

Performance Evaluation and Comparison of SHA-3

Contenders on CPU and GPU

By

Rana Raees Ahmed Khan

(Registration No: 00000326430)

Department of Cyber Security

Pakistan Navy Engineering College (PNEC)

National University of Sciences & Technology (NUST)

Islamabad, Pakistan

(2023)

Performance Evaluation and Comparison of SHA-3

Contenders on CPU and GPU

By

Rana Raees Ahmed Khan

(Registration No: 00000326430)

A thesis submitted to the National University of Sciences and Technology, Islamabad,

in partial fulfillment of the requirements for the degree of

Master of Science in

Cyber Security

Supervisor: Cdre. Dr. Nazir Ahmed Malik,SI(M)

Pakistan Navy Engineering College (PNEC)

National University of Sciences & Technology (NUST)

Islamabad, Pakistan

(2023)

i

ii

iii

iv

v

vi

ACKNOWLEDGEMENTS

I extend my humble thanks to my supervisor Cdre Dr Nazir Ahmed Malik SI(M), for his

endless support and guidance, and his patience throughout the research work. His continuous

guidance and motivation helped culminate the research work in time. He has always been

available to address my queries and because of his dedicated participation, this research has been

a success. I truly appreciate his efforts in enhancing my skills and capacity to conduct this

research.

I would like to thank members of my Master Thesis committee, Capt. Dr. Sajid Saleem

PN and Dr Bilal Muhammad Khan for their time and kind support. Their valuable input made

this research a success.

I would also like to extend my thanks and appreciation to HoD Cyber Security

Department, Lt Cdr Aaliya Ali PN for her motivation and support.

I am obliged to my father, and my siblings for their prayers and reminders for completion

of this research work.

Finally, to my beloved wife, I owe her the best of my days, this milestone, and many

more to come.

vii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS VI

TABLE OF CONTENTS VII

LIST OF TABLES IX

LIST OF FIGURES XI

LIST OF EQUATIONS XV

LIST OF SYMBOLS, ABBREVIATIONS AND ACRONYMS XVI

ABSTRACT XVII

CHAPTER 1: INTRODUCTION 1
1.1 Background 1

1.2 Research Objective 1
1.3 Scope 2

1.4 Methodology 2
1.5 Significance 2

CHAPTER 2: LITERATURE REVIEW 3
2.1 Related Work 3

CHAPTER 3: METHODOLOGY 10
3.1 Introduction 10
3.2 Architectures of SHA-3 Finalists 10

3.2.1 Architecture of Blake 10
3.2.2 Architecture of Groestl 13

3.2.3 Architecture of JH 15
3.2.4 Architecture of Keccak 18
3.2.5 Architecture of Skein 22

3.3 Software Specification 24
3.4 Hardware Specification 24

3.5 Datasets 24
3.6 Methodology for CPU 24

3.7 Methodology for GPU 25
3.8 Summary 26

CHAPTER 4: EXPERIMENTS AND RESULTS 27
4.1 Experimental Results for Groestl 27

4.1.1 Text Dataset 27
4.1.2 Audio Dataset 30
4.1.3 Video Dataset 33

viii

4.1.4 Image Dataset 36
4.2 Experimental Results for JH 39

4.2.1 Text Dataset 39
4.2.2 Audio Dataset 42
4.2.3 Video Dataset 45
4.2.4 Image Dataset 48

4.3 Experimental Results for Keccak 51

4.3.1 Text Dataset 51
4.3.2 Audio Dataset 54
4.3.3 Video Dataset 57
4.3.4 Image Dataset 60

4.4 Experimental Results for Skein 63

4.4.1 Text Dataset 63
4.4.3 Audio Dataset 66
4.4.3 Video Dataset 69

4.4.4 Image Dataset 72

4.5 Experimental Results for Blake 75
4.5.1 Text Dataset 75
4.5.2 Audio Dataset 78

4.5.3 Video Dataset 81
4.5.4 Image Dataset 84

4.6 Comparison for Text Dataset 87
4.6.1 CPU Time (Bytes per Second) 87
4.6.2 CPU Throughput (Bytes per Cycle) 88

4.6.3 GPU Time 89

4.6.4 GPU Throughput 90
4.7 Comparison of Audio Dataset 91

4.7.1 CPU Time 91

4.7.2 GPU Time 92
4.7.3 CPU Throughput 93

4.7.4 GPU Throughput 94
4.8 Comparison of Video Dataset 95

4.8.1 CPU Time 95

4.8.2 GPU Time 96
4.8.3 CPU Throughput 97
4.8.4 GPU Throughput 98

4.9 Comparison for Image Dataset 99

4.9.1 CPU Time 99

4.9.2 GPU Time 100
4.9.3 CPU Throughput 101
4.9.4 GPU Throughput 102

CHAPTER 5: CONCLUSION 104

REFERENCES 105

ix

LIST OF TABLES

Page No.

Table 3.1: Datasets .. 24

Table 4.1.1: Test results for Groestl on text files………………………………………………... 28
Table 4.1.2: Test results for Groestl on audio files……………………………………………… 30
Table 4.1.3: Test results for Groestl on Video files……………………………………………... 33
Table 4.1.4: Test results for Groestl on Image files……………………………………………... 36

Table 4.2.1: Test results for JH on Text files .. 39
Table 4.2.2: Test results for JH on Audio files ... 42
Table 4.2.3: Test results for JH on Video files ... 45
Table 4.2.4: Test results for JH on Image files ... 48

Table 4.3.1: Test results for Keccak on Text files .. 51
Table 4.3.2: Test results for Keccak on Audio files .. 54
Table 4.3.3: Test results for Keccak on Video files .. 57
Table 4.3.4: Test results for Keccak on Image files .. 60

Table 4.4.1: Test results for Skein on Text files ... 63
Table 4.4.2: Test results for Skein on Audio files... 66
Table 4.4.3: Test results for Skein on Video files ... 69
Table 4.4.4: Test results for Skein on Image files... 72

Table 4.5.1: Test results for Blake on Text files ... 75
Table 4.5.2: Test results for Blake on Audio files .. 78
Table 4.5.3: Test results for Blake on Video files... 81
Table 4.5.4: Test results for Blake on Image files .. 84

Table 4.6.1: Comparison of CPU Time on Text dataset ... 87
Table 4.6.2: Comparison of CPU Throughput on Text dataset ... 88
Table 4.6.3: Comparison of GPU Time on Text dataset ... 89
Table 4.6.4: Comparison of GPU Throughput for Text dataset .. 90

Table 4.7.1: Comparison of CPU Time for Audio dataset .. 91
Table 4.7.2: Comparison of GPU Time for Audio dataset ... 92
Table 4.7.3: Comparison of CPU Throughput for Audio dataset ... 93
Table 4.7.4: Comparison of GPU Throughput for Audio dataset ... 94

Table 4.8. 1: Comparison of CPU Time for Video dataset ... 95
Table 4.8.2: Comparison of GPU Time for Video dataset .. 96

x

Table 4.8.3: Comparison of CPU Throughput for Video dataset ... 97
Table 4.84: Comparison of GPU Throughput for Video dataset .. 98

Table 4.9.1: Comparison of CPU Time for Image dataset .. 99
Table 4.9.2: Comparison of GPU Time for Image dataset ... 100
Table 4.9.3: Comparison of CPU Throughput for Image dataset ... 101
Table 4.9.4: Comparison of GPU Throughput for Image dataset ... 102

xi

LIST OF FIGURES

Page No.

Figure 3.1: Architecture of Blake ... 12
Figure 3.2: Architecture of Groestl ... 14
Figure 3.3: Architecture of JH .. 17
Figure 3.4: Architecture of Keccak ... 21

Figure 3.5: Architecture of Skein.. 23

Figure 3.6: Methodology for CPU Evaluation .. 25
Figure 3.7: Methodology for GPU Evaluation ... 26

Figure 4.1.1.1: CPU Time for Groestl for Text Files .. 28
Figure 4.1.1.2: CPU Throughput for Groestl for Text Files ... 29

Figure 4.1.1.3: GPU Time for Groestl for Text Files ... 29
Figure 4.1.1.4: GPU Throughput for Groestl for Text Files ... 30

Figure 4.1.2.1: CPU Time for Groestl for Audio Files ... 31

Figure 4.1.2.2: CPU Throughput for Groestl for Audio Files .. 31
Figure 4.1.2.3: GPU Time for Groestl for Audio Files ... 32
Figure 4.1.2.4: GPU Throughput for Groestl for Audio Files .. 32

Figure 4.1.3.1: CPU Time for Groestl for Video Files ... 34
Figure 4.1.3.2: CPU Throughput for Groestl for Video Files ... 34

Figure 4.1.3.3: GPU Time for Groestl for Video Files ... 35
Figure 4.1.3.4: GPU Throughput for Groestl for Video Files .. 35

Figure 4.1.4.1: CPU Time for Groestl for Image files .. 37
Figure 4.1.4.2: CPU Throughput for Groestl for Image files ... 37
Figure 4.1.4.3: GPU Time for Groestl for Image files.. 38
Figure 4.1.4.4: GPU Throughput for Groestl for Image files ... 38

Figure 4.2.1.1: CPU Time for JH for Text Files ... 40
Figure 4.2.1.2: CPU Throughput for JH for Text files ... 40

Figure 4.2.1.3: GPU Time for JH for Text files.. 41
Figure 4.2.1.4: GPU Throughput for JH for Text files ... 41

Figure 4.2.2.1: CPU Time for JH for Audio files ... 43
Figure 4.2.2.2: CPU Throughput for JH for Audio files ... 43
Figure 4.2.2.3: GPU Time for JH for Audio files ... 44

Figure 4.2.2.4: GPU Throughput for JH for Audio files .. 44

xii

Figure 4.2.3.1: CPU Time for JH for Video files ... 46
Figure 4.2.3.2: CPU Throughput for JH for Video files ... 46
Figure 4.2.3.3: GPU Time for JH for Video files ... 47
Figure 4.2.3.4: GPU Throughput for JH for Audio files .. 47

Figure 4.2.4.1: CPU Time for JH for Image files ... 49
Figure 4.2.4.2: CPU Throughput for JH for Image files ... 49
Figure 4.2.4.3: GPU Time for JH for Image files ... 50
Figure 4.2.4.4: GPU Throughput for JH for Image files .. 50

Figure 4.3.1.1: CPU Time for Keccak for Text files .. 52
Figure 4.3.1.2: CPU Throughput for Keccak for Text files .. 52
Figure 4.3.1.3: GPU Time for Keccak for Text files .. 53
Figure 4.3.1.4: GPU Throughput for Keccak for Text files .. 53

Figure 4.3.2.1: CPU Time for Keccak for Audio files.. 55

Figure 4.3.2.2: CPU Throughput for Keccak for Audio files ... 55
Figure 4.3.2.3: GPU Time for Keccak for Audio files ... 56

Figure 4.3.2.4: GPU Throughput for Keccak for Audio files ... 56

Figure 4.3.3.1: CPU Time for Keccak for Video files .. 58

Figure 4.3.3.2: CPU Throughput for Keccak for Video files ... 58

Figure 4.3.3.3: GPU Time for Keccak for Video files.. 59
Figure 4.3.3.4: GPU Throughput for Keccak for Video files ... 59

Figure 4.3.4.1: CPU Time for Keccak for Image files .. 61

Figure 4.3.4.2: CPU Throughput for Keccak for Image files ... 61
Figure 4.3.4.3: GPU Time for Keccak for Image files ... 62
Figure 4.3.4.4: GPU Throughput for Keccak for Image files ... 62

Figure 4.4.1.1: CPU Time for Skein for Text files ... 64
Figure 4.4.1.2: CPU Throughput for Skein for Text files ... 64

Figure 4.4.1.3: GPU Time for Skein for Text files ... 65
Figure 4.4.1.4: GPU Throughput for Skein for Text files .. 65

Figure 4.4.2.1: CPU Time for Skein for Audio files .. 67
Figure 4.4.2.2: CPU Throughput for Skein for Audio files .. 67
Figure 4.4.2.3: GPU Time for Skein for Audio files .. 68

Figure 4.4.2.4: GPU Throughput for Skein for Audio files .. 68

Figure 4.4.3.1: CPU Time for Skein for Video files ... 70

xiii

Figure 4.4.3.2: CPU Throughput for Skein for Video files .. 70
Figure 4.4.3.3: GPU Time for Skein for Video files .. 71

Figure 4.4.3.4: GPU Throughput for Skein for Video files .. 71

Figure 4.4.4.1: CPU Time for Skein for Image files .. 73

Figure 4.4.4.2: CPU Throughput for Skein for Image files .. 73
Figure 4.4.4.3: GPU Time for Skein for Image files .. 74
Figure 4.4.4.4: GPU Throughput for Skein for Image files .. 74

Figure 4.5.1.1: CPU Time for Blake for Text files ……………………………………………...94

Figure 4.5.1.2: CPU Throughput for Blake for Text files ………………………………………94

Figure 4.5.1.3: GPU Time for Blake for Text files ……………………………………………...95

Figure 4.5.1.4: GPU Throughput for Blake for Text files ………………………………………95

Figure 4.5.2.1: CPU Time for Blake for Audio files .. 79

Figure 4.5.2.2: CPU Throughput for Blake for Audio files .. 79
Figure 4.5.2.3: GPU Time for Blake for Audio files .. 80

Figure 4.5.2.4: GPU Throughput for Blake for Audio files.. 80

Figure 4.5.3.1: CPU Time for Blake for Video files .. 82
Figure 4.5.3.2: CPU Throughput for Blake for Video files .. 82
Figure 4.5.3.3: GPU Time for Blake for Video files .. 83

Figure 4.5.3.4: GPU Throughput for Blake for Video files .. 83

Figure 4.5.4.1: CPU Time for Blake for Image files .. 85

Figure 4.5.4.2: CPU Throughput for Blake for Image files .. 85
Figure 4.5.4.3: GPU Time for Blake for Image files .. 86
Figure 4.5.4.4: GPU Throughput for Blake for Image files .. 86

Figure 4.6.1: Comparison of CPU Time for Text files ... 88

Figure 4.6.2: Comparison of CPU Throughput on Text files ... 89
Figure 4.6.3: Comparison of GPU Time for Text files ... 90
Figure 4.6.4: Comparison of GPU Throughput for Text files .. 91

Figure 4.7.1: Comparison of CPU Time for Audio dataset .. 92
Figure 4.7.2: Comparison of GPU Time for Audio dataset .. 93
Figure 4.7.3: Comparison of CPU Throughput for Audio dataset .. 94
Figure 4.7.4: Comparison of GPU Throughput for Audio dataset ... 95

Figure 4.8.1: Comparison of CPU Time for Video dataset .. 96
Figure 4.8.2: Comparison of GPU Time for Video dataset .. 97
Figure 4.8.3: Comparison of CPU Throughput for Video dataset .. 98

xiv

Figure 4.8.4: Comparison of GPU Throughput for Video dataset .. 99

Figure 4.9.1: Comparison of CPU Time for Image dataset .. 100
Figure 4.9.2: Comparison of GPU Time for Image dataset .. 101
Figure 4.9.3: Comparison of CPU Throughput for Image dataset .. 102

Figure 4.9.4: Comparison of GPU Throughput for Image dataset ... 103

xv

LIST OF EQUATIONS

Equation 1.1: Initialization Phase of Blake’s compression function ……………………………28

Equation 1.2: Mixing Phase of Blake’s compression function ………………………………….29

Equation 1.3: Finalization Phase of Blake’s compression function …………………………….29

Equation 1.4: Initialization Phase of Groestl’s Hash function ………………………………….31

Equation 1.5: Initialization Phase of JH’s Compression function ………………………………33

Equation 1.6: Message expansion Phase of JH’s Compression function ……………………….33

Equation 1.7: Mixing Phase of JH’s Compression function …………………………………….33

Equation 1.8: Substitution Layer of JH’s Mixing function ……………………………………...34

Equation 1.9: Absorb Phase of Keccak’s Sponge construction………………………………….36

Equation 2.0: Squeeze Phase of Keccak’s Sponge construction ………………………………..36

Equation 2.1: Theta stage of Keccak’s permutation function……………………………………36

Equation 2.2: Rho stage of Keccak’s permutation function …………………………………….37

Equation 2.3: Pi stage of Keccak’s permutation function ………………………………………37

Equation 2.4: Chi stage of Keccak’s permutation function ……………………………………..37

Equation 2.5: Iota stage of Keccak’s permutation function ……………………………………..37

Equation 2.6: Round constant of Keccak’s Hash function ……………………………………...38

Equation 2.7: Initialization constant of Skein’s Hash function …………………………………40

Equation 2.8: Encryption process of Skein’s Hash function ……………………………………40

Equation 2.9: Finalization function of Skein’s Hash function …………………………………..41

xvi

LIST OF SYMBOLS, ABBREVIATIONS AND ACRONYMS

API APPLICATION PROGRAMMING INTERFACE

CPU CENTRAL PROCESSING UNIT

CUDA COMPUTE UNIFIED DEVICE ARCHITECTURE

GPU GRAPHICS PROCESSING UNIT

MD5 MESSAGE DIGEST METHOD 5

NIST NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY

SHA SECURE HASHING ALGORITHM

|| CONCATENATION OPERATOR

⊕ XOR OPERATOR

xvii

ABSTRACT

Cryptography is a building block of security systems, used to address issues such as

authentication, integrity and confidentiality. One of the significant disciplines of the

cryptographic algorithms is the hashing family. Hashing is a technique which maps the arbitrary

length of input data into a fixed length. It is widely used in modern information security systems

such as authentication codes for messages, digital signatures, and authentication of passwords

etc.

This research aims to evaluate one of the most popular hashing algorithms called SHA-3.

SHA-3 primarily provides the integrity of data through hashing. SHA-3 was an upgrade to SHA-

1 and MD5 hashing algorithms since these algorithms were prone to be cracked easily. SHA-3

was introduced in a competition held by NIST in 2007 and subsequently it was made publicly

available in 2014.

A total of 64 proposals were put forward, out of which 5 made it through to the final

round. The 5 finalists were BLAKE, KECCAK, JH, GROSTL and SKIEN. This study will

evaluate the performance of these 5 finalist contenders’ implementations of SHA-3. The

evaluation will be carried out in hashing of text, audio, image and video file formats, and the

comparison will be made on the performance of these algorithms on CPU and GPU in terms of

Time (bytes per second) and Throughput (bytes per cycle).

The findings of this study shows that Keccak performed the best among its contenders on

all types of datasets on CPU and GPU platforms, followed by Blake who outperformed Skein,

JH, and Groestl on Text and Video datasets. JH was the lowest performing algorithm.Moreover,

this study yielded that Keccak’s algorithm showed 99% reduction in time on GPU as compared

to CPU with speedups ranging from 420x to 1200x for different datasets. Similarly, in terms of

Throughput, Keccak showed a gain of upto 1250x on GPU.

Keywords: SHA-3, NIST, CPU, GPU, Time, Throughput, Performance Evaluation

1

CHAPTER 1: INTRODUCTION

1.1 Background

Digital security is critically important in various fields including military, national

defense, banks and business etc. Cryptography is a building block of security systems, used to

address issues such as authentication, integrity and confidentiality. One of the significant

disciplines of the cryptographic algorithms is the hashing family. Hashing is a technique which

maps the arbitrary length of input data into a fixed length. It is widely used in modern

information security systems such as authentication codes for messages, digital signatures, and

authentication of passwords etc. The prior candidates of the Secure Hash Family (SHA) i.e.,

SHA–1 and SHA–2 were at high risk of getting cracked. In 2005, two researchers (Hongbo Yu

and Wang) designed a collision attack which reduced the security level of the widely used SHA–

1 and SHA–2 algorithms. Therefore, in November 2007, the National Institute of Standards and

Technology (NIST) initiated a competition to develop a more robust and secure hashing

algorithm, named as SHA-3. A total of 64 proposals were submitted, and five algorithms (Blake,

Keccak, JH, Groestl and Skein) were selected for the final round. In October 2012, Keccak was

announced as the winner of the competition due to its design, performance in both hardware and

software and security provision. This study aims to evaluate the performance of final round

candidates’ algorithms on CPU and GPU. The evaluation will be carried out on Core i3-4005U

1.70GHz CPU and Nvidia 940 M GPU platforms. Criteria for evaluation will be CPU and GPU

Time as bytes per second and CPU and GPU Throughput as bytes per cycle. These parameters

will be evaluated using dataset comprising of text, image, video and audio files. Outcomes of this

research will be useful for determining which algorithm out of the five finalists perform better on

CPU or GPU environment and on what kind of dataset.

1.2 Research Objective

The main objective of this research is to evaluate the performance of the five finalist

candidates (Keccak, BLAKE, Groestl, JH and Skein) of the SHA-3 competition in terms of

speed on both CPU and GPU platforms. This research aims to compare the performance of these

algorithms for audio, video, text and image files, and to determine which algorithm is best suited

2

for a particular type of data. Additionally, this research aims to identify the best combination of

parameters (CPU or GPU, type of dataset) for each algorithm to achieve the best performance.

1.3 Scope

This research focuses on the implementation and performance evaluation of the five

finalist candidates of the SHA-3 competition on both CPU and GPU platforms. The study will be

limited to the performance evaluation which will be measured in terms of speed as bytes per

second and bytes per cycle. The research will be carried out using the Intel Core i3-4005U

1.70GHz CPU and Nvidia 940 M GPU platforms.

1.4 Methodology

Individual file from all datasets will be hashed separately on CPU and GPU

environments. The hashing speed will be calculated as time and throughput on CPU and GPU.

The results will be analyzed and compared to determine the best algorithm for a particular type

of data and hardware setup.

1.5 Significance

The results of this research will provide a valuable contribution to the field of

cryptography. This research will help in understanding how these algorithms perform on

different architectures, this knowledge will aid in optimizing the algorithms for specific

hardware, enhancing its efficiency and speeding up the hashing process. Further, GPUs are

generally more efficient for parallel tasks, analyzing these five algorithms’ performance against

CPU will help determining which hardware suits specific computational tasks better. In real-

world application, outcomes of this research will guide organizations for better selection of

hardware, for instance if a particular application heavily relies on fast hashing operations, this

research will help in choosing the most suitable hardware and algorithm for optimal

performance.

3

CHAPTER 2: LITERATURE REVIEW

 In the past recent years, a number of attacks against many families of hash functions like

SHA-1, SHA-2, MD etc. have been executed. Development of a more robust, efficient and

attack-resistant hashing algorithm became critical.

To address the vulnerabilities in existing SHA algorithms, NIST formally announced the

public competition of SHA-3 in November 2007 for submission of cryptographic Hash

Algorithms and received 64 submissions. The acceptance further narrowed down to five

candidates in the final round. These five finalists were Blake, Groestl, JH, Keccak and Skein.

Subsequently, in 2012, Keccak was announced winner of the competition, and became the

standard SHA-3 Algorithm.

2.1 Related Work

 Since inception of SHA-3 algorithm, work has been done in testing the five finalist

algorithms on the basis of performance of Hardware and Software implementation on different

platforms to seek what algorithm works best on what platform. Some work has also been done

on fine tuning the SHA-3 finalist algorithms to work more efficiently on certain systems.

Prominent work in the said field is discussed in ensuing paragraphs.

Hassan et al. [1] describes an optimized implementation of Keccak algorithm using the

CUDA programming model on NVIDIA GPUs. The research aimed to improve algorithm’s

performance by taking advantage of parallel processing capabilities of GPUs. The algorithm was

implemented using CUDA libraries on NVIDIA GPU, and various parameters such as thread

block size, and number of threads per block were optimized to achieve best performance.

Authors further compared the performance of their GPU-based implementation with CPU-based

implementation. They used various data sizes and measured the execution times of the algorithm

both on CPU and GPU platforms. Results showed that GPU based implementation achieved

significant speedup compared to that of CPU, with speed enhancement ranging from 3.3x to

17.8x for different data sizes.

Similar research was conducted by Wang et al. [2] based on similar parameters as [1].

Authors parallelized the Keccak algorithm on NVIDIA GPU and optimized parameters including

4

thread block size, number of threads per block, and number of rounds used in the algorithm to

achieve the best performance. Their experimentation yielded speedups ranging from 3.9x to 9.9x

for different data sizes as compared to CPU based implementation of Keccak. Authors further

studied the effect of above-mentioned parameters including the use of shared memory and found

that further improvement in the performance of algorithm on GPU can be achieved.

Sideris et al. [3] used Nios-II processor to implement high throughput Keccak hash

function. Author analysed Keccak algorithm to identify parts of the algorithm which could

benefit from acceleration, and implemented a custom hardware accelerator on the Nios-II

processor, which is a soft-core processor that can be programmed to perform custom tasks. The

hardware accelerator was specifically designed to perform the most computationally intensive

parts of the Keccak algorithm, while the rest of the algorithm was executed on the Nios-II

processor itself. Authors used various data sizes and measured the execution times of the

algorithms on both the hardware-accelerated and software-only platforms. The results showed

that the hardware-accelerated implementation achieved significant boost in speeds as compared

to the software-only implementations, with speed enhancement ranging from 15.7x to 21.8x for

different data sizes. Authors further studied the effects of various parameters on the performance

of the hardware accelerator, such as the clock frequency and number of parallel execution units

used in the accelerator. They found that increasing the clock frequency from 50 MHz to 100

MHz improved the performance of the hardware accelerator by 1.5x for small input data sizes,

and up to 1.9x for large input data sizes. However, increasing the clock frequency beyond 100

MHz did not lead to any significant improvement in performance.

Similarly, the results showed that increasing the number of execution units used in the

hardware accelerator from 1 to 4 improved the performance of the hardware accelerator by 3.3x

for small input data sizes, and up to 4.4x for large input data sizes. and the number of execution

units could further improve the performance of the hardware accelerator. Authors also studied

the effect of pipelining on the performance of the hardware accelerator. They found that

pipelining the hardware accelerator improved the performance by up to 1.6x for small data sizes,

and up to 1.8x for large data sizes.

Kuznetsov et al. [4] aimed to evaluate and compare the performance of several

cryptographic hash functions that are commonly used in blockchain technology. The authors

5

implemented the hash functions using the C programming language and conducted experiments

to measure performance in terms of execution time, memory usage, and throughput. The hash

functions that were evaluated included SHA-1, SHA-256, SHA-512, Keccak, and Blake2b-256.

The authors used the OpenSSL library for implementation of SHA-1, SHA-256, SHA-512, while

the Keccak and Blake2b-256 were implemented using optimized code available on GitHub. The

experiments were conducted on an Intel Core i7-7500U CPU running at 2.7 GHz with 8GB of

RAM. The authors evaluated the performance of the hash functions using different input sizes

ranging from 100 bytes to 10 MB.

Experiments showed that the performance of the hash functions varied depending on the

input size and the specific hash functions used. Overall, the authors found that Keccak and

Blake2b-256 had the best performance in terms of execution time, memory usage and throughput

for all input sizes tested. Specifically, Keccak had the best performance for small input sizes

(less than 10 KB), while Blake2b-256 had the best performance for large input sizes (greater than

1 MB). Authors concluded that Keccak and Blake2b-256 are suitable hash functions for use in

blockchain technology due to their good performance characteristics.

Jararweh et al. [5] evaluated and compared the hardware performance of the five SHA-3

candidate algorithms on a Xilinx Virtex 5 FPGA and evaluated their performance in terms of

throughput, latency, and resource utilization. The authors used Verilog HDL to implement the

SHA-3 candidate algorithms on the FPGA platform. They conducted experiments to measure the

throughput and latency of each algorithm using various input sizes ranging from 8 bytes to 64

KB. The authors also evaluated the resource utilization of each algorithm in terms of the number

of slices and flip-flops used on the FPGA. The results of the experiments showed that the

performance of the SHA-3 candidate algorithms varied depending on the specific algorithms and

the input size. Overall, Keccak had the highest throughput for all input sizes tested, while Skein

had the lowest latency for all input sizes tested. In terms of resource utilization, Blake and

Groestl had the lowest number of slices and flip-flops used on the FPGA, while Keccak had the

highest number of slices and flip-flops used.

Hanser et al. [6] compared the performance of the five SHA-3 candidate algorithms in the

Java programming language. The authors implemented each algorithm in Java and conducted

experiments to measure their performance in terms of processing time and memory usage. The

6

authors used the standard Java Development Kit (JDK) to implement the SHA-3 candidate

algorithms. They then measured the processing time and memory usage of each algorithm using

various input sizes ranging from 1 byte to 1 GB. The experiments were conducted on a computer

with an Intel Core i7-2600K CPU and 16 GB of RAM. The experiments showed that the

performance of the SHA-3 candidate algorithms varied depending on the specific algorithm and

the input size. Overall, Keccak performed the best with fastest processing time for all input sizes

tested, while Blake had the lowest memory usage for all input sizes tested. Overall, Keccak was

found to be the most efficient algorithm, followed by Blake, Skein, Groestl, and JH.

Sobti et al. [7] evaluated the performance of three SHA-3 candidate algorithms (Groestl,

JH, and Blake) on ARM Cortex – M3 processor. The authors implemented each algorithm on the

ARM Cortex – M3 processor using the CodeSourcery toolchain and evaluated their performance

in terms of execution time and code size. The experiments were conducted using a Keil

MCBSTM32 evaluation board with and ARM Cortex – M3 processor clocked at 72 MHz. the

authors used the CodeSourcery toolchain to compile the code for each algorithm and measured

the execution time and code size for each algorithm. The results of experiments showed that the

performance of the three SHA-3 candidate algorithms varied depending on the specific algorithm

and input size. The Groestl algorithm had the fastest execution time for small input sizes, while

the BLAKE algorithm had the fastest execution time for larger input sizes, the JH algorithm had

the highest code size among the three algorithms.

Schmidt et. Al [8] proposed an efficient hardware accelerator for the SHA-3 hash

function. The proposed accelerator is designed to be parameterized, allowing for flexibility in

terms of the hash output size and the number of rounds used in the SHA-3 computation. The

methodology used in the paper involved implementing the proposed accelerator on a field

programmable gate array (FPGA) platform and evaluating its performance in terms of

throughput and area efficiency. The authors also compared the performance of their accelerator

with existing implementations of SHA-3, such as software implementations and other hardware

accelerators. The results showed that the proposed accelerator outperformed other SHA-3

implementations in terms of throughput and area efficiency. For example, the proposed

accelerator achieved a throughput of 9.9 Gbps for a 256-bit output hash, which is significantly

higher than existing implementations. Further, the authors also performed a power analysis of the

proposed accelerator and found that it consumes less power compared to other implementations.

7

This is an important factor for applications where power consumption is a critical concern, such

as in mobile and embedded devices. The power analysis showed that the proposed accelerator

consumed less power compared to other SHA-3 implementations. Results showed that their

accelerator consumed 2.2 mW of power for a 256-bit hash output, which is significantly less than

other SHA-3 implementations such as software implementations and other hardware

accelerators. It is also noted that the power consumption of the accelerator depends on the size of

the hash output and the number of rounds used in the computation. For example, increasing the

number of rounds used in the computation result in a higher power consumption due to the

increased complexity of the computation.

Singh et. Al [9] presents a hardware implementation of the SHA-3 Blake finalist

algorithm on the ARM Cortex A8 processor. The authors used the ARM RealView Development

Suite for compiling and running their code on the processor. The hardware implementation of the

SHA-3 Blake finalist algorithms was optimized using pipeline techniques to increase the

throughput and reduce the latency of the computation. The authors used the NEON SIMD

instructions of the ARM Cortex A8 processor to accelerate the computation. Performance was

evaluated in terms of throughput and latency, and compared to other SHA-3 implementations on

similar platforms. The results showed that the proposed implementation achieved a higher

throughput and lower latency compared to other SHA-3 implementations. For example,

throughput of 124.56 Mbps was reported for a 512-bit hash output using the proposed

implementation, which is significantly higher than the throughput achieved by other

implementations. The latency of the computation was also reduced to 0.8 cycles per byte.

Lowden et al [10] presented an analysis of Keccak tree hashing on GPU architectures.

The methodology used in the research involves implementing the Keccak tree hashing algorithm

on CUDA-enabled GPUs, specifically the NVIDIA Tesla K20c, NVIDIA K40c, NVIDIA GTX

680, and AMD RADEON HD 7970. The implementation is done using the OpenCL framework,

and has rate and power consumption of each GPU are measured and compared. The author also

compares the performance of the GPU with a CPU on the same algorithm. The implementation

involves parallelizing the tree traversal process by dividing the input data into smaller chunks

and computing the hash of each chunk in parallel. The parallelization is achieved by dividing the

input data into a number of equal-sized chunks and computing the hash of each chunk

8

independently. The hash values of the chunks are then combined to compute the final hash value

of the entire input data.

The results of the study show that the AMD Radeon HD 7970 GPU has the highest hash

rate, followed by the NVIDIA K20, and then the NVIDIA GTX 680/ however, the power

consumption of the AMD Radeon HD 7970 is also the highest, while the NVIDIA GTX 680 has

the lowest power consumption. The study also showed that increasing the tree depth in Keccak

tree hashing result in a significant increase in hash rate, but also increases the power

consumption of the GPUs.

Cayrel et al. [11] explores the implementation of the Keccak hash function family on

GPUs, including NVIDIA GeForce 880 GTX, NVIDIA Tesla C1060, AND NVIDIA Tesla

C2050. CUDA programming model is used to implement parallelization of the hash function on

these architectures. The results showed that the GPU implementation outperformed the

optimized CPU implementations, with a speedup of up to 32 times for large size dataset. By

increasing the number of GPU threads, performance was improved up to a certain level, after

which the performance plateaued.

Rao et al. [12] presented a high-speed implementation of SHA-3 on Virtex-5 and Virtex-

6 FPGA. Methodology involves the use of an RTL level design and implementation of SHA-3 on

FPGA using Xilinx ISE design suite. The implementation is done with a pipelined structure,

which enhances the throughput and performance of the system. The results showed that the

proposed implementation is significantly faster, achieving a maximum throughput of 20.6 Gbps

on Virtex-6 and 14.8 Gbps on Virtex-5 FPGA. The study also shows that the proposed

implementation is efficient in terms of FPGA resource utilization, with the utilization of 53%

and 45% of the total resources on Virtex-5 and Virtex-6 respectively.

Lastly, Dat et al. [13] presents the implementation of the Keccak hash function on a

CUDA enabled NVIDIA GTX 1080 GPU. The authors aimed to achieve high-performance hash

computations that are efficient and scalable. The methodology involves using CUDA to

parallelize the hash function and accelerate its computation time. The authors implemented four

different versions of the Keccak hash functions with different block sizes (ranging from 512 bits

to 1600 bits) to test the performance of the GPU implementation. They compared the results with

the serial implementation of the same algorithm on a single CPU core. Results showed that

9

implementation of Keccak on CUDA enabled GTX 1080 GPU resulted in significant

enhancement in speed as compared to a CPU- based implementation. They reported that their

GPU implementation achieved a throughput of 9.32 Gbps for 256-bit message length and 11.1

Gbps for 512-bit message length, while the CPU implementation achieved only 1.35 Gbps for

256-bit message length and 1.50 Gbps for 512-bit message length. The authors also compared

the performance of their implementation with other existing GPU-based implementations of

Keccak and found that their implementation outperformed all other implementations as they

noted a 60% speed boost as compared to the fastest existing GPU-based implementation.

10

CHAPTER 3: METHODOLOGY

3.1 Introduction

This research aimed at studying algorithms of SHA-3 final round candidates in detail and

implementing the said algorithms’ code for hashing individual files from image, video, audio and

text datasets and calculating performance metrics. Performance of each algorithm was evaluated

by computing the time taken as bytes per second, and throughput as bytes per cycleby hashing

each file on CPU and GPU respectively. The CPU used for this research is Intel Core i3-4005U

clocked at 1.70 GHz, and GPU used is Nvidia 940 M.

3.2 Architectures of SHA-3 Finalists

Following are the architectures of five SHA-3 finalists (Blake, Jh, Groestl, Keccak, Skein).

3.2.1 Architecture of Blake

1. Compression Function: Blake uses a compression function to transform the

input message into a fixed-length hash value. The compression function consists of

several main phases:

a. Initialization Phase: During this phase, the state of the compression

function is initialized with a set of constants and the input message is divided into

message blocks. The initialization phase can be represented by the following

equation:

V[0,0], V[0,1], ..., V[0,15] = IV[0,0], IV[0,1], ..., IV[0,15]

M[0], M[1], ..., M[n-1] = pad(M)
(1.1)

Where V[i,j] represents the state of the compression function at position

(i,j), IV[i,j] represents the i-th word of the j-th initialization vector, M[i]

represents the i-th message block, and pad represents the message padding

function.

11

b. Mixing Phase: During this phase, the state of the compression function is

mixed using a set of mixing functions. The mixing phase can be represented by

the following formula:

for i in range(0, r):

V = Mix(V, i)

(1.2)

Where r represents the number of rounds and Mix represents a set of

mixing functions.

c. Finalization Phase: During this phase, the final hash value is computed by

XORing the state of the compression function with a set of finalization constants.

The finalization phase can be represented by the following formula:

H = V[0,0] ⊕ V[0,1] ⊕ ... ⊕ V[0,7] ⊕ V[0,8] ⊕ ... ⊕ V[0,15] (1.3)

Where H represents the final hash value.

2. MixingFunctions: Blake uses a set of mixing functions that operate on the state

of the compression function during the mixing phase. The mixing functions consist of

three main stages:

a. Substitution Layer: This stage applies a non-linear transformation to each

word of the state.

b. Diffusion Layer: This stage applies a linear transformation to each word of

the state.

c. Permutation Layer: This stage permutes the words of the state.

3. FinalizationConstants: Blake uses a set of finalization constants to compute the

final hash value. The finalization constants consist of a set of pre-defined values that are

XORed with the state of the compression function.

12

Figure 3.1: Architecture of Blake

13

3.2.2 Architecture of Groestl

The Groestl hash function uses a sponge construction, where the input is first padded to a

multiple of the block size, and then processed through a sequence of permutations until the

output hash value is obtained.The Groestl hash function consists of the following stages:

1. Padding: The input message is first padded to a multiple of the block size using

the Merkle-Damgard padding scheme.

2. Initialization: The Groestl hash function uses a set of initial constants to initialize

the internal state of the hash function. The initial constants consist of a set of pre-defined

values that are XORed with the state of the compression function, which can be

represented by following equation:

V[i,j] = PI[i,j] XOR C[i,j] (1.4)

Where PI[i,j] represents the initial state of the hash function, and C[i,j] represents

the initialization constants.

3. Substitution: The Groestl hash function uses a substitution layer to mix the input

message with the internal state of the hash function. The substitution layer consists of two

components: the s-box and the bit permutation.

4. Mixing: The Groestl hash function uses a mixing layer to further mix the internal

state of the hash function. The mixing layer consists of two components: the linear

diffusion layer and the non-linear diffusion layer.

5. Squeezing: Once the input message has been processed through the permutation

and mixing layers, the output hash value is obtained by squeezing the internal state of the

hash function.

14

Figure 3.2: Architecture of Groestl

15

3.2.3 Architecture of JH

JH is a cryptographic hash function that operates on input blocks of up to 2^64 bits and

produces hash values of variable length, up to a maximum of 512 bits. The architecture of JH

consists of several main components:

1. CompressionFunction: JH uses a compression function to transform the input

message into a fixed-length hash value. The compression function consists of three main

phases:

a. Initialization Phase: During this phase, the state of the compression

function is initialized with a set of constants. The initialization phase can be

represented by the following formula:

V[0,0], V[0,1], ..., V[0,15] = IV[0,0], IV[0,1], ..., IV[0,15] (1.5)

Where V[i,j] represents the state of the compression function at position

(i,j), and IV[i,j] represents the i-th word of the j-th round constant.

b. Message Expansion Phase: During this phase, the input message is

expanded into a series of message blocks that are XORed with the state of the

compression function, which can be represented by following equation:

for i in range(1, n+1):

M[i-1] = M[i-1] ⊕ V[i-1,0], V[i-1,1], ..., V[i-1,15]

(1.6)

Where M[i-1] represents the i-th message block and n represents the

number of message blocks.

c. Mixing Phase: During this phase, the state of the compression function is

mixed using a set of mixing functions, which can be represented by following:

for i in range(1, r+1):

V = Mix(V, i)

(1.7)

Where r represents the number of rounds and Mix represents a set of mixing

functions.

16

2. MixingFunctions: JH uses a set of mixing functions that operate on the state of

the compression function during the mixing phase. The mixing functions consist of four

main stages:

a. Substitution Layer: This stage applies a non-linear transformation to each

 word of the state, which can be represented by:

V[i,j] = Sub(V[i,j]) (1.8)

Where Sub represents the substitution function.

b. Diffusion Layer: This stage applies a linear transformation to each word of

 the state.

c. Permutation Layer: This stage permutes the words of the state.

d. Modular Addition: This stage applies a modular addition operation to each

 word of the state.

3. RoundConstants: JH uses a set of round constants that are used to expand the

input message and to XOR with the state of the compression function during the mixing

phase.

In summary, the JH architecture uses a compression function to transform the input

message into a fixed-length hash value. The compression function consists of an initialization

phase, a message expansion phase, and a mixing phase that uses a set of mixing functions. The

mixing functions consist of four main stages (substitution, diffusion, permutation, and modular

addition) that operate on the state of the compression function.

17

Figure 3.3: Architecture of JH

18

3.2.4 Architecture of Keccak

The Keccak architecture consists of several main components:

1. SpongeConstruction: Keccak uses a sponge construction to transform the input

message into a fixed-length hash value. The sponge construction consists of two main

phases:

a. Absorb Phase: During this phase, the input message is divided into a series

 of blocks and XORed with the state of the sponge. The sponge then applies a

 permutation to the state to produce a new state, which is used for the next block of

 the input message, which can be represented by the following equation:

S[i,j] = S[i,j] ⊕ M[x,y] (1.9)

Where S[i,j] represents the state of the sponge at position (i,j), M[x,y] represents

the message block at position (x,y), and ⊕ represents the bitwise XOR operation.

b. Squeeze Phase: During this phase, the sponge repeatedly applies the

 permutation to the state and outputs a portion of the state as the hash value. The

 squeeze phase continues until the desired length of the hash value is reached,

 which can be represented by the following equation:

Z = Z || S[0,0] || S[1,0] || ... || S[n-1,0] (2.0)

 Where Z represents the output hash value and || represents concatenation.

2. PermutationFunction: Keccak uses a permutation function that is the core of the

sponge construction. The permutation function operates on a 1600-bit state and consists

of five main stages:

a. Theta: This stage applies a linear transformation to each column of the

 state. The Theta stage can be represented by the following formula:

C[x] = S[x,0] ⊕ S[x,1] ⊕ ... ⊕ S[x,4]

D[x] = C[x-1] ⊕ Rotate(C[x+1],1)

S[x,y] = S[x,y] ⊕ D[x]

(2.1)

19

Where C[x] represents the parity of the column x of the state, D[x] represents the

difference between the parity of the neighbouring columns, and Rotate(C[x+1],1)

represents the circular rotation of the parity of the column x+1 by one bit.

b. Rho: This stage rotates each lane of the state by a fixed amount.

S[i, j] = Rotate (S [i, j], R [i, j, t]) (2.2)

Where R[i,j,t] represents the rotation offset of the lane (i,j) at round t.

c. Pi: This stage permutes the lanes of the state. The Pi stage can be

 represented by the following formula:

 for i in range(5):

 for j in range(5):

S[i,j] = S[Pi(i,j),j]

(2.3)

 Where Pi(i,j) represents the permutation index of the lane (i,j).

d. Chi: This stage applies a non-linear transformation to each row of the

 state. The Chi stage can be represented by the following formula:

 for i in range(5):

 T = [S[i,j] for j in range(5)]

 for j in range(5):

 S[i,j] = T[j] ⊕ ((~T[(j+1)%5]) & T[(j+2)%5])

(2.4)

Where T represents the row of the state and & and ~ represent the bitwise

AND and NOT operations, respectively.

e. Iota: This stage XORs a round constant with a specific lane of the state.

 The Iota stage can be represented by the following formula:

 S[0,0] = S[0,0] ⊕ RC[t] (2.5)

 Where RC[t] represents the round constant for round t.

20

3. RoundConstants: Keccak uses a set of round constants that are XORed with a

specific lane of the state during the Iota stage. The round constants are derived from the

binary expansion of the square root of a prime number. The round constants can be

represented by the following formula:

 RC[t] = r(t) * 2^(j(t)-1) (2.6)

Where r(t) represents the t-th element of the sequence {1, 2, 4, 8, 16, 32, 64, 128,

27, 54}, and j(t) represents the smallest integer such that 2^j(t) > r(t).

In summary, the Keccak architecture uses a sponge construction to transform the input

message into a fixed-length hash value. The sponge construction consists of an absorb phase and

a squeeze phase, and is based on a permutation function that operates on a 1600-bit state. The

permutation function consists of five main stages (Theta, Rho, Pi, Chi, and Iota) that operate on

the state and a set of round constants that are XORed with a specific lane of the state during the

Iota stage.

21

Figure 3.4: Architecture of Keccak

22

3.2.5 Architecture of Skein

The Skein hash function uses a unique approach called the Threefish block cipher, which

is a tweakable block cipher that uses a key, a plaintext, and a tweak as input to produce a

ciphertext.The Skein hash function consists of the following stages:

1. Initialization: The Skein hash function uses a set of initial constants to initialize

the internal state of the hash function. The initial constants consist of a set of pre-defined

values that are XORed with the state of the compression function. The initialization

constants can be represented by the following formula:

V[i,j] = PI[i,j] XOR C[i,j] (2.7)

Where PI[i,j] represents the initial state of the hash function, and C[i,j] represents

the initialization constants.

2. KeySchedule: The key schedule is used to expand the secret key into a set of

round keys that are used in the encryption process. The key schedule for Skein uses a

unique approach called the Threefish block cipher, which generates round keys by

repeatedly encrypting a fixed input using the secret key.

3. Tweak: The tweak is a unique input that is used to modify the behavior of the

Threefish block cipher. The tweak is a 128-bit input that is XORed with the plaintext and

round keys at each round of the encryption process.

4. Encryption: The Skein hash function uses the Threefish block cipher to encrypt

the input message. The encryption process consists of multiple rounds, where the

plaintext and round keys are mixed using a set of pre-defined mixing functions. The

encryption process can be represented by the following formula:

C[i] = E(K[i], T, M[i] XOR C[i-1]) (2.8)

Where E(K, T, M) represents the encryption of the message M using the key K

and the tweak T, and C[i-1] represents the ciphertext from the previous round.

5. Finalization: The finalization stage is used to generate the final hash value by

squeezing the internal state of the hash function. The output hash value is computed by

23

applying a series of finalization functions to the internal state of the hash function.The

finalization functions can be represented by the following formula:

H = F(V) (2.9)

Where F is a set of finalization functions, and V is the internal state of the hash function.

Figure 3.5: Architecture of Skein

24

3.3Software Specification

Algorithms mentioned in section 3.2 were coded on C# programming language. The IDE

used for execution of the code is Visual Studio 2019.

3.4Hardware Specification

Intel Core i3-4005U 1.70 GHz CPU with 8GB DDR3 RAM and Windows 10 OS was

used in this study. For evaluation on GPU, Nvidia 940 M GPU with CUDA Library V10.1 was

used.

3.5Datasets

Following datasets were used in this study. The dataset included different sizes of Text,

Audio, Video and Image files as mentioned below against each.

Table 3.1: Datasets

Format Text (.txt) Audio (.wav) Video (.avi) Image (.jpg)

Size (KB)

94 384 99 80

319 457 141 107

538 719 240 145

963 1110 769 769

977 960 960

1163

3.6 Methodology for CPU

Individual files from each dataset were uploaded into the system, and were hashed using

Keccak, Blake, JH, Groestl and Skein hash functions. The system calculated the hash value and

measured the performance based on CPU Throughput in Bytes per Cycle and CPU Time in

Bytes per second. Figure 3.6 illustrates the working of the system for the CPU.

25

Figure 3.6: Methodology for CPU Evaluation

3.7 Methodology for GPU

Similar to the CPU implementation, files from all datasets were uploaded individually

into the code, hashing process is divided into multiple threads using CUDA, which are processed

by GPU simultaneously. Consequently, Hash value is obtained and performance in terms of GPU

Time and Throughput is obtained. Figure 3.7 illustrates the working of the system for the GPU.

26

Figure 3.7: Methodology for GPU Evaluation

3.8 Summary

This chapter provides a detailed explanation of the methodology used in the experiment.

Algorithms of each finalist were studied in detail and code was developed for individual

functions of each algorithm mentioned in section 3.2. Code was then tested on an Intel Core i3-

4005U 1.70GHz CPU and Nvidia 940 M GPU. Datasets comprising of variable sized Text,

Audio, Video, and Image files were hashed using the code and performance was evaluated as

Time (Bytes per second) and Throughput (Bytes per cycle).

27

CHAPTER 4: EXPERIMENTS AND RESULTS

This chapter covers the experimentation results of performance evaluation of SHA-3 final

round candidates on image, video, audio and text datasets. The results of the experiment are

presented in tabular and graphical forms in terms of CPU and GPU time (bytes per second) and

throughput (bytes per cycle).

Based on the results, it was found that Keccak outperformed the other algorithms in terms

of CPU Time and GPU Time for all data types. However, for video and text datasets, Blake

performed better than Skein, JH, and Groestl.The performance of JH was the lowest among all

candidates. Further, the experimentation also indicated thatKeccak’s algorithm showed 95% to

99% reduction in time on GPU as compared to CPU with speedups ranging from 420x to 1200x

for different datasets, with similar gains of up to 1250x in throughput.

These results have important implications for organizations, including military, national

defence, banks, and businesses, as they can use this information to select the most suitable

algorithm for their specific data format and hardware architecture. The findings also provide a

foundation for future research to explore the performance of other SHA-3 candidates on different

hardware architectures.

4.1 Experimental Results for Groestl

4.1.1 Text Dataset

Table 4.1.1 shows experimental results of Groestl for Text Dataset. The highest CPU

Time (Bytes per Second) is found for the file size of 94 kb i.e., 14.6 bytes per sec and Lowest

CPU Time (Bytes per Second) is observed for the file size of 538 kb i.e., 13.06 bytes per sec.

The highest CPU Throughput (Bytes per Cycle) is found for file size of 94 kb i.e., 101.12 bytes

per cycle and Lowest CPU Throughput (Bytes per Cycle) is observed for the file size of 977 kb

i.e., 100.5 bytes per cycle.

Similarly, highest GPU Time (Bytes per Second) is found for the file size of 94 kb i.e.,

0.00247 bytes per sec and Lowest GPU Time is found for the file size of 977 kb i.e., 0.0084

bytes per sec. Highest GPU Throughput (Bytes per Cycle) is found for the file size of 1.1 Mb

28

i.e., 172187.8136 bytes per cycle and lowest GPU Throughput is observed on the file size of 94

kb i.e., 59747.3421 bytes per cycle.

Test results for Groestl on CPU and GPU for Text File Dataset is appended below.

Table 4.1.1: Test results for Groestl on text files

Text File CPU Time CPU Throughput GPU Time GPU Throughput

94 Kb 14.6 101.12 0.0247 59747.3421

319 Kb 14.45 100.63 0.0105 138128.2034

538 Kb 13.06 100.52 0.0095 137977.2136

963 Kb 14.59 100.58 0.0085 172119.3628

977 Kb 14.3 100.5 0.0084 171982.4614

1.1 Mb 14.57 100.62 0.0085 172187.8136

Following are graphical representations of results of Groestl on Text dataset depicting

performance based on CPU Time (Bytes per Second), CPU Throughput (Bytes per Cycle), GPU

Time (Bytes per Second) and GPU Throughput (Bytes per Cycle). Same can be compared with

other SHA-3 candidates’ performances for Text data set.

Figure 4.1.1.1: CPU Time for Groestl for Text Files

14.6
14.45

13.06

14.59

14.3

14.57

12

12.5

13

13.5

14

14.5

15

94 Kb 319 Kb 538 Kb 963 Kb 977 Kb 1.1 Mb

CPU Time

29

Figure 4.1.1.2: CPU Throughput for Groestl for Text Files

Figure 4.1.1.3: GPU Time for Groestl for Text Files

101.12

100.63

100.52
100.58

100.5

100.62

100.1

100.2

100.3

100.4

100.5

100.6

100.7

100.8

100.9

101

101.1

101.2

94 Kb 319 Kb 538 Kb 963 Kb 977 Kb 1.1 Mb

CPU Throughput

0.0247

0.0105
0.0095

0.0085 0.0084 0.0085

0

0.005

0.01

0.015

0.02

0.025

0.03

94 Kb 319 Kb 538 Kb 963 Kb 977 Kb 1.1 Mb

GPU Time

30

Figure 4.1.1.4: GPU Throughput for Groestl for Text Files

4.1.2 Audio Dataset

The following table 4.1.2 shows experimental results of Groestl for Audio Dataset. The

highest CPU Time is found for the file size of 1.11 Mb i.e., 14.59 bytes per sec, and lowest CPU

Time was observed on file of size 719 Kb i.e., 14.23 bytes per sec. Whereas, highest CPU

Throughput (Bytes per Cycle) was found for the file size of 1.11 Mb i.e., 101.20 bytes per cycle,

and lowest CPU Throughput was observed for the file size of 384 kb i.e., 101.13 bytes per cycle.

Similarly, highest GPU Time was found for the file size of 457 kb i.e., 0.0427 bytes per

sec and the lowest GPU Time is for the file size of 1.11 mb i.e., 0.0085 bytes per sec. Whereas,

highest GPU Throughput was found for the file size of 1.11 mb i.e., 173180.3492 bytes per cycle

and lowest GPU Throughput was observed for the file size of 384 kb i.e., 34282.2758 bytes per

cycle.

Table 4.1.2: Test results for Groestl on audio files

Audio File CPU Time CPU Throughput GPU Time GPU Throughput

384 Kb 14.25 101.13 0.042 34282.2758

457 Kb 14.46 101.18 0.0427 34299.2254

719 Kb 14.23 101.19 0.042 34302.6153

1.1 Mb 14.59 101.2 0.0085 173180.3492

59747.3421

138128.2034 137977.2136

172119.3628 171982.4614 172187.8136

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

94 Kb 319 Kb 538 Kb 963 Kb 977 Kb 1.1 Mb

GPU Throughput

31

Following are graphical representations of results of Groestl on Audio dataset depicting

performance based on CPU Time (Bytes per Second), CPU Throughput (Bytes per Cycle), GPU

Time (Bytes per Second) and GPU Throughput (Bytes per Cycle). Same can be compared with

other SHA-3 candidates’ performances for Audio dataset.

Figure 4.1.2.1: CPU Time for Groestl for Audio Files

Figure 4.1.2.2: CPU Throughput for Groestl for Audio Files

14.25

14.46

14.23

14.59

14

14.1

14.2

14.3

14.4

14.5

14.6

14.7

384 Kb 457 Kb 719 Kb 1.1 Mb

CPU Time

101.13

101.18

101.19

101.2

101.08

101.1

101.12

101.14

101.16

101.18

101.2

101.22

384 Kb 457 Kb 719 Kb 1.1 Mb

CPU Throughput

32

Figure 4.1.2.3: GPU Time for Groestl for Audio Files

Figure 4.1.2.4: GPU Throughput for Groestl for Audio Files

0.042 0.0427 0.042

0.0085

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

384 Kb 457 Kb 719 Kb 1.1 Mb

GPU Time

34282.2758 34299.2254 34302.6153

173180.3492

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

384 Kb 457 Kb 719 Kb 1.1 Mb

GPU Throughput

33

4.1.3 Video Dataset

Table 4.1.3 shows results for Groestl on Video Dataset. Highest CPU time was recorded

for the file size of 960 kb i.e., 6.11 bytes per sec and lowest was recorded for file size of 99 kb

i.e., 4.96 bytes per sec. Whereas, highest CPU Throughput was recorded for the file size of 99 kb

i.e., 218.75 bytes per cycle and lowest was recorded for file size of 141 kb i.e., 217.93 bytes per

cycle.

Similarly, highest GPU Time was recorded for the file size of 141 kb i.e., 0.0091 bytes

per sec and lowest was recorded for file size 769 kb i.e., 0.0035 bytes per sec. Whereas, highest

GPU Throughput was recorded for file size of 960 kb i.e., 373604.0893 bytes per cycle and

lowest was recorded for file size of 99 kb i.e., 129249.714 bytes per cycle.

Table 4.1.3: Test results for Groestl on Video files

Video File CPU Time CPU Throughput GPU Time GPU Throughput

99 kb 4.96 218.75 0.0084 129249.714

141 kb 5.39 217.93 0.0091 128765.2122

240 kb 5.33 218.39 0.0058 202345.5885

769 kb 5.96 218.3 0.0035 373569.8639

960 kb 6.11 218.32 0.0036 373604.0893

Following are graphical representations of results of Groestl on video dataset depicting

performance based on CPU Time (Bytes per Second), CPU Throughput (Bytes per Cycle), GPU

Time (Bytes per Second) and GPU Throughput (Bytes per Cycle). Same can be compared with

other SHA-3 candidates’ performances for Video data set.

34

Figure 4.1.3.1: CPU Time for Groestl for Video Files

Figure 4.1.3.2: CPU Throughput for Groestl for Video Files

4.96
5.39 5.33

5.96 6.11

0

1

2

3

4

5

6

7

99 kb 141 kb 240 kb 769 kb 960 kb

CPU Time

218.75

217.93

218.39
218.3 218.32

217.4

217.6

217.8

218

218.2

218.4

218.6

218.8

219

99 kb 141 kb 240 kb 769 kb 960 kb

CPU Throughput

35

Figure 4.1.3.3: GPU Time for Groestl for Video Files

Figure 4.1.3.4: GPU Throughput for Groestl for Video Files

0.0084

0.0091

0.0058

0.0035 0.0036

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

99 kb 141 kb 240 kb 769 kb 960 kb

GPU Time

129249.714 128765.2122

202345.5885

373569.8639 373604.0893

0

50000

100000

150000

200000

250000

300000

350000

400000

99 kb 141 kb 240 kb 769 kb 960 kb

GPU Throughput

36

4.1.4 Image Dataset

Table 4.1.4depicts results of Groestl on Image Dataset. Highest CPU Time was observed

on file size of 960 kb i.e., 6.35 bytes per sec, and lowest CPU Time was observed on file size of

107 kb i.e., 5.92 bytes per sec. Highest CPU Throughput was observed on file size of 960 kb i.e.,

231.32 bytes per cycle and lowest CPU Throughput was observed on file size of 80 kb i.e.,

217.82 bytes per cycle.

Similarly, highest GPU Time was observed on file size of 80 kb i.e 0.0103 bytes per sec

and lowest was observed on file size of 145 kb i.e., 0.0065 bytes per sec. Highest GPU

Throughput was recorded on 960 kb file i.e., 375745.6589 bytes per cycle and lowest was

recorded on file size of 80 kb i.e., 128700.2181 bytes per cycle.

Table 4.1.4: Test results for Groestl on Image files

Image File CPU Time CPU Throughput GPU Time GPU Throughput

80 kb 6.09 217.82 0.0103 128700.2181

107 kb 5.92 221.55 0.01 130904.1103

145 kb 6.01 222.41 0.0065 202364.1192

769 kb 6.22 223.3 0.0069 374545.5231

960 kb 6.35 231.32 0.0074 375745.6589

Following are graphical representations of results of Groestl on Image dataset depicting

performance based on CPU Time (Bytes per Second), CPU Throughput (Bytes per Cycle), GPU

Time (Bytes per Second) and GPU Throughput (Bytes per Cycle). Same can be compared with

other SHA-3 candidates’ performances for Image data set.

37

Figure 4.1.4.1: CPU Time for Groestl for Image files

Figure 4.1.4.2: CPU Throughput for Groestl for Image files

6.09

5.92

6.01

6.22

6.35

5.7

5.8

5.9

6

6.1

6.2

6.3

6.4

80 kb 107 kb 145 kb 769 kb 960 kb

CPU Time

217.82

221.55
222.41

223.3

231.32

210

215

220

225

230

235

80 kb 107 kb 145 kb 769 kb 960 kb

CPU Throughput

38

Figure 4.1.4.3: GPU Time for Groestl for Image files

Figure 4.1.4.4: GPU Throughput for Groestl for Image files

0

0.002

0.004

0.006

0.008

0.01

0.012

80 kb 107 kb 145 kb 769 kb 960 kb

GPU Time

128700.2181 130904.1103

202364.1192

374545.5231 375745.6589

0

50000

100000

150000

200000

250000

300000

350000

400000

80 kb 107 kb 145 kb 769 kb 960 kb

GPU Throughput

39

4.2 Experimental Results for JH

4.2.1 Text Dataset

Table 4.2.1 shows experimental results of JH for Text Dataset. The highest CPU Time

(Bytes per Second) is found for the file size of 94 kb i.e., 9.9 bytes per sec and lowest CPU Time

(Bytes per Second) is observed for the file size of 963 kb i.e., 9.49 bytes per sec. The highest

CPU Throughput (Bytes per Cycle) is found for file size of 94 kb i.e., 72.87 bytes per cycle and

Lowest CPU Throughput (Bytes per Cycle) is observed for the file size of 963 kb i.e., 72.63

bytes per cycle.

Similarly, highest GPU Time (Bytes per Second) is found for the file size of 94 kb i.e.,

0.0168 bytes per sec and Lowest GPU Time is found for the file size of 963 kb i.e., 0.0055 bytes

per sec. Highest GPU Throughput (Bytes per Cycle) is found for the file size of 1.1 mb i.e.,

124323.64 bytes per cycle and lowest GPU Throughput is observed on the file size of 94 kb i.e.,

43055.6647 bytes per cycle.Test results for JH on CPU and GPU for Text File Dataset is

appended below

Table 4.2.1: Test results for JH on Text files

Text File CPU Time CPU Throughput GPU Time GPU Throughput

94 kb 9.9 72.87 0.0168 43055.6647

319 kb 9.57 72.64 0.007 99708.1655

538 kb 9.53 72.66 0.0069 99735.6182

963 kb 9.49 72.63 0.0055 124289.4146

977 kb 9.73 72.64 0.0059 124306.5273

1.1 mb 9.8 72.65 0.0061 124323.64

Following are graphical representations of results of JH on Text dataset depicting

performance based on CPU Time (Bytes per Second), CPU Throughput (Bytes per Cycle), GPU

Time (Bytes per Second) and GPU Throughput (Bytes per Cycle). Same can be compared with

other SHA-3 candidates’ performances for Text data set.

40

Figure 4.2.1.1: CPU Time for JH for Text Files

Figure 4.2.1.2: CPU Throughput for JH for Text files

9.9

9.57
9.53

9.49

9.73

9.8

9.2

9.3

9.4

9.5

9.6

9.7

9.8

9.9

10

94 kb 319 kb 538 kb 963 kb 977 kb 1.1 mb

CPU Time

72.87

72.64
72.66

72.63 72.64 72.65

72.5

72.55

72.6

72.65

72.7

72.75

72.8

72.85

72.9

94 kb 319 kb 538 kb 963 kb 977 kb 1.1 mb

CPU Throughput

41

Figure 4.2.1.3: GPU Time for JH for Text files

Figure 4.2.1.4: GPU Throughput for JH for Text files

0.0168

0.007 0.0069

0.0055 0.0059 0.0061

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

94 kb 319 kb 538 kb 963 kb 977 kb 1.1 mb

GPU Time

43055.6647

99708.1655 99735.6182

124289.4146 124306.5273 124323.64

0

20000

40000

60000

80000

100000

120000

140000

94 kb 319 kb 538 kb 963 kb 977 kb 1.1 mb

GPU Throughput

42

4.2.2 Audio Dataset

The following table 4.2.2 shows experimental results of JH for Audio Dataset. The

highest CPU Time is found for the file size of 719 kb i.e., 9.82 bytes per sec, and lowest CPU

Time was observed on file of size 457 kb i.e., 9.74 kb. Whereas, highest CPU Throughput (Bytes

per Cycle) was found for the file size of 457 kb i.e., 72.89 bytes per cycle, and lowest CPU

Throughput was observed for the file size of 384 kb i.e., 72.83 bytes per cycle.

Similarly, highest GPU Time was found for the file size of 719 kb i.e., 0.029 bytes per

sec and the lowest GPU Time is for the file size of 1.1 mb i.e., 0.0057 bytes per sec. Whereas,

highest GPU Throughput was found for the file size of 1.1 mb i.e., 124700.119 bytes per cycle

and lowest GPU Throughput was observed for the file size of 384 kb i.e., 24688.78 bytes per

cycle.

Table 4.2.2: Test results for JH on Audio files

Audio File CPU Time CPU Throughput GPU Time GPU Throughput

384 kb 9.81 72.83 0.0289 24688.78

457 kb 9.74 72.89 0.0287 24709.1376

719 kb 9.82 72.87 0.029 24702.3577

1.1 mb 9.8 72.87 0.0057 124700.119

Following are graphical representations of results of JH on Audio dataset depicting

performance based on CPU Time (Bytes per Second), CPU Throughput (Bytes per Cycle), GPU

Time (Bytes per Second) and GPU Throughput (Bytes per Cycle). Same can be compared with

other SHA-3 candidates’ performances for Audio data set.

43

Figure 4.2.2.1: CPU Time for JH for Audio files

Figure 4.2.2.2: CPU Throughput for JH for Audio files

9.81

9.74

9.82

9.8

9.7

9.72

9.74

9.76

9.78

9.8

9.82

9.84

384 kb 457 kb 719 kb 1.1 mb

CPU Time

72.83

72.89

72.87 72.87

72.8

72.81

72.82

72.83

72.84

72.85

72.86

72.87

72.88

72.89

72.9

384 kb 457 kb 719 kb 1.1 mb

CPU Throughput

44

Figure 4.2.2.3: GPU Time for JH for Audio files

Figure 4.2.2.4: GPU Throughput for JH for Audio files

0.0289 0.0287 0.029

0.0057

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

384 kb 457 kb 719 kb 1.1 mb

GPU Time

24688.78 24709.1376 24702.3577

124700.119

0

20000

40000

60000

80000

100000

120000

140000

384 kb 457 kb 719 kb 1.1 mb

GPU Throughput

45

4.2.3 Video Dataset

Table 4.2.3 shows results for JH on Video Dataset. Highest CPU time was recorded for

the file size of 960 kb i.e., 4.24 bytes per sec and lowest was recorded for file size of 99 kb i.e.,

3.47 bytes per sec. Whereas, highest CPU Throughput was recorded for the file size of 99 kb i.e.,

155.92 bytes per cycle and lowest was recorded for file size of 141 kb i.e., 154.99 bytes per

cycle.

Similarly, highest GPU Time was recorded for the file size of 141 kb i.e., 0.0063 bytes

per sec and lowest was recorded for file size 769 kb i.e., 0.0024 bytes per sec. Whereas, highest

GPU Throughput was recorded for file size of 769 kb i.e., 265503.2725 bytes per cycle and

lowest was recorded for file size of 141 kb i.e., 91576.7459 bytes per cycle.

Table 4.2.3: Test results for JH on Video files

Video File CPU Time CPU Throughput GPU Time GPU Throughput

99 kb 3.47 155.92 0.0059 92126.2418

141 kb 3.7 154.99 0.0063 91576.7459

240 kb 3.88 155.9 0.0042 144446.528

769 kb 4.17 155.15 0.0024 265503.2725

960 kb 4.24 155.14 0.0025 265486.1598

Following are graphical representations of results of JH on Video dataset depicting

performance based on CPU Time (Bytes per Second), CPU Throughput (Bytes per Cycle), GPU

Time (Bytes per Second) and GPU Throughput (Bytes per Cycle). Same can be compared with

other SHA-3 candidates’ performances for Video data set.

46

Figure 4.2.3.1: CPU Time for JH for Video files

Figure 4.2.3.2: CPU Throughput for JH for Video files

3.47
3.7

3.88
4.17 4.24

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

99 kb 141 kb 240 kb 769 kb 960 kb

CPU Time

155.92

154.99

155.9

155.15 155.14

154.4

154.6

154.8

155

155.2

155.4

155.6

155.8

156

99 kb 141 kb 240 kb 769 kb 960 kb

CPU Throughput

47

Figure 4.2.3.3: GPU Time for JH for Video files

Figure 4.2.3.4: GPU Throughput for JH for Audio files

0.0059
0.0063

0.0042

0.0024 0.0025

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

99 kb 141 kb 240 kb 769 kb 960 kb

GPU Time

92126.2418 91576.7459

144446.528

265503.2725 265486.1598

0

50000

100000

150000

200000

250000

300000

99 kb 141 kb 240 kb 769 kb 960 kb

GPU Throughput

48

4.2.4 Image Dataset

Table 4.2.4depicts results of JH on Image Dataset. Highest CPU Time was observed on

file size of 960 kb i.e., 4.3 bytes per sec, and lowest CPU Time was observed on file size of 80

kb i.e., 4.15 bytes per sec. Highest CPU Throughput was observed on file size of 769 kb i.e.,

155.74 bytes per cycle and lowest CPU Throughput was observed on file size of 80 kb i.e.,

155.09 bytes per cycle.

Similarly, highest GPU Time was observed on file size of 107 kb i.e 0.0071 bytes per sec

and lowest was observed on file size of 769 kb i.e., 0.0024 bytes per sec. Highest GPU

Throughput was recorded on 960 kb file i.e., 267545.6963 bytes per cycle and lowest was

recorded on file size of 80 kb i.e., 91635.8315 bytes per cycle.

Table 4.2.4: Test results for JH on Image files

Image File CPU Time CPU Throughput GPU Time GPU Throughput

80 kb 4.15 155.09 0.007 91635.8315

107 kb 4.17 155.13 0.0071 91659.4657

145 kb 4.17 155.12 0.0045 143723.8321

769 kb 4.16 155.74 0.0024 266412.2125

960 kb 4.3 155.8 0.0027 267545.6963

Following are graphical representations of results of JH on Image dataset depicting

performance based on CPU Time (Bytes per Second), CPU Throughput (Bytes per Cycle), GPU

Time (Bytes per Second) and GPU Throughput (Bytes per Cycle). Same can be compared with

other SHA-3 candidates’ performances for Image data set.

49

Figure 4.2.4.1: CPU Time for JH for Image files

Figure 4.2.4.2: CPU Throughput for JH for Image files

4.15

4.17 4.17
4.16

4.3

4.05

4.1

4.15

4.2

4.25

4.3

4.35

80 kb 107 kb 145 kb 769 kb 960 kb

CPU Time

155.09
155.13 155.12

155.74
155.8

154.6

154.8

155

155.2

155.4

155.6

155.8

156

80 kb 107 kb 145 kb 769 kb 960 kb

CPU Throughput

50

Figure 4.2.4.3: GPU Time for JH for Imagefiles

Figure 4.2.4.4: GPU Throughput for JH for Image files

0.007 0.0071

0.0045

0.0024
0.0027

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

80 kb 107 kb 145 kb 769 kb 960 kb

GPU Time

91635.8315 91659.4657

143723.8321

266412.2125 267545.6963

0

50000

100000

150000

200000

250000

300000

80 kb 107 kb 145 kb 769 kb 960 kb

GPU Throughput

51

4.3 Experimental Results for Keccak

4.3.1 Text Dataset

Table 4.3.1 shows experimental results of Keccak for Text Dataset. The highest CPU

Time (Bytes per Second) is found for the file size of 94 kb i.e., 20.47 bytes per sec and Lowest

CPU Time (Bytes per Second) is observed for the file size of 319 kb i.e., 19.63 bytes per sec.

The highest CPU Throughput (Bytes per Cycle) is found for file size of 1.1 mb i.e., 153.65 bytes

per cycle and Lowest CPU Throughput (Bytes per Cycle) is observed 152.77 bytes per cycle for

file size of 538 kb.

Similarly, highest GPU Time (Bytes per Second) is found for the file size of 94 kb i.e.,

0.0346 bytes per sec and Lowest GPU Time is found for the file size of 963 kb i.e., 0.0118 bytes

per sec. Highest GPU Throughput (Bytes per Cycle) is 262328.63 bytes per cycle for file size of

1.1 mb and lowest GPU Throughput is observed on the file size of 94 kb i.e., 90377.3086.

Test results for Keccak on CPU and GPU for Text File Dataset is appended below

Table 4.3.1: Test results for Keccak on Text files

Text File CPU Time CPU Throughput GPU Time GPU Throughput

94 kb 20.47 152.96 0.0346 90377.3086

319 kb 19.63 152.81 0.0143 209752.2683

538 kb 19.66 152.77 0.0143 209697.363

963 kb 20.26 153.21 0.0118 261430.454

977 kb 20.45 152.98 0.012 261289.7

1.1 mb 20.32 153.65 0.0119 262328.63

Following are graphical representations of results of Keccak on Text dataset depicting

performance based on CPU Time (Bytes per Second), CPU Throughput (Bytes per Cycle), GPU

Time (Bytes per Second) and GPU Throughput (Bytes per Cycle). Same can be compared with

other SHA-3 candidates’ performances for Text data set.

52

Figure 4.3.1.1: CPU Time for Keccak for Text files

Figure 4.3.1.2: CPU Throughput for Keccak for Text files

9.9

9.57
9.53

9.49

9.73

9.8

9.2

9.3

9.4

9.5

9.6

9.7

9.8

9.9

10

94 kb 319 kb 538 kb 963 kb 977 kb 1.1 mb

CPU Time

152.96

152.81 152.77

153.21

152.98

153.65

152.2

152.4

152.6

152.8

153

153.2

153.4

153.6

153.8

94 kb 319 kb 538 kb 963 kb 977 kb 1.1 mb

CPU Throughput

53

Figure 4.3.1.3: GPU Time for Keccak for Text files

Figure 4.3.1.4: GPU Throughput for Keccak for Text files

0.0346

0.0143 0.0143
0.0118 0.012 0.0119

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

94 kb 319 kb 538 kb 963 kb 977 kb 1.1 mb

GPU Time

90377.3086

209752.2683 209697.363

261430.454 261289.7 262328.63

0

50000

100000

150000

200000

250000

300000

94 kb 319 kb 538 kb 963 kb 977 kb 1.1 mb

GPU Throughput

54

4.3.2 Audio Dataset

Table 4.3.2 shows experimental results of Keccak for Audio Dataset. The highest CPU

Time is found for the file size of 457 kb i.e., 20.97 bytes per sec, and lowest CPU Time was

observed on file of size 719 kb i.e., 18.89 bytes per sec. Whereas, highest CPU Throughput

(Bytes per Cycle) was found for the file size of 1.11 mb i.e., 152.96 bytes per cycle, and lowest

CPU Throughput was observed for the file size of 384 kb i.e., 152.85 bytes per cycle.

Similarly, highest GPU Time was found for the file size of 457 kb i.e., 0.0619 bytes per

sec and the lowest GPU Time is for the file size of 1.11 mb i.e., 0.0122 bytes per sec. Whereas,

highest GPU Throughput was found for the file size of 1.11 mb i.e., 261755.595 bytes per cycle

and lowest GPU Throughput was observed for the file size of 384 kb i.e., 51814.9496 bytes per

cycle.

Table 4.3.2: Test results for Keccak on Audio files

Audio File CPU Time CPU Throughput GPU Time GPU Throughput

384 kb 19.1 152.85 0.0563 51814.9496

457 kb 20.97 152.95 0.0619 51848.8488

719 kb 18.89 152.95 0.0557 51848.8488

1.1 mb 20.91 152.96 0.0122 261755.595

Following are graphical representations of results of Keccak on Audio dataset depicting

performance based on CPU Time (Bytes per Second), CPU Throughput (Bytes per Cycle), GPU

Time (Bytes per Second) and GPU Throughput (Bytes per Cycle). Same can be compared with

other SHA-3 candidates’ performances for Audio data set.

55

Figure 4.3.2.1: CPU Time for Keccak for Audio files

Figure 4.3.2.2: CPU Throughput for Keccak for Audio files

19.1

20.97

18.89

20.91

17.5

18

18.5

19

19.5

20

20.5

21

21.5

384 kb 457 kb 719 kb 1.1 mb

CPU Time

152.85

152.95 152.95
152.96

152.78

152.8

152.82

152.84

152.86

152.88

152.9

152.92

152.94

152.96

152.98

384 kb 457 kb 719 kb 1.1 mb

CPU Throughput

56

Figure 4.3.2.3: GPU Time for Keccak for Audio files

Figure 4.3.2.4: GPU Throughput for Keccak for Audio files

0.0563

0.0619

0.0557

0.0122

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

384 kb 457 kb 719 kb 1.1 mb

GPU Time

51814.9496 51848.8488 51848.8488

261755.595

0

50000

100000

150000

200000

250000

300000

384 kb 457 kb 719 kb 1.1 mb

GPU Throughput

57

4.3.3 Video Dataset

Table 4.3.3 shows results for Keccak on Video Dataset. Highest CPU time was recorded

for the file size of 960 kb i.e., 8.88 bytes per sec and lowest was recorded for file size of 99 kb

i.e., 7.57 bytes per sec. Whereas, highest CPU Throughput was recorded for the file size of 99 kb

i.e., 330.74 bytes per cycle and lowest was recorded for file size of 960 kb i.e., 327.34 bytes per

cycle.

Similarly, highest GPU Time was recorded for the file size of 141 kb i.e., 0.0132 bytes

per sec and lowest was recorded for file size 769 kb i.e., 0.0051 bytes per sec. Whereas, highest

GPU Throughput was recorded for file size of 769 kb i.e., 565385.9245 bytes per cycle and

lowest was recorded for file size of 141 kb i.e., 195378.2991 bytes per cycle.

Table 4.3.3: Test results for Keccak on Video files

Video File CPU Time CPU Throughput GPU Time GPU Throughput

99 kb 7.57 330.74 0.0128 195419.659

141 kb 7.79 330.67 0.0132 195378.2991

240 kb 8.61 329.5 0.0093 305292.6939

769 kb 8.72 330.39 0.0051 565385.9245

960 kb 8.88 327.34 0.0052 560166.5563

Following are graphical representations of results of Keccak on Video dataset depicting

performance based on CPU Time (Bytes per Second), CPU Throughput (Bytes per Cycle), GPU

Time (Bytes per Second) and GPU Throughput (Bytes per Cycle). Same can be compared with

other SHA-3 candidates’ performances for Video data set.

58

Figure 4.3.3.1: CPU Time for Keccak for Video files

Figure 4.3.3.2: CPU Throughput for Keccak for Video files

7.57

7.79

8.61
8.72

8.88

6.5

7

7.5

8

8.5

9

99 kb 141 kb 240 kb 769 kb 960 kb

CPU Time

330.74 330.67

329.5

330.39

327.34

325

326

327

328

329

330

331

99 kb 141 kb 240 kb 769 kb 960 kb

CPU Throughput

59

Figure 4.3.3.3: GPU Time for Keccak for Video files

Figure 4.3.3.4: GPU Throughput for Keccak for Video files

0.0128
0.0132

0.0093

0.0051 0.0052

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

99 kb 141 kb 240 kb 769 kb 960 kb

GPU Time

195419.659 195378.2991

305292.6939

565385.9245 560166.5563

0

100000

200000

300000

400000

500000

600000

99 kb 141 kb 240 kb 769 kb 960 kb

GPU Throughput

60

4.3.4 Image Dataset

Table 4.3.4depicts results of Keccak on Image Dataset. Highest CPU Time was observed

on file size of 960 kb i.e., 8.94 bytes per sec, and lowest CPU Time was observed on file size of

145 kb i.e., 8.67 bytes per sec. Highest CPU Throughput was observed on file size of 769 kb i.e.,

331.82 bytes per cycle and lowest CPU Throughput was observed on file size of 145 kb i.e.,

326.9 bytes per cycle.

Similarly, highest GPU Time was observed on file size of 80 kb i.e 0.0148 bytes per sec

and lowest was observed on file size of 960 kb i.e., 0.0064 bytes per sec. Highest GPU

Throughput was recorded on 769 kb file i.e., 553546.985 bytes per cycle and lowest was

recorded on file size of 80 kb i.e., 195401.9333 bytes per cycle.

Table 4.3.4: Test results for Keccak on Image files

Image File CPU Time CPU Throughput GPU Time GPU Throughput

80 kb 8.76 330.71 0.0148 195401.9333

107 kb 8.7 331.4 0.0147 195809.6238

145 kb 8.67 326.9 0.0094 302883.7075

769 kb 8.75 331.82 0.0074 553546.985

960 kb 8.94 324.74 0.0064 525398.6324

Following are graphical representations of results of Keccak on Image dataset depicting

performance based on CPU Time (Bytes per Second), CPU Throughput (Bytes per Cycle), GPU

Time (Bytes per Second) and GPU Throughput (Bytes per Cycle). Same can be compared with

other SHA-3 candidates’ performances for Image data set.

61

Figure 4.3.4.1: CPU Time for Keccak for Image files

Figure 4.3.4.2: CPU Throughput for Keccak for Image files

8.76

8.7
8.67

8.75

8.94

8.5

8.55

8.6

8.65

8.7

8.75

8.8

8.85

8.9

8.95

9

80 kb 107 kb 145 kb 769 kb 960 kb

CPU Time

330.71
331.4

326.9

331.82

324.74

320

322

324

326

328

330

332

334

80 kb 107 kb 145 kb 769 kb 960 kb

CPU Throughput

62

Figure 4.3.4.3: GPU Time for Keccak for Image files

Figure 4.3.4.4: GPU Throughput for Keccak for Image files

0.0148 0.0147

0.0094

0.0074
0.0064

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

80 kb 107 kb 145 kb 769 kb 960 kb

GPU Time

195401.9333 195809.6238

302883.7075

553546.985
525398.6324

0

100000

200000

300000

400000

500000

600000

80 kb 107 kb 145 kb 769 kb 960 kb

GPU Throughput

63

4.4 Experimental Results for Skein

4.4.1 Text Dataset

Table 4.4.1 shows experimental results of Skeinfor Text Dataset. The highest CPU Time

(Bytes per Second) is found for the file size of 977 kb i.e., 20.54 bytes per sec and Lowest CPU

Time (Bytes per Second) is observed for the file size of 319 kb i.e., 19.45 bytes per sec. The

highest CPU Throughput (Bytes per Cycle) is found for file size of 963 kb i.e., 76.52 bytes per

cycle and Lowest CPU Throughput (Bytes per Cycle) is observed for the file size of 538 kb i.e.

73.25 bytes per cycle.

Similarly, highest GPU Time (Bytes per Second) is found for the file size of 94 kb i.e.,

0.0337 bytes per sec and Lowest GPU Time is found for the file size of 963 kb i.e., 0.0152 bytes

per sec. Highest GPU Throughput (Bytes per Cycle) is 125648.987 bytes per cycle for file size of

1.1 mb and lowest GPU Throughput is observed on the file size of 94 kb i.e., 45182.7457 bytes

per cycle.Test results for Skein on CPU and GPU for Text File Dataset is appended below.

Table 4.4.1: Test results for Skein on Text files

Text File CPU Time CPU Throughput GPU Time GPU Throughput

94 kb 19.92 76.47 0.0337 45182.7457

319 kb 19.45 75.41 0.0321 99777.445

538 kb 19.56 73.25 0.0252 98754.254

963 kb 20.35 76.52 0.0152 121245.2642

977 kb 20.54 74.85 0.0198 123548.594

1.1 mb 20.5 75.75 0.0185 125648.987

Following are graphical representations of results of Skein on Text dataset depicting

performance based on CPU Time (Bytes per Second), CPU Throughput (Bytes per Cycle), GPU

Time (Bytes per Second) and GPU Throughput (Bytes per Cycle). Same can be compared with

other SHA-3 candidates’ performances for Text data set.

64

Figure 4.4.1.1: CPU Time for Skein for Text files

Figure 4.4.1.2: CPU Throughput for Skein for Text files

19.92

19.45
19.56

20.35

20.54 20.5

18.8

19

19.2

19.4

19.6

19.8

20

20.2

20.4

20.6

20.8

94 kb 319 kb 538 kb 963 kb 977 kb 1.1 mb

CPU Time

76.47

75.41

73.25

76.52

74.85

75.75

71

72

73

74

75

76

77

94 kb 319 kb 538 kb 963 kb 977 kb 1.1 mb

CPU Throughput

65

Figure 4.4.1.3: GPU Time for Skein for Text files

Figure 4.4.1.4: GPU Throughput for Skein for Text files

0.0337
0.0321

0.0252

0.0152

0.0198
0.0185

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

94 kb 319 kb 538 kb 963 kb 977 kb 1.1 mb

GPU Time

45182.7457

99777.445 98754.254

121245.2642 123548.594 125648.987

0

20000

40000

60000

80000

100000

120000

140000

94 kb 319 kb 538 kb 963 kb 977 kb 1.1 mb

GPU Throughput

66

4.4.3 Audio Dataset

The following table 4.4.2 shows experimental results of Skeinfor Audio Dataset. The

highest CPU Time is found for the file size of 1.1 Mb i.e., 20.05 bytes per sec, and lowest CPU

Time was observed on file of size 384 kb i.e., 19.83 bytes per sec. Whereas, highest CPU

Throughput (Bytes per Cycle) was found for the file size of 719 kb i.e., 76.56 bytes per cycle,

and lowest CPU Throughput was observed for the file size of 38.4 kb i.e., 76.42 bytes per cycle.

Similarly, highest GPU Time was found for the file size of 457 kb i.e., 0.0591 bytes per

sec and the lowest GPU Time is for the file size of 1.11 mb i.e., 0.0117 bytes per sec. Whereas,

highest GPU Throughput was found for the file size of 1.11 mb i.e., 130843.5721 bytes per cycle

and lowest GPU Throughput was observed for the file size of 384 kb i.e., 25905.7798 bytes per

cycle.

Table 4.4.2: Test results for Skein on Audio files

Audio File CPU Time CPU Throughput GPU Time GPU Throughput

384 kb 19.83 76.42 0.0585 25905.7798

457 kb 20.02 76.46 0.0591 25919.3395

719 kb 19.92 76.56 0.0588 25919.3395

1.1 mb 20.05 76.49 0.0117 130843.5721

Following are graphical representations of results of Skein on Audio dataset depicting

performance based on CPU Time (Bytes per Second), CPU Throughput (Bytes per Cycle), GPU

Time (Bytes per Second) and GPU Throughput (Bytes per Cycle). Same can be compared with

other SHA-3 candidates’ performances for Audio data set.

67

Figure 4.4.2.1: CPU Time for Skein for Audio files

Figure 4.4.2.2: CPU Throughput for Skein for Audio files

19.83

20.02

19.92

20.05

19.7

19.75

19.8

19.85

19.9

19.95

20

20.05

20.1

384 kb 457 kb 719 kb 1.1 mb

CPU Time

76.42

76.46

76.56

76.49

76.35

76.4

76.45

76.5

76.55

76.6

384 kb 457 kb 719 kb 1.1 mb

CPU Throughput

68

Figure 4.4.2.3: GPU Time for Skein for Audio files

Figure 4.4.2.4: GPU Throughput for Skein for Audio files

0.0585 0.0591 0.0588

0.0117

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

384 kb 457 kb 719 kb 1.1 mb

GPU Time

25905.7798 25919.3395 25919.3395

130843.5721

0

20000

40000

60000

80000

100000

120000

140000

384 kb 457 kb 719 kb 1.1 mb

GPU Throughput

69

4.4.3 Video Dataset

Table 4.4.3 shows results for Skeinon Video Dataset. Highest CPU time was recorded for

the file size of 960 kb i.e., 8.65 bytes per sec and lowest was recorded for file size of 99 kb i.e.,

7.02 bytes per sec. Whereas, highest CPU Throughput was recorded for the file size of 240 kb

i.e., 164.22 bytes per cycle and lowest was recorded for file size of 769 kb i.e., 163.03 bytes per

cycle.

Similarly, highest GPU Time was recorded for the file size of 141 kb i.e., 0.0127 bytes

per sec and lowest was recorded for file size 769 kb i.e., 0.0049 bytes per sec. Whereas, highest

GPU Throughput was recorded for file size of 960 kb i.e., 279347.4328 bytes per cycle and

lowest was recorded for file size of 99 kb i.e., 96404.0381 bytes per cycle.

Table 4.4.3: Test results for Skein on Video files

Video File CPU Time CPU Throughput GPU Time GPU Throughput

99 kb 7.02 163.16 0.0119 96404.0381

141 kb 7.49 163.17 0.0127 96409.9467

240 kb 8.33 164.22 0.009 152155.2843

769 kb 8.41 163.03 0.0049 278988.0665

960 kb 8.65 163.24 0.0051 279347.4328

Following are graphical representations of results of Skein on Video dataset depicting

performance based on CPU Time (Bytes per Second), CPU Throughput (Bytes per Cycle), GPU

Time (Bytes per Second) and GPU Throughput (Bytes per Cycle). Same can be compared with

other SHA-3 candidates’ performances for Video data set.

70

Figure 4.4.3.1: CPU Time for Skein for Video files

Figure 4.4.3.2: CPU Throughput for Skein for Video files

7.02
7.49

8.33 8.41
8.65

0

1

2

3

4

5

6

7

8

9

10

99 kb 141 kb 240 kb 769 kb 960 kb

CPU Time

163.16 163.17

164.22

163.03

163.24

162.4

162.6

162.8

163

163.2

163.4

163.6

163.8

164

164.2

164.4

99 kb 141 kb 240 kb 769 kb 960 kb

CPU Throughput

71

Figure 4.4.3.3: GPU Time for Skein for Video files

Figure 4.4.3.4: GPU Throughput for Skein for Video files

0.0119
0.0127

0.009

0.0049 0.0051

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

99 kb 141 kb 240 kb 769 kb 960 kb

GPU Time

96404.0381 96409.9467

152155.2843

278988.0665 279347.4328

0

50000

100000

150000

200000

250000

300000

99 kb 141 kb 240 kb 769 kb 960 kb

GPU Throughput

72

4.4.4 Image Dataset

Table 4.4.4depicts results of Skeinon Image Dataset. Highest CPU Time was observed on

file size of 960 kb i.e., 8.52 bytes per second, and lowest CPU Time was observed on file size of

145 kb i.e., 7.32 bytes per second. Highest CPU Throughput was observed on file size of 145 kb

i.e., 163.51 bytes per cycle and lowest CPU Throughput was observed on file size of 769 kb i.e.,

163.03 bytes per cycle.

Similarly, highest GPU Time was observed on file size of 80 kb i.e 0.0132 bytes per sec

and lowest was observed on file size of 769 kb i.e., 0.0049 bytes per sec. Highest GPU

Throughput was recorded on 960 kb file i.e., 278988.0665 bytes per cycle and lowest was

recorded on file size of 107 kb i.e., 96398.1295 bytes per cycle.

Table 4.4.4: Test results for Skein on Image files

Image File CPU Time CPU Throughput GPU Time GPU Throughput

80 kb 7.81 163.37 0.0132 96528.1178

107 kb 7.37 163.15 0.0125 96398.1295

145 kb 7.32 163.51 0.0079 151497.4457

769 kb 8.41 163.03 0.0049 278988.0665

960 kb 8.52 163.24 0.0055 279347.4328

Following are graphical representations of results of Skein on Image dataset depicting

performance based on CPU Time (Bytes per Second), CPU Throughput (Bytes per Cycle), GPU

Time (Bytes per Second) and GPU Throughput (Bytes per Cycle). Same can be compared with

other SHA-3 candidates’ performances for Image data set.

73

Figure 4.4.4.1: CPU Time for Skein for Image files

Figure 4.4.4.2: CPU Throughput for Skein for Image files

7.81

7.37
7.32

8.41
8.52

6.6

6.8

7

7.2

7.4

7.6

7.8

8

8.2

8.4

8.6

8.8

80 kb 107 kb 145 kb 769 kb 960 kb

CPU Time

163.37

163.15

163.51

163.03

163.24

162.7

162.8

162.9

163

163.1

163.2

163.3

163.4

163.5

163.6

80 kb 107 kb 145 kb 769 kb 960 kb

CPU Throughput

74

Figure 4.4.4.3: GPU Time for Skein for Image files

Figure 4.4.4.4: GPU Throughput for Skein for Image files

0.0132
0.0125

0.0079

0.0049
0.0055

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

80 kb 107 kb 145 kb 769 kb 960 kb

GPU Time

96528.1178 96398.1295

151497.4457

278988.0665 279347.4328

0

50000

100000

150000

200000

250000

300000

80 kb 107 kb 145 kb 769 kb 960 kb

GPU Throughput

75

4.5 Experimental Results for Blake

4.5.1 Text Dataset

Table 4.5.1 shows experimental results of Blakefor Text Dataset. The highest CPU Time

is found for the file size of 1.1 mb i.e., 20.19 bytes per sec and Lowest CPU Time (Bytes per

Second) is observed for the file size of 94 kb i.e., 19.26 bytes per sec. The highest CPU

Throughput (Bytes per Cycle) is found for file size of 94 kb i.e., 79.24 bytes per cycle and

Lowest CPU Throughput (Bytes per Cycle) is observed 72.63 bytes per cycle for file size of 963

kb.

Similarly, highest GPU Time (Bytes per Second) is found for the file size of 963 kb i.e.,

0.0411 bytes per sec and Lowest GPU Time is found for the file size of 1.1 mb i.e., 0.0215 bytes

per sec. Highest GPU Throughput (Bytes per Cycle) is 124323.64 bytes per cycle for file size of

1.1 mb and lowest GPU Throughput is observed on the file size of 94 kb i.e., 46819.4164 bytes

per cycle.Test results for BLAKE on CPU and GPU for Text File Dataset is appended below.

Table 4.5.1: Test results for Blake on Text files

Text File CPU Time CPU Throughput GPU Time GPU Throughput

94 kb 19.26 79.24 0.0326 46819.4164

319 kb 19.56 72.64 0.0345 99708.1655

538 kb 19.52 72.66 0.0347 99735.6182

963 kb 19.89 72.63 0.0411 124289.4146

977 kb 20.14 72.64 0.0314 124306.5273

1.1 mb 20.19 72.65 0.0215 124323.64

Following are graphical representations of results of Blake on Text dataset depicting

performance based on CPU Time (Bytes per Second), CPU Throughput (Bytes per Cycle), GPU

Time (Bytes per Second) and GPU Throughput (Bytes per Cycle). Same can be compared with

other SHA-3 candidates’ performances for Text data set.

76

Figure 4.5.1.1: CPU Time for Blake for Text files

Figure 4.5.1.2: CPU Throughput for Blake for Text files

19.26

19.56 19.52

19.89

20.14
20.19

18.6

18.8

19

19.2

19.4

19.6

19.8

20

20.2

20.4

94 kb 319 kb 538 kb 963 kb 977 kb 1.1 mb

CPU Time

79.24

72.64 72.66 72.63 72.64 72.65

68

70

72

74

76

78

80

94 kb 319 kb 538 kb 963 kb 977 kb 1.1 mb

CPU Throughput

77

Figure 4.5.1.3: GPU Time for Blake for Text files

Figure 4.5.1.4: GPU Throughput for Blake for Text files

0.0326
0.0345 0.0347

0.0411

0.0314

0.0215

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

94 kb 319 kb 538 kb 963 kb 977 kb 1.1 mb

GPU Time

46819.4164

99708.1655 99735.6182

124289.4146 124306.5273 124323.64

0

20000

40000

60000

80000

100000

120000

140000

94 kb 319 kb 538 kb 963 kb 977 kb 1.1 mb

GPU Throughput

78

4.5.2 Audio Dataset

The following table 4.5.2 shows experimental results of Blakefor Audio Dataset. The

highest CPU Time is found for the file size of 1.1 mb i.e., 19.6 bytes per sec, and lowest CPU

Time was observed on file of size 384 kb i.e., 18.65 bytes per sec. Whereas, highest CPU

Throughput (Bytes per Cycle) was found for the file size of 1.11 mb i.e., 80.01 bytes per cycle,

and lowest CPU Throughput was observed for the file size of 384 kb i.e., 79.28 bytes per cycle.

Similarly, highest GPU Time was found for the file size of 1.1 mb i.e., 0.0584 bytes per

sec and the lowest GPU Time is for the file size of 384 kb i.e., 0.0055 bytes per sec. Whereas,

highest GPU Throughput was found for the file size of 1.11 mb i.e., 26945.0955 bytes per cycle

and lowest GPU Throughput was observed for the file size of 384 kb i.e., 26875.2974 bytes per

cycle.

Table 4.5.2: Test results for Blake on Audio files

Audio File CPU Time CPU Throughput GPU Time GPU Throughput

384 kb 18.65 79.28 0.055 26875.2974

457 kb 19.57 79.47 0.0577 26939.7059

719 kb 19.45 79.48 0.0574 26943.0958

1.1 mb 19.6 80.01 0.0584 26945.0955

Following are graphical representations of results of Blake on Audio dataset depicting

performance based on CPU Time (Bytes per Second), CPU Throughput (Bytes per Cycle), GPU

Time (Bytes per Second) and GPU Throughput (Bytes per Cycle). Same can be compared with

other SHA-3 candidates’ performances for Audio data set.

79

Figure 4.5.2.1: CPU Time for Blake for Audio files

Figure 4.5.2.2: CPU Throughput for Blake for Audio files

18.65

19.57

19.45

19.6

18

18.2

18.4

18.6

18.8

19

19.2

19.4

19.6

19.8

384 kb 457 kb 719 kb 1.1 mb

CPU Time

79.28

79.47 79.48

80.01

78.8

79

79.2

79.4

79.6

79.8

80

80.2

384 kb 457 kb 719 kb 1.1 mb

CPU Throughput

80

Figure 4.5.2.3: GPU Time for Blake for Audio files

Figure 4.5.2.4: GPU Throughput for Blake for Audio files

0.055

0.0577
0.0574

0.0584

0.053

0.054

0.055

0.056

0.057

0.058

0.059

384 kb 457 kb 719 kb 1.1 mb

GPU Time

26875.2974

26939.7059
26943.0958 26945.0955

26840

26860

26880

26900

26920

26940

26960

384 kb 457 kb 719 kb 1.1 mb

GPU Throughput

81

4.5.3 Video Dataset

Table 4.5.3 shows results for Blakeon Video Dataset. Highest CPU time was recorded for

the file size of 960 kb i.e., 8.54 bytes per sec and lowest was recorded for file size of 99 kb i.e.,

7.37 bytes per sec. Whereas, highest CPU Throughput was recorded for the file size of 141 kb

i.e., 174.81 bytes per cycle and lowest was recorded for file size of 960 kb i.e., 169.58 bytes per

cycle.

Similarly, highest GPU Time was recorded for the file size of 141 kb i.e., 0.0131 bytes

per sec and lowest was recorded for file size 769 kb i.e., 0.0049 bytes per sec. Whereas, highest

GPU Throughput was recorded for file size of 769 kb i.e., 294149.9034 bytes per cycle and

lowest was recorded for file size of 99 kb i.e., 100427.7663 bytes per cycle.

Table 4.5.3: Test results for Blake on Video files

Video File CPU Time CPU Throughput GPU Time GPU Throughput

99 kb 7.37 169.97 0.0125 100427.7663

141 kb 7.75 174.81 0.0131 103287.5086

240 kb 7.76 169.58 0.0084 157121.5024

769 kb 8.33 171.89 0.0049 294149.9034

960 kb 8.54 169.56 0.005 290162.6483

Following are graphical representations of results of Blake on Video dataset depicting

performance based on CPU Time (Bytes per Second), CPU Throughput (Bytes per Cycle), GPU

Time (Bytes per Second) and GPU Throughput (Bytes per Cycle). Same can be compared with

other SHA-3 candidates’ performances for Video data set.

82

Figure 4.5.3.1: CPU Time for Blake for Video files

Figure 4.5.3.2: CPU Throughput for Blake for Video files

7.37

7.75 7.76

8.33

8.54

6.6

6.8

7

7.2

7.4

7.6

7.8

8

8.2

8.4

8.6

8.8

99 kb 141 kb 240 kb 769 kb 960 kb

CPU Time

169.97

174.81

169.58

171.89

169.56

166

167

168

169

170

171

172

173

174

175

176

99 kb 141 kb 240 kb 769 kb 960 kb

CPU Throughput

83

Figure 4.5.3.3: GPU Time for Blake for Video files

Figure 4.5.3.4: GPU Throughput for Blake for Video files

0.0125
0.0131

0.0084

0.0049 0.005

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

99 kb 141 kb 240 kb 769 kb 960 kb

GPU Time

100427.7663 103287.5086

157121.5024

294149.9034 290162.6483

0

50000

100000

150000

200000

250000

300000

350000

99 kb 141 kb 240 kb 769 kb 960 kb

GPU Throughput

84

4.5.4 Image Dataset

Table 4.5.4depicts results of Blakeon Image Dataset. Highest CPU Time was observed on

file size of 960 kb bytes i.e., 8.67 bytes per sec, and lowest CPU Time was observed on file size

of 145 kb i.e., 8.41 bytes per sec. Highest CPU Throughput was observed on file size of 80 kb

i.e., 204.42 bytes per cycle and lowest CPU Throughput was observed on file size of 145 kb

bytes i.e., 168.95 bytes per cycle.

Similarly, highest GPU Time was observed on file size of 80 kb i.e 0.0144 bytes per sec

and lowest was observed on file size of 769 kb i.e., 0.0051 bytes per sec. Highest GPU

Throughput was recorded on 769 kb file i.e., 295874.6555 bytes per cycle and lowest was

recorded on file size of 107 kb i.e., 101195.8789 bytes per cycle.

Table 4.5.4: Test results for Blake on Image files

Image File CPU Time CPU Throughput GPU Time GPU Throughput

80 kb 8.52 204.42 0.0144 120782.7499

107 kb 8.45 171.27 0.0143 101195.8789

145 kb 8.41 168.95 0.0091 156537.7864

769 kb 8.43 172.15 0.0051 295874.6555

960 kb 8.67 171.55 0.0053 294658.7411

Following are graphical representations of results of Blake on Image dataset depicting

performance based on CPU Time (Bytes per Second), CPU Throughput (Bytes per Cycle), GPU

Time (Bytes per Second) and GPU Throughput (Bytes per Cycle). Same can be compared with

other SHA-3 candidates’ performances for Image data set.

85

Figure 4.5.4.1: CPU Time for Blake for Image files

Figure 4.5.4.2: CPU Throughput for Blake for Image files

8.52

8.45

8.41
8.43

8.67

8.25

8.3

8.35

8.4

8.45

8.5

8.55

8.6

8.65

8.7

80 kb 107 kb 145 kb 769 kb 960 kb

CPU Time

204.42

171.27 168.95 172.15 171.55

0

50

100

150

200

250

80 kb 107 kb 145 kb 769 kb 960 kb

CPU Throughput

86

Figure 4.5.4.3: GPU Time for Blake for Image files

Figure 4.5.4.4: GPU Throughput for Blake for Image files

0.0144 0.0143

0.0091

0.0051 0.0053

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

80 kb 107 kb 145 kb 769 kb 960 kb

GPU Time

120782.7499
101195.8789

156537.7864

295874.6555 294658.7411

0

50000

100000

150000

200000

250000

300000

350000

80 kb 107 kb 145 kb 769 kb 960 kb

GPU Throughput

87

4.6 Comparison for Text Dataset

4.6.1 CPU Time (Bytes per Second)

In terms of CPU Time, Keccak was faster than all other contenders. Second comes Skein,

Blake stood third.

Table 4.6.1: Comparison of CPU Time on Text dataset

Text File Groestl Keccak JH Skein Blake

94 kb 14.6 20.47 9.9 19.92 19.26

319 kb 14.45 19.63 9.57 19.45 19.56

538 kb 13.06 19.66 9.53 19.56 19.52

963 kb 14.59 20.26 9.49 20.35 19.89

977 kb 14.3 20.45 9.73 20.54 20.14

1.1 mb 14.57 20.32 9.8 20.5 20.19

Below graph depicts the performance of all five SHA-3 finalist candidates based on CPU

Time on text dataset. It can be seen that Keccak outperformed all other contenders w.r.t CPU

Time.

88

Figure 4.6.1: Comparison of CPU Time for Text files

4.6.2 CPU Throughput (Bytes per Cycle)

In terms of CPU Throughput, Keccak performed the best, Groestl stood second, Skein

stood third.

Table 4.6.2: Comparison of CPU Throughput on Text dataset

Text File Groestl Keccak JH Skein Blake

94 kb 101.12 152.96 72.87 76.47 79.24

319 kb 100.63 152.81 72.64 75.41 72.64

538 kb 100.52 152.77 72.66 73.25 72.66

963 kb 100.58 153.21 72.63 76.52 72.63

977 kb 100.5 152.98 72.64 74.85 72.64

1.1 mb 100.62 153.65 72.65 75.75 72.65

Following graph depicts the performance comparison of all SHA-3 finalists based on CPU

Throughput on text dataset.

G
ro

es
tl

G
ro

es
tl

G
ro

es
tl

G
ro

es
tl

G
ro

es
tl

G
ro

es
tl

K
ec

ca
k

K
ec

ca
k

K
ec

ca
k

K
ec

ca
k

K
ec

ca
k

K
ec

ca
k

JH JH JH JH JH JH

Sk
ei

n

Sk
ei

n

Sk
ei

n

Sk
ei

n

Sk
ei

n

Sk
ei

n

B
la

ke

B
la

ke

B
la

ke

B
la

ke

B
la

ke

B
la

ke

0

5

10

15

20

25

94 kb 319 kb 538 kb 963 kb 977 kb 1.1 mb

Groestl

Keccak

JH

Skein

Blake

89

Figure 4.6.2: Comparison of CPU Throughput on Text files

4.6.3 GPU Time

In terms of GPU Time, Blake turned out to be fastest, Skein stood second, and Keccak

stood at third. Next table shows the results for GPU Time on Text dataset.

Table 4.6.3: Comparison of GPU Time on Text dataset

Text File Groestl Keccak JH Skein Blake

94 kb 0.0247 0.0346 0.0168 0.0337 0.0326

319 kb 0.0105 0.0143 0.007 0.0321 0.0345

538 kb 0.0095 0.0143 0.0069 0.0252 0.0347

963 kb 0.0085 0.0118 0.0055 0.0152 0.0411

977 kb 0.0084 0.012 0.0059 0.0198 0.0314

1.1 mb 0.0085 0.0119 0.0061 0.0185 0.0215

Graph below depicts the results of all finalist candidates on GPU Time for text dataset.

G
ro

es
tl

G
ro

es
tl

G
ro

es
tl

G
ro

es
tl

G
ro

es
tl

G
ro

es
tl

K
ec

ca
k

K
ec

ca
k

K
ec

ca
k

K
ec

ca
k

K
ec

ca
k

K
ec

ca
k

JH JH JH JH JH JH

Sk
ie

n

Sk
ie

n

Sk
ie

n

Sk
ie

n

Sk
ie

n

Sk
ie

n

B
la

ke

B
la

ke

B
la

ke

B
la

ke

B
la

ke

B
la

ke

0

20

40

60

80

100

120

140

160

180

94 kb 319 kb 538 kb 963 kb 977 kb 1.1 mb

Groestl

Keccak

JH

Skien

Blake

90

Figure 4.6.3: Comparison of GPU Time for Text files

4.6.4 GPU Throughput

Keccak stood first in terms of GPU throughput whereas Groestl scored second and Skein

scored third position.

Table 4.6.4: Comparison of GPU Throughput for Text dataset

Text File Groestl Keccak JH Skein Blake

94 kb 59747.3421 90377.3086 43055.6647 45182.7457 46819.4164

319 kb 138128.2034 209752.2683 99708.1655 99777.445 48987.4654

538 kb 137977.2136 209697.363 99735.6182 98754.254 88654.6548

963 kb 172119.3628 261430.454 124289.4146 121245.2642 110324.213

977 kb 171982.4614 261289.7 124306.5273 123548.594 123446.546

1.1 mb 172187.8136 262328.63 124323.64 125648.987 124878.963

Following graph depicts the results of all finalists on GPU Throughput for text files.

G
ro

es
tl

G
ro

es
tl

G
ro

es
tl

G
ro

es
tl

G
ro

es
tl

G
ro

es
tl

K
ec

ca
k

K
ec

ca
k

K
ec

ca
k

K
ec

ca
k

K
ec

ca
k

K
ec

ca
k

JH

JH JH

JH JH JH

Sk
ie

n

Sk
ie

n

Sk
ie

n

Sk
ie

n

Sk
ie

n

Sk
ie

n

B
la

ke B
la

ke

B
la

ke

B
la

ke

B
la

ke

B
la

ke

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

94 kb 319 kb 538 kb 963 kb 977 kb 1.1 mb

Groestl

Keccak

JH

Skien

Blake

91

Figure 4.6.4: Comparison of GPU Throughput for Text files

4.7 Comparison of Audio Dataset

4.7.1 CPU Time

In terms of CPU Time, Keccak was faster than all other contenders. Second comes Skein, Blake

stood third.

Table 4.7.1: Comparison of CPU Time for Audio dataset

Audio File Groestl Keccak JH Skein Blake

384 kb 14.25 19.1 9.81 19.83 18.65

457 kb 14.46 20.97 9.74 20.02 19.57

719 kb 14.23 18.89 9.82 19.92 19.45

1.1 mb 14.59 20.91 9.8 20.05 19.6

Following graph depicts the performance of all five SHA-3 finalist candidates based on

CPU Time on Audio dataset.

G
ro

es
tl

G
ro

es
tl

G
ro

es
tl G

ro
es

tl

G
ro

es
tl

G
ro

es
tl

K
ec

ca
k

K
ec

ca
k

K
ec

ca
k

K
ec

ca
k

K
ec

ca
k

K
ec

ca
k

JH

JH JH

JH JH JH

Sk
ie

n

Sk
ie

n

Sk
ie

n Sk
ie

n

Sk
ie

n

Sk
ie

n

B
la

ke

B
la

ke

B
la

ke B
la

ke B
la

ke

B
la

ke

0

50000

100000

150000

200000

250000

300000

94 kb 319 kb 538 kb 963 kb 977 kb 1.1 mb

Groestl

Keccak

JH

Skien

Blake

92

Figure 4.7.1: Comparison of CPU Time for Audio dataset

4.7.2 GPU Time

In terms of GPU Time, Blake was faster than all other contenders. Second comes Keccak,

and Skein stood third.

Table 4.7.2: Comparison of GPU Time for Audio dataset

Audio File Groestl Keccak JH Skein Blake

384 kb 0.042 0.0563 0.0289 0.0585 0.055

457 kb 0.0427 0.0619 0.0287 0.0591 0.0577

719 kb 0.042 0.0557 0.029 0.0588 0.0574

1.1 mb 0.0085 0.0122 0.0057 0.0117 0.0584

Following graph depicts the performance of all five SHA-3 finalist candidates based on

GPU Time on Audio dataset.

G
ro

es
tl

G
ro

es
tl

G
ro

es
tl

G
ro

es
tl

K
ec

ca
k

K
ec

ca
k

K
ec

ca
k

K
ec

ca
k

JH JH JH JH

Sk
ie

n

Sk
ie

n

Sk
ie

n

Sk
ie

n

B
la

ke B
la

ke

B
la

ke

B
la

ke

0

5

10

15

20

25

384 kb 457 kb 719 kb 1.1 mb

Groestl

Keccak

JH

Skien

Blake

93

Figure 4.7.2: Comparison of GPU Time for Audio dataset

4.7.3 CPU Throughput

In terms of CPU Throughput, Keccak stood first and Groestl stood second. Blake stood

third.

Table 4.7.3: Comparison of CPU Throughput for Audio dataset

Audio File Groestl Keccak JH Skein Blake

384 kb 101.13 152.85 72.83 76.42 79.28

457 kb 101.18 152.95 72.89 76.46 79.47

719 kb 101.19 152.95 72.87 76.56 79.48

1.1 mb 101.2 152.96 72.87 76.49 80.01

Following graph depicts the performance of all five SHA-3 finalist candidates based on

CPU Throughput on Audio dataset.

G
ro

es
tl

G
ro

es
tl

G
ro

es
tl

G
ro

es
tl

K
ec

ca
k

K
ec

ca
k

K
ec

ca
k

K
ec

ca
k

JH JH JH

JH

Sk
ie

n

Sk
ie

n

Sk
ie

n

Sk
ie

n

B
la

ke B
la

ke

B
la

ke

B
la

ke

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

384 kb 457 kb 719 kb 1.1 mb

Groestl

Keccak

JH

Skien

Blake

94

Figure 4.7.3: Comparison of CPU Throughput for Audio dataset

4.7.4 GPU Throughput

In terms of GPU Throughput, Keccak stood first, Groestl stood second, and Blake stood

third.

Table 4.7.4: Comparison of GPU Throughput for Audio dataset

Audio File Groestl Keccak JH Skein Blake

384 kb 34282.2758 51814.9496 24688.78 25905.7798 26875.2974

457 kb 34299.2254 51848.8488 24709.1376 25919.3395 26939.7059

719 kb 34302.6153 51848.8488 24702.3577 25919.3395 26943.0958

1.1 mb 173180.3492 261755.595 124700.119 130843.5721 26945.0955

Graph below depicts the performance of all five SHA-3 finalist candidates based on GPU

Throughput on Audio dataset.

G
ro

es
tl

G
ro

es
tl

G
ro

es
tl

G
ro

es
tl

K
ec

ca
k

K
ec

ca
k

K
ec

ca
k

K
ec

ca
k

JH JH JH JH

Sk
ie

n

Sk
ie

n

Sk
ie

n

Sk
ie

n

B
la

ke

B
la

ke

B
la

ke

B
la

ke

0

20

40

60

80

100

120

140

160

180

384 kb 457 kb 719 kb 1.1 mb

Groestl

Keccak

JH

Skien

Blake

95

Figure 4.7.4: Comparison of GPU Throughput for Audio dataset

4.8 Comparison of Video Dataset

4.8.1 CPU Time

In terms of CPU Time, Keccak was faster than all other contenders. Second comes Skein,

Blake stood third.

Table 4.8. 1: Comparison of CPU Time for Video dataset

Video File Groestl Keccak JH Skein Blake

99 kb 4.96 7.57 3.47 7.02 7.37

141 kb 5.39 7.79 3.7 7.49 7.75

240 kb 5.33 8.61 3.88 8.33 7.76

769 kb 5.96 8.72 4.17 8.41 8.33

960 kb 6.11 8.88 4.24 8.65 8.54

Following graph depicts the performance of all five SHA-3 finalist candidates based on

CPU Time on Video dataset.

G
ro

es
tl

G
ro

es
tl

G
ro

es
tl

G
ro

es
tl

K
ec

ca
k

K
ec

ca
k

K
ec

ca
k

K
ec

ca
k

JH JH JH

JH

Sk
ie

n

Sk
ie

n

Sk
ie

n

Sk
ie

n

B
la

ke

B
la

ke

B
la

ke

B
la

ke

0

50000

100000

150000

200000

250000

300000

384 kb 457 kb 719 kb 1.1 mb

Groestl

Keccak

JH

Skien

Blake

96

Figure 4.8.1: Comparison of CPU Time for Video dataset

4.8.2 GPU Time

In terms of GPU Time, Keccak was faster than all other contenders. Blake and Skein

performed almost the same.

Table 4.8.2: Comparison of GPU Time for Video dataset

Video File Groestl Keccak JH Skein Blake

99 kb 0.0084 0.0128 0.0059 0.0119 0.0125

141 kb 0.0091 0.0132 0.0063 0.0127 0.0131

240 kb 0.0058 0.0093 0.0042 0.009 0.0084

769 kb 0.0035 0.0051 0.0024 0.0049 0.0049

960 kb 0.0036 0.0052 0.0025 0.0051 0.005

Following graph depicts the performance of all five SHA-3 finalist candidates based on

GPU Time on Video dataset.

G
ro

es
tl

G
ro

es
tl

G
ro

es
tl

G
ro

es
tl

G
ro

es
tl

K
ec

ca
k

K
ec

ca
k

K
ec

ca
k

K
ec

ca
k

K
ec

ca
k

JH JH JH

JH JH

Sk
ie

n

Sk
ie

n Sk
ie

n

Sk
ie

n

Sk
ie

n

B
la

ke B
la

ke

B
la

ke B
la

ke

B
la

ke

0

1

2

3

4

5

6

7

8

9

10

99 kb 141 kb 240 kb 769 kb 960 kb

Groestl

Keccak

JH

Skien

Blake

97

Figure 4.8.2: Comparison of GPU Time for Video dataset

4.8.3 CPU Throughput

In terms of CPU Throughput, Keccak was faster than all other contenders. Second comes

Groestl, Blake stood third.

Table 4.8.3: Comparison of CPU Throughput for Video dataset

Video File Groestl JH Keccak Skein Blake

99 kb 218.75 155.92 330.74 163.16 169.97

141 kb 217.93 154.99 330.67 163.17 174.81

240 kb 218.39 155.9 329.5 164.22 169.58

769 kb 218.3 155.15 330.39 163.03 171.89

960 kb 218.32 155.14 327.34 163.24 169.56

Following graph depicts the performance of all five SHA-3 finalist candidates based on

CPU Throughput on Video dataset.

G
ro

es
tl

G
ro

es
tl

G
ro

es
tl

G
ro

es
tl

G
ro

es
tl

K
ec

ca
k

K
ec

ca
k

K
ec

ca
k

K
ec

ca
k

K
ec

ca
k

JH

JH

JH

JH JH

Sk
ie

n Sk
ie

n

Sk
ie

n

Sk
ie

n

Sk
ie

n

B
la

ke B
la

ke

B
la

ke

B
la

ke

B
la

ke

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

99 kb 141 kb 240 kb 769 kb 960 kb

Groestl

Keccak

JH

Skien

Blake

98

Figure 4.8.3: Comparison of CPU Throughput for Video dataset

4.8.4 GPU Throughput

In terms of GPU Throughput, Keccak was faster than all other contenders. Second comes

Groestl, Blake stood third.

Table 4.84: Comparison of GPU Throughput for Video dataset

Video File Groestl JH Keccak Skein Blake

99 kb 129249.714 92126.2418 195419.659 96404.0381 100427.7663

141 kb 128765.2122 91576.7459 195378.2991 96409.9467 103287.5086

240 kb 202345.5885 144446.528 305292.6939 152155.2843 157121.5024

769 kb 373569.8639 265503.2725 565385.9245 278988.0665 294149.9034

960 kb 373604.0893 265486.1598 560166.5563 279347.4328 290162.6483

Following graph depicts the performance of all five SHA-3 finalist candidates based on

GPU Throughput on Video dataset.

G
ro

es
tl

G
ro

es
tl

G
ro

es
tl

G
ro

es
tl

G
ro

es
tl

JH JH JH JH JH

K
ec

ca
k

K
ec

ca
k

K
ec

ca
k

K
ec

ca
k

K
ec

ca
k

Sk
ie

n

Sk
ie

n

Sk
ie

n

Sk
ie

n

Sk
ie

n

B
la

ke

B
la

ke

B
la

ke

B
la

ke

B
la

ke

0

50

100

150

200

250

300

350

99 kb 141 kb 240 kb 769 kb 960 kb

Groestl

JH

Keccak

Skien

Blake

99

Figure 4.8.4: Comparison of GPU Throughput for Video dataset

4.9 Comparison for Image Dataset

4.9.1 CPU Time

In terms of CPU Time, Keccak was faster than all other contenders. Second comes Blake

while Skein stood third.

Table 4.9.1: Comparison of CPU Time for Image dataset

Image File Groestl Keccak JH Skein Blake

80 kb 6.09 8.76 4.15 7.81 8.52

107 kb 5.92 8.7 4.17 7.37 8.45

145 kb 6.01 8.67 4.17 7.32 8.41

769 kb 6.22 8.75 4.16 8.41 8.43

960 kb 6.35 8.94 4.3 8.52 8.67

Following graph depicts the performance of all five SHA-3 finalist candidates based on

CPU Time on Image dataset.

G
ro

es
tl

G
ro

es
tl G

ro
es

tl

G
ro

es
tl

G
ro

es
tl

JH JH

JH

JH JH

K
ec

ca
k

K
ec

ca
k

K
ec

ca
k

K
ec

ca
k

K
ec

ca
k

Sk
ie

n

Sk
ie

n Sk
ie

n

Sk
ie

n

Sk
ie

n

B
la

ke

B
la

ke

B
la

ke

B
la

ke

B
la

ke

0

100000

200000

300000

400000

500000

600000

99 kb 141 kb 240 kb 769 kb 960 kb

Groestl

JH

Keccak

Skien

Blake

100

Figure 4.9.1: Comparison of CPU Time for Image dataset

4.9.2 GPU Time

In terms of GPU Time, Keccak was faster than all other contenders. Second comes

Groestl, Blake stood third.

Table 4.9.2: Comparison of GPU Time for Image dataset

Image File Groestl Keccak JH Skein Blake

80 kb 0.0103 0.0148 0.007 0.0132 0.0144

107 kb 0.01 0.0147 0.0071 0.0125 0.0143

145 kb 0.0065 0.0094 0.0045 0.0079 0.0091

769 kb 0.0069 0.0074 0.0024 0.0049 0.0051

960 kb 0.0074 0.0064 0.0027 0.0055 0.0053

Following graph depicts the performance of all five SHA-3 finalist candidates based on

GPU Time on Image dataset.

G
ro

es
tl

G
ro

es
tl

G
ro

es
tl

G
ro

es
tl

G
ro

es
tl

K
ec

ca
k

K
ec

ca
k

K
ec

ca
k

K
ec

ca
k

K
ec

ca
k

JH JH JH JH JH

Sk
ie

n

Sk
ie

n

Sk
ie

n

Sk
ie

n

Sk
ie

n

B
la

ke

B
la

ke

B
la

ke

B
la

ke

B
la

ke

0

1

2

3

4

5

6

7

8

9

10

80 kb 107 kb 145 kb 769 kb 960 kb

Groestl

Keccak

JH

Skien

Blake

101

Figure 4.9.2: Comparison of GPU Time for Image dataset

4.9.3 CPU Throughput

In terms of CPU Throughput, Keccak was faster than all other contenders. Second comes

Groestl, Blake stood third.

Table 4.9.3: Comparison of CPU Throughput for Image dataset

Image File Groestl JH Keccak Skein Blake

80 kb 217.82 155.09 330.71 163.37 204.42

107 kb 221.55 155.13 331.4 163.15 171.27

145 kb 222.41 155.12 326.9 163.51 168.95

769 kb 223.3 155.74 331.82 163.03 172.15

960 kb 231.32 155.8 324.74 163.24 171.55

Following graph depicts the performance of all five SHA-3 finalist candidates based on

CPU Throughput on Image dataset.

G
ro

es
tl

G
ro

es
tl

G
ro

es
tl

G
ro

es
tl

G
ro

es
tl

K
ec

ca
k

K
ec

ca
k

K
ec

ca
k

K
ec

ca
k

K
ec

ca
kJH JH

JH

JH

JH

Sk
ie

n

Sk
ie

n

Sk
ie

n

Sk
ie

n

Sk
ie

n

B
la

ke

B
la

ke

B
la

ke

B
la

ke

B
la

ke

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

80 kb 107 kb 145 kb 769 kb 960 kb

Groestl

Keccak

JH

Skien

Blake

102

Figure 4.9.3: Comparison of CPU Throughput for Image dataset

4.9.4 GPU Throughput

In terms of GPU Throughput, Keccak was faster than all other contenders. Second comes

Groestl, Blake stood third while.

Table 4.9.4: Comparison of GPU Throughput for Image dataset

Image File Groestl JH Keccak Skein Blake

80 kb 128700.2181 91635.8315 195401.9333 96528.1178 120782.7499

107 kb 130904.1103 91659.4657 195809.6238 96398.1295 101195.8789

145 kb 202364.1192 143723.8321 302883.7075 151497.4457 156537.7864

769 kb 374545.5231 266412.2125 553546.985 278988.0665 295874.6555

960 kb 375745.6589 267545.6963 525398.6324 279347.4328 294658.7411

Following graph depicts the performance of all five SHA-3 finalist candidates based on

GPU Throughput on Image dataset.

G
ro

es
tl

G
ro

es
tl

G
ro

es
tl

G
ro

es
tl

G
ro

es
tl

JH JH JH JH JH

K
ec

ca
k

K
ec

ca
k

K
ec

ca
k

K
ec

ca
k

K
ec

ca
k

Sk
ie

n

Sk
ie

n

Sk
ie

n

Sk
ie

n

Sk
ie

n

B
la

ke

B
la

ke

B
la

ke

B
la

ke

B
la

ke

0

50

100

150

200

250

300

350

80 kb 107 kb 145 kb 769 kb 960 kb

Groestl

JH

Keccak

Skien

Blake

103

Figure 4.9.4: Comparison of GPU Throughput for Image dataset

G
ro

es
tl

G
ro

es
tl G

ro
es

tl

G
ro

es
tl

G
ro

es
tl

JH JH

JH

JH JH

K
ec

ca
k

K
ec

ca
k

K
ec

ca
k

K
ec

ca
k

K
ec

ca
k

Sk
ie

n

Sk
ie

n Sk
ie

n

Sk
ie

n

Sk
ie

n

B
la

ke

B
la

ke

B
la

ke

B
la

ke

B
la

ke

0

100000

200000

300000

400000

500000

600000

80 kb 107 kb 145 kb 769 kb 960 kb

Groestl

JH

Keccak

Skien

Blake

104

CHAPTER 5: CONCLUSION

The objective of this study was to implement Batch mode-based JH,

GROESTL,KECCAK, BLAKE, and SKEIN algorithms on both Intel Core i3-4005U 1.70GHz

CPU and Nvidia 940 M GPU platforms. Its purpose was to conduct a performance evaluation of

various SHA-3 candidates on different data formats i.e., Text, Audio, Video and Image.

The findings of this study suggests that KECCAK performed the best in most data

formats across CPU and GPU. However, Blake performed better than Skein, JH, and Groestl on

Text and Video datasets. Performance of JH was the lowest among all candidates.

This study yielded that Keccak’s algorithm showed 95% to 99% reduction in time on

GPU as compared to CPU with speedups ranging from 420x to 1200x for different datasets.

Similarly, in terms of Throughput, Keccak showed a gain of upto 1250x on GPU.

Moreover, this study also validates results of Kuznetsov et al. [4] showing that Keccak is

the best performing algorithm for smaller file sizes seconded by Blake, where Blake has

performed almost the same as Keccak on file sizes reaching or exceeding 1 MB. Therefore, these

two algorithms are most suitable for use in blockchain technology.

The results of this research will provide a valuable insight in understanding how these

algorithms perform on different architectures, this knowledge will aid in optimizing the

algorithms for specific hardware, enhancing its efficiency and speeding up the hashing process.

In real-world application, outcomes of this research will guide organizations for better selection

of hardware, by choosing the most suitable hardware and algorithm for optimal performance.

Furthermore, this research will aid researchers in further evaluating the performance of SHA-3

algorithms on more specialized hardware and software environments and improving the

efficiency of these algorithms where applicable.

105

REFERENCES

[1] Hassan, M., Hassan, S., & Hussain, R. (2017). Optimization of Keccak Algorithms on

NVIDIA GPU Platform for High-Performance Computing. International Journal of Scientific

Engineering and Applied Science, 3(12), 1-6

[2] Wang, C., & Chu, X. (2019). GPU Accelerated Keccak (SHA3) Algorithm. arXiv preprint

arXiv:1902.05320. Retrieved from https://arxiv.org/abs/1902.05320

[3] Sideris A, Sanida T, Dasygenis M. High Throughput Implementation of the Keccak Hash

Function Using the Nios-II Processor. Technologies. 2020; 8(1):15.

https://doi.org/10.3390/technologies8010015

[4] Kuznetsov, Alexandr & Oleshko, Inna & Tymchenko, Vladyslav & Lisitsky, Konstantin &

Rodinko, Mariia & Kolhatin, Andrii. (2021). Performance Analysis of Cryptographic Hash

Functions Suitable for Use in Blockchain. International Journal of Computer Network and

Information Security. 13. 1-15. 10.5815/ijcnis.2021.02.01.

[5] Y. Jararweh, L. Tawalbeh, H. Tawalbeh and A. Moh’d, "Hardware Performance Evaluation

of SHA-3 Candidate Algorithms," Journal of Information Security, Vol. 3 No. 2, 2012, pp. 69-

76. doi: 10.4236/jis.2012.32008.

[6] Hanser, Christian H.. “Performance of the SHA-3 Candidates in Java.” (2012).

[7] Sobti, Rajeev & Ganesan, Geetha & Anand, Sami. (2012). Performance comparison of

Grøestl, JH and BLAKE - SHA-3 final round candidate algorithms on ARM cortex M3

processor. 220-224. 10.1109/ICCS.2012.57.

https://arxiv.org/abs/1902.05320
https://doi.org/10.3390/technologies8010015
http://dx.doi.org/10.4236/jis.2012.32008

106

[8] C. Schmidt and A. Izraelevitz, "A Fast Parameterized SHA3 Accelerator", vol. 1, 2015.

[9] Singh, Gurpreet & Sobti, Rajeev. (2015). SHA-3 Blake Finalist on Hardware Architecture of

ARM Cortex A8 Processor. International Journal of Computer Applications. 123. 975-8887.

10.5120/ijca2015905583.

[10] Lowden, Jason. “Analysis of KECCAK Tree Hashing on GPU Architectures.” (2014).

[11] Cayrel, Pierre-Louis & Hoffmann, Gerhard & Schneider, Michael. (2011). GPU

Implementation of the Keccak Hash Function Family. 200. 33-42. 10.1007/978-3-642-23141-

4_4.

[12] Rao, Muzaffar & Newe, Thomas & Grout, I.A. & Mathur, Avijit. (2016). High Speed

Implementation of a SHA-3 Core on Virtex-5 and Virtex-6 FPGAs. Journal of Circuits, Systems

and Computers. 25. 1650069. 10.1142/S0218126616500699.

[13] T. N. Dat, K. Iwai and T. Kurokawa, "Implementation of High-Speed Hash Function

Keccak Using CUDA on GTX 1080," 2017 Fifth International Symposium on Computing and

Networking (CANDAR), Aomori, Japan, 2017, pp. 475-481, doi: 10.1109/CANDAR.2017.47.

[14] https://www.github.com/K2/HashLib

https://www.github.com/K2/HashLib

