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Abstract

This dissertation deals with the study of Lamb modes in plates and rods. The

dispersion relation called Rayleigh-Lamb frequency is derived for symmetric and

anti symmetric displacement of a wave propagating in an isotropic and infinite plate

of thickness 2h. The Pochhammer frequency equation, which gives the dispersion

relation for a rod of circular cross section is studied. The Lamb modes in plate and

rod are graphically represented.

The plateau region shown by Lamb modes in k−c plane is mathematically studied

and graphically represented for a plate and a rod. Finally, the anomalous behavior

shown by the Lamb modes when the group velocity becomes zero is studied. The

symmetric and anti symmetric Lamb modes of plate exhibiting zero group velocity

points are graphically shown.
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Chapter 1

Introduction

A waveguide is a mechanical structure through which waves can propagate. The

waves propagating through a waveguide are called guided waves. The most com-

mon example of a waveguide is a tube or a pipe. A few examples of guided waves

are Rayleigh waves, Love waves, Lamb waves and Stonley waves. The guided waves

are named after their investigators.

Guided waves have a variety of applications in non-destructive testing (NDT),

seismology and in medicine. A human bone can act as a cylindrical waveguide and

can be examined by guided waves. In non-destructive testing technique material

is being tested without causing any damage by transmitting ultrasonic waves. In

1961, Worlton [1] gave an experimental confirmation of the use of Lamb waves in

NDT. Because of dispersive nature, Lamb modes are very much useful in material

characterization and detecting defects. Lamb modes are used to inspect industrial

products in aerospace, transportation and pipes.

Lamb waves are the guided waves propagating in plates with free surfaces. These

were originally studied by Lamb [2] in 1917. Lamb [2] and Rayleigh [3] gave the fre-

quency relation for waves propagating in an infinite plate. The frequency equation

for longitudinal waves in a circular rod of infinite length was given by Pochhammer

[4] in 1876 and independently by Chree [5] in 1889.

Some modes in the Lamb modes spectrum exhibit an anomalous behavior at

points where the group velocity dω
dk

vanishes for a finite phase velocity ω
k
. The points
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where the group velocity becomes zero are called zero group velocity points. At

these points energy does not propagate and remains trapped under the surface of

the plate, causing resonance when a laser source is applied. Zero group velocity

points also exhibit the property of separating forward and backward propagating

Lamb modes.

Zero group velocity points were first studied by Tolstoy and Usdin [6] in 1957.

They observed that group velocity vanishes at a particular point of symmetric mode

S1 for an isotropic plate. Ahmad and Hussain [7] explained analytically the anoma-

lous behavior shown by the S1 mode of an isotropic material by examining the slope

of each mode. Clorennec et al [8] pointed out that zero group velocity Lamb waves

can be used to determine the mechanical properties of materials. They have shown

that the ZGV resonance that occurs at the minimum frequency of the S1 and A2

Lamb modes can be used for measuring the Poisson’s ratio and the longitudinal and

shear velocities in thin plates os shells.

1.1 Plan of the dissertation:

This thesis concerns with the study of waves propagating through solid plates and

rods. The introduction is given in this chapter.

Chapter 2 includes some basic definitions and mathematical preliminaries. The

study of governing equations for solid and Halmholtz decomposition of displacement

vector into scalar and vector potential is included in this chapter.

Chapter 3 deals with the study of Lamb modes in a plate and a rod in detail. The

frequency relation for a plate called, Rayleigh-Lamb dispersion relation, is derived

for symmetric and anti symmetric modes by expressing the displacement vector

in terms of scalar and vector potentials. The Rayleigh-Lamb frequency relation is

graphically represented. Next, the wave propagating in a circular rod is studied.

The frequency relation given by Pochhammer is derived and a graph is drawn to

describe the shape of longitudinal modes in rods.
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Chapter 4 includes the study of the plateau region shown by Lamb modes. We

have considered the Rayleigh-Lamb frequency equation and shown that slope of the

mode becomes zero at some point of the dispersion curve. Also, we have studied

the plateau region in the spectrum of a rod. We have taken Pochhammer frequency

relation and shown that slope of the curve must vanish. Plateau region is also graph-

ically represented for a plate and a rod.

Chapter 5 is devoted to the study of zero group velocity points. The Lamb

modes spectrum shows an anomalous behavior when frequency× thickness versus

thickness/wavelength is plotted. This is because of the existence of zero group ve-

locity points. This anomalous behavior is graphically shown for symmetric and anti

symmetric mode. This chapter also includes the history of some work done on zero

group velocity points.
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Chapter 2

Preliminaries

In this chapter we will study some basic definitions. Equation of motion for elastic,

isotropic and homogeneous solids are studied. Also we have studied the Helmholtz

decomposition method in which displacement vector is expressed in terms of scalar

and vector potentials.

Elasticity

In physics, elasticity is the ability of a material to resist the applied force and returns

to its original shape and size, when applied external force is removed. When force

is applied to deform an elastic material, it gives rise to internal stress to resist the

deformation and restore it to its original position when force is removed. Rubber

and all kinds of springs are examples of elastic material.

The elasticity of a material is characterized by stress−strain relationship. The

stress−strain relationship is given by Hooke’s Law as

τij = CijklSkl,

where τij is a stress tensor, Skl is strain tensor and Cijkl is a tensor of rank four

called elastic stiffness tensor. Elastic stiffness tensor Cijkl has 81 components but

because of symmetries Cijkl = Cjikl = Cijlk = Cklij , we are left with 21 independent

components.
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Isotropic material

A material which is invariant with respect to direction and has same properties

in all directions is called an isotropic material. Examples of isotropic material are

glass and some metals like aluminium and steel. For an isotropic material, every

line (plane) is an axis (plane) of symmetry. So for an isotropic material the elastic

stiffness tensor Cijkl should be isotropic. Cijkl can be written as a linear combination

of isotropic tensors as

Cijkl = λδijδkl + µ(δikδjl + δilδjk),

where λ and µ are the Lamé constants. Because of symmetry we have only 2

independent parameters to express the elastic stiffness tensor for isotropic materials.

Hooke’s Law for isotropic material is written as

τij = λSkkδij + 2µSij,

where τij, Sij are respectively the components of the stress tensor and the strain

tensor.

2.1 Governing equations for three dimensional solids

For elastic, isotropic and homogeneous solids, the equation of motion for three-

dimensional elasticity is

τij,j + ρfi = ρüi, (2.1)

The relation between strain and stress, strain and displacement can be described by

the Hooke’s law and Cauchy relation respectively. The relations are given below:

τij = λSkkδij + 2µSij, (2.2)

Sij =
1

2
(ui,j + uj,i), (2.3)

where ui are the components of displacement, τij are the components of stress ten-

sor, Sij are the deformation tensor components, Skk are the trace of deformation

tensor, fi are the components of volume force, ρ is the density, λ and µ are Lamé

coefficients and we have taken the summation convention for i = 1, 2, 3.
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By using the strain-displacement relation (2.3) in the relation for stress and

strain (2.2), we obtain the stress tensor components in terms of displacement vector

components as given

τij = λ(ui,i)δij + µ(ui,j + uj,i). (2.4)

Substituting the above relation (2.4) in the equation of motion (2.1) and simplifying,

we obtain the equation of motion in terms of displacement as

λuj,ij + µ[ui,jj + uj,ij] + ρfi = ρüi, (2.5)

(λ+ µ)uj,ij + µui,jj + ρfi = ρüi. (2.6)

In vector form, the equation is as follows:

(λ+ µ)∇∇.u+ µ∇2u+ ρf = ρü. (2.7)

In terms of rectangular coordinates, the above equation can be written as

(λ+ µ)

(
∂2u1
∂x21

+
∂2u2
∂x1∂x2

+
∂2u3
∂x1∂x3

)
+ µ∇2u1 + ρf1 = ρü1,

(λ+ µ)

(
∂2u1
∂x1∂x2

+
∂2u2
∂x22

+
∂2u3
∂x2∂x3

)
+ µ∇2u2 + ρf2 = ρü2,

(λ+ µ)

(
∂2u1
∂x1∂x2

+
∂2u2
∂x2∂x3

+
∂2u3
∂x23

)
+ µ∇2u3 + ρf3 = ρü3,

(2.8)

where ∇2 is the Laplace operator and

∇2 =
∂2

∂x21
+

∂2

∂x22
+

∂2

∂x23
. (2.9)

In the absence of body forces equations of motion become

(λ+ µ)∇∇.u+ µ∇2u = ρü. (2.10)

2.2 Displacement potential

The equations of motion (2.10) are coupled. These equations can be uncoupled by

Helmholtz decomposition, in which the components of the displacement vectors are

expressed in terms of derivatives of scalar and vector potentials as described below

u =∇φ+∇× ψ. (2.11)
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In Cartesian coordinates vector potential ψ is

ψ = ψxe1 + ψye2 + ψze3, (2.12)

where ψx, ψy and ψz are the components of the vector potential ψ.

As given by Achenbach [9] the Helmholtz displacement components are of the form

u =
∂φ

∂x
+
∂ψz
∂y
− ∂ψy

∂z
,

v =
∂φ

∂y
+
∂ψx
∂z
− ∂ψz

∂x
,

w =
∂φ

∂z
+
∂ψy
∂x
− ∂ψx

∂y
.

(2.13)

Now by taking into account that ∇.∇φ = ∇2φ and ∇.∇× ψ = 0, and using the

equation (2.11) into the equation (2.10), we have

(λ+ µ)∇∇2φ+ µ∇2∇φ+ µ∇2∇× ψ = ρ[∇φ̈+∇× ψ̈],

(λ+ 2µ)∇∇2φ− ρ∇φ̈+ µ∇2∇× ψ − ρ∇× ψ̈ = 0,

∇[(λ+ 2µ)∇2φ− ρφ̈] +∇× [µ∇2ψ − ρψ̈] = 0.

(2.14)

Equation (2.11) satisfies the equation of motion (2.10), if the following uncoupled

equations are satisfied.

∇2φ =
1

c2L
φ̈2, (2.15)

∇2ψ =
1

c2T
ψ̈. (2.16)

Here cL and cT are speeds of longitudinal and transverse wave, respectively. Where

c2L = λ+2µ
ρ

and c2T = µ
ρ
.

Equations for vector potential ψ in component form can be written as

∇2ψx =
1

c2T
ψ̈x,

∇2ψy =
1

c2T
ψ̈y,

∇2ψz =
1

c2T
ψ̈z.

(2.17)
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The relation between displacement components and potentials in cylindrical coor-

dinates are given by Achenbach [9] as

u =
∂φ

∂r
+

1

r

∂ψz
∂θ
− ∂ψθ

∂z
,

v =
1

r

∂φ

∂θ
+
∂ψr
∂z
− ∂ψz

∂r
,

w =
∂φ

∂z
+

1

r

∂(ψθr)

∂r
− 1

r

∂ψr
∂θ

.

(2.18)

The scalar potential in cylindrical coordinates is the same as in rectangular coor-

dinates, where the components of vector potential in cylindrical coordinates satisfy

the following equations

∇2ψr −
ψr
r2
− 2

r2
∂ψθ
∂θ

=
1

c2T
ψ̈r,

∇2ψθ −
ψθ
r2

+
2

r2
∂ψr
∂θ

=
1

c2T
ψ̈θ,

∇2ψz =
1

c2T
ψ̈z,

(2.19)

where ψr, ψθ and ψz are the components of the vector potential ψ in cylindrical

coordinates and ∇2 is defined as

∇2 =
∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂θ2
+

∂2

∂z2
. (2.20)
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Chapter 3

Shape of Lamb Modes

Lamb waves are the guided waves propagating in the traction free solid plates. Waves

in plates were first studied by Lamb. Lamb waves have infinite number of modes for

symmetric and anti symmetric displacement. Lamb modes provide relation between

speed of wave and frequency or wave number.

This chapter includes the study of Lamb modes in a plate and a rod. A time

harmonic wave passing through a plate in plane strain is considered and dispersion

relation for symmetric and anti symmetric modes is calculated. Frequency rela-

tion for a rod of infinite length is also derived. Lamb mode dispersion curves are

graphically represented.

3.1 Lamb modes in a plate

Consider a time-harmonic wave propagating in a plate of thickness 2h. For motion

in plane strain in x1x2-plane, we have

u1 = u1(x1, x2, t), u2 = u2(x1, x2, t), u3 = 0 and
∂

∂x3
() = 0.

Then equations of motion (2.10), under the plane strain condition will take the form

∂τ11
∂x1

+
∂τ12
∂x2

= ρü1,

∂τ12
∂x1

+
∂τ22
∂x2

= ρü2.

(3.1)
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And Hooke’s law becomes

τ11 = λ

(
∂u1
∂x1

+
∂u2
∂x2

)
+ 2µ

∂u1
∂x1

,

τ12 = µ

(
∂u1
∂x2

+
∂u2
∂x1

)
,

τ22 = λ

(
∂u1
∂x1

+
∂u2
∂x2

)
+ 2µ

∂u2
∂x2

.

(3.2)

Using equation (3.2) in equation (3.1), we have

λ

(
∂2u1
∂x21

+
∂2u2
∂x1∂x2

)
+ 2µ

∂2u1
∂x21

+ µ

(
∂2u1
∂x22

+
∂2u2
∂x2∂x1

)
= ρü1, (3.3)

µ

(
∂2u1
∂x1∂x2

+
∂2u2
∂x21

)
+ λ

(
∂2u1
∂x1∂x2

+
∂2u2
∂x22

)
+ 2µ

∂2u2
∂x22

= ρü2. (3.4)

Rearranging

∂2u1
∂x21

+
λ+ µ

λ+ 2µ

∂2u2
∂x1∂x2

+
µ

λ+ 2µ

∂2u1
∂x22

=
1

cL
ü1, (3.5)

∂2u2
∂x22

+
λ+ µ

λ+ 2µ

∂2u1
∂x1∂x2

+
µ

λ+ 2µ

∂2u2
∂x21

=
1

cL
ü2. (3.6)

The Helmholtz decomposition displacement under the plane strain condition is

u1 =
∂φ

∂x1
+
∂ψ3

∂x2
, (3.7)

u2 =
∂φ

∂x2
− ∂ψ3

∂x1
. (3.8)

Hence the stress relations become

τ11 = λ

(
∂2φ

∂x21
+
∂2φ

∂x22

)
+ 2µ

(
∂2φ

∂x21
+

∂2ψ3

∂x1∂x2

)
, (3.9)

τ12 = µ

(
2

∂2φ

∂x1∂x2
+
∂2ψ3

∂x22
− ∂2ψ3

∂x21

)
, (3.10)

τ22 = λ

(
∂2φ

∂x21
+
∂2φ

∂x22

)
+ 2µ

(
∂2φ

∂x22
− ∂2ψ3

∂x1∂x2

)
, (3.11)

where φ and ψ3 satisfy the following wave equations

∂2φ

∂x21
+
∂2φ

∂x22
=

1

c2L
φ̈, (3.12)

∂2ψ3

∂x21
+
∂2ψ3

∂x22
=

1

c2T
ψ̈3. (3.13)
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Now, consider the solution of wave equation of the form

φ = Φ(x2) exp i(kx1 − ωt), (3.14)

ψ3 = Ψ(x2) exp i(kx1 − ωt), (3.15)

where ω and k are the frequency and wave number respectively.

Substituting equations (3.14) and (3.15) in equation (3.12) and (3.13), we get

d2Φ

dx22
+ p2Φ = 0, (3.16)

d2Ψ

dx22
+ q2Φ = 0, (3.17)

where p2 = ω2

c2L
− k2 and q2 = ω2

c2T
− k2. The solutions of the above equations are

Φ(x2) = A sin(px2) +B cos(px2), (3.18)

Ψ(x2) = C sin(qx2) +D cos(qx2). (3.19)

Using above relations in equations (3.7)-(3.11), (3.14) and (3.15), and omitting the

exponential term in the sequel because it appears in all the expressions and does

not play any role in determining the relation for frequency.

φ = A sin(px2) +B cos(px2),

ψ3 = C sin(qx2) +D cos(qx2),

u1 = ik[A sin(px2) +B cos(px2)] + q[C cos(qx2)−D sin(qx2)],

u2 = pA cos(px2)− pB sin(px2)− ik[C sin(qx2) +D cos(qx2)],

τ11 = −λ[(k2 + p2)A sin(px2) + (k2 + p2)B cos(px2)] + 2µ[−k2(A sin(px2) +B cos(px2))

− ikq(C cos(qx2) +D sin(qx2))],

τ12 = µ[2ikp(A cos(px2)−B sin(px2)) + (k2 − q2)C sin(qx2) + (k2 − q2)D cos(qx2)],

τ22 = −λ[(k2 + p2)A sin(px2) + (k2 + p2)B cos(px2)]− 2µ[p2A sin(px2) + p2B cos(px2)

+ ikqC cos(qx2)− ikqD sin(qx2)].

Now we split the wave propagating in the plate into symmetric and anti symmetric

modes to find the frequency relations. The displacement in x1-direction is symmetric

(anti symmetric) with respect to x2 = 0 if u1 contains cosines (sines). And if u2

contains sines (cosines) then displacement in the x2-direction will be symmetric (anti
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symmetric).

The equations for symmetric modes are given below:

Φ = B cos(px2), (3.20)

Ψ = C sin(qx2), (3.21)

u1 = ikB cos(px2) + qC cos(qx2), (3.22)

u2 = −pB sin(px2)− ikC sin(qx2), (3.23)

τ21 = µ[−2ikpB sin(px2) + (k2 − q2)C sin(qx2)], (3.24)

τ22 = −λ(k2 + p2)B cos(px2)− 2µ[p2B cos(px2) + ikqC cos(qx2)]. (3.25)

The equations for anti symmetric modes are as follows:

Φ = A sin(px2), (3.26)

Ψ = D cos(qx2), (3.27)

u1 = ikA sin(px2)− qD sin(qx2), (3.28)

u2 = pA cos(px2)− ikD cos(qx2), (3.29)

τ21 = µ[2ikpA cos(px2) + (k2 − q2)D cos(qx2)], (3.30)

τ22 = −λ(k2 + p2)A sin(px2)− 2µ[p2A sin(px2)− ikqD sin(qx2)]. (3.31)

The frequency equation can be obtained by using traction free boundary condi-

tions. The traction free boundary conditions for a plate of thickness 2h are

τ21 = τ22 = 0 at x2 = ±h. (3.32)

First, considering the case for symmetric modes and applying the above boundary

conditions, we get the two homogeneous equations for constants B and C.

−µ2ikp sin(ph)B + µ[(k2 − q2) sin(qh)]C = 0, (3.33)

−(λ(k2 + p2) + 2µp2) cos(ph)B − 2µikq cos(qh)C = 0. (3.34)

Now the determinant of the coefficient must vanish because equations are homoge-

neous, which yields:

4i2µ2k2pq sin(ph) cos(qh)+µ(k2− q2)[λ(k2 +p2)+2µp2] sin(qh) cos(ph) = 0, (3.35)
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42µ2k2pq tan(ph) = µ(k2 − q2)[λ(k2 + p2) + 2µp2] tan(qh),

tan(qh)

tan(ph)
=

42µ2k2pq

µ(k2 − q2)[λ(k2) + (λ+ 2µ)p2]
,

=
4c2Tk

2pq

(k2 − q2)[(c2L − 2c2T )k2 + c2Lp
2]
,

=
4c2Tk

2pq

(k2 − q2)[(c2L − 2c2T )k2 + c2L(k2 c
2

c2L
− k2)]

,

=
4c2Tk

2pq

(k2 − q2)(c2 − 2c2T )k2
,

=
4k2pq

(k2 − q2)( c2
c2T
− 2)k2

,

tan(qh)

tan(ph)
=

4k2pq

(k2 − q2)(q2 + k2 − 2k2)
,

The above equation can be simplified as

tan(qh)

tan(ph)
= − 4k2pq

(q2 − k2)2
. (3.36)

Now, using traction free boundary condition for anti symmetric mode we get:

µ2ikp cos(ph)A+ µ[(k2 − q2) cos(qh)]D = 0, (3.37)

[−λ(k2 + p2) sin(ph)− 2µp2 sin(ph)]A+ 2µikq sin(qh)D = 0. (3.38)

Equating the determinant of coefficients of above system of equations to zero

4µ2i2k2pq tan(qh) = −µ(k2 − q2)[λk2 + (λ+ 2µ)p2] tan(ph), (3.39)

4µk2pq tan(qh) = (k2 − q2)[λk2 + (λ+ 2µ)p2] tan(ph),

tan(ph)

tan(qh)
=

4µk2pq

(k2 − q2)[λk2 + (λ+ 2µ)p2]
,

=
4c2Tk

2pq

(k2 − q2)[(c2L − 2c2T )k2 + p2c2L]
,

=
4c2Tk

2pq

(k2 − q2)[(c2L − 2c2T )k2 + (k
2c2

c2L
− k2)c2L]

,

=
4c2Tk

2pq

(k2 − q2)(c2 − 2c2T )k2
,

tan(ph)

tan(qh)
=

4k2pq

(k2 − q2)( c2k2
c2T
− 2k2)

,
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Hence
tan(ph)

tan(qh)
= − 4k2pq

(q2 − k2)2
. (3.40)

Equations (3.36) and (3.40) represent the Rayleigh-Lamb frequency equations for

symmetric and anti symmetric modes respectively.

The Rayleigh-Lamb frequency equation gives relation between the frequency and

the wave number and yields infinite number of branches for symmetric and anti

symmetric modes

The following figures show the dispersion curves for symmetric and anti sym-

metric Lamb modes in an aluminum plate.
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Figure 3.1: Shape of symmetric Lamb modes for aluminum plate.
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Figure 3.2: Shape of anti symmetric Lamb modes in an aluminum plate.
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The figures showing the symmetric and anti symmetric Lamb modes in a copper

plate are given below
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Figure 3.3: Shape of symmetric Lamb modes for copper plate.
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Figure 3.4: Shape of anti symmetric Lamb modes for copper plate.
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The dispersion curves for symmetric and anti symmetric Lamb modes in a steel

plate are given in the following figures.

Normalized wave Number kh

N
or

m
al

iz
ed

 S
pe

ed
 c

/c
T

0 2 4 6 8 10
0

0.5

1

1.5

2

2.5

3

3.5

4

Figure 3.5: Dispersion curves for symmetric Lamb modes in steel plate.
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Figure 3.6: Shape of anti symmetric Lamb modes for steel plate.
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3.2 A simple formula for Lamb modes in a plate:

Ahmad [10] gave a simple formula to draw the dispersion curves for plates when

phase velocity is between cT and cL. To find the formula define

ω = ck and u = hk.

Here the symbol u is defined as u = hk and should not be confused with the

displacement vector u.

Also let cT < c < cL. Then

ph =hk

√
c2

c2L
− 1 = u

√
c2

c2L
− 1,

qh =hk

√
c2

c2T
− 1 = u

√
c2

c2T
− 1

and Rayleigh-Lamb equation for symmetric modes (3.36) become

tan
(
u
√

c2

c2T
− 1
)

tan
(
u
√

c2

c2L
− 1
) =
−4u4

√
c2
c2L
− 1
√

c2
c2T
− 1(

u2
(
c2

c2T
− 1
)
− u2

)2 ,

tanu
√

c2

c2T
− 1

i tanhu
√

1− c2

c2L

=−
4i
√

1− c2

c2L

√
c2

c2T
− 1[

1−
(
c2

c2T
− 1
)]2 ,

tanu
√

c2

c2T
− 1

tanh
(
u
√

1− c2

c2L

) =
u
√

1− c2

c2L

√
c2

c2T
− 1[

1−
(
c2

c2T
− 1
)]2 .

Above equation can be written as

tan(uα)

tanh(uβ)
= γ, (3.41)

where

α =

√
c2

c2T
− 1,

β =

√
1− c2

c2L
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and

γ =
4αβ

(1− α2)2
.

The function tanhx is an increasing function and bounded above by 1. For any

uβ > 0, 1− ε < tanh(uβ) < 1, and as uβ becomes larger ε becomes smaller. For

β > 3, (3.42)

we have ε < 0.005 and we can use the approximation

tanh(uβ) ≈ 1. (3.43)

The above approximation is valid in most parts of the region cT < c < cL because

uβ > 3 for the modes Si ≥ 2. Now equation (3.41) can be written as

tan(uα) = γ, (3.44)

which has the solution

un =
tan−1(γ) + nπ

α
, n = 1, 2, 3.... (3.45)

In the region where equation (3.43) is valid, accurate dispersion curves for plates

can be drawn by using equation (3.45) which is an explicit solution of the Rayleigh-

Lamb equation.

For validity of the approximation, let tanh(uβ) = (1 − ε) then equation (3.41)

becomes

tan(uα) = γ(1− ε),

or

un =
tan−1(γ(1− ε)) + nπ

α

and the error du is

du =
γε

α(1 + γ2)
=

4βε

(1− α2)2(1 + γ2)
.

Since ε is very small, so approximation (3.43) gives good results for the range cT <

c < cL. Ahmad pointed out that the difference between the exact and approximated

curves is less than 1% for S1 mode and less than 4 parts in 5000 for S2 mode. For
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higher modes the difference is invisible and curves overlap. The following figure

shows the symmetric Lamb modes for isotropic aluminium plate. It is found that

approximated curves slightly differ for S1 and S2 modes only. For higher modes the

exact and approximated curves are same.

Figure 3.7: Shape of symmetric Lamb modes for exact and approximate formula

for an aluminum plate. Solid lines show Lamb modes for exact formula and dotted

lines show approximated Lamb modes.
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3.3 Lamb modes in a cylinder

Consider a homogeneous, isotropic and linearly elastic circular rod of infinite length

and radius a. The displacement equations of motion for cylinder can be written as

∇2u− u

r2
− 2

r2
∂v

∂θ
+

1

1− 2ν

∂∆

∂r
=

1

c2T

∂2u

∂t2
, (3.46)

∇2v − v

r2
+

2

r2
∂u

∂θ
+

1

1− 2ν

1

r

∂∆

∂θ
=

1

c2T

∂2v

∂t2
, (3.47)

∇2w +
1

1− 2ν

∂∆

∂z
=

1

c2T

∂2w

∂t2
, (3.48)

where Laplacian (∇2) and dilatation (∆) are defined as

∆ =
∂u

∂r
+

1

r

(
∂v

∂θ
+ u

)
+
∂w

∂z
, (3.49)

∇2 =
∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂θ2
+

∂2

∂z2
. (3.50)

The displacement vector in cylindrical coordinates is

u =
∂φ

∂r
+

1

r

∂ψz
∂θ
− ∂ψθ

∂z
, (3.51)

v =
1

r

∂φ

∂θ
+
∂ψr
∂z
− ∂ψz

∂r
, (3.52)

w =
∂φ

∂z
+

1

r

∂(ψθr)

∂r
− 1

r

∂ψr
∂θ

, (3.53)

where scalar potential φ satisfies the equation

∇2φ =
1

c2L

∂2φ

∂t2
. (3.54)

And the components of vector potential ψ satisfy the following equations

∇2ψr −
ψr
r2
− 2

r2
∂ψθ
∂θ

=
1

c2T

∂2ψr
∂t2

, (3.55)

∇2ψθ −
ψθ
r2

+
2

r2
∂ψr
∂θ

=
1

c2T

∂2ψθ
∂t2

, (3.56)

∇2ψz =
1

c2T

∂2ψz
∂t2

. (3.57)
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The components of vector potential must satisfy an additional condition ∇.ψ = 0.

The relevant stress-strain relations are

τrr = λ∆ + 2µ
∂u

∂r
, (3.58)

τrθ = µ

[
1

r

(
∂u

∂θ
− v
)

+
∂v

∂r

]
, (3.59)

τrz = µ

(
∂u

∂z
+
∂w

∂r

)
. (3.60)

By considering traction free condition at r = a, we have τrr = τrθ = τrz = 0.

Now consider the scalar potential φ. A wave propagating in the z-direction is of the

form

φ = Φ(r)Θ(θ) exp[i(kz − ωt)] (3.61)

Replacing equation (3.61) in equation (3.54) and applying method of separation of

variables.

d2Φ

dr2
Θ(θ) +

1

r

dΘ

dr
Θ(θ) +

1

r2
d2Θ

dθ2
Φ(r)− k2Φ(r)Θ(θ) = −ω

2

c2L
Φ(r)Θ(θ). (3.62)

Let
1

Φ(r)

(
r2
d2Φ

dr2
+ r

dΦ

dr

)
+ r2

(
ω2

c2L
− k2

)
= − 1

Θ(θ)

d2Θ

dθ2
= λ, (3.63)

d2Θ

dθ2
+ λΘ = 0, (3.64)

1

Φ(r)

(
r2
d2Φ

dr2
+ r

dΦ

dr

)
+ r2

(
ω2

c2L
− k2

)
= λ. (3.65)

Equation (3.64) has the solution

Θ = A cos
√
λθ +B sin

√
λθ, (3.66)

where
√
λ = n is an integer.

Equation (3.65) becomes

1

Φ(r)

(
r2
d2Φ

dr2
+ r

dΦ

dr

)
+ r2

(
ω2

c2L
− k2

)
= n2, (3.67)

r2
d2Φ

dr2
+ r

dΦ

dr
+ (r2p2 − n2)Φ(r) = 0, (3.68)
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which is a Bessel equation and has the Bessel function of first kind of order n, Jn(pr)

as a bounded solution. Using solutions of equations (3.64) and (3.65) in equation

(3.61), we have the expression for scalar potential as

φ = [A1 cos(nθ) + A2 sin(nθ)] Jn(pr) exp[i(kz − ωt)], (3.69)

where p =
√

ω2

c2L
− k2.

The solution for the wave equation governing ψz can be obtained by same method

and written as

ψz = [B1 cos(nθ) +B2 sin(nθ)]Jn(qr) exp[i(kz − ωt)], (3.70)

where q =
√

ω2

c2T
− k2.

Now, coupled equations (3.55) and (3.56) indicate that sin-dependence on θ in ψr is

in accordance with the cosin-dependence on θ in ψθ and vice versa. Consider

ψr = Ψr(r) sin(nθ) exp[i(kz − ωt)], (3.71)

ψθ = Ψθ(r) cos(nθ) exp[i(kz − ωt)]. (3.72)

Using above relations in equations (3.55) and (3.56), we get

d2Ψr

dr2
+

1

r

dΨr

dr
+

1

r2
(−n2Ψr + 2nΨθ −Ψr)− k2Ψr +

ω2

c2T
Ψr = 0, (3.73)

d2Ψθ

dr2
+

1

r

dΨθ

dr
+

1

r2
(−n2Ψθ + 2nΨr −Ψθ)− k2Ψθ +

ω2

c2T
Ψθ = 0. (3.74)

Now by adding and subtracting the above two equations we have the solution for

Ψr + Ψθ and Ψr −Ψθ as

Ψr + Ψθ = 2C1Jn+1(qr), (3.75)

Ψr −Ψθ = 2C2Jn+1(qr). (3.76)

From above equations we get the expressions for Ψr and Ψθ as

Ψr = C1Jn−1(qr) + C2Jn+1(qr), (3.77)

Ψθ = C1Jn−1(qr)− C2Jn+1(qr). (3.78)

Thus we have determined the scalar and vector potentials in terms of four arbitrary

constants but the displacement vector is specified by three constants and we have
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only three boundary conditions. To eliminate one constant, we required an addi-

tional condition Ψr = −Ψθ, which implies C1 = 0, and we have following set of

potentials,

φ = A1Jn(pr) cos(nθ) exp[i(kz − ωt)], (3.79)

ψz = B1Jn(qr) sin(nθ) exp[i(kz − ωt)], (3.80)

ψr = C2Jn+1(qr) sin(nθ) exp[i(kz − ωt)], (3.81)

ψθ = −C2Jn+1(qr) cos(nθ) exp[i(kz − ωt)]. (3.82)

Using the above relations in stress equations and applying traction free boundary

condition, we get three homogeneous equations and the frequency equation can be

obtained by putting the determinant of coefficients equal to zero.

3.3.1 Frequency spectrum for longitudinal waves

The axially symmetric longitudinal waves are characterized by radial and axial dis-

placements. Putting n = 0 in equations (3.79)− (3.82), we get

φ = AJ0(pr) exp[i(kz − ωt)], (3.83)

ψθ = CJ1(qr) exp[i(kz − ωt)]. (3.84)

The relations for radial and axial displacement are

u =
∂φ

∂r
+

1

r

∂ψz
∂θ
− ∂ψθ

∂z
, (3.85)

w =
∂φ

∂z
+

1

r

∂(ψθr)

∂r
− 1

r

∂ψr
∂θ

. (3.86)
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Using above relations in relations for τr and τrz and applying traction free boundary

condition. Then relation for τr at r = a becomes

(λ+ 2µ)
[
−p2J ′1(pa)A− ikqJ ′1(qa)C

]
+
λ

a
[−pJ1(pa)A− ikJ1(qa)C]

+λ
[
−k2J0(pa)A+ ikqJ0(qa)C

]
= 0,[

−p2(λ+ 2µ)

(
J0(pa)− J1(pa)

pa

)
− λ

(p
a
J1(pa) + k2J0(pa)

)]
A

+

[
−ikq(λ+ 2µ)

(
J0(qa)− J1(qa)

qa

)
+ ikλ

(
−1

a
J1(qa) + qJ0(qa)

)]
C = 0,[

−p2(λ+ 2µ)J0(pa) +
2µ

a
pJ1(pa)− λk2J0(pa)

]
A

+2µ

[
−ikqJ0(qa) +

ik

a
J1(qa)

]
C = 0,[

2µ

a
pJ1(pa) + ρ(−p2c2L − k2c2L + 2c2Tk

2)J0(pa)

]
A

+2µ

[
−ikqJ0(qa) +

ik

a
J1(qa)

]
C = 0,[

2µ

a
pJ1(pa)− µ(q2 − k2)J0(pa)

]
A+ 2µ

[
−ikqJ0(qa) +

ik

a
J1(qa)

]
C = 0,[

p

a
J1(pa)− 1

2
(q2 − k2)J0(pa)

]
A+

[
−ikqJ0(qa) +

ik

a
J1(qa)

]
C = 0. (3.87)

Also relation for τrz vanishes at r = a.

−ikpJ1(pa)A+ k2J1(qa)C − ikpJ1(pa)A− q2J1(qa)C = 0, (3.88)

[−2ikpJ1(pa)]A+
[
(k2 − q2)J1(qa)

]
C = 0. (3.89)

Now the determinant of the coefficient of equations (3.87) and (3.89) must vanish,

which yields,

1

2
(q2 − k2)2J0(pa)J1(qa)− p

a
(q2 − k2)J1(pa)J1(qa)−(

−2pqk2J0(qa)J1(pa) +
2p

a
k2J1(pa)J1(qa)

)
= 0,

(3.90)

(q2 − k2)2J0(pa)J1(qa)− 2p

a
(q2 + k2)J1(pa)J1(qa) + 4pqk2J0(qa)J1(pa) = 0, (3.91)

which is the Pochhammer frequency equation.

The following figure shows frequency as a function of wave number for k = 1.8811.

27



Normalized wave number ak/π

N
or

m
al

iz
ed

 v
el

oc
ity

 ω
a/

(π
c T

)

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

4

Figure 3.8: Shape of longitudinal modes in cylinder.
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Chapter 4

Plateau Region

This chapter deals with the study of the plateau or flat region appearing in the

spectrum of Lamb modes for plates and cylinders. When normalized phase speed is

plotted in terms of normalized wave number then graph shows a region where slope

of the curves become nearly zero is called plateau region. Mathematical reasoning

for plateau region in a plate and a cylinder is described and existence of plateau

region is graphically represented in this chapter.

4.1 Plateau region for a plate

Consider an isotropic plate of thickness 2h. Let

p =

√
ω2

c2L
− k2 and q =

√
ω2

cT 2

− k2,

where ω, k ,cL and cT denote frequency, wave number, speed of longitudinal mode

and speed of transverse mode respectively. Dispersion relation for symmetric modes

of plate is given by Achenbach [9] as

tan (qh)

tan (ph)
= − 4k2pq

(q2 − k2)2
, (4.1)

(q2 − k2)2tan (qh) = −4k2pqtan (ph), (4.2)

(q2 − k2)2sin(qh)cos(ph) + 4k2pqsin(ph)cos(qh) = 0, (4.3)

(q2h2 − k2h2)2sin(qh)cos(ph) + 4(hk)2(ph)(qh)sin(ph)cos(qh) = 0. (4.4)
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Let ω = ck, u = hk, p1 =
√

c2

cL
− 1 and q1 =

√
c2

cT 2 − 1 then we have ph = up1 and

qh = uq1. So equation (4.4) becomes

(u2q1
2 − u2)2 sin (uq1) cos (up1) + 4u2(up1)(uq1) sin (up1) cos (uq1) = 0, (4.5)

(q21 − 1)2 sin (uq1) cos (up1) + 4p1q1 sin (up1) cos (uq1) = 0. (4.6)

When c = cL, p1 = 0 the above equation becomes:

(q1
2 − 1)2 sin (uq1) = 0, (4.7)

unq1 = arcsin(0), (4.8)

unq1 = nπ. (4.9)

Denote the left side of equation (4.6) by f(u, y). The slope of the mode at any point

(u, c) on the curve is given by the formula

dc

du
= −

∂f
∂u
∂f
∂c

, (4.10)

∂f

∂u
= h(u, c) + g(u, c), (4.11)

where

h(u, c) = q1(q1
2 − 1)2 cos (uq1) cos (up1), (4.12)

and

g(u, c) = 4p1q1[p1 cos (up1) cos (uq1)−q1 sin (up1) sin (uq1)]−p1(q12−1)2 sin (up1) sin (uq1).

(4.13)

When c ≈ cL, as a consequence p1 ≈ 0 then g(u, c) will be small. Also h(u, c) will

vanish because cos (uq1) must vanish between two consecutive zeroes of sin (uq1). So

the slop of a mode at any point (u, c) on the curve will be zero.

The following figure shows the plateau region shown by Lamb mode spectrum of a

plate.
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Figure 4.1: Plateau region in a steel plate.

The above figure shows that when c = cL, then the slope of the dispersion curves

become nearly equal to zero showing the plateau region for a steel plate.

4.2 Plateau region for a cylinder

Dispersion relation for longitudinal modes of a homogeneous and isotropic infinite

circular rod of radius a is given by Achenbach[9] is given as,

2p

a
(q2 + k2)J1(pa)J1(qa)− (q2 − k2)2J0(pa)J1(qa)− 4k2pqJ1(pa)J0(qa) = 0, (4.14)

where p =
√

ω2

c2L
− k2 and q =

√
ω2

cT2
− k2.

Here ω, k, cL, and cT denote frequency, wave number, speed of longitudinal modes
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and speed of transverse modes respectively.

Now multiplying equation (4.14) by a4 on both sides. we get:

2ap(a2q2 + a2k2)J1(pa)J1(qa)− (a2q2 − a2k2)2J0(pa)J1(qa)

−4a2k2(ap)(aq)J1(pa)J0(qa) = 0.
(4.15)

Let ω = ck, u = hk, p1 =
√

c2

cL
− 1 and q1 =

√
c2

cT 2 − 1 then we have ph = up1 and

qh = uq1. So equation (4.15) becomes

2up1(u
2q21 + u2)J1(up1)J1(uq1)− (u2q21 − u2)2J0(up1)J1(uq1)

−4u2(up1)(uq1)J1(up1)J0(uq1) = 0,

2u3p1
(
q21 + 1

)
J1(up1)J1(uq1)− u4(q21 − 1)2J0(up1)J1(uq1)

−4u4p1q1J1(up1)J0(uq1) = 0

and

2p1
(
q21 + 1

)
J1(up1)J1(uq1)−u

(
2− c2

c2T

)2

J0(up1)J1(uq1)−4up1q1J1(up1)J0(uq1) = 0.

(4.16)

When c = cL then p = 0 and the modes cross the horizontal line c = cL such that

un

√
cL2

cT 2
− 1 = n-th zero of J1(x) . (4.17)

Let the left side of equation (4.16) is f(u, y), then the slope of the curve at any point

(u, c) is given as

dc

du
= −

∂f
∂u
∂f
∂c

, (4.18)

∂f

∂u
= g(u, c) + h(u, c), (4.19)

where

h(u, c) = −(2− c2

c2T
)2J0(up1)[(uq1)J

′
1(uq1) + J1(uq1)], (4.20)

and

g(u, c) = 2p1(q
2
1 + 1)

∂

∂u
(J1(up1)J1(uq1))−

(
2− c2

c2T

)2

uJ ′0(up1)J1(uq1) (4.21)

− 4p1q1
∂

∂u
(J1(up1)J0(uq1)) , (4.22)
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where (′) indicates the derivative with respect to argument. Now, g(u, c) is small

because p ≈ 0 at c = cL, and h(u.c) will also be small because of the following:

Lemma 4.2.1. The function xJ ′n(x) + Jn(x) vanishes at least once between two

consecutive zeros of Jn(x).

Proof. Let xk and xk+1 are two consecutive zeroes of Jn(x). Since Jn(x) vanishes at

these two points, so J ′n(xi) 6= 0 for i = k, k + 1. This is because vanishing of both

Jn(x) and its derivative at any point will imply Jn(x) ≡ 0, which is false. Hence

without lost of generality, we can assume Jn(x) > 0, xk < x < xk+1, which implies

J ′n(xk) > 0 and J ′n(xk+1) < 0. Now define

f(x) = xJ ′n(xk) + Jn(x).

Since f(xk) > 0 and f(xk+1) < 0, so lemma is proved.

The following figure shows the plateau region in cylinder.
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Figure 4.2: Plateau region in a cobalt cylinder.
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Chapter 5

Zero Group Velocity

Lamb modes are the dispersion curves showing a relation between phase velocity

and frequency or wave number. Lamb modes show an anomalous behavior where

group velocity becomes zero for finite wavenumber, when frequency×thickness versus

thickness/wavelength is plotted. This anomalous behavior is studied in this chapter.

Group velocity at any point of a dispersion curve can be obtained by measuring

the slope of the curve at that point. A Lamb mode has a zero group velocity point

if it undergoes a change in sign of the slope. The point at which slope of the curve

becomes zero is called zero group velocity point. Tolstoy and Usdin [6] pointed

out that the group velocity vanishes at a particular point of dispersion curve for S1

Lamb mode. Other Lamb modes can also have zero group velocity points. Exis-

tence of zero group velocity points depend on the mechanical properties of the plate.

Zero group velocity points are of great physical importance because at these

points energy does not propagate in the plane of the plate and remains trapped un-

der the source, which provides strong and easily detectable resonance frequency of

plate. The sharp resonance effect was first observed with the symmetric Lamb mode

of first order S1. S1−ZGV can be excited by a laser pulse. Mechanical vibrations

involving the S1 Lamb mode at the ZGV point are longitudinal. And transverse vi-

brations can be observed for antisymmetric Lamb mode A2 by using a laser source.

Zero group velocity points also exhibit the property of separating forward and back-

ward propagating Lamb waves. Backward propagation of waves occur in the region

where the slope of the dispersion curve is zero that is group velocity and phase ve-
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locity have opposite signs.

ZGV modes have many applications like characterization of plates and cylindri-

cal structures, measurement of thickness of plate, determination of poisson’s ratio of

materials etc. Measurement of both transverse and longitudinal speed is an impor-

tant feature of ZGV resonance. Although ZGV frequencies can be used to determine

the material properties, but their use in material characterization is not straight for-

ward. This is because we can not easily access their location in k − ω space. Lamb

waves dispersion curves can be normalized by thickness of plate and wave velocity,

leaving the dimensionless Poisson’s ratio as the only parameter governing shape of

spectrum.

5.1 Zero group velocity modes of a plate

Zero group velocity for symmetric mode:

Consider an isotropic and infinite plate of thickness 2h. The Rayleigh-Lamb disper-

sion relation for symmetric modes is given by Achenbach [9] as:

tan(qh)

tan(ph)
= − 4pqk2

(q2 − k2)2
,

f1 = (q2 − k2)2 sin(qh) cos(ph) + 4pqk2 sin(ph) cos(qh) = 0, (5.1)

where

p2 =
ω2

c2T
− k2,

q2 =
ω2

c2L
− k2.

In the above relation ω and k are respectively the frequency and wave number of

the wave. cL and cT denote the speed of the longitudinal and transvers waves re-

spectively.

The propagation of Lamb modes can be represented by the set of dispersion

curves. To draw the dispersion curves showing relation between wave number k
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and frequency ω for symmetric Lamb modes of an infinite isotropic plate, we choose

x = kh
π

and y = ωh
π

. The dispersion relation (5.1) becomes

(h2q2 − x2π2)2 sin(qh) cos(ph) + 4(ph)(qh)(x2π2) sin(ph) cos(qh) = 0, (5.2)

where

ph = π

√
y2

c2L
− x2,

qh = π

√
y2

c2T
− x2.

The dispersion curves are shown in the following figure.
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Figure 5.1: Symmetric Lamb mode dispersion curves for a plate of thickness 2h with

longitudinal velocity cL = 5.95km/s and transverse velocity cT = 3.24km/s.
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In the above figure we have plotted the frequency×thickness (ωh
π

) versus thickness/

wavelength (kh
π

), which shows the dispersion curves for the symmetric modes prop-

agating in a plate. The most striking feature of the above figure is that S1 mode

exhibits an anomalous behavior at point where the group velocity dω
dk

is zero while

the phase velocity ω
k

remains finite.

Zero group velocity for antisymmetric mode:

The dispersion relation for antisymmetric Lamb mode is

tan(qh)

tan(ph)
= −(q2 − k2)2

4k2pq
,

f2 = (q2 − k2)2 sin(ph) cos(qh) + 4k2pq cos (ph) sin(qh) = 0, (5.3)

where p and q are the same as defined for symmetric mode. We have taken x = kh
π

and y = ωh
π

and drawn the graph for antisymmetric Lamb modes as shown in the

following figure.
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Figure 5.2: Antisymmetric Lamb mode dispersion curves for a plate of thickness 2h

with longitudinal velocity cL = 5.95km/s and transverse velocity cT = 3.24km/s.

The above figure shows a relation between frequency and wave number for anti-

symmetric Lamb mode of a plate of thickness 2h with k = cL
cT

= 1.8364. We can see

that antisymmetric mode A2 exhibit a zero group velocity point for a finite wave

number.

Clorennec et al [8] demonstrated that the accurate value of poisson’s ratio ν in

the plates or shells can be determined by measuring two zero group velocity reso-

nance frequencies simultaneously. And if thickness of the plate is known than we

can also find longitudinal velocity cL and transverse velocity cT . They measured the

Poisson’s ratio by taking the ratio of the S1S2 and A2A3 ZGV resonance.
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Grünsteidl et al [11] described a method for inverse characterization of a plat

using ZGV Lamb modes. They used the experimentally measured ZGV frequencies

of S1 and A2 modes for thin aluminium and tungsten plates to characterize these

materials. Their approach can be summarized as follows. Define parameters kh = u

and fh = ω. Also let the locations of the S1 and A2 resonance in the Lamb mode

spectrum be (u1, ω1) and (u2, ω2) respectively. Then equation (5.1) can be written

as

f1(u1, ω1, cT , cL) = 0. (5.4)

At zero group velocity point ∂ω1

∂u1
= 0 which requires

∂f1
∂u1

= 0. (5.5)

And the equations corresponding to the A2 resonance are

f2(u2, ω2, cT , cL) = 0, (5.6)

∂f2
∂u2

= 0. (5.7)

The set of equations (5.4)-(5.7) contains six parameters u1, u2, ω1, ω2, cT , cL. By

substituting experimentally measured values of resonance frequencies ω1 and ω2,

we are left with the set of four equations containing four parameters which can be

numerically solved. The solution given by Grünsteidl et al is given in the following

table.

Material ω1 ω2 cT cL u1 u2 Poisson

MHzmm MHzmm m/sec m/sec ratio

Tungsten 2.248 3.997 2678 4785 1.725 1.667 0.272

Aluminium 2.750 4.587 3058 6021 1.625 0 0.326

Table 5.1: Solution of Grünsteidl et al.

The solution with vanishing u1 or u2 corresponds to thickness resonance and

solution with non zero u is a zero group velocity resonance. But the problem is that

the solution given by Grünsteidl et al is not unique. For a given pair of resonance

frequencies ω1 and ω2, the following cases can arise.
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1. Both are thickness resonances.

2. One is a thickness and the other is a ZGV resonance.

3. Both are ZGV resonances.

Each case will produce a distinct set of material properties. Since there is no prior

knowledge of these parameters so the calculations will lead to a set of possible

answers only one of which will represent the required solution. The possible solutions

for the Aluminium plate with the frequencies ω1 = 2.750 MHzmm and ω2 = 4.587

MHzmm is given in the following table.

u1 u2 cL cT Poisson

m/sec m/sec ratio

1 1.625 0 6021 3058 0.326

2 0 1.649 5500 3072.5 0.273

3 0.958 3.7136 7761 2763 0.427

4 0 0 5500 3058 0.276

Table 5.2: Multiple solutions

A similar table can be constructed for the tungsten plate. In order to characterize

the material one would need to know whether the mode is thickness or zero group

velocity mode.
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Chapter 6

Conclusion

We have studied the two well-known dispersion relations i.e. the Rayleigh-Lamb

relation for a plate and the Pochhammer relation for a cylinder. Also a MATLAB

program is developed to draw the dispersion curves associated with these relations.

We have discussed an approximate formula to draw the dispersion curves for

a plate in the interval cT < c < cL. Curves produced by the approximate formula

agree very well with those of exact relation when phase velocity is between cT and cL.

We have also examined the behavior of Lamb modes in a plate and a cylinder

when c ≈ cL. And found that the Lamb modes spectrum shows a region where

slope of the curves become nearly zero giving the appearance of plateau region. The

existence of plateau region is theoretically explained.

We have studied the anomalous behavior shown by the Lamb modes spectrum

when frequency× thickness versus thickness/wavelength is plotted. This is because

of the existence of zero group velocity points. Such points are of great physical

importance.
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