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Abstract

Numerical methods applied to the solution of differential equations on manifolds

based on projection methods are considered to be very effective in many practical

problems. It is however observed that geometric properties (such as symplectic-

ity or reversibility) are usually destroyed by numerical discretization, even when

the underlying method is symplectic or symmetric. Therefore symmetric projection

methods are introduced, which allows the preservation of symplectic invariants for

Hamiltonian systems over long time interval. In this thesis we are using multi-value

multi-derivative methods. Since these methods can introduce the parasitic compo-

nents in the numerical solution, symmetric projection methods illustrates excellent

results in eliminating the effect of parasitism and in projecting the numerical so-

lution on the invariant manifold. Numerical results using MATLAB verify these

claims.
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Chapter 1

Introduction

Numerical methods like the Euler’s method, the most extensively used Runge-Kutta

methods (RK), the multi-step methods (Adam’s and predictor-corrector methods)

and the wider class of methods termed as ’General linear methods’ are used for

numerical integration of ordinary differential equations. However, when solving dy-

namical systems it is desirable to use such numerical methods which are suitable for

the long time integration. Structure preserving algorithms are methods of choice for

integrating Hamiltonian systems.

Hamiltonian systems, in addition to being energy preserving (i.e. remains constant

along solutions of the system) accompanies another remarkable property which is

known to be as the symplectic property. Symplecticity means that the variational

equation conserves quadratic invariants [2]. More specifically symplectic map is

area and volume preserving. It is well understood that symplectic one-step meth-

ods, which when applied to Hamiltonian systems, preserves energy over long time

interval and exactly preserves the quadratic first integrals. Symplectic one-step

methods including Runge-Kutta methods provides a good example in this regard.

Traditional one-step numerical methods for Hamiltonian problems are symplectic

RK methods [2, 11, 13]. Symplectic RK methods allows exact conservation of such

quadratic invariants. Recently, G-symplectic general linear methods (GLMs) have

been considered for approximately preserving underlying invariants [12, 15].

Certain classes of multi-value methods also preserves the energy of Hamiltonian sys-
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tems over long times. Much effort is put on the construction of multi-step methods

by Feng Kang [8] with the aim of achieving long time integration. Conservative

properties of these linear multi-step methods were studied by Eirola and Sanz-Serna

[3], who proved that all time-symmetric methods posses the G-symplectic property.

Now here the question arises whether G-symplecticity also plays an effective role in

long time integration of numerical results? The answer to this question is focused

in [19] by Butcher. However, one should be careful because the long-time behavior

of multi-step methods is determined by their underlying one-step methods.

Inspired by the work done on multi-step methods (see [3]), the term symplecticity

for general linear methods has been broaden to as G-symplecticity, which was pro-

posed by Hairer in [14]. G-symplectic general linear methods, a class of multi-stage

and multi-value methods, are constructed to solve Hamiltonian differential equations

numerically and considered to be an efficient technique in integrating the solutions

of general separable and non-separable Hamiltonian problems. Such methods are

regarded to be an effective approach in approximately preserving energy and sym-

plectic invariants over long time intervals. If a general linear method is to solve a

conservative problem like Hamiltonian system having the property,

⟨y, f(y)⟩ = 0. (1.0.1)

then we would require

⟨y[n], y[n]⟩G = ⟨y[n−1], y[n−1]⟩G. (1.0.2)

Then G-norm defined by such an inner product is,

⟨y, y⟩G = ∥y∥2G.

The condition (1.0.2) is similar to the symplectic condition for one-step method but

accounts for r input and output vectors and G is a symmetric r × r matrix.

Besides long-time integration of multi-value methods, an additional complication

related to these methods is that they also suffer from parasitism which inevitably

corrupts the numerical solutions. For this purpose parasitism control strategies

have been suggested in [16, 20]. We present another strategy to control parasitism

in general linear methods by using projection methods [8].
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Standard projection methods can achieve excellent results in conserving invariants

but can also destroy long time behaviour of the numerical solution. The basic idea

of standard projection method is that we first apply the numerical method Φ taking

the initial value yn to ỹn+1 and then project it back onto the invariant manifold

I(yn) = 0 to get yn+1. The algorithm then reads as,

• Numerical integration step: ỹn+1=Φ(yn).

• Projection: yn+1=ỹn+1+I′(yn+1)
Tλ.

Where λ = I(y0)−I(ỹn)
I′(ỹn)·I′(ỹn) . In order to evaluate λ, one may need to have a numerical

method other than the base method Φ. It is known that even in the case where

the underlying method is symplectic or symmetric, numerical discretization with

the above projection algorithm destroys the geometric properties and makes it in-

appropriate for long-time integrations therefore symmetric projection methods are

introduced.

Symmetric projection methods are considered to be an efficient approach in conserv-

ing invariants and ensuring symmetry of the algorithm by applying perturbation step

at the start of each integration step. It also bounds the parasitic effects of the nu-

merical solutions. The idea of one step of symmetric projection algorithm from yn

to yn+1 is to perturb yn to get ỹn, followed by one step of numerical method Φ tak-

ing ỹn to ỹn+1 and finally projecting the numerical solution ỹn+1 onto the invariant

manifold I(yn) = 0 to get yn+1. Under certain conditions this procedure ensures

that overall algorithm is symmetric. Thus for preserving the invariant I(yn) = 0,

the algorithm reads,

• Perturbation: ỹn=yn+I′(yn)
Tλ.

• Numerical integration step: ỹn+1=Φ(ỹn).

• Projection: yn+1=ỹn+1+I′(yn+1)
Tλ.

To ensure symmetry, the method Φ should be symmetric together with same λ in the

perturbation and projection steps. We have used Newton method to evaluate the

impicit equation in the projection step. General linear methods being multi-value
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in nature have several input and output values. To apply the symmetric projection

algorithm, we perturb the first component of input vector as this component rep-

resents the actual solution and rest as parasitic solutions. This is then followed by

one step of the general linear method and finally the first component of the output

vector is projected onto the invariant manifold.

In this thesis we have considered two different general linear methods from [12] hav-

ing parasitic growth factors with opposite signs. We have used one general linear

method to calculate λ in the perturbation step. We call it the perturbation method.

We have used other general linear method as the base method and result is then

projected onto the manifold. This procedure provides good invariant preservation.

Furthermore, we have also used same general linear method as perturbation method

and as base method and this leads to better results for preserving underlying invari-

ants.

1.1 Numerical methods

There are number of ordinary differential equations (ODEs) that are difficult to

solve analytically, therefore solving these ordinary differential equations numerically

is effective. Classical numerical methods which are commonly used are one-step

methods. The most simple one-step method is Euler’s method which is formulated

as:

yn = yn−1 + hf(yn−1) (1.1.1)

where h is step-size and f represents the slope. The idea of Euler’s method is that

it approximates the solution yi at time ti dividing the interval [tn−1, tn] (which is

to be integrated over) into subintervals of size hi, where i denotes the number of

steps. This method uses linear approximation along with tangent line to move from

one point on the solution curve to the next. Since Euler’s method is only accurate

upto first order, therefore, to achieve higher order accuracy, Runge-Kutta method

are used. The general form of an s-stage Runge-Kutta methods defined by three
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sets of parameters aij, bi and ci is:

Yi = yn−1 + h
s∑

j=1

aijf(Yj), i = 1, 2, · · · , s,

yn = yn−1 + h

s∑
i=1

bif(Yi).

(1.1.2)

where Yi are stages and yn are the output values of the actual solution y(tn). Here

A = (aij) denotes s× s matrix and the quadrature weights bi = (bl, ..., bs)
T is s× 1

column vector. The idea of Runge-Kutta methods is that we first evaluate s-stage

values Y1, Y2, · · · , Ys and then calculate output values using linear combination of

stage derivatives. The Runge-Kutta methods can be represented by Butcher tableau

as:
c1 a11 a12 · · · a1s

c2 a21 a22 · · · a2s
...

...
...

. . .
...

cs as1 as2 · · · ass

b1 b2 · · · bs

,

where ci =
∑s

j=1 aij are the nodes or abscissa of the method at which the stages Yi

are evaluated. The coefficients aij and bi are calculated from abscissa ci in a way

to ensure order of method. Runge-Kutta methods are explicit if aij = 0 for i ≤ j

otherwise they are implicit.

Linear multi-step methods constitute an important class of numerical integrators for

ordinary differential equations and particular methods are well suited for solving stiff

and non-stiff equations. A linear multi-step method uses more than one information

from previous time-steps while approximating the solution of y′ = f(y(t)) with

y(t0) = y0 at current time-steps. The standard form of k-step linear multi-step

methods is:

yn =
k∑

i=1

αiyn−i + h

k∑
i=0

βif(yn−i). (1.1.3)

The most popular families of linear multi-step methods are Adams Bashforth meth-

ods and Adams Moulton methods. It is important to note that in the above equation

5



(1.1.3) if we take α1 = 1, all other α
′
is = 0 and β0 = 0 such that:

yn = yn−1 + h[β1f(yn−1) + β2f(yn−2) + · · ·+ βkf(yn−k)]. (1.1.4)

If instead β0 ̸= 0, we get

yn = yn−1 + h[β0f(yn) + β1f(yn−1) + β2f(yn−2) + · · ·+ βkf(yn−k)]. (1.1.5)

then the (1.1.4) is explicit method of order k (where k is the number of steps) and

known as Adams Bashforth method. Similarly (1.1.5) is implicit method of order

k + 1, known as Adams Moulton method. On the other hand these two methods

can be implemented as predictor-corrector pair (by first using Adams-Bashforth as

predictor and then Adams-Moulton as corrector method). Since multi-step meth-

ods need values of solution at more than one point, therefore a starting method is

employed to start the procedure. Usually one-step methods are used as starting

method.

General linear methods are the generalization of multi-stage (Runge-Kutta) and

multi-value (linear multi-step) methods. The basic idea behind general linear meth-

ods is that a number of input quantities are imported at the beginning of any partic-

ular step. Then a number of stage derivatives are computed along with their stage

values where each of the stage values is linear combination of the input quantities

and the stage derivatives. Finally, output quantities which are also linear combina-

tion of the input quantities and the stage derivatives are computed corresponding to

the input quantities imported at the beginning of the step. General linear methods

are used to find numerical solution of initial value problems (IVPs)

y′(t) = f(y(t)), y(t0) = y0. (1.1.6)

The general formula of general linear methods can then be written as:

Y
[n]
i =

s∑
j=1

hAf(Y
[n]
j ) +

r∑
j=1

Uy
[n−1]
j , i = 1, 2, · · · , s,

y
[n]
i =

s∑
j=1

hBf(Y
[n]
j ) +

r∑
j=1

V y
[n−1]
j , i = 1, 2, · · · , r,

(1.1.7)
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where r and s denotes the number of input quantities and number of stage values

respectively. The stage values and stage derivatives calculated at steps n are denoted

by Y
[n]
i ≈ y(tn + cih) evaluated at abscissa ci and Fi = f(Y

[n]
i ) respectively where

i = 1, 2, · · · , s . Similarly y[n−1] represents the input quantities and y[n], the output

quantities computed at the beginning of step n. Let [A,U,B, V ] represents the

coefficient matrix and h the step size. This formulation of coefficient matrix for

general linear methods was first introduced by Burrage and Butcher [1] in 1980.

This coefficient matrix determines the implementation cost of this method. General

linear methods can be represented in matrix notation as: Y
[n]
i

y
[n]
i

 =

 A U

B V


 hf(Y

[n]
i )

y
[n−1]
i

 . (1.1.8)

For all multi-value methods, some starting procedure is required before carrying out

the first integration step. The difference between general linear methods and linear

multi-step methods is the generality of the quantities that general linear methods

pass from one step to the next. Hence, to carry out the first step of integration a

starting method computes a variety of possible input quantities y
[0]
1 , y

[0]
2 , · · · , y

[0]
r .

Runge-Kutta and linear multi-step methods can be written in the form of general

linear methods. Consider the example of coefficient matrix of the fourth order

implicit Gauss Runge-Kutta method [6]:

c A

bT
=

1
2
−

√
3
6

1
4

1
4
−

√
3
6

1
2
+

√
3
6

1
4
+

√
3
6

1
4

1
2

1
2

. (1.1.9)

The abscissa ci’s are chosen as the roots of the shifted Legendre polynomial on the

interval [0, 1] of degree s. The coefficients A = aij and bi are calculated from abscissa

ci in a way to ensure order of method.

Ps(x) =
s!

2s

s∑
m=0

(−1)s−m

(
s

m

)(
s+m

m

)
xm.
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Then this method can be represented in general linear form (1.1.8) as:
Y1

Y2

y
[n]
1

 =


1
4

1
4
−

√
3
6

1

1
4
+

√
3
6

1
4

1

1
2

1
2

1




hf(Y1)

hf(Y2)

y
[n−1]
1

 .
The A matrix of the general linear method is the same as the A matrix of the

Runge-Kutta method. The B matrix is bT where b is the vector of weights of the

Runge-Kutta method. Assuming the input vector y[n−1] is an approximation to

y(tn−1), the U matrix is simply a vector of 1s. The V matrix consists only of the

number 1. Similarly, a second order Adams-Bashforth method (1.1.4), derived from

Taylor series is as follows

yn − yn−1 = hβ1f(yn−1) + hβ2f(yn−2),

yn − [yn − hf(yn) +
h2

2
f

′
(yn)] = hβ1[f(yn)− hf

′
(yn)] + hβ2[f(yn)− 2hf

′
(yn)],

comparing coefficients we will get system of equations

β1 + β2 = 1,

β1 + 2β2 =
1

2
.

Solving these equations yields β1 =
3
2
and β2 = −1

2
and the corresponding 2nd order

Adams Bashforth method is

yn = yn−1 + h
[3
2
f(yn−1)−

1

2
f(yn−2)

]
.

This can be written in general linear formulation as:

0 1 3
2

−1
2

0 1 3
2

−1
2

1 0 0 0

0 0 1 0

.

Note that in Runge-Kutta methods r = 1, since only one input quantity is passed

to the next step. On the other hand the number of stage values for linear multi-step

methods is s = 1 because in each step the function is evaluated only once.
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1.2 Hamiltonian systems

Hamiltonian systems are an important class of dynamical systems which were first

studied in mechanics. However, our interest lies in the numerical solution of Hamil-

tonian systems. If H = H(q, p) is a sufficiently smooth real function in a 2n-

dimensional Euclidean space then the dynamical system defined in [11] as:

dpi
dt

= −∂H
∂qi

,
dqi
dt

=
∂H

∂pi
, i = 1, 2, ..., n. (1.2.1)

having n degrees of freedom is called a Hamiltonian system. Here the HamiltonianH

represents the total energy (i.e sum of kinetic and potential energies) of the system

and pi = (p1, p2, · · · , pn) and qi = (q1, q2, · · · , qn) are generalised momenta and

position vectors respectively. We emphasize here two main properties of Hamiltonian

systems:

• Energy conservation,

• Symplecticity.

If the Hamiltonian H is autonomous then,

dH

dt
=
∑
i

(
∂H

∂pi

dpi
dt

+
∂H

∂qi

dqi
dt

)
= 0. (1.2.2)

which means H is a conserved quantity. This shows the characteristic property of

Hamiltonian system that its solution preserves energy H. In other words H(y(t)) =

H(y(0)), that is, it remains constant along solutions of the system.

1.2.1 Symplecticity

In addition to being energy preserving, Hamiltonian systems possess a noteworthy

property that their phase flow is symplectic. The Hamiltonian systems possess a

2n-dimensional phase space with coordinates (pi, qi), i = 1, 2, · · · , n. Then the

transformation of phase space therefore can be expressed in terms of flow of the

differential equation via solution operator ψ as

ψ : (p(0), q(0)) → (p(t), q(t)), (1.2.3)
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where the vector field f is defined as:

f =

[
− ∂H

∂q
,
∂H

∂p

]
,

such that

divf = − ∂2H

∂p∂q
+
∂2H

∂q∂p
= 0.

which shows that the solution operator ψ representing phase flow is symplectic.

Consider a sheet having an area A positioned in the phase space of a Hamiltonian

system and moving along the corresponding phase flow. We observe that the sheet is

stretched after transformation through the solution operator ψ but its area remains

same as shown in the Figure 1.1.

Figure 1.1: Symplectic behaviour of a sheet.

1.2.2 Simple pendulum

The simple pendulum consists of a bob of mass m attached to one end of a massless

string and whose other end is fixed. When the bob is slightly moved about the

equilibrium position and then released, it executes simple harmonic motion. Let us

assume that bob moves in a vertical plane then the angle between the string and

vertical axis be denoted by q and distance of the bob from the point of suspension

by l.

Considering the horizontal plane that passes through the point of suspension as a

10



reference level for zero potential energy, the set of differential equations defines the

Hamiltonian system as

p′ = − sin(q),

q′ = p.
(1.2.4)

Where p′ = dp
dt

and q′ = dq
dt
. Then the function

H =
1

2
p2 − cos(q).

is the Hamiltonian or total energy of this mechanical system. The initial conditions

chosen to be as p = 0 and q = 2.3 with step-size of 0.01. The position vector q is

taken along x-axis and momentum p along y-axis. The symplectic behaviour of the

simple pendulum can be observed by applying the symplectic Gauss Runge-Kutta

method on (1.2.4). The result is shown in the Figure 1.2. It preserves the area and

hence is symplectic.

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

q

p

Figure 1.2: Symplecticity of implicit Gauss method for simple pendulum.
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Chapter 2

G-symplecticity and control of

parasitism

The concept of G-symplecticity to a wider class of multi-value numerical methods,

i.e. the general linear methods is introduced by Butcher in [11]. G-symplectic gen-

eral linear methods are designed to conserve the symplectic invariants but it does not

bound the parasitism effect that arises due to multi-value nature of general linear

methods. Such methods can integrate the solutions of Hamiltonian problems effi-

ciently and preserves the energy and symplectic invariants over approximately long

time intervals. In particular, we address here the question of controlling parasitic

effects, which corrupts the numerical solution.

2.1 G-symplectic behaviour of general linear meth-

ods

General linear methods provide a unifying structure for traditional numerical meth-

ods, but because of their multi-value nature we cannot achieve true conservation of

quadratic invariants. One-step methods are said to conserve quadratic invariants

and symplectic behaviour. It is, however, believed that multi-value multi-derivative

methods cannot posses the symplectic property unless they get just one value of the

current step from the preceding one, means the general linear method is reduced to
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one-step method [14].

By the symplectic behaviour, we mean that the inner product of the values at the

initial point is same as the inner product of the values at the later point. In general,

an s-stage and r-value (r > 1) irreducible general linear method cannot preserve the

quadratic invariants over long time intervals [14]. Consider a general linear method

having r input quantities and s stage values:

Yi = h

s∑
j=1

aijFj +
r∑

j=1

uijy
[n−1]
j , i = 1, 2, · · · , s,

y
[n]
i = h

s∑
j=1

bijFj +
r∑

j=1

vijy
[n−1]
j , i = 1, 2, · · · , r.

(2.1.1)

where the stage values Yi are defined by two matrices A = aij and U = uij. Similarly

the output quantities y
[n]
i are defined by the matrices B = bij and V = vij. To

accommodate the multiple inputs with multiple outputs of general linear methods,

we bring together a G-matrix with a G-norm as

⟨y, w⟩G =
r∑

i,j=1

gij⟨yi, wj⟩,

where gij represent i, j
th entry of symmetric r × r matrix G and

y =


y1
...

yr

 , w =


w1

...

wr

 .
The G-norm presented by such an inner product is,

∥y∥2G = ⟨y, y⟩G. (2.1.2)

In addition to the matrix G, a diagonal s × s matrix D = di can be chosen such

that,

⟨y[n], y[n]⟩G − ⟨y[n−1], y[n−1]⟩G = 2h
s∑

i=1

di⟨Yi, Fi⟩,

where Fi = f(Yi). Then to solve a conservative problem, we must have

⟨y, f(y)⟩ = 0, (2.1.3)
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which means that

⟨y[n], y[n]⟩G = ⟨y[n−1], y[n−1]⟩G, (2.1.4)

such that the term 2h
s∑

i=1

di⟨Yi, Fi⟩ is zero. Methods satisfying equation (2.1.4) are

known as G-symplectic general linear methods.

Theorem 2.1.1 ([14]). A general linear method is said to be G-symplectic, if there

exist a diagonal s× s matrix D and a symmetric r × r matrix G such that

G = V TGV,

DU = BTGV,

DA+ ATD = BTGB.

It should be noted here that general linear methods cannot possess true quadratic

invariants and hence cannot be symplectic. However, general linear methods can

preserve quadratic behaviour of invariants under a G-norm and such a general linear

method is called a G-symplectic general linear method.

Example: Consider the following general linear method

 A U

B V

 =



3−
√
3

6
0 1 −3+2

√
3

3

−
√
3
3

3+
√
3

6
1 3+2

√
3

3

1
2

1
2

1 0

1
2

−1
2

0 −1


. (2.1.5)

The G-symplectic conditions of this method can be proved using the matrices G and

D. Consider the matrices G and D of the form

G =

[
1 g12

g21 g22

]
, D =

[
d11 0

0 d22

]
.

We assume g11 = 1, this choice is due to the fact that the matrix V in (2.1.5) makes

the first condition in Theorem (2.1.1) a linear system of two equations in three

unknowns. Thus we choose g11 as parameter and fix its value to 1. The remaining
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entries of matrices D and G can be found using conditions of Theorem (2.1.1). We

consider the second condition of Theorem (2.1.1) by comparing the first column of

the matrix DU with that of the matrix BTGV . We obtain the following values for

the entries of the matrix D

d11 =
b11 + b21v12 − b11v22

1− v22
=

1

2
,

d22 =
b12 + b22v12 − b12v22

1− v22
=

1

2
.

Similarly for matrix G we consider the first and third conditions of Theorem (2.1.1),

we obtain

g12 =
v12

1− v22
= 0,

g21 =
d11 − b11g11

b21
= 0

g22 =
d22u22
b22v22

= 3+2
√
3

3
.

The method (2.1.5) is then G-symplectic with

G =

[
1 0

0 3+2
√
3

3

]
, D =

[
1
2

0

0 1
2

]
, (2.1.6)

if we have

⟨y[n], y[n]⟩G = ⟨y[n−1], y[n−1]⟩G, (2.1.7)

2∑
i,j=1

gij⟨y[n], y[n]⟩G =
2∑

i,j=1

gij⟨y[n−1], y[n−1]⟩G, (2.1.8)

g11⟨y[n]1 , y
[n]
1 ⟩+ g22⟨y[n]2 , y

[n]
2 ⟩ = g11⟨y[n−1]

1 , y
[n−1]
1 ⟩+ g22⟨y[n−1]

2 , y
[n−1]
2 ⟩. (2.1.9)

where, g11 = 1 and g22 =
3+2

√
3

3
. Therefore, instead of conserving the true quadratic

invariants, i.e.

⟨y[n], y[n]⟩ = ⟨y[n−1], y[n−1]⟩.

The linear combination

⟨y[n]1 , y
[n]
1 ⟩+ 3+2

√
3

3
⟨y[n]2 , y

[n]
2 ⟩ = ⟨y[n−1]

1 , y
[n−1]
1 ⟩+ 3+2

√
3

3
⟨y[n−1]

2 , y
[n−1]
2 ⟩.

is conserved under G-norm.
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2.1.1 Some examples of G-symplectic methods

Ordinary differential equations (ODEs), in general, are given with an initial con-

dition from where we get an initial value. In dealing with general linear methods

which consists of multiple input and output approximations, one value is obtained

from the given initial condition and a starting method is applied to obtain the re-

maining initial values. Here we consider the methods namely GLM43, N method

and P method along with their starting methods [15].

• N Method

It is implicit fourth order symmetric general linear method with two stages

and two output values. The general representation (2.1.1) of this method is

Y
[n]
1 = h(3−

√
3

6
)f(Y

[n]
1 ) + y

[n−1]
1 − (3−2

√
3

3
)y

[n−1]
2 ,

Y
[n]
2 = h(

√
3
3
)f(Y

[n]
1 ) + h(3−

√
3

6
)f(Y

[n]
2 ) + y

[n−1]
1 + (3−2

√
3

3
)y

[n−1]
2 ,

y
[n]
1 = (h

2
)f(Y

[n]
1 ) + (h

2
)f(Y

[n]
2 ) + y

[n−1]
1 ,

y
[n]
2 = (h

2
)f(Y

[n]
1 )− (h

2
)f(Y

[n]
2 )− y

[n−1]
2 ,

where its coefficient matrix is

 A U

B V

 =



3−
√
3

6
0 1 −3−2

√
3

3
√
3
3

3−
√
3

6
1 3−2

√
3

3

1
2

1
2

1 0

1
2

−1
2

0 −1

 . (2.1.10)

The matrix A is a lower triangular matrix. For the approximation of actual

solution exactly, the first column of matrix U is taken as a vector of ones

because during the calculation of the stages, the input values representing the

actual solution are multiplied with the first column of the matrix U . It requires

two input values to start the procedure. However only one initial value is

provided with the initial value problem. Other initial value is calculated using

a starting method. The starting method introduced by Butcher [12] is given

16



as

 A U

B V

 =



3−
√
3

6
0 1

−3−
√
3

3
3−

√
3

6
1

0 0 1

−
√
3+1
8

√
3+1
8

0


. (2.1.11)

The stage values of starting method are explicit in nature. The vector U of

starting method is always taken as vector of ones. The first element of vector

V is chosen as 1 and all other elements are taken as zero. The coefficient

matrices A and B of starting method can be obtained to make sure that the

general linear method (2.1.10) satisfies the order of the method [16] and for

this algebraic analysis of order using rooted trees is employed as given in [13].

• P Method

It is implicit fourth order symmetric general linear method with two stages

and two output values. The general representation (2.1.1) of this method is

Y
[n]
1 = h(3+

√
3

6
)f(Y

[n]
1 ) + y

[n−1]
1 − (3+2

√
3

3
)y

[n−1]
2 ,

Y
[n]
2 = −h(

√
3
3
)f(Y

[n]
1 ) + h(3+

√
3

6
)f(Y

[n]
2 ) + y

[n−1]
1 + (3+2

√
3

3
)y

[n−1]
2 ,

y
[n]
1 = (h

2
)f(Y

[n]
1 ) + (h

2
)f(Y

[n]
2 ) + y

[n−1]
1 ,

y
[n]
2 = (h

2
)f(Y

[n]
1 )− (h

2
)f(Y

[n]
2 )− y

[n−1]
2 ,

where its coefficient matrix is

 A U

B V

 =



3+
√
3

6
0 1 −3+2

√
3

3

−
√
3
3

3+
√
3

6
1 3+2

√
3

3

1
2

1
2

1 0

1
2

−1
2

0 −1


. (2.1.12)

The matrix A is a lower triangular matrix. For the approximation of actual

solution exactly, the first column of matrix U is taken as a vector of ones

because during the calculation of the stages, the input values representing the

17



actual solution are multiplied with the first column of the matrix U . It requires

two input values to start the procedure. However only one initial value is

provided with the initial value problem. Other initial value is calculated using

a starting method. The starting method introduced by Butcher [12] is given

as

 A U

B V

 =



3+
√
3

6
0 1

−3+
√
3

3
3+

√
3

6
1

0 0 1
√
3−1
8

−
√
3−1
8

0


. (2.1.13)

The stage values of starting method are explicit in nature. The vector U of

starting method is always taken as vector of ones. The first element of vector

V is chosen as 1 and all other elements are taken as zero. The coefficient

matrices A and B of starting method can be obtained to make sure that the

general linear method (2.1.12) satisfies the order of the method [16] and for

this algebraic analysis of order using rooted trees is employed as given in [13].

• GLM43

It is fourth order symmetric general linear method with four stages and three

output values. The general representation (2.1.1) of this method is

Y
[n]
1

Y
[n]
2

Y
[n]
3

Y
[n]
4

y
[n]
1

y
[n]
2

y
[n]
3



=



0 0 0 0 1 1
4

√
3
4

− 11
172

1
4

0 0 1 u22 u23

− 2647
72240

1009
1680

1
4

0 1 −u22 −u23

− 169
1680

113821
283920

473
676

0 1 −1
4

−
√
3
4

− 169
3360

1849
3360

1849
3360

− 169
3360

1 0 0

− 169
1680

− 84839
283920

84839
283920

169
1680

0 −1
2

−
√
3
2

0 −43
√
14595

35490
43

√
14595

35490
0 0

√
3
2

−1
2



.



hf(Y
[n]
1 )

hf(Y
[n]
2 )

hf(Y
[n]
3 )

hf(Y
[n]
4 )

y
[n−1]
1

y
[n−1]
2

y
[n−1]
3



,

where u22 = − 1973
29068

+ 2
√
3
√
14595

7267
and u23 = −1973

√
3

29068
− 2

√
14595
7267

. The first and
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last row of matrix A are explicit in nature while second and third rows are

implicit. For the approximation of actual solution exactly, the first column of

matrix U is taken as a vector of ones because during the calculation of the

stages, the input values representing the actual solution are multiplied with

the first column of the matrix U . It requires three input values to start the

procedure. However only one initial value is provided with the initial value

problem. Other initial values are calculated using a starting method. The

matrix A and abscissa c of starting method are taken same as of classical order

4 Runge-Kutta method [6].The starting method will get one input and three

output values. The coefficient matrix B of starting method can be obtained

to make sure that the general linear method (2.1.12) satisfies the order of

the method [16] and for this algebraic analysis of order using rooted trees is

employed as given in [13]. The starting method introduced by Butcher [12] is

given as

 A U

B V

 =



0 0 0 0 1

1
2

0 0 0 1

0 1
2

0 0 1

0 0 1 0 1

0 0 0 0 1

b̃1 b̃2 b̃3 b̃4 0

b̃5 b̃6 b̃7 b̃8 0


. (2.1.14)

The second and third row of matrix B̃ are complex conjugates of each other.

The values of B̃ = [b̃1, b̃2, b̃3, b̃4] can be found using order conditions upto third

order [16]. However due to symmetry, it will ensure that the method is of
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fourth order. 

b̃1

b̃2

b̃3

b̃4

b̃5

b̃6

b̃7

b̃8



=



−0.203599283611326

0.093013520189574

0.079026915254744

0.031558848167008

−0.523240277404552

0.399628138816171

0.388537971512798

−0.264925832924417



. (2.1.15)

It should be noted here that the methods we mentioned above are G-symplectic

methods.

Consider the method (2.1.10). This method is G-symplectic if it satisfies the condi-

tions of Theorem (2.1.1) with matrices G and D given as [16]

G =

[
1 0

0 3−2
√
3

3

]
, D =

[
1
2

0

0 1
2

]
. (2.1.16)

Since

A =

[
3−

√
3

6
0

√
3
3

3−
√
3

6

]
, B =

[
1
2

1
2

1
2

−1
2

]
. (2.1.17)

U =

[
1 −3−2

√
3

3

1 3−2
√
3

3

]
, V =

[
1 0

0 −1

]
. (2.1.18)

Then for this method to be G-symplectic it should satisfy G = V TGV , DU = BTGV

and DA+ ATD = BTGB.

V TGV =

[
1 0

0 −1

]T [
1 0

0 3−2
√
3

3

][
1 0

0 −1

]
,

=

[
1 0

0 −1

][
1 0

0 −3−2
√
3

3

]
,

=

[
1 0

0 −3−2
√
3

3

]
= G.
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So first condition is satisfied.

Now consider

DU =

[
1
2

0

0 1
2

][
1 −3−2

√
3

3

1 3−2
√
3

3

]
,

=

[
1
2

−3−2
√
3

6
1
2

3−2
√
3

6

]
,

and

BTGV =

[
1
2

1
2

1
2

−1
2

]T [
1 0

0 3−2
√
3

3

][
1 0

0 −1

]
,

=

[
1
2

−3−2
√
3

6
1
2

3−2
√
3

6

]
= DU.

which satisfies the second condition DU = BTGV .

Now considering,

BTGB =

[
1
2

1
2

1
2

−1
2

]T [
1 0

0 3−2
√
3

3

][
1
2

1
2

1
2

−1
2

]
,

=

[
3−

√
3

6

√
3
6√

3
6

3−
√
3

6

]
.

and

DA+ ATD =

[
1
2

0

0 1
2

][
3−

√
3

6
0

√
3
3

3−
√
3

6

]
+

[
3−

√
3

6
0

√
3
3

3−
√
3

6

]T [
1
2

0

0 1
2

]
,

=

[
3−

√
3

6

√
3
6√

3
6

3−
√
3

6

]
= BTGB.

This satisfies the third condition proving that the method is G-symplectic. Similarly

P-method and GLM43 also satisfies G-symplectic conditions.

2.1.2 Experiment

We recall the equations of motion of the simple pendulum from Chapter 1,

p′ = − sin(q), q′ = p.

21



where the total energy function is

H =
1

2
p2 − cos(q).

To solve this simple pendulum problem, N method (2.1.10) has been applied. The

initial values are chosen as p = 0, q = 1.2. The error in energy is plotted in the

Figure 2.1 for 1 million steps with step-size 0.01. The graph is plotted between

error and time using MATLAB. Time is taken along x-axis and error in energy

along y-axis. The energy error is calculated by subtracting the energy calculated at

actual value from the energy calculated at approximated value, i.e. energy error=

Happrox. − Hexact. However Happrox. is evaluated at first output value. The result

shows very small energy errors with the certainty that the method conserves the

total energy of the simple pendulum problem. However, on increasing the amplitude

of the simple pendulum, i.e. by changing the value of q from 1.2 to 2.3, we get the

error in energy as plotted in the Figure 2.2. In the second case we have taken only

100, 000 steps with the same step-size of 0.01 but large error in energy is observed.

Although this method is G-symplectic and meant to conserve the energy for all initial

values, we observed a large error in energy and this is because of the corruption by

the parasitic solutions.
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Figure 2.1: The error in energy conservation of the simple pendulum problem with

initial value q = 1.2.
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Figure 2.2: The error in energy conservation of the simple pendulum problem with

initial value q = 2.3.
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2.2 Parasitic solutions of GLMs

The multi-value nature of general linear methods subjects them to suffer from para-

sitic solutions. The numerical solutions which are attained in addition to the numer-

ical approximation of the exact solution are known as parasitic solutions. To study

the effect of parasitism, a typical step of the general linear method is considered.

Y1

Y2

y
[n]
1

y
[n]
2


=



a11 a12 u11 u12

a21 a22 u21 u22

b11 b12 1 0

b21 b22 0 −1





hf(Y1)

hf(Y2)

y
[n−1]
1

y
[n−1]
2


.

The stage and output values can be represented as

Yi =
2∑

j=1

haijf(Yj) + ui1y
[n−1]
1 + ui2y

[n−1]
2 , i = 1, 2.

y
[n]
1 =

2∑
i=1

hb1if(Yi) + y
[n−1]
1 ,

y
[n]
2 =

2∑
i=1

hb2if(Yi)− y
[n−1]
2 ,

(2.2.1)

while y
[n]
1 , the first component approximates the exact solution and y

[n]
2 , the second

component approximates the scaled derivative. To see how parasitism occurs in the

value of y
[n]
2 , we have introduced a perturbation at the start of step n:

y
[n−1]
2 → y

[n−1]
2 + (−1)n−1wn−1.

Then the perturbation in the stage values Yi will be given as

Yi + δYi = h
2∑

j=1

aijFj + ui1y
[n−1]
1 + ui2[y

[n−1]
2 + (−1)n−1wn−1],

⇒ δYi = (−1)n−1ui2wn−1,
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and the approximate perturbation in the values of stage derivatives is

Fi → Fi + δFi = f(Yi + δYi), (2.2.2)

= f(Yi) + δYi
∂f

∂y
, (2.2.3)

δFi = (−1)n−1ui2wn−1
∂f

∂y
.

Now the change at step n in second output value should be

y
[n]
2 + (−1)nwn = h

2∑
i=1

b2i(Fi + δFi)− [y
[n−1]
2 + (−1)n−1wn−1],

= h

2∑
i=1

b2iFi − y
[n−1]
2 + h

2∑
i=1

b2iδFi − (−1)n−1wn−1,

wn =

[
1− h

2∑
i=1

b2iui2
∂f

∂y

]
wn−1,

where µ = −
2∑

i=1

b2iui2 is responsible for growth of parasitic solution wn. The term

µ can be found from the matrix

BU =

[
1 0

0 −µ

]
.

The particular problem has parasitic free solution only if µ = 0. The parasitic

component of N method can then be found by taking product of B and U matrices

(2.1.10)

BU =

[
1
2

1
2

1
2

−1
2

][
1 −3−2

√
3

3

1 3−2
√
3

3

]
,

=

[
1 0

0 −3−2
√
3

3

]
.

Then

µN = 1− 2√
3
.

Similarly the parasitic component of P method (2.1.12) is

µP = 1 + 2√
3
.
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2.3 Projection methods

Consider a differential equation y′ = f(y) whose solution lies on manifold, where a

manifold is a configuration space that resembles Euclidean space locally (i.e. near

every point).

M = {y; I(y) = 0}, (2.3.1)

where I : Rn → Rm and the differential equation satisfying the property that

y0 ∈ M implies y(t) ∈ M, ∀t. (2.3.2)

In other words, the equation (2.3.2) is equivalent to I′(y)f(y) = 0 for y ∈ M.

However for conservation of invariants we require that I′(y)f(y) = 0 for all y ∈ Rn.

Therefore, I (y) is known to be as a weak invariant and y′ = f(y(t)), a differential

equation on the manifold M.

There are certain numerical methods which conserve the invariants automatically.

If any numerical method fails to conserve it, we apply projection method manually.

The idea in projection method is that we try to eliminate the small integral error

by projecting the numerical solution on the integral manifold.

2.3.1 Standard projection method

An approach for the numerical solution of differential equations on manifolds is

projection method [7]. The basic idea of standard projection method is that we first

apply the numerical method Φ taking the initial value yn to ỹn+1 and then project

it back onto the invariant manifold H(y) = 0 to get yn+1. Then the procedure for

one step of projecting the numerical solution onto the integral manifold reads as,

• Using y0 as initial condition, apply a general linear method as base method to

get [ỹ
[1]
1 , ỹ

[1]
2 ].

• Perform the projection onto the invariant manifold as,

y1 = ỹ
[1]
1 +∇H(y1)×

H(y0)−H(ỹ
[1]
1 )

∇H(ỹ
[1]
1 ) · ∇H(ỹ

[1]
1 )

. (2.3.3)
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Let us assume

λ =
H(y0)−H(ỹ

[1]
1 )

∇H(ỹ
[1]
1 ) · ∇H(ỹ

[1]
1 )

.

H(y0) is the initial value of H and will not update. ∇H(y) denotes the Jacobian of

H(y). The first output value y1 is prone to parasitic solution, therefore we applied

projection step only on first output value. Since the equation (2.3.3) is implicit, we

have used Newton iterations to solve this equation. Equation (2.3.3) can then be

written as,

y1 − ỹ
[1]
1 −∇H(y1)λ = 0,

g(y1) = 0.

We replace y1 with ỹ1 in the argument of ∇H(y1). Then applying Newton iterations,

we get

y1 = ỹ1 + (I −∇2H(ỹ1)λ)
−1(∇H(ỹ1)λ). (2.3.4)

Here I is 2n × 2n identity matrix and J = ∇2H(ỹ1) is the Jacobian matrix. The

Jacobian matrix J is updated at each new step. The initial estimate y1 is taken

same as ỹ1. We have used the following stopping criteria for the convergence of

Newton iteration,

∥y1 − ỹ1∥ < TOL = 10−15.

It is observed that the code converges for 8 maximum iterations.

Standard projection methods can achieve excellent results in conserving invariants

but can also destroy long time behaviour of the numerical solution. In standard pro-

jection method we apply the projection at the end of the integration step, therefore

the method is not symmetric. In order to make the procedure symmetric, symmetric

projection method is introduced. In order to retain symmetry, both the numerical

method and the problem should be symmetric.

2.3.2 Symmetry of method

Symmetry of numerical methods can be explained on basis of symplecticity and

reversibility. The one-step Runge-Kutta method (1.1.2) is said to be linearly sym-

plectic if it satisfies the condition R(z)R(−z) = 1, where the stability fuction R(z)
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can be found by considering the Dahlquist test problem:

y′ = λy, λ ∈ C

then the general Runge-Kutta method (1.1.2) takes the form

Yi = yn−1 + h

s∑
j=1

aijλf(Yj), i = 1, 2, · · · , s

yn = yn−1 + h
s∑

i=1

biλf(Yi) (2.3.5)

Introducing the vectors e = (1, 1, · · · , 1)T , Y = (Y1, Y2, · · · , Ys)T and assuming

z = hλ we can write (2.3.5) as:

Y = yn−1e+ zAY, A = (aij)

Y = yn−1(I − zA)−1e,

yn = yn−1 + zbTY,

yn = (1 + zbT (I − zA)−1e)yn−1.

then the function R(z) is defined as

R(z) = 1 + zbT (I − zA)−1e.

where

(I − zA)−1 =
adj(I − zA)

det(I − zA)
,

with det(I − zA) ∈ Ps and adj(I − zA) ∈ Ps−1, where Ps and Ps−1 is the space of

polynomials of degree s and s−1 respectively. In general R(z) is a rational function

i.e, R(z) = P (z)
Q(z)

.

Symplectic Runge-kutta method is reversible for any linear system with constant

coefficients where the scheme Φ is said to be reversible if Φ−h = Φ−1
h [10]. Runge-

kutta method is then said to be symmetric if it is reversible, when applied to any

arbitrary ordinary differential equation [9].
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2.3.3 Symmetric projection method

Symmetric projection method was first applied by Hairer in 2000 [9]. The basic idea

of symmetric projection method is that we first perturb the solution yn to get ỹn ,

followed by one step of symmetric numerical method Φ taking ỹn to ỹn+1 and finally

projecting the numerical solution ỹn+1 onto the invariant manifold H(y) = 0. The

procedure for symmetric projection is as follow,

• Using the initial condition y0, apply a general linear method as perturbation

method for one step to get [y
[1]
1 , y

[1]
2 ] and calculate the perturbation in initial

condition as,

ỹ0 = y
[1]
1 +∇H(y

[1]
1 )× H(y0)−H(y

[1]
1 )

∇H(y
[1]
1 ) · ∇H(y

[1]
1 )

. (2.3.6)

• Using ỹ0 as initial condition, apply a general linear method (base method) to

get [ỹ
[1]
1 , ỹ

[1]
2 ].

• Perform the projection onto the invariant manifold as,

y1 = ỹ
[1]
1 +∇H(y1)×

H(y0)−H(y
[1]
1 )

∇H(y
[1]
1 ) · ∇H(y

[1]
1 )

. (2.3.7)

Let

λ =
H(y0)−H(y

[1]
1 )

∇H(y
[1]
1 ) · ∇H(y

[1]
1 )

.

It is however important to take same vector λ in perturbation and projection step in

order to make the overall algorithm symmetric. To evaluate λ, a numerical method

other than base method is required.

2.3.4 Implementation using Newton iterations

The equation (2.3.7) is implicit and we have used Newton iteration scheme to solve

this equation. Equation (2.3.7) can then be reformulated as,

y1 − ỹ
[1]
1 −∇H(y1)λ = 0,

g(y1) = 0.

29



We replace y1 with ỹ1 in the argument of ∇H(y1), in order to save some evaluations

of ∇H(y1). Then using Newton iterations, we get

y1 = ỹ1 + (I −∇2H(ỹ1)λ)
−1(∇H(ỹ1)λ). (2.3.8)

Here I is 2n × 2n identity matrix and J = ∇2H(ỹ1) is the Jacobian matrix. The

Jacobian matrix J is updated at each new step. The initial estimate y1 is taken

same as ỹ1. In order to make the code more efficient relatively high number of

iterations are allowed. Therefore, we have used the following stopping criteria for

the convergence of Newton iteration,

∥y1 − ỹ1∥ < TOL = 10−15.

It is however observed that the code converges for 8 maximum iterations.

Example:

The qualitative superiorty of symmetric projection methods in controlling para-

sitism can be illustrated by a representative example of simple pendulum problem

(1.2.4) whose total energy is H = 1
2
p2 − cos(q). This problem is capable of parasitic

corruption for the initial conditions chosen to be as p = 0 and q = 2.3 with a step-

size of 0.01. The energy error is calculated by subtracting the energy calculated at

actual value given with the simple pendulum problem from the energy calculated at

approximated value, i.e. energy error= Happrox. − Hexact. However Happrox. is eval-

uated at first output value. We have applied standard projection procedure using

method P. However it can be observed from Figure 2.3 that the numerical method

is corrupted only after 10, 000 steps. We then applied symmetric projection method

using method P as perturbation as well as base method. It is evident from Figure

2.4 that energy is conserved over one million steps.
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Figure 2.3: Energy conservation of simple pendulum with standard projection for

methods P.
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Figure 2.4: Energy conservation of simple pendulum with symmetric projection for

methods P.
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Chapter 3

Numerical experiments

The numerical methods presented in this thesis have been constructed for solving

Hamiltonian problems. However, our interest lies in those numerical methods which

preserves the qualitative behaviour of the problems over exponentially long time.

The methods chosen for implementation include the G-symplectic general linear

methods represented as N method, P method and symmetric projection method

which uses composition of N and P methods as discussed in Chapter 2. It should

be noted here that we have used a fixed step-size in all numerical methods. The

numerical methods employed here have implicit stages to evaluate. We have used

modified Newton iterations. Each problem is explained by the numerical results

along with discussion.

3.1 Choice of numerical methods

The numerical solution of the general linear methods prone to parasitism can be

controlled by using the symmetric projection methods. We have noted that the

numerical solution of general linear method using P method (2.1.12) and N method

(2.1.10) suffer from the parasitic solution. The parasitic components of these meth-

ods are:

µN = 1− 2√
3
, µP = 1 + 2√

3
.
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We observe that in symmetric projection methods, the perturbation at the start of

integration step and then the projection of the solution back onto the manifold at the

end of integration step minimizes the growth of parameter µ which is responsible for

parasitic solution. We have used two approaches considering symmetric projection

method using P method as perturbation method and N method as the base method.

This procedure provides good invariant preservation. Similar results hold when we

applied symmetric projection method using N method as perturbation method and

P method as the base method.

The second approach is to use only one G-symplectic general linear method as per-

turbation and base method. Here we have used method P and method N as a

perturbation method as well as base method. Although good results are achieved

but in first approach the adherence of the solution to the invariant manifold is

ensured by cancellation of parasitic growth parameters of P and N method being

opposite in sign.

The use of different G-symplectic general linear methods with parasitic growth pa-

rameters having opposite signs together with symmetric projection works very well

as compared to just simply using symmetric projection for only one parasitism in-

fected G-symplectic general linear method. The good behaviour of first approach is

due to the fact that parasitic growth parameters of different general linear methods

implemented in pairs adds up and hence cancel each other being opposite in sign

[17].

Beside these two approaches we have also applied parasitic free G-symplectic general

linear method GLM43. It provides qualitatively correct numerical results over long

time.

3.2 Simple pendulum

The equations of motion of the simple pendulum defines a Hamiltonian system with

generalized momenta p and coordinates q and are given as,

p′ = − sin(q), q′ = p. (3.2.1)
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The total energy H which is a conserved quantity is given as,

H =
p2

2
− cos(q).

The simple pendulum problem prone to parasitic solutions for initial conditions

chosen to be p = 0 and q = 2.3 using step-size of h = 0.01. The energy error is

calculated by subtracting the energy calculated at actual value given with the simple

pendulum problem from the energy calculated at approximated value, i.e. energy

error= Happrox. − Hexact. However Happrox. is evaluated at first output value. This

is evident from Figure 3.1 where simple pendulum is solved using P method alone

for 10, 000 steps only and error in energy is presented. However it can be seen in

Figure 3.2 that for the N method the numerical method is corrupted after 100, 000

steps. This is due to the fact that the parasitic parameter of the P method is 2.1547

which is greater than the parasitic parameter of the N method which is −0.1547.

We have applied symmetric projection procedure with P method as perturbation

method and N method as a base method on the simple pendulum. We have taken

1 million steps and the error in energy is plotted in Figure 3.3 using step-size. The

results show good energy conservation. Similar result holds if we swap P and N

methods. We have then used N method as perturbation method as well as base

method and the error in energy is plotted in Figure 3.4. Although this seems to be

good result, however the graph shows that in first case, the adherence of solution

to the invariant manifold is ensured by both the symmetric projection as well as

cancellation of parasitic growth parameters of P and N methods being opposite in

sign whereas in later case we only have symmetric projection to project the solution

back onto the manifold. Figure 3.5 also shows good energy conservation for parasitic

free method GLM43.
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Figure 3.1: Energy conservation of simple pendulum for method P using h = 0.01.
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Figure 3.2: Energy conservation of simple pendulum for method N using h = 0.01.
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Figure 3.3: Energy conservation of simple pendulum with symmetric projection for

methods P and N using h = 0.01.
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Figure 3.4: Energy conservation of simple pendulum with symmetric projection for

method N using h = 0.01.

36



0 2000 4000 6000 8000 10000 12000
−1

0

1

2

3

4

5

6

7

8
x 10

−11

time

en
er

gy
 er

ro
r

Figure 3.5: Energy conservation of simple pendulum for GLM43 using h = 0.01.

3.3 The perturbed Kepler problem

Consider the following equations of motion for the perturbed Kepler problem,

q′1 = p1,

q′2 = p2,

p′1 = − q1√
(q21 + q22)

3
− (0.0075)q1√

(q21 + q22)
5
,

p′2 = − q2√
(q21 + q22)

3
− (0.0075)q2√

(q21 + q22)
5
,

(3.3.1)

where (q1, q2) are the generalized coordinates and (p1, p2) are the generalized mo-

menta. The total energy of the system is

H =
1

2
(p21 + p22)−

1√
(q21 + q22)

− 0.005

2
√

(q21 + q22)
3
.

The initial conditions are

(q1, q2, p1, p2) = (1− e, 0, 0,

√
1 + e

1− e
).

where 0 < e < 1 is the eccentricity of the elliptic orbits which are formed by the
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motion of one body around the other.

In this experiment we examined the energy conservation of perturbed Kepler prob-

lem (3.3.1) with e = 0 and step-size 2π
600

. The energy error is calculated by sub-

tracting the energy calculated at actual value given with the perturbed Kepler

problem from the energy calculated at approximated value, i.e. energy error=

Happrox. −Hexact. However Happrox. is evaluated at first output value. We observed

the corruption of numerical solution due to parasitism in the P method shown in

Figure 3.6, where an energy drift is observed only after 200 steps. However for the

N method in Figure 3.7 it can be seen that the numerical method is corrupted after

longer time.

We have applied symmetric projection procedure with P method as perturbation

method and N method as a base method using e = 0 with same step-size. The error

in energy is shown in Figure 3.8 for 1 million steps. We have then used P method

as perturbation method as well as base method and the error in energy is plotted

in Figure 3.9. Similarly the energy error for GLM43 is shown in Figure 3.10.

It can be followed from graphs that error in energy using symmetric projections

with different G-symplectic general linear methods and GLM43 is very small and

ensures long time energy conservation. The use of different G-symplectic general lin-

ear methods with parasitic growth parameters having opposite signs together with

symmetric projection works very well as compared to just simply using symmetric

projection for only one parasitism infected G-symplectic general linear method. The

good behaviour of earlier case is down to the fact that parasitic growth parameters

of different general linear methods implemented in pairs adds up and hence cancel

each other being opposite in sign.
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Figure 3.6: Energy conservation of perturbed Kepler for method P, e = 0.
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Figure 3.7: Energy conservation of perturbed Kepler for method N, e = 0.
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Figure 3.8: Energy conservation of perturbed Kepler with symmetric projection for

methods P and N, e = 0.
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Figure 3.9: Energy conservation of perturbed Kepler with symmetric projection for

method P, e = 0.
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Figure 3.10: Energy conservation of perturbed Kepler for GLM43, e = 0.

3.4 Harmonic oscillator

The Hamiltonian system defined by the motion of a unit mass attached to a spring

with momentum p and position coordinates q is given as,

p′ = −q, q′ = p, (3.4.1)

and the total energy H,

H =
p2

2
+
q2

2
.

For numerical solution of harmonic oscillator problem, a step-size of 0.01 is taken

with p = 0 and q = 1.2 for one million steps. The energy error is calculated

by subtracting the energy calculated at actual value given with the harmonic os-

cillator problem from the energy calculated at approximated value, i.e. energy

error= Happrox.−Hexact. However Happrox. is evaluated at first output value. We ob-

served good energy conservation for P and N methods as shown in Figures 3.11 and

3.12 respectively. This is due to the fact that the parasitic solution is not overtaken

by the actual solution. Not surprisingly, we obtain excellent energy conservation

for symmetric projection method with P method as perturbation method and N

method as a base method in Figure 3.13, for symmetric projection method with P

41



method as perturbation as well as base method in Figure 3.14 and for the method

GLM43 in Figure 3.15.
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Figure 3.11: Energy conservation of harmonic oscillator for method P.
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Figure 3.12: Energy conservation of harmonic oscillator for method N.
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Figure 3.13: Energy conservation of harmonic oscillator with symmetric projection

for methods P and N.
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Figure 3.14: Energy conservation of harmonic oscillator with symmetric projection

for method P.
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Figure 3.15: Energy conservation of harmonic oscillator for GLM43.

3.5 Rigid body motion

The motion of a rigid body, with centre of mass at the origin, can be illustrated by

the Euler equations as,

dωx

dt
=

(Iy − Iz)

IyIz
ωyωz,

dωy

dt
=

(Iz − Ix)

IzIx
ωzωx,

dωz

dt
=

(Ix − Iy)

IxIy
ωxωy.

Here the vector ω = [ωx, ωy, ωz]
T denotes the angular momentum and Ix,Iy,Iz are

the principal moment of inertia. The two underlying quadratic invariants of the

rigid body motion namely, the kinetic energy H and the angular momentum A are

represented as,

H =
1

2
(
ω2
x

Ix
+
ω2
y

Iy
+
ω2
z

Iz
),

A = ω2
x + ω2

y + ω2
z .

We apply the numerical methods with a step-size of 0.01 and initial condition

ω0 = [cos(0.9), 0, sin(0.9)]T for one million steps. The energy error is calculated
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by subtracting the energy calculated at actual value given with the harmonic os-

cillator problem from the energy calculated at approximated value, i.e. energy

error= Happrox. −Hexact. However Happrox. is evaluated at first output value. Simi-

larly the momentum error is calculated as momentum error= Aapprox. −Aexact. The

principal moments of inertia are chosen to be as Ix = 2, Iy = 1, Iz = 2/3. For P

and N methods, excellent preservation of these quadratic invariants are observed as

shown in the Figures 3.16 and 3.17 respectively. As expected, we get good conserva-

tion of invariants for symmetric projection method with N method as perturbation

method and P method as a base method in Figure 3.18, for symmetric projection

method with N method as perturbation as well as base method in Figure 3.19 and

for the method GLM43 in Figure 3.20.
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Figure 3.16: Conservation of invariants of rigid body motion for method P.
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Figure 3.17: Conservation of invariants of rigid body motion for method N.
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Figure 3.18: Conservation of invariants of rigid body motion with symmetric pro-

jection for methods N and P.
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Figure 3.19: Conservation of invariants of rigid body motion with symmetric pro-

jection for method N.
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Figure 3.20: Conservation of invariants of rigid body motion for method GLM43.
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Chapter 4

Conclusions

In this thesis, we have presented the preservation of quadratic invariants of Hamilto-

nian systems using G-symplectic general linear methods. The multi-value nature of

these methods leads to the corruption of numerical solution, subject to the parasitic

solution. Symmetric projection approach has been employed for eliminating this

parasitism effect. We used various problems such as simple pendulum, perturbed

Kepler, harmonic oscillator and rigid body motion problem. In all experiments we

have used fixed step-size.

In Chapter 1, an introduction of Hamiltonian systems and quadratic invariants were

given. We have also reviewed the general linear methods for numerical solution of

ordinary differential equation systems. Chapter 2 deals with a detailed study of G-

symplectic general linear methods and projection methods. In particular, control of

parasitism via symmetric projection was investigated. In Chapter 3, G-symplectic

general linear methods with parasitism are implemented together with symmetric

projection onto the invariant manifold. Standard projection fails to control para-

sitism in methods over exponentially long time intervals. Moreover, use of single

G-symplectic general linear methods with parasitism is also not a favourable candi-

date if we consider symmetric projection. Good invariant preservation is achieved

if we use symmetric projection together with G-symplectic general linear methods

having parasitic growth parameters with opposite signs.
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