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Preface 

The calendering equipment was introduced in early 18
th

 century by Edwin Chaffee and 

Charles Good year. However, a first theoretical analysis of calendering of the 

Newtonian and Bingham plastic materials was carried out by Gaskell [1]. The Gaskell 

analysis was based on the assumption of small rolls curvature. Later, Mckelvey [2] and 

Brazinsky et al. [3] reported a detailed analysis for power law fluids, which was 

followed by Alstonand Astill [4] for a hyperbolic tangential fluid model. The analysis 

of Gaskell and Mckelvey was also reported by Middleman [5] and Tadmor and Gogos 

[6] in their text books on polymer processing. Experimental measurements of pressure 

profiles in calenders were conducted by Bergen and Scott [7]. Kiparissides and 

Vlachopoulos [8] carried out a finite element analysis of calendering without using the 

geometrical approximation and presented a comparison of their theoretical results with 

those obtained by Bergen and Scott [7]. It was concluded by them that for a power law 

fluid model, lower values of power law index reduce the disagreement between theory 

and experiments. In another attempt Kiparissides and Vlachopoulos [9] investigated 

non-isothermal flow of power law fluids in calendering process using finite element 

analysis. The geometrical assumptions in Gaskell [1] model were also dropped by 

Finston [10] using bipolar coordinates to represent the roll geometry. Apart from shear 

thinning models used in the above mentioned studies, viscoelastic fluids in calendering 

process were also considered by some authors. For instance, Paslay [11] used a three 

constants Oldroyd model in the calendering analysis. He emphasized on the 

interrelation of the parameters of the Oldroyd model with flow kinematics but neglected 

the normal stresses in the equation of motion. Tokita and White [12] utilized 

constitutive equation of second order Rivlin-Ericksen fluid to relate the experimental 

observation on calendering of elastomers to rheological parameters. Calendering was 
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analyzed by Chong [13] from hydrodynamic point of view for three constitutive 

equations namely; power law equation, Oldroyd-B equation and a modified second 

order equation. Sofou and Mitsoulis [14] provided numerical results for the viscoplastic 

calendering of sheets. All above mentioned studies were based on lubrication 

approximation theory (LAT). A numerical study of two dimensional flow in 

calendering process was carried out by Mitsoulis et al. [15] and Agassant and Espy 

[16]. More recently, Mitsoulis [17] numerically simulated the process of calendering 

viscoplastic sheets of finite thickness using finite element method. He concluded that 

LAT is good at predicting the detachment point, the pressure distribution and 

engineering quantities of interest. 

It is a well-established fact that the inelastic models based on generalized Newtonian 

constitutive equations are not viscoelastic in the usual sense. This fact motivated Zhang 

and Tanner [18] to put forward a study based on Phan-Thien-Tanner fluid to analyze 

the calendering problem. They obtained solution to calendering problem using 

perturbation and finite element methods. Recently, Arcos et al. [19] reported a study on 

the influence of temperature-dependent consistency index on the exiting sheet thickness 

in the calendering process and they found a decrease of 6.91% for the calendered 

thickness. The influence of viscoelastic effects on the dimensionless exiting sheet 

thickness in the calendering process was also determined by Arcos et al. [20,21] using 

LAT. They found that an increase in the value of Weissenberg number tends to extend 

the length of contact between the rolls and the fluid. The ability of LAT in predicting 

accurately the quantities of engineering interest related to calendering motivated other 

researchers to analyze the calendering process. For, instance Siddiqui et al. [22] 

presented a perturbation analysis to study the calendering of non-Newtonian material 

characterized by a third-order fluid. Similarly, the constitutive equation of Casson 

model was utilized by Zahid et al. [23] to discuss the non-isothermal flow in a calender. 

More recently, Ali et al. studied the influence of viscoelastic effects on dimensionless 

exiting sheet thickness in the calendering using FENE-P fluid [24]. More recently Sajid 

et. al. [25] provided an exact solution for the calendering analysis of a third order fluid. 

Motivated by these facts we have analyzed the flow and heat transfer analysis in 

calendering of a Rabinowitsch fluid in this dissertation. 
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The dissertation is structured  as follow:  

Chapter 1 deals with the basic definitions and notions. Calendering process is defined 

and its Newtonian case with the governing equations is enlightened. 

Chapter 2 presents a detailed review of Arcos’s work [20,21] on influence of 

viscoelastic effects on exiting sheet thickness during the calendering process, 

asymptotic and numerical solutions are reproduced and results are shown graphically. 

Chapter 3 contains non-isothermal analysis of exiting sheet thickness in calendering of 

a Rabinowitsch fluid. The influence of involved parameter on velocity profile, pressure, 

pressure gradient, exiting sheet thickness and quantities of mechanical interest like 

force separating the two calenders and power transmitted to the fluid by the rolls is 

shown graphically. Moreover, the effects of viscous dissipation on calendering 

mechanism are also presented graphically.  
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Chapter 1 

Preliminaries 

This chapter is devoted to introduce the readers with the basics of fluid 

mechanics, governing equations and boundary conditions. We have taken 

most of the definitions from the book “Fluid Mechanics” by F.M. White 

and different sources on web.  

1.1 Fluid mechanics 

Fluid mechanics is a field of applied mechanics which deals with fluids in 

motion (Fluid Dynamics) and fluids at rest (Fluid Statics). The analysis of 

behavior of fluids is basically based on fundamental laws of mechanics, 

which relates conservation of mass and energy with force and momentum 

together with solid mechanics properties. 

1.2 Classification of fluids 

1.2.1 Newtonian fluids 

Based on their rheological behavior, fluids are classified as Newtonian and 

Non-Newtonian fluids. Fluids for which shear stress and deformation rate 
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are directly and linearly proportional are called Newtonian fluids. For 

unidirectional flow, this relation is expressed as: 

     
  

  
, (1.1) 

where     is the shear stress,   is shear rate viscosity and     ⁄  is the 

deformation rate.  

1.2.2 Non-Newtonian fluids 

Fluids for which the shear stress has a non-linear relation with 

deformation rate are called non-Newtonian fluids. For unidirectional flow, 

this relation can be expressed as  

     
  

  
, (1.2) 

where    (    ⁄ )    is the apparent viscosity, where   and   are 

respectively the consistency and flow behavior index. Non-Newtonian 

fluids are divided into three categories namely time dependent, time 

independent and viscoelastic fluids. 

1.2.2.1 Time independent fluids 

Most of the non-Newtonian fluids that we come across fit in this group. 

Apparent viscosity of this type of fluids only depends on shear stress 

knowing that the temperature is constant. Time independent fluids can be 

further subcategorized as under: 

Pseudo-plastics 

Pseudo-plastics are the ones for which apparent viscosity decreases as 

shear rate increases, also called shear thinning fluids. Some examples are 

blood and paints. 
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Dilatants 

Dilatants are the ones which has the reverse behavior to a pseudo-plastic 

fluid viz. its apparent viscosity increases as shear rate increases, also 

called shear thickening fluids. Thin paste of corn flour is a common 

example. 

Viscoplastics  

Other than the above mentioned two types, there is another type of non-

Newtonian fluids which does not behave as a fluid until a certain amount 

of shear stress, the yield stress, has been exceeded. Once this stress has 

been exceeded, viscosity either remains constant or decreases as shear rate 

increases. These materials are called viscoplastics. Some good examples 

are toothpaste and sewage sludge.  

1.2.2.2  Time dependent fluids 

As the name illustrates, fluids that come under this category have apparent 

viscosity dependent on shear stress and on time as well for which shear 

stress is applied. Time dependent fluids can be subcategorized as under: 

Thixotropic fluids 

The thixotropic fluids are the ones for which apparent viscosity decreases 

with time under the action of a constant shear rate. Examples are honey, 

yogurt etc. 

Rheopectic fluids 

The rheopectic fluids are the ones for which apparent viscosity increases 

with time under the influence of constant shear rate. Examples are egg 

white and printing inks etc. 
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1.2.2.3  Viscoelastic fluids 

The materials which are neither purely elastic nor purely viscous are 

known as viscoelastic fluids. Materials which show the properties of both 

solids and liquids, they behave as solids or liquids depending on how long 

the stress is applied. It is often confused with plasticity. A viscoelastic 

material will return to its original shape after any deforming force is 

removed although it will take time to do so whereas a plastic material does 

not return to its original shape when the stress is removed. 

1.3 Types of flow 

Flows are classified into following types, 

1.3.1  Laminar flow 

A flow in which fluid particles move smoothly and regularly is said to be 

laminar. In this flow path of individual particles do not intersect with each 

other. 

1.3.2  Turbulent flow 

A flow in which fluid particles move in irregular fashion in all directions 

is said to be turbulent. In this flow path of individual fluid particle 

intersect with each other. 

1.3.3  Uniform flow 

A flow in which flow characteristics do not change from point to point is 

said to be uniform. 

1.3.4  Non-Uniform 

A flow in which flow properties changes from point to point is said to be 

non-uniform. 
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1.3.5  Steady flow 

A flow is said to be steady in which fluid parameters or properties do not 

change with respect to time. 

1.3.6  Unsteady flow 

The flow is said to be unsteady if the fluid parameters or properties 

changes with respect to time. 

1.3.7  Compressible Flow 

If the volume of a given fluid particle varies with space and time i-e., 

density is function of space and time and no more constant, the flow 

becomes compressible. All gases are compressible fluids. 

1.3.8  Incompressible Flow 

If the volume of a given fluid particle remains constant i-e., the density is 

constant, the flow is termed as incompressible flow. Generally all liquids 

are incompressible. 

1.3.9  Rotational and irrotational flow 

If individual fluid particles rotate about their own axes during the flow, 

then flow is known as rotational. Otherwise, the flow is irrotational. 

Mathematically, for irrotational flow 

     . (1.3) 

1.4 Basic assumptions of fluid flow 

1.4.1  Conservation of mass 

The law of conservation of mass is given by 
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   (  )   . (1.4) 

Also referred as continuity equation, where   is density of fluid and when 

density is constant continuity equation takes the form: 

     . (1.5) 

In terms of Cartesian coordinate the component form of Eq. (1.5) is 

  

  
 

  

  
 

  

  
  , (1.6) 

where           are components of velocity in           directions 

respectively. 

1.4.2  Conservation of momentum 

Momentum remains conserved during flow and molecular collisions. Law 

of conservation of momentum takes the form: 

 
  

  
          , (1.7) 

where    gives net body force and    ⁄     ⁄  (    ). Momentum 

conservation equation in component form is as follow 

 (
  

  
)   

  

  
 

    

  
 

    

  
 

    

  
, (1.8) 

 (
  

  
)   

  

  
 

    

  
 

    

  
 

    

  
, (1.9) 

 (
  

  
)   

  

  
 

    

  
 

    

  
 

    

  
, (1.10) 

in           directions respectively. 
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1.4.3  Conservation of energy 

Law of conservation of energy is given by  

   *
  

  
 (   ) +          , (1.11) 

where   is temperature,   is thermal conductivity and   is the velocity 

gradient. In component form the heat equation for two dimensional flow 

takes the form 

  

  
  

  

  
  

  

  
 

 

   
(
   

   
 

   

   
)  

  

   
{(

  

  
)
 

 

(
  

  
)
 

}  
 

   
{(

  

  
 

  

  
)
 

}. 

(1.12) 

1.5 Dimensionless numbers 

1.5.1  Weissenberg number 

The Weissenberg number         ⁄  is a dimensionless number used 

in the study of viscoelastic flows and named after Karl Weissenberg. It is 

the ratio of the relaxation time of the fluid and a specific process time. 

1.5.2  Reynolds number 

Reynolds number is denoted by “Re”, where          ⁄  is the ratio 

of inertial force to the viscous force. 

1.8 Calendering 

The term “Calender” is derived form a Greek word Kylindros which 

means cylinder and according to the webster’s International Dictionary, it 

means to press as cloth, rubber, paper between roller in order to make 

smooth and glossy. 
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Calendering is a process in which molten polymer is dragged through the 

narrow region between two corotating rolls in such a way as to produce a 

sheet of desired thickness. In an analysis of calendering process one seeks 

the expressions for velocity of the fluid, pressure gradient, pressure, 

exiting sheet thickness and some quantities of engineering interest. 

1.8.1 Newtonian model of calendering 

 

Fig. 1.1.Sketch for calender flow analysis. 

The details of geometry and the flow field are shown in Fig. 1.1.Assuming 

that the flow is strictly two-dimensional, so that    [ (   )  (   )  ], 

the appropriate equations in steady state for an isothermal Newtonian fluid 

are 

𝑥    

𝑦  𝐻  

𝑦 

𝑅 

𝑥  𝑥  

𝑦  𝐻 

𝑥 

𝑦  ℎ(𝑥) 

𝑈 

𝑈 
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  , (1.13) 

  
  

  
   

  

  
  

  

  
 

    

  
, (1.14) 

  
  

  
   

  

  
  

  

  
 

    

  
. (1.15) 

Our method will be to solve this problem by making some approximations 

that lead to a formulation involving only a single ordinary differential 

equation which can be solved easily. We begin with an argument that the 

most important dynamic events occur in the nip region. In this region and 

extending to either side by a distance of order of   , the roll surfaces are 

nearly parallel i-e.     . It is convenient to say that flow is nearly 

parallel so that 

   , (1.16) 

and 

 

  
 

 

  
 . (1.17) 

Here we neglect inertial effects so Eqs. (1.13) and (1.14) become 

 
  

  
  

   

   
  , (1.18) 

  

  
  . (1.19) 

From above equation we can say that   is a function of   only so we can 

write 

 

 

  

  
 

   

   
. (1.20) 
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The process that we did so far is often referred as using the famous 

lubrication approximation. Eq. (1.20) is easily integrated to arrive at 

  
 

  

  

  
       , (1.21) 

where   and   are constants of integration.  

Here if we assume that both the rolls are identical and rotate with similar 

linear speed   then boundary conditions for this problem become 

       at      ℎ( ), (1.22) 

  

  
      at       . (1.23) 

By using these boundary conditions we get the constants of integration 

and Eq. (1.21) becomes 

    
     ( )

  

  

  
. (1.24) 

The solution for   is still incomplete because   is a function of   

explicitly and implicitly a function of   through ℎ( )and  ( ). 

Here first we examine ℎ( ), the y distance from center line to the roll 

surface. It is easy to prove that  

ℎ       (     )  ⁄ . (1.25) 

Introducing the above relation into Eq. (1.24), complicates the problem so 

we will confine the analysis to value of  , such that    , so a good 

approximation to ℎ( ) would be 

ℎ( )    (  
  

    
). (1.26) 
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Here we introduce dimensionless variables 

   
 

√    
,       

 

  
,        

 

 
,         

   

  
 . (1.27) 

Then Eq. (1.24) becomes 

     √
  

  
[    (     ) ]

   

   
 . 

(1.28) 

Here we may find an expression for pressure gradient by using mass 

balance in the form 

   ∫    
 

 
  ℎ( ) *  

  ( )

  

   

   
+      . (1.29) 

From above relation we can make       ⁄  the subject as 

   

   
 √

   

  

(      )

(     ) 
 , 

(1.30) 

where a dimensionless flow rate   has been introduced, which is defined 

as 

   
 

    
  . (1.31) 

Thus we have replaced the unknown pressure gradient with known flow 

rate  . 

We shall describe calendering process for some different fluids in later 

chapters.  
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Chapter 2 

Theoretical analysis of the calendered exiting 

thickness of viscoelastic sheets 

The chapter describes the detail review of work conducted by Arcos et al. 

[20] for the theoretical analysis of the calendering using a viscoelastic 

Simplified Phan-Thein-Tanner (SPTT) fluid model. The influence of 

viscoelastic effects on the dimensionless exiting sheet thickness in the 

calendering process are investigated. The physical laws of conservation of 

mass and momentum based on the lubrication theory were used. The 

quantities of engineering interest that includes the maximum pressure, the 

roll separating force and the power transmitted by the rolls is analyzed for 

various values  of the viscoelastic parameter. In [20], the authors found an 

approximate solution of the velocity field and made all the proceeding 

analysis on the basis of that approximate velocity profile. We suggested 

the authors a correct expression of the velocity field and complete analysis 

of the results. In light of our correspondence with editor and author they 

have corrected their results in the form of a corrigendum and 

acknowledged our contribution [21]. 

2.1 Flow geometry 

The physical model consists of two cylinders separated by a thin film of SPTT 

fluid are rotated in the opposite direction. Assuming   and   respectively be the 

radius and angular velocity of the cylinders. The linear velocity at the surface is 

thus     , The minimum gap between the calenders,  , is such that      

and half of the exiting sheet thickness is represented as H. The geometry of 
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calender’s surface is given as ℎ( ̅)    (   ̅     ⁄ ). The point where sheet 

first bites the rolls is represented by   ̅ . We must determine in the present 

analysis the unknown leave-off distance point of the sheet which is represented 

by  ̅ . Thesymmetry of the problem allow us to consider only upper half of the 

configuration. We are taking coordinate system as shown in Fig. 2.1, where  ̅ 

axis is taken in the direction of flow and  ̅ points upwards, against the direction 

of gravity vector. 

 

Fig. 2.1.Schematic diagram of the studied model in physical variables 

[20]. 

2.1.1 Governing equations 

The equations that govern the present flow situation are 

  ̅

  ̅
 

  ̅

  ̅
  , (2.1) 

  ̅
  ̅

  ̅
   ̅

  ̅

  ̅
  

  ̅

  ̅
 

  ̅  

  ̅
, (2.2) 

  ̅
  ̅

  ̅
   ̅

  ̅

  ̅
  

  ̅

  ̅
 

  ̅  

  ̅
, (2.3) 
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where  ̅ and  ̅ represent components of velocity in  ̅ and  ̅ direction 

respectively,  ̅ is the pressure field and   ̅  is the shear stress. Constitutive 

equation for Simplified Phan-Thien-Tanner fluid [18] is given as: 

  ̅  
    

 

 
  ̅ 

   ̅

  ̅
  

  ̅

  ̅
, 

(2.4) 

where           represent elongation behavior of SPTT fluid model, 

polymer viscosity coefficient and relaxation time of the material, 

respectively. ɳ is given by 

    (      
 (

  ̅

  ̅
)
 

), 
(2.5) 

where    is zero shear rate viscosity. In the nip region and extending to 

either side, when      roll surfaces are nearly parallel. So we can 

assume that flow is almost parallel, such that  ̅   ̅ and 
  ̅

  ̅
 

  ̅

  ̅
. By this 

assumption, the boundary conditions associated to this problem take the 

form: 

  ̅     at   ̅   , (2.6) 

 ̅       at   ̅  ℎ( ̅). (2.7) 

2.1.2 Dimensionless equations 

To make the equations dimensionless following new variables are 

introduced [20]. 

  
 ̅

√    
,    

 ̅

  
 ,  

 ( ̅)

  
     ,     

   ̅

   
√
  

  
 ,   

        
   ̅  

   
        

 

  
   ,    (   )  

 ̅( ̅  ̅)

 
 ,   

(2.8) 
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 (   )  
 ̅( ̅  ̅)

 
√
  

  
        

 ̅

    
 . 

 

 

Fig. 2.2. Schematic diagram of physical model studied in dimensionless 

variables [20]. 

where   is dimensionless volumetric flow rate, which is constant. Eqs 

(2.1) to (2.3) in dimensionless variables are 

  

  
 

  

  
  , (2.9) 

   ( 
  

  
  

  

  
)   

  

  
 

    

  
, (2.10) 

    ( 
  

  
  

  

  
)   

  

  
  

    

  
, (2.11) 

in which   √    ⁄    ,          ⁄ . In calendering process the 

Reynold’s number is of the order of           and therefore the inertia 

effects can be neglected. Invoking the lubrication theory Eqs. (2.10) and 

(2.11) yield 
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  , (2.12) 

  

  
 

    

  
, 

(2.13) 

together with the dimensionless constitutive relationship 

            
   

  
 

  

  
, (2.14) 

where    is the Weissenberg number, defined as         ⁄ . In terms 

of new variables boundary conditions take the form 

   |     , (2.15) 

 (      )   . (2.16) 

There are some additional conditions on pressure and pressure gradient in 

case of finite sheet examined here. It is assumed that pressure at the point 

where sheet first bites the rolls and the point where sheet leaves the rolls is 

zero. Pressure gradient is assumed to be zero at the exit point only. 

Mathematically, the dimensionless form of these conditions is given by 

 (   )  
  

  
|
   

  , (2.17) 

 (     )   . (2.18) 

It is clear from Eq. (2.12) that  is independent of   which allows 

integration of Eq. (2.13), so Eq. (2.13) give 

     
  

  
   . (2.19) 

Utilizing the continuity condition gives       therefore 
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. (2.20) 

Substituting Eq. (2.20) into Eq. (2.14), we arrive at 

 
  

  
 

  

  
(       (

  

  
)
 

  )   , 
(2.21) 

along with Eq. (2.21) volumetric flow rate is required, which can be 

written in the form 

       ∫    
    

 
, (2.22) 

where   represent the exiting sheet thickness in the calendering and is 

given as 

   
 

  
  , (2.23) 

In the calendering analysis for Newtonian and non-Newtonian fluids, there 

are two flow regions, one in which pressure gradient is positive (    

    ) and the other for which it is negative (      ). 

Dimensionless pressure and velocity profiles are obtained here for each 

region. 

2.2 Asymptotic solution for small 

Weissenberg number 

We conduct an asymptotic solution of Eqs. (2.21) and (2.22) to obtain 

dimensionless pressure, velocity and leave-off distance of the finite sheet 

being examined. Applying the perturbation technique and using     as 

perturbation parameter, we can have the following expansions: 
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 ( )    ( )       ( )   , (2.24) 

 (   )    (   )       (   )   , (2.25) 

            , (2.26) 

              (2.27) 

where                    are the leading-order solutions, which refer to 

the Newtonian case.                  are the first order terms and refer 

to the contribution of viscoelastic effects. Here it is important to mention 

that expansion (2.27) should be consistent with Eq. (2.25) in accordance 

with dimensionless volumetric flow rate per unit width discussed in eq. 

(2.22). 

By introducing Eqs. (2.24)-(2.27) into Eqs. (2.12)-(2.22) and separating 

terms of the same powers of    , we get the following set of equations: 

lets say for (   ) : 

 
   

  
 

   

  
,    for            ,  (2.28) 

       
  ∫     

    

 
, (2.29) 

and the boundary conditions associated to Eqs. (2.28) and (2.29) are: 

           at        , (2.30) 

         at           , (2.31) 

         at             (2.32) 

   
   

  
,     at           . (2.33) 
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For the first order problem(   ) : 

 
   

  
 

   

  
   

   

  
(
   

  
)
 

         for           , 
(2.34) 

         ∫     
    

 
. (2.35) 

In Arcos’s analysis [20] it has been determined how   is influenced by 

viscoelastic effects which was not studied before. 

Boundary conditions associated with Eqs. (2.34) and (2.35) are: 

           at        , (2.36) 

            at           , (2.37) 

         at             (2.38) 

   

  
          at         . (2.39) 

2.2.1 Zeroth order solution 

For the case of finite sheet thickness, solution for Eqs. (2.28) and (2.29) is 

given by 

  ( )  
 

 
(
   

  
)      . (2.40) 

Using condition given is Eq. (2.31) we arrive at 

  ( )    
 

 
(
   

  
) [   (    ) ]. (2.41) 

Now using   ( ) in Eq. (2.29) and equating to     . From which we 

make      ⁄  subject as under 
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(  
    )

(    ) 
,      for               , 

(2.42) 

and after integrating Eq. (2.42) gives   ( ), 

  ( )  
 

 
(
(     

 )

    
     

(     
 )        

 

(    ) 
 (  

   
 )[              ]). 

(2.43) 

Final sheet thickness, by using condition given in Eq. (2.33), is given by 

the following implicit relation. 

 
   

(    
 )
 *

  

    
         + (     

 )  

*
(    ⁄   )

  ⁄

    ⁄
      (

  

  
  )

  ⁄

+ (     
 )  

 
(    

 )(    ⁄   )
  ⁄

(    ⁄ )
   . 

(2.44) 

Here we can introduce a simple transformation for Y because of curvature 

of the rolls, which helps examine the velocity distribution i-e.,   

  (    ) in zeroth order velocity profile in Eq. (2.41) and substituting 

Eq. (2.42): 

     
 

 
(
  

    

    
) (    )     for all   

   

  
. 

(2.45) 

2.2.2 First order solution 

In this section we obtain corrections to leading order solutions on 

dimensionless pressure and velocity profiles in a semi-analytical manner. 

First we find    depending on      ⁄  by substituting Eq. (2.42) and 

(2.44) into Eq. (2.34) we get: 
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     (  

(  
    )

(    ) 
)
  (  

 

 
(
  

 
   

    
)(    ))

  
 

 . 

(2.46) 

By introducing the transformation   
 

    
to above equation and making 

     ⁄  subject we get 

   

  
  (    ) 

   

  
      (  

    )
 

(    ) 
. 

(2.47) 

Integrating above equation for   we get 

  (   )  
 

 

   

  
(    )    

  

 
 
(  

    )
 

(    ) 
     ( ), 

(2.48) 

using the boundary condition given in Eq. (2.37), we get the following 

form: 

  (   )  
 

 

   

  
(    ) (    )  

  

 
 
(  

    )
 

(    ) 
(   

 ). 

(2.49) 

To obtain first order of dimensionless volumetric flow rate, we need to 

evaluate Eq. (2.35) after substituting Eq. (2.49) and we get: 

   
  

 

   

  
(    )  

  

 
 
(     

 )
 

(    ) 
. 

(2.50) 

Here we use the boundary condition given in Eq. (2.39) and we reach to 

the following form of first order volumetric flow rate. 

    
  

 
 
(     

 )
 

(    
 )

 . 
(2.51) 
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By using Eq. (2.51) in Eq. (2.50) we obtain an explicit expression for 
   

  
 

i-e. 

   

  
 

   

 
 *

(  
    

 )
 

(    ) (    
 )

  
(     

 )
 

(    ) 
+. 

(2.52) 

Eq. (2.52) is valid for         . The pressure distribution is obtained 

by integrating Eq. (2.52) as follow: 

  ( )  
   

 
 ∫ *

(  
    

 )
 

(    ) (    
 )

  
(     

 )
 

(    ) 
+    

 

   
. 

(2.53) 

After integration the first order dimensionless pressure becomes: 

  ( )  
   

 
 {

 (     
     

    
 )

  (    ) 
 

 (        
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√      ⁄ *
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(2.54) 
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(       
      

       
 )

    (    ⁄ )
  

(       
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    (    ⁄ )
 

(   
    

 )
 

 (    ⁄ )
 
(    

 )
  

 (   
    

 ) 

 (     )(    
 ) 
+}. 

The dimensionless leave-off distance   can be obtained by using the Eq. 

(2.53) along with the boundary condition given in Eq. (2.38) 

  ∫ *
(  

    
 )

 

(    ) (    
 )

  
(     

 )
 

(    ) 
+   

  

   
. 

(2.55) 

   is given by the following implicit relation 

  √      ⁄ *
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(2.56) 
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   (   
    

 )
 

 (    
 )

 . 

For a given value of     ⁄  its corresponding        can be calculated 

using Eqs. (2.44) and (2.56) respectively. 

2.3 Numerical solution 

To determine the dimensionless pressure, velocity profiles and leave-off 

distance of the finite sheet being examined here, we present the numerical 

solution of Eqs. (2.20) and (2.21) here: 

For this purpose we integrate Eq. (2.20) with respect to   to find an 

explicit expression for velocity profile   depending on pressure gradient 

   
  [    (    ⁄ )      ]

  (    ⁄ )   
  . 

(2.57) 

Using condition in eq. (2.16),   becomes  

  
  [(    (    ⁄ )    (    ) ) (    (    ⁄ )      )⁄ ]

  (    ⁄ )   
  . 

(2.58) 

Eq. (2.58) is the correct expression for the velocity   which we proposed 

to the authors to correct their analysis [21]. The volumetric flow rate is 

given by 

       

∫ *
  [(    (    ⁄ )    (    ) ) (    (    ⁄ )      )⁄ ]

  (    ⁄ )   
 

    

 

 +   , 

(2.59) 

     

(    )  
(    )

  (    ⁄ )   
 

      [√    (    ⁄ )(    )]

 √ ( )  ⁄ (    ⁄ )     
. 

(2.60) 
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Now pressure gradient has an implicit expression as follows: 

  

  
 

      [√    (    ⁄ )(    )] (    )√    (    ⁄ )

 √ ( )  ⁄ (     )   (    )⁄
. 

(2.61) 

Therefore the pressure distribution can be given as: 

 ( )  

∫
      [√    (    ⁄ )(    )] (    )√    (    ⁄ )

 √ ( )  ⁄ (     )   (    )⁄

 

 
  . 

(2.62) 

Now Eq. (2.61) is an implicit expression for pressure gradient, which we 

can determine for given values of   , and for assumed values of  , the 

leave-off distance as a function of dimensionless longitudinal coordinate 

 . The local solution is obtained numerically by modified false position 

method [27]. After that local pressure is found by using Runge-Kutta 

algorithm by integrating     ⁄ , from     and using pressure boundary 

conditions mentioned in Eq. (2.17). The extrema of pressure profile occurs 

at         . For a given value of dimensionless leave-off distance Eq. 

(2.61) is integrated till the pressure becomes negative. Here we have found 

the point where sheet first bites the rolls     from which we can find the 

entering sheet thickness from the relation: 

   √   ⁄    . (2.63) 

The force -separating two rolls is of importance to the mechanical design 

of calendering system and to the prediction of film thickness uniformity. It 

can be determined by integrating pressure over area of interest on surface 

of the roll. 

 

 
(  )  

   

  
 (  ), (2.64) 

where  ( ) is given by 
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 (  )   ∫ *∫  (  )  
 

 
+   

 

   
, (2.65) 

where 

 (  )  

*
      [√    (    ⁄ )(    )] (    )√    (    ⁄ )

 √ (   )  ⁄ (     )
+

 
 ⁄

. 

(2.66) 

The total power input into both rolls can now be computed by integrating 

product of roll velocity and shear stress along surface of roll. 

 ̇(  )       √
 

  
 (  ), 

(2.67) 

where the dimensionless power function is given by: 

 (  )    √ ∫  (  )
 

   
   . (2.68) 

2.4 Results and Discussion 

The numerical results for SPTT fluid model are presented here. Figs. 2.3 

and 2.5 show the dimensionless pressure gradient for different values of 

Weissenberg number             as a function of dimensionless axial 

coordinates   for two fixed values of leave-off distance 

                We can see that at     , pressure gradient passes 

the axial coordinate and its value is minimum for    , it has both 

increasing and decreasing trend along the flow region. Pressure gradient is 

decreasing when   leaves , decreases until the minimum then increases 

and becomes zero again at      , and keeps increasing until the 

maximum value arrives then again decreases until the entering point     

is reached where sheet bites the rolls in the first place. We can note here 
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that for a fixed value of  , as Wi increases it tends to increase the domain. 

Also at    , varying Wi strongly affect pressure gradient because 

deformation rate has maximum negative value here. At      flat 

velocity profiles are reached so Wi has smaller effect there. 

In Figs. 2.4 and 2.6 dimensionless pressure distribution is shown, for 

varying Wi, as a function of  , which we have obtained from Eq. (2.62). 

Starting from right, at     pressure increases to a maximum value at 

     and decrease to zero till the entry point       is reached. We 

can see that pressure is strongly affected by varying Wiat     .  

In Figs. 2.7 and 2.8 velocity profile is presented as function of Y for 

different values of Weissenberg number. Dimensionless velocity profiles 

are evaluated at two different values of  . Velocity profile as shown in 

Fig. 2.7 is plotted in the region          where the pressure 

gradient is positive. We can notice that u increases as Weissenberg 

number increases for a given value of  . Velocity profile is also plotted in 

the region       , where we can see in Fig. 2.8 velocity profiles 

decrease as Weissenberg number increases. 

In Fig. 2.9 dimensionless leave-off distance   is presented as a function of 

entering sheet thickness     ⁄ for different values of Weissenberg 

number. Here we know that we have assumed   to be known and we have 

to calculate    by using the relationship given in Eq. (2.63). 

Roll separating force and the power input to the fluid by the rolls is plotted 

as a function of Weissenberg number by varying dimensionless leave-off 

distance   using the relation described in Eqs. (2.65) and (2.68). In Fig. 

2.10 we observe that force separating the two rolls decreases as 

Weissenberg number increases for two different values of dimensionless 

leave-off distance   (=0.470, 0.475). Power is also a decreasing function 
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of Weissenberg number and is plotted in Fig. 2.11 for different values of 

 (=0.2923, 0.470, 0.475). 
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Fig. 2.3.The dimensionless pressure gradient for SPTT fluid model, for 

varying Weissenberg number.        . 

 

 

Fig. 2.4.The Dimensionless pressure profile, in gap along the flow region, 

for varying Weissenberg number.        . 
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Fig. 2.5.The dimensionless pressure gradient for SPTT fluid model, for 

varying Weissenberg number.       . 

 

Fig. 2.6.The dimensionless pressure profile, in gap along the flow region, 

for varying Weissenberg number.       . 
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Fig. 2.7. The Dimensionless velocity profile u as a function of transversal 

coordinate Y, for varying Weissenberg number, evaluated at        for 

              . 

 

Fig. 2.8. The Dimensionless velocity profile u as a function of transversal 

coordinate Y, for varying Weissenberg number, evaluated at        for 
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Fig. 2.9.The dimensionless leave-off distance as a function of entering 

sheet thickness for varying Weissenberg number. 

 

 

Fig. 10. Force as function of Weissenberg number, in terms of  . 
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Fig. 11. Power as function of Weissenberg number, in terms of  . 
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Chapter 3 

Non-isothermal analysis of exiting sheet 

thickness in the calendering of 

Rabinowitsch fluid 

 

The focus of the present chapter is to utilize the constitutive relationship of 

a Rabinowitsch fluid to discuss the calendering. The analysis of heat 

transfer is also included in this chapter. Rabinowitsch fluid is a special 

kind of non-Newtonian fluid which exhibits pseudo-plastic behavior for 

certain values of non-linearity factor and behaves as dilatant for another 

set of values of the non-linearity parameter. Based on Rabinowitsch 

constitutive relationship quantities of engineering interest are evaluated 

and analyzed. 

3.1 Mathematical formulation 

The physical model is same as discussed in the previous chapter. 

Equations that govern the flow and heat transfer in the calendering   

process are given in Eqs. (2.1)-(2.3) together with energy equation 
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   ( ̅
  

  ̅
  ̅

  

  ̅
)   (

   

  ̅ 
 

   

  ̅ 
)    ̅ 

  ̅

  ̅
, (3.1) 

where   is the thermal conductivity and    is the specific heat. 

Rabinowitsch fluid obeys the following constitutive relationship 

  ̅     ̅ 
   

  ̅

  ̅
, (3.2) 

where   is the non-linear factor responsible for non-Newtonian effects of 

fluids and is called coefficient of pseudoplasticity. 

Boundary conditions for velocity are same as in Eqs. (2.15)-(2.18).  

However for temperature we have 

 ( ̅  ̅)     at  ̅  ℎ( ̅)  (3.3) 

 ( ̅  ̅)     at  ̅  ℎ( ̅)  (3.4) 

 ( ̅  ̅)     at  ̅    ̅ . (3.5) 

In terms of dimensionless variables defined in Eq. (2.8) together with 

 (   )  
 ( ̅  ̅)   

   
, (3.6) 

  
   

   

  
 , (3.7) 

we have 

        
  

  

  
. (3.8) 

Invoking the lubrication approximation the problem takes the form 

  

  
 

    

  
, (3.9) 
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  , (3.10) 

   ,   (   )    at       , (3.11) 

     , 
  

  
    at    ,  (3.12) 

 (   )      at      , (3.13) 

and 

   
  

  
 

   

   
      

  

  
, (3.14) 

where    √
  

  

      

 
  and     

   

    
. 

  

  
         at        , (3.15) 

       at           . (3.16) 

From (3.10) we know that   is independent of   so by integrating Eq. 

(3.9) and using boundary condition Eq. (3.12) we get 

     
  

  
. (3.17) 

Substituting Eq. (3.17) into Eq. (3.8) we obtain 

 
  

  
    

  

  

 
 

  

  
  . 

(3.18) 

We also need dimensionless volumetric flow rate which can be written in 

the form: 

       ∫    
    

 
. (3.19) 
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The Eqs. (3.18) and (3.19) represent lubrication approximation for 

viscoelastic fluids. The parameter   has been extensively studied in past 

for the case where viscoelastic effects were not considered [1, 5, 26]. 

By integrating Eq. (3.18) with respect to   we get: 

 ( )  
 

 

  

  
(   (    ) )  

 

 

  

  

 
(   

(    ) )   . 

(3.20) 

Substituting  ( ) in Eq. (3.19) and integrating it we get and then equating 

to      after using condition given in Eq. (3.15) 

 

 
(    ) 

  

  

 
 

 

 
(    ) 

  

  
        . 

(3.21) 

From Eq. (3.21) we get an explicit expression for     ⁄ , i-e 

  

  
 

 

 
{ 

   
 
   

[          √                  ]

 
 

 

 
 
 [          √                  ]

 
 

   
}, 

(3.22) 

where   (    ) and   (     )Now we can also write expression 

for P(χ) as follow: 

 ( )  ∫ {
 

 
( 

   
 
   

[          √                  ]

 
 

 
 

 

 
 
 [          √                  ]

 
 

   
)}   . 

(3.23) 
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Following Arcos et. al. [20] we use a simple transformation that helps to 

examine the dimensionless velocity distribution that is     ⁄ .  

 ( )  
 

 

  

  
  (    )  

 

 

  

  

 
  (    )   . 

(3.24) 

Now the integration in    ⁄  is difficult to perform analytically so by 

using Mathematica built-in function “NIntegrate”, integration of Eq. 

(3.23) is carried out for dimensionless leave off distance     

corresponding to finite sheet thickness until pressure becomes negative. 

This process is also explained by J. C. Arcos [20]. Corresponding value of 

  where pressure crosses the x axis is noted as       where the 

entering sheet first bites the rolls and from this thickness of entering sheet 

can be determined by    (
  

  
  )

 

 
. 

The force separating two rolls is of importance to the mechanical design of 

calendaring system and to the prediction of film thickness uniformity. It 

can be determined by integrating pressure over area of interest on surface 

of the roll.  

 

 
( )  

   

  
 ( ), (3.25) 

where  ( ) is given by 

 ( )   ∫ *∫  ( )  
 

 
+   

 

   
, (3.26) 

where 

 ( )  
 

 
{ 

   
 
   

[          √                  ]

 
 

 
(3.27) 
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 [          √                  ]

 
 

   
}. 

The total power input into both rolls can now be computed by integrating 

product of roll velocity and shear stress along surface of roll. 

 ̇( )       √
 

  
 ( ), 

(3.28) 

where the dimensionless power function is given by: 

 ( )    √ ∫  ( )
 

   
   . (3.29) 

The energy equation in terms of   is given by 

   

   
   (    )  

  

  
   (    )  

  

  

  

  
, (3.30) 

 (   )    at    , (3.31) 

  (   )

  
   at    , (3.32) 

 (   )    at      . (3.33) 

Substituting expressions for   we have 

   

   
   

(    )
 

 
[
  

  
(    )  

 (    )
 

 

  

  

 
(    )  

 ]
  

  
   (    )   (

  

  
)
 

[   (    )   (
  

  
)
 

]. 

(3.34) 

Eq. (3.34) is a partial differential equation in space coordinates and its 

challenging to find its analytical solution. To handle this situation, we 

chose to simulate this problem numerically using the hybrid technique. 

The hybrid technique is based on the finite difference method and 

shooting algorithm. 
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This technique is based on the following steps 

We first substitute     ⁄  (       )   ⁄  by using finite difference 

formula. By using this expression in Eq. (3.34), the resulting equation and 

boundary conditions at   ℎ step are given in the following form. 

   

   
   

(    
 )
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(    )  

 (    
 )

 

 
(
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(   

 )   ]
(       )

  
   (    

 )   (
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[  

 (    
 )   (
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], 

(3.35) 

  (   )

  
  , (3.36) 

  (    )   . (3.37) 

Now Eq. (3.35) with boundary conditions Eqs. (3.36) and (3.37) can be 

solved using shooting method for each  . For this purpose we reduced the 

above equation into system of first order differential equations. 

Let 

     , (3.38) 

   

  
 

   

  
   , 

(3.39) 
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(    )  
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], 

(3.40) 

  (    )    , (3.41) 

  (    )   , (3.42) 
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where constant    is unknown and found by using Newtonian’s Raphson 

scheme such that it satisfy the condition   (    )   . For     the Eqs. 

(3.38)-(3.42) become 

     , (3.43) 

   

  
 

   

  
   , (3.44) 

   

  
   

(    
 )

 

 
[
   

   
(    )  

 (    
 )

 

 
(
   

   
)
 
(   

 )   ]
(     )

  
   (    

 )   (
   

   
)
 

[  

 (    
 )   (

   

   
)
 

], 

(3.45) 

  (    )    , (3.46) 

  (    )   . (3.47) 

In the above equation   (     )    is an initial temperature when sheet 

first bite the rolls and    missing value, which is chosen in such a way that 

it satisfy the boundary condition   (    )   . Now solving the Eq. 

(3.45) with boundary conditions Eqs. (3.46) and (3.47) we get,   . By 

continuing this technique for            , we can find temperature at 

each step. 

3.2 Results and conclusion 

In this section, we explain the detail effects of Rabinowitsch fluid’s non-

linearity parameter on the pressure gradient, pressure, velocity profile and 

quantities of engineering interest such as roll separating force,  power 

function and exiting sheet thickness and energy equation graphically. The 

non-linearity factor  , predicts the dilatant effects for    , Newtonian 

behavior at     and pseudoplastic for    . 
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Fig. 3.1 and 3.2 show the dimensionless pressure gradient as a function of 

dimensionless axial coordinate χ for different values of non-linear factor 

for lubricants,  (                     ) and two fixed values of 

dimensionless leave off distance,  (             ) We observe here 

that along the calendar gap, the pressure gradient starts from zero at   

 then becomes negative and reaches its minimum at    , it meets zero 

again at      then it becomes positive and reaches its maximum value 

and decreases again till       where sheet first bites the rolls. We can 

see that for a given value of dimensionless leave off distance  , plot of 

    is in the middle and decreasing   shrinks the length of domain 

whereas increasing  extends the length of domain. Also we observe that 

varying α strongly effects the graph at     because here shear rate 

pressure gradient has its minimum value whereas the effect is negligible 

near     and     and we acquire flat velocity profiles here. 

Fig. 3.3 and 3.4 shows the dimensionless pressure distribution which is 

obtained by integrating Eq. (3.22). Pressure is zero at      then it 

increases to its maximum as   reaches –   then pressure starts to decrease 

and meets zero at       (entry point) satisfying conditions in Eqs. 

(3.15) and (3.16).For a given value of dimensionless leave off distance   

pressure has noticeable change at      as   varies where change is 

negligible near     .As pressure gradient is zero at      we can see 

that pressure is maximum at that point. 

Fig. 3.5 and 3.6 shows the dimensionless velocity profile   as a function 

of transversal coordinate   for different values of non-linear factor for 

lubricants   The dimensionless velocity profile is plotted for two different 

values of   in domain           and       . In the first 

domain decreasing the value of   decreases velocity for a fixed   where 

there is a very minor increase in velocity at locality of rolls as shown in 
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Fig. 3.5. In the second domain velocity increases by decreasing α whereas 

it decreases very weakly at locality of rolls as shown in Fig. 3.6. The 

dimensionless velocity   for different values of   (non-linear factor for 

lubricants) as function of dimensionless transversal coordinate  , at 

       

In Fig. 3.7 the numerical results for dimensionless leave off distance λ are 

presented as a function of dimensionless entering sheet thickness 

    ⁄ .As     ⁄  is known in our problem so     is calculated through 

relation   (      ⁄ )
 
 ⁄   and we observe in Fig. 3.7 that for 

        ⁄   decreases with increase in α and for         ⁄  ,   

increases with increase in  . 

Quantities of engineering interest i-e the roll-separating force and power 

input to the fluids by the rolls are calculated and shown as a function of   

in Figs. 3.8 and 3.9 respectively where   is varying. We can see in Fig. 3.8 

that force is decreasing function of   for both values of  , i-e 0.2923 and 

0.440. Also power in Fig. 3.9 is non-increasing function of  . 

Fig. 3.10-3.13 are ploted to see the effects of different parameters on the 

dimensionless temperature distribution at various longitudinal positions 

for two different values of  . Figs. 3.10 and 3.11, are plotted for of 

      and     . Due to the imposed boundary conditions, all the 

temperature profiles flatten near the center Y=0 and converge to zero at 

the boundray Y=1. For dilatent fluids (    ),  (   )    while for 

pseudoplastic (    ),  (   )     This clearly indicates that the 

temperature of the clandered sheet composed of pseudoplastic materialis 

higher than the temperature of the rolls. On the contrary, viscoplastic sheet 

made up of dilatent material has lower temperature than the temperature of 

the rolls. It is also observed that maximum or minimum temperature zone 
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appear near the vicinity of the rolls. Figs. 3.12 and 3.13 predict higher 

(lower) values of temperature for pesudoplastic fluid (dilatent fluids) than 

that observed in Figs. 3.12 and 3.13. This increase/decrease is attributed to 

the increase in the leave-off distance  . 

 

 

 

 

 

 

 

 

 

 

 



   
 
 
 
 

45 
 

 

Fig. (3.1). Dimensionless pressure gradient for Rabinowitsch fluid for 

different values of non-linear factor for lubricants α and        . 

 

 

Fig. (3.2). Dimensionless pressure gradient for Rabinowitsch fluid for 

different values of non-linear factor for lubricants α and         . 
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Fig. (3.3). Dimensionless pressure distribution in the gap, along the flow 

field for different values of  and        . 

 

 

Fig. (3.4). Dimensionless pressure distribution in the gap, along the flow 

field for different values of  and         . 
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Fig.(3.5). Dimensionless Velocity u for different values of   (non-linear 

factor for lubricants) as function of dimensionless transversal coordinate   

at       and for         and         . 

 

Fig. (3.6). Dimensionless Velocity u for different values of   (non-linear 

factor for lubricants) as function of dimensionless transversal coordinate   

at        and for        and         . 
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Fig. (3.7). Dimensionless leave off distance   as function of entering sheet 

thickness     ⁄  for different values of  . 

 

 

Fig. (3.8). Dimensionless force function   as function of   in terms of  . 
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Fig. (3.9). Dimensionless power function   as function of   in terms of  . 

 

Fig. 3.10. Temperature distribution as a function of         for five 

location of    with Gz = 40, Br =5 and           
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Fig. 3.11. Temperature distribution as a function of         for five 

location of    with Gz = 40, Br =5 and           

 

Fig. 3.12. Temperature distribution as a function of         for five 

location of    with Gz = 40, Br =5 and         
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Fig. 3.13. Temperature distribution as a function of         for five 

location of    with Gz = 40, Br =10 and         
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