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Abstract

The spectral method has attracted much attention in recent research of numerical

computing for solving differential equations. The purpose of this thesis is to study

the basic theory of this method. We study the properties of sets of orthogonal

polynomials. If the points of interpolation are chosen at zeros of a certain polynomial

then the approximation of a function by the first n members of an orthogonal set

becomes optimum in the least square sense.

The spectral method for the solution of nonlinear boundary value problems are

described in detail and are applied to a few examples. The solutions are compared

and the results are plotted graphically. We also find the approximate solution of

Blasius boundary value problem.



Plan of Thesis

The present dissertation is arranged as follows:

In Chapter 1, we describe the brief introduction of the polynomial approximation

and the basic concept of the spectral method.

In Chapter 2, we describe the properties of orthogonal polynomials, which are im-

portant in applications. In this we discuss existence of orthogonal polynomials,

recurrence relation, zeros of orthogonal polynomials and Favard’s Theorem.

In Chapter 3, we describe the least square approximation. The problem of least

square ties in with the early history of orthogonal polynomials. We also discuss the

discrete least square approximation and orthogonal polynomial least square approx-

imation.

In Chapter 4, we find the approximate solutions of the boundary value problems

by using the spectral method. We also find the approximate solution of Blasius

boundary value problem and compare it with numerical solution.
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Chapter 1

Introduction

Weierstrass’ Theorem states that a function continuous on a closed and bounded interval can

be approximated by a polynomial.

Theorem: Let  ⊂ R be a closed and bounded interval and  a contiuous function on .

Then for every   0, there exist a polynomial  such that

|()−  ()|  

for all  in I.

For the proof see [1]  It is easy to see that it is impossible to approximate a discontinuous

function by a polynomial.

Example: Let

() =

⎧⎨⎩ 0 0 ≤   1
2

1 1
2
≤  ≤ 1

Let  = 01 and suppose that a polynomial  exists so that

|()−  ()|  01 0 ≤  ≤ 1

This would mean

()− 01   ()  () + 01 0 ≤  ≤ 1
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Hence

−01   (
1

2
−)  01 for 0 ≤  

1

2

and

09   (
1

2
+)  11 for

1

2
≤  ≤ 1

 () being a polynomial must be continuous at  = 1
2
, and

 (
1

2
) =  (

1

2
−) =  (

1

2
+)

And the above inequalities would imply

09   (
1

2
)  01

which is absurd. This example hence shows that, it is impossible to approximate a discontinuous

function by a polynomial.

Weierstrass’ Theorem guarantees the existence of a polynomial but it is not so easy to find

it. However if a function is (+ 1)− times differentiable at a point 0 and

|+1()| ≤

for all  in |− 0|  , then¯̄̄̄
¯()−

X
=0

  (0)

!
(− 0)



¯̄̄̄
¯ ≤ 

(+ 1)!
|− 0|+1 

The above result requires differentiability upto order + 1 and boundedness of the derivative

which may not be easy to meet.

Let {()}∞=0 be a sequence of functions orthogonal on [ ] with respect to a weight
function () i.e.

    =

Z 



()()() = 0  6=  (1.1)

Let  be a piecewise continuous function on [ ].
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Let

 =    = 0 1 

The real number  is called the  -th Fourier coefficient of  with respect to {}∞=0. If we
let

() =

X
=0



() is the best approximation to () if and only if  are chosen so that

 = 

The best approximation is meant in the sense that

k()− ()k 

is minimized by the above choice.

If {}∞=0 is chosen to be a sequence of orthogonal polynomials, then () provides a

polynomial approximation to  on [ ].

The infinite series
∞X
=0



is called the Fourier series for  . It can be shown that for every simple set of orthogonal

polynomials {}∞=0 the Fourier series converges to  i.e

lim
→∞

°°°°° −
X

=0



°°°°° = 0
In this thesis, we shall discuss polynomial approximation to a function , but using instead of

the inner product (1.1), we use the discrete orthogonality condition discussed as in chapter 3.

Here the coefficients  :  = 0 1   in

() =

X
=0


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are found by solving the ( + 1) × ( + 1) system of equations formed by evaluating the

above equation at the  + 1 zeros of the polynomial +1(). This method is known in the

literature as the spectral method. Spectral methods were developed in a long series of papers

by Steven Orszag starting in 1969. Spectral methods are a class of teachniques used in applied

mathematics. This is a powerful method for the solution of ordinary and partial differential

equations. In this method we try to approximate the functions (solution of o.d.e’s , p.d.e’s,

etc) by mean of a truncated series of orthogonal functions (polynomials). We shall apply this

method to solve a nonlinear boundary value problem which is important in the analysis of fluid

flow in a boundary layer.
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Chapter 2

Properties of Orthogonal

Polynomials

In this chapter we shall discuss some basic properties of orthogonal polynomials, which are

important in applications.

Two real-valued functions f and g are said to be orthogonal on [ ], with respect to a

positive weight function () on ( ), if the inner product

    =

Z 



()()() = 0

When  () = 1, then  and  are said to be simply orthogonal.

A sequence of polynomials {}∞=0 is called an orthogonal set of polynomials, if

    = 0 for  6= 

Furthermore, if   = 1,  = 0 1  then the set of polynomials is called an orthonormal

set.

A sequence of polynomials {}∞=0, is called a simple set of polynomials, if  is of degree
.

Throughout this chapter, we consider simple sets of orthogonal polynomial.

Theorem 1.[2]
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Let {}∞=0 be a simple set of polynomials and let  be an arbitrary polynomial of degree

. Then  is a linear combination of polynomials 0 1  

() = 
 +−1−1 + +0

0

Proof:

We shall prove this theorem with the help of mathematical induction.

For  = 0, we have:

0 = 0
0 and 0 = 0

0

00 = 00
0 (2.1)

00 = 00
0 (2.2)

Subtracting Eq. (2.1) and Eq. (2.2) we get

00 −00 = 00
0 −00

0

= 0

00 = 00

0 = 0

in which  = 0
0
. Thus the theorem is true for  = 0.

Suppose that theorem is true for  ≤ , where  is any non-negative integer.

Let +1be any polynomial of degree  + 1,

+1 () = +1
+1 +

 + 0

And let

+1 () = +1
+1 + 

 + 0

And if we write

+1+1() = +1+1
+1 + +1

 + + +10 (2.3)
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+1+1() = +1+1
+1 ++1

 + ++10 (2.4)

subtracting Eq. (2.3) and Eq. (2.4), and choose +1 =
+1

+1
,

+1+1()−+1+1() = +1+1
+1 + +1

 + + +10

−+1+1
+1 − +1

 − − 0+1

+1 ()− +1+1 () = Polynomial of degree ≤ 

=  + 11 + 00

+1 () =

+1X
=0



Thus if the theorem is true for  ≤  it is true for  =  + 1. Since it is true for  = 0, it is

true for every non-negative integer .

Next we discuss a necessary and sufficient condition for orthogonality.

Theorem 2.

A simple set of polynomials {}∞=0 is an orthogonal set w.r.t. weight function, () on
the interval (a,b) iff

  
  =

Z 



()()
 = 0 (2.5)

where

() =  () = 

for all  and  a nonnegative integer less than .

Proof:

Suppose {}∞=0 is orthogonal then the condition (2.5) is satisfied. Let  and  be any

positive integer s.t. 0 ≤   . By Theorem 1, there exist constants 0 1......,  such

that.

 = 00 + 11 + + 
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then

  
  = 0   0  +1   1  ++     

  
  = 0

Conversely if

Z 



()()
 = 0   

Let  and  be two polynomial   

 = 
 + −1−1 + + 0

0

 = 
 + −1−1 + + 0

0

then

    =    
  +−1   

−1  ++ 0   
0 

    = 0

2.1 Existence

We shall prove the existence of orthogonal polynomials with the help of Gram - Schmidt process.

Gram - Schmidt Process

The Gram - Schmidt process is used to construct a sequence of orthogonal polynomials with

respect to an inner product.

If we have a linearly independent set of continuous functions {}=1, then the Gram -

Schmidt process generates an orthogonal set of functions {}=1, in the following manner

1 = 1

2 = 2 −  1 2 

 1 1 
1

9



and

 1 2  = 0

so, first two members are mutually orthogonal. And if

 =  −  1  

 1 1 
1 −  2  

 2 2 
2 − −  −1  

 −1 −1 
−1

then by the help of mathematical induction we can prove that all of its members are mutually

orthogonal. [3].

Example: We can generate a sequence of orthogonal polynomials w.r.t, an inner product

    =

Z 



 ()  ()  () 

Here we take,  () =  ( ) = (0 1) and linearly independent sequence
©
1  2 

ª
.

Take 1 = 1 = 1, then we have

2 () = 2 −  1 2 

 1 1 
1

= −  1  

 1 1 
1

= − 2
3


since

 1   =

Z 1

0

2 =
1

3
and  1 1  =

Z 1

0

 =
1

2


Further

3 () = 3 −  1 3 

 1 1 
1 −  2 3 

 2 2 
2

= 2 −  1 2 

 1 1 
1−  − 2

3
 2 

 − 2
3
 − 2

3

(− 2

3
)

= 2 − 6
5
+

3

10

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since

 1 2 =

Z 1

0

3 =
1

4
,  −2

3
 2 =

Z 1

0

3(−2
3
) =

1

30
and  −2

3
 −2

3
=

Z 1

0

(−2
3
)2 =

1

36


Here 1 () = 1, 2 () = − 2
3
and 3 () = 2− 6

5
+ 3

10
 are the first three monic polynomials

on the interval (0 1).

By repeating this process we obtain any member of orthogonal polynomials of the set.

We also note that each pair of these polynomials are orthogonal. As

 1 − 2
3
 =

Z 1

0

(− 2
3
) = 0

 1 2 − 6
5
+

3

10
 =

Z 1

0

(2 − 6
5
+

3

10
) = 0

 − 2
3
 2 − 6

5
+

3

10
 =

Z 1

0

(− 2
3
)(2 − 6

5
+

3

10
) = 0

Theorem 3.

Let {}∞=0 be a set of orthogonal polynomials and let  be an arbitrary polynomial of

degree , then

 = 00 + 11 + + 

where

 =
   

k  k2
  = 1 2   (2.6)

Proof:

From Theorem 1, there exist constants  such that

 =


Σ
=0

 (2.7)

Multiply both sides of Eq. (2.7) by () and (), where  is an arbitrary integer (0 ≤  ≤ )

and integrate from  to 

Z 



()() = 0

Z 



0()()()+1

Z 



1()()()++

Z 



()()()
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since ( ) = 0 when  6= , ( = 0 1  ) we have

   =     

=  k  k2

 =
   

k  k2


where  = 0 1  and k  k6= 0

2.2 Three Term Recurrence Relation

Theorem 4.

The polynomials of an orthogonal set satisfy a recurrence relation of the form

 = +1() +() +−1()  ≥ 1

where ,  and  are constants that may depends on .

Proof:

Since  is a polynomial of degree + 1. From Theorem 3, we have

 =
+1

Σ
=1

()

where

 =
   

k  k2
=

   

k  k2


 = 0 for  + 1   or   − 1

 =
+1

Σ
=1

()

= 11() + 22() + + −1−1() + () + +1+1()

as

 = 0 for   − 1
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so

 = −1−1() + () + +1+1()

Setting  = +1  =  and  = −1, the recurrence relation becomes

 = +1() + −1() +() (2.8)

Theorem 5.

If k  k is a constant independent of  then  = −1 in the recurrence relation

 = +1() +() +−1−1()

Proof:

Assume k  k is constant, which we can take to be unity, in the Eq. (2.6), then

 =
   

k  k2
=    

=

Z 



()()()

=

Z 



()(())()

=    

=    

= 

As  = 

And we know from Theorem 4, that

 = +1

−1 = −1

−1 = −1

−1 = 
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2.3 Christoffel-Darboux Formula

A sequence of orthonormal polynomials {}∞=0 satisfies the Christoffel-Darboux identities

X
=0

()() =


+1

+1 ()()− +1 ()()

− 
  6=  (2.9)

and
X
=0

[()]
2 =



+1
[

0
+1()()− 

0
()+1()] (2.10)

where  is the leading coefficient of polynomial  ().

Proof:

We derive these results from three term recurrence relation

() = +1() +() +−1()

Here we take  = −1, and arrange the equation as

() = +1() +() +−1−1() (2.11)

and

() = +1() +() +−1−1() (2.12)

Multiply Eq. (2.11) through by () and Eq. (2.12) by (), subtract the results, we obtain

(− )()() = [+1()()− ()+1()]

+−1[−1()()− ()−1()]

Change the index to , in the above equation and sum over =0 to . We get

(− )

X
=0

()() = [+1()()− ()+1()] (2.13)

Now comparing the coefficients of +1 in the recurrence relation (2.8), we get the value of 
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as

 =


+1


Substitute the value of  in the above Eq. (2.13)

X
=0

()() =


+1

[+1()()− ()+1()]

− 
 (2.14)

Which proves (2.9)

Now add and subtract +1()() to the numerator of the right hand side of the Eq.

(2.14), and letting  → , and apply the L’Hospital rule, we get

X
=0

[()]
2 =



+1
[

0
+1()()− 

0
()+1()]

2.4 Zeros of Orthogonal Polynomials

Theorem 6.

The nth degree polynomial  of an orthogonal set has  real distinct zeros, all of which lie

in the interval (a, b).

Proof:

Since 0 is a nonzero constant polynomial, and

 0   =

Z 



0()()

0 = 0

Z 



()()

⇒
Z 



()() = 0

Since ()  0 on (a, b), () must changes sign at least one point in the interval. Since

() is a polynomial of degree , it can change sign at most  times.

Suppose it changes sign -times at 1 2   where    Define

() = (− 1)(− 2)(− 3)(− )
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Now Z 



()()() = 0 if   

() changes sign at 1, () also changes sign at 1 but product doesn’t changes sign.

Similarly for 2 3  , and Z 



()()() 6= 0

This is a contradiction. So we conclude that  = . Thus  changes sign at  distinct points

in ( ) and has  real distinct zeros in this interval.

Interlacing Property

If { ()}∞=0 is the sequence of orthogonal polynomials, then the zeros of  () and

+1 () separate each other.

Proof:

We prove this property by the help of Christoffel-Darboux formula. Since for all (), the

leading coefficient  can be taken as positive, then Eq. (2.10) gives


0
+1 ()()− 

0
()+1 ()  0 , −∞   ∞ (2.15)

Let  and +1 be the consecutive zeros of ()Then


0
()

0
(+1)  0 (2.16)

Substituting  =  in Eq. (2.15) we get

−0
()+1 ()  0

and similarly

−0
(+1)+1 (+1)  0

Multiply the above two inequalities together, we have


0
()

0
(+1)+1 ()+1 (+1)  0
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from Eq. (2.16) we have

+1 ()+1 (+1)  0

so +1 () has a zero among each pair of adjacent zeros of ().

Let  denote the greatest zero of (). We note that () → ∞ as  → ∞, we must
have 

0
()  0, and Eq. (2.15) becomes

+1 ()  0

But +1 () → ∞ as  → ∞, so +1 () must have a zero to the right of . Similarly, if
1 is the smallest zero of (), then +1 () must have a zero to the left of 1. Thus

1+1  1  2+1    +1    +1+1

Lemma:

If {} be the set of orthogonal polynomials that corresponds to the positive weight function
() on the finite interval ( ). Let  be of the form

() = (− ) (− ) where   −1   −1

then Z 







h
(− ) (− )

0
 ()()

i
 ()  = 0

for every polynomial  of degree less than .
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Proof:

 =

Z 







h
(− ) (− )

0
 ()()

i
 () 

= (− ) (− )
0
 ()() () | −

Z 



(− ) (− )
0
 ()()

0
() 

= −
Z 




0
 () (− ) (− )()

0
() 

= − () (− ) (− )()
0
() | +

Z 



 ()




h
(− ) (− )()

0
()
i


=

Z 



 ()




h
(− ) (− )()

0
()
i


=

Z 



 ()




h
(− ) (− ) (− ) (− ) 

0
()
i
 (2.17)

Now





h
− (− )+1 (− )+1

0
()
i


= − (− ) (+ 1)(− )+1
0
()− (− )+1 (− ) ( + 1)

0
()− (− )+1 (− )+1

00
() 

= (+ 1)(− )()
0
()− (− )( + 1)()

0
() + (− )(− )()

00
() 

= ()
h
(+ 1)(− )

0
()− (− )( + 1)

0
() + (− )(− )

00
()
i


Now Eq. (2.17) implies that

Z 



()[(){(+ 1)(− )
0
()− (− )( + 1)

0
() + (− )(− )

00
()}]

=

Z 



()()(+ 1)(− )
0
()−

Z 



()()(− )( + 1)
0
()

+

Z 



()()(− )(− )
00
() 

As  is a polyniomial of degree less than , 
0
is a polynomial of degree less than − 1, and


00
is a polynomial of degree less than − 2 So

Z 



()()[{(+ 1)(− )
0
()− (− )( + 1)

0
() + (− )(− )

00
()}] = 0
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2.5 Differential Equation

Theorem 7.

Let {} be the set of orthogonal polynomials that corresponds to the positive weight function
() on the finite interval (a, b). Let  be of the form

() = (− ) (− ) where   −1   −1

then  satisfies the second order differential equation

(− )(− )00 + [(2 + + )− (1 + )− (1 + )]0 = [
2 + (+  + 1)]

Proof:

We prove this result by the help of above lemma

Z 







£
(− ) (− )0 () ()

¤
 ()  = 0

for every polynomial  () of degree less than .

Now





£
(− ) (− )0 () ()

¤


=




h
− (− )+1 (− )+1 0 ()

i


=  ()
£− (+ 1) (− )0 + (− ) ( + 1)0 − (− ) (− )00

¤


Therefore

Z 



 ()
£
(− ) (− )00 + {(− ) ( + 1) + (+ 1) (− )}0

¤
 ()  = 0

for every polynomial  () of degree less than .

The expression in brackets must be a constant multiple of  Thus there is a constant 

such that





£
(− ) (− )0 ()

¤
=  (2.18)
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If we write

 () = 
 + −1−1 + 0

and compare the coefficient of  on both sides of the above equation, we find that

 =
£
2 + (+  + 1)

¤


and hence putting the value of  in Eq. (2.18) we get

(− ) (− )00 + [(2 + + )−  (1 + )−  (1 + )]0 =
£
2 + (+  + 1)

¤


If the weight function is () = −( − ) on (∞)  then  satisfies the differential

equation

(− )00 + (+  + 1− )0 = −()

Also, if the weight function is () = −+ on (−∞∞)  then  satisfies the differential

equation


00
 + ( − 2)

0
 = −2()

Definition: Let {}∞=0 be a sequence of complex numbers and let L be a complex valued
function defined on the vector space of all polynomials by

L [] =   = 0 1 2 

L [11() + 22()] = 1L[1()]+2L[2()] 

for all complex numbers  and all polynomial () ( = 1 2) Then L is called the moment
functional determined by the moment sequence {}. The number  is called the moment of
order . [4]
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2.6 Favard’s Theorem.

Let {}∞=0 and {}∞=0, be two arbitrary sequences of complex numbers, and let {}∞=0, be
a sequence of polynomials defined by the relation

 () = (− )−1 ()− −2 ()   = 1 2 3 (2.19)

where −1 () = 0 and 0 () = 1. Then, there exists a moment functional L such that

L [1] = 1 L [ ] = 0 if  6= 

Proof: [5].

To prove this theorem, we will define the functional L by induction on , the linear space

of polynomials with degree . We set

L [1] = 0 = 1 L [] = 0  = 1 2 3  . (2.20)

So, by using the three term recurrence relation, we find all the moments in the following way:

For  = 1, the Eq. (2.19) becomes

0 = L [1] = L [− 1]

= L []− 1L [1]

= 1 − 11 where L [] =   = 0 1 2 

=⇒ 1 = 11

For  = 2

0 = L [2] = L [(− 2)1 − 20]

= L [(− 2) (− 1)− 20]

= 2 − (1 + 2)1 + (12 − 2) 1

=⇒ 2 = (1 + 2)1 − (12 − 2) 1
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Continuing this process, we can find +1 by using three term recurrence relation.

By replacing  by + 1 in Eq. (2.19), we get

() = +1() + +1() + +1−1()  ≥ 1 (2.21)

L[()] = L[+1()] + +1L[()] + +1L[−1()]

By using Eq. (2.20), we obtain

L [()] = 0  ≥ 2

Multiplying both sides of Eq. (2.21) by  and using the last result, we then find

L £2()¤ = 0  ≥ 3

Continuing in this way, we conclude

L
h
()

i
= 0 0 ≤   

It follows that for  6=  L [()()] = 0
So, therefore Favard’s Theorem states that corresponding to any three term recurrence

relation a set of orthogonal polynomials exist, according to Riesz’s Theorem [6]  which states

that

"Every bounded linear functional on a Hilbert space can be represented in term of inner

product."

Finally, we have

L [] = L £−1(+1 + +1 + +1−1)
¤


= L[−1+1] + +1L[−1] + +1L[−1−1]

= +1L[−1−1]
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And we also find that for  = 1

L [1] = 2L[00]

= 2L[1]

= 21

for  = 2

L £22¤ = 3L[1]

= 321

and so in general

L [] = +11
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Chapter 3

Orthogonal Polynomials and

Least-Square Approximation

Some materiel of this chapter is based on [7].

Polynomials must include in approximation theory, and are of principal importance. Ap-

proximation theory is concerned with fitting function to a given set of data and finding the best

function in a certain class that can be used to represent the set of data.

Here we consider the least square approximation.

In the least square approximation, a function () is defined on some interval [ ], we

approximate it by a polynomial, such that the error is minimized.

Let { ()}∞=0 be a set of functions defined on an interval [ ], and let  () be a positve
weight function on ( ).

Suppose the following -sum

 () =  + 11 + 00

approximates an arbitrary function  () on [ ]. Define the error

 () = [ ()−  ()] 

Here we first discuss the discrete least square approximation.
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3.1 Discrete Least Square Approximation

Choose a discrete set of nodes   = 0 1   with   0  1    , so that the sum

 =

X
=0

 () 
2 ()  (3.1)

is minimum.

Here

 () =

X
=0

 () 

Now from Eq. (3.1) we have

 =

X
=0

 () 
2 ()− 2

X
=0

 ()  ()

X
=0

 () +

X
=0

 ()

Ã
X

=0

 ()

!2


 =

X
=0

 () 
2 ()− 2

X
=0

X
=0

 ()  ()  () +

X
=0

X
=0



Ã
X
=0

 () () ()

!


To find the minimum , we first solve the system of  + 1 equations in 0 1  , we must

have




= 0 = 0 1 

0 = 0− 2
X
=0

 ()  () () + 2

X
=0



X
=0

 () () () 

X
=0

 ()  () () =

X
=0



X
=0

 () () ()  (3.2)

Matrix of the above system is becomes diagonal if we require the functions  () to satisfy

the following discrete orthogonality condition.

X
=0

 () () () = 0 if  6= 
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Take  =  in Eq. (3.2), and we get the coefficient  as

 =

X
=0

 ()  () ()

X
=0

 ()2 ()

 = 0 1

As

 =

X
=0

 () 
2 ()−2

X
=0

X
=0

 ()  ()  ()+

X
=0

X
=0



Ã
X
=0

 () () ()

!


Take  =  in third term

 =

X
=0

 () 
2 ()− 2

X
=0

X
=0

 ()  ()  () +

X
=0

X
=0

 () 
2


2
 ()  (3.3)

As

 () ≈
X

=0

 ()  (3.4)

Take inner product with

X
=0

 () () 

X
=0

 () ()  () ≈
X
=0

 () ()

X
=0

 () 

Take  = 
X
=0

 () ()  () ≈
X
=0

X
=0

 () 
2
 () 
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Eq. (3.3) implies that

min =

X
=0

 () 
2 ()− 2

X
=0



Ã
X
=0

 ()  () ()

!
+

X
=0

X
=0

 () 
2


2
 () 

min =

X
=0

 () 
2 ()− 2

X
=0



Ã
X
=0

X
=0

 () 
2
 ()

!
+

X
=0

X
=0

 () 
2


2
 () 

min =

X
=0

 () 
2 ()− 2

X
=0

X
=0

 () 
2


2
 () +

X
=0

X
=0

 () 
2


2
 () 

And the minimum of S becomes

min =

X
=0

 ()

(
2 ()−

X
=0

2
2
 ()

)
 (3.5)

3.2 Orthogonal Polynomials Least Square Approximation

Let {()}∞=0 be a simple set of polynomials orthogonal with respect to the weight function
() on [ ]. It is easily shown that members of the set satisfy a three term recurrence relation

of the form

() = +1() +() +−1() (3.6)

Without loss of generality, we can normalise the polynomials that k()k = 1, for every .

Then −1 =  and the above recurrence relation can be written in the form

() = +1() +() +−1−1()

[2]  Assume −1() ≡ 0 and write first four equations of the above set.

00() +01() + 0 + 0 = 0()

00() +11() +12() + 0 = 1()

0 +11() +22() +23() = 2()

0 + 0 +22() +33() = 3()−34()

The above system is equivalent to
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⎡⎢⎢⎢⎢⎢⎢⎣
0 0 0 0

0 1 1 0

0 1 2 2

0 0 2 3

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
0()

1()

2()

3()

⎤⎥⎥⎥⎥⎥⎥⎦ = 

⎡⎢⎢⎢⎢⎢⎢⎣
0()

1()

2()

3()

⎤⎥⎥⎥⎥⎥⎥⎦−
⎡⎢⎢⎢⎢⎢⎢⎣

0

0

0

34()

⎤⎥⎥⎥⎥⎥⎥⎦  (3.7)

Note that the matrix of the system is symmetric. It is well-known that the polynomial () has

exactly n real distinct zeros in ( ). Let   = 0 1 2 3 be the zeros of 4(). It is clear that

the matrix in (37) has eigenvalues  with the eigenvectors [0() 1() 2() 3()]
 . In

general case, the ×  tridiagonal matrix has eigenvalues  where +1() = 0  = 0 1  .

Also eigenvectors are mutually orthogonal. Define

() =

vuut X
=0

2 ()

as the norm of the  −  eigenvector. Therefore the matrix  of order  + 1 formed by the

normalised eigenvectors, ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0(0)

(0)

0(1)

(1)
 

0()

()

1(0)

(0)

1(1)

(1)
 

1()

()

    

    

(0)

(0)

(1)

(1)
 

()

()

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
has the property

 =  = 

one of whose consequences is the desired discrete orthogonality relation:

X
=0

()()() = 0   6= 

In the above () = 1
2()

.
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Chapter 4

Application to a Non-Linear

Boundary Value Problem

4.1 Introduction

Consider the boundary value problem

00 = (  0) () = 1 () = 2 (4.1)

In this chapter we shall find an approximate solution of the boundary value problem by using

spectral method. This method employs a set of orthogonal polynomials, {}∞=0, to represents
the unknown function. The unknown function is approximated by a sum of first +1 member

of the set. Let

() = () + −1−1() + 00()

Put in the given equation and define the residual

() = 
00
 − (  

0
) (4.2)

This residual is evaluated at suitably chosen  − 1 collocation points to give  − 1 equations
which together with two boundary conditions yield a set of +1 equations in as many unknowns

0 1  . A solution of this set is substituted in () provides an approximate solution to

29



the boundary value problem.

In this method we use the Legendre polynomial in the solution.

The set of Legendre polynomial () is simply orthogonal on [−1 1]. They are defined by
the recurrence relation

0 = 1

1() = 

() = (2− 1)−1()− (− 1)−2()  ≥ 2

We are concentrating to find the solution on [0 1] instead of the interval [−1 1]. For this purpose
we transform the interval by defining  = 21 − 1, and the shifted Legendre polynomials are
defined by the relation

0 = 1

1() = 2− 1

() = (2− 1)(2− 1)−1()− (− 1)−2()  ≥ 2

4.2 Applications

In this section we shall find an approximate solution of the Blasius problem. For a discussion

of this problem see Boyd [8] and Ahmad [9].

The two dimensional steady-state laminar viscous flow over a semi-infinite plate modeled

by the nonlinear differential equation


000
() + 0

00
()  () = 0  ∈ [0∞) with boundary conditions (4.3)

 (0) = 
0
(0) = 0 

0
(∞) = 1

where  and  () are respectively the dimensionless coordinate and the dimensionless stream

functions defined in such a manner that the set of two partial differential Navier-Stokes equations

reduces to the single ordinary differential equation (4.3). It is relatively easy to find a series

or a numerical solution of the above problem and physical parameters of interest such as the
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shear-stress distribution along the surface, the drag on the surface and the boundary layer

thickness are easily evaluated.

The main hurdle in the solution of the above problem, called the Blasius problem, is the

absence of the second derivative 
00
(0). Once this derivative has been correctly evaluated an

analytical solution of the boundary value problem may be readily found. Blasius found the

following power series solution of the problem with 0 =
1
2


 () =

∞X
=0

µ
−1
2

¶


+1

(3 + 2)!
3+2 (4.4)

where 0 = 1 and  =

−1X
=0

¡
3−1
3

¢
−−1  ≥ 2  represents the unknown  00 (0). Solved

(4.3), (with 0 =
1
2
) numerically and found

 = 033206

Several authors have devised numerical algorithms to find good approximations to 
00
(0).

Asaithambi solved (4.3) with 0 = 1 and found 
00
(0) denoted by  to be  = 0469600

Fang et al. [10] have shown that the substitution

 () =
1p
0


³p

0
´

transform Eq. (4.3) into


000
+ 

00
= 0

Therefore it is sufficient to consider the Blasius problem with 0 = 1. Henceforth we shall treat

the problem with 0 = 1. Liao applied his homotopy analysis method to the Blasius problem

and obtained the solution to a high level of accuracy. J.H. He has used an iterative perturbation

technique to find an approximate analytic solution of the Blasius problem. [11]. Abbasbandy

has used a modified version of the Adomian decomposition method to find a numerical soution

while Cortell has studied the dependence of the solution on the parameter 0.

Crocco proposed a further transformation of the Blasius problem in the 19400, and inde-

pendently Wang [12] made use of the same transformations which helps to approach the Blasius

problem from a new perspective. They used an ingenious idea to transform the Blasius prob-
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lem into a simpler problem governed by a second order differential equation. They used the

transformation

 = 
0
()   = 

00
()  (4.5)

to transform (4.3) to

2

2
+




= 0  ∈ [0 1) with the boundary conditions

 (0) = 
00
(0)  

0
(0) = 0 lim

→1
 () = 0 (4.6)

Wang used the Adomian decompostion method to solve (4.6), and found

() = − 3

6
− 6

1803
− 9

21605
− 12

190087
 (4.7)

To find  the equation  (1) = 0 is solved for . He solved this equation retaining six terms of

the series (47) and found  = 0453539. Hashim improved this value to  = 0466799. Recently

Ahmad [9] improved this value to  = 0469606.

As an example of the application of the Spectral method to the boundary value problems,

we shall find an analytical expression for the solution of the problem (46).

00 +  = 0 0(0) = 0 (1) = 0

Let

() = 20() =
20

Σ
=0

() (4.8)

The boundary condition 020(0) = 0 leads to

21 − 32 + 63 − 104 + 155 − 216 + 287 − 368 + 459 − 5510 + 6611−

7812 + 9113 − 10514 + 12015 − 13616 + 15317 − 17118 + 19019 − 21020 = 0

and boundary condition 20(1) = 0 leads to

0 + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10+
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11 + 12 + 13 + 14 + 15 + 16 + 17 + 18 + 19 + 20 = 0

Let  denote the i-th zero of 21st Legendre functions i.e 21() These are

1 = 000312391 2 = 00163866 3 = 00399503

4 = 00733183 5 = 011578 6 = 0166431 7 = 0224191

8 = 0287829 9 = 0355989 10 = 0427219 11 = 05

12 = 0572779 13 = 0644012 14 = 0712125 15 = 077593

16 = 0833427 17 = 0886945 18 = 0927271 19 = 0959121

20 = 0986469 21 = 0997427

Ninteen more equations are obtained by setting the residual to zero at the point 2  20

When this system of equations is solved, we find the following values for the coefficients 0

1  20.

0 = 036805 1 = −0187637 2 = −0117454 3 = −00378429

4 = −00111564 5 = −000573766 6 = −000313192 7 = −000186456

8 = −000116731 9 = −0000750723 10 = −0000489022 11 = −000031856

12 = −0000205192 13 = −0000129189 14 = −00000784632 15 = −00000452055

16 = −00000241291 17 = −00000115009 18 = −459043× 10−6 19 = −134687× 10−6

20 = −210276× 10−7

Inserting the above values in Eq. (48) and simplifying we get the following expressions as our
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approximate solution to non-linear boundary value problem

() = 0468677 + 555112× 10−17− 000001046442 − 0354013 − (4.9)

009023644 + 2651775 − 4741626 + 5608557 − 4653098 +

2806229 − 12614610 + 42970511 − 112011× 10612 +

224271× 10613 − 344112× 10614 + 400875× 10615 − 348076× 10616 +

21807× 10617 − 93092718 + 24225219 − 28985820

Table 1 contains the approximate solution and , numerical solution produced by the bvp4c

program of MATLAB, and their relative error for  = 5

Table 1.

 Approximate solution Numerical solution Relative Error

0 0448547 04696 00448318

01 0448179 04693 00450053

02 044556 04668 00455013

03 043846 04600 00468261

04 0424537 04467 0049615

05 0401127 04244 00548322

06 036504 03902 00644798

07 0312349 03406 00829448

08 0238185 02700 01178333

09 0136528 01689 01916637

1 111022× 10−16 0 0

Table 2 contains the approximate solution and , numerical solution produced by the bvp4c

program of MATLAB, and their relative error for  = 10

Table 2.
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 Approximate solution Numerical solution Relative Error

0 046518 04696 00094123

01 0464822 04693 00095419

02 046231 04668 00096187

03 0455466 04600 00098565

04 0442018 04467 00104884

05 0419488 04244 0011574

06 0384974 03902 00133931

07 0334737 03406 00172137

08 0263285 02700 00248704

09 0160235 01689 00513025

1 566214× 10−15 0 0

Table 3 contains the approximate solution and , numerical solution produced by the bvp4c

program of MATLAB, and their relative error for  = 15

Table 3.

 Approximate solution Numerical solution Relative Error

0 0472512 04696 000620102

01 0471108 04693 000385255

02 0467508 04668 000151671

03 0459618 04600 00008304

04 0445208 04467 000334

05 0421746 04244 00062535

06 0386404 03902 00097283

07 0335352 03406 00154081

08 0263141 02700 00254037

09 0159442 01689 00559976

1 −852709× 10−11 0 0

Table 4 contains the approximate solution and , numerical solution produced by the bvp4c

program of MATLAB, and their relative error for  = 20
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Table 4.

 Eq. (49) Numerical solution Relative Error

0 0468677 04696 00019655

01 0468322 04693 00020841

02 0465829 04668 00020801

03 0459036 04600 00020957

04 0445692 04467 00022565

05 042334 04244 00024976

06 0389115 03902 00027806

07 0339342 03406 00036935

08 0268633 02700 00050631

09 0167088 01689 00107282

1 −614091× 10−9 0 0

The agreement between these solution is good.

Fig 1 : The approximate solutions for  = 5 10 15 20 are compared with the numerical
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solution.

Example 2:


00
+ 2

0
= 0 (0) = 1 (1) =

1

2


Let

() = 10() =
10

Σ
=0

() (4.10)

The boundary condition 10(0) = 1 leads to

0 − 1 + 2 − 3 + 4 − 5 + 6 − 7 + 8 − 9 + 10 = 1

and boundary condition 10(1) =
1
2
leads to

0 + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 =
1

2


Let  denote the −  zero of 11 Legender functions i.e 11() These are

1 = 00108857 2 = 00564687 3 = 0134924

4 = 0240452 5 = 0365228 6 = 05 7 = 0634772

8 = 0759548 9 = 0865076 10 = 0943534

11 = 0989114

Nine more equations are obtained by setting the residual to zero at the point 2  10When

this system of equations solved we find the following values for the coefficients 0 1  10.

0 = 0693145 1 = −0238327 2 = 00545675

3 = −00112394 4 = 000220532 5 = −0000419716

6 = 00000792958 7 = −00000140458 8 = 302692× 10−6

9 = −255567× 10−7 10 = 186686× 10−7
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Inserting the above values in Eq. (4.10) and simplifying we get the following expressions as our

approximate solution to non-linear boundary value problem

() = 0761673− 0523355+ 1000012 − 09998833 + 09979544

−09830855 + 09178956 − 07449657 + 04624788 − 01848839

+0034491410 − 0238327(−1 + 2) (4.11)

Now the exact solution of the problem is

 =
1

1 + 
 (4.12)

In Table 2, we compare, at some randomly selected points, the approximate solution, Eq. (4.11),

with the exact solution, Eq. (4.12).

Table 2.

 Eq. (4.11) Eq. (4.12) Relative Error

0 1 1 0

01 090909 0909091 00000011

02 0833332 0833333 00000012

03 0769229 0769231 00000026

04 0714283 0714286 00000042

05 0666664 0666667 00000045

06 0624997 0625 00000048

07 0588232 0588235 00000051

08 0555552 0555556 00000072

09 0526311 0526316 00000095

1 05 05 0

In Fig 2 the approximate solution (solid line) represented by Eq. (4.11) is compared with

the exact solution (dotted line).
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Figure 2:

The two curves appear to be identical on the scale.
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