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Abstract

The spectral method has attracted much attention in recent research of numerical

computing for solving differential equations. The purpose of this thesis is to study

the basic theory of this method. We study the properties of sets of orthogonal

polynomials. If the points of interpolation are chosen at zeros of a certain polynomial

then the approximation of a function by the first n members of an orthogonal set

becomes optimum in the least square sense.

The spectral method for the solution of nonlinear boundary value problems are

described in detail and are applied to a few examples. The solutions are compared

and the results are plotted graphically. We also find the approximate solution of

Blasius boundary value problem.



Plan of Thesis

The present dissertation is arranged as follows:

In Chapter 1, we describe the brief introduction of the polynomial approximation

and the basic concept of the spectral method.

In Chapter 2, we describe the properties of orthogonal polynomials, which are im-

portant in applications. In this we discuss existence of orthogonal polynomials,

recurrence relation, zeros of orthogonal polynomials and Favard’s Theorem.

In Chapter 3, we describe the least square approximation. The problem of least

square ties in with the early history of orthogonal polynomials. We also discuss the

discrete least square approximation and orthogonal polynomial least square approx-

imation.

In Chapter 4, we find the approximate solutions of the boundary value problems

by using the spectral method. We also find the approximate solution of Blasius

boundary value problem and compare it with numerical solution.
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Chapter 1

Introduction

Weierstrass’ Theorem states that a function continuous on a closed and bounded interval can

be approximated by a polynomial.

Theorem: Let  ⊂ R be a closed and bounded interval and  a contiuous function on .

Then for every   0, there exist a polynomial  such that

|()−  ()|  

for all  in I.

For the proof see [1]  It is easy to see that it is impossible to approximate a discontinuous

function by a polynomial.

Example: Let

() =

⎧⎨⎩ 0 0 ≤   1
2

1 1
2
≤  ≤ 1

Let  = 01 and suppose that a polynomial  exists so that

|()−  ()|  01 0 ≤  ≤ 1

This would mean

()− 01   ()  () + 01 0 ≤  ≤ 1

2



Hence

−01   (
1

2
−)  01 for 0 ≤  

1

2

and

09   (
1

2
+)  11 for

1

2
≤  ≤ 1

 () being a polynomial must be continuous at  = 1
2
, and

 (
1

2
) =  (

1

2
−) =  (

1

2
+)

And the above inequalities would imply

09   (
1

2
)  01

which is absurd. This example hence shows that, it is impossible to approximate a discontinuous

function by a polynomial.

Weierstrass’ Theorem guarantees the existence of a polynomial but it is not so easy to find

it. However if a function is (+ 1)− times differentiable at a point 0 and

|+1()| ≤

for all  in |− 0|  , then¯̄̄̄
¯()−

X
=0

  (0)

!
(− 0)



¯̄̄̄
¯ ≤ 

(+ 1)!
|− 0|+1 

The above result requires differentiability upto order + 1 and boundedness of the derivative

which may not be easy to meet.

Let {()}∞=0 be a sequence of functions orthogonal on [ ] with respect to a weight
function () i.e.

    =

Z 



()()() = 0  6=  (1.1)

Let  be a piecewise continuous function on [ ].
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Let

 =    = 0 1 

The real number  is called the  -th Fourier coefficient of  with respect to {}∞=0. If we
let

() =

X
=0



() is the best approximation to () if and only if  are chosen so that

 = 

The best approximation is meant in the sense that

k()− ()k 

is minimized by the above choice.

If {}∞=0 is chosen to be a sequence of orthogonal polynomials, then () provides a

polynomial approximation to  on [ ].

The infinite series
∞X
=0



is called the Fourier series for  . It can be shown that for every simple set of orthogonal

polynomials {}∞=0 the Fourier series converges to  i.e

lim
→∞

°°°°° −
X

=0



°°°°° = 0
In this thesis, we shall discuss polynomial approximation to a function , but using instead of

the inner product (1.1), we use the discrete orthogonality condition discussed as in chapter 3.

Here the coefficients  :  = 0 1   in

() =

X
=0
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are found by solving the ( + 1) × ( + 1) system of equations formed by evaluating the

above equation at the  + 1 zeros of the polynomial +1(). This method is known in the

literature as the spectral method. Spectral methods were developed in a long series of papers

by Steven Orszag starting in 1969. Spectral methods are a class of teachniques used in applied

mathematics. This is a powerful method for the solution of ordinary and partial differential

equations. In this method we try to approximate the functions (solution of o.d.e’s , p.d.e’s,

etc) by mean of a truncated series of orthogonal functions (polynomials). We shall apply this

method to solve a nonlinear boundary value problem which is important in the analysis of fluid

flow in a boundary layer.
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Chapter 2

Properties of Orthogonal

Polynomials

In this chapter we shall discuss some basic properties of orthogonal polynomials, which are

important in applications.

Two real-valued functions f and g are said to be orthogonal on [ ], with respect to a

positive weight function () on ( ), if the inner product

    =

Z 



()()() = 0

When  () = 1, then  and  are said to be simply orthogonal.

A sequence of polynomials {}∞=0 is called an orthogonal set of polynomials, if

    = 0 for  6= 

Furthermore, if   = 1,  = 0 1  then the set of polynomials is called an orthonormal

set.

A sequence of polynomials {}∞=0, is called a simple set of polynomials, if  is of degree
.

Throughout this chapter, we consider simple sets of orthogonal polynomial.

Theorem 1.[2]
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Let {}∞=0 be a simple set of polynomials and let  be an arbitrary polynomial of degree

. Then  is a linear combination of polynomials 0 1  

() = 
 +−1−1 + +0

0

Proof:

We shall prove this theorem with the help of mathematical induction.

For  = 0, we have:

0 = 0
0 and 0 = 0

0

00 = 00
0 (2.1)

00 = 00
0 (2.2)

Subtracting Eq. (2.1) and Eq. (2.2) we get

00 −00 = 00
0 −00

0

= 0

00 = 00

0 = 0

in which  = 0
0
. Thus the theorem is true for  = 0.

Suppose that theorem is true for  ≤ , where  is any non-negative integer.

Let +1be any polynomial of degree  + 1,

+1 () = +1
+1 +

 + 0

And let

+1 () = +1
+1 + 

 + 0

And if we write

+1+1() = +1+1
+1 + +1

 + + +10 (2.3)
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+1+1() = +1+1
+1 ++1

 + ++10 (2.4)

subtracting Eq. (2.3) and Eq. (2.4), and choose +1 =
+1

+1
,

+1+1()−+1+1() = +1+1
+1 + +1

 + + +10

−+1+1
+1 − +1

 − − 0+1

+1 ()− +1+1 () = Polynomial of degree ≤ 

=  + 11 + 00

+1 () =

+1X
=0



Thus if the theorem is true for  ≤  it is true for  =  + 1. Since it is true for  = 0, it is

true for every non-negative integer .

Next we discuss a necessary and sufficient condition for orthogonality.

Theorem 2.

A simple set of polynomials {}∞=0 is an orthogonal set w.r.t. weight function, () on
the interval (a,b) iff

  
  =

Z 



()()
 = 0 (2.5)

where

() =  () = 

for all  and  a nonnegative integer less than .

Proof:

Suppose {}∞=0 is orthogonal then the condition (2.5) is satisfied. Let  and  be any

positive integer s.t. 0 ≤   . By Theorem 1, there exist constants 0 1......,  such

that.

 = 00 + 11 + + 
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then

  
  = 0   0  +1   1  ++     

  
  = 0

Conversely if

Z 



()()
 = 0   

Let  and  be two polynomial   

 = 
 + −1−1 + + 0

0

 = 
 + −1−1 + + 0

0

then

    =    
  +−1   

−1  ++ 0   
0 

    = 0

2.1 Existence

We shall prove the existence of orthogonal polynomials with the help of Gram - Schmidt process.

Gram - Schmidt Process

The Gram - Schmidt process is used to construct a sequence of orthogonal polynomials with

respect to an inner product.

If we have a linearly independent set of continuous functions {}=1, then the Gram -

Schmidt process generates an orthogonal set of functions {}=1, in the following manner

1 = 1

2 = 2 −  1 2 

 1 1 
1

9



and

 1 2  = 0

so, first two members are mutually orthogonal. And if

 =  −  1  

 1 1 
1 −  2  

 2 2 
2 − −  −1  

 −1 −1 
−1

then by the help of mathematical induction we can prove that all of its members are mutually

orthogonal. [3].

Example: We can generate a sequence of orthogonal polynomials w.r.t, an inner product

    =

Z 



 ()  ()  () 

Here we take,  () =  ( ) = (0 1) and linearly independent sequence
©
1  2 

ª
.

Take 1 = 1 = 1, then we have

2 () = 2 −  1 2 

 1 1 
1

= −  1  

 1 1 
1

= − 2
3


since

 1   =

Z 1

0

2 =
1

3
and  1 1  =

Z 1

0

 =
1

2


Further

3 () = 3 −  1 3 

 1 1 
1 −  2 3 

 2 2 
2

= 2 −  1 2 

 1 1 
1−  − 2

3
 2 

 − 2
3
 − 2

3

(− 2

3
)

= 2 − 6
5
+

3

10
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since

 1 2 =

Z 1

0

3 =
1

4
,  −2

3
 2 =

Z 1

0

3(−2
3
) =

1

30
and  −2

3
 −2

3
=

Z 1

0

(−2
3
)2 =

1

36


Here 1 () = 1, 2 () = − 2
3
and 3 () = 2− 6

5
+ 3

10
 are the first three monic polynomials

on the interval (0 1).

By repeating this process we obtain any member of orthogonal polynomials of the set.

We also note that each pair of these polynomials are orthogonal. As

 1 − 2
3
 =

Z 1

0

(− 2
3
) = 0

 1 2 − 6
5
+

3

10
 =

Z 1

0

(2 − 6
5
+

3

10
) = 0

 − 2
3
 2 − 6

5
+

3

10
 =

Z 1

0

(− 2
3
)(2 − 6

5
+

3

10
) = 0

Theorem 3.

Let {}∞=0 be a set of orthogonal polynomials and let  be an arbitrary polynomial of

degree , then

 = 00 + 11 + + 

where

 =
   

k  k2
  = 1 2   (2.6)

Proof:

From Theorem 1, there exist constants  such that

 =


Σ
=0

 (2.7)

Multiply both sides of Eq. (2.7) by () and (), where  is an arbitrary integer (0 ≤  ≤ )

and integrate from  to 

Z 



()() = 0

Z 



0()()()+1

Z 



1()()()++

Z 



()()()
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since ( ) = 0 when  6= , ( = 0 1  ) we have

   =     

=  k  k2

 =
   

k  k2


where  = 0 1  and k  k6= 0

2.2 Three Term Recurrence Relation

Theorem 4.

The polynomials of an orthogonal set satisfy a recurrence relation of the form

 = +1() +() +−1()  ≥ 1

where ,  and  are constants that may depends on .

Proof:

Since  is a polynomial of degree + 1. From Theorem 3, we have

 =
+1

Σ
=1

()

where

 =
   

k  k2
=

   

k  k2


 = 0 for  + 1   or   − 1

 =
+1

Σ
=1

()

= 11() + 22() + + −1−1() + () + +1+1()

as

 = 0 for   − 1

12



so

 = −1−1() + () + +1+1()

Setting  = +1  =  and  = −1, the recurrence relation becomes

 = +1() + −1() +() (2.8)

Theorem 5.

If k  k is a constant independent of  then  = −1 in the recurrence relation

 = +1() +() +−1−1()

Proof:

Assume k  k is constant, which we can take to be unity, in the Eq. (2.6), then

 =
   

k  k2
=    

=

Z 



()()()

=

Z 



()(())()

=    

=    

= 

As  = 

And we know from Theorem 4, that

 = +1

−1 = −1

−1 = −1

−1 = 

13



2.3 Christoffel-Darboux Formula

A sequence of orthonormal polynomials {}∞=0 satisfies the Christoffel-Darboux identities

X
=0

()() =


+1

+1 ()()− +1 ()()

− 
  6=  (2.9)

and
X
=0

[()]
2 =



+1
[

0
+1()()− 

0
()+1()] (2.10)

where  is the leading coefficient of polynomial  ().

Proof:

We derive these results from three term recurrence relation

() = +1() +() +−1()

Here we take  = −1, and arrange the equation as

() = +1() +() +−1−1() (2.11)

and

() = +1() +() +−1−1() (2.12)

Multiply Eq. (2.11) through by () and Eq. (2.12) by (), subtract the results, we obtain

(− )()() = [+1()()− ()+1()]

+−1[−1()()− ()−1()]

Change the index to , in the above equation and sum over =0 to . We get

(− )

X
=0

()() = [+1()()− ()+1()] (2.13)

Now comparing the coefficients of +1 in the recurrence relation (2.8), we get the value of 

14



as

 =


+1


Substitute the value of  in the above Eq. (2.13)

X
=0

()() =


+1

[+1()()− ()+1()]

− 
 (2.14)

Which proves (2.9)

Now add and subtract +1()() to the numerator of the right hand side of the Eq.

(2.14), and letting  → , and apply the L’Hospital rule, we get

X
=0

[()]
2 =



+1
[

0
+1()()− 

0
()+1()]

2.4 Zeros of Orthogonal Polynomials

Theorem 6.

The nth degree polynomial  of an orthogonal set has  real distinct zeros, all of which lie

in the interval (a, b).

Proof:

Since 0 is a nonzero constant polynomial, and

 0   =

Z 



0()()

0 = 0

Z 



()()

⇒
Z 



()() = 0

Since ()  0 on (a, b), () must changes sign at least one point in the interval. Since

() is a polynomial of degree , it can change sign at most  times.

Suppose it changes sign -times at 1 2   where    Define

() = (− 1)(− 2)(− 3)(− )

15



Now Z 



()()() = 0 if   

() changes sign at 1, () also changes sign at 1 but product doesn’t changes sign.

Similarly for 2 3  , and Z 



()()() 6= 0

This is a contradiction. So we conclude that  = . Thus  changes sign at  distinct points

in ( ) and has  real distinct zeros in this interval.

Interlacing Property

If { ()}∞=0 is the sequence of orthogonal polynomials, then the zeros of  () and

+1 () separate each other.

Proof:

We prove this property by the help of Christoffel-Darboux formula. Since for all (), the

leading coefficient  can be taken as positive, then Eq. (2.10) gives


0
+1 ()()− 

0
()+1 ()  0 , −∞   ∞ (2.15)

Let  and +1 be the consecutive zeros of ()Then


0
()

0
(+1)  0 (2.16)

Substituting  =  in Eq. (2.15) we get

−0
()+1 ()  0

and similarly

−0
(+1)+1 (+1)  0

Multiply the above two inequalities together, we have


0
()

0
(+1)+1 ()+1 (+1)  0

16



from Eq. (2.16) we have

+1 ()+1 (+1)  0

so +1 () has a zero among each pair of adjacent zeros of ().

Let  denote the greatest zero of (). We note that () → ∞ as  → ∞, we must
have 

0
()  0, and Eq. (2.15) becomes

+1 ()  0

But +1 () → ∞ as  → ∞, so +1 () must have a zero to the right of . Similarly, if
1 is the smallest zero of (), then +1 () must have a zero to the left of 1. Thus

1+1  1  2+1    +1    +1+1

Lemma:

If {} be the set of orthogonal polynomials that corresponds to the positive weight function
() on the finite interval ( ). Let  be of the form

() = (− ) (− ) where   −1   −1

then Z 







h
(− ) (− )

0
 ()()

i
 ()  = 0

for every polynomial  of degree less than .

17



Proof:

 =

Z 







h
(− ) (− )

0
 ()()

i
 () 

= (− ) (− )
0
 ()() () | −

Z 



(− ) (− )
0
 ()()

0
() 

= −
Z 




0
 () (− ) (− )()

0
() 

= − () (− ) (− )()
0
() | +

Z 



 ()




h
(− ) (− )()

0
()
i


=

Z 



 ()




h
(− ) (− )()

0
()
i


=

Z 



 ()




h
(− ) (− ) (− ) (− ) 

0
()
i
 (2.17)

Now





h
− (− )+1 (− )+1

0
()
i


= − (− ) (+ 1)(− )+1
0
()− (− )+1 (− ) ( + 1)

0
()− (− )+1 (− )+1

00
() 

= (+ 1)(− )()
0
()− (− )( + 1)()

0
() + (− )(− )()

00
() 

= ()
h
(+ 1)(− )

0
()− (− )( + 1)

0
() + (− )(− )

00
()
i


Now Eq. (2.17) implies that

Z 



()[(){(+ 1)(− )
0
()− (− )( + 1)

0
() + (− )(− )

00
()}]

=

Z 



()()(+ 1)(− )
0
()−

Z 



()()(− )( + 1)
0
()

+

Z 



()()(− )(− )
00
() 

As  is a polyniomial of degree less than , 
0
is a polynomial of degree less than − 1, and


00
is a polynomial of degree less than − 2 So

Z 



()()[{(+ 1)(− )
0
()− (− )( + 1)

0
() + (− )(− )

00
()}] = 0

18



2.5 Differential Equation

Theorem 7.

Let {} be the set of orthogonal polynomials that corresponds to the positive weight function
() on the finite interval (a, b). Let  be of the form

() = (− ) (− ) where   −1   −1

then  satisfies the second order differential equation

(− )(− )00 + [(2 + + )− (1 + )− (1 + )]0 = [
2 + (+  + 1)]

Proof:

We prove this result by the help of above lemma

Z 







£
(− ) (− )0 () ()

¤
 ()  = 0

for every polynomial  () of degree less than .

Now





£
(− ) (− )0 () ()

¤


=




h
− (− )+1 (− )+1 0 ()

i


=  ()
£− (+ 1) (− )0 + (− ) ( + 1)0 − (− ) (− )00

¤


Therefore

Z 



 ()
£
(− ) (− )00 + {(− ) ( + 1) + (+ 1) (− )}0

¤
 ()  = 0

for every polynomial  () of degree less than .

The expression in brackets must be a constant multiple of  Thus there is a constant 

such that





£
(− ) (− )0 ()

¤
=  (2.18)

19



If we write

 () = 
 + −1−1 + 0

and compare the coefficient of  on both sides of the above equation, we find that

 =
£
2 + (+  + 1)

¤


and hence putting the value of  in Eq. (2.18) we get

(− ) (− )00 + [(2 + + )−  (1 + )−  (1 + )]0 =
£
2 + (+  + 1)

¤


If the weight function is () = −( − ) on (∞)  then  satisfies the differential

equation

(− )00 + (+  + 1− )0 = −()

Also, if the weight function is () = −+ on (−∞∞)  then  satisfies the differential

equation


00
 + ( − 2)

0
 = −2()

Definition: Let {}∞=0 be a sequence of complex numbers and let L be a complex valued
function defined on the vector space of all polynomials by

L [] =   = 0 1 2 

L [11() + 22()] = 1L[1()]+2L[2()] 

for all complex numbers  and all polynomial () ( = 1 2) Then L is called the moment
functional determined by the moment sequence {}. The number  is called the moment of
order . [4]

20



2.6 Favard’s Theorem.

Let {}∞=0 and {}∞=0, be two arbitrary sequences of complex numbers, and let {}∞=0, be
a sequence of polynomials defined by the relation

 () = (− )−1 ()− −2 ()   = 1 2 3 (2.19)

where −1 () = 0 and 0 () = 1. Then, there exists a moment functional L such that

L [1] = 1 L [ ] = 0 if  6= 

Proof: [5].

To prove this theorem, we will define the functional L by induction on , the linear space

of polynomials with degree . We set

L [1] = 0 = 1 L [] = 0  = 1 2 3  . (2.20)

So, by using the three term recurrence relation, we find all the moments in the following way:

For  = 1, the Eq. (2.19) becomes

0 = L [1] = L [− 1]

= L []− 1L [1]

= 1 − 11 where L [] =   = 0 1 2 

=⇒ 1 = 11

For  = 2

0 = L [2] = L [(− 2)1 − 20]

= L [(− 2) (− 1)− 20]

= 2 − (1 + 2)1 + (12 − 2) 1

=⇒ 2 = (1 + 2)1 − (12 − 2) 1

21



Continuing this process, we can find +1 by using three term recurrence relation.

By replacing  by + 1 in Eq. (2.19), we get

() = +1() + +1() + +1−1()  ≥ 1 (2.21)

L[()] = L[+1()] + +1L[()] + +1L[−1()]

By using Eq. (2.20), we obtain

L [()] = 0  ≥ 2

Multiplying both sides of Eq. (2.21) by  and using the last result, we then find

L £2()¤ = 0  ≥ 3

Continuing in this way, we conclude

L
h
()

i
= 0 0 ≤   

It follows that for  6=  L [()()] = 0
So, therefore Favard’s Theorem states that corresponding to any three term recurrence

relation a set of orthogonal polynomials exist, according to Riesz’s Theorem [6]  which states

that

"Every bounded linear functional on a Hilbert space can be represented in term of inner

product."

Finally, we have

L [] = L £−1(+1 + +1 + +1−1)
¤


= L[−1+1] + +1L[−1] + +1L[−1−1]

= +1L[−1−1]

22



And we also find that for  = 1

L [1] = 2L[00]

= 2L[1]

= 21

for  = 2

L £22¤ = 3L[1]

= 321

and so in general

L [] = +11

23



Chapter 3

Orthogonal Polynomials and

Least-Square Approximation

Some materiel of this chapter is based on [7].

Polynomials must include in approximation theory, and are of principal importance. Ap-

proximation theory is concerned with fitting function to a given set of data and finding the best

function in a certain class that can be used to represent the set of data.

Here we consider the least square approximation.

In the least square approximation, a function () is defined on some interval [ ], we

approximate it by a polynomial, such that the error is minimized.

Let { ()}∞=0 be a set of functions defined on an interval [ ], and let  () be a positve
weight function on ( ).

Suppose the following -sum

 () =  + 11 + 00

approximates an arbitrary function  () on [ ]. Define the error

 () = [ ()−  ()] 

Here we first discuss the discrete least square approximation.
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3.1 Discrete Least Square Approximation

Choose a discrete set of nodes   = 0 1   with   0  1    , so that the sum

 =

X
=0

 () 
2 ()  (3.1)

is minimum.

Here

 () =

X
=0

 () 

Now from Eq. (3.1) we have

 =

X
=0

 () 
2 ()− 2

X
=0

 ()  ()

X
=0

 () +

X
=0

 ()

Ã
X

=0

 ()

!2


 =

X
=0

 () 
2 ()− 2

X
=0

X
=0

 ()  ()  () +

X
=0

X
=0



Ã
X
=0

 () () ()

!


To find the minimum , we first solve the system of  + 1 equations in 0 1  , we must

have




= 0 = 0 1 

0 = 0− 2
X
=0

 ()  () () + 2

X
=0



X
=0

 () () () 

X
=0

 ()  () () =

X
=0



X
=0

 () () ()  (3.2)

Matrix of the above system is becomes diagonal if we require the functions  () to satisfy

the following discrete orthogonality condition.

X
=0

 () () () = 0 if  6= 
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Take  =  in Eq. (3.2), and we get the coefficient  as

 =

X
=0

 ()  () ()

X
=0

 ()2 ()

 = 0 1

As

 =

X
=0

 () 
2 ()−2

X
=0

X
=0

 ()  ()  ()+

X
=0

X
=0



Ã
X
=0

 () () ()

!


Take  =  in third term

 =

X
=0

 () 
2 ()− 2

X
=0

X
=0

 ()  ()  () +

X
=0

X
=0

 () 
2


2
 ()  (3.3)

As

 () ≈
X

=0

 ()  (3.4)

Take inner product with

X
=0

 () () 

X
=0

 () ()  () ≈
X
=0

 () ()

X
=0

 () 

Take  = 
X
=0

 () ()  () ≈
X
=0

X
=0

 () 
2
 () 
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Eq. (3.3) implies that

min =

X
=0

 () 
2 ()− 2

X
=0



Ã
X
=0

 ()  () ()

!
+

X
=0

X
=0

 () 
2


2
 () 

min =

X
=0

 () 
2 ()− 2

X
=0



Ã
X
=0

X
=0

 () 
2
 ()

!
+

X
=0

X
=0

 () 
2


2
 () 

min =

X
=0

 () 
2 ()− 2

X
=0

X
=0

 () 
2


2
 () +

X
=0

X
=0

 () 
2


2
 () 

And the minimum of S becomes

min =

X
=0

 ()

(
2 ()−

X
=0

2
2
 ()

)
 (3.5)

3.2 Orthogonal Polynomials Least Square Approximation

Let {()}∞=0 be a simple set of polynomials orthogonal with respect to the weight function
() on [ ]. It is easily shown that members of the set satisfy a three term recurrence relation

of the form

() = +1() +() +−1() (3.6)

Without loss of generality, we can normalise the polynomials that k()k = 1, for every .

Then −1 =  and the above recurrence relation can be written in the form

() = +1() +() +−1−1()

[2]  Assume −1() ≡ 0 and write first four equations of the above set.

00() +01() + 0 + 0 = 0()

00() +11() +12() + 0 = 1()

0 +11() +22() +23() = 2()

0 + 0 +22() +33() = 3()−34()

The above system is equivalent to
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⎡⎢⎢⎢⎢⎢⎢⎣
0 0 0 0

0 1 1 0

0 1 2 2

0 0 2 3

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
0()

1()

2()

3()

⎤⎥⎥⎥⎥⎥⎥⎦ = 

⎡⎢⎢⎢⎢⎢⎢⎣
0()

1()

2()

3()

⎤⎥⎥⎥⎥⎥⎥⎦−
⎡⎢⎢⎢⎢⎢⎢⎣

0

0

0

34()

⎤⎥⎥⎥⎥⎥⎥⎦  (3.7)

Note that the matrix of the system is symmetric. It is well-known that the polynomial () has

exactly n real distinct zeros in ( ). Let   = 0 1 2 3 be the zeros of 4(). It is clear that

the matrix in (37) has eigenvalues  with the eigenvectors [0() 1() 2() 3()]
 . In

general case, the ×  tridiagonal matrix has eigenvalues  where +1() = 0  = 0 1  .

Also eigenvectors are mutually orthogonal. Define

() =

vuut X
=0

2 ()

as the norm of the  −  eigenvector. Therefore the matrix  of order  + 1 formed by the

normalised eigenvectors, ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0(0)

(0)

0(1)

(1)
 

0()

()

1(0)

(0)

1(1)

(1)
 

1()

()

    

    

(0)

(0)

(1)

(1)
 

()

()

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
has the property

 =  = 

one of whose consequences is the desired discrete orthogonality relation:

X
=0

()()() = 0   6= 

In the above () = 1
2()

.
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Chapter 4

Application to a Non-Linear

Boundary Value Problem

4.1 Introduction

Consider the boundary value problem

00 = (  0) () = 1 () = 2 (4.1)

In this chapter we shall find an approximate solution of the boundary value problem by using

spectral method. This method employs a set of orthogonal polynomials, {}∞=0, to represents
the unknown function. The unknown function is approximated by a sum of first +1 member

of the set. Let

() = () + −1−1() + 00()

Put in the given equation and define the residual

() = 
00
 − (  

0
) (4.2)

This residual is evaluated at suitably chosen  − 1 collocation points to give  − 1 equations
which together with two boundary conditions yield a set of +1 equations in as many unknowns

0 1  . A solution of this set is substituted in () provides an approximate solution to
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the boundary value problem.

In this method we use the Legendre polynomial in the solution.

The set of Legendre polynomial () is simply orthogonal on [−1 1]. They are defined by
the recurrence relation

0 = 1

1() = 

() = (2− 1)−1()− (− 1)−2()  ≥ 2

We are concentrating to find the solution on [0 1] instead of the interval [−1 1]. For this purpose
we transform the interval by defining  = 21 − 1, and the shifted Legendre polynomials are
defined by the relation

0 = 1

1() = 2− 1

() = (2− 1)(2− 1)−1()− (− 1)−2()  ≥ 2

4.2 Applications

In this section we shall find an approximate solution of the Blasius problem. For a discussion

of this problem see Boyd [8] and Ahmad [9].

The two dimensional steady-state laminar viscous flow over a semi-infinite plate modeled

by the nonlinear differential equation


000
() + 0

00
()  () = 0  ∈ [0∞) with boundary conditions (4.3)

 (0) = 
0
(0) = 0 

0
(∞) = 1

where  and  () are respectively the dimensionless coordinate and the dimensionless stream

functions defined in such a manner that the set of two partial differential Navier-Stokes equations

reduces to the single ordinary differential equation (4.3). It is relatively easy to find a series

or a numerical solution of the above problem and physical parameters of interest such as the
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shear-stress distribution along the surface, the drag on the surface and the boundary layer

thickness are easily evaluated.

The main hurdle in the solution of the above problem, called the Blasius problem, is the

absence of the second derivative 
00
(0). Once this derivative has been correctly evaluated an

analytical solution of the boundary value problem may be readily found. Blasius found the

following power series solution of the problem with 0 =
1
2


 () =

∞X
=0

µ
−1
2

¶


+1

(3 + 2)!
3+2 (4.4)

where 0 = 1 and  =

−1X
=0

¡
3−1
3

¢
−−1  ≥ 2  represents the unknown  00 (0). Solved

(4.3), (with 0 =
1
2
) numerically and found

 = 033206

Several authors have devised numerical algorithms to find good approximations to 
00
(0).

Asaithambi solved (4.3) with 0 = 1 and found 
00
(0) denoted by  to be  = 0469600

Fang et al. [10] have shown that the substitution

 () =
1p
0


³p

0
´

transform Eq. (4.3) into


000
+ 

00
= 0

Therefore it is sufficient to consider the Blasius problem with 0 = 1. Henceforth we shall treat

the problem with 0 = 1. Liao applied his homotopy analysis method to the Blasius problem

and obtained the solution to a high level of accuracy. J.H. He has used an iterative perturbation

technique to find an approximate analytic solution of the Blasius problem. [11]. Abbasbandy

has used a modified version of the Adomian decomposition method to find a numerical soution

while Cortell has studied the dependence of the solution on the parameter 0.

Crocco proposed a further transformation of the Blasius problem in the 19400, and inde-

pendently Wang [12] made use of the same transformations which helps to approach the Blasius

problem from a new perspective. They used an ingenious idea to transform the Blasius prob-
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lem into a simpler problem governed by a second order differential equation. They used the

transformation

 = 
0
()   = 

00
()  (4.5)

to transform (4.3) to

2

2
+




= 0  ∈ [0 1) with the boundary conditions

 (0) = 
00
(0)  

0
(0) = 0 lim

→1
 () = 0 (4.6)

Wang used the Adomian decompostion method to solve (4.6), and found

() = − 3

6
− 6

1803
− 9

21605
− 12

190087
 (4.7)

To find  the equation  (1) = 0 is solved for . He solved this equation retaining six terms of

the series (47) and found  = 0453539. Hashim improved this value to  = 0466799. Recently

Ahmad [9] improved this value to  = 0469606.

As an example of the application of the Spectral method to the boundary value problems,

we shall find an analytical expression for the solution of the problem (46).

00 +  = 0 0(0) = 0 (1) = 0

Let

() = 20() =
20

Σ
=0

() (4.8)

The boundary condition 020(0) = 0 leads to

21 − 32 + 63 − 104 + 155 − 216 + 287 − 368 + 459 − 5510 + 6611−

7812 + 9113 − 10514 + 12015 − 13616 + 15317 − 17118 + 19019 − 21020 = 0

and boundary condition 20(1) = 0 leads to

0 + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10+
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11 + 12 + 13 + 14 + 15 + 16 + 17 + 18 + 19 + 20 = 0

Let  denote the i-th zero of 21st Legendre functions i.e 21() These are

1 = 000312391 2 = 00163866 3 = 00399503

4 = 00733183 5 = 011578 6 = 0166431 7 = 0224191

8 = 0287829 9 = 0355989 10 = 0427219 11 = 05

12 = 0572779 13 = 0644012 14 = 0712125 15 = 077593

16 = 0833427 17 = 0886945 18 = 0927271 19 = 0959121

20 = 0986469 21 = 0997427

Ninteen more equations are obtained by setting the residual to zero at the point 2  20

When this system of equations is solved, we find the following values for the coefficients 0

1  20.

0 = 036805 1 = −0187637 2 = −0117454 3 = −00378429

4 = −00111564 5 = −000573766 6 = −000313192 7 = −000186456

8 = −000116731 9 = −0000750723 10 = −0000489022 11 = −000031856

12 = −0000205192 13 = −0000129189 14 = −00000784632 15 = −00000452055

16 = −00000241291 17 = −00000115009 18 = −459043× 10−6 19 = −134687× 10−6

20 = −210276× 10−7

Inserting the above values in Eq. (48) and simplifying we get the following expressions as our
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approximate solution to non-linear boundary value problem

() = 0468677 + 555112× 10−17− 000001046442 − 0354013 − (4.9)

009023644 + 2651775 − 4741626 + 5608557 − 4653098 +

2806229 − 12614610 + 42970511 − 112011× 10612 +

224271× 10613 − 344112× 10614 + 400875× 10615 − 348076× 10616 +

21807× 10617 − 93092718 + 24225219 − 28985820

Table 1 contains the approximate solution and , numerical solution produced by the bvp4c

program of MATLAB, and their relative error for  = 5

Table 1.

 Approximate solution Numerical solution Relative Error

0 0448547 04696 00448318

01 0448179 04693 00450053

02 044556 04668 00455013

03 043846 04600 00468261

04 0424537 04467 0049615

05 0401127 04244 00548322

06 036504 03902 00644798

07 0312349 03406 00829448

08 0238185 02700 01178333

09 0136528 01689 01916637

1 111022× 10−16 0 0

Table 2 contains the approximate solution and , numerical solution produced by the bvp4c

program of MATLAB, and their relative error for  = 10

Table 2.
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 Approximate solution Numerical solution Relative Error

0 046518 04696 00094123

01 0464822 04693 00095419

02 046231 04668 00096187

03 0455466 04600 00098565

04 0442018 04467 00104884

05 0419488 04244 0011574

06 0384974 03902 00133931

07 0334737 03406 00172137

08 0263285 02700 00248704

09 0160235 01689 00513025

1 566214× 10−15 0 0

Table 3 contains the approximate solution and , numerical solution produced by the bvp4c

program of MATLAB, and their relative error for  = 15

Table 3.

 Approximate solution Numerical solution Relative Error

0 0472512 04696 000620102

01 0471108 04693 000385255

02 0467508 04668 000151671

03 0459618 04600 00008304

04 0445208 04467 000334

05 0421746 04244 00062535

06 0386404 03902 00097283

07 0335352 03406 00154081

08 0263141 02700 00254037

09 0159442 01689 00559976

1 −852709× 10−11 0 0

Table 4 contains the approximate solution and , numerical solution produced by the bvp4c

program of MATLAB, and their relative error for  = 20
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Table 4.

 Eq. (49) Numerical solution Relative Error

0 0468677 04696 00019655

01 0468322 04693 00020841

02 0465829 04668 00020801

03 0459036 04600 00020957

04 0445692 04467 00022565

05 042334 04244 00024976

06 0389115 03902 00027806

07 0339342 03406 00036935

08 0268633 02700 00050631

09 0167088 01689 00107282

1 −614091× 10−9 0 0

The agreement between these solution is good.

Fig 1 : The approximate solutions for  = 5 10 15 20 are compared with the numerical
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solution.

Example 2:


00
+ 2

0
= 0 (0) = 1 (1) =

1

2


Let

() = 10() =
10

Σ
=0

() (4.10)

The boundary condition 10(0) = 1 leads to

0 − 1 + 2 − 3 + 4 − 5 + 6 − 7 + 8 − 9 + 10 = 1

and boundary condition 10(1) =
1
2
leads to

0 + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 =
1

2


Let  denote the −  zero of 11 Legender functions i.e 11() These are

1 = 00108857 2 = 00564687 3 = 0134924

4 = 0240452 5 = 0365228 6 = 05 7 = 0634772

8 = 0759548 9 = 0865076 10 = 0943534

11 = 0989114

Nine more equations are obtained by setting the residual to zero at the point 2  10When

this system of equations solved we find the following values for the coefficients 0 1  10.

0 = 0693145 1 = −0238327 2 = 00545675

3 = −00112394 4 = 000220532 5 = −0000419716

6 = 00000792958 7 = −00000140458 8 = 302692× 10−6

9 = −255567× 10−7 10 = 186686× 10−7
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Inserting the above values in Eq. (4.10) and simplifying we get the following expressions as our

approximate solution to non-linear boundary value problem

() = 0761673− 0523355+ 1000012 − 09998833 + 09979544

−09830855 + 09178956 − 07449657 + 04624788 − 01848839

+0034491410 − 0238327(−1 + 2) (4.11)

Now the exact solution of the problem is

 =
1

1 + 
 (4.12)

In Table 2, we compare, at some randomly selected points, the approximate solution, Eq. (4.11),

with the exact solution, Eq. (4.12).

Table 2.

 Eq. (4.11) Eq. (4.12) Relative Error

0 1 1 0

01 090909 0909091 00000011

02 0833332 0833333 00000012

03 0769229 0769231 00000026

04 0714283 0714286 00000042

05 0666664 0666667 00000045

06 0624997 0625 00000048

07 0588232 0588235 00000051

08 0555552 0555556 00000072

09 0526311 0526316 00000095

1 05 05 0

In Fig 2 the approximate solution (solid line) represented by Eq. (4.11) is compared with

the exact solution (dotted line).
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Figure 2:

The two curves appear to be identical on the scale.
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