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Abstract

The 4th rank elasticity tensor Cjjp is the constant of proportionality in Hooke’s
Law. In linear anisotropic elasticity, Cjj describes the elastic properties of a
medium. The decomposition of Cjji; has been studied in 2-dimensions and then
in 3-dimensions. There are two ways to decompose the elasticity tensor Cjjp in
3-dimensions. The first one is RS-decomposition which is reducible and the second
one is VW-decomposition which is irreducible, under the 3-dimensional general lin-
ear group. The irreducible tensors of V' WW-decomposition of the elasticity tensor is
further decomposed under the rotation group.

The properties of VIWW-decomposition are: uniqueness, irreducible and preservation
of the symmetries of the elasticity tensor. It is valid from an algebraic and physical
point of view. On the other hand, RS-decomposition is not unique, is reducible and
does not preserve the symmetries of the elasticity tensor. It is inferior and fails to
have these useful properties from an algebraic and physical point of view. Many
physical applications of VW -decomposition are reviewed in the thesis.
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Chapter 1

Introduction

In this chapter, a brief descriptions about basic principles of the theory of linear
elasticity, Hooke’s law and its importance, objective of the thesis and also a brief
introduction about the chapters are given.

Theory of Linear Elasticity

The theory of linear elasticity is a branch of Continuum Mechanics. It is one of
the most useful and successful theories in mathematical physics. Elasticity is the
characteristic of a solid material to return to its original size and shape after applied
forces are removed. It is the ability of the body to resist the distortion in the object
because of applied force. Elasticity theory deals with deformable solid bodies. The
relationship between stress and strain is stated by Hooke’s law. This law is the basic
law in the theory of linear elasticity.

Hooke’s Law in Physics and Its Importance

Robert Hooke was famous for his law of elasticity which is known as “Hooke’s Law”.
In 1665, he discussed the main concept of the stress, strain and deformation of the
elastic objects in a equilibrium state. Hooke’s law states that the resorting force
of the spring is proportional to the extension or compression of the spring from its
equilibrium. Its can also be expressed in the form of a formula as F' = —kx where
F'is a force, k is a spring constant, x is a extension and negative sign indicates that
the force is in the opposite direction from the extension. It can also be expressed in
terms of stress and strain. Stress is force per unit area within the material , which is
caused by an externally applied force. Strain is the relative deformation produced by
stress. For relatively small stresses, stress is directly proportional to strain. Hooke
first presented his law in the form of a Latin anagram which translates in contem-
porary language as “extension is directly proportional to force.” This law is obeyed
by the elastic objects and every spring. It is important in physics since it helps to



determine the elasticity of objects. It also helps to calculate elastic potential energy.

The constitutive relation for linear anisotropic elasticity is the generalized Hooke’s
law which describes the most general linear relationship between stress and strain
tensors. The 4th rank elasticity tensor Cj;; emerges from Hooke’s law which is the
constant of proportionality. Elasticity tensor is also known as stiffness or compli-
ance tensor. Its physical components carry the dimension of force per unit area. It
obeys the major and minor (left and right) symmetries. Elasticity tensor, in three
dimensions, has 81 components. Due to symmetries of the stress and strain and the
strain energy density function, the number of independent components reduces to
21 only. The physical properties of anisotropic elastic materials are described by
the tensor such as the elasticity tensor, Cj;; of 4th rank. Moreover, the elastic con-
stants of anisotropic materials are written as 6 x 6 matrix Cjj; [1]. The components
of the elasticity tensor which describes the physical properties of anisotropic elas-
tic materials, depend on the system of coordinate axes and the tensors are usually
represented in matrix form.

Objective of the Thesis

In this thesis, we consider the 4th rank elasticity tensor, which results from gener-
alized Hooke’s law. Our objectives are

1. To study the decomposition of elasticity tensor under permutation and rota-
tion groups.

2. To study the algebra of the decomposition of the elasticity tensor.

3. To study the decomposition of the elasticity tensor from algebraic and physical
point of view.

4. To study the physical applications of the VW -decomposition.

Plan of Work

This thesis is divided into five chapters. The thesis has been organized in the fol-
lowing manner:

In chapter 2, we have reviewed some basics definitions, concepts and results. This
chapter contains a brief discussion on tensors, constitutive equation, elasticity ten-
sor and reduction of its components due to the symmetries of the elasticity tensor.
Elasticity tensor is also explained in the isotropic and anisotropic material.

In chapter 3, we have reviewed the decomposition of the elasticity tensor in two-
dimensional under the rotation group SO(2).



In chapter 4, we have discussed the algebra of the elasticity tensor and its decomposi-
tions in 3-dimensional. Also, VW -decomposition is discussed under the permutation
and rotation groups. Moreover, the algebraic properties of both decompositions are
discussed.

In chapter 5, we discuss some physical applications of the irreducible decomposi-
tion of the elasticity tensor.

In chapter 6, we give the summary and conclusions of the thesis.



Chapter 2

Preliminaries

In this chapter, we will recollect some basic definitions, concepts and relevant results
that would be used throughout this thesis. We will also be giving some examples to
illustrate the concepts. Some important notions and the terminology used are also
introduced.

2.1 Basic Concepts in Tensor Analysis

The concept of tensor is a fundamental concept in the elasticity theory. Tensors are
also used in many fields such as continuum mechanics, general relativity, differential
geometry.

2.1.1 Tensor and Its Linear Transformation

Suppose V be a real vector space and the vectors x,y,z,--- are the elements of a
vector space V.

A Tensor of Order 1

A vector x is defined to be a tensor of order 1.

A Tensor of Order 2

Let T : V — V be a linear transformation from a vector space V into the same
vector space V. It is known as a tensor of order 2. It can be written as

x=Ty, x,yeV

and
T(ax + by) =aTx + 0Ty, Vx,yeV, Va,beF.

4



It satisfies all the axioms of a vector space. Let L, denote the vector space of all the
tensors of order 2.

The product of two vectors x, y such that x ® y = xy, where x, y €V and having
the values of these two vectors in V such that it is a linear transformation which is
known as a tensor product. It can be expressed as

(x®y)z=xy(z) =x(y.z), Vze V
and
xy(ar + bs) = axy(r) + bxy(s), Vr, se V.

Thus the tensor product of two vectors x,y is also a tensor of order 2.
Suppose {e,,}(m = 1---n) is an orthonormal basis in V,,. Consider T to be an
arbitrary tensor which belongs to L,. Thus, Te, € V,, which can be written as

Te, = Torem VT € Ly

which shows that
T = T, emer, ¥V Te Ly (2.1)

where {eer.}(m,k =1---,n) represent basis in the vector space Ly, with n? dimen-
sion. and the components T,,; of T can be represented as an m X m matrix

Tyw T Ty -+ T
Tor T Tog -+ 1oy

T = (To) = : : : . : (22)
Tnl Tn2 Tn3 e Tln

Suppose {emer} (m,k =1,---,n) and {e.e;} (s,t = 1,---,n) are two basis in L,
correspond the two orthonormal basis {e,,} (m = 1,--- ,n)and {e,,} (m =1,--- ,n)
in V,,. The tensor T can be written in the form of these two bases as

/ /

T = Thremer = Teqe,. (2.3)

The component of T, can be written as

/

ka - 6m~T6k - (sze;)T(ijej)a
= Qmiqijelie;'u
= Gmidii T iJ.
This explain the transformation law of the components of a tensor corresponding
the change of basis in Ly which can also be expressed in term of matrix form as

T =QTQ". (2.4)



Equation. (2.4) is equivalent to

T = QTTQ.
It can be written in component form
T;t = QmSthka‘ (25)

Tensors of Order 3

Suppose T' : V — L, be a linear transformation from the vectors of a vector space
V into the vector space of a tensor of order 2.

T = Viy) = Vy,
where T" denotes a tensor of order 2. Similarly, Ls denotes the vector space of a
tensor of order 3.

2.1.2 Transformation Matrix

Consider V, a real vector space. The vectors X, y, z,... are elements of the vec-
tor space V., if they fulfill all the axioms of a vector space V. V,, denotes the
n-dimensional vector space. Assume two orthonormal bases such as {e;} (k =
1,2,---,n) and {g;} (I =1,2,--- ,n) in V,. These basis are related by the follow-
ing equations

62 = QkiCk,

and
€k = QikCrs
where the matrix Q = [gx] is the transformation matrix and Q = [q;,] is the inverse

of Q = [gr] matrix. The transformation matrix Q is given by

q11 q12 @13 - qu

qrk1 qk2 4qk3 - 4kl

and the inverse of the matrix Q is Q have the form

! ! ! !
qi1 412 q13 " 4y

! / / /
Q1 G2 k3 0 G



Since this matrix represents the change of an orthonormal basis, therefore it is an
orthogonal matrix and follows the following properties,

QQT =1, det Q =41 and Q' = QT,

where I is the n x n identity matrix and has the following form

100 -0

010 ---0
I= )

000 1

2.1.3 Cartesian Tensor

A tensor having components 7;;, which transform according to Eq. (2.5) is a Carte-
sian tensor of order 2. In general components of a Cartesian tensor of order n
transform as

/

T

Giga-gn — Qirj1 " Qingn

T,

14 i -

2.1.4 Symmetric and Antisymmetric Tensors

A tensor T is said to be symmetric with respect to 7; and 75 if and only if

11%2.....00

Example: Consider a tensor T;j; of order 3. Then

1
Tujr) = E[Tijk + Tiki + Thij + Tig + Tjie + Thyi)-

Interchanging ij, we get
Tiijy = Tginy-

is said to be antisymmetric with respect to i; and i if and only

..... in

A tensor T} ;,
if



In general, an antisymmetric tensor is defined as:

1

i2..... n] — Ty [T(sum over all even permuations) — T(sum over all odd permutations)] .
n!

Example: Consider a tensor Tj;;, of order 3. Then

1
Tijr) = E[Tijk + Tiki + Thij — Thji — Ting — Tyn)-
Interchanging ij, we get
Tigry = —Tljiny-

2.1.5 Levi-Civita Tensor

The Levi-Civita tensor [2, 3] also called the permutation tensor [4], antisymmetric
tensor, or alternating tensor, is a 3-index mathematical tensor used in particular
in tensor calculus. It is named after an Italian mathematician and physicist Tullio
Levi-Civita.

In 3 dimensions, the Levi-Civita tensor is defined as follows
+1  for (i,5,k) € (1,
1

€jp =94 —1 for (i,j5,k) € (
0 for 1= or jJj=k or k

3,1), (3,1,2
2,1), (2,1,3
(2

),
),

~—
—~

There are 27 components of Levi-Civita tensor in 3-dimensional space. However, 21
components are zero because the index is repeated. The remaining components are
6, three take the value of +1 if permutation is even and the other three take the
value of —1. In index notation, the Levi-Civita tensor i.e. € is very useful when
expressing some results in compact form.

The Levi-Civita tensor can be generalized to higher dimensions

+1 it (4,4, k0, ... ) is an even permutation of (1,2,3,4,...... )
€ijhl... =< —1 if  (4,4,k, 1, ...... ) is an odd permutation of (1,2,3,4,...... )}
0 if any two indices are the same.

Thus, it is the sign of the permutation in the case of even or odd permutation, zero
other-wise.



Properties of Levi-Civita Tensor

The Levi-Civita tensor satisfies the following properties:

dij€iji = 0,
€ijk€pgk = Oipdjq — 0igljp, (2.6)
€ipg€ipg = 20ij, ‘
€ijk€ijk = 0,

where 0;; is the Kronecker delta [3].

2.1.6 Stress Tensor

Stress tensor is a 2nd rank symmetric tensor which is denoted by o;;. In the space of
3-dimensions, it has 9 components in which 6 are independent and 3 are dependent.
The symmetry of o;; follows from the assumptions of vanishing torque stresses and
vanishing body couples.

2.1.7 Strain Tensor

Strain tensor is also a 2nd rank symmetric tensor which is denoted by e4;. It has
also 9 components in which 6 are independent and the remaining components are
dependent. In linear elastic, it is defined in term of the displacement vector i.e.,

en = L2t Qu
kl_2 (9a:l 8xk

2.2 Constitutive Equation

A constitutive equation is the relation between the stress and the strain It is sup-
posed that o;; is a function of e, that is 0;;(ex;) and vice-versa. There is a one-to-one
correspondence between stress and strain. Here, the constitutive equations are con-
sidered is linear in nature. In the Taylor expansion of the equation, the first order
term adequately describe the elastic behaviour of most substances.

80'2"
0ij(em) = 0i;(0) + =2 |cp=0Em + - - -

&ekl

or, since 0;;(0) = 0, therefore, we have approximately,

0ij = Cijri€ris (2.7)



where

80’1“

J
’€kl:0’
8%

Ciji =

Equation. (2.7) is called the generalized Hooke’s Law. This law of proportionality
between stress (0;;) and strain (ej;) was first stated in the 17th century by Hooke,
for the case of a stretched elastic string.

2.2.1 Elasticity tensor

In the theory of elasticity, the elasticity tensor Cj;i; plays a vital role. In general-
ized Hooke’s law, the coefficients C;;i; indicates the most general linear relationship
between o;; and €5;. These are the components of a fourth rank tensor. Elasticity
tensor is also called elastic stiffness tensor.

Stress Tensor and Symmetry of Elasticity Tensor

Since o;; is a symmetric tensor i.e. 0;; = 0j; due to this fact the elasticity tensor
obeys a symmetry i.e.,

Cz‘jkl = Cjz‘kl~ (2.8)

The symmetries of o;; for the elasticity tensor has Eq. (2.8) can be written as

Cijrt — Cli = 0,
Clijikt = 0.

The above symmetry is called left minor symmetry of the elasticity tensor.

Strain Tensor and Symmetry of Elasticity Tensor

Since gy is also a symmetric tensor i.e. € = g, due to this fact the elasticity tensor
obeys a symmetry i.e.,

Cijri = Ciji- (2.9)
The symmetries € for the elasticity tensor has Eq. (2.9) can also be written as

Cijtr — Cijie = 0,
Cijiky = 0.

This symmetry is called the right minor symmetry of the elasticity tensor.

10



Strain Energy Function and Symmetry of Elasticity Tensor

The strain energy function of a material which is deformed is defined as

1
Q= §Uij€ij~ (210)

When we substitute of generalized Hooke’s law in Eq. (2.10), the given expression
is in the form
1

0= §Cijkl€ij€kl- (211)

The existence of strain energy function defines an elastic continuum. This implies
that Cjjx; is symmetric under permutations of pairs of subscripts 75 and kl. This
can be derived as follows.

Differentiating both sides of the above equation with respect to €;;, i, respectively,
we get

0%
= Cim,
852-]05;.3; gkl
where the indices i, j, k,[ = 1,2, 3.

If © has continuous first and second order derivatives, then we can write [5]

20 00
Geijé?ekl N aaklc%ij

which shows that
Cijkt = Chuij- (2.12)

Eq. (2.12) can be written as
Cijit — Criij = 0.

The above symmetry is called the major symmetry of the elasticity tensor.

Reduction of Components of Elasticity Tensor

In 3 dimensional space, the total number of independent components of the 4th rank
elasticity tensor are 3* = 81. The reduction of independent components from 81 to
56 is due to the symmetry of stress tensor (Cjjr = Cjiri) and the further reduction
in the components of the tensor Cjjp; from 56 to 36 is due to the the symmetry
of strain tensor (Cjju = Cij). Moreover, the reduction of 36 components to 21
independent components is due the the strain energy function.

11



Elasticity Tensor in Voigt’s Notation
Voigt’s notation is very useful to express the 81 independent elastic components i.e.

Cijr into 6 x 6 symmetric matrix of elasticity tensor i.e. Cr;.

Ciji is the standard “longhand” notation of the elasticity tensor. However, Cp;
is the standard “shorthand” notation [6, 7]. A pair of indices ¢j is replaced by I and
kl is replaced by J respectively.

(11) «— (1) (22) «— (2) (33) «— (3)
(23) = (32) +— (4) (13) = (31) +— (5) (12) = (21) < (6)

Hence, the elasticity tensor matrix C;;, after using the above relation in Eq. (2.13),
takes the form as follows:

Cllll 01122 C11133 C’1123 C’1131 C’1112 C(11 CV12 C113 C114 015 CV16

* Co222 Cazz Cogzaz Uz Cooiz x Oy O Cy Oy Oy
* * Cs333 Cszoz Cszzr Cssio _ * ¥ Oz O3y O35 Cse
* * * Cazaz Chszr Cazin * * x  Cu Cis Cue
* * * * 03131 03112 * * * * 055 056
* * * * * Cia212 * * * * x  Cee

(2.14)

where the remaining non-zero components are independent of each other. In both
matrices, those entries which are dependent due to the symmetry of the tensor
components denoted by the x. Voigt’s notation is only applicable as the left minor
and right minor symmetries are valid and due to the major symmetry.

2.3 Isotropic and Anisotropic

“Isotropic” and “Anisotropic” are associated words which are antonyms. In terms of
structure, the word isotropic means “equal direction”. Anisotropic is derived from
it by adding the Greek prefix “an” which opposes the meaning of its base word.

1. Anisotropic: a physical property which have a different value, measured in
different directions.

2. Isotropic: a physical property which have a same value, measured in different
directions.

Anisotropic Material
Anisotropic materials are those materials in which the components of the elasticity
tensor depend on the coordinates.

12



Isotropic Material
Isotropic materials are those materials in which the elastic components of the elas-
ticity tensor do not depend upon the coordinates.

2.3.1 Elastic Tensor For an Isotropic Material

A tensor is called isotropic if it has same components in every co-ordinate system.
In this system, properties of the crystal do not depend on the direction. In 3
dimensions, there are only 3 independent isotropic tensors of rank 4th i.e., d;;0x,
0ir0j; and 0;0,. If Cjjiy is to be isotropic it must be the linear combination of these
3 tensors i.e.,

Cijrl = ANijOr + p10ix0j1 + p20idj, (2.15)
interchanging ¢ <> j then

Cijkt = N0k + p10;104 + p20 510k, (2.16)
in the isotropic material, elasticity tensor can be defined as

Cijrt = N30k + 11(dix0j1 + 6udj), (2.17)

The above equation is the constitutive law for an isotropic, linear elastic and homo-
geneous material where p = p; = pp and A and p are the Lame’s constants [8] and
1 is also known as shear modulus. In shear modulus, o9, the component of stress
tensor, does not vanish but all other components of the stress tensor vanish. It is
defined as

10'12

ESD) .
Hooke’s Law For Isotropic Material
Using Eq. (2.17) into generalized Hooke’s law equation then we have
05 = {AN0i;0m + p(0udjk + Oirdiy) Fem

= N0ijOmicr + p(0ubjrer + dinbijcr)

= Aéijgkk + ,U(gij + 5ij)

= )\5@'519]@ + 2/ub€ij.
Matrix For Isotropic Material
The elasticity tensor can be express in matrix form for isotropic material as

Cun Croe Cusz Cuzs Cusr Cun 20+ A A A 0

% Cgogo Chozz Cozez Cogzr Conno * 20+ A A 0

Cyy = * *  Cszzz C3zaz Cszzr Csano _ * * 2u+X 0
* * * Cozoz Cazzr Coazio * * * M

* * * *  Czi31 Gz * * *

g * * * *  Clarg * * *

13

*¥ R OO0 OO

T OO O OO



There are 12 non-zero components of which two are independent.

2.3.2 Cubic Crystal

In cubic crystals, they have at least three dyad axes (As2) and four triad axes (As).
Taking the dyad axes (Ay) with the coordinate axes, a rotation about the triad axis
(A3) through an angle %’r gives a cyclic permutation of the axes. The constants of
the elasticity tensor Cjji; should be unchanged under the cyclic permutation of the
indices such as (123) — (231) — (312). In Voigt notaion this implies that:

Cll Cl2 C12 0

0 0
X CH C12 0 0 0
* x 011 0 0 0
Cu=1| ., . . Cu 0 0 (2.18)
* * * x Cy 0
* * * * x Oy

where for the cubic crystal, there are 9 non zero components but with 3 independent
components i.e. Ci1, C1o and Cyy.

14



Chapter 3

Plane Elasticity Tensors

In this chapter, we study the decomposition of the plane elasticity tensor in two
dimensions under SO(2) which is the rotation group. We review the decomposition
by Vianello and Forte [9].

In 2 dimensions the elasticity tensor Cjjj; is called plane elasticity tensor. In plane
elasticity, the matrix of Cjjx; is

Cll C(12 C113
C= Cl2 C122 C(23 ’
Cl?) C'23 C133

where C' be the matrix of components of the plane elasticity tensor and is symmet-
ric. [E is the vector space of the plane elasticity tensors. The dimension of the plane
elasticity tensor is 6.

In 2 dimensions, the rotation matrix is
cosf sinf
@= (—Siﬂ@ cosé’) '
3.1 Decomposition of Plane Elasticity Tensors

Let V be a two-dimensional Euclidean vector space. Tensors defined on V are
called plane tensors. Let {e;} (i = 1,2) be an orthogonal basis for V, then {e; ® e;}
(7,7 = 1,2) is a basis for tensors of rank 2 and {e; ® e; ® e, ® ¢/} (4,4, k,l = 1,2) is
a basis for the elasticity tensor of rank 4.

A traceless tensor T of rank 2 is such that T;; = 0. A traceless tensor T of rank
4 is such that Ty = 0, (k,l = 1,2). A totally symmetric tensor is such that its

15



components are invariant with respect to any permutation of its indices. A trace-
less symmetric tensor is called harmonic. Let O(2) be the set of orthogonal tensors
@ and SO(2) its subgroup of rotations with determinant equal to +1. We shall
consider irreducible decomposition of the elasticity tensor C' with the symmetries
Cijki = Cjirr = Ciji = Criij as a sum of scalars A,  and tensors L, M where L is a
harmonic tensor of rank 2 and M is harmonic tensor of rank 4. This decomposition
is invariant under O(2) because if

L = (Q * L)ymn = @minjLij,

M = (Q * M)mnst = QmiQnJ'QSkqthijkl’

and then L' and M’ are harmonic if L, M are harmonic. This decomposition is in
the form [9, 10]

1

Cijrr = Miju + 6 (035 Lt + Lijon + Oip Ly + Lirdij + 0 Liji] + Aij0ng + p(Girdys + 0iadji)
(3.1)
where
1.3 1 1 1
A= Z(ioppqq - Cpqpq)a H= Z(Cpqpq - §Cppqq)v Ly, = ﬁ(zcipkp - Opqpq5ik)a

1
M = Ciji — 6(5ij0kplp + 611Cipjp + 0ikCipjp + 01 Cipip + 0 Clipip + 055 Cipip)
1 1

+ E[Cpqpq(&&jém — Oixdi; — Oudj)] — g[Cppqq(35ij5m — 0ikd1; — Oudj)].

This decomposition is irreducible because the space of harmonic tensors of rank 2
or 4 does not contain a subspace invariant under O(2).

First we consider the decomposition of a symmetric tensor 7' of rank 2 into a scalar
and a harmonic tensor of rank 2. We write T" as a 2 X 2 matrix,

(T Ty
A (T12 T22>‘

Its decomposition will be of the form

Ty T2\ 10 B
(o 22) =20 1)+ (0 2):

Thus,
a+ B =Ty,
a— =",
v = Tha.
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Hence,

Ty + Too
a=—>—
2
o Th — To
B - 2 )
v =Tis.

The tensor T is expressed as

T =ad; +Per1 ®er —ea ®ea) +y(e1 ea + €2 ®eyq),

or
T = ol +V2BE; +V2vE,,
where
1
El = —2(61 & €1 — €2 & €2>7
1
Eg = —2(61 ®€2+62 ®€1)

Under SO(2), Fi, Ey transform as
E,1 = Q(0) * Ex

— Q) *%@1@@ e ®e)

1
= 5{Q)e & Q)er — Q0)e2 © QO)e}

1
:ﬁ{

1
:ﬁ{cos 20(e1 ® e1) — cos20(ex ® e3) + 2cosfsinf(e; ® eg) + 2cosfsinb(es @ e1)}

(cosfey + sinfes) ® (cos ey + sinfey) — (—sinfe; + cosfey) @ (— sin ey + cosbey)}

1 1
= cos 29—2(61 ®e; — ey ® ey) + sin 29—2(61 ®es+ €2 R e)

V2 V2

= cos20F; + sin 20 F»,
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E; = Q(0) * Ex

=Q(0) *%(61 ®eg+ €3 R e)

:%{Q(ﬁ)el ® Q(0)ey + Q(0)ey @ Q(H)er }
1
V2
1
V2
— —Sin20i<61 ®ep —ex® 62) —+ COSQQL(el R ey + ey ® 61)

V2 V2

= —sin20FE; + cos 20 Fs,

(cos ey + sinfey) ® (—sinfe; + cosbes) + (—sinfe; + cos fey) @ (cos ey + sinbes)}

—sin26(e; ® e1) + cos 20(e; ® e3) + cos20(es @ e1) + sin26(ex @ e2)}

which is a rotation of the vector (Ey, E2) through 20. Thus invariants of T are

o — T + T
2 )
and - .
(VaR? + (Vaay = Tl o
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Chapter 4

Algebra of the Decomposition of
the Elasticity Tensor

The set of all general elasticity tensors especially all 4th rank tensors with the ma-
jor and minor symmetries forms a vector space. The vector space of the elasticity
tensors is denoted by C. The dimension of the vector space C'is 21.

In the literature two types of decompositions are found

1. Reducible Decomposition

2. Irreducible Decomposition.

Reducible Decomposition

If it is possible to express a vector space C' = C; @ Cy where ¢ and C5 are in-
variant subspaces under a group then C'is said to be decomposed into C; & Cs. This
decomposition is reducible, not unique and does not preserve the major and minor
symmetries of the elasticity tensor. It is also known as RS-decomposition.
Irreducible Decomposition

If it is not possible to further decompose C; or C5 then the above decomposition
is said to be irreducible otherwise it is called reducible. This decomposition is ir-

reducible, unique and preserves the major and minor symmetries of the elasticity
tensor. It is also called V' W-decomposition.
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4.1 Reducible Decomposition of Elasticity Tensor

The elasticity tensor can be decomposed into two tensorial parts as mentioned by
Cowin [11], Campanella and Tonton [12], Podio-Guidugli [13], Weiner [14], and
Haussiihl [15]. This decomposition is given by

Cijii = Rijri + Sijn- (4.1)

The first reducible part R;;i; may be obtained by the symmetrization of the elasticity
tensor,

Rijkl = Ci(jk)l:
the second reducible part of the elasticity tensor may be obtained by the anti-

symmetrization given by
Sijk = Ciljup-

4.1.1 Tensors R;j;; and S;ji
The tensors R;;i and S;ji; both fulfill the major symmetry.

Proposition 1: The major symmetry holds for both tensors R;;i; and S;jx.

Proof: By definition,

Rijri — Ry = Cigiry — Craiyj
1 1
= i(Cz‘jkl + Cirjt) — §(Cklij + Chij)

1
= §[Oijkl + Cikji — Criij — Chirj

1
= §[Cz‘jkl + Chiji — Cijrr — Chaj)
=0.
Similarly,

Sijkt — Skiij = Cijat — Chjual

1 1

= E(Cz-jkl — Cigjt) — §(Oklij — Chij)
1

= §[Cijkl — Cirji — Craij + Chaj)
1

= §[Oijkl — Chriji — Cijir + Chaj]

20



Hence, proved that the major symmetry holds for R;j; and S;jn. However, the
tensors R;jp and Siji do not fulfill the minor symmetries, as proved below.

Proposition 2: The minor symmetries do not hold for the tensors R, and Sjjx.

Proof: By definition,

Similarly,

Riju =
Rpgji =

Sijrl =
Slijlkt =

1
§(Cz‘jkl + Cikjt)

1

5 (Cligikt + Clijeis)

1.1 1

§[§(Cijk:l — Cli) + §(Cikjl — Clit)]
1

Z(Cz’jkl — Clitt + Cirjt — Ciit)

1
Z(Ckijl - ijil)
1

Z(ch[ml)

%(C’ijl — Cirjn)

;CMM_QMN)

%[%(Cz‘jkl = Cjim) = %(Cikjl ~ G
i(Cijkl = Cjir = Cing + Cjear)

1
Z(Ckijl — Chjit)

1
Z@@wm

1
= — 5 Chlisl

1
—§Skiﬂ-

Hence the above proposition is proved. Also Rjjji = — S}, and these expressions
are not equal to zero (R = —Spujjm 7 0). It follows from Proposition 1 that
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Rijiyy = Ry and Sy = Spkyij. Now, these expressions are shown to be equal.
By definition,

1
Rz’jkl = Ci(jk)l = §(Cz‘jkl + Oikjl)
1
Rijiry = 5(Ciiuy + Cigntsin)
1.1 1
= §[§<Cijkl — Cijix) + §(Cikjl — Cujr)]
; (4.2)
= Z(Cijkl — Ciji, + Cirju — Cijk)
1
= Z(Cijkl — Cuiij + Cirji — Cujr)
1
= Z(Oik:jl — Cijk)

and )
Riij = Craay = §(Cklij + Chii;)

1
Rpij = §<C[kl]z’j + Clrfi;)
1.1 1
= §[§(Oklij — Clgiz) + §(Okilj — Clik;)]

. (4.3)
= Z(Cklij — Ciiij + Critj — Clirj)

1
= Z(Cklij = Cikij + Crity — Cuij ),
1

= Z(Cik‘jl — Cijk)-

Thus, from Eqgs. (4.2) and (4.3) we have R;jju; = Rppij- Similarly, one can also prove
that Sijpey = Spiyi;- Since the minor symmetries for both tensors (Rjji and Sijx)
do not hold therefore these tensors do not belong to the vector space of elasticity
tensors C and they cannot be expressed in Voigt’s notation.

4.1.2 Vector Space R

The set of tensors { R;jx; 4, j, k,l = 1,2, 3,4} form a vector space denoted by R. The
dimension of the vector space R is 21.

1

Riju = §<Cijkl + Cikjt)
1

R = 5(01111 + Ch111)

= C’1111 .
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The tensor R;j,; cannot be written in Voigt’s notation because it does not hold the
minor symmetries. The independent components of tensor R;j;; have been calculated
below.

Rllll = C1117 R1113 = C1157 R1112 = 0167 R2222 = 0227
R2221 = C(267 R3333 = C'337 R3332 = C’347 R3331 = 0357
R2331 = CV457 R3221 = C(46a R3113 = C’557 R3112 = 0567

Ri122 = %(012 + Ce6), Riizz = %(013 + Cs5),  Ragog = Chay, (4.4)
Ry193 = %(014 +Cs6), oz = %(023 +Cu), Razzp = Cu,
Ragz1 = %(025 +Cu), Riozz = %(036 +Cus),  Riza1 = Ce.

These components are linearly independent.

4.1.3 Vector Space S

The set of tensors {S;jx; i, 7, k,0 = 1,2,3} forms a vector space denoted by S. The
dimension of the vector space S is 6.

1
Sijkl = §(Oz‘jkl — Cikjt)
1
51122 == 5(01122 - 01212>'

The independent components of the antisymmetric 4th rank tensor S;;i,; can be
written explicitly in Voigt’s notation as

1 1 1
Stie = 5(012 — Ce6),  Suzz = 5(013 —Css), S = 5(014 — Cs),

1 1 1
Saazz = 5(023 —Cu), Sz = 5(025 —Cug), Stz = 5(036 — Cis).

Since in Voigt’s notation all components of elasticity tensor (Cr; with I < J) are
assumed to be linearly independent. Therefore, these components are also linearly
independent.

4.1.4 Algebraic Properties of the Tensors R;;i; and S,

We can observe some of the basic features of the tensors R;;i; and Sjj.

23



Inconsistency

There are many ways in which elasticity tensor can be expressed in terms of both
Rijii and S;ji tensors. Generally, the components of elasticity tensor, say Ciao3 can

be defined as:
Cl223 = Ri203 + S1223,

where, we have used the definition of both Ri923 and Sis93 tensors i.e.,

1
R1223 = 01(22)3 = 5(01223 + C11223) = CV1223-

{ (4.5)
S1223 = Cppojz = 5(01223 — Ci223) = 0.
Further,
4.5 maj 4.4
Claz3 =2 Rizos + S1223 = Rogiz = Roize = Cis- (4.6)
—

0

We can be written (1993 in another way as:
1 1
Cla23 = Co123 = Ro123 + So123 = 5(046 + Cys) + §(C46 — Cy) = Ci,
where the components of Ryi93 and Ssq03 are given by

1 1 1
Roy93 = 5(02123 + Coo13) = 5(064 + Cy5) = 5(046 + Cas),

1

1 1
So123 = 5(02123 — Cyg13) = 5(064 —Cy;) = 5(046 — Cys).

The result in Eq. (4.6) is recovered, but it has been achieved with the help of
non-vanishing component of the vector space S.

Reducibility

In general, the tensor R;j;i; is not a completely symmetric tensor and it allows more
finer decomposition. Therefore,

Rijii = Rijry + Dijrr- (4.7)

Consequently, from the Eq. (4.7) the elasticity tensor can be further decomposed
into three tensorial parts i.e.,

Cijt = Rjrry + Siji + Dijia-
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Vector Spaces

The vector spaces of R and S are “partial” vector spaces. The dimensions of C'; R
and S are 21, 21 and 6 respectively. These two vector spaces are not the subspaces
of the vector space C.

Hence, in this way, the RS-decomposition is not possible as there exists a problem
from an algebraic point of view. Now, we take another decomposition of the elasticity
tensor which is compatible from an algebraic point of view.

4.2 Irreducible Decomposition of Elasticity Ten-
sor

We shall show that the unique irreducible decomposition of Cjji; under the linear
group GL(3, R) is

Cijki = Vijir + Wijt, (4.8)
where Vj;; and Wi, are the 4th rank tensors. The tensor Vjy; is the first irreducible
part of the irreducible decomposition of the elasticity tensor and is defined as

Vijkt == Clajy,

where the tensor Vj;i; is obtained by complete symmetrization of the indices of the
elasticity tensor. The term C(;;1 is defined as:

1
4!

+Cjirt + Ciar + Ciiki + Ciir + Criij + Chriji + Crjti + Chja
+Crij + Criji + Ciji + Cijii + Ciij + Cuji + Crjir + Clikj)-

Cijry = 7 (Cijir + Cirtj + Cajr + Carj + Cigi + Ciju. + Cirai + Ciuin

The more compact form of first irreducible part is:
1
Viji = g(cijkl + Cirij + Cij).- (4.9)

The second irreducible part of the irreducible decomposition of the elasticity tensor
is Wijr and is given by

Wiir = Cijir — Vijia, (4.10)
or

1
Wik 1= g(zcijkl — Cuk; — Cirij)- (4.11)
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If we apply total symmetrization on the indices of both sides of Eq. (4.10) then we
get the new result i.e.,
Wiijkt) = Cigrty — Viagrny = 0

Proposition 3: The tensor W satisfies the additional symmetry
Wiy =0 or Wijr + Wiy + Wi, = 0.

Proof:

1
Wik = §(Wz‘jkz + Wikt + Wi + Wik + Wik; + Wikit) (4.12)

By definition,

1 1

Wik = g(QCijkl — Cikj — Cirtj)y Wik = g(QCiklj — Cijik — Cujk)
1 1

Wik = 5(20113'1@ — Cirjt — Cijir), Wi = §(2Oijlk — Citi; — Ckj),

1 1
Wi; = 5(2Cilkj — Cijir — Cinjr),  Wikji = §(2Cikjl — Cijr — Cijik),

using these terms in Eq. (4.12) and then we have

1
Wigky = E(Qcijkl — Cukj — Cirij + 2Cirij — Cijie — Cuj, + 2Cu51 — Cigji — Cijrl

+ 2Ci5 — Ciktj — Caj + 2Cuk; — Cijer — Cikji + 2Ciki — Cujr — Cijik)
=0.

Hence the proposition 3 is proved.
4.2.1 Tensors Vi and W,
The major symmetry holds for the tensors Vi and Wiji.

Proposition 4: The partial tensors V;jz; and W, possess the major symmetry
Vigt = Viiy = 0, Wi — Wiy = 0.
Proof:
1 1
Vijkt — Vg = g(Cz'jkl + Cipj + Cuji) — E(Cklij + Criji + Crjii)

1
= g(cijk:l + Ciki; + Citjk — Criij — Criji — Cijii) = 0.

26



1 1
Wikt — Wiy = 5(2C5m — Cikj — Cigtj) — 3

3 (2Cki5 — Crji — Crijt)
(2Csjk — Ciakj — Cigt; — 2Ckiij + Crju + Chriji) = 0.

1
3

Hence prosposition 4 is proved.

The partial tensors Viji and Wi, hold the minor symmetries.

Proposition 5 : The minor symmetries hold for the partial tensors V;i and Wi
Vit = Vijiey = 0, Wi = Wijey = 0.

Proof : By definition,

1
Vit = 5(Cligirt + Clatwals) + Cige)

1.1 1 1

= g[i(cijkl — Cjirr) + i(ciklj — Cjpii) + §(Ciljk — Cjiir)]
1

= E(Cijkl — Cjirt + Cirij — Cinii + Citjre — Cjux) = 0.
1

Wiijie = 52C%ugm = Cliz) — Cllwal)

1.1 1 1

= 5[52(()@'1@1 — Clim) — §(Cz‘lkj — Ciiki) — §(Ciklj — Ciii)]

1
6

Similarly, we can prove the right minor symmetry for V;i; and W;jj,; tensors. Hence
proposition 5 is proved.

(2C3k — 2C5i0 + Cinj — Ciiki + Cigtj — Clgii) = 0.

4.2.2 Vector Spaces of V and W

The vector space of elasticity tensor Cj;; is denoted by C and has dimensions 21.
The vector space of the partial tensors Vi and Wiy, satisfy all the properties of
C. These irreducible tensors are subspaces of the vector space C. The irreducible
decomposition of the elasticity tensor means the reduction of C' into the direct sum
of its subspace V for the tensor Vj;i; and subspace W for the tensor Wjjy is given
by

CcC=VaoW (4.13)

The intersection between the vector spaces V' and W is empty. It is a unique de-
composition of the corresponding tensors. The sum of the dimensions of the two
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subspaces V' and W is equal to 21. The tensors Vi, and W, are the two irre-
ducible parts of the elasticity tensor. These tensors preserve their symmetries and
also satisfy the minor and major symmetries of the elasticity tensor.

Vector Space of V

The dimension of the vector space V is 15. Consider

Cn Cip Ci3 Cuy Ci5 Cig
Coy Oz Coy Cas Cog
C33 O3y Cz5 Csg
* 044 * *
* 054 C55 *
* O Ces Ceg

* % X X ¥

*
*
*
*

If the tensor is totally symmetric

C112 = 01122 = C11212 = C1667
Cl3 = 01133 = C’1313 = C’557
CV14 = C’1123 = CV1213 = 0657
C123 = 02233 = C12323 = C1447
C(25 = C’2213 = C(2123 = C’647
C’36 = C’3312 = C’3132 = 0547

In this manner only 15 independent components are left. Hence the dimension of V'
is 15.

Vector Space of W

The dimension of the vector space W is 6. Egs. (4.13) shows that the vector
space of the tensors W has dimension 6.

Vijiu and W, Tensors in Voigt’s Notation

The irreducible decomposition can be written in Voigt’s notation because this de-
composition holds the minor symmetries. In Voigt’s notation the Eq. (4.8) is given
by

CIJ — ‘/IJ —+ WIJ Wlth C[]J] == ‘/[IJ] - W[]J] = 0 (414>

Virg) and W5 are the 6 x 6 matrix. They have 15 and 6 independent components
respectively. By using the definition of the tensor V;;i; and W, we will calculate
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the components of the tensors Vj;,; and Wjji in Voigt’s notation as mentioned by
Voigt [6]. First, by using the definition of the tensor Vjjj; i.e.,

1
Vil = 5(01111 + Cin + Cin), (4.15)
where i, j, k,l = 1. We write Eq. (4.15) in Voigt’s notation i.e.,
1
Vii = 5(011 +Ci + Chy) = Chy,

Similarly,

Vag = Coa,  Vag =Cs3, Vis=0Cis5, Vig = Cig,
‘/26 = C(267 ‘/24 == CY247 %4 = CY347 ‘/35 == CY357

1 1 1
Vie = 5(012 +2C), Viz= §(013 +2C5), Viu= 5(014 + 2C56),

| | 1 (4.16)
Vaz = 5(023 +2C4), Vas = g(cbs +2Cs), Vas = 5(036 + 2Cys).
Now, we have use the definition of the tensor W;;,; then put ¢, 5, k,l =1 i.e.,
1
Wi = 5(201111 — Cu — Cun),
W11 = 0.
The first component of the tensor Wj;i; is equal to zero in Voigt’s notation.
Similarly,
2 2 2
Wi = g(clz —Ce6), Wiz = 5(013 —Cs5), Wu= 5(014 — Cse),
(4.17)

2 2 2
Was = 5(023 —Cu), Wa = §(025 —Cu),  Wse = 5(036 — Cls).
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These 6 components are linearly independent.
decomposition of Eq. (4.14) as follows:

Cn Cip Ci3 Cuy
¥ Oy Oy Oy
* * 033 034
* * * 044
* * * *
* * * *

C’1 5
C125

Vin Vi Vig Viy
* Vop Vo3 Vi
* * Vi Vay
* * x Vi
* * * *
* * * *
0 Wi Wiz Wiy
* 0 ng 0
* % 0 0
* * * W44
* * * *
* * * *

Vis
Vas
Vas
Vis
Vss

*

0
Wos
0
Was
Wis

*

Explicitly, we can presented the

(4.18)

Where * denotes the dependent components of the tensors Vi and Wi e.g. Vig =
Vo1. These components Viy = Vas, Vis = Vag, Vig = Vs, Vis = Vig, Vig = Vig, Vs =
Vig, Way = _%W237 Wys = —%W%, Wi = —%Wzm Wss = —%Ww? Wse = —%me
Wee = —%Wu are independent. Now, we have to use the values of these components

in Eq. (4.18).

Cll Cl2 C'13 C'14 015

* Oy Chy Coy Oy
* * Oz Oy Css
X * 044 045
* * * x  Css
* * * * *

Vi1 Viz Viz Vyy
* Vaz Va3 Vo
* LS V33 V34
* * * Vas
* * * *
* * * *

* % ¥ x * O

W12 W13 W14

0 Wy 0
* 0 0
* *

* * *
* * *

Vis Vs
Vas Vg
Va5 Vag
Vae  Vas
Vis Via
* Via

0 0

W25 0

0 Wise

1 1 1
Wy —iWis —LWas

1 1
—sWiz —5Wi

*

1
~Iwy,

Here, the independent components of the tensors Viji and Wi, are represented by
boldface and these three matrices are symmetric.
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4.3 Comparing the Irreducible and Reducible De-
compositions with each other

VW and RS are two different decompositions of the elasticity tensor. Now, we want
to compare these two decompositions.

Cijrl = Rijii + Sijrr = Vijia + Wijna - (4.19)
21 21 6 15 6

The dimensions of the corresponding above mentioned vector spaces have shown
clearly. We explain that the two tensors Wijz and S;ji; can be formulate in terms
of each other because these tensors have the same dimensions. S;ji; is the part of
reducible decomposition which is antisymmetric with respect to the indices 5 and k.

Proposition 6: The reducible part S;j;; can be expressed in terms of the tensor
Wi which is irreducible elasticity tensor as given by

Sijet = Wilji- (4.20)
the inverse of the above expression can also reads,

4
Wit = §5¢j(kl)-

Proof: By definition,

1
Wik = §<20ijkl — Cuk; — Ciij)

1
Wigin = 5 Cimn =~ Caieg) = Citwi)

1 1
1

= 6<2Cijkl — 2Cikj1 — Cirij + Cijik)
1

= §<Cijkl — Cijt)

= Sijki-

Hence the first part of this proposition is proved. Since

Sijkt = Wi

1

Sijel = §(Wijkl — Wikit)
1

= §<Wijkl — Wikij)
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1
Sijkty = §[Wm‘(kl) — Wiga- (4.21)

Here, W fulfills the right minor symmetric such that
1 1
Wity = 5 Wije + Wijie) = 5(2VVijkl) = Wijn.

2
Using the value of W;;) in Eq. (4.21) then we get,
1
Siji) = 5Wijkt = Wigay)
1 1
= é[vvijkl — §(Wiklj + W)
1
= Z(2Wijkl — Wiktj — W) (4.22)
From proposition 3, we have Wiy, = —Wijk — Wik, using this value in Eq. (4.22).
1
Sijkty = Z[QVVZ‘jkl — (=Wijra — W) — Wag]
1 3
= Z(SVVijkl) = ZWijkL
In other word, we can also write
4
Wijr = gsij(kl)~

Hence the second part is also proved.

Proposition 7: The reducible tensor R;j; can also be defined in terms of the
irreducible tensors of the elasticity tensor

Rijrr = Vi + Wiy

Proof: The tensor R;;i and S;ji, can be defined in terms of the irreducible parts.
Now, using Eq. (4.20) in Eq. (4.19) then we have

Cijki = Rijrr + Wi = Vi + Wijn (4.23)
again solve Eq. (4.23) with respect to the tensor Rk,
Rijrr + Wi = Vijr + Wijn
Rijie = Vig + Wi — Wi
1
= Vijur + Wijte — = (Wijw — Wikjt)

2
1
= Vijr — 5(2M/ijkl — Wikt + W)
1
= Vijr — §(Wijkl + Wikji)-

Hence the proposition 7 have proved.
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4.3.1 Irreducible Tensor WW;;,; and Symmetric 2nd Rank Ten-
sor

Haussiihl introduced, A,,,, a symmetric 2nd rank tensor [16] associated with W

Amn = igmilgnjkvvijkla (424)
where €, = 0,%£1 is a Levi-Civita tensor. It is necessary to represent the tensor
Wijr as a symmetric 2nd rank tensor in 3D space. Applying the operator (%&mj),
we can easily map a index pair 27 which is antisymmetric to the corresponding vector
index m. Since we know that the tensor W;;; has four indices, so we can apply the
operator € twice.

Proposition 8: The irreducible tensor Wj;i; of the elasticity tensor can be rep-
resented as a symmetric second rank tensor is given in Eq. (4.24) with the inverse

Sijkl = EikmﬁjlnAmn or I/Vijkl = 6'L'm(k‘El)jnAmn7 (425)

Proof: First, using the definition of A,,, and apply anti-symmetrization over the
indices m and n.

1
Apn) = Zg[m\ik\gn}jlmjkla

11

Z[g(gmikgnjl - 5nik5mjl)Wijkl]7
1

= —(EmikEnjt — EnikEmit) Wi,

8

gﬁmikt?nleVijkz — §€m'k5mszz‘jkl,

Now, interchanging the indices ¢ <— j and k <— [ then

1
Appn) = §€mik€nﬂVVijkz — gfnjﬁmikwjuk,
1
= §€mik€njz(Wz‘jkl — W),
=0.
So,
1



We take the second rank symmetric tensor

1

A’nm - nguvgnwquwxv (426>
1
6ikmejlnAmn :Zeikmejlnemuvenwxwuwmv

1

= Z [(emzk Emuv) (enjlenwx)] Wuwxv
1

:Z[((Szuékv - 5i05ku)(5jw5lz - 6j9351w)]Wuw93v
1

:Z(Wijlk — Wik — Wijti + Whaji)
1

=§(Wijm — Wijk) = Wik

=Sk

Hence we have proved the first part of this proposition.
Wijkl = 6im(kel)jnAmn (427>

using Eq. (4.26) in above equation then we have

Wijk:l :E( imk€ljn + Eimlekjn)Amn

25 (Eimk‘sljn + 6iml@cjn> (Zemuvenmeuwmv)

1

R (eimkeljnemuvenwx + Eimlekjnemuvenwx)wuwxv

1
:g(aivéku(;lwéjz - 6iv5ku5la36jw - 5iu6kv51w5jx + 6iu6kv5la35jw + 6iv61u5kw6jx - 5iv5lu5k:r5jw

- 5iu5lv 5kw6jx + 5iu5lv5kx(5jw)wuwmv
1

S(Wklji — Wiiti = Wajk + Wijie + Wikgi — Wiiki — Wikg + Wijw)

by using the symmetries of the tensor W;;j; then we have
I/Vijk:l = Eim(k‘el)jnAmn

Hence the second of this proposition have proved.
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4.4 Irreducible Decomposition Under the Rota-
tion Group SO(3)

The special orthogonal group, denoted by SO(3), is the subgroup of orthogonal
matrices with determinant +1. Under this group, the elasticity tensor of 21 inde-
pendent components is irreducibly decomposed into the sum of five independent
pieces [17]

5
Cijil = Z @Cim = (DVigrg +@ Vijia +3 Vi) + (OWij +3 W), (4.28)
a=1

where these pieces are invariant and unique under the action of rotation group
SO(3). The vector space of the elasticity tensor into five subspaces can be written
as

C=Wca®Cca® ) WCca® ).

Since Vjji is a totally symmetric 4th rank tensor. Now, we construct the unique
totally symmetric 2nd rank tensor and scalar with the help of contraction of Vjjy
with the Kronecker delta.

Vii = 0k Vijrt = Vijkk,
1
= 5kl§(cijkl + Cirij + Cijk),

1

1
= g(oijkk + 2C5kk5),

and the contraction of the Kronecker delta with the totally symmetric 2nd rank
tensor is

V' i=04Vij = Vi,

1
= §(Ozzkk: + 2Cikki)

The traceless part of the totally symmetric tensor V;; is defined as

1
Tij = ‘/ij - §V5ij; with 52‘3',11']‘ == O,

where T}; is a traceless tensor because its trace is equal to zero Tj; = V;; — %V(Sii = 0.
The sub-tensor (1)V,~jkl of the irreducible tensor Vjj; is defined as

OViikt = 0V 50k,
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1
(1)Vijkl :Uv[ﬁ((sijfskl + 0015 + 0510k + 0irOrj + dirdjt + 04501 + 0jx0u + 0510k
+ 00k + 0;01 + 010k + 0;10i1 + Ok10i; + Oki0j1 4 k01 + Okj0u
+ 0i01j + Ori0ji + 0130k + 010ki + 0u0ij + Ouedji + 10k + 01i0k;)],
8
OViim = nv[ﬂ<5z’j5kl + 001 + 0udjn)]- (4.29)
The second sub-tensor (Q)ijl of the tensor Vjj; is defined as

OV = ET0m),

4
(2)Vijkl = §ﬂ

The third sub-tensor (3)‘/;jkl is defined as

(T3j0m + Tirdj1 + Tudji + Tindu + Tidi, + Tridij). (4.30)

OViik = Riju,

where the tensor Rijp = Vijr — Viju —? Viju is the remainder which is totally
traceless. The trace of the tensor R;ji; is also equal to zero. Now we calculate the
values of 7 and &

Riirt = Vi =Y Viigg = Viga

40 28
= Vi — =V — —¢T)
0=Vu 2477V5k1 245 el )
40 28 1 .
= Vi — ﬂﬁv@cz — ﬂﬁ(vm — §V6kl)
5) 7 7
= Vi — gUV(Skl — ékaz + Ef‘/(sm

from Eq. (4.31) comparing the coefficients of the V}; and V', then we have

1 6
n= 5 § = 7
Using the values of n and £ in Eqgs. (4.29) and (4.30) then we have
1
DViin = 1_5v(5ij5kl + 0015 + 0udn),

and
1
(Q)Vijkl = ?(Tijfskl + T + Tudjn + Tinda + Tjdi + Thidij)-
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The vector spaces of these sub-tensors are denoted by MV, @V and ®V. These
sub-spaces are mutually orthogonal such that (a)‘/;jkl(b) Vijiw = 0 for a,b =1,2,3 but
a # b. If we take a = 1,b = 2 then we can show that

1
OV ® Vi = ﬁv[éijéklﬂﬂkl + 050k Tindj1 + 040k Tudjn + 05j0rTjndir + 05j0naTji0ak + 05j0niTridi
+ 5ik5jll-z—;j5kl + 5ik5jlﬂkzéjl + 5ik5lez‘l(5jk + 5ik5lejk5il + 5ik5lejl5ik + 5ik5lekl(5ij
+0adjnTij0u + 0udjnTiwdji + OudjTudk + dudjTindu + dadjTud + dudjnTidis]
1
- EV(TMS’“’“ + T + Ty + Ty + Ty + Tris + Tii + Tirds + T
+ TiiT50i + Tyj + Tii + Tii + Tiad; + Tj0u + Tiae + Tj5) = 0.

The dimension of the vector spaces MV, @V and ®V are

V=Wye®yedy,
15=1+5+9.

We know that the symmetric 2nd rank tensor has 6 dimensions but totally symmet-
ric 2nd rank tensor has 5 (6 —1 = 5) because of the relation Tj; = 111+ T2+ T33 = 0.
Since symmetric 4th rank tensor has 21 dimensions but totally symmetric 4th
rank tensor has 9 dimensions. The reduction in dimensions is due to the relations
Rijii = Rij and the tensor Ry;p. This relation R;ji = R reduces the dimensions
to 15 (21 — 6 = 15) while Ry further reduces to 9 (15 —6 = 9).

We turn now to the second irreducible 4th rank tensor with 6 independent com-
ponents. It can be represented as a symmetric 2nd rank tensor A,,, is given in
Eq. (4.25). In order to decompose the second irreducible tensor Wj, it is more
appropriate to use its representation by the tensor density as

W = 6yan o, (4.32)
Using the definition of A,,, in Eq. (4.32) and we have

1
W = _5mn€mil€njkvvijkl

3
1
= §(5ij5kl — 0ik0j1) Wijki
1
= g(Wnkk — Wikik)
1
= g(cz’ikk — Cikik)-

A;; can be decomposed into the scalar and traceless parts:
1
Aij = Qi + Wy (4.33)
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where the symmetric and traceless tensor );; is

1

Qij = Aij — gW(S”

The decomposition of second irreducible tensor W;;; under the rotation group is
Wikt = Wije +® Wijpa.

By using Eq. (4.33) in Eq. (4.25), we get the values of the sub-tensors VW5, and
@w..
ijkl

1
Wijkl - §(€imk€ljn + EimZijn)Amn

1

- §(€imk€ljn + eimlekjn)(an + gW(Smn)

1 1
= _(Eimkeljn + Eiml‘flcjn)CQW’m + _W<€imk€ljn + Eimlekjn)(smn

2 6
= éW(Q(Sijfskl — 0ubjk — Oikdj1) + %(&'k@jl + 0k Qa + 0uQjk + 0 Qir — 204;Qr — 2011Qi5)
where the scalar part is
OWiin = éW(25ij6kl — 0ubjk — Oikdjr),
and the remainder part is

1
OW,jh = 5(&%@;‘1 + 0,1 Qu + 0uQjk + 0 Qi — 20;j Qi — 20 Q).

The vector space of these sub-tensors are denoted by W and @W and the corre-
sponding dimensions of these vectorspaces are

w=0wg®@w,
6=1+5.

These subspaces are mutually orthogonal to eachother,
(l)w/z'jkl@)wijkl =0.

Theorem : The elasticity tensor Cj;i; is decomposed into 5 pieces under the action
of the group SO(3) [17]

Cigrr = (DWVigr +2 Vg +P Vigra) + (DWW +& Wign).
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This decomposition corresponds to the direct sum decomposition of the vector space
of the elasticity tensor into five subspaces

C=Woca®ca®C)e(@Wcab 0,

with the dimensions
21=(1+54+9)+ (1 +5).

The irreducible pieces are orthogonal to one another: for a # b
) Ciju® Cijry = 0.

The Euclidean squares, C? = CijrCijr and (“)Cijkl =(a) C’ijkl(“)@jkl witha=1---5,
fulfill the “Pythagorean theorem:”

C=(Wc?e® Cc?a® ) o (WC? a® C?).

It should be noticed that the reducible decomposition RS cannot be understood
directly by the elasticity tensor because these tensors do not fulfill the symmetries
of the elasticity tensor.
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Chapter 5

Applications of the Irreducible
Decomposition

In the previous chapter, we have discussed the RS-decomposition and V' W-decomposition
of the elasticity tensor. The first decomposition is reducible and the second decompo-
sition is irreducible. In this chapter, physical applications of the VW -decomposition
discussed by Itin [18] are reviewed. The irreducible parts V;i; and Wjjy can be used

in all physical applications because the reducible parts R, and Sjj, cannot be
interpreted directly as elasticity tensors.

5.1 Cauchy Relations and Cauchy Factor

Definition of Cauchy Relations

The Cauchy relations are defined so that the second irreducible tensor of the V-
decomposition of the elasticity tensor Wy vanishes (Wi, = 0). It is noticed
that from proposition 8 the tensor S;jn and a symmetric 2nd rank tensor A,
also vanishes and from Eq. (4.8) we conclude that elasticity tensor Cjjj; is totally
symmetric tensor (Cij, = Cljkiy)- Moreover, according to the definition of the
tensor S;i, Eq. (4.1) can be written as

Cijtt = Cikjt, (5.1)
where Eq. (5.1) are called Cauchy relations. An alternative form of Eq. (5.1) is
Cijkl — Cirji = 0.

During the early days of modern linear elasticity theory, Cauchy formulated molec-
ular models for elastic bodies based on 15 independent elastic constants. According
to Eq. (5.1), there are 6 non-zero components of Cauchy relations that holds. In
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addition to the relations due to the minor and major symmetries, Cauchy relations
give the following relations [6, 7]:

C’1122 = 012127 01133 = C'31317 02233 = C'23237
C’1123 = C’12137 C’2231 = 02321’ 03312 = CV3132-

In Voigt notation, these non-zero components can be written as:

012 = 066; C(13 = 0557 023 = CY44
014 = C56a 025 = 0467 C’36 - 045-

A lattice-theoretical approach shows that the Cauchy relations are valid provided
the following conditions hold [19]:

e The central forces are the forces of interaction between atoms or molecules of
a crystal.

e Every atom and molecule is a center of symmetry.

e The interaction forces between the building blocks of a crystal can be well
approximated by a harmonic potential [20, 21].

Cauchy versus non-Cauchy Parts in Elasticity

In Cauchy relations, the tensor W;;i; is equal to zero. As a consequence, the totally
symmetric tensor Vjji is called the “Cauchy part” of the elasticity tensor Cjji
which is also known as “main part” while “non-Cauchy part” of the elasticity is
called Wiji. It is also known as “deviation part”. When we take Sj;i; tensor as a
deviation part in the RS-decomposition, it means that R;j; is the co-partner of the
tensor S;;i; and has 21 independent components. It is also noticed that R,y itself
becomes an elasticity tensor Cj;r;. Moreover, it is assumed that the tensor S;;i is
equal to zero then the tensor R;j is restricted to 15 independent components. The
RS-decomposition creates problem for the identification of the deviation part. The
identification of the deviation part can be solved by using the VW -decomposition
which is an irreducible.

Definition of Cauchy Factor
We can define the Cauchy factor, a dimensionless quantity as

Vit Vijki

0 < F, =
= LF'Cauchy Cijkloijkl

<1. (5.2)
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In a tetragonal material, the matrices Vj;i; and Wij, are

Cii 3(Cia +2Ce5) +(Ci3 4 2Cs5) 0 0 Cie
* Cll %(Clg + 2055) 0 0 _016
Vs — * * 033 0 0 0
CLI I * * %(013 + 2C55) 0 0
* * % * %(Clg + 2C55) 0
* * * * 5(Ch2 + 2Cg0)
and
0 %(012 — Ceg) %(013 — Css) 0 0 0
* 0 %(Clg - 055) 0 0 0
* * 0 0 0 0
Wijw = * * * %(044 — C3) 0 0
* * * * %(044 - 023) 0
* * * * * %(066 - C'12)

By taking the square of both tensors Vj;i; and Wjx, we get the following form
1 1
ViiaVigin = 2(C11)? + 6{5(012 +2Ce6) }* + 12{5(013 +2Cs5)}? + (C33)* + 8(C16)?,
and
2 2 2 2 1 2 1 2
WiitiWij = 2{5(012_066)} +4{§(Cl3—055)} +8{§(C44—023)} +4{§(066_012)} .

Consider indium which is a tetragonal material whose Cj; = 4.53x10'°°Nm =2, C}, =
4.0 x 1010Nm_2,C’13 = 4.15 X 1010Nm_2,C’33 = 4.51 X 1010Nm_2,C44 = 0.65 x
10'°Nm=2, Ces = 1.21 x 10'Nm =2 and Cjg = 0 x 10'° Nm 2. Using these values in
above equations we get
ViiuaVigin = V? = 128.46,
WijaWijw = W? = 43.05,
CijuCijrn = C* = 128.46 + 43.05 = 171.51.

By substituting the above values in Eq. (5.2), the Cauchy factor is

Feaueny = 0.9.
In a hexagonal material, the matrices Vj;i; and Wi are
Ci 5(Cun) 3(Crs + 2Css) 0 0 0
X* 011 5(013 + 2055) 0 0 0
Vi — * * 033 0 0 0
CLUNE . * %(C13 +2C’55) 0 0
% * * 5(Ci3 +2C55) 0
* * * * %C’H
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and

0 2(Cip—Cgs) 2(Ciz — Css) 0 0 0

* O %(Clg — 055) 0 0 0

* * 0 0 0 0
Wijkl o % * k %(044 — 023) 0 0

* * * * %(044 — C3) 0

* * * * * —30115012
Similarly, we also get

1 1

Vi Vigin = 2(C11)? + 6(5011)2 + 12{5(013 +2Cs55)}2 + (Cs3)?,

and
3C1H — Ch2

2 2 1
WiitaWijn = 2{5(012_066>}2+4{§(013_055>}2+8{§<C44_C23)}2+4{ 5 2,

where Cgg = %(36’11 —C'2). Consider Beryllium which is a hexagonal material whose
Ci1 = 29.23 x 1010Nm’2,C’12 = 2.67 x 1010Nm’2,013 =14x 1010Nm’2,033 =
33.64 x 10°°Nm=2 and Cu = 16.25 x 101°Nm=2. Using these values in above
equations we get

ViiaViji = V? = 4942.32,
WiiaWijm = W? = 9227.33,
CijiCiji = C*~14169.65.
By substituting the above values in Eq. (5.2), the Cauchy factor is

FCauchy = 0.6.

5.2 Strain Energy Function

The strain energy function is expressed by Eq. (2.10). When the generalized Hooke
law is used in Eq. (2.10) results into Eq. (2.12). Because of the irreducible decom-
position Eq. (2.12) can be written as:

1
Q= §(Vijk;l + Wijk)€ij€ni,

1 1
= EVijklaijskl + §Wijk15ij5kl‘
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The above expression of the strain energy function can be separated into two parts,
one is a Cauchy and other is a non-Cauchy part which makes good sense in physics.

1
Q) = Evijk'lgijgkla Qo) = §VVijkl€ij€]€l.

Where ¢y and Q,¢) are Cauchy and non-Cauchy parts respectively.

Therefore the tensors Vjji; and Wi, with respect to their dimensions and symme-
tries, are Cj;,; themselves. Since the strain tensor ¢;; can be expressed in terms of
the displacement gradients according to

_ Ou;

Using Eq. (5.3) in Eq. (2.12) then we get
1 ou; (‘9ul
O=-Ciy—2——r. 4
2 O, Oy (5:4)

5.3 Null Lagrangian in Linear Elasticity

Euler Lagrange Equation

The Euler Lagrange equation is a second order partial differential equation whose
solutions are the functions for which a given functional is stationary. A differentiable
functional at its local maxima and minima. The Euler Lagrange equation is given
as

. oL d 0L

where t is time, ¢ is coordinate point and ¢ is derivative of ¢ with respect to time t.

(5.5)

Null Lagrangian

A null Lagrangian is one whose Euler Lagrange equation vanish identically [22].

Existence of Null Lagrangian in Linear Elasticity

In the theory of linear elasticity, a null Lagrangian defined as that part of the strain
energy functional, which does not play any role in the equilibrium equation.

The RS-decomposition is used in Eq. (5.4) then the energy density of a material
which is deformed is formulated explicitly as
1 Ou; Oy 1 Ouj Oup 1 Ou; Oy

0= —(R.: I S M A » SN M ATl AN Ml .
2 (Rijwt + Signi) 0x; Oxk QRUM ox,; Oxp + ZS”M Ox; Oxy,’ (5:6)
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since Cjjp; holds the minor symmetries. The left minor symmetry of the elasticity
tensor Cjjp is used in the above equation and again we rewrite the Eq. (5.6) as

1 ou; Oy, 1 Oou; Ou; 1 ou; Oy,

V= _Ciyjnmr—5—=zRijum—5—+ =Sij=—7—-
2 jkl0$j8:vk 2 ]klﬁxjﬁxk+2 ]klaxjaxk

(5.7)

Obviously, the sum of two tensors R;;i and Sjj, are not changed while every single
term of Eq. (5.6) did change because the left minor symmetry does not hold for the
tensors R;jp and S;jp. Since the last term of Eq. (5.7) may be written as

1 0 oy, 1 Oou; Ouy 1 0 oy

2513kla ( 8ZE]€) = Szjkla a I + = Szykl 18 <8Ik
1 Ou,; Ouy 1 0 ouy 1 0 Oy
55”’“8_@0_% 25”’“8 (s axk) g Dkl (8xk) (5:8)
using the Eq. (5.8) in the last term of Eq. (5.7) as
1 ou; Ou; 1 0 oy, 1 0 Oy
1= Rz]kl o a T + = Szgkla ( afL’k) 2Sz]kluza (al'k (59)

Since Sj(jry = 0 and = 0, the last term of the above equation vanishes and

Bx 890
the remaining terms are

1 ou; 8ul 1 0 oy
V=
Rzykzla a - + S’L]k‘la ( aSCk)

(5.10)
where in Eq. (5.10) the second term is total derivative term [23]. It is also known
as S-term. Thus, the first term, R-term, is involved in the variational principle to
determine the equations of motion. This term is also involved in the equilibrium
equation for solving the problem of null Lagrangian for the theory of linear elasticity.
This result was described by Lancia et al [23]. By using propositions 6 and 7 in Eq.
(5.10) then we have

1 ou; ﬁul 1 0 ouy

0= ‘/z VVZ Wz
5 Vigkt + Wigin) 5~ o 41 5 E k)

1 1 ou; 8ul 1 0 oy,
Q= 5[‘@%1 + §(VVijk:l + Wikjl)]a 8 o + W[]k]la (u; 5 k) (5.11)
Subsequently, using proposition 3 in Eq (5.11).

1 1 ou; Ou; 1 0 oy

Q= Vi — 5 W, Wi 5.12
2[ Jjkl — l]k‘]a a T +3 [Jk]la ( axk) ( )
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Therefore, in Eq. (5.12) the tensor Wjjy is included in the total derivative term. If
Cauchy relations hold then this tensor vanishes. However, in the first part of strain
energy functional the tensors Vj;i; and Wy, appear together.

The problem is to identify the null Lagrangian part of the elasticity Lagrangian
and then identify the set of elastic constants which contribute to the equilibrium
equation. Eq. (2.12) can be turned into RS-decomposition as shown in Eq. (5.10)
hence it acts as a Lagrangian functional. Also it generates the equilibrium equation
along with the variation relative to displacement field.

Our considerations, the equilibrium conditions for the Lagrangian given in Eqg.
(5.12). The variation of this Lagrangian up to a total derivative term reads as

1 1 ou; Ou
o) = §[Vijkz - §Wz‘ljk]5(a (%;
5.13)
1 1 0 ou;  Ou; , O (
= 5 Vi = §W“jk“(8_xj(5ui))axk + axj((?xk (0w))].

Since, both the tensors V;i; and Wy, hold the major and minor symmetries. The
last term of Eq. (5.13) can be added:

1 1 8 ou  Ouy, O
1 8 6ul '
= (Viju — 5‘%1;‘1@)[(6 (5“’))ax J-
The above equation can also be written as
i 1 0 Gul 0 6ul
60 = [Vzgkl §VVzljk][a (5%8%) ou 20_%(8_mk
1 0 Oul 1 0 8114
= (Vijui — §Wz]kl)a (5“’axk) — (Vijl — zmlgk)5uza (8a:k
and the equilibrium condition is taken as:
1 0 8ul
(Vi = 5 Wajk)0uig— (axk =0. (5.15)

By using the propositions 3 and 7 in Eq. (5.15) and knowing that du; # 0, the above
equation can be written as:

0 8%[

(V;Jkl + W ]k )ax] (axk
0 8ul

it g (6xk
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Since Riju = Cjjry and %%ﬂ = 0, the standard equilibrium equation becomes

0 (9ul .
Ci(jk)la—xj(a_xk =

or

@ (7ul .
Jkla_x](a_xk) =0. (5.16)

C;

The total derivative term is the part of strain energy functional. It does not play
any role in the equilibrium equation Eq. (5.16) in which the set of elastic constants
contribute but does not remove any subset of the elastic constants. Thus, null
Lagrangian does not exist for an arbitrary material.

5.4 Acoustic Wave Propagation

The equation of motion comes from the fundamental 2nd law of dynamics
F =ma, (5.17)

where F' is the forces, m is the mass and a is the acceleration. Eq. (5.17) can also

be written as
Z F = ma,

82u1-
body forces + surface forces = mw,
00;j 0,
bi 2= - )
Pt o, o

where m is the mass density, b; is the body force density. When we ignore the body
forces then
aO'ij . 82’&1'
ox; o
and using the generalized Hooke’s law in Eq. (5.18) then we have
0%y 0%u;

it gy den "o

(5.18)

This is called equation of motion. In the theory of linear elasticity, the wave propa-
gation in anisotropic media is describe as:

azul 62ul

ij — pd;
C]kl(%cj(?xk PO o

— 0, (5.19)
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where w; is the displacement co-vector that depends on time as well as space coor-
dinates. The elasticity tensor, Cjjx, mass density, p, and Kronecker delta, ¢;;, are
coefficients (constants). In reference [24] a solution is assumed i.e.

uy = Upelrizimet) (5.20)
A system of three homogeneous algebraic equations is obtained
(Cijm&njny, — pdyw®)U; = 0, (5.21)
which has a non-trivial solution if and only if the characteristic equation holds
det(Cym&niny, — pdyw?) = 0. (5.22)

The algebraic Eq. (5.22) takes the form

(T — v*0u)U; = 0, (5.23)
where
1
Iy = ; iR M (5.24)
w
v=—,
§

and the characteristic equation becomes
det(Ty — v29y) = 0. (5.25)

The Christoffel tensor becomes symmetric with respect to the major and minor
symmetries of the elasticity tensor as below

1
Iy = ;Cljkinjnk’

1
= ;Ckiljnjnm

1
= ;Cikanjnk,

1
= ki,
p

=T'y.

Therefore, its eigenvalues and eigenvectors are real and orthogonal respectively.
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Decomposition of the Christoffel Tensor

Under the action of the group GL(3, R), a symmetric tensor, by itself cannot be
decomposed directly. But the VW-decomposition of the Cjji; generates the corre-
sponding decomposition of the I';. By using the VW-decomposition in Eq. (5.24)

i = (Vijie + Wij)nn,
L'y = Vijmngng + Wijun;ng,
Ly = Vi + Wy,
where Vi = Vijun;n, = Vi and Wy = Wiun n, = Wy;. These two tensors which

are symmetric correspond to the Cauchy and non-Cauchy parts of the Cjji;. Using
the values of Cauchy (Vjjz) and non-Cauchy (W) parts

1
Vi = Vijunng, = %(Cijkl + Cipij + Cujr )y,
1
Wi = Wijunjng, = 3_p<20z‘jkl — Cirtj — Cugj)njng.

Here, the two tensors V; and W are called Cauchy Christoffel and non-Cauchy
Christoffel tensors respectively.

Proposition 9: For every elasticity tensor, Cjji, and wave co-vector, n;,
Win, = 0.
Proof: Since W;; is non-Cauchy Christoffel tensor

Wang = Wijumnngng,
= Wi(jkl)njnknla
= 0.

Proposition 10: The determinant of the non-Cauchy Christoffel tensor, W;,, is
det (VVZ]) = 0.

Using the decomposition of Christoffel tensor in Eq. (5.23) and also can be written
as
(Vi + Wy — v*63)U; = 0,

where the characteristic equation is

det (V;l + Wy — U2(Sil) =0. (526)
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From the proposition 10, the Eq. (5.26) takes the form
det (Wzl — UQCSZ'[) = O,

where Vj; is equal to zero and det (W;;) = 0 so at least one of its eigen value is
equal to zero. It is noticed that Christoffel tensor is real and also symmetric, thus
all its eigenvalues are real and the related eigenvectors are orthogonal. We need
to satisfy the condition of positive definiteness of the matrix I';; to get three real
positive eigenvalues such that

i. all eigenvalues are distinct (vi > v3 > v3),

ii. two eigenvalues are equal (vi > v3 = v3 or v} = v3 > v3),

iii. or three eigenvalues are equal (v} = v3 = v3).

5.5 Polarization of Acoustic Waves

Acoustic wave propagation in an elastic medium is an eigenvector problem given
by Eq. (5.23) in which the phase velocity v? is the eigenvalues and in general three
distinct real positive solutions correspond to three independent waves i.e. VU, AU,
and ®U; and are called acoustic polarizations [24]. On the basis of polarization
vector waves can be classified as:

e Longitudinal Wave
e Transverse Wave

There are three pure polarization of acoustic waves for the isotropic material. One
is “longitudinal wave” that is also called compression wave and the other two are
“transverse waves” which are also called shear waves.

The polarization is directed along the propagation vector called longitudinal wave

is given by
7 X 7 = 0,

and the polarization is normal to the propagation vector called transverse wave is

given by
U7 =o.

In general, the three pure polarization waves do not exist for anisotropic materials.
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Now, we introduce a vector and scalar in term of Christoffel tensor and direction
vector such as

‘/; = Fijnj, V.= Fijnmj.

Since V; and V' depend only on the Cauchy part of the elasticity tensor given by
proposition 9

‘/i = V;jnj, V = Vijnmj.

Proposition 11: Suppose the vector n; denotes an allowed direction for the prop-
agation of a longitudinal wave then the velocity vy of the longitudinal wave in the
direction of the vector n; is calculated by the Cauchy part of the elasticity tensor

such as
VL :\/V
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Proof: Consider u; = an; for the longitudinal wave. According to Eq. (5.23)
becomes

(Tij — v*655)u; = 0,

(Ty; — v?6;5)an; = 0,

alymn; — v*8;am; = 0,

v2om; = Ty,

v2omm; = Tynin;,

v*nyn; = Lynng,

v =V,

v=VV,

where njn; =1 and I';ynn; = V.

Proposition 12: The three purely polarized waves such as one longitudinal and
the two transverse waves can propagate through a medium with a given elasticity
tensor in the direction 77 if and only if

Proof: Since I';; is a matrix which is symmetric, the eigenvalues and the eigen-
vectors are real and orthogonal, respectively. One of the eigenvectors of pure po-
larizations points in the direction of 7 if and only if pure polarizations are three.
Suppose

Vi =Tyny,

Vin; = T'ynin,

Ving =V,

Vining = Vg,

V.= vini.
Hence, the directions of the purely polarized waves depend on the Cauchy part of
the elasticity tensor.

5.6 Examples

5.6.1 Isotropic Media

The elasticity tensor is defined by Eq. (2.17). The first irreducible part V;jj; of the

elasticity tensor for the isotropic bodies can be expressed as
Vijki = Clijiry = M0aij0ky) + 1(drdijy + Scadjy),

5.27
= (A + 24)0(i0k1), (5:27)
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where 8(;;6x) = drdij) = d@djr). we can also write Eq.(5.27) as

(A +2p)

V;'jkl — (6ij6kl + 5ik61j + 51[5]’@)

The second irreducible part Wi i of the elasticity tensor for the isotropic bodies is
given by

A+ 2
Wijki = M0i;0k1) + p(di01; + 6:01) + (—:Sm(fsijfskl + 661 + 0adjn),
A+ 2 A+ 2 A+ 2
= A0ijOp + (o0 + 167051 — M(gijékl — <—3m5ik5lj — (3—m5iz5jk,

1
= 5(3)\5ij5kl + 310015 + 3103105 — A0ijOri — N0ir0yj — N0iGjk — 211050k — 2140:501; — 2010110 j),

1
= 5[2/\5ij5kl — 20050k — (A — 1) 0irdy; — (A — )30k,

[2(A = 1) dij0r — (A — 1) 0iri; — (A — p)dadjnl,

Wl =

N
Wik = TM(Q(SUCSM — Oikd1; — Oudjx)- (5.28)

Putting the values of the Cauchy and non-Cauchy parts in Eq. (4.8) then we get

A+ 2 A —
Cijil = (—3m(5ij5kl + ik01j + 0udji) + ( 3 #) (205001 — Oidij — 0udj), (5.29)
consider
(A +2p) _ (A=p)
o= T b= 3

Putting the values of a and § in Eq. (5.29) then we obtain
Cijrt = (03501 + 0ir01j + 0ubji) + B(20:50k — dirdi; — dadjk),
= a(6ij0r + 204101);) + B(26:00 — 26;101)5),
= Ozéij(skl + 20(5i(k51)j + 265ij5kl - 266i(k5l)j7

The RS-decomposition of the elasticity tensor for the isotropic material can also be
expressed as

Rijie = Cigry = Ni(jOry + 11(0sk65) + dadjn),
= (A + 1) 0Ok + 1030k,
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where 0;(;0r); and 0y = 0;,. Now for the tensor Sjji; as

Sigit = Clirr = AifOrgt + #(0igr0yy) + 0adisn ),
= A0if; 0 + p(Gifrdpg;),
= (A = 1) g Oryt,

where djj3 = 0 and &;0p;) = —0i(j0x;. Putting the values of the tensors R and
Siji in Eq. (4.1) and then we have

Cijii = (A =+ 1)0i(50ky + 103058 + (X — 1) 63 Onyr,
)
(

1 1
=(A+p [5(%% + 0irdjr)] + poudje + (X — M)[§(5ij5kl — 0ikdj1)],

A+ p)
2

N —
(0301 + 0ir0j1) + 105101 + %(&‘jékl — 0idj1)-

Consider

Using these values in the above expression then we have
Cijii = Oél(5¢j5kl + 0irdj1) + 5/5i15jk =+ ’Yl(5ij5kl — 0ir0j1)-

We know that in the Cauchy relations , the second irreducible part of the elasticity
tensor and the tensor S;ji; are equal to zero. In isotropic media, the Cauchy relations
are defined as

A= L. (5.30)

Putting Eq. (5.30) in VW-decomposition then we have

+2 —
Ciji = (M 3 M)[%’@gz + 61y + 0adjn] + (%)[25@%1 — 03015 — 00k,
= (0ij0r + dirdij + 6udj)-
and again putting the same condition in R.S-decomposition then we obtain

_|_ —
Cijul = (%)[5@'5191 + 0i051) + 110310 + %[@j(skl — 0irdjil,

= M((sij(;k:l -+ 5ik5jl + 5zl5]k)

With respect to the Eq. (5.30), the elasticity tensor is equal for RS- and VW-
decompositions. Therefore, when Cauchy relations hold then the tensors R;;,; and
Viji are same for the isotropic media.
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Cauchy Factor for Isotropic Media

The matrices of the tensors Vj;i; and Wjjy; for isotropic media are

Cy %On %On 0 0 0
% 011 5011 0 O 0
- * * Cll 0 0 0
Viji = * * * %C’U 0 0 (5.31)
* * * %CH 0
* * * * %C’u
0 %(3012 — CH) %(3012 — CH) 0 0 0
* 0 g(gom - CH) 0 0 0
* * 0 0 0 0
Wi = | * * —£(3C12 — C1y) 0 0
* * * * —%(3012 — CH) 0
* * * * * —%(3012 - CH)
(5.32)

By taking the square of both tensors Vj;i; and Wjx, we get the following form

1
ViiaVij = V2 = 3(C1y)* + 18{5(011)}2,
X , (5.33)
WiiaWij = W? = 6{5(3012 — )P+ 12{_6(3012 — )Y

Consider aluminium which is an isotropic material whose C1; = 10.73x10'Nm =2, C}, =
6.08 x 101°Nm=2 Cyy = 2.83 x 101°Nm~2. Using these values in Eq. (5.33) we get

Vit Vijin = V? = 581.05,
WiiaWijn = W? = 56.40,
CijtiCijr = C* = 637.45.

The Cauchy factor is
FCauchy =0.9.

Isotropic is a special case in which the main difference between these two decom-
positions become obvious. The VIW-decomposition determines the existence of two
parameters which are linearly independent of the isotropic medium while the RS-
decomposition also determines the existence of three parameters which are linearly
dependent. Now, calculate the characteristic velocities of the acoustic waves. We
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first find the Christoffel matrices from the tensors V;; and W

(A +2p)
3

= oc(éijékmjnk + 5¢k51jnjnk + 5il5jknjnk),

= (nyng + nyny + 0y) = (b + 2nmy),

Vit = Vijunn, = 0550k + 0i 015 + dadj|nm,

by replacing [ = j in the above equation then we have

Vij = a(di; + 2niny),

N —
Wi = Wijunng = Tﬂ[zézjékl — 0301 — dadjk]njng,

= 5(2§Unjnk — 5¢k51jnjnk — §il(5jknjnk),
= B(2niny — nyny — 6i) = —B(0q — nimy),

and if we replace j with [ then
Wij = =B — niny).
Egs. (5.34) and (5.35) are Christoffel matrices

Vign; = a(dij + 2nin;)n;,
= a(di;n;) + 2am;(n;n;),

= an; + 2an;,
‘/i = 3047’%,

where V; is a vector. Consider,

Vijnj = 3omi,
Vijninj = 3Oéni7’L7;,
Vin; = 3a,

V = 3a,

(5.34)

(5.35)

(5.36)

(5.37)

where V' is a scalar. We take the equation I';; = Vj; + W; and using the values of Vj;

and W;; in this equation then we obtain

Ly = a(dy + 2nny) — B(0u — niny),
= oy + 2amng — Boy + Bniny,
= (a— B)oy + a + B)nn,.
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Using Eq. (5.38) in Eq. (5.25) then we get
det[1}2(5ﬂ — (Oé — 6)(511 + (20& + B)nml] = 0,

in terms of the parameters such as a and 3, the characteristic equation for the
acoustic waves take the form

det[(v* — a+ B)dij — (2a + B)nin;] = 0. (5.39)
The velocity of longitudinal wave given below
v =V =3a = (A —2u), (5.40)

is a first solution of the above equation. Using the value of longitudinal wave velocity
in Eq. (5.39) then det(d;;—n;n;) = 0 which means that v is an eigen value of the Eq.
(5.39). Putting the value of v* = (o — 8) in Eq. (5.39) then we have det(n;n;) = 0.
The velocity of transverse waves are v3 = v3 = (o — ) = p.

5.6.2 Anisotropic Media

Proposition 13: The most general type of an anisotropic medium that allows
propagation of purely polarized waves in an arbitrary direction has an elasticity
tensor of the form [18]

a 4200 §+2p2  2p3 0 0
* o S+ 2 0 2ps 0
it = * * « X 0 0 2p6 ’
* * * 37 P1 —Pe —Ps
* * * * S—pP2  —p3
* * * * * % — P
where pq, ...... p¢ are arbitrary parameters. In this medium, the longitudinal waves

velocity is v, =v3a =v/A — 2.

Cubic crystal

In cubic crystal, there are three elastic constants which are linearly independent of
each other. In a properly chosen coordinate system, they can be put into the Voigt
matrix given by Eq. (2.18) [24].

Ciiin Ciiiz Cuss Chizs Cuzi Chine Cn Cip Cip 0 0 0
*  Coxg Chozg Cagoz Cogzr Choro x Cp Cip 0 0 0
* * U333 Czzoz Cszzr Cszin _ * x Cpp 0 0 0
* * * Cass Cazzi Cozia * * *  Ces 0 0
* * * * Csi31 Cainz * * * x Cg O
* * * * * C212 * * * * x (e

27



By using the cubic crystal matrix in Eq. (4.18) then we have

Cnu Cpp Ci2 O 0 0 Vit Vig Vis 0 0 0
* Oll 012 0 0 0 * ‘/11 ‘/12 0 0 0
* x OCp 0 0 0 I * Vi1 0 0 0
* * x Ce 0 O | x x *x Ve 0 O
* * * x* Cg 0 x % % *x Vg 0
* * * * x  Cee x %k x  x Vg
0 Wi Wi 0 0 0

S 0 W12 O 0 0

*x ok 0 0 0 0

+ * * * W66 0 0

x ok * x  We O

* % * * *  Wes

By using the Egs. (4.16) and (4.17) in the above matrices then we get Cauchy and
non-Cauchy parts in the matrices form. The Cauchy part is

Cii 3(Crz + 2C) %(012 +2C66) 0 0 0
* 011 5(012 + 2066) 0 0 0
Vs — * * 011 0 0 0
CLO * * * %(Cl2 -+ 2C66> 0 0
* * * * %(012 + 2C%0) 0
% * * * * %(012 +2C%6)
a B0 0 0
x o B 0 0 0
x x a 0 0 0
Vgt = x o+« x £ 0 0]’
x« % % *x [0
« ok ok % % [
where Cy; = o' and %(Clz + 2Cs) = 5. The non-Cauchy part is
0 %(012 — Cep) %(012 — Cep) 0 0 0
* 0 5(012 - 066) 0 0 0
* * 0 0 0 0
Wijkl o * * * %(066 — Clg) 0 0
* * * * %(C% — C42) 0
* * * * * %(066 - C'12)

o8



0 2y 2y 0 0 0

x 0~ 0 0 0

* ok 0 0 0 0
Wi = % N _7/ 0 0 )

* ok * * —fy' 0

* % * * _,y'

where W12 = 012 = %(Clg - 066) = ’7/ and WGG = %(066 - 012) = —’}//. Therefore,
o, B and 4 are new elastic constants. The elasticity tensor Cijr 1s expressed in
terms of these constants. The Cauchy part of the Christoffel tensor can be written
in the form

O/n% + 8 (n3 4 n3) 28 niny 26 nins
Vi = % O/n% + B’(n% + n2) 25 nans
* * a'n2 + B (n? 4 n3)

The vector V; of the Cauchy Christoffel tensor is
a'nd + 38 nin2 4 36 nn2
Vi= | a'nd +38n3ny + 38 non2
a'nd + 38'n3ng + 36 n2ns
and the scalar V' of the Cauchy Christoffel tensor takes the form
V=(a' —38)(nt+ns+nd) +38,

respectively. While the non-Cauchy part of the Christoffel tensor takes the form

—vl(ng +n?) —~ nins —~'nyng
Wy = * —v (n? + n3) —7 nang
* * —' (n} +n3)

The corresponding vector W;n; = W; and scalar W;;n;n; = W are equal to zero.
Now, we calculate the longitudinal velocity for cubic crystal.

1. Edges: In edges, 7 = (1,0,0). The unit vector is 7 = (1,0,0). The longi-
tudinal velocity for edges is

V=(a —38)(ni+n3+n3) +38,
:a/—Sﬁl—i—Sﬁlza/,

vy, :\/J =\ 011.
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2. Face diagonals: In face diagonals, o= (1,1,0). The unit vector is n =
( ,0). The longitudinal velocity for face diagonals is

Y

wl’_‘
wl’_‘

V=(a —38)(ni+n3+n3) +38,

- /_ / i4 i4 /
= (o' = 39)l(75)" + ()" + 0] 39
70[/—36l ’

-y

_(){/—}—35/

=5

O{, —l— 3/8/
v =\

:\/(011 + Ch2 + 2C40)
2

3. Space diagonals: In space diagonals, 7 = (1,1,1). The unit vector is n =
\/%) The longitudinal velocity for space diagonals is

|~

1
( 37 37
V= (o/ — 3ﬁ/)(n‘11 + ng +n§) + 35',

Sl 1, 1
:(O‘_?’B)[(ﬁ) +(ﬁ) +(ﬁ
a —38

—— " 135
== +36,
o 465
3 )

,Oé’ + 6ﬁ’
3 Y

:\/(011 +2C12 + 4C%6)
3 )

)+ 38,

(%

There are extensive materials with same S and arbitrary W-tensor which have ex-
actly the same directions and velocities of the longitudinal waves. This can be seen
in the light of proposition 14 and 15. The elasticity tensor Cj;i can be expressed
for such materials as:

From proposition 13, Cy; = a, using the value of C1; in o then we get

o = Q.
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6:12 = % +2p; and Cg6 = § — p1. By using the value of these components in 5" and
~v then we have

/ 1 « o
6 3{3+ p1+ (3 p1)}

P |
Y= 5{012 - 066}
1l o o
= (= 192 — —
3{3+ p1 3+p1}
:pl'

The new matrix of the elasticity tensor is

o B +20 B +20  2ps 0 0

* o B+ 2p4 0 25 0

* * a 0 0 2p6
Cijr = '

* * * B — pa —Ps —Ps

* * * * B —p2  —ps

* * * * * ﬂ/ — p1
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Chapter 6

Summary and Conclusion

In this thesis, we have studied the decompositions of elasticity tensor under 2 and
3 dimensions and some problems relating to its theory. In this chapter, we sum-
marize our thesis. In the theory of linear anisotropic elasticity, the properties of
the elastic medium are described by the 4th rank elasticity tensor Cj;r. There are
two ways to decompose the elasticity tensor Cj;i; under the general linear group.
The first reducible decomposition of elasticity tensor is RS-decomposition which is
frequently used in the literature. The elasticity tensor decomposed into a partially
symmetric tensor R;;;; and partially antisymmetric tensor S;ji;. The vector spaces
of R and C are same such as 21 dimensions and the vector space of § is 6 dimen-
sions. The tensors R;;i; and S, hold the major symmetry of the Cjj; but do not
obey the minor symmetries of the elasticity tensor. Moreover, due to the lack of the
minor symmetries, they do not represent elasticity tensor Cjji;. The partial sym-
metric tensor R;ji; can further be decomposed. Consequently, this decomposition
does not correspond to a direct sum decomposition of the vector space defined by C'.

The second irreducible decomposition is VW-decomposition. In this decomposi-
tion, the elasticity tensor Cj;; is decomposed into the completely symmetric part
V' plus the remainder W. Under the 3-dimensional general linear group, it is irre-
ducible and unique. In VW-decomposition, the first irreducible part, denoted by
Vijki, consists of 15 independent components and the other irreducible part, denoted
by Wiju, has 6 independent components. The irreducible decomposition of the ten-
sor Cj;i yields the decomposition of the corresponding tensor space C' into a direct
sum of two subspaces such as V C C and W C C. The VW-decomposition is more
superior than RS-decomposition because it is irreducible, unique and preserves the
minor and major symmetries of the elasticity tensor. We have concluded that the
VW -decomposition is more suitable decomposition than RS-decomposition. It is
valid from algebraic and physical point of view.

62



In the framework of the VW-decomposition (irreducible decomposition) of the elas-
ticity tensor, we have studied the physical applications of its decomposition. The
first physical application of V' WW-decomposition is Cauchy relations. Cauchy rela-
tions hold if and only if the second irreducible part of this decomposition is equal
to zero. In Cauchy relations, there are two types of elasticity: one is Cauchy type
i.e. V and other is non-Cauchy type i.e. W which measures the deviation from V'
(Cauchy part). The second application is strain energy density function. It is split
into two parts (Cauchy and non-Cauchy), makes good sense in physics. The other
applications, for the acoustic wave propagation define the Cauchy and non-Cauchy
parts of the Christoffel tensor (I';). The interesting results are obtained for the
Christoffel tensor (I';) which mentioned in propositions 9 and 10. Also, examine
the polarizations of elastic wave. The Cauchy part of the Christoffel tensor deter-
mine the propagation of longitudinal wave (see proposition 11). We have presented
(see proposition 13) a complete new class of anisotropic materials which allow pure
polarizations to propagate in arbitrary directions, similarly as in isotropic material.
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