the first remark of this proof, f is also

bounded below on H.

Definition 2.2.2. A function f defined on D is said to be locally Lipschitz if at

each x ∈ D, there is neighborhood Nε(x) and a constant K(x) such that y, z ∈ Nε,

then

|f(y)− f(z)| ≤ K‖y − z‖.

If this inequality holds on a set V ⊆ D with K independent of x, then we say

that f is Lipschitz on V .

Theorem 2.2.3. [18] Let f be a convex function on D. If f is bounded from above

in an neighborhood of one point x0 ∈ D, then f is locally Lipschitz in D.

Proof. By Theorem 2.2.1, f is locally bounded, so given x0 we may find a neigh-

borhood N2ε ⊆ D on which f is bounded, say by M . Then f satisfies the stated

Lipschitz condition on Nε(x0), for if it does not, we may choose x1, x2 ∈ Nε(x0) such

that

f(x2)− f(x1)

‖x2 − x1‖
>

2M

ε
.

Then we may choose t > 0 so that x3 = x2 + t(x2 − x1) is in N2ε(x0) and such that

‖x3 − x2‖ = ε. Because f is convex on the line through x1, x2 and x3, we may use
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what we know about functions convex on a line (1.2) to write

f(x3)− f(x2)

‖x3 − x2‖
≥ f(x2)− f(x1)

‖x2 − x1‖
>

2M

ε

this says f(x3)− f(x2) > 2M , contradicting the fact that |f | ≤M .

Theorem 2.2.4. [18] Let f be a convex function on D. If f is bounded from above

in an neighborhood of one point x0 ∈ D, then f is continuous on D.

Proof. We have proved in previous theorem that if a convex function f on D is

bounded from above in a neighborhood of one point x0 ∈ D then f is locally Lipschiz

in D. That is for x0 ∈ D, there exist Nδ(x0) neighborhood and a constant K(x0),

then for all x1andx2 ∈ Nδ(x0),

|f(x2)− f(x1)| ≤ K‖x2 − x1‖. (2.6)

Since continuity implies immediately from (2.6), that is for all ε > 0, let δ = ε/K.

Hence for all x1, x2 ∈ D such that

‖x2 − x1‖ < δ,

satisfies (2.6). Thus

|f(x2)− f(x1)| ≤ K‖x2 − x1‖

< K
( ε
K

)
= ε.

2.3 Differentiability of Convex Functions

Starting from the following elementary lemma which is fundamental to the study of

differentiability of convex functions.
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Figure 2.4

Lemma 2.3.1. [17] If x0 ∈ D, then for each x ∈ E the right handed directional

derivative

f+(x0)(x) = lim
t↓0

f(x0 + tx)− f(x0)

t

exists and defines a sublinear functional on E.

Proof. Recall that D is an open convex subset of E. f(x0 + tx) is defined for

sufficiently small t > 0. Figure 2.4 shows why f+(x0) exists; but the left and right

handed directional derivatives are not equal. The difference quotient is nonincreasing

as t ↓ 0, and bounded below, by the corresponding difference quotient from the left,

i.e,

f(x0 − tx) + f(x0) < f(x0 + tx)− f(x0).

To prove this, we can assume that x0 = 0 and f(x0) = 0. If 0 < t < s then by

convexity:

f(tx) = f
( t
s

(sx) +
s− t
s

(0)
)
6
t

s
f(sx) +

s− t
s

f(0) =
t

s
f(sx),

so for tx < sx we have f(tx) ≤ f(sx) which proves monotonicity. Then by taking

−x in place of x, we see that

− [f(x0 − tx)− f(x0)]

t
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is nondecreasing as t ↓ 0. Then again by convexity, for t > 0

f(x0) = f

(
2x0 − 2tx+ 2tx

2

)
= f

(
x0 − 2tx+ x0 + 2tx

2

)
6

1

2
f(x0 − 2tx) +

1

2
f(x0 + 2tx).

So we can write:

2f(x0) 6 f(x0 − 2tx) + f(x0 + 2tx)

f(x0)− f(x0 − 2tx) 6 f(x0 + 2tx)− f(x0)

− [f(x0 − 2tx)− f(x0)]

2t
6
f(x0 + 2tx)− f(x0)

2t

which shows that the right side is bounded below and the left side is bounded above.

Thus the both limits exist, left one is −f+(x0)(−x) and we have

−f+(x0)(−x) 6 f+(x0)(x).

It is also obvious that f+(x0)(x) is positively homogeneous. To see that it is subad-

ditive, use convexity again: for t > 0

f+(x0)(u+ v) ≤ f(x0 + t(u+ v))− f(x0)

t

= f

( 1
2
(x0 + 2tu) + 1

2
(x0 + 2tv)− f(x0)

t

)
≤ 1

t

{
1

2
f(x0 + 2tu) +

1

2
f(x0 + 2tv)− 1

2
f(x0)−

1

2
f(x0)

}
=
f(x0 + 2tu)− f(x0)

2t
+
f(x0 + 2tv)− f(x0)

2t
.

Now by taking limit t ↓ 0 we get

f+(x0)(u+ v) = f+(x0)(u) + f+(x0)(v).
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Figure 2.5

2.3.1 Gâteaux Derivative

Definition 2.3.2. A function f is said to be Gâteaux differentiable at x0 ∈ D

provided the limit

df(x0)(x) = lim
t→0

f(x0 + tx)− f(x0)

t

exists for each x ∈ E. The function df(x0) is called the Gâteaux derivative (or

Gâteaux differential) of f at x0.

Notation 2.3.3. If x ∈ E and r > 0, then the closed ball with radius r and center

at x is denoted by B(x; r) = {y ∈ E : ‖x− y‖ ≤ r}.

Proposition 2.3.4. [17] If the convex function f is continuous at x0 ∈ D, then

it is locally Lipschitzian at x0, that is, there exist M > 0 and δ > 0 such that

B(x0; δ) ⊂ D and

|f(x)− f(y)| ≤M‖x− y‖

whenever x, y ∈ B(x0; δ).

Proof. Since f is continuous at x0, it is locally bounded there; that is there exist

M1 > 0 and δ > 0 such that |f | ≤M1 on B(x0; δ) ⊂ D. If x, y are distinct points in
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B(x0, δ), let α = ‖x− y‖ and let

z = y +

(
δ

α

)
(y − x),

see Figure (2.5). Note that z ∈ B(x0; δ). Since

y =

(
α

α + δ

)
z +

(
δ

α + δ

)
x

is the convex combination (lying in B(x0; 2δ)), we have

f(y) ≤
(

α

α + δ

)
f(z) +

(
δ

α + δ

)
f(x)

so

f(y)− f(x) ≤
(

α

α + δ

)
{f(z)− f(x)} ≤

(α
δ

)
.2M1 =

(
2M1

δ

)
‖x− y‖.

Interchanging x and y gives the desired result, with M = 2M1

δ
.

Corollary 2.3.5. [17] If a convex function f is continuous at x0 ∈ D, then d+f(x0)

is a continuous sublinear functional on E, and hence df(x0) (when it exists) is a

continuous linear functional.

Proof. It is given that f is continuous on x0 ∈ D, then by the previous Proposition

it is locally lipschitz on x0. That is there exists a neighborhood B of x0 and M > 0

such that, if x ∈ E. Then

|f(x0 + tx)− f(x0)| ≤Mt‖x‖,

provided t > 0 is sufficiently small so that x0 + tx ∈ B. Thus, for all points x ∈ E,

we have d+f(x0)(x) ≤ M‖x‖. Since d+f(x0)(x) is a sublinear functional proved in

Lemma 2.2.3 (a sublinear function is trivially a convex function), which implies that

d+f(x0) is continuous (by Theorem 2.2.4).
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Lemma 2.3.6. [13] Let X and Y be Banach spaces. Let fn : X → Y be Gâteaux

differentiable mapping, for all n. Assume that (Σfn) converge pointwise on X, and

that there exists a constant K > 0 so that for all x,

∑
n≥1

sup
x0∈X

∥∥∥∂fn
∂h

(x0)
∥∥ ≤ K‖x‖.

Then the mapping

f =
∑
n≥1

fn

is Gâteaux differentiable on X for all x0 and

df(x0)(x) =
∑
n≥1

dfn(x0)(x).

Proof. First we have to check the Gâteaux differentiability of

f =
∑
n≥1

fn,

i.e:

df(x0)(x) = lim
t→0

f(x0 + tx)− f(x)

t

= lim
t→0

∑
n≥1 fn(x0 + tx)−

∑
n≥1 fn(x)

t

= lim
t→0

{
f1(x0 + tx)− f1(x0)

t
+
f2(x0 + tx)− f2(x0)

t
+ · · ·

}
.

(2.7)

By utilizing Weirstrass M-test we show that the infinite series on right hand side of

(2.7) converges.( For convenience we recall W. M-test which stated that: Suppose

fn : X → Y are functions such that there exist constants Mn with ‖fn(x)‖ ≤ Mn

for all n ≥ 1 and x ∈ X, and the series
∑∞

n=1Mn converges then
∑

n≥1 fn converges

uniformly (and absolutely).)

As it is given that
∑
fn converges pointwise, so we can write:∥∥∥∥∂fn∂x (x0)

∥∥∥∥ =

∥∥∥∥fn(x0 + tx)− fn(x0)

t

∥∥∥∥ ≤ sup
x0∈X

∥∥∥∥∂fn∂x (x0)

∥∥∥∥ .
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By applying summation we get:

∑
n≥1

∥∥∥∥∂fn∂x (x0)

∥∥∥∥ ≤∑
n≥1

sup
x0∈X

∥∥∥∥∂fn∂x (x0)

∥∥∥∥ ≤ K‖x‖.

Thus by W. M-test ∑
n≥1

sup
x0∈X

∥∥∥∥∂fn∂x (x0)

∥∥∥∥ converges.

Hence ∑
n≥1

∥∥∥∥∂fn∂x (x0)

∥∥∥∥ converges uniformly.

Since we can say that (2.7) is summable and we can write it as:

lim
t→0

f(x0 + tx)− f(x0)

t
= lim

t→0

(
f1(x0 + tx)− f1(x0)

t

)
+ lim

t→0

(
f2(x0 + tx)− f2(x0)

t

)
+ · · · ,

or

df(x0)(x) = df1(x0)(x) + df2(x0)(x) + · · · =
∑

dfn(x0)(x).

Finally this implies that f(x0) is Gâteaux differentiable, and

df(x0)(x) =
∑

dfn(x0)(x).

Definition 2.3.7. If f is a convex function defined on the convex set C and x ∈ C,

we define the subdifferential of f at x to be the set ∂f(x) of all x∗ ∈ E∗ satisfying

〈x∗, y − x〉 ≤ f(y)− f(x) for all y ∈ C.

Note that this is the same as satisfying that the affine function x∗ + α, where

α = f(x) − 〈x∗, x〉 is dominated by f and is equal to it at y = x, as indicated

in the Figure 2.6 .
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Figure 2.6

2.3.2 Fréchet Derivative

Definition 2.3.8. Suppose that E and F are real Banach spaces and ϕ : D → F is

a continuous function. We can extend the definition of Gâteaux differentiability as

follows: Let ϕ is Gâteaux differentiable at the point x0 ∈ D provided there exists a

continuous linear map from E to F (denoted by dϕ(x0)) such that

dϕ(x0)(x) = lim
t→0

ϕ(x0 + tx)− ϕ(x0)

t
for each x ∈ E. (2.8)

Another way of stating this is to say that ϕ has directional derivatives at x0 in every

direction x and the resulting function of x is continuous and linear.

We say that ϕ is Fréchet differentiable at x0 ∈ D provided there exists a

continuous linear map from E to F (denoted by ϕ′(x0)) such that

ϕ(x0 + x)− ϕ(x0) = ϕ′(x0)(x) + r(x) for all ‖x‖ < ε (2.9)

with some ε > 0, where ‖r(x)‖
‖x‖ → 0 as ‖x‖ → 0. The operator ϕ′(x0) is called

Fréchet differential (or Fréchet derivative) of ϕ at (x0).
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Theorem 2.3.9. [14] Let f be a convex function defined on D ⊆ E, that is contin-

uous at x0 ∈ D. Then f is fréchet differentiable at x0 iff

lim
t→0

f(x0 + tx) + f(x0 − tx)− 2f(x0)

t
= 0 (2.10)

exists uniformly for all x ∈ Nx0 (neighborhood of x0).

Proof. Given f is fréchet differentiable at x0 ∈ D then by the definition of fréchet

differentiablity

lim
t→0

f(x0 + tx)− f(x0)

t
= f ′(x0)(x) (2.11)

is uniform for every x ∈ Nx0 . Similarly we can write for −x :

lim
t→0

f(x)− f(x0 − tx)

t
= f ′(x0)(−x), (2.12)

it is also uniform for every x ∈ Nx0 . By equating (3.1) and (2.12) we get

lim
t→0

f(x0 + tx)− f(x0)

t
= lim

t→0

f(x)− f(x0 − tx)

t
,

or we can write it as:

lim
t→0

f(x0 + tx) + f(x0 − tx)− 2f(x0)

t
= 0.

This exists uniformly for every x ∈ Nx0 by (3.1) and (2.12).

Conversely, if the limit in (2.10) exist uniformly for every x ∈ Nx0 then we can

write

lim
t→0

f(x)− f(x0 − tx)

t
+ lim

t→0

f(x0 + tx)− f(x0)

t
= 0. (2.13)

Therefore both limits exists uniformly so we can say that f is Fréchet differentiable.

(2.13) can be written as

f ′(x0)(x) + f ′(x0)(−x) = 0

.
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2.3.3 Properties for Gâteaux and Fréchet Differentiable Func-

tions

Many of the properties of ordinary derivatives carry over to the Gâteaux and Fréchet

derivatives. So we are discussing some algebraic properties of Fréchet and Gâteaux

differentiable functions here.

1. Scalar multiplication:

(a) Let α ∈ R and f : D → F is a Fréchet differentiable function at x0, then

the definition of f allows us to write:

(αf(x0))
′ = αf ′(x0).

(b) Similarly for a function f : D → F which is Gâteaux differentiable at x0

and α ∈ R we can write:

d(αf(x0)(x)) = lim
t→0

αf(x0 + tx)− αf(x0)

t

= α lim
t→0

f(x0 + tx)− f(x0)

t

= α df(x0)(x).

2. Additive Property:

(a)Sum of two Fréchet differentiable functions is Fréchet differentiable.

Proof. Let f1 and f2 are two Fréchet differentiable functions on an open subset

D of a Banach space X, then for any x ∈ D let

f3(x) = (f1 + f2)(x) = f1(x) + f2(x),

here f1 and f2 are continuous and therefore locally bounded by some constants

M1 and M2 respectively that is

‖f1‖ 6M1, ‖f2‖ 6M2. (2.14)
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Then f3(x) = f1(x) + f2(x) will also be continuous and locally bounded for all

x ∈ Sx, where Sx is the neighborhood of x. Then

‖f3(x)‖ = ‖f1(x) + f2(x)‖ 6 ‖f1(x)‖+ ‖f2(x)‖ ≤M1 +M2.

By the definition of Fréchet differentiable functions we have:

f1(x0 + x)− f1(x0) = f ′1(x0)(x) + r1(x), (2.15)

where ‖r1(x)‖‖x‖ → 0 as ‖x‖ → 0. And

f2(x0 + x)− f2(x0) = f ′2(x0)(x) + r2(x), (2.16)

where ‖r2(x)‖‖x‖ → 0 as ‖x‖ → 0. Hence by using (2.15) and (2.16) we get:

f3(x0 + x)− f3(x0) = (f1(x0 + x)− f1(x0)) + (f2(x0 + x)− f2(x0))

= f ′1(x0)(x) + r1(x) + f ′2(x0)(x) + r2(x)

= (f ′1(x0) + f ′2(x0))(x) + (r1(x) + r2(x)),

where

‖r3(x)‖
‖x‖

=
‖r1(x) + r2(x)‖

‖x‖
≤ ‖r1(x)‖
‖x‖

+
‖r2(x)‖
‖x‖

→ 0

as ‖x‖ → 0. Thus df1(x0)(x) and df2(x0)(x) exist uniformly for all x ∈ Sx,

which implies that df3(x0)(x) exist uniformly on every x ∈ Sx, i.e;

f ′3(x0)(x) = (f ′1(x0) + f ′2(x0))(x).

(b) Sum of two Gâteaux differentiable functions is Gâteaux differentiable.

Proof. Let f1 and f2 are two Gâteaux differentiable functions on an open

subset D of a Banach space X, then for any x ∈ D let

f3(x) = (f1 + f2)(x) = f1(x) + f2(x),
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Now by the definition of Gâteaux derivative we can write:

df3(x0)(x) = lim
t→0

f3(x0 + tx)− f3(x0)
t

= lim
t→0

f1(x0 + tx) + f2(x0 + tx)− f1(x0)− f2(x0)
t

= lim
t→0

f1(x0 + tx)− f1(x0)
t

+ lim
t→0

f2(x0 + tx)− f2(x0)
t

= df1(x0)(x) + df2(x0)(x),

so that we can write it as

df3(x0)(x) = df1(x0)(x) + df2(x0)(x). (2.17)

3. The product of two Fréchet differentiable functions is Fréchet differentiable.

Proof. Now let f3(x) = f1(x).f2(x) (showing dot product). Again f3 will be

continuous and locally bounded for all x ∈ Sx. Then by using (2.15) and (2.16)

we can get

f3(x0 + x)− f3(x0)

= f1(x0 + x).f2(x0 + x)− f1(x0).f2(x0)

= f1(x0 + x).f2(x0 + x)− f1(x).f2(x0 + x) + f2(x0 + x).f1(x0)− f1(x0).f2(x0)

= (f1(x0 + x)− f1(x)).f2(x0 + x) + (f2(x0 + x)− f2(x0)).f1(x0)

= f ′1(x0)(x).f2(x0 + x) + f ′2(x0)(x).f1(x0) + (r1(x)f2(x0 + x) + r2(x)f1(x0)).

Thus by (2.14), (2.15) and (2.16) we have:

‖r3(x)‖
‖x‖

=
‖r1(x)f2(x0 + x) + r2(x)f1(x0)‖

‖x‖
≤M2

‖r1(x)‖
‖x‖

+M1
‖r2(x)‖
‖x‖

→ 0

as ‖x‖ → 0. Finally we get:

f ′3(x0)(x) = f ′1(x0)(x).f2(x0) + f ′2(x0)(x).f1(x0).
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Remark 2.3.10. The product of two Gâteaux differentiable functions is not Gâteaux

differentiable necessary.

Lemma 2.3.11 ( [2], [12]). Suppose that X, Y and Z are Banach spaces. If g :

X → Y is Fréchet differentiable at x0 ∈ X and f : Y → Z is Fréchet differentiable

at g(x0) = y0 ∈ Y , then their composition f ◦ g has a Fréchet derivative at y0 ∈ Y

and the derivative of the composition is given by the chain rule

(f ◦ g)′(x) = f ′(g(x))(g′(x)).

Proof. Given that g : X → Y is Fréchet differentiable at x0 ∈ X and g(x0) = y0,

which implies that g′(x) exists. Hence by the definition of Fréchet differentiability

we have:

y − y0 = g(x)− g(x0) = g′(x0)(x− x0) + r1(x− x0) (2.18)

Therefore f : Y → Z is also Fréchet differentiable, i.e:

f(y)− f(y0) = f ′(y0)(y − y0) + r(y − y0).

By using (2.18) we get:

f(y)− f(y0) = f ′(y0)(g
′(x0)(x− x0)) + f ′(y0)r1(x− x0) + r(y − y0),

where

‖r1(x− x0)‖
‖x− x0‖

→ 0 as ‖x− x0‖ → 0

and

‖r(y − y0)‖
‖y − y0‖

→ 0 as ‖y − y0‖ → 0.

This implies that f ′(y0)g
′(x0) is the Fréchet derivative of composition f(g(x0)) and

can be written in the form of chain rule as:

(f ◦ g)′(x0) = f ′(g(x0))(g
′(x0)).
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Remark 2.3.12. The theorem on differentiation of composite function is usually

invalid for the Gâteaux derivative.

We illustrate it by the following example:

Example 2.3.13. [2] Let f : R→ R2 and f(x) = (x, x2); g : R2 → R with

g(x, y) =


x x = y2,

0 otherwise.

By calculating the composition g ◦ f on x we get:

(g ◦ f)(x) = x,

and its Gâteaux differential on 0 is

(g ◦ f)′(0) = 1.

Therefore f(0) = (0, 0) = 0; g′(0) and f ′(0) can be calculated as

g′(0) = lim
t→0

g(th, th)

t
= lim

t→0

0

t
= 0

f ′(0) = lim
t→0

f(th)

t
= lim

t→0

(
th

t
,
t2h2

t

)
= lim

t→0
(h, th2) = (h, 0).

So that we get the differential of (g ◦ f)(x):

g′(f(0)).f ′(0) = 0.(h, 0) = 0.

This implies that

(g ◦ f)′(0) 6= g′(f(0)).f ′(0).
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By the above discussion we also reveal another intrusting fact that a function

which is Fréchet differentiable at a point, is continuous there. This is not the case

for Gâteaux differentiable functions even in finite dimensions. It can be seen in the

following example.

Example 2.3.14. [2]

The function f : R2 → R defined by

f(x, y) =


0 (x, y) = (0, 0),

x4y
x6+y3

x2 + y2 > 0.

The Gâteaux derivative of f at origin is:

df(0)(x) = lim
t→0

f(0 + tx)− f(0)

t

= lim
t→0

f(tx)

t
.

(2.19)

By applying (2.19) on f(x, y), we get

df(0, 0)(x) = lim
t→0

t5x41x2
t(t6x1 + t3x2)

= lim
t→0

t5x41x2
t4(t3x1 + x2)

=
0

0 + 1
= 0.

But fails to be continuous at origin:

Since the limit of f(x) at origin can be calculated as

lim
(x,y)→(0,0)

f(x, y) = lim
(x,y)→(0,0)

x4y

x6 + y3
. (2.20)

Now by considering the path y = mx, (2.20) can be rewritten as:

lim
(x,y)→(0,0)

f(x, y) = lim
(x,y)→(0,0)

mx5

x6 +mx3

= lim
(x,y)→(0,0)

m

x+ m3

x2

=
m

0 + 1

= m.
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It can be seen that the limit of f(x) at (0, 0) varies according to m, so the limit of

f(x) does not exist at (0, 0). This implies that f(x) is not continuous at origin.

Theorem 2.3.15 ( [12], [17]). If f : D → F be a function which is Fréchet differen-

tiable at x0 ∈ D, then it is Gâteaux differentiable at x0 and the Gâteaux derivative

coincide with the Fréchet derivative.

Proof. By putting tx in place of x in (2.9) we get:

ϕ(x0 + tx)− ϕ(x0) = ϕ′(x0)(tx) + r(tx).

It follows that

ϕ′(x0)(x) = lim
t→0

ϕ(x0 + tx)− ϕ(x0)

t
,

since ‖r(tx)‖‖tx‖ → 0 as t→ 0. This implies that ϕ′(x0) is Gâteaux derivative of f(x) at

x0.

Remark 2.3.16. [17] Note that ϕ is Fréchet differentiable at x0 if it is Gâteaux

differentiable there and if the limit in (2.7) exists uniformly for ‖x‖ ≤ 1 as t ↓ 0.

So we can say that every Fréchet differentiable function is Gâteaux differentiable,

but the converse is not true. We illustrate it by the following examples.

Example 2.3.17. [12] Let f : R2 → R be a function defined by:

f(x, y) =


x3y
x4+y2

(x, y) 6= (0, 0)

0 (x, y) = (0, 0).

Then f is Gâteaux differentiable at x0 = 0 but it is not Fréchet differentiable at

x0 = 0.
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Proof. Gâteaux derivative at x0 = 0 gives:

df(0)(x) = lim
t→0

f(tx, ty)

t

= lim
t→0

t4(x3y)

t5x4 + t3y2

= lim
t→0

t(x3y)

t2x4 + y2

=
0

y2
= 0.

But f is not Fréchet differentiable at x0 = 0. Since

‖f(x, y)‖
‖(x, y)‖

=

∣∣∣∣ x3y

x4 + y2

∣∣∣∣ . 1√
x2 + y2

.

If we move along the path y = x2, we see that:

‖f(x, y)‖
‖(x, y)‖

=
1

2
√

1 + x2
→ 1

2
, as x→ 0.

Example 2.3.18. [17] Canonical norm of l1 is nowhere Fréchet differentiable and

is Gâteaux differentiable at x = (xi) iff xi 6= 0 for every i (1 ≥ i ≥ n <∞).

Proof. If x ∈ l1 and xi = 0 for some i, let

δi = (0, 0, . . . , 0, 1, 0. . . .),

be the sequence whose only nonzero term is 1 in the i− th place. It follows that

‖x+ tδi‖1 − ‖x‖1 = |t|,

then by dividing both sides by t and taking limit t → 0, so the (two sided) limit

does not exist.

Now suppose on the other hand, for every i, xi 6= 0 that ε > 0 and y ∈ l1 we can

choose N > 0 such that ∑
i>N

|yi| <
ε

2
,
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therefore y = (y1, y2, . . . , yN , yN+1, yN+2, . . .) ∈ l1 so
∑

i |yi| converges.

Now for sufficiently small δ > 0

sgn(xi + tyi) = sgnxi, if 1 ≤ i ≤ N ; |t| < δ.

Therefore sgn(x) is defined as:

sgn(x) =



−1 x < 0

0 x = 0

1 x < 0

as xi 6= 0 for all i, it may be greater then 0 or less then 0, thus the small increment

or decrement does not change the value of sgn(xi).

Consequently,∣∣∣∣‖x+ ty‖1 − ‖x‖1
t

−
∑

yisgn(xi)

∣∣∣∣ ≤
∣∣∣∣∣
N∑
i=1

(
|xi + tyi| − |xi| − tyisgnxi

t

)∣∣∣∣∣+ 2
∑
i>N

|yi|

≤

∣∣∣∣∣
N∑
i=1

(
|xi|+ |tyi| − |xi| − tyi|1|

t

)∣∣∣∣∣+ 2
ε

2

< ε,

provided |t| < δ.

As an immediate corollary, we see that Gâteaux differentiability and Fréchet

differentiability coincide for locally Lipschitz functions on E when it is finite di-

mentional. This can be seen in the following result, which has been reviewed

from [2], [15], [18] and [11].

Corollary 2.3.19. [17] Let f be a locally Lipschitz function on an open subset D

of a finite dimensional normed linear space E, if f is Gâteaux differentiable at x

then it is Fréchet differentiable at x as well.
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Proof. Consider the unit sphere S in E and for any given ε > 0 consider a cover by

open balls having centers yk ∈ X such that ‖yk‖ = 1 with radius ε. Since X is finite

dimensional, it is isomorphic to some Rn (with standard topology). Then by Heine -

Borel theorem the unit sphere S is closed and bounded, which implies that S is com-

pact, so there exists a finite subcover of S by such balls with centers y1, y2, . . . , ym.

Since f is Gâteaux differentiable at x, given yk, where k ∈ {1, 2, ...,m}, there exists

a δk(ε, yk) > 0 such that∣∣∣∣f(x+ tyk)− f(x)

t
− f ′(x)(yk)

∣∣∣∣ < ε ∀ 0 < t < δk.

Since f is locally Lipschitz there exists a K > 0 and a σ(x) > 0 such that

|f(x+ ty)− f(x+ tyk)| ≤ K|t|‖y − yk‖

for all yk, k ∈ 1, 2, ...,m and 0 < |t| < σ. Therefore, given ‖y‖ = 1,∣∣∣∣f(x+ ty)− f(x)

t
− f ′(x)(y)

∣∣∣∣ ≤ ∣∣∣∣f(x+ ty)− f(x)

t
− f(x+ tyk)− f(x)

t

∣∣∣∣
+

∣∣∣∣f(x+ tyk)− f(x)

t
− f ′(x)(yk)

∣∣∣∣
+ |f ′(x)(yk)− f ′(x)(y)|

≤ K‖y − yk‖+ ε+ ‖f ′(x)‖‖yk − y‖,

when 0 < |t| < min{σ, δk}. Since we can write it as:∣∣∣∣f(x+ ty)− f(x)

t
− f ′(x)(y)

∣∣∣∣ < (K + ‖f ′(x)‖+ 1)ε, (2.21)

for yk chosen such that ‖y − yk‖ < ε. Hence (2.21) holds for all ‖y‖ = 1 where

0 < |t| < min{σ, δ1, ..., δm}. That is, f is Fréchet differentiable at x.

Theorem 2.3.20. [17] If f is a convex function on an open interval D ⊂ R, then

f ′(x) exists for all but (at most) countably many points of D.
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Proof. As we have proved the Theorem 1.2.8, in the same manner first we will show

that d+f(x0)(x) is a nondecreasing function of x. Without loss of generality, we may

assume that x = 1, i.e, d+f(x0)(1). For simplicity, we will write d+f(x0). Then for

x1, x2 ∈ D, suppose that x1 < x2, we want d+f(x1) ≤ d+f(x2). We have shown the

monotonicity of convex function f in the proof of Lemma 2.3.2, that is for x1 < x2,

we have f(x1) ≤ f(x2). Now for t > 0 we may assume

x2 = x1 + 2t. (2.22)

Therefore,

x2 =
2x2 − 2t+ 2t

2

=
x2 − 2t+ x2 + 2t

2
.

(2.23)

By applying convexity on (2.23) we get:

f(x2) ≤
1

2
f(x2 − 2t) +

1

2
f(x2 + 2t)

2f(x2) ≤ f(x2 − 2t) + f(x2 + 2t)

f(x2)− f(x2 − 2t) ≤ f(x2 + 2t)− f(x2)

f(x2)− f(x2 − 2t)

2t
≤ f(x2 + 2t)− f(x2)

2t
.

Hence by (2.22) x2 = x1 + 2t and x1 = x2 − 2t, by putting these values in above

expression,

f(x1 + 2t)− f(x1)

2t
≤ f(x2 + 2t)− f(x2)

2t
.

By applying limit t ↓ 0, we get:

d+f(x1) ≤ d+f(x2).

A geometrical proof of the monotonicity of d+f can be obtained from the Figure

2.7. It is clear in the the graph of f the various cords naming PQ, QR, etc., have
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Figure 2.7

some relation which is

slopePQ ≤ slopePR ≤ slopeQR ≤ slopeQS ≤ slopeRS.

Expressing the first and last of these in terms of f , we see that (for any s > 0 such

that x1 + s < x2, and any t > 0)

f(x1 + s)− f(x1)

s
≤ f(x1 + s)− f(x1)

t
,

which shows that d+f(x1) ≤ d+f(x2). We next show that any point where f fails to

be differentiable is a point where the monotone function x → d+f(x) has a jump.

There are, of course, at most countably many such points. Now, if f ′(x0) fails to

exist, then

−d+f(x0)(−1) < d+f(x0)(1),

so it suffices to show that the latter inequality implies that d+f(x) has a jump at

x = x0, that is,

lim
x↓x0

d+f(x) ≤ lim
x↑x0

d+f(x).
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Since the right side of this expression dominates d+f(x0), it suffices to show that

the left side is dominated by −d+f(x0)(−1), that is, if x < x0, then d+f(x0)(1) <

−d+f(x0)(−1). In view of the monotonicity of the limits which define these two

quantities, we only need to show that, letting

t0 =

(
1

2

)
(x0 − x)

we get

[f(x+ t0)− f(x)]

t0
≤ [f(x0 − t0)− f(x0)]

t0
.

But this is easily seen to be equivalent to the convexity inequality

f

[
1

2
(x+ x0)

]
≤ 1

2
[f(x) + f(x0)]

and the proof is complete.



Chapter 3

Quasiconvex Functions

3.1 Introduction

A detailed discussion of convex functions has been given in previous chapters, which

shows that a convex function of one real variable admits right hand and left hand

derivatives at any interior point of its domain. Furthermore it is continuous at any

point interior point of its domain. On the other hand a convex function f defined

on a real Banach space E is continuous at x0 ∈ E if it is bounded in a neighborhood

of x0. If, in addition, if E = Rn and x belongs to the interior of the domain of f ,

then f is continuous at x0, the Gâteaux derivatives df(x0)(x) of f at x0 with respect

to the directions x are well defined. Furthermore, df(x0)(x) is convex in x, and the

subdifferential ∂f(x0) of f at x0 is defined as the closed convex set such that

∂f(x0) = {x∗ : 〈d, x∗〉 ≤ f ′(x0, x) for all x}.

It is important to notice that all these properties are due to the geometrical

structures induced by the convexity of f . Indeed, the epigraph of f is convex in

E ×R.

45
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Let us define the level set of a function f , that is for λ ∈ (−∞,+∞), we have

Sλ(f) = {x : f(x) ≤ λ}.

Similarly the strict level set is defined by

S̃λ(f) = {x : f(x) < λ}.

Clearly, for λ < µ,

Sλ(f) ⊆ S̃λ(f) ⊆ Sµ(f) ⊆ S̃µ(f).

It is also easily seen that

Sλ(f) = ∩µ>λS̃µ(f) = ∩µ>λSµ(f).

The function f can be recovered from its level sets, certainly:

f(x) = inf [λ : x ∈ Sλ(f)] = inf [λ : x ∈ S̃λ(f)].

Notation 3.1.1. Therefore R is the notation for extended real line, which is also

can be written as R ∪ {−∞,+∞}.

Definition 3.1.2. Let E is a real Banach space and D ⊂ E is convex.

(i) A function f : D → R is said to be quasiconvex if for x, y ∈ D and 0 < t < 1

we have

f(tx+ (1− t)y) ≤ max{f(x), f(y)}.

(ii) A function f : D → R is said to be strictly quasiconvex if for x, y ∈ D,

x 6= y and 0 < t < 1 we have

f(tx+ (1− t)y) < max{f(x), f(y)}.
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Figure 3.1: A quasiconvex function that is not convex.

Figure 3.2: A function that is not quasiconvex: the set ’Sλ(f)’ of points in the

domain of the function for which the function values are below the dashed line is

the union of the two intervals, which is not a convex set.
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In words, if f is a function such that it does not attain a higher value on a point

directly between two other points of the function, than the value of the function on

both end points, then f is quasiconvex. See Figures 3.1 and 3.2.

All convex functions are also quasiconvex. But the converse is not always true.

So quasiconvexity is a generalization of convexity. By the geometrical structure

of quasiconvex functions one can extract that the epigraph of a quasiconvex func-

tion may not be a convex set. Although there is an alternative way of defining a

quasiconvex function f , that is for each λ ∈ R the level set of f

Sλ = {x : f(x) ≤ λ},

is convex. Comprehensively, one can invoke the following relation:

f quasiconvex⇔ Sλ(f) convex ∀λ ∈ R⇔ S̃λ(f) convex ∀λ ∈ R.

Now we recall some definitions:

Definition 3.1.3. The function f : E → R is said to be lower semicontinuous at

x0 ∈ E if for ε > 0 there exists a neighborhood U(x0) of x0 such that ε < f(x)−f(x0)

for all x ∈ U(x0).

Or we can say that: the function f : E → R is said to be lower semicontinu-

ous at x0 ∈ E if for each k ∈ R, k < f(x0) there exists a neighborhood U(x0) of x0

such that

f(u) > k ∀ u ∈ U(x0).

Definition 3.1.4. The function f : E → R is said to be upper semicontinuous at

x0 ∈ E if for ε > 0 there exists a neighborhood U(x0) of x0 such that ε > f(x)−f(x0)

for all x ∈ U(x0).
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Or we can say that: the function f : E → R is said to be upper semicontin-

uous at x0 ∈ E if for each k ∈ R, k > f(x0) there exists a neighborhood U(x0) of

x0 such that

f(u) < k for all u ∈ U(x0).

Therefore we have:

f lower semi-continuous⇔ Sλ(f) closed ∀ λ ∈ R

and

f upper semi-continuous⇔ Sλ(f) open ∀ λ ∈ R.

3.2 Quasiconvexity and Monotonicity

Let us first consider quasiconvex functions of one real variable. On the one hand

nondecreasing and nonincreasing functions are quasiconvex and on the other hand

the domain of a quasiconvex function can be partitioned in two intervals, the function

being nonincreasing on the first and nondecreasing on the second.

Remark 3.2.1. [8] Let f : I → R, therefore I ⊆ R. Then f is quasiconvex if and

only if there exists x0 ∈ R so that:

1. Either f is nonincreasing on (−∞, x0]∩ I and nondecreasing on (x0,+∞)∩ I.

2. Or f is nonincreasing on (−∞, x0) ∩ I and nondecreasing on [x0,+∞) ∩ I.

Thus,the nondecreasing functions of one real variable are the simplest exam-

ples of quasiconvex functions. It results that, unlike convex functions, quasiconvex

functions are not continuous in the interior of their domain. By inference, the di-

rectional derivatives are not necessarily defined. Still, nondecreasing functions of
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one real variable are almost everywhere continuous and differentiable, hence qua-

siconvex functions of one real variable are also almost everywhere continuous and

differentiable on the interior of their domains.

Quasiconvexity of the functions of several variables is also connected with mono-

tonicity. Let f : E → R be quasiconvex function and K be a convex cone containing

in E, then f is said to be nondecreasing with respect to K if

x, y ∈ E, y − x ∈ K ⇒ f(x) ≤ f(y).

Theorem 3.2.2 ( [6], [5]). Let f : E → R, f is quasiconvex, λ ∈ R and a ∈ E such

that int(Sλ(f)) 6= ∅ and a does not belong to cl(Sλ(f)). Then there exists an open

convex neighbourhood V of a and a nonempty open convex cone K so that

x, y ∈ V, y − x ∈ K ⇒ f(x) ≤ f(y)

Furthermore, if f is strictly quasiconvex

x, y ∈ V, y − x ∈ K, x 6= y ⇒ f(x) < f(y).

Proof. Let b ∈ int(Sλ(f)), r > 0 and R > 0 be such that B(b, r) ⊆ Sλ(f) and

Sλ(f) ∩B(a,R) = ∅. Let some α > 0. Set

c = a+ α(a− b)

and

K = {d : c− td ∈ B(b, r) for some t > 0}.

Then K is a nonempty open convex cone. Hence y −K ⊆ c−K for all y ∈ c−K.

Set

V = (c−K) ∩B(a,R).
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Take x, y ∈ V with y − x ∈ K. Then there exists t > 1 such that

z = y + t(x− y) ∈ B(b, r). (3.1)

Notice that f(z) ≤ λ < f(y). By using quasiconvexity of f and (3.1), we get:

x =

(
t− 1

t

)
y +

(
1

t

)
z,

f(x) ≤ f(y).

Second result follows from the strict quasiconvexity of the function.

Particularly for E = Rn, we have the following result.

Corollary 3.2.3 ( [6], [5]). Let f : Rn → R be a quasiconvex function, λ ∈ R

and a ∈ Rn such that int(Sλ(f)) 6= ∅ and a does not belongs to cl(Sλ(f)). Then

there exist an open convex neighborhood V of a and v1, v2, · · · , vn are n linearly

independent vectors such that

x, x+
∑

tivi ∈ V, t1, t2, · · · , tn ≥ 0⇒ f(x) ≤ f(x+
∑

tivi).

Furthermore, if f is strictly quasiconvex and
∑
ti > 0, then the inequality is strict.

Proof. Choose for vectors vi n linearly independent vectors in K.

In Rn, locally Lipschitz functions are also strongly connected to monotonicity.

Let us take f to be locally Lipschitz function in a neighborhood of x, i.e., there exist

a > 0 and L > 0 such that

yi, zi ∈ [xi − a, xi + a] for all i,

which implies that

|f(z)− f(y)| ≤ L
∑
|zi− yi|.
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Let g(x) = f(x) + L
∑
yi. Then

xi − a ≤ yi ≤ zi ≤ xi + a

for all i. This implies that

g(x) ≤ g(y).

3.3 Continuity of Quasiconvex Functions

Let f : E → R, a ∈ E with f(a) to be finite valued, that is

−∞ < f(a) < +∞.

We can define the function of one real variable in direction d ∈ E such that

fa,d(t) = f(a+ td).

Hence the first result is regarding to nondecreasing functions.

Proposition 3.3.1 ( [6], [9]). Let f(a) is finite, K is a convex cone with nonempty

interior, f is nondecreasing with respect to K and d ∈ int(K). Then f is lower

semicontinuous (upper semicontinuous) at a if and only if fa,d is lower semicontinuous

(upper semicontinuous) at 0.

Proof. Take fa,d is lower semicontinuous at 0, which implies that for each α ∈ R

α < fa,d(0) = f(a+ 0d) = f(a).

Then there exists a t− < 0 such that α < f(a + td) for all t ≥ t−. Take V =

(a + t−d) + K. Where V is a neighborhood of a. Since f is nondecreasing with

respect to K we have

(a+ t−d), x ∈ V, x− (a+ t−d) ∈ K ⇒ f(a+ t−d) ≤ f(x)
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for all x ∈ V . This implies that α < f(x), hence f is lower semicontinuous at a.

Now take fa,d is upper semicontinuous at 0. which implies that for each β ∈ R

β > fa,d(0) = f(a+ 0d) = f(a).

Then there exists a t+ > 0 such that β > f(a + td) for all t ≤ t+. Take V =

(a + t+d) − K. Where V is a neighborhood of a. Since f is nondecreasing with

respect to K we have

(a+ t−d), x ∈ V, (a+ t−d)− x ∈ K ⇒ f(a+ t+d) ≥ f(x)

for all x ∈ V . This implies that β > f(x), hence f is upper semicontinuous at a.

By Theorem 3.2.2 we can say that quasiconvex functions can be considered locally

nondecreasing with respect to some open convex cone K. Hence above proposition

can be applied. However, a stronger result holds. Let f be a quasiconvex function

and f(a) is finite valued. We can define a cone

K̃(a) = {d : f(a+ td) < f(a) for some t > 0},

which is convex. Its interior is nonempty as soon as int(S̃f(a)(f)) 6= ∅. Notice

that K̃(a) contains the cones K of Theorem 3.2.2. Then, we have:

Proposition 3.3.2. [6] Let f is a quasiconvex function, f(a) is finite and d ∈

int(K̃(a)). Then f is lower semicontinuous (upper semicontinuous) at a if and only

if fa,d is lower semicontinuous (upper semicontinuous) at 0.

Proof. If int(K̃(a) = ∅, there is nothing to prove. But if int(K̃(a)) 6= ∅ then take

fa,d is lower semicontinuous at 0, which implies that for each α ∈ R

α < fa,d(0) = f(a+ 0d) = f(a).
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Then there exists a t− < 0 such that α < f(a + td) for all t ≥ t−. Let S̃f(a)(f) =

{x : f(x) < f(a)}, hence int(S̃f(a)(f)) 6= ∅ and a does not belong to cl(Sf(a)(f)).

Now take V = (a + t−d) + K. Where V is a neighborhood of a. Thus by applying

Theorem 3.2.2 we get:

(a+ t−d), x ∈ V, x− (a+ t−d) ∈ K̃(a)⇒ f(a+ t−d) ≤ f(x)

for all x ∈ V . This implies that α < f(x), hence f is lower semicontinuous at a.

Now take fa,d is upper semicontinuous at 0. which implies that for each β ∈ R

β > fa,d(0) = f(a+ 0d) = f(a).

Then there exists a t+ > 0 such that β > f(a + td) for all t ≤ t+. Take V =

(a+ t+d)−K. Again by applying Theorem 3.2.2 we get:

(a+ t−d), x ∈ V, (a+ t−d)− x ∈ K̃(a)⇒ f(a+ t+d) ≥ f(x)

for all x ∈ V . This implies that β > f(x), hence f is upper semicontinuous at a.

In Propositions 3.3.1 and 3.3.2, the continuity has been considered only in one

direction d which belongs to a specific cone. Next result associates with the conti-

nuity in all directions since it is weaker, but because of its very simple formulation

it deserves to be stated.

Theorem 3.3.3 ( [7], [11]). Assume that f is quasiconvex on Rn and f(a) is finite.

Then f is lower semicontinuous (upper semicontinuous) at a if and only if, for all

d ∈ Rn , the function fa,d is lower semicontinuous (upper semicontinuous) at 0.

Proof. Let fa,d is lower semicontinuous at 0 for all d ∈ E. We have to prove that f

is lower semicontinuous at a. If S̃f(a)(f) = ∅ there is nothing to prove. Otherwise
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we can take some d in the relative interior of K̃(a) and the proof can be obtain by

adapting the proof of the Proposition 3.3.1. Now, take fa,d is upper semicontinuous

at 0 for all d. Let λ > f(a). Take d = ei be the i− th vector of the canonical basis

of Rn. There is ti > 0 such that f(a+ tdi) < λ for all t ∈ [−ti, ti]. Take the convex

hull of the 2n points a± tidi for V, which is a neigborhood of a and V ⊆ Sλ(f).

It can be extract from the above result that, a quasiconvex function in Rn is

continuous at a point x if it is continuous along all the lines at x. This result is not

true for nondecreasing functions. Also, it does not hold for an infinite dimensional

Banach space.

3.4 Differentiability of Quasiconvex Functions

Let f(x0) be a finite valued function and x ∈ E. Then the upper and the lower

Dini-derivative of f at x0 in direction x are respectively, defined by

f ′+(x0, x) = lim
t→0+

sup
f(x0 + tx)− f(x0)

t
,

f ′−(x0, x) = lim
t→0+

inf
f(x0 + tx)− f(x0)

t
.

If −∞ < f ′−(x0, x) = f ′+(x0, x) < +∞ then the directional derivative of f with

respect to the direction x exists and is defined by

f ′(x0, x) = f ′−(x0, x) = f ′+(x0, x).

Theorem 3.4.1. [5] Let f : X → R, K be a nonempty open convex cone. If f is

nondecreasing with respect to K and f is Gâteaux differentiable at x. Then f is

Fréchet differentiable at x.



56

Proof. Take f to be Gâteaux differentiable but not Fréchet differentiable at x. Then

for some ε > 0 and sequence {hn}n converges to 0 for all n such that:

ε <
|f(x+ hn)− f(x)− df(x)(hn)

‖hn‖
. (3.2)

Set tn = 1
‖hn‖hn. Without loss of generality, we can assume that all the sequence

{tn}n converges to some t. Let e ∈ int(K). Then µ > 0 exists so that

df(x)(t− t) < ε ∀ t ∈ V, (3.3)

where

V = {t : t− µe = t− ≤ t ≤ t+ = t+ µe}.

Then V is a neighborhood of t. For n large enough, tn ∈ V and therefore

f(x+ ‖hn‖t−)− f(x) ≤ f(x+ hn)− f(x) ≤ f(x+ ‖hn‖t+)− f(x). (3.4)

Since f is Gâteaux differentiable at x, for n large enough

|f(x+ ‖hn‖t−)− f(x)− df(x)(‖hn‖t−)

‖hn‖
< ε, (3.5)

and

|f(x+ ‖hn‖t+)− f(x)− df(x)(‖hn‖t+)

‖hn‖
< ε. (3.6)

Now by doing some algebraic operations with (3.3) and (3.4), we get

|f(x+ ‖hn‖t−)− f(x)− df(x)(‖hn‖t−)

‖hn‖
≤ |f(x+ hn)− f(x)− df(x)(hn)

‖hn‖

≤ |f(x+ ‖hn‖t+)− f(x)− df(x)(‖hn‖t+)

‖hn‖
.

The contradiction occurs from Equations (3.2), (3.5) and (3.6).

Since the above Theorem can be applied to quasiconvex functions.
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Theorem 3.4.2. [6] Let f : X → R be a quasiconvex function. If f is Gâteaux

differentiable at x, then f is Fréchet differentiable at x as well.

Proof. Take B ⊂ X such that B = {y : f(y) < f(x), y ∈ X}.

CASE 1: If int(B) 6= ∅, there is λ ∈ R such that int(Sλ(f)) 6= ∅ and x does not

belong to cl(Sλ(f)). Then by applying Theorems 3.2.2 and 3.4.1 we can obtain the

proof.

CASE 2: If B = ∅, then f(y) ≥ f(x) for all y ∈ X. Since df(x) = 0. Let

(e1, e2, · · · , en) be the canonical basis of X. By setting ei+n = −ei for all i = 1, . . . , n.

Now for h ∈ X we can take ri = max[0, hi] and ri+n = max[0,−hi]. Then

x+ h = x+
i=2n∑
i=1

riei =
i=2n∑
i=1

(
x+

ri
‖h‖
‖h‖ei

)

where

‖h‖ =
i=n∑
i=1

|hi| =
i=2n∑
i=1

ri.

Then, since f is quasiconvex

0 ≤ f(x+ th)− f(x)

‖h‖
≤ maxi=1,··· ,2n

f(x+ ‖h‖ei)− f(x)

‖h‖

and the result follows again.

CASE 3: If int(B) = ∅ but B 6= ∅. Here again df(x) = 0. We can obtain

the proof by working on the affine set generated by B and using the same proof as

above.



Conclusion

In this thesis we have discussed the continuity and differentiability of convex func-

tions. In [17] and [18], it has been shown that a convex function of one real variable

continuous and admits left hand and right hand derivatives at any interior point of

its domain. On the other hand a convex function f defined on a real Banach space

E is continuous at any point in E if it is bounded in the neighborhood of that point.

In the differentiability of convex functions defined on real Banach spaces we

have studied the Fréchet and Gâteaux derivatives from [13], [14], [17] and [18], the

Fréchet derivative is defined on Banach spaces is the generalization of the concept

of total derivative and the Gâteaux derivative is the generalization of the concept

of directional derivative in differential calculus.

This thesis also contains a comparative study of the Gâteaux and Fréchet deriva-

tives and their algebraic properties also has been discussed.

Let f be a function defined as f : D → F where D ⊆ E, here E and F are

real Banach spaces. Generally we know that if f is Fréchet differentiable then it

is Gâteaux differentiable which has been discussed in [2], [3], [16] and [17], but the

reciprocal is not true in general as seen in some examples shown in [1], [2], [16]

and [19]. So we review that what conditions do we impose on convex functions and

quasiconvex functions in order to guarantee the coincidence of both differentials.
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[7] J. P. Crouzeix, Contribution ‘à l’étude des fonctions quasiconvexes, Thèse de
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