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Abstract

The 4th rank elasticity tensor Cijkl is the constant of proportionality in Hooke’s
Law. In linear anisotropic elasticity, Cijkl describes the elastic properties of a
medium. The decomposition of Cijkl has been studied in 2-dimensions and then
in 3-dimensions. There are two ways to decompose the elasticity tensor Cijkl in
3-dimensions. The first one is RS-decomposition which is reducible and the second
one is VW -decomposition which is irreducible, under the 3-dimensional general lin-
ear group. The irreducible tensors of VW -decomposition of the elasticity tensor is
further decomposed under the rotation group.

The properties of VW -decomposition are: uniqueness, irreducible and preservation
of the symmetries of the elasticity tensor. It is valid from an algebraic and physical
point of view. On the other hand, RS-decomposition is not unique, is reducible and
does not preserve the symmetries of the elasticity tensor. It is inferior and fails to
have these useful properties from an algebraic and physical point of view. Many
physical applications of VW -decomposition are reviewed in the thesis.
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Chapter 1

Introduction

In this chapter, a brief descriptions about basic principles of the theory of linear
elasticity, Hooke’s law and its importance, objective of the thesis and also a brief
introduction about the chapters are given.

Theory of Linear Elasticity

The theory of linear elasticity is a branch of Continuum Mechanics. It is one of
the most useful and successful theories in mathematical physics. Elasticity is the
characteristic of a solid material to return to its original size and shape after applied
forces are removed. It is the ability of the body to resist the distortion in the object
because of applied force. Elasticity theory deals with deformable solid bodies. The
relationship between stress and strain is stated by Hooke’s law. This law is the basic
law in the theory of linear elasticity.

Hooke’s Law in Physics and Its Importance

Robert Hooke was famous for his law of elasticity which is known as “Hooke’s Law”.
In 1665, he discussed the main concept of the stress, strain and deformation of the
elastic objects in a equilibrium state. Hooke’s law states that the resorting force
of the spring is proportional to the extension or compression of the spring from its
equilibrium. Its can also be expressed in the form of a formula as F = −kx where
F is a force, k is a spring constant, x is a extension and negative sign indicates that
the force is in the opposite direction from the extension. It can also be expressed in
terms of stress and strain. Stress is force per unit area within the material , which is
caused by an externally applied force. Strain is the relative deformation produced by
stress. For relatively small stresses, stress is directly proportional to strain. Hooke
first presented his law in the form of a Latin anagram which translates in contem-
porary language as “extension is directly proportional to force.” This law is obeyed
by the elastic objects and every spring. It is important in physics since it helps to
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determine the elasticity of objects. It also helps to calculate elastic potential energy.

The constitutive relation for linear anisotropic elasticity is the generalized Hooke’s
law which describes the most general linear relationship between stress and strain
tensors. The 4th rank elasticity tensor Cijkl emerges from Hooke’s law which is the
constant of proportionality. Elasticity tensor is also known as stiffness or compli-
ance tensor. Its physical components carry the dimension of force per unit area. It
obeys the major and minor (left and right) symmetries. Elasticity tensor, in three
dimensions, has 81 components. Due to symmetries of the stress and strain and the
strain energy density function, the number of independent components reduces to
21 only. The physical properties of anisotropic elastic materials are described by
the tensor such as the elasticity tensor, Cijkl of 4th rank. Moreover, the elastic con-
stants of anisotropic materials are written as 6×6 matrix Cijkl [1]. The components
of the elasticity tensor which describes the physical properties of anisotropic elas-
tic materials, depend on the system of coordinate axes and the tensors are usually
represented in matrix form.

Objective of the Thesis

In this thesis, we consider the 4th rank elasticity tensor, which results from gener-
alized Hooke’s law. Our objectives are

1. To study the decomposition of elasticity tensor under permutation and rota-
tion groups.
2. To study the algebra of the decomposition of the elasticity tensor.
3. To study the decomposition of the elasticity tensor from algebraic and physical
point of view.
4. To study the physical applications of the VW -decomposition.

Plan of Work

This thesis is divided into five chapters. The thesis has been organized in the fol-
lowing manner:

In chapter 2, we have reviewed some basics definitions, concepts and results. This
chapter contains a brief discussion on tensors, constitutive equation, elasticity ten-
sor and reduction of its components due to the symmetries of the elasticity tensor.
Elasticity tensor is also explained in the isotropic and anisotropic material.

In chapter 3, we have reviewed the decomposition of the elasticity tensor in two-
dimensional under the rotation group SO(2).
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In chapter 4, we have discussed the algebra of the elasticity tensor and its decomposi-
tions in 3-dimensional. Also, VW -decomposition is discussed under the permutation
and rotation groups. Moreover, the algebraic properties of both decompositions are
discussed.

In chapter 5, we discuss some physical applications of the irreducible decomposi-
tion of the elasticity tensor.

In chapter 6, we give the summary and conclusions of the thesis.
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Chapter 2

Preliminaries

In this chapter, we will recollect some basic definitions, concepts and relevant results
that would be used throughout this thesis. We will also be giving some examples to
illustrate the concepts. Some important notions and the terminology used are also
introduced.

2.1 Basic Concepts in Tensor Analysis

The concept of tensor is a fundamental concept in the elasticity theory. Tensors are
also used in many fields such as continuum mechanics, general relativity, differential
geometry.

2.1.1 Tensor and Its Linear Transformation

Suppose V be a real vector space and the vectors x,y, z, · · · are the elements of a
vector space V.

A Tensor of Order 1

A vector x is defined to be a tensor of order 1.

A Tensor of Order 2

Let T : V → V be a linear transformation from a vector space V into the same
vector space V. It is known as a tensor of order 2. It can be written as

x = Ty, x,y εV

and
T(ax + by) = aTx + bTy, ∀ x,y εV, ∀ a, b ε F.
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It satisfies all the axioms of a vector space. Let L2 denote the vector space of all the
tensors of order 2.
The product of two vectors x, y such that x⊗ y = xy, where x, y εV and having
the values of these two vectors in V such that it is a linear transformation which is
known as a tensor product. It can be expressed as

(x⊗ y)z = xy(z) = x(y.z), ∀ z ε V

and
xy(ar + bs) = axy(r) + bxy(s), ∀ r, s ε V.

Thus the tensor product of two vectors x,y is also a tensor of order 2.
Suppose {em}(m = 1 · · ·n) is an orthonormal basis in Vn. Consider T to be an
arbitrary tensor which belongs to L2. Thus, Tek ε Vn which can be written as

Tek = Tmkem ∀ T ε L2

which shows that
T = Tmkemek, ∀ Tε L2 (2.1)

where {emek}(m, k = 1 · · · , n) represent basis in the vector space L2 with n2 dimen-
sion. and the components Tmk of T can be represented as an m×m matrix

T = (Tmk) =


T11 T12 T13 · · · T1n
T21 T22 T23 · · · T2n
...

...
...

. . .
...

Tn1 Tn2 Tn3 · · · T1n

 . (2.2)

Suppose {emek} (m, k = 1, · · · , n) and {e′se
′
t} (s, t = 1, · · · , n) are two basis in L2

correspond the two orthonormal basis {em} (m = 1, · · · , n) and {e′m} (m = 1, · · · , n)
in Vn. The tensor T can be written in the form of these two bases as

T = Tmkemek = T
′

ste
′

se
′

t. (2.3)

The component of Tmk can be written as

Tmk = em.Tek = (qmie
′

i).T(qkje
′

j),

= qmiqkjTe
′

ie
′

j,

= qmiqkjT
′
ij.

This explain the transformation law of the components of a tensor corresponding
the change of basis in L2 which can also be expressed in term of matrix form as

T = QTQT. (2.4)
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Equation. (2.4) is equivalent to

T
′
= QTTQ.

It can be written in component form

T
′

st = qmsqktTmk. (2.5)

Tensors of Order 3

Suppose T
′

: V→ L2 be a linear transformation from the vectors of a vector space
V into the vector space of a tensor of order 2.

T
′′

= V(y) = Vy,

where T
′′

denotes a tensor of order 2. Similarly, L3 denotes the vector space of a
tensor of order 3.

2.1.2 Transformation Matrix

Consider V, a real vector space. The vectors x, y, z,... are elements of the vec-
tor space V, if they fulfill all the axioms of a vector space V. Vn denotes the
n-dimensional vector space. Assume two orthonormal bases such as {ek} (k =
1, 2, · · · , n) and {e′l} (l = 1, 2, · · · , n) in Vn. These basis are related by the follow-
ing equations

e
′

l = qklek,

and
ek = q

′

lke
′

l,

where the matrix Q = [qkl] is the transformation matrix and Q
′
= [q

′

lk] is the inverse
of Q = [qkl] matrix. The transformation matrix Q is given by

Q =


q11 q12 q13 · · · q1l
. . . · · · .
. . . · · · .
. . . · · · .
qk1 qk2 qk3 · · · qkl

 ,

and the inverse of the matrix Q is Q
′

have the form

Q
′
=


q
′
11 q

′
12 q

′
13 · · · q

′

1l

. . . · · · .

. . . · · · .

. . . · · · .
q
′

k1 q
′

k2 q
′

k3 · · · q
′

kl

 .
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Since this matrix represents the change of an orthonormal basis, therefore it is an
orthogonal matrix and follows the following properties,

QQT = I, det Q = ±1 and Q−1 = QT,

where I is the n× n identity matrix and has the following form

I =


1 0 0 · · · 0
0 1 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

 .

2.1.3 Cartesian Tensor

A tensor having components Tij, which transform according to Eq. (2.5) is a Carte-
sian tensor of order 2. In general components of a Cartesian tensor of order n
transform as

T
′

j1j2···jn = qi1j1 · · · qinjnTi1i2···in .

2.1.4 Symmetric and Antisymmetric Tensors

A tensor Ti1i2.....in is said to be symmetric with respect to i1 and i2 if and only if

T(i1i2).....in = Ti2i1.....in ,

and generally symmetric tensor is defined as:

T(i1i2.....in) =
1

n!
[T(sum over all permutations of i1i2.....in)].

Example: Consider a tensor Tijk of order 3. Then

T(ijk) =
1

6
[Tijk + Tjki + Tkij + Tikj + Tjik + Tkji].

Interchanging ij, we get

T(ijk) = T(jik).

A tensor Ti1i2.....in is said to be antisymmetric with respect to i1 and i2 if and only
if

T[i1i2].....in = −Ti2i1.....in .
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In general, an antisymmetric tensor is defined as:

T[i1i2.....in] =
1

n!
[T(sum over all even permuations) −T(sum over all odd permutations)].

Example: Consider a tensor Tijk of order 3. Then

T[ijk] =
1

6
[Tijk + Tjki + Tkij − Tkji − Tikj − Tjik].

Interchanging ij, we get
T[ijk] = −T[jik].

2.1.5 Levi-Civita Tensor

The Levi-Civita tensor [2, 3] also called the permutation tensor [4], antisymmetric
tensor, or alternating tensor, is a 3-index mathematical tensor used in particular
in tensor calculus. It is named after an Italian mathematician and physicist Tullio
Levi-Civita.

In 3 dimensions, the Levi-Civita tensor is defined as follows

εijk =


+1 for (i, j, k) ∈ (1, 2, 3), (2, 3, 1), (3, 1, 2),
−1 for (i, j, k) ∈ (1, 3, 2), (3, 2, 1), (2, 1, 3),

0 for i = j or j = k or k = i,

There are 27 components of Levi-Civita tensor in 3-dimensional space. However, 21
components are zero because the index is repeated. The remaining components are
6, three take the value of +1 if permutation is even and the other three take the
value of −1. In index notation, the Levi-Civita tensor i.e. εijk is very useful when
expressing some results in compact form.

The Levi-Civita tensor can be generalized to higher dimensions

εijkl...... =


+1 if (i, j, k, l, ......) is an even permutation of (1, 2, 3, 4, ......)
−1 if (i, j, k, l, ......) is an odd permutation of (1, 2, 3, 4, ......)

0 if any two indices are the same.
}

Thus, it is the sign of the permutation in the case of even or odd permutation, zero
other-wise.
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Properties of Levi-Civita Tensor

The Levi-Civita tensor satisfies the following properties:

δijεijk = 0,

εijkεpqk = δipδjq − δiqδjp,
εipqεjpq = 2δij,

εijkεijk = 6,

(2.6)

where δij is the Kronecker delta [3].

2.1.6 Stress Tensor

Stress tensor is a 2nd rank symmetric tensor which is denoted by σij. In the space of
3-dimensions, it has 9 components in which 6 are independent and 3 are dependent.
The symmetry of σij follows from the assumptions of vanishing torque stresses and
vanishing body couples.

2.1.7 Strain Tensor

Strain tensor is also a 2nd rank symmetric tensor which is denoted by εkl. It has
also 9 components in which 6 are independent and the remaining components are
dependent. In linear elastic, it is defined in term of the displacement vector i.e.,

εkl =
1

2
(
∂uk
∂xl

+
∂ul
∂xk

).

2.2 Constitutive Equation

A constitutive equation is the relation between the stress and the strain It is sup-
posed that σij is a function of εkl that is σij(εkl) and vice-versa. There is a one-to-one
correspondence between stress and strain. Here, the constitutive equations are con-
sidered is linear in nature. In the Taylor expansion of the equation, the first order
term adequately describe the elastic behaviour of most substances.

σij(εkl) = σij(0) +
∂σij
∂εkl
|εkl=0εkl + · · ·

or, since σij(0) = 0, therefore, we have approximately,

σij = Cijklεkl, (2.7)
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where

Cijkl =
∂σij
∂εkl
|εkl=0.

Equation. (2.7) is called the generalized Hooke’s Law. This law of proportionality
between stress (σij) and strain (εkl) was first stated in the 17th century by Hooke,
for the case of a stretched elastic string.

2.2.1 Elasticity tensor

In the theory of elasticity, the elasticity tensor Cijkl plays a vital role. In general-
ized Hooke’s law, the coefficients Cijkl indicates the most general linear relationship
between σij and εkl. These are the components of a fourth rank tensor. Elasticity
tensor is also called elastic stiffness tensor.

Stress Tensor and Symmetry of Elasticity Tensor

Since σij is a symmetric tensor i.e. σij = σji due to this fact the elasticity tensor
obeys a symmetry i.e.,

Cijkl = Cjikl. (2.8)

The symmetries of σij for the elasticity tensor has Eq. (2.8) can be written as

Cijkl − Cjikl = 0,

C[ij]kl = 0.

The above symmetry is called left minor symmetry of the elasticity tensor.

Strain Tensor and Symmetry of Elasticity Tensor

Since εkl is also a symmetric tensor i.e. εkl = εlk due to this fact the elasticity tensor
obeys a symmetry i.e.,

Cijkl = Cijlk. (2.9)

The symmetries εkl for the elasticity tensor has Eq. (2.9) can also be written as

Cijkl − Cijlk = 0,

Cij[kl] = 0.

This symmetry is called the right minor symmetry of the elasticity tensor.
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Strain Energy Function and Symmetry of Elasticity Tensor

The strain energy function of a material which is deformed is defined as

Ω =
1

2
σijεij. (2.10)

When we substitute of generalized Hooke’s law in Eq. (2.10), the given expression
is in the form

Ω =
1

2
Cijklεijεkl. (2.11)

The existence of strain energy function defines an elastic continuum. This implies
that Cijkl is symmetric under permutations of pairs of subscripts ij and kl. This
can be derived as follows.

Differentiating both sides of the above equation with respect to εij, εkl, respectively,
we get

∂2Ω

∂εij∂εkl
= Cijkl,

where the indices i, j, k, l = 1, 2, 3.

If Ω has continuous first and second order derivatives, then we can write [5]

∂2Ω

∂εij∂εkl
=

∂2Ω

∂εkl∂εij

which shows that
Cijkl = Cklij. (2.12)

Eq. (2.12) can be written as

Cijkl − Cklij = 0.

The above symmetry is called the major symmetry of the elasticity tensor.

Reduction of Components of Elasticity Tensor

In 3 dimensional space, the total number of independent components of the 4th rank
elasticity tensor are 34 = 81. The reduction of independent components from 81 to
56 is due to the symmetry of stress tensor (Cijkl = Cjikl) and the further reduction
in the components of the tensor Cijkl from 56 to 36 is due to the the symmetry
of strain tensor (Cijkl = Cijlk). Moreover, the reduction of 36 components to 21
independent components is due the the strain energy function.
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Elasticity Tensor in Voigt’s Notation

Voigt’s notation is very useful to express the 81 independent elastic components i.e.
Cijkl into 6× 6 symmetric matrix of elasticity tensor i.e. CIJ .

Cijkl is the standard “longhand” notation of the elasticity tensor. However, CIJ
is the standard “shorthand” notation [6, 7]. A pair of indices ij is replaced by I and
kl is replaced by J respectively.

(11)←→ (1) (22)←→ (2) (33)←→ (3)

(23) = (32)←→ (4) (13) = (31)←→ (5) (12) = (21)←→ (6)
(2.13)

Hence, the elasticity tensor matrix CIJ , after using the above relation in Eq. (2.13),
takes the form as follows:
C1111 C1122 C1133 C1123 C1131 C1112

∗ C2222 C2233 C2223 C2231 C2212

∗ ∗ C3333 C3323 C3331 C3312

∗ ∗ ∗ C2323 C2331 C2312

∗ ∗ ∗ ∗ C3131 C3112

∗ ∗ ∗ ∗ ∗ C1212

 =


C11 C12 C13 C14 C15 C16

∗ C22 C23 C24 C25 C26

∗ ∗ C33 C34 C35 C36

∗ ∗ ∗ C44 C45 C46

∗ ∗ ∗ ∗ C55 C56

∗ ∗ ∗ ∗ ∗ C66


(2.14)

where the remaining non-zero components are independent of each other. In both
matrices, those entries which are dependent due to the symmetry of the tensor
components denoted by the ∗. Voigt’s notation is only applicable as the left minor
and right minor symmetries are valid and due to the major symmetry.

2.3 Isotropic and Anisotropic

“Isotropic” and “Anisotropic” are associated words which are antonyms. In terms of
structure, the word isotropic means “equal direction”. Anisotropic is derived from
it by adding the Greek prefix “an” which opposes the meaning of its base word.

1. Anisotropic: a physical property which have a different value, measured in
different directions.

2. Isotropic: a physical property which have a same value, measured in different
directions.

Anisotropic Material
Anisotropic materials are those materials in which the components of the elasticity
tensor depend on the coordinates.
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Isotropic Material
Isotropic materials are those materials in which the elastic components of the elas-
ticity tensor do not depend upon the coordinates.

2.3.1 Elastic Tensor For an Isotropic Material

A tensor is called isotropic if it has same components in every co-ordinate system.
In this system, properties of the crystal do not depend on the direction. In 3
dimensions, there are only 3 independent isotropic tensors of rank 4th i.e., δijδkl,
δikδjl and δilδjk. If Cijkl is to be isotropic it must be the linear combination of these
3 tensors i.e.,

Cijkl = λδijδkl + µ1δikδjl + µ2δilδjk, (2.15)

interchanging i↔ j then

Cijkl = λδjiδkl + µ1δjkδil + µ2δjlδik, (2.16)

in the isotropic material, elasticity tensor can be defined as

Cijkl = λδijδkl + µ(δikδjl + δilδjk), (2.17)

The above equation is the constitutive law for an isotropic, linear elastic and homo-
geneous material where µ = µ1 = µ2 and λ and µ are the Lame’s constants [8] and
µ is also known as shear modulus. In shear modulus, σ12, the component of stress
tensor, does not vanish but all other components of the stress tensor vanish. It is
defined as

µ =
1

2

σ12
ε12

.

Hooke’s Law For Isotropic Material
Using Eq. (2.17) into generalized Hooke’s law equation then we have

σij = {λδijδkl + µ(δilδjk + δikδlj)}εkl
= λδijδklεkl + µ(δilδjkεkl + δikδljεkl)

= λδijεkk + µ(εij + εij)

= λδijεkk + 2µεij.

Matrix For Isotropic Material
The elasticity tensor can be express in matrix form for isotropic material as

CIJ =


C1111 C1122 C1133 C1123 C1131 C1112

∗ C2222 C2233 C2223 C2231 C2212

∗ ∗ C3333 C3323 C3331 C3312

∗ ∗ ∗ C2323 C2331 C2312

∗ ∗ ∗ ∗ C3131 C3112

∗ ∗ ∗ ∗ ∗ C1212

 =


2µ+ λ λ λ 0 0 0
∗ 2µ+ λ λ 0 0 0
∗ ∗ 2µ+ λ 0 0 0
∗ ∗ ∗ µ 0 0
∗ ∗ ∗ ∗ µ 0
∗ ∗ ∗ ∗ ∗ µ

 .

13



There are 12 non-zero components of which two are independent.

2.3.2 Cubic Crystal

In cubic crystals, they have at least three dyad axes (A2) and four triad axes (A3).
Taking the dyad axes (A2) with the coordinate axes, a rotation about the triad axis
(A3) through an angle 2π

3
gives a cyclic permutation of the axes. The constants of

the elasticity tensor Cijkl should be unchanged under the cyclic permutation of the
indices such as (123)→ (231)→ (312). In Voigt notaion this implies that:

CIJ =


C11 C12 C12 0 0 0
∗ C11 C12 0 0 0
∗ ∗ C11 0 0 0
∗ ∗ ∗ C44 0 0
∗ ∗ ∗ ∗ C44 0
∗ ∗ ∗ ∗ ∗ C44

 (2.18)

where for the cubic crystal, there are 9 non zero components but with 3 independent
components i.e. C11, C12 and C44.
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Chapter 3

Plane Elasticity Tensors

In this chapter, we study the decomposition of the plane elasticity tensor in two
dimensions under SO(2) which is the rotation group. We review the decomposition
by Vianello and Forte [9].

In 2 dimensions the elasticity tensor Cijkl is called plane elasticity tensor. In plane
elasticity, the matrix of Cijkl is

C =

C11 C12 C13

C12 C22 C23

C13 C23 C33

 ,

where C be the matrix of components of the plane elasticity tensor and is symmet-
ric. E is the vector space of the plane elasticity tensors. The dimension of the plane
elasticity tensor is 6.

In 2 dimensions, the rotation matrix is

Q =

(
cos θ sin θ
− sin θ cos θ

)
.

3.1 Decomposition of Plane Elasticity Tensors

Let V be a two-dimensional Euclidean vector space. Tensors defined on V are
called plane tensors. Let {ei} (i = 1, 2) be an orthogonal basis for V, then {ei⊗ ej}
(i, j = 1, 2) is a basis for tensors of rank 2 and {ei ⊗ ej ⊗ ek ⊗ el} (i, j, k, l = 1, 2) is
a basis for the elasticity tensor of rank 4.

A traceless tensor T of rank 2 is such that Tii = 0. A traceless tensor T of rank
4 is such that Tiikl = 0, (k, l = 1, 2). A totally symmetric tensor is such that its
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components are invariant with respect to any permutation of its indices. A trace-
less symmetric tensor is called harmonic. Let O(2) be the set of orthogonal tensors
Q and SO(2) its subgroup of rotations with determinant equal to +1. We shall
consider irreducible decomposition of the elasticity tensor C with the symmetries
Cijkl = Cjikl = Cijlk = Cklij as a sum of scalars λ, µ and tensors L,M where L is a
harmonic tensor of rank 2 and M is harmonic tensor of rank 4. This decomposition
is invariant under O(2) because if

L
′
= (Q ∗ L)mn = qmiqnjLij,

M
′
= (Q ∗M)mnst = qmiqnjqskqtlMijkl,

and then L
′

and M
′

are harmonic if L, M are harmonic. This decomposition is in
the form [9, 10]

Cijkl = Mijkl +
1

6
[δijLkl +Lijδkl + δikLlj +Likδlj + δilLjk] +λδijδkl +µ(δikδlj + δilδjk),

(3.1)
where

λ =
1

4
(
3

2
Cppqq − Cpqpq), µ =

1

4
(Cpqpq −

1

2
Cppqq), Lik =

1

12
(2Cipkp − Cpqpqδik),

Mijkl = Cijkl −
1

6
(δijCkplp + δklCipjp + δikClpjp + δljCipkp + δilCjpkp + δjkCiplp)

+
1

12
[Cpqpq(5δijδkl − δikδlj − δilδjk)]−

1

8
[Cppqq(3δijδkl − δikδlj − δilδjk)].

This decomposition is irreducible because the space of harmonic tensors of rank 2
or 4 does not contain a subspace invariant under O(2).

First we consider the decomposition of a symmetric tensor T of rank 2 into a scalar
and a harmonic tensor of rank 2. We write T as a 2× 2 matrix,

Tij =

(
T11 T12
T12 T22

)
.

Its decomposition will be of the form(
T11 T12
T12 T22

)
= α

(
1 0
0 1

)
+

(
β γ
γ −β

)
.

Thus,

α + β = T11,

α− β = T22,

γ = T12.
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Hence,

α =
T11 + T22

2
,

β =
T11 − T22

2
,

γ = T12.

The tensor T is expressed as

T = αδij + β(e1 ⊗ e1 − e2 ⊗ e2) + γ(e1 ⊗ e2 + e2 ⊗ e1),

or
T = αI +

√
2βE1 +

√
2γE2,

where

E1 =
1√
2

(e1 ⊗ e1 − e2 ⊗ e2),

E2 =
1√
2

(e1 ⊗ e2 + e2 ⊗ e1)

Under SO(2), E1, E2 transform as

E
′

1 = Q(θ) ∗ E1

= Q(θ) ∗ 1√
2

(e1 ⊗ e1 − e2 ⊗ e2)

=
1√
2
{Q(θ)e1 ⊗Q(θ)e1 −Q(θ)e2 ⊗Q(θ)e2}

=
1√
2
{(cos θe1 + sin θe2)⊗ (cos θe1 + sin θe2)− (− sin θe1 + cos θe2)⊗ (− sin θe1 + cos θe2)}

=
1√
2
{cos 2θ(e1 ⊗ e1)− cos 2θ(e2 ⊗ e2) + 2 cos θ sin θ(e1 ⊗ e2) + 2 cos θ sin θ(e2 ⊗ e1)}

= cos 2θ
1√
2

(e1 ⊗ e1 − e2 ⊗ e2) + sin 2θ
1√
2

(e1 ⊗ e2 + e2 ⊗ e1)

= cos 2θE1 + sin 2θE2,
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E
′

2 = Q(θ) ∗ E2

= Q(θ) ∗ 1√
2

(e1 ⊗ e2 + e2 ⊗ e1)

=
1√
2
{Q(θ)e1 ⊗Q(θ)e2 +Q(θ)e2 ⊗Q(θ)e1}

=
1√
2
{(cos θe1 + sin θe2)⊗ (− sin θe1 + cos θe2) + (− sin θe1 + cos θe2)⊗ (cos θe1 + sin θe2)}

=
1√
2
{− sin 2θ(e1 ⊗ e1) + cos 2θ(e1 ⊗ e2) + cos 2θ(e2 ⊗ e1) + sin 2θ(e2 ⊗ e2)}

= − sin 2θ
1√
2

(e1 ⊗ e1 − e2 ⊗ e2) + cos 2θ
1√
2

(e1 ⊗ e2 + e2 ⊗ e1)

= − sin 2θE1 + cos 2θE2,

which is a rotation of the vector (E1, E2) through 2θ. Thus invariants of T are

α =
T11 + T22

2
,

and

(
√

2β)2 + (
√

2α)2 =
(T11 − T22)2

2
+ 2T 2

12.
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Chapter 4

Algebra of the Decomposition of
the Elasticity Tensor

The set of all general elasticity tensors especially all 4th rank tensors with the ma-
jor and minor symmetries forms a vector space. The vector space of the elasticity
tensors is denoted by C. The dimension of the vector space C is 21.

In the literature two types of decompositions are found

1. Reducible Decomposition

2. Irreducible Decomposition.

Reducible Decomposition

If it is possible to express a vector space C = C1 ⊕ C2 where C1 and C2 are in-
variant subspaces under a group then C is said to be decomposed into C1⊕C2. This
decomposition is reducible, not unique and does not preserve the major and minor
symmetries of the elasticity tensor. It is also known as RS-decomposition.

Irreducible Decomposition

If it is not possible to further decompose C1 or C2 then the above decomposition
is said to be irreducible otherwise it is called reducible. This decomposition is ir-
reducible, unique and preserves the major and minor symmetries of the elasticity
tensor. It is also called VW -decomposition.
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4.1 Reducible Decomposition of Elasticity Tensor

The elasticity tensor can be decomposed into two tensorial parts as mentioned by
Cowin [11], Campanella and Tonton [12], Podio-Guidugli [13], Weiner [14], and
Haussühl [15]. This decomposition is given by

Cijkl = Rijkl + Sijkl. (4.1)

The first reducible part Rijkl may be obtained by the symmetrization of the elasticity
tensor,

Rijkl := Ci(jk)l,

the second reducible part of the elasticity tensor may be obtained by the anti-
symmetrization given by

Sijkl := Ci[jk]l.

4.1.1 Tensors Rijkl and Sijkl

The tensors Rijkl and Sijkl both fulfill the major symmetry.

Proposition 1: The major symmetry holds for both tensors Rijkl and Sijkl.

Proof : By definition,

Rijkl −Rklij = Ci(jk)l − Ck(li)j

=
1

2
(Cijkl + Cikjl)−

1

2
(Cklij + Ckilj)

=
1

2
[Cijkl + Cikjl − Cklij − Ckilj]

=
1

2
[Cijkl + Ckijl − Cijkl − Ckilj]

= 0.

Similarly,

Sijkl − Sklij = Ci[jk]l − Ck[li]j

=
1

2
(Cijkl − Cikjl)−

1

2
(Cklij − Ckilj)

=
1

2
[Cijkl − Cikjl − Cklij + Ckilj]

=
1

2
[Cijkl − Ckijl − Cijkl + Ckilj]

= 0.
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Hence, proved that the major symmetry holds for Rijkl and Sijkl. However, the
tensors Rijkl and Sijkl do not fulfill the minor symmetries, as proved below.

Proposition 2: The minor symmetries do not hold for the tensors Rijkl and Sijkl.

Proof : By definition,

Rijkl =
1

2
(Cijkl + Cikjl)

R[ij]kl =
1

2
(C[ij]kl + C[i|k|j]l)

=
1

2
[
1

2
(Cijkl − Cjikl) +

1

2
(Cikjl − Cjkil)]

=
1

4
(Cijkl − Cjikl + Cikjl − Cjkil)

=
1

4
(Ckijl − Ckjil)

=
1

4
(2Ck[ij]l)

=
1

2
Ck[ij]l

=
1

2
Skijl.

Similarly,

Sijkl =
1

2
(Cijkl − Cikjl)

S[ij]kl =
1

2
(C[ij]kl − C[i|k|j]l)

=
1

2
[
1

2
(Cijkl − Cjikl)−

1

2
(Cikjl − Cjkil)]

=
1

4
(Cijkl − Cjikl − Cikjl + Cjkil)

=
1

4
(Ckijl − Ckjil)

=
1

4
(2Ck[ij]l)

= −1

2
Ck[ij]l

= −1

2
Skijl.

Hence the above proposition is proved. Also R[ij]kl = −S[ij]kl and these expressions
are not equal to zero (R[ij]kl = −S[ij]kl 6= 0). It follows from Proposition 1 that
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Rij[kl] = R[kl]ij and Sij[kl] = S[kl]ij. Now, these expressions are shown to be equal.
By definition,

Rijkl = Ci(jk)l =
1

2
(Cijkl + Cikjl)

Rij[kl] =
1

2
(Cij[kl] + Ci[k|j|l])

=
1

2
[
1

2
(Cijkl − Cijlk) +

1

2
(Cikjl − Ciljk)]

=
1

4
(Cijkl − Cijlk + Cikjll − Ciljk)

=
1

4
(Cijkl − Cklij + Cikjl − Ciljk)

=
1

4
(Cikjl − Ciljk)

(4.2)

and

Rklij = Ck(li)j =
1

2
(Cklij + Ckilj)

R[kl]ij =
1

2
(C[kl]ij + C[k|i|l]j)

=
1

2
[
1

2
(Cklij − Clkij) +

1

2
(Ckilj − Clikj)]

=
1

4
(Cklij − Clkij + Ckilj − Clikj)

=
1

4
(Cklij − Clkij + Ckilj − Clikj),

=
1

4
(Cikjl − Ciljk).

(4.3)

Thus, from Eqs. (4.2) and (4.3) we have Rij[kl] = R[kl]ij. Similarly, one can also prove
that Sij[kl] = S[kl]ij. Since the minor symmetries for both tensors (Rijkl and Sijkl)
do not hold therefore these tensors do not belong to the vector space of elasticity
tensors C and they cannot be expressed in Voigt’s notation.

4.1.2 Vector Space R

The set of tensors {Rijkl; i, j, k, l = 1, 2, 3, 4} form a vector space denoted by R. The
dimension of the vector space R is 21.

Rijkl =
1

2
(Cijkl + Cikjl)

R1111 =
1

2
(C1111 + C1111)

= C1111.
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The tensor Rijkl cannot be written in Voigt’s notation because it does not hold the
minor symmetries. The independent components of tensor Rijkl have been calculated
below.

R1111 = C11, R1113 = C15, R1112 = C16, R2222 = C22,

R2221 = C26, R3333 = C33, R3332 = C34, R3331 = C35,

R2331 = C45, R3221 = C46, R3113 = C55, R3112 = C56,

R1122 =
1

2
(C12 + C66), R1133 =

1

2
(C13 + C55), R2223 = C24,

R1123 =
1

2
(C14 + C56), R2233 =

1

2
(C23 + C44), R2332 = C44,

R2231 =
1

2
(C25 + C46), R1233 =

1

2
(C36 + C45), R1221 = C66.

(4.4)

These components are linearly independent.

4.1.3 Vector Space S

The set of tensors {Sijkl; i, j, k, l = 1, 2, 3} forms a vector space denoted by S . The
dimension of the vector space S is 6.

Sijkl =
1

2
(Cijkl − Cikjl)

S1122 =
1

2
(C1122 − C1212).

The independent components of the antisymmetric 4th rank tensor Sijkl can be
written explicitly in Voigt’s notation as

S1122 =
1

2
(C12 − C66), S1133 =

1

2
(C13 − C55), S1123 =

1

2
(C14 − C56),

S2233 =
1

2
(C23 − C44), S2231 =

1

2
(C25 − C46), S1233 =

1

2
(C36 − C45).

Since in Voigt’s notation all components of elasticity tensor (CIJ with I ≤ J) are
assumed to be linearly independent. Therefore, these components are also linearly
independent.

4.1.4 Algebraic Properties of the Tensors Rijkl and Sijkl

We can observe some of the basic features of the tensors Rijkl and Sijkl.
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Inconsistency

There are many ways in which elasticity tensor can be expressed in terms of both
Rijkl and Sijkl tensors. Generally, the components of elasticity tensor, say C1223 can
be defined as:

C1223 = R1223 + S1223,

where, we have used the definition of both R1223 and S1223 tensors i.e.,

R1223 = C1(22)3 =
1

2
(C1223 + C1223) = C1223.

S1223 = C1[22]3 =
1

2
(C1223 − C1223) = 0.

(4.5)

Further,

C1223
(4.5)
= R1223 + S1223︸︷︷︸

0

maj
= R2312 = R2132

(4.4)
= C46. (4.6)

We can be written C1223 in another way as:

C1223 = C2123 = R2123 + S2123 =
1

2
(C46 + C25) +

1

2
(C46 − C25) = C46,

where the components of R2123 and S2123 are given by

R2123 =
1

2
(C2123 + C2213) =

1

2
(C64 + C25) =

1

2
(C46 + C25),

S2123 =
1

2
(C2123 − C2213) =

1

2
(C64 − C25) =

1

2
(C46 − C25).

The result in Eq. (4.6) is recovered, but it has been achieved with the help of
non-vanishing component of the vector space S .

Reducibility

In general, the tensor Rijkl is not a completely symmetric tensor and it allows more
finer decomposition. Therefore,

Rijkl = R(ijkl) +Dijkl. (4.7)

Consequently, from the Eq. (4.7) the elasticity tensor can be further decomposed
into three tensorial parts i.e.,

Cijkl = R(ijkl) + Sijkl +Dijkl.
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Vector Spaces

The vector spaces of R and S are “partial” vector spaces. The dimensions of C , R
and S are 21, 21 and 6 respectively. These two vector spaces are not the subspaces
of the vector space C .
Hence, in this way, the RS-decomposition is not possible as there exists a problem
from an algebraic point of view. Now, we take another decomposition of the elasticity
tensor which is compatible from an algebraic point of view.

4.2 Irreducible Decomposition of Elasticity Ten-

sor

We shall show that the unique irreducible decomposition of Cijkl under the linear
group GL(3, R) is

Cijkl = Vijkl +Wijkl, (4.8)

where Vijkl and Wijkl are the 4th rank tensors. The tensor Vijkl is the first irreducible
part of the irreducible decomposition of the elasticity tensor and is defined as

Vijkl := C(ijkl),

where the tensor Vijkl is obtained by complete symmetrization of the indices of the
elasticity tensor. The term C(ijkl) is defined as:

C(ijkl) =
1

4!
(Cijkl + Ciklj + Ciljk + Cilkj + Cikjl + Cijlk + Cjkli + Cjlik

+Cjikl + Cjilk + Cjlki + Cjkil + Cklij + Ckijl + Ckjli + Ckjil

+Ckilj + Cklji + Clijk + Cljki + Clkij + Clkji + Cljik + Clikj).

The more compact form of first irreducible part is:

Vijkl =
1

3
(Cijkl + Ciklj + Ciljk). (4.9)

The second irreducible part of the irreducible decomposition of the elasticity tensor
is Wijkl and is given by

Wijkl = Cijkl − Vijkl, (4.10)

or

Wijkl :=
1

3
(2Cijkl − Cilkj − Ciklj). (4.11)
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If we apply total symmetrization on the indices of both sides of Eq. (4.10) then we
get the new result i.e.,

W(ijkl) = C(ijkl) − V(ijkl) = 0.

Proposition 3: The tensor W satisfies the additional symmetry

Wi(jkl) = 0 or Wijkl +Wiklj +Wiljk = 0.

Proof:

Wi(jkl) =
1

3!
(Wijkl +Wiklj +Wiljk +Wijkl +Wilkj +Wikjl) (4.12)

By definition,

Wijkl =
1

3
(2Cijkl − Cilkj − Ciklj), Wiklj =

1

3
(2Ciklj − Cijlk − Ciljk),

Wiljk =
1

3
(2Ciljk − Cikjl − Cijkl), Wijlk =

1

3
(2Cijlk − Ciklj − Cilkj),

Wilkj =
1

3
(2Cilkj − Cijkl − Cikjl), Wikjl =

1

3
(2Cikjl − Ciljk − Cijlk),

using these terms in Eq. (4.12) and then we have

Wi(jkl) =
1

18
(2Cijkl − Cilkj − Ciklj + 2Ciklj − Cijlk − Ciljk + 2Ciljk − Cikjl − Cijkl

+ 2Cijlk − Ciklj − Cilkj + 2Cilkj − Cijkl − Cikjl + 2Cikjl − Ciljk − Cijlk)
= 0.

Hence the proposition 3 is proved.

4.2.1 Tensors Vijkl and Wijkl

The major symmetry holds for the tensors Vijkl and Wijkl.

Proposition 4: The partial tensors Vijkl and Wijkl possess the major symmetry

Vijkl − Vklij = 0, Wijkl −Wklij = 0.

Proof :

Vijkl − Vklij =
1

3
(Cijkl + Ciklj + Ciljk)−

1

3
(Cklij + Ckijl + Ckjli)

=
1

3
(Cijkl + Ciklj + Ciljk − Cklij − Ckijl − Ckjli) = 0.
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Wijkl −Wklij =
1

3
(2Cijkl − Cilkj − Ciklj)−

1

3
(2Cklij − Ckjil − Ckijl)

=
1

3
(2Cijkl − Cilkj − Ciklj − 2Cklij + Ckjil + Ckijl) = 0.

Hence prosposition 4 is proved.

The partial tensors Vijkl and Wijkl hold the minor symmetries.

Proposition 5 : The minor symmetries hold for the partial tensors Vijkl and Wijkl

V[ij]kl = Vij[kl] = 0, W[ij]kl = Wij[kl] = 0.

Proof : By definition,

V[ij]kl =
1

3
(C[ij]kl + C[i|kl|j] + Ci|l|j]k)

=
1

3
[
1

2
(Cijkl − Cjikl) +

1

2
(Ciklj − Cjkli) +

1

2
(Ciljk − Cjlik)]

=
1

6
(Cijkl − Cjikl + Ciklj − Cjkli + Ciljk − Cjlik) = 0.

W[ij]kl =
1

3
(2C[ij]kl − C[i|lk|j] − C[i|kl|j])

=
1

3
[
1

2
2(Cijkl − Cjikl)−

1

2
(Cilkj − Cjlki)−

1

2
(Ciklj − Cjkli)]

=
1

6
(2Cijkl − 2Cjikl + Cilkj − Cjlki + Ciklj − Cjkli) = 0.

Similarly, we can prove the right minor symmetry for Vijkl and Wijkl tensors. Hence
proposition 5 is proved.

4.2.2 Vector Spaces of V and W

The vector space of elasticity tensor Cijkl is denoted by C and has dimensions 21.
The vector space of the partial tensors Vijkl and Wijkl, satisfy all the properties of
C. These irreducible tensors are subspaces of the vector space C. The irreducible
decomposition of the elasticity tensor means the reduction of C into the direct sum
of its subspace V for the tensor Vijkl and subspace W for the tensor Wijkl is given
by

C = V ⊕W. (4.13)

The intersection between the vector spaces V and W is empty. It is a unique de-
composition of the corresponding tensors. The sum of the dimensions of the two
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subspaces V and W is equal to 21. The tensors Vijkl and Wijkl are the two irre-
ducible parts of the elasticity tensor. These tensors preserve their symmetries and
also satisfy the minor and major symmetries of the elasticity tensor.

Vector Space of V

The dimension of the vector space V is 15. Consider
C11 C12 C13 C14 C15 C16

∗ C22 C23 C24 C25 C26

∗ ∗ C33 C34 C35 C36

∗ ∗ ∗ C44 ∗ ∗
∗ ∗ ∗ C54 C55 ∗
∗ ∗ ∗ C64 C65 C66

 .

If the tensor is totally symmetric

C12 = C1122 = C1212 = C66,

C13 = C1133 = C1313 = C55,

C14 = C1123 = C1213 = C65,

C23 = C2233 = C2323 = C44,

C25 = C2213 = C2123 = C64,

C36 = C3312 = C3132 = C54,

In this manner only 15 independent components are left. Hence the dimension of V
is 15.

Vector Space of W

The dimension of the vector space W is 6. Eqs. (4.13) shows that the vector
space of the tensors Wijkl has dimension 6.

Vijkl and Wijkl Tensors in Voigt’s Notation

The irreducible decomposition can be written in Voigt’s notation because this de-
composition holds the minor symmetries. In Voigt’s notation the Eq. (4.8) is given
by

CIJ = VIJ +WIJ with C[IJ ] = V[IJ ] = W[IJ ] = 0. (4.14)

V[IJ ] and W[IJ ] are the 6 × 6 matrix. They have 15 and 6 independent components
respectively. By using the definition of the tensor Vijkl and Wijkl we will calculate
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the components of the tensors Vijkl and Wijkl in Voigt’s notation as mentioned by
Voigt [6]. First, by using the definition of the tensor Vijkl i.e.,

V1111 =
1

3
(C1111 + C1111 + C1111), (4.15)

where i, j, k, l = 1. We write Eq. (4.15) in Voigt’s notation i.e.,

V11 =
1

3
(C11 + C11 + C11) = C11,

Similarly,

V22 = C22, V33 = C33, V15 = C15, V16 = C16,

V26 = C26, V24 = C24, V34 = C34, V35 = C35,

V12 =
1

3
(C12 + 2C66), V13 =

1

3
(C13 + 2C55), V14 =

1

3
(C14 + 2C56),

V23 =
1

3
(C23 + 2C44), V25 =

1

3
(C25 + 2C46), V36 =

1

3
(C36 + 2C45).

(4.16)

Now, we have use the definition of the tensor Wijkl then put i, j, k, l = 1 i.e.,

W1111 =
1

3
(2C1111 − C1111 − C1111),

W11 = 0.

The first component of the tensor Wijkl is equal to zero in Voigt’s notation.
Similarly,

W12 =
2

3
(C12 − C66), W13 =

2

3
(C13 − C55), W14 =

2

3
(C14 − C56),

W23 =
2

3
(C23 − C44), W25 =

2

3
(C25 − C46), W36 =

2

3
(C36 − C45).

(4.17)
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These 6 components are linearly independent. Explicitly, we can presented the
decomposition of Eq. (4.14) as follows:

C11 C12 C13 C14 C15 C16

∗ C22 C23 C24 C25 C26

∗ ∗ C33 C34 C35 C36

∗ ∗ ∗ C44 C45 C46

∗ ∗ ∗ ∗ C55 C56

∗ ∗ ∗ ∗ ∗ C66

 =


V11 V12 V13 V14 V15 V16
∗ V22 V23 V24 V25 V26
∗ ∗ V33 V34 V35 V36
∗ ∗ ∗ V44 V45 V46
∗ ∗ ∗ ∗ V55 V56
∗ ∗ ∗ ∗ ∗ V66

 (4.18)

+


0 W12 W13 W14 0 0
∗ 0 W23 0 W25 0
∗ ∗ 0 0 0 W36

∗ ∗ ∗ W44 W45 W46

∗ ∗ ∗ ∗ W55 W56

∗ ∗ ∗ ∗ ∗ W66

 .

Where ∗ denotes the dependent components of the tensors Vijkl and Wijkl e.g. V12 =
V21. These components V44 = V23, V45 = V36, V46 = V25, V55 = V13, V56 = V14, V66 =
V12, W44 = −1

2
W23, W45 = −1

2
W36, W46 = −1

2
W25, W55 = −1

2
W13, W56 = −1

2
W14,

W66 = −1
2
W12 are independent. Now, we have to use the values of these components

in Eq. (4.18).
C11 C12 C13 C14 C15 C16

∗ C22 C23 C24 C25 C26

∗ ∗ C33 C34 C35 C36

∗ ∗ ∗ C44 C45 C46

∗ ∗ ∗ ∗ C55 C56

∗ ∗ ∗ ∗ ∗ C66

 =


V11 V12 V13 V14 V15 V16

∗ V22 V23 V24 V25 V26

∗ ∗ V33 V34 V35 V36

∗ ∗ ∗ V23 V36 V25
∗ ∗ ∗ ∗ V13 V14
∗ ∗ ∗ ∗ ∗ V12



+


0 W12 W13 W14 0 0
∗ 0 W23 0 W25 0
∗ ∗ 0 0 0 W36

∗ ∗ ∗ −1
2
W23 −1

2
W36 −1

2
W25

∗ ∗ ∗ ∗ −1
2
W13 −1

2
W14

∗ ∗ ∗ ∗ ∗ −1
2
W12

 .

Here, the independent components of the tensors Vijkl and Wijkl are represented by
boldface and these three matrices are symmetric.
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4.3 Comparing the Irreducible and Reducible De-

compositions with each other

VW and RS are two different decompositions of the elasticity tensor. Now, we want
to compare these two decompositions.

Cijkl︸︷︷︸
21

= Rijkl︸︷︷︸
21

+Sijkl︸︷︷︸
6

= Vijkl︸︷︷︸
15

+Wijkl︸ ︷︷ ︸
6

. (4.19)

The dimensions of the corresponding above mentioned vector spaces have shown
clearly. We explain that the two tensors Wijkl and Sijkl can be formulate in terms
of each other because these tensors have the same dimensions. Sijkl is the part of
reducible decomposition which is antisymmetric with respect to the indices j and k.

Proposition 6: The reducible part Sijkl can be expressed in terms of the tensor
Wijkl which is irreducible elasticity tensor as given by

Sijkl = Wi[jk]l. (4.20)

the inverse of the above expression can also reads,

Wijkl =
4

3
Sij(kl).

Proof : By definition,

Wijkl =
1

3
(2Cijkl − Cilkj − Ciklj)

Wi[jk]l =
1

3
(2Ci[jk]l − Cil[kj] − Ci[k|l|j])

=
1

3
[Cijkl − Cikjl −

1

2
(Ciklj − Cijlk)]

=
1

6
(2Cijkl − 2Cikjl − Ciklj + Cijlk)

=
1

2
(Cijkl − Cikjl)

= Sijkl.

Hence the first part of this proposition is proved. Since

Sijkl = Wi[jk]l

Sijkl =
1

2
(Wijkl −Wikjl)

=
1

2
(Wijkl −Wiklj)
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Sij(kl) =
1

2
[Wij(kl) −Wi(kl)j]. (4.21)

Here, W fulfills the right minor symmetric such that

Wij(kl) =
1

2
(Wijkl +Wijlk) =

1

2
(2Wijkl) = Wijkl.

Using the value of Wij(kl) in Eq. (4.21) then we get,

Sij(kl) =
1

2
[Wijkl −Wi(kl)j]

=
1

2
[Wijkl −

1

2
(Wiklj +Wilkj)]

=
1

4
(2Wijkl −Wiklj −Wilkj) (4.22)

From proposition 3, we have Wiklj = −Wijkl −Wiljk, using this value in Eq. (4.22).

Sij(kl) =
1

4
[2Wijkl − (−Wijkl −Wiljk)−Wilkj]

=
1

4
(3Wijkl) =

3

4
Wijkl.

In other word, we can also write

Wijkl =
4

3
Sij(kl).

Hence the second part is also proved.

Proposition 7: The reducible tensor Rijkl can also be defined in terms of the
irreducible tensors of the elasticity tensor

Rijkl = Vijkl +Wi(jk)l.

Proof : The tensor Rijkl and Sijkl, can be defined in terms of the irreducible parts.
Now, using Eq. (4.20) in Eq. (4.19) then we have

Cijkl = Rijkl +Wi[jk]l = Vijkl +Wijkl (4.23)

again solve Eq. (4.23) with respect to the tensor Rijkl,

Rijkl +Wi[jk]l = Vijkl +Wijkl

Rijkl = Vijkl +Wijkl −Wi[jk]l

= Vijkl +Wijkl −
1

2
(Wijkl −Wikjl)

= Vijkl −
1

2
(2Wijkl −Wijkl +Wikjl)

= Vijkl −
1

2
(Wijkl +Wikjl).

Hence the proposition 7 have proved.
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4.3.1 Irreducible Tensor Wijkl and Symmetric 2nd Rank Ten-
sor

Haussühl introduced, ∆mn, a symmetric 2nd rank tensor [16] associated with Wijkl

∆mn =
1

4
εmilεnjkWijkl, (4.24)

where εijk = 0,±1 is a Levi-Civita tensor. It is necessary to represent the tensor
Wijkl as a symmetric 2nd rank tensor in 3D space. Applying the operator (1

2
εmij),

we can easily map a index pair ij which is antisymmetric to the corresponding vector
index m. Since we know that the tensor Wijkl has four indices, so we can apply the
operator ε twice.

Proposition 8: The irreducible tensor Wijkl of the elasticity tensor can be rep-
resented as a symmetric second rank tensor is given in Eq. (4.24) with the inverse

Sijkl = εikmεjln∆mn or Wijkl = εim(kεl)jn∆mn, (4.25)

Proof : First, using the definition of ∆mn and apply anti-symmetrization over the
indices m and n.

∆[mn] =
1

4
ε[m|ik|εn]jlWijkl,

=
1

4
[
1

2
(εmikεnjl − εnikεmjl)Wijkl],

=
1

8
(εmikεnjl − εnikεmjl)Wijkl,

=
1

8
εmikεnjlWijkl −

1

8
εnikεmjlWijkl,

Now, interchanging the indices i←→ j and k ←→ l then

∆[mn] =
1

8
εmikεnjlWijkl −

1

8
εnjlεmikWjilk,

=
1

8
εmikεnjl(Wijkl −Wjilk),

= 0.

So,

∆[mn] =
1

2
(∆mn −∆nm),

∆mn = ∆nm.
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We take the second rank symmetric tensor

∆mn =
1

4
εmuvεnwxWuwxv (4.26)

εikmεjln∆mn =
1

4
εikmεjlnεmuvεnwxWuwxv

=
1

4
[(εmikεmuv)(εnjlεnwx)]Wuwxv

=
1

4
[(δiuδkv − δivδku)(δjwδlx − δjxδlw)]Wuwxv

=
1

4
(Wijlk −Wiljk −Wkjli +Wklji)

=
1

2
(Wijlk −Wiljk) = Wi[jl]k

=Sijlk.

Hence we have proved the first part of this proposition.

Wijkl = εim(kεl)jn∆mn (4.27)

using Eq. (4.26) in above equation then we have

Wijkl =
1

2
(εimkεljn + εimlεkjn)∆mn

=
1

2
(εimkεljn + εimlεkjn)(

1

4
εmuvεnwxWuwxv)

=
1

8
(εimkεljnεmuvεnwx + εimlεkjnεmuvεnwx)Wuwxv

=
1

8
(δivδkuδlwδjx − δivδkuδlxδjw − δiuδkvδlwδjx + δiuδkvδlxδjw + δivδluδkwδjx − δivδluδkxδjw

− δiuδlvδkwδjx + δiuδlvδkxδjw)Wuwxv

=
1

8
(Wklji −Wkjli −Wiljk +Wijlk +Wlkji −Wljki −Wikjl +Wijkl)

by using the symmetries of the tensor Wijkl then we have

Wijkl = εim(kεl)jn∆mn.

Hence the second of this proposition have proved.
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4.4 Irreducible Decomposition Under the Rota-

tion Group SO(3)

The special orthogonal group, denoted by SO(3), is the subgroup of orthogonal
matrices with determinant +1. Under this group, the elasticity tensor of 21 inde-
pendent components is irreducibly decomposed into the sum of five independent
pieces [17]

Cijkl =
5∑

a=1

(a)Cijkl = ((1)Vijkl +(2) Vijkl +(3) Vijkl) + ((1)Wijkl +(2) Wijkl), (4.28)

where these pieces are invariant and unique under the action of rotation group
SO(3). The vector space of the elasticity tensor into five subspaces can be written
as

C = ((1)C ⊕(2) C ⊕(3) C)⊕ ((4)C ⊕(5) C).

Since Vijkl is a totally symmetric 4th rank tensor. Now, we construct the unique
totally symmetric 2nd rank tensor and scalar with the help of contraction of Vijkl
with the Kronecker delta.

Vij := δklVijkl = Vijkk,

= δkl
1

3
(Cijkl + Ciklj + Ciljk),

=
1

3
(Cijkk + Cikkj + Cikjk),

=
1

3
(Cijkk + 2Cikkj),

and the contraction of the Kronecker delta with the totally symmetric 2nd rank
tensor is

V := δijVij = Viikk,

=
1

3
(Ciikk + 2Cikki),

The traceless part of the totally symmetric tensor Vij is defined as

Tij := Vij −
1

3
V δij, with δijTij = 0,

where Tij is a traceless tensor because its trace is equal to zero Tii = Vii− 1
3
V δii = 0.

The sub-tensor (1)Vijkl of the irreducible tensor Vijkl is defined as

(1)Vijkl := ηV δ(ijδkl),
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(1)Vijkl =ηV [
1

24
(δijδkl + δikδlj + δilδjk + δilδkj + δikδjl + δijδlk + δjkδli + δjlδik

+ δjiδkl + δjiδlk + δjlδki + δjkδil + δklδij + δkiδjl + δkjδli + δkjδil

+ δkiδlj + δklδji + δliδjk + δljδki + δlkδij + δlkδji + δljδik + δliδkj)],

(1)Vijkl = ηV [
8

24
(δijδkl + δikδlj + δilδjk)]. (4.29)

The second sub-tensor (2)Vijkl of the tensor Vijkl is defined as

(2)Vijkl := ξT(ijδkl),

(2)Vijkl = ξ
4

24
(Tijδkl + Tikδjl + Tilδjk + Tjkδil + Tjlδik + Tklδij). (4.30)

The third sub-tensor (3)Vijkl is defined as

(3)Vijkl := Rijkl,

where the tensor Rijkl := Vijkl −(1) Vijkl −(2) Vijkl is the remainder which is totally
traceless. The trace of the tensor Rijkl is also equal to zero. Now we calculate the
values of η and ξ

Riikl = Viikl −(1) Viikl −(2) Viikl

0 = Vkl −
40

24
ηV δkl −

28

24
ξTkl

= Vkl −
40

24
ηV δkl −

28

24
ξ(Vkl −

1

3
V δkl)

= Vkl −
5

3
ηV δkl −

7

6
ξVkl +

7

18
ξV δkl

(4.31)

from Eq. (4.31) comparing the coefficients of the Vkl and V δkl then we have

η =
1

5
, ξ =

6

7
.

Using the values of η and ξ in Eqs. (4.29) and (4.30) then we have

(1)Vijkl =
1

15
V (δijδkl + δikδlj + δilδjk),

and
(2)Vijkl =

1

7
(Tijδkl + Tikδjl + Tilδjk + Tjkδil + Tjlδik + Tklδij).
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The vector spaces of these sub-tensors are denoted by (1)V , (2)V and (3)V . These
sub-spaces are mutually orthogonal such that (a)Vijkl

(b)Vijkl = 0 for a, b = 1, 2, 3 but
a 6= b. If we take a = 1, b = 2 then we can show that

(1)Vijkl
(2)Vijkl =

1

105
V [δijδklTijδkl + δijδklTikδjl + δijδklTilδjk + δijδklTjkδil + δijδklTjlδik + δijδklTklδij

+ δikδjlTijδkl + δikδjlTikδjl + δikδjlTilδjk + δikδjlTjkδil + δikδjlTjlδik + δikδjlTklδij

+ δilδjkTijδkl + δilδjkTikδjl + δilδjkTilδjk + δilδjkTjkδil + δilδjkTjlδik + δilδjkTklδij]

=
1

105
V (Tiiδkk + Tii + Tii + Tjj + Tjj + Tkkδii + Tii + Tkkδii + Tii

+ TiiTjjδii + Tjj + Tii + Tii + Tiiδjj + Tjjδii + Tkk + Tjj) = 0.

The dimension of the vector spaces (1)V , (2)V and (3)V are

V = (1)V ⊕ (2)V ⊕ (3)V ,

15 = 1 + 5 + 9.

We know that the symmetric 2nd rank tensor has 6 dimensions but totally symmet-
ric 2nd rank tensor has 5 (6−1 = 5) because of the relation Tii = T11+T22+T33 = 0.
Since symmetric 4th rank tensor has 21 dimensions but totally symmetric 4th
rank tensor has 9 dimensions. The reduction in dimensions is due to the relations
Rijkl = Rikjl and the tensor Riikl. This relation Rijkl = Rikjl reduces the dimensions
to 15 (21− 6 = 15) while Riikl further reduces to 9 (15− 6 = 9).

We turn now to the second irreducible 4th rank tensor with 6 independent com-
ponents. It can be represented as a symmetric 2nd rank tensor ∆mn is given in
Eq. (4.25). In order to decompose the second irreducible tensor Wijkl, it is more
appropriate to use its representation by the tensor density as

W := δmn∆mn. (4.32)

Using the definition of ∆mn in Eq. (4.32) and we have

W =
1

3
δmnεmilεnjkWijkl

=
1

3
(δijδkl − δikδjl)Wijkl

=
1

3
(Wiikk −Wikik)

=
1

3
(Ciikk − Cikik).

∆ij can be decomposed into the scalar and traceless parts:

∆ij = Qij +
1

3
Wδij (4.33)
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where the symmetric and traceless tensor Qij is

Qij := ∆ij −
1

3
Wδij.

The decomposition of second irreducible tensor Wijkl under the rotation group is

Wijkl =(1) Wijkl +(2) Wijkl.

By using Eq. (4.33) in Eq. (4.25), we get the values of the sub-tensors (1)Wijkl and
(2)Wijkl

Wijkl =
1

2
(εimkεljn + εimlεkjn)∆mn

=
1

2
(εimkεljn + εimlεkjn)(Qmn +

1

3
Wδmn)

=
1

2
(εimkεljn + εimlεkjn)Qmn +

1

6
W (εimkεljn + εimlεkjn)δmn

=
1

6
W (2δijδkl − δilδjk − δikδjl) +

1

2
(δikQjl + δjkQil + δilQjk + δjlQik − 2δijQkl − 2δklQij)

where the scalar part is

(1)Wijkl :=
1

6
W (2δijδkl − δilδjk − δikδjl),

and the remainder part is

(2)Wijkl :=
1

2
(δikQjl + δjkQil + δilQjk + δjlQik − 2δijQkl − 2δklQij).

The vector space of these sub-tensors are denoted by (1)W and (2)W and the corre-
sponding dimensions of these vectorspaces are

W = (1)W ⊕ (2)W,

6 = 1 + 5.

These subspaces are mutually orthogonal to eachother,

(1)Wijkl
(2)Wijkl = 0.

Theorem : The elasticity tensor Cijkl is decomposed into 5 pieces under the action
of the group SO(3) [17]

Cijkl = ((1)Vijkl +(2) Vijkl +(3) Vijkl) + ((1)Wijkl +(2) Wijkl).
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This decomposition corresponds to the direct sum decomposition of the vector space
of the elasticity tensor into five subspaces

C = ((1)C ⊕(2) C ⊕(3) C)⊕ ((4)C ⊕(5) C),

with the dimensions
21 = (1 + 5 + 9) + (1 + 5).

The irreducible pieces are orthogonal to one another: for a 6= b

(a)Cijkl
(b)Cijkl = 0.

The Euclidean squares, C2 = CijklCijkl and (a)Cijkl =(a) Cijkl
(a)Cijkl with a = 1 · · · 5,

fulfill the “Pythagorean theorem:”

C = ((1)C2 ⊕(2) C2 ⊕(3) C3)⊕ ((4)C2 ⊕(5) C2).

It should be noticed that the reducible decomposition RS cannot be understood
directly by the elasticity tensor because these tensors do not fulfill the symmetries
of the elasticity tensor.

39



Chapter 5

Applications of the Irreducible
Decomposition

In the previous chapter, we have discussed theRS-decomposition and VW -decomposition
of the elasticity tensor. The first decomposition is reducible and the second decompo-
sition is irreducible. In this chapter, physical applications of the VW -decomposition
discussed by Itin [18] are reviewed. The irreducible parts Vijkl and Wijkl can be used
in all physical applications because the reducible parts Rijkl and Sijkl cannot be
interpreted directly as elasticity tensors.

5.1 Cauchy Relations and Cauchy Factor

Definition of Cauchy Relations

The Cauchy relations are defined so that the second irreducible tensor of the VW -
decomposition of the elasticity tensor Wijkl vanishes (Wijkl = 0). It is noticed
that from proposition 8 the tensor Sijkl and a symmetric 2nd rank tensor ∆mn

also vanishes and from Eq. (4.8) we conclude that elasticity tensor Cijkl is totally
symmetric tensor (Cijkl = C(ijkl)). Moreover, according to the definition of the
tensor Sijkl, Eq. (4.1) can be written as

Cijkl = Cikjl, (5.1)

where Eq. (5.1) are called Cauchy relations. An alternative form of Eq. (5.1) is

Cijkl − Cikjl = 0.

During the early days of modern linear elasticity theory, Cauchy formulated molec-
ular models for elastic bodies based on 15 independent elastic constants. According
to Eq. (5.1), there are 6 non-zero components of Cauchy relations that holds. In
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addition to the relations due to the minor and major symmetries, Cauchy relations
give the following relations [6, 7]:

C1122 = C1212, C1133 = C3131, C2233 = C2323,

C1123 = C1213, C2231 = C2321, C3312 = C3132.

In Voigt notation, these non-zero components can be written as:

C12 = C66, C13 = C55, C23 = C44

C14 = C56, C25 = C46, C36 = C45.

A lattice-theoretical approach shows that the Cauchy relations are valid provided
the following conditions hold [19]:

• The central forces are the forces of interaction between atoms or molecules of
a crystal.

• Every atom and molecule is a center of symmetry.

• The interaction forces between the building blocks of a crystal can be well
approximated by a harmonic potential [20, 21].

Cauchy versus non-Cauchy Parts in Elasticity

In Cauchy relations, the tensor Wijkl is equal to zero. As a consequence, the totally
symmetric tensor Vijkl is called the “Cauchy part” of the elasticity tensor Cijkl
which is also known as “main part” while “non-Cauchy part” of the elasticity is
called Wijkl. It is also known as “deviation part”. When we take Sijkl tensor as a
deviation part in the RS-decomposition, it means that Rijkl is the co-partner of the
tensor Sijkl and has 21 independent components. It is also noticed that Rijkl itself
becomes an elasticity tensor Cijkl. Moreover, it is assumed that the tensor Sijkl is
equal to zero then the tensor Rijkl is restricted to 15 independent components. The
RS-decomposition creates problem for the identification of the deviation part. The
identification of the deviation part can be solved by using the VW -decomposition
which is an irreducible.

Definition of Cauchy Factor

We can define the Cauchy factor, a dimensionless quantity as

0 ≤ FCauchy =

√
VijklVijkl
CijklCijkl

≤ 1. (5.2)
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In a tetragonal material, the matrices Vijkl and Wijkl are

Vijkl =


C11

1
3
(C12 + 2C66)

1
3
(C13 + 2C55) 0 0 C16

∗ C11
1
3
(C13 + 2C55) 0 0 −C16

∗ ∗ C33 0 0 0
∗ ∗ ∗ 1

3
(C13 + 2C55) 0 0

∗ ∗ ∗ ∗ 1
3
(C13 + 2C55) 0

∗ ∗ ∗ ∗ ∗ 1
3
(C12 + 2C66)

 ,

and

Wijkl =


0 2

3
(C12 − C66)

2
3
(C13 − C55) 0 0 0

∗ 0 2
3
(C13 − C55) 0 0 0

∗ ∗ 0 0 0 0
∗ ∗ ∗ 1

3
(C44 − C23) 0 0

∗ ∗ ∗ ∗ 1
3
(C44 − C23) 0

∗ ∗ ∗ ∗ ∗ 1
3
(C66 − C12)

 .

By taking the square of both tensors Vijkl and Wijkl, we get the following form

VijklVijkl = 2(C11)
2 + 6{1

3
(C12 + 2C66)}2 + 12{1

3
(C13 + 2C55)}2 + (C33)

2 + 8(C16)
2,

and

WijklWijkl = 2{2

3
(C12−C66)}2+4{2

3
(C13−C55)}2+8{1

3
(C44−C23)}2+4{1

3
(C66−C12)}2.

Consider indium which is a tetragonal material whose C11 = 4.53×1010Nm−2, C12 =
4.0 × 1010Nm−2, C13 = 4.15 × 1010Nm−2, C33 = 4.51 × 1010Nm−2, C44 = 0.65 ×
1010Nm−2, C66 = 1.21× 1010Nm−2 and C16 = 0× 1010Nm−2. Using these values in
above equations we get

VijklVijkl = V 2 = 128.46,

WijklWijkl = W 2 = 43.05,

CijklCijkl = C2 = 128.46 + 43.05 = 171.51.

By substituting the above values in Eq. (5.2), the Cauchy factor is

FCauchy = 0.9.

In a hexagonal material, the matrices Vijkl and Wijkl are

Vijkl =


C11

1
3
(C11)

1
3
(C13 + 2C55) 0 0 0

∗ C11
1
3
(C13 + 2C55) 0 0 0

∗ ∗ C33 0 0 0
∗ ∗ ∗ 1

3
(C13 + 2C55) 0 0

∗ ∗ ∗ ∗ 1
3
(C13 + 2C55) 0

∗ ∗ ∗ ∗ ∗ 1
3
C11


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and

Wijkl =


0 2

3
(C12 − C66)

2
3
(C13 − C55) 0 0 0

∗ 0 2
3
(C13 − C55) 0 0 0

∗ ∗ 0 0 0 0
∗ ∗ ∗ 1

3
(C44 − C23) 0 0

∗ ∗ ∗ ∗ 1
3
(C44 − C23) 0

∗ ∗ ∗ ∗ ∗ 3C11−C12

2


Similarly, we also get

VijklVijkl = 2(C11)
2 + 6(

1

3
C11)

2 + 12{1

3
(C13 + 2C55)}2 + (C33)

2,

and

WijklWijkl = 2{2

3
(C12−C66)}2+4{2

3
(C13−C55)}2+8{1

3
(C44−C23)}2+4{3C11 − C12

2
}2,

where C66 = 1
2
(3C11−C12). Consider Beryllium which is a hexagonal material whose

C11 = 29.23 × 1010Nm−2, C12 = 2.67 × 1010Nm−2, C13 = 1.4 × 1010Nm−2, C33 =
33.64 × 1010Nm−2 and C44 = 16.25 × 1010Nm−2. Using these values in above
equations we get

VijklVijkl = V 2 = 4942.32,

WijklWijkl = W 2 = 9227.33,

CijklCijkl = C2=14169.65.

By substituting the above values in Eq. (5.2), the Cauchy factor is

FCauchy = 0.6.

5.2 Strain Energy Function

The strain energy function is expressed by Eq. (2.10). When the generalized Hooke
law is used in Eq. (2.10) results into Eq. (2.12). Because of the irreducible decom-
position Eq. (2.12) can be written as:

Ω =
1

2
(Vijkl +Wijkl)εijεkl,

=
1

2
Vijklεijεkl +

1

2
Wijklεijεkl.
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The above expression of the strain energy function can be separated into two parts,
one is a Cauchy and other is a non-Cauchy part which makes good sense in physics.

Ω(C) =
1

2
Vijklεijεkl, Ω(nC) =

1

2
Wijklεijεkl.

Where Ω(C) and Ω(nC) are Cauchy and non-Cauchy parts respectively.
Therefore the tensors Vijkl and Wijkl with respect to their dimensions and symme-
tries, are Cijkl themselves. Since the strain tensor εij can be expressed in terms of
the displacement gradients according to

ε(ij) =
∂uj
∂xi

. (5.3)

Using Eq. (5.3) in Eq. (2.12) then we get

Ω =
1

2
Cijkl

∂uj
∂xi

∂ul
∂xk

. (5.4)

5.3 Null Lagrangian in Linear Elasticity

Euler Lagrange Equation

The Euler Lagrange equation is a second order partial differential equation whose
solutions are the functions for which a given functional is stationary. A differentiable
functional at its local maxima and minima. The Euler Lagrange equation is given
as

L(t, q, q̇) =
∂L

∂q
− d

∂t
(
∂L

∂q̇
), (5.5)

where t is time, q is coordinate point and q̇ is derivative of q with respect to time t.

Null Lagrangian

A null Lagrangian is one whose Euler Lagrange equation vanish identically [22].

Existence of Null Lagrangian in Linear Elasticity

In the theory of linear elasticity, a null Lagrangian defined as that part of the strain
energy functional, which does not play any role in the equilibrium equation.

The RS-decomposition is used in Eq. (5.4) then the energy density of a material
which is deformed is formulated explicitly as

Ω =
1

2
(Rijkl + Sijkl)

∂uj
∂xi

∂ul
∂xk

=
1

2
Rijkl

∂uj
∂xi

∂ul
∂xk

+
1

2
Sijkl

∂uj
∂xi

∂ul
∂xk

, (5.6)

44



since Cijkl holds the minor symmetries. The left minor symmetry of the elasticity
tensor Cijkl is used in the above equation and again we rewrite the Eq. (5.6) as

Ω =
1

2
Cijkl

∂ui
∂xj

∂ul
∂xk

=
1

2
Rijkl

∂ui
∂xj

∂ul
∂xk

+
1

2
Sijkl

∂ui
∂xj

∂ul
∂xk

. (5.7)

Obviously, the sum of two tensors Rijkl and Sijkl are not changed while every single
term of Eq. (5.6) did change because the left minor symmetry does not hold for the
tensors Rijkl and Sijkl. Since the last term of Eq. (5.7) may be written as

1

2
Sijkl

∂

∂xj
(ui

∂ul
∂xk

) =
1

2
Sijkl

∂ui
∂xj

∂ul
∂xk

+
1

2
Sijklui

∂

∂xj
(
∂ul
∂xk

)

1

2
Sijkl

∂ui
∂xj

∂ul
∂xk

=
1

2
Sijkl

∂

∂xj
(ui

∂ul
∂xk

)− 1

2
Sijklui

∂

∂xj
(
∂ul
∂xk

) (5.8)

using the Eq. (5.8) in the last term of Eq. (5.7) as

Ω =
1

2
Rijkl

∂ui
∂xj

∂ul
∂xk

+
1

2
Sijkl

∂

∂xj
(ui

∂ul
∂xk

)− 1

2
Sijklui

∂

∂xj
(
∂ul
∂xk

). (5.9)

Since Si(jk)l = 0 and ∂
∂x[j

∂
∂xk]

= 0, the last term of the above equation vanishes and

the remaining terms are

Ω =
1

2
Rijkl

∂ui
∂xj

∂ul
∂xk

+
1

2
Sijkl

∂

∂xj
(ui

∂ul
∂xk

), (5.10)

where in Eq. (5.10) the second term is total derivative term [23]. It is also known
as S-term. Thus, the first term, R-term, is involved in the variational principle to
determine the equations of motion. This term is also involved in the equilibrium
equation for solving the problem of null Lagrangian for the theory of linear elasticity.
This result was described by Lancia et al [23]. By using propositions 6 and 7 in Eq.
(5.10) then we have

Ω =
1

2
(Vijkl +Wi(jk)l)

∂ui
∂xj

∂ul
∂xk

+
1

2
Wi[jk]l

∂

∂xj
(ui

∂ul
∂xk

)

Ω =
1

2
[Vijkl +

1

2
(Wijkl +Wikjl)]

∂ui
∂xj

∂ul
∂xk

+
1

2
Wi[jk]l

∂

∂xj
(ui

∂ul
∂xk

). (5.11)

Subsequently, using proposition 3 in Eq (5.11).

Ω =
1

2
[Vijkl −

1

2
Wiljk]

∂ui
∂xj

∂ul
∂xk

+
1

2
Wi[jk]l

∂

∂xj
(ui

∂ul
∂xk

). (5.12)
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Therefore, in Eq. (5.12) the tensor Wijkl is included in the total derivative term. If
Cauchy relations hold then this tensor vanishes. However, in the first part of strain
energy functional the tensors Vijkl and Wiljk appear together.

The problem is to identify the null Lagrangian part of the elasticity Lagrangian
and then identify the set of elastic constants which contribute to the equilibrium
equation. Eq. (2.12) can be turned into RS-decomposition as shown in Eq. (5.10)
hence it acts as a Lagrangian functional. Also it generates the equilibrium equation
along with the variation relative to displacement field.

Our considerations, the equilibrium conditions for the Lagrangian given in Eq.
(5.12). The variation of this Lagrangian up to a total derivative term reads as

δΩ =
1

2
[Vijkl −

1

2
Wiljk]δ(

∂ui
∂xj

∂ul
∂xk

)

=
1

2
[Vijkl −

1

2
Wiljk][(

∂

∂xj
(δui))

∂ul
∂xk

+
∂ui
∂xj

(
∂

∂xk
(δul))].

(5.13)

Since, both the tensors Vijkl and Wiljk hold the major and minor symmetries. The
last term of Eq. (5.13) can be added:

δΩ =
1

2
[Vijkl −

1

2
Wiljk][(

∂

∂xj
(δui))

∂ul
∂xk

+
∂ul
∂xk

(
∂

∂xj
(δui))]

= (Vijkl −
1

2
Wiljk)[(

∂

∂xj
(δui))

∂ul
∂xk

].

(5.14)

The above equation can also be written as

δΩ = [Vijkl −
1

2
Wiljk][

∂

∂xj
(δui

∂ul
∂xk

)− δui
∂

∂xj
(
∂ul
∂xk

)]

= (Vijkl −
1

2
Wijkl)

∂

∂xj
(δui

∂ul
∂xk

)− (Vijkl −
1

2
Wiljk)δui

∂

∂xj
(
∂ul
∂xk

)

and the equilibrium condition is taken as:

(Vijkl −
1

2
Wiljk)δui

∂

∂xj
(
∂ul
∂xk

) = 0. (5.15)

By using the propositions 3 and 7 in Eq. (5.15) and knowing that δui 6= 0, the above
equation can be written as:

(Vijkl +Wi(jk)l)
∂

∂xj
(
∂ul
∂xk

) = 0

Rijkl
∂

∂xj
(
∂ul
∂xk

) = 0.
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Since Rijkl = Ci(jk)l and ∂
∂x[j

∂
∂xk]

= 0, the standard equilibrium equation becomes

Ci(jk)l
∂

∂xj
(
∂ul
∂xk

) = 0,

or

Cijkl
∂

∂xj
(
∂ul
∂xk

) = 0. (5.16)

The total derivative term is the part of strain energy functional. It does not play
any role in the equilibrium equation Eq. (5.16) in which the set of elastic constants
contribute but does not remove any subset of the elastic constants. Thus, null
Lagrangian does not exist for an arbitrary material.

5.4 Acoustic Wave Propagation

The equation of motion comes from the fundamental 2nd law of dynamics

F = ma, (5.17)

where F is the forces, m is the mass and a is the acceleration. Eq. (5.17) can also
be written as ∑

F = ma,

body forces + surface forces = m
∂2ui
∂t2

,

ρbi +
∂σij
∂xj

= ρ
∂2ui
∂t2

,

where m is the mass density, bi is the body force density. When we ignore the body
forces then

∂σij
∂xj

= ρ
∂2ui
∂t2

, (5.18)

and using the generalized Hooke’s law in Eq. (5.18) then we have

Cijkl
∂2ul
∂xj∂xk

= ρ
∂2ui
∂t2

.

This is called equation of motion. In the theory of linear elasticity, the wave propa-
gation in anisotropic media is describe as:

Cijkl
∂2ul
∂xj∂xk

− ρδil
∂2ul
∂t2

= 0, (5.19)
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where ul is the displacement co-vector that depends on time as well as space coor-
dinates. The elasticity tensor, Cijkl, mass density, ρ, and Kronecker delta, δij, are
coefficients (constants). In reference [24] a solution is assumed i.e.

ul = Ule
i(ξnixi−ωt), (5.20)

A system of three homogeneous algebraic equations is obtained

(Cijklξ
2njnk − ρδilω2)Ul = 0, (5.21)

which has a non-trivial solution if and only if the characteristic equation holds

det(Cijklξ
2njnk − ρδilω2) = 0. (5.22)

The algebraic Eq. (5.22) takes the form

(Γil − v2δil)Ul = 0, (5.23)

where

Γil =
1

ρ
Cijklnjnk, (5.24)

v =
ω

ξ
,

and the characteristic equation becomes

det(Γil − v2δil) = 0. (5.25)

The Christoffel tensor becomes symmetric with respect to the major and minor
symmetries of the elasticity tensor as below

Γli =
1

ρ
Cljkinjnk,

=
1

ρ
Ckiljnjnk,

=
1

ρ
Cikjlnjnk,

=
1

ρ
Cijklnjnk,

= Γil.

Therefore, its eigenvalues and eigenvectors are real and orthogonal respectively.
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Decomposition of the Christoffel Tensor

Under the action of the group GL(3, R), a symmetric tensor, by itself cannot be
decomposed directly. But the VW -decomposition of the Cijkl generates the corre-
sponding decomposition of the Γil. By using the VW -decomposition in Eq. (5.24)

Γil = (Vijkl +Wijkl)njnk,

Γil = Vijklnjnk +Wijklnjnk,

Γil = Vil +Wil,

where Vil := Vijklnjnk = Vli and Wil := Wijklnjnk = Wli. These two tensors which
are symmetric correspond to the Cauchy and non-Cauchy parts of the Cijkl. Using
the values of Cauchy (Vijkl) and non-Cauchy (Wijkl) parts

Vil = Vijklnjnk =
1

3ρ
(Cijkl + Ciklj + Ciljk)njnk,

Wil = Wijklnjnk =
1

3ρ
(2Cijkl − Ciklj − Cilkj)njnk.

Here, the two tensors Vil and Wil are called Cauchy Christoffel and non-Cauchy
Christoffel tensors respectively.

Proposition 9: For every elasticity tensor, Cijkl, and wave co-vector, ni,

Wilnl = 0.

Proof : Since Wil is non-Cauchy Christoffel tensor

Wilnl = Wijklnjnknl,

= Wi(jkl)njnknl,

= 0.

Proposition 10: The determinant of the non-Cauchy Christoffel tensor, Wil, is

det (Wij) = 0.

Using the decomposition of Christoffel tensor in Eq. (5.23) and also can be written
as

(Vil +Wil − v2δil)Ul = 0,

where the characteristic equation is

det (Vil +Wil − v2δil) = 0. (5.26)
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From the proposition 10, the Eq. (5.26) takes the form

det (Wil − v2δil) = 0,

where Vil is equal to zero and det (Wil) = 0 so at least one of its eigen value is
equal to zero. It is noticed that Christoffel tensor is real and also symmetric, thus
all its eigenvalues are real and the related eigenvectors are orthogonal. We need
to satisfy the condition of positive definiteness of the matrix Γij to get three real
positive eigenvalues such that

i. all eigenvalues are distinct (v21 > v22 > v23),

ii. two eigenvalues are equal (v21 > v22 = v23 or v21 = v22 > v23),

iii. or three eigenvalues are equal (v21 = v22 = v23).

5.5 Polarization of Acoustic Waves

Acoustic wave propagation in an elastic medium is an eigenvector problem given
by Eq. (5.23) in which the phase velocity v2 is the eigenvalues and in general three
distinct real positive solutions correspond to three independent waves i.e. (1)Ul,

(2)Ul
and (3)Ul and are called acoustic polarizations [24]. On the basis of polarization
vector waves can be classified as:

• Longitudinal Wave

• Transverse Wave

There are three pure polarization of acoustic waves for the isotropic material. One
is “longitudinal wave” that is also called compression wave and the other two are
“transverse waves” which are also called shear waves.
The polarization is directed along the propagation vector called longitudinal wave
is given by −→

U ×−→n = 0,

and the polarization is normal to the propagation vector called transverse wave is
given by −→

U .−→n = 0.

In general, the three pure polarization waves do not exist for anisotropic materials.

50



.

.

Now, we introduce a vector and scalar in term of Christoffel tensor and direction
vector such as

Vi := Γijnj, V := Γijninj.

Since Vi and V depend only on the Cauchy part of the elasticity tensor given by
proposition 9

Vi = Vijnj, V = Vijninj.

Proposition 11: Suppose the vector ni denotes an allowed direction for the prop-
agation of a longitudinal wave then the velocity vL of the longitudinal wave in the
direction of the vector ni is calculated by the Cauchy part of the elasticity tensor
such as

vL =
√
V .
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Proof : Consider uj = αnj for the longitudinal wave. According to Eq. (5.23)
becomes

(Γij − v2δij)uj = 0,

(Γij − v2δij)αnj = 0,

αΓijnj − v2δijαnj = 0,

v2δijnj = Γijnj,

v2δijninj = Γijninj,

v2njnj = Γijninj,

v2 = V,

v =
√
V ,

where njnj = 1 and Γijninj = V .

Proposition 12: The three purely polarized waves such as one longitudinal and
the two transverse waves can propagate through a medium with a given elasticity
tensor in the direction −→n if and only if

Vi = V ni.

Proof : Since Γij is a matrix which is symmetric, the eigenvalues and the eigen-
vectors are real and orthogonal, respectively. One of the eigenvectors of pure po-
larizations points in the direction of −→n if and only if pure polarizations are three.
Suppose

Vi = Γijnj,

Vini = Γijninj,

Vini = V,

Vinini = V ni,

Vi = v2Lni.

Hence, the directions of the purely polarized waves depend on the Cauchy part of
the elasticity tensor.

5.6 Examples

5.6.1 Isotropic Media

The elasticity tensor is defined by Eq. (2.17). The first irreducible part Vijkl of the
elasticity tensor for the isotropic bodies can be expressed as

Vijkl = C(ijkl) = λ(δ(ijδkl)) + µ(δ(ikδlj) + δ(ilδjk)),

= (λ+ 2µ)δ(ijδkl),
(5.27)
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where δ(ijδkl) = δ(ikδlj) = δ(ilδjk). we can also write Eq.(5.27) as

Vijkl =
(λ+ 2µ)

3
(δijδkl + δikδlj + δilδjk).

The second irreducible part Wijkl of the elasticity tensor for the isotropic bodies is
given by

Wijkl = λ(δijδkl) + µ(δikδlj + δilδjk) +
(λ+ 2µ)

3
(δijδkl + δikδlj + δilδjk),

= λδijδkl + µδikδlj + µδilδjk −
(λ+ 2µ)

3
δijδkl −

(λ+ 2µ)

3
δikδlj −

(λ+ 2µ)

3
δilδjk,

=
1

3
(3λδijδkl + 3µδikδlj + 3µδilδjk − λδijδkl − λδikδlj − λδilδjk − 2µδijδkl − 2µδikδlj − 2µδilδjk),

=
1

3
[2λδijδkl − 2µδijδkl − (λ− µ)δikδlj − (λ− µ)δilδjk],

=
1

3
[2(λ− µ)δijδkl − (λ− µ)δikδlj − (λ− µ)δilδjk],

Wijkl =
λ− µ

3
(2δijδkl − δikδlj − δilδjk). (5.28)

Putting the values of the Cauchy and non-Cauchy parts in Eq. (4.8) then we get

Cijkl =
(λ+ 2µ)

3
(δijδkl + δikδlj + δilδjk) +

(λ− µ)

3
(2δijδkl − δikδlj − δilδjk), (5.29)

consider

α :=
(λ+ 2µ)

3
, β :=

(λ− µ)

3
.

Putting the values of α and β in Eq. (5.29) then we obtain

Cijkl = α(δijδkl + δikδlj + δilδjk) + β(2δijδkl − δikδlj − δilδjk),
= α(δijδkl + 2δi(kδl)j) + β(2δijδkl − 2δi(kδl)j),

= αδijδkl + 2αδi(kδl)j + 2βδijδkl − 2βδi(kδl)j,

= (α + 2β)δijδkl + 2(α− β)δi(kδl)j.

The RS-decomposition of the elasticity tensor for the isotropic material can also be
expressed as

Rijkl = Ci(jk)l = λδi(jδk)l + µ(δi(kδj) + δilδjk),

= (λ+ µ)δi(jδk)l + µδilδjk,
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where δi(jδk)l and δ(ik) = δik. Now for the tensor Sijkl as

Sijkl = Ci[jk]l = λδi[jδk]l + µ(δi[kδ|l|j] + δilδ[jk]),

= λδi[jδk]l + µ(δi[kδ|l|j),

= (λ− µ)δi[jδk]l,

where δ[jk] = 0 and δi[kδ|l|j] = −δi[jδk]l. Putting the values of the tensors Rijkl and
Sijkl in Eq. (4.1) and then we have

Cijkl = (λ+ µ)δi(jδk)l + µδilδjk + (λ− µ)δi[jδk]l,

= (λ+ µ)[
1

2
(δijδkl + δikδjl)] + µδilδjk + (λ− µ)[

1

2
(δijδkl − δikδjl)],

=
(λ+ µ)

2
(δijδkl + δikδjl) + µδilδjk +

(λ− µ)

2
(δijδkl − δikδjl).

Consider

α
′
=

(λ+ µ)

2
, β

′
= µ, γ

′
=

(λ− µ)

2
.

Using these values in the above expression then we have

Cijkl = α
′
(δijδkl + δikδjl) + β

′
δilδjk + γ

′
(δijδkl − δikδjl).

We know that in the Cauchy relations , the second irreducible part of the elasticity
tensor and the tensor Sijkl are equal to zero. In isotropic media, the Cauchy relations
are defined as

λ = µ. (5.30)

Putting Eq. (5.30) in VW -decomposition then we have

Cijkl = (
µ+ 2µ

3
)[δijδkl + δikδlj + δilδjk] + (

µ− µ
3

)[2δijδkl − δikδlj − δilδjk],

= µ(δijδkl + δikδlj + δilδjk).

and again putting the same condition in RS-decomposition then we obtain

Cijkl = (
µ+ µ

2
)[δijδkl + δikδjl] + µδilδjk +

µ− µ
2

[δijδkl − δikδjl],

= µ(δijδkl + δikδjl + δilδjk).

With respect to the Eq. (5.30), the elasticity tensor is equal for RS- and VW -
decompositions. Therefore, when Cauchy relations hold then the tensors Rijkl and
Vijkl are same for the isotropic media.
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Cauchy Factor for Isotropic Media

The matrices of the tensors Vijkl and Wijkl for isotropic media are

Vijkl =


C11

1
3
C11

1
3
C11 0 0 0

∗ C11
1
3
C11 0 0 0

∗ ∗ C11 0 0 0
∗ ∗ ∗ 1

3
C11 0 0

∗ ∗ ∗ ∗ 1
3
C11 0

∗ ∗ ∗ ∗ ∗ 1
3
C11

 . (5.31)

Wijkl =


0 1

3
(3C12 − C11)

1
3
(3C12 − C11) 0 0 0

∗ 0 1
3
(3C12 − C11) 0 0 0

∗ ∗ 0 0 0 0
∗ ∗ ∗ −1

6
(3C12 − C11) 0 0

∗ ∗ ∗ ∗ −1
6
(3C12 − C11) 0

∗ ∗ ∗ ∗ ∗ −1
6
(3C12 − C11)

 .

(5.32)

By taking the square of both tensors Vijkl and Wijkl, we get the following form

VijklVijkl = V 2 = 3(C11)
2 + 18{1

3
(C11)}2,

WijklWijkl = W 2 = 6{1

3
(3C12 − C11)}2 + 12{−1

6
(3C12 − C11)}2.

(5.33)

Consider aluminium which is an isotropic material whose C11 = 10.73×1010Nm−2, C12 =
6.08× 1010Nm−2, C44 = 2.83× 1010Nm−2. Using these values in Eq. (5.33) we get

VijklVijkl = V 2 = 581.05,

WijklWijkl = W 2 = 56.40,

CijklCijkl = C2 = 637.45.

The Cauchy factor is
FCauchy = 0.9.

Isotropic is a special case in which the main difference between these two decom-
positions become obvious. The VW -decomposition determines the existence of two
parameters which are linearly independent of the isotropic medium while the RS-
decomposition also determines the existence of three parameters which are linearly
dependent. Now, calculate the characteristic velocities of the acoustic waves. We
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first find the Christoffel matrices from the tensors Vil and Wil

Vil = Vijklnjnk =
(λ+ 2µ)

3
[δijδkl + δikδlj + δilδjk]njnk,

= α(δijδklnjnk + δikδljnjnk + δilδjknjnk),

= (ninl + ninl + δil) = α(δil + 2ninl),

by replacing l = j in the above equation then we have

Vij = α(δij + 2ninj), (5.34)

Wil = Wijklnjnk =
λ− µ

3
[2δijδkl − δikδlj − δilδjk]njnk,

= β(2δijnjnk − δikδljnjnk − δilδjknjnk),
= β(2ninl − ninl − δil) = −β(δil − ninl),

and if we replace j with l then

Wij = −β(δij − ninj). (5.35)

Eqs. (5.34) and (5.35) are Christoffel matrices

Vijnj = α(δij + 2ninj)nj,

= α(δijnj) + 2αni(njnj),

= αni + 2αni,

Vi = 3αni, (5.36)

where Vi is a vector. Consider,

Vijnj = 3αni,

Vijninj = 3αnini,

Vjnj = 3α,

V = 3α,

(5.37)

where V is a scalar. We take the equation Γil = Vil +Wil and using the values of Vil
and Wil in this equation then we obtain

Γil = α(δil + 2ninl)− β(δil − ninl),
= αδil + 2αninl − βδil + βninl,

= (α− β)δil + (2α + β)ninl.

(5.38)
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Using Eq. (5.38) in Eq. (5.25) then we get

det[v2δil − (α− β)δil + (2α + β)ninl] = 0,

in terms of the parameters such as α and β, the characteristic equation for the
acoustic waves take the form

det[(v2 − α + β)δij − (2α + β)ninj] = 0. (5.39)

The velocity of longitudinal wave given below

v21 = V = 3α = (λ− 2µ), (5.40)

is a first solution of the above equation. Using the value of longitudinal wave velocity
in Eq. (5.39) then det(δij−ninj) = 0 which means that v21 is an eigen value of the Eq.
(5.39). Putting the value of v2 = (α− β) in Eq. (5.39) then we have det(ninj) = 0.
The velocity of transverse waves are v22 = v23 = (α− β) = µ.

5.6.2 Anisotropic Media

Proposition 13: The most general type of an anisotropic medium that allows
propagation of purely polarized waves in an arbitrary direction has an elasticity
tensor of the form [18]

Cijkl =


α α

3
+ 2ρ1

α
3

+ 2ρ2 2ρ3 0 0
∗ α α

3
+ 2ρ4 0 2ρ5 0

∗ ∗ α 0 0 2ρ6
∗ ∗ ∗ α

3
− ρ4 −ρ6 −ρ5

∗ ∗ ∗ ∗ α
3
− ρ2 −ρ3

∗ ∗ ∗ ∗ ∗ α
3
− ρ1

 ,

where ρ1, ......ρ6 are arbitrary parameters. In this medium, the longitudinal waves
velocity is vL =

√
3α =

√
λ− 2µ.

Cubic crystal

In cubic crystal, there are three elastic constants which are linearly independent of
each other. In a properly chosen coordinate system, they can be put into the Voigt
matrix given by Eq. (2.18) [24].
C1111 C1112 C1133 C1123 C1131 C1112

∗ C2222 C2233 C2223 C2231 C2212

∗ ∗ C3333 C3323 C3331 C3312

∗ ∗ ∗ C2323 C2331 C2312

∗ ∗ ∗ ∗ C3131 C3112

∗ ∗ ∗ ∗ ∗ C1212

 =


C11 C12 C12 0 0 0
∗ C11 C12 0 0 0
∗ ∗ C11 0 0 0
∗ ∗ ∗ C66 0 0
∗ ∗ ∗ ∗ C66 0
∗ ∗ ∗ ∗ ∗ C66

 .
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By using the cubic crystal matrix in Eq. (4.18) then we have
C11 C12 C12 0 0 0
∗ C11 C12 0 0 0
∗ ∗ C11 0 0 0
∗ ∗ ∗ C66 0 0
∗ ∗ ∗ ∗ C66 0
∗ ∗ ∗ ∗ ∗ C66

 =


V11 V12 V12 0 0 0
∗ V11 V12 0 0 0
∗ ∗ V11 0 0 0
∗ ∗ ∗ V66 0 0
∗ ∗ ∗ ∗ V66 0
∗ ∗ ∗ ∗ ∗ V66



+


0 W12 W12 0 0 0
∗ 0 W12 0 0 0
∗ ∗ 0 0 0 0
∗ ∗ ∗ W66 0 0
∗ ∗ ∗ ∗ W66 0
∗ ∗ ∗ ∗ ∗ W66

 .

By using the Eqs. (4.16) and (4.17) in the above matrices then we get Cauchy and
non-Cauchy parts in the matrices form. The Cauchy part is

Vijkl =


C11

1
3
(C12 + 2C66)

1
3
(C12 + 2C66) 0 0 0

∗ C11
1
3
(C12 + 2C66) 0 0 0

∗ ∗ C11 0 0 0
∗ ∗ ∗ 1

3
(C12 + 2C66) 0 0

∗ ∗ ∗ ∗ 1
3
(C12 + 2C66) 0

∗ ∗ ∗ ∗ ∗ 1
3
(C12 + 2C66)

 ,

Vijkl =



α
′
β

′
β

′
0 0 0

∗ α
′
β

′
0 0 0

∗ ∗ α
′

0 0 0
∗ ∗ ∗ β

′
0 0

∗ ∗ ∗ ∗ β
′

0
∗ ∗ ∗ ∗ ∗ β

′

 ,

where C11 = α
′

and 1
3
(C12 + 2C66) = β

′
. The non-Cauchy part is

Wijkl =


0 2

3
(C12 − C66)

2
3
(C12 − C66) 0 0 0

∗ 0 2
3
(C12 − C66) 0 0 0

∗ ∗ 0 0 0 0
∗ ∗ ∗ 1

3
(C66 − C12) 0 0

∗ ∗ ∗ ∗ 1
3
(C66 − C12) 0

∗ ∗ ∗ ∗ ∗ 1
3
(C66 − C12)

 .
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Wijkl =


0 2γ

′
2γ

′
0 0 0

∗ 0 γ
′

0 0 0
∗ ∗ 0 0 0 0
∗ ∗ ∗ −γ′

0 0
∗ ∗ ∗ ∗ −γ′

0
∗ ∗ ∗ ∗ ∗ −γ′

 ,

where W12 = C12 = 2
3
(C12 − C66) = γ

′
and W66 = 1

3
(C66 − C12) = −γ′

. Therefore,

α
′
, β

′
and γ

′
are new elastic constants. The elasticity tensor Cijkl is expressed in

terms of these constants. The Cauchy part of the Christoffel tensor can be written
in the form

Vil =

α′
n2
1 + β

′
(n2

2 + n2
3) 2β

′
n1n2 2β

′
n1n3

∗ α
′
n2
2 + β

′
(n2

1 + n2
3) 2β

′
n2n3

∗ ∗ α
′
n2
3 + β

′
(n2

1 + n2
2)

 .

The vector Vi of the Cauchy Christoffel tensor is

Vi =


α

′
n3
1 + 3β

′
n1n

2
2 + 3β

′
n1n

2
3

α
′
n3
2 + 3β

′
n2
1n2 + 3β

′
n2n

2
3

α
′
n3
3 + 3β

′
n2
1n3 + 3β

′
n2
2n3

 .

and the scalar V of the Cauchy Christoffel tensor takes the form

V = (α
′ − 3β

′
)(n4

1 + n4
2 + n4

3) + 3β
′
,

respectively. While the non-Cauchy part of the Christoffel tensor takes the form

Wil =

−γ′
(n2

2 + n2
3) −γ′

n1n2 −γ′
n1n3

∗ −γ′
(n2

1 + n2
3) −γ′

n2n3

∗ ∗ −γ′
(n2

1 + n2
2)

 .

The corresponding vector Wijnj = Wi and scalar Wijninj = W are equal to zero.
Now, we calculate the longitudinal velocity for cubic crystal.

1. Edges: In edges, −→n = (1, 0, 0). The unit vector is n̂ = (1, 0, 0). The longi-
tudinal velocity for edges is

V = (α
′ − 3β

′
)(n4

1 + n4
2 + n4

3) + 3β
′
,

= α
′ − 3β

′
+ 3β

′
= α

′
,

vL =
√
α′ =

√
C11.
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2. Face diagonals: In face diagonals, −→n = (1, 1, 0). The unit vector is n̂ =
( 1√

2
, 1√

2
, 0). The longitudinal velocity for face diagonals is

V = (α
′ − 3β

′
)(n4

1 + n4
2 + n4

3) + 3β
′
,

= (α
′ − 3β

′
)[(

1√
2

)4 + (
1√
2

)4 + 0] + 3β
′
,

=
α

′ − 3β
′

2
+ 3β

′
,

=
α

′
+ 3β

′

2
,

vL =

√
α′ + 3β ′

2
,

=

√
(C11 + C12 + 2C66)

2
.

3. Space diagonals: In space diagonals, −→n = (1, 1, 1). The unit vector is n̂ =
( 1√

3
, 1√

3
, 1√

3
). The longitudinal velocity for space diagonals is

V = (α
′ − 3β

′
)(n4

1 + n4
2 + n4

3) + 3β
′
,

= (α
′ − 3β

′
)[(

1√
3

)4 + (
1√
3

)4 + (
1√
3

)4] + 3β
′
,

=
α

′ − 3β
′

3
+ 3β

′
,

=
α

′
+ 6β

′

3
,

vL =

√
α′ + 6β ′

3
,

=

√
(C11 + 2C12 + 4C66)

3
.

There are extensive materials with same S and arbitrary W -tensor which have ex-
actly the same directions and velocities of the longitudinal waves. This can be seen
in the light of proposition 14 and 15. The elasticity tensor Cijkl can be expressed
for such materials as:
From proposition 13, C11 = α, using the value of C11 in α

′
then we get

α
′
= α.
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C12 = α
3

+ 2ρ1 and C66 = α
3
− ρ1. By using the value of these components in β

′
and

γ
′

then we have

β
′
=

1

3
{α

3
+ 2ρ1 + 2(

α

3
− ρ1)}

=
1

3
{α

3
+ 2ρ1 +

2α

3
− 2ρ1}

=
α

3
.

γ
′
=

1

3
{C12 − C66}

=
1

3
{α

3
+ 2ρ1 −

α

3
+ ρ1}

= ρ1.

The new matrix of the elasticity tensor is

Cijkl =



α
′
β

′
+ 2ρ1 β

′
+ 2ρ2 2ρ3 0 0

∗ α
′

β
′
+ 2ρ4 0 2ρ5 0

∗ ∗ α
′

0 0 2ρ6
∗ ∗ ∗ β

′ − ρ4 −ρ6 −ρ5
∗ ∗ ∗ ∗ β

′ − ρ2 −ρ3
∗ ∗ ∗ ∗ ∗ β

′ − ρ1

 .
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Chapter 6

Summary and Conclusion

In this thesis, we have studied the decompositions of elasticity tensor under 2 and
3 dimensions and some problems relating to its theory. In this chapter, we sum-
marize our thesis. In the theory of linear anisotropic elasticity, the properties of
the elastic medium are described by the 4th rank elasticity tensor Cijkl. There are
two ways to decompose the elasticity tensor Cijkl under the general linear group.
The first reducible decomposition of elasticity tensor is RS-decomposition which is
frequently used in the literature. The elasticity tensor decomposed into a partially
symmetric tensor Rijkl and partially antisymmetric tensor Sijkl. The vector spaces
of R and C are same such as 21 dimensions and the vector space of S is 6 dimen-
sions. The tensors Rijkl and Sijkl hold the major symmetry of the Cijkl but do not
obey the minor symmetries of the elasticity tensor. Moreover, due to the lack of the
minor symmetries, they do not represent elasticity tensor Cijkl. The partial sym-
metric tensor Rijkl can further be decomposed. Consequently, this decomposition
does not correspond to a direct sum decomposition of the vector space defined by C.

The second irreducible decomposition is VW -decomposition. In this decomposi-
tion, the elasticity tensor Cijkl is decomposed into the completely symmetric part
V plus the remainder W . Under the 3-dimensional general linear group, it is irre-
ducible and unique. In VW -decomposition, the first irreducible part, denoted by
Vijkl, consists of 15 independent components and the other irreducible part, denoted
by Wijkl, has 6 independent components. The irreducible decomposition of the ten-
sor Cijkl yields the decomposition of the corresponding tensor space C into a direct
sum of two subspaces such as V ⊂ C and W ⊂ C. The VW -decomposition is more
superior than RS-decomposition because it is irreducible, unique and preserves the
minor and major symmetries of the elasticity tensor. We have concluded that the
VW -decomposition is more suitable decomposition than RS-decomposition. It is
valid from algebraic and physical point of view.
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In the framework of the VW -decomposition (irreducible decomposition) of the elas-
ticity tensor, we have studied the physical applications of its decomposition. The
first physical application of VW -decomposition is Cauchy relations. Cauchy rela-
tions hold if and only if the second irreducible part of this decomposition is equal
to zero. In Cauchy relations, there are two types of elasticity: one is Cauchy type
i.e. V and other is non-Cauchy type i.e. W which measures the deviation from V
(Cauchy part). The second application is strain energy density function. It is split
into two parts (Cauchy and non-Cauchy), makes good sense in physics. The other
applications, for the acoustic wave propagation define the Cauchy and non-Cauchy
parts of the Christoffel tensor (Γil). The interesting results are obtained for the
Christoffel tensor (Γil) which mentioned in propositions 9 and 10. Also, examine
the polarizations of elastic wave. The Cauchy part of the Christoffel tensor deter-
mine the propagation of longitudinal wave (see proposition 11). We have presented
(see proposition 13) a complete new class of anisotropic materials which allow pure
polarizations to propagate in arbitrary directions, similarly as in isotropic material.
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[15] S. Haussüuhl, Physical Properties of Crystals: An Introduction, Wiley-VCH,
Germany, (2007).

[16] F. W. Hehl and Y. Itin, “The Cauchy relations in linear elasticity theory”, J.
Elast., 66, 185-192, (2002).

[17] Y. Itin, “Quadratic Invariants of the Elasticity Tensor”, J. Elast., 124, 1-24,
(2016).

[18] Y. Itin and F. W. Hehl, “The constitutive tensor of linear elasticity: its
decomposition, Cauchy relations, null Lagrangians, and wave propagation”, J.
Math. Phys., 54, 042903, (2013).

[19] G. Leibfried, Gittertheorie der mechanischen und thermischen Eigenschaften
der Kristalle, Springer, Berlin, (1955 ).

[20] I. Stakgold, “The Cauchy relations in a molecular theory of elasticity”,
Q.Appl. Math. 8, 169-186, (1950).

65



[21] B. Perrin, “Cauchy relations revisited”, Phys. Stat. Sol. B., 91, K115-K120,
(1979).

[22] M. Crampin and D. J. Saunders, “On null Lagrangians”, Diff. Geom. and
Appl., 22, 131-146, (2005).

[23] M. R. Lancia, G. Vergara Caffarelli, and P. Podio-Guidugli, “Null Lagrangians
in linear elasticity”, Math. Models Methods Appl.Sci., 5, 415427, (1995) .

[24] A. H. Nayfeh, Wave propagation in layered anisotropic media: with applications
to composites, ElSEVIER SCIENCE B.V., North-Holland, (1985).

66


