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Abstract

In the second half of the 20th century a number of generalizations of convex func-
tions have been made. The basic purpose of these generalizations was to weaken
convexity conditions as much as possible. Among these generalizations one of the
basic interest is invex functions which were initially studied by Hanson and named
by Craven. Hanson noticed that the convexity conditions in Kuhn-Tucker conditions
for mathematical programming problems can be weakened further. The invexity re-
quires the differentiability conditions and those non differentiable are called Preinvex
functions introduces by Weir and Jeyakumar also generalize convex functions. Like
convex functions the characterization of these functions in terms of invexity of epigraph
is possible.

Any closed subset of Ris called time scale. The theory of time scales goes back to
German mathematician Stephen Hilger. He introduced time scales in his PhD thesis.
The main theme of time scales calculus is to unify integral and differential calculus
with that of finite differences and provides a formal courtesy to study the differences
between discrete and continuous analysis.

Dinu in 2008 investigated convex functions and some related inequalities like Jensen
and Hermite-Hadamard on time scales, latter Abe-i-kpeng in 2016 studied Quasi-
convex functions on time scales, however, a vast class of Preinvex functions on time
scales has not been examined up until now. This proposal tries to incorporate these
capacities on time scales and presents Jensen and Hermite-Hadamard inequalities for

this class.



Contents

List of Figures ix
List of Tables ix
1 Introduction 1
2 Preliminaries 4

2.1 Convex Functions . . . . . . . . . o

2.2 Quasi-Convex and Pseudo-Convex Functions... . . ... ... .. ... 8
2.3 Time Scales Theory . . . . . .. .. ... ... ... ... 11
2.3.1 Time Scales Calculus . . . . . . ... .. ... .. ........ 15

2.4 Exponential, Logarithmic and Convex Functions on Time Scales. . . . . 20

3 Invex and Preinvex Functions 24
3.1 Invex Functions . . . . . . . . . . . .. ... 24
3.1.1 Invexity with other Generalizations of Convexity . . . . . . . .. 25

3.2 Preinvex Functions . . . . . . . . . .. ... 26

4 Inequalities 32
4.1 Inequalities for Convex Functions . . . . . ... ... ... ... .... 32
4.2 TInequalities for Preinvex Functions . . . .. .. ... ... ... .. .. 36
4.3 Inequalities on Time Scales . . . . . . . . . . .. ... ... ... .... 38

vi



Preinvex Functions on Time Scales 41

5.1 Preinvex Functions . . . . . . . . . . . . ... 41
5.2 Hermite-Hadamard Inequality . . . . . . .. .. ... ... ... .... 47
Conclusion 56

vii



List of Tables

2.3.1 Jump operators. . . . . ... L 13
2.3.2 Graininess functions . . . . ... ... 0oL 14
2.3.3 Delta derivatives . . . . . . . ... 17
2.4.1 Exponential functions . . . . . . .. ... .. ... 21

viil



List of Figures

21.1C0onvex Set . . ... 4
2.1.2Not Convex set . . . . . . . . . e 5
2.1.3 Convex and concave function . . . . . . ... ... ... 7
2.1.4 Epigraph and Hypograph . . . . . . . .. .. . ... ... .. ...... 7
2.3.1 Classification of points. . . . . . . . . ... ... L. 13
3.1.1 Invexity and generalized convexity . . . . . . . . . ... ... ... .. 26

X



Chapter 1

Introduction

In this chapter we present an introduction and background of the convex functions
and time scales.

Any closed subset of R is called time scale. The theory of time scales goes back to
German mathematician Stephen Hilger. Who introduced time scales in his PhD thesis
[24]. The main theme of time scales calculus is to unify integral and differential calculus
with that of finite differences and provides a formal courtesy to study the differences
between discrete and continuous analysis. The utilizations of time scales analysis are
very generous and has gotten a great deal of consideration lately. The far-reaching ones
among others incorporates the dynamic equations, which contains both differential and
difference equations, which are of curious interest in biology, mathematical modeling
and engineering. Other applications are in the fields of economics, networks, physics,
optimization which have come lately [26].

Many results concerning continuous analysis are carried over discrete analysis quite
comfortably but some seems to be fully clashing, the study of time scales helps us to
understand why such discrepancies occur between these two cases. For further study
of time scales it is referred to study [25, 11].

The idea of convexity is straightforward and characteristic, and can be followed back

to Archimedes regarding his well known estimation of 7. This thought has immediate



and roundabout effects in our regular day to day existence through its various appli-
cations in industry, business, medicines, art etc. The theory of convex functions is
a part of general theory of convexity since a convex function is one whose epigraph
is a convex set.

It is an essential theory which contacts pretty much every part of mathematics,
likely out of the blue we experience with this theory in graphical analysis in which we
learn the second derivative test in recognizing convexity of a graph. We likewise meet
this theory in tracing maxima and minima of a function of several variable. We can also
observe convexity in Mathematical programming, Optimization theory and engineering
etc. A great research work in this field has done by J.L.W.V Jensen |27, 28]. Also in
20th century enormous research was done by Hardy, Littlewood and Poyla [23] on
publishing first book in inequalities.

In the second half of the 20th century a number of generalizations of convex func-
tions have been made in mathematics and also in professional disciplines such as en-
gineering and economics. These generalizations were usually made from a particular
problem, the basic purpose of these generalizations was to weaken convexity conditions
as much as possible. Among these generalizations one of basic interest is invex func-
tions which were initially studied by Hanson [22| and named by Craven [13], Hanson
noticed that the convexity conditions in Kuhn-Tucker conditions for mathematical pro-
gramming problems can be weakened further. Some properties of invex functions were
studied by Ben-Israel and Mond [8]. The invexity requires the differentiability con-
ditions. In [40, 32, 46|, the class of Preinvex functions, not necessarily differentiable,
has been introduced. This calss contains convex functions as subclass. Like convex
functions the characterization of these functions in terms of invexity of epigraph is
possible. Some properties and inequalities like Jensen and Hermite-Hadamrd inequali-
ties were studied by Weir and Mond [43] , Noor |36], Yang and Li [46] and Mohan and
Neogy [32].

Dinu in 2008 [16, 17] investigated convex functions and some related inequalities like
Jensen and Hermite-Hadamard on time scales, latter Abe-i-kpeng in 2016 |1] studied

quasi-convex functions on time scales, however, a vast class of preinvex functions on



time scales has not been examined up until now, this proposal tries to incorporate these
capacities on time scales and presents Jensen and Hermite-Hadamard inequalities for
this class.

Chapter 2 covers few basic concepts related to the field of study. It includes the
study related to concepts of convex sets, convex functions their generalizations. An
introduction to time scales is also discussed here. Chapter 3 is devoted to the study of
Invex functions and their relation with generalizations of convex functions. Also the
detail review of invex sets and preinvex functions is incorporated here. In Chapter 4
different inequalities have been studied for convex functions and preinvex functions.
Also therein time scales versions of some inequalities are present. In Chapter 5 we
introduce the notion of invex set and preinvex functions on time scales and also we
have studied Jensen and Hermite-Hadamard inequalities for these functions. Chapter

6 incorporates the conclusion.



Chapter 2

Preliminaries

In this chapter, some prerequisite ideas and concepts are discussed that reader should
familiar with. It mainly includes some preliminary definitions of convex functions and
their generalizations. Also the relation between these generalizations has been shown

here.

2.1 Convex Functions

Definition 2.1.1. A set X C R” is said to be convex if, for every pair of points
uy, us € X, the segment with u; and uy as end points lies entirely inside X, otherwise
called not convex. Geometrically we can represent convex and non convex sets by

figures 2.1.1 and 2.1.2 respectively.

Figure 2.1.1: Convex set



Figure 2.1.2: Not Convex set

Formally a convex set can be defined in following way:

Definition 2.1.2. A set X C R" is convex if uy, us € X we have,

auy + (1 — a)ug € X for all a € [0, 1] (2.1.1)

Example 2.1.3. Some examples of convex sets are given below.
e Empty set and singleton sets are convex traditionally.
e R" is convex.

e The line through z, and in the direction of w : {y € R" such that y = x,+tu,t €
R}.

We want to characterize convex set in terms of convex combination. For this we
need to define convex combination.
A point u = auy + (1 — @)us is called convex combination of u; and us. The set of all

convex combinations of u; and wy is called as convex hull written as:

Conv{uy,us} = {au; + Pus : a + = 1}.

with

u — uy U2 — U

and g =

Ug — U Ug — U

o= for w € fui,us] and wy # us.

Definition 2.1.4. A convex combinations of finitely many points u; € R with ¢ =



1,2,3, ...,k is a point u of the form,
U= UM + U A2 + ...+ uk)\lm with M+ X+ ...+ = 1, A > 0. (212)

We are also interested in convex function, therefore, definition is given as:

Definition 2.1.5. Let X C R" be such that X is convex. A function @ : X — R is
called to be convex if for all s1,s0 € X and A € [0, 1] we get

D(Asy + (1 — N)sa) < AD(s1) + (1 — N\)D(s2). (2.1.3)

& is called strictly convex if the inequality is strict for A\ € (0,1) and s; # so.
For \ = %
51+ So
2

D(s1) + P(s2)

O( 5

) < Vs, 89 € X (2.1.4)

which is called Jensen convex function. A function @ is concave if —@ is convex and
is strictly concave if —@ is strictly convex.

A convex function can be defined geometrically as follows:
A function @ is convex if the chord connecting any pair of points in its graph rests on
or above its points. @ is known as strictly convex if the chord lies above its graph. A
concave function can be defined in the similar words but in opposite direction and can

be seen in Figure 2.1.3.
Example. &(r) = ax?® + Bz + v is convex if a > 0 and concave if a < 0.

Epigraph of a function @ is defined as,

epi® = {(z,5) € X xR : &(z) < p}. (2.1.5)

epi® is convex set in R"™! if and only if @ is convex function [45].

In a similar way, hypograph of @ is defined as,

hypo® = {(z,8) € X xR : &(x) > S} (2.1.6)

6
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convex o) | concave

I R

Figure 2.1.3: Convex and concave function

If hypograph of @ is convex then @ is concave, See in [29].

Epigraph

Hypograph

Figure 2.1.4: Epigraph and Hypograph
If a function @ is differentiable on X° C R"(interior of convex set X) then @ is

7



convex on X° if and only if,
P(s1) — P(s2) > (51 — 52)'VP(s5) for all 51,55 € X, (2.1.7)

where V@(sy) calculates gradient of @ at s, € X°.

Some basic characteristics of convex functions follow from |33].

Theorem 2.1.6. If & : X — R be a convez function on X C R™(where X is convez),
then,

1) FEvery local minimum of @ is global minimum.
2) The set C = {u : u is minimum of P} is convexr set.
3) If @ is differentiable on X°(Interior of X), then every stationary point ss

is global minimizer, that is, V®(sg) =0 = D(s9) < D(s1) Vs; € X°.

Theorem 2.1.7. [12] A necessary condition for a convex function @ defined on con-
ver set X C R™ is that, the lower level set Lg(0) = {u € X : ®(u) < 0} is convex for
every 6 € R.

Note. The condition in Theorem 2.1.7 is not sufficient generally. For example
&(x) =logz, x€R

has lower level sets convex but is not convex.

2.2 Quasi-Convex and Pseudo-Convex Functions..

One way to generalize the convexity of a function is to relax convexity conditions,
and consider category of functions wherefore the convexity of lower level sets is suffi-
cient. These types of functions are called quasi-convex functions. Clearly we can see

that this class strictly contains the class of convex functions.



Definition 2.2.1. A function @ : X — R (where X is convex) is called quasi-convex

on X if its lower level sets,
Le(0) ={ueX:P(u) <46} (2.2.1)

are convex for every 0 € R. @ is quasi-concave given that —® is quasi-convex, that

is, its upper level set,
Up(d) ={u e X:P(u) >} (2.2.2)

are convex for every 0 € R.
We can prove that a function @ : X — R is quasi-convex on X if and only if

YV up,us € X and a € [0, 1]
O(au; + (1 — a)us) < max{P(uy), P(us)}. (2.2.3)

If there is strictness in the above inequality then @ is said strictly quasi-convex
function.
We have picked up the following example from [12].

b w0

u?

Example. Define &(z) =
0, uwu=0.

We find that @ is quasi convex but it is not convex.

Quasi-convex functions on contradiction to convex functions can have local mini-
mum points that are not absolute and that the stationary points of a (differentiable)
quasi-convex functions are not necessarily global minimum points.

We have the following theorems from [12].

Theorem 2.2.2. Let K C R" is convex set, and & : K — R,

i) @ is convex implies that @ is quasi-convex.



ii) If @is quasi-convex on K, then the set {u : v is global minimum point of @}

1S convex.

The following theorem (Theorem 1.4 [33]) characterizes the quasi-convexity of differ-

entiable functions.

Theorem 2.2.3. Let & : K — R (where K is convex) be differentiable function. The

necessary and sufficient condition for @ to be quasi-conver on K is
Uy, U € K, @(ul) S @(Ug) — (u1 - UQ)TVQD(Ul) S 0. (224)

holds.
In [39] pseudo-convex functions are also introduced and defined as;

Definition 2.2.4. A function @ : X — R (X is open) is said to be pseudo-convex
if for all uy,us € X and a € (0, 1), then,

D(uy) < P(ug) = P(aug + (1 — a)ug) < P(uy) + (o — 1)k (ug, us) (2.2.5)

where k(uy,u2) > 0.

Among the major properties of convex functions of critical point being a global
minimum point does not hold for quasi-convex functions, therefore, a wider class of
differentiable functions which contains the class of differentiable convex functions was

introduced by Mangasarian in [31].

Definition 2.2.5. A differentiable function @ : X — R (X C R™ is open) is called

pseudo-convex if for every uy,us € X
(Ul — UQ)TV¢(U2) >0 = @(ul) > @(Ug), (226)

or, equivalently

D(uy) < Plug) = (ug — up)" V(uy) < 0, (2.2.7)

10



For this class the stationary point y'(V®(y') = 0) is for sure global minimizer.

Theorem 2.2.6. [12] Let & : € — R (where € C R" is open convex) be differentiable

function.

1) If c 1s critical point of @ and @ 1is pseudoconver, then c is global minimum.
2) In case @ is pseudoconver, afterwards @ is quasi-conver.

3) If Vo(u) # 0, for all u € €, once ¢ is pseudoconvex implies Y is quasi-

convex and conversely.

2.3 Time Scales Theory

In this section, we discuss focal ideas and meanings of the time scale analysis started
by Hilger in 1988 under the supervision of Bernd Aulbach. All through this part the
likenesses and contrasts in considering the time scales as in the R and Z setup are
commented. Consideration is given to the ideas, for example, continuity, rd-continuity,
differentiability which are relevant in the analysis of hybrid continuous and discrete
systems. Basic concepts of convex analysis are briefly discussed.

A time scales T is non void subset of R which is closed (with subspace topology
induced from R). Therefore, the real numbers R, integers Z, natural numbers N, any
closed interval [a,b], are time scales. Further, the set [1,3] U [5,6] U No(Np is set of
non-negative integers), the Cantor set are also some examples. In contrary Q (the set

of rationals) is not a time scale.

Operations on time scales [11]

The forward jump and backward jump operators speak to the nearest point in the
time scales on the right and left of a given point x individually.

Formally we define as below.

For x € T, the forward jump operator o : T — T is defined by

o(x)=min{peT:p>uz} (2.3.1)

11



and the backward jump operator p: T — T by

plx) =maz{peT:p <z} (2.3.2)

We set the convention as, inf () = supT and sup () = inf T.

Classification of points. Let T be a time scale, a point € T is classified as

below,

i) x is termed as right scattered, if o(z) > .

ii) x is cited to be left scattered, if p(x) < x.

iii) x is isolated, if p(z) < x < o(x).

iv) x is right dense, if © < mazT and o(x) = x.

V) If £ > minT and p(x) = z, then, z is left dense.

vi) If = is both left and right dense, then x is said to be dense.

The Figure 2.3.1 is taken from [11] which classifies the points of time scales.
The functions u,v : T — [0, 00) defined by

p(x) =oc(x) —x and v(x)=z— p(zx)

are called the forward and backward graininess functions respectively.

Example 2.3.1. For T = R. We have o(z) =z and p(z) = z, that is, every z € T is
dense and p(z) =0 andfor T =Z, 0(z) = x+1 p(t) = z—1 with pu(z) = z+1—z = 1.

We see that every x € T is dense and x € Z is scattered.

The Table 2.3.1 gives forward and backward jumps for different time scales.

12



n t; is left-dense and right-dense
t
4 o t2 is left-dense and right-scattered
t2
. ¢ t3 is left-scattered and right-dense
ts
. ¢ & t4 is left-scattered and right-scattered
tq

(t) is dense and t4 is isolated)

Figure 2.3.1: Classification of points.

T o(z) p(x)
R x, Vo x, Vo
Z r+1, Vo r—1, Vo
hZ, h > 0 x4+ h, Vo x—h, Vo
hZ., h < 0 xr — hVx x+ hVx
Nf, ke N <1+(“/§>k ({“/E—l)forx;«éland 1 forz=1
¢ U{0}, ¢>1 qrVzx Sforz#land 1 forz=1
pNou {0}, p € (0,1) > forxz#landl forz =1 px forx #0 and 0 forz =0

Table 2.3.1: Jump operators.

The next table shows forward and backward graininess for time scales in above
table.

13



’ T p() v(x)
R 0 0
Z 1 1
hZ, h > 0 L i
hZ, h <0 —h -
k . K/
Nk, keN <1_|_\k/§> -1 z <\/§ 1> forx #£1,
andx — 1 forx =1
z _ I(l—%)form#l
roha #la—1) r—1forx=1
" m T wi=p fora £0
puU{0}, pe(0,1) £ forz # 1and 0 for v = 1. v fore—0

Table 2.3.2: Graininess functions

Let I = [z,y] C R with z,y € T, then the time scale interval is defined as,

We define the sets:

Tk

It=zylr=z,yNT={ueT:z<u<y} (2.3.3)
(
T — (p(maxT), max T|, if maxT < oo;
(2.3.4)
T, otherwise.
(
T — [minT,o(minT)), if minT > —oc;
(2.3.5)

Ty =

T, otherwise.
\

Example 2.3.2. Let T = { :n € N}U{0}. Then supT =1 and p(1) = 5. Therefore

WZT—(lqz

29

{% ‘ne N\{1}} u{o}.

If [r, s]r be a time scale interval then,

[r,s], when sis left-dense in T;

[Tv S]T =

[r,s), when sis left-scattered inT.

14



2.3.1 Time Scales Calculus

In this section we discuss delta and nabla calculus on time scales, we can also find
diamond-alpha calculus in various books on time scales for instance we refer interested

readers to [11].
Definition 2.3.3. The number &> (z,) (if exists) having the property that for every
e > 0, there is a neighborhood Or of z( so that

|D(o(z0)) — P(s) — O™ (o) [0 () — s]| <elo(zo) —s| for all s€Op.  (2.3.6)

is called the delta\Hilger derivative of @ : T — R on the point z.
The number @V (z,) (if it survives) having the property that for every ¢ > 0, there
is a neighborhood Ut of z( so that

|P(p(x0)) — P(s) — PV (o) [p(z0) — s]| < elp(xo) — s| for all s € Ur. (2.3.7)

is called the nabla derivative of @ : T — R on the point x,.

We say that @ is delta differentiable on T* if #*(z) exists for all x € T* and nabla
diffrentiable accordingly.

For T = R the delta and nabla derivatives are classical derivative.
Theorem 2.3.4. If delta (nabla) derivative of a function @ exists, then it is unique.
The following theorem can be seen in [11].

Theorem 2.3.5. A function @ is delta differentiable at point xo with

P2 (o) = qj(";gz; — fo(%), (2.3.8)

if @ is continuous at right-scattered point xg.

15



If xq is right dense, then @ 1is differentiable at xy if and only if the limit

P(x0) — D(s)

lim (2.3.9)
s—To o — S
exists as a finite number. In this case,
o -
&5 () = Tim 2T = 8(5) (2.3.10)
s—xo  Xg— S
A simple useful formula for delta diffrentiable @ is
(o (x)) = P(x) + p(z)d> (). (2.3.11)
Similarly, for nabla derivative
o — P
zo — p((20))
for continuous @ at left-scattered point zy and
o -
& (o) = lim 218 =), (2.3.13)
S—xo To— S
for left-dense point xy. Here the useful formula becomes
d(p(z)) = &(x) — v(z)PY (z). (2.3.14)

A time scale T is said to be regular if
e o(p(z)) ==z, for allz € T.
e p(o(x)) =z, for allz € T.

We move toward the product and quotient rule of delta derivative. All these results

also hold for nabla derivative.

16



Theorem 2.3.6. Suppose @, ¢ : T — T are delta differentiable on T*. Then

(DP)> = P2+ P> = D™ + P27

G\D PG — BPA
) ——% —

By using product rule we can have,

(") = @2y (7).

p=0

Let &(x) = (x —a)™ for a € R and m € R. then ¢2(z) = 37" Nz — a)*(o(x) —

= 2k=0
a)™ 7 F and (3)%(z) = — S (x_al)m,k (U(m)_la)kﬂ.
T o(z) p(z) o8
R x, Vo 0 P ()
T r+1, Vo 1 AD(z)
hoZ, 6 >0 x+0, Vo ) w
pPPU{0}, p>1| prVe z(p—1) 2Apr)-9(e)
héZ, 6 <0 r— 0V —5 —95(5”*5_)(;@(’3)
N% (\/E—i- 1)2 14 \/5 ¢((1+1/+53/2%745(x)

Table 2.3.3: Delta derivatives

Definition 2.3.7. The function @ : T — R is called regulated if its right-limit exists

finitely at right dense points while left limit exists and is finite at left-dense points.

Definition 2.3.8. A function ¢ : T — R is said to be rd-continuous if it is con-
tinuous at right dense points in T and at left dense points in T its left limit ex-

ists (finite). The set of all rd-continuous functions is denoted by C,; = Cy4(T) =

17



Cra(T,R).

Definition 2.3.9. A function @ : T — R is said to be Id-continuous if it is contin-
uous at left dense points in T and at right dense points in T its right limit exists

(finite). The set of all rd-continuous functions is denoted by Cjy = Cj4(T) = Cju(T, R).

We only shall discuss delta integrals on time scales with keeping in mind that all

these results hold for nabla integrals also.

Definition 2.3.10. Let & : T — R be a continuous function, it is called pre differ-
entiable with (region of differentiation) D if,

o D CTF
e T*\D is countable and has no right scattered member of T,
e and @ is differentiable at each ¢ € D.

For delta differentiable function @ and a,b € T, we define the Cauchy integral by
b
/ PA(DAL = B(a) — B(D). (2.3.15)

Theorem 2.3.11. (Ezistence of anti derivatives). To every rd-continuous function

there is an anti derivative, in particular if to € T, then F taken by

F(z) = /w &(s)As  forall teT.

Zo
18 anti derivative of @.

Theorem 2.3.12. Ifa,b,c e T,a € R and &, ¢ € C,4, then
L [1(@(x) + ¢(x) Az = [} &(x)Az + [ d(x)Ax,
2. [Pad(z)Ar = o [ d(x)Ax,
3. [Pd(2)Ax = — [ d(x)Ax,
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4 ["d(x)Ax =0,

5. [Po(x)Ar = [Cd(x)Ax + [ B(x)Az, a <c<b,
6. ] I @(I)Agg‘ < ["\o(x)| Az,

7. If &(x) > 0V x, then [’ &(z)Az > 0.

Theorem 2.3.13. If & € C,; and v € T*, then

Integration by parts is given by

/ B(2)6° () Az = B(2)(x)[t — / B2 ()6 () Ax. (2.3.16)

We can also read infinite integrals as,

> b

/ &(r)Ar = blim P(x)Ax. (2.3.17)
—oo J,
If T = R, then
b b
/ O(x)Ax —/ O (x)dx.
If T =7, then

b b—a
/ b(x)Az = d(x).

Generally integration on discrete time scales can be seen by

/ (x)Av= Y O(z)u(x). (2.3.18)

z=€(a,b)

Now we focus our attention toward exponential and logarithmic functions on time

scales.
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2.4 Exponential, Logarithmic and Convex Functions

on Time Scales.

In this section we discuss the exponential function, natural logarithm and convex func-
tions over time scales.

Let v : T — R be such that for all z € T, 1+ p(z)y(x) # 0 then, « is called
regressive. We define R to be the set of all regressive and rd-continuous functions.
The set RT = {y € R: 1+ u(x)y(x) > 0, for allz € T} denotes all positive regressive
and rd-continuous functions. It can be easily seen that R forms an abelian group
under the operation @ defined by y@®  := v+ + uvyd. If v € R, then the exponential
function can be defined by

ey(z,u) = exp(/x CH(T)(v(r))Ar> , for x € T,u € TF, (2.4.1)

where (,(w) is cylindrical transformation, which is defined by

Cu(w) = 8 | (2.4.2)

o [ —— (2.4.3)

Here © defines the subtraction on the set of regressive functions defined by

7048 =7 (89). (2.4.4)

The following properties can be seen in [11].
Theorem 2.4.1. If 7,0 € R andt, € T, then
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1 ey(z,2) =1 and e (z,y) = 1;

2 ey(0(2),y) = (1 + p(z)y(2))es (x, y);
3 o = for(T,y) = ey, 2);
4 a6 = el y);
5 ey(@,y)es(x,y) = eyas(2, y);
6 if v € M, then e, (z,2,) > 0 for all z € T;
7 €5 (1, 25) = y(w)ey (, 20);
R
The following table taken from [9] represents exponential function in different time
scales.
T ealT,,) zo | () ey (z, o)
T enl—z0) 0| 1 &
Z (14 a)*=® 0 1 27
pZ (1 + ap)l@—w)/p 0 1 (1+p)=/»
1z, (1 4 &)rta—zo) 0] 1 Kl + %ﬂ ’
N —x ETES
[ U] G | Ve H
™ 1| s ST
N2 0 1 2V (/1)
{Chap i neNH (M) v =5 |0 1 ndla=30;

Table 2.4.1: Exponential functions

The following result is referred as substitution rule and can be found in [11].
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Theorem 2.4.2. Let v: T — R be strictly increasing and T = v(T) be atime scale.
If & : T — R be an rd-continuous function and v s differentiable with rd-continous

derivative, then for a,b € T

b v(b) B
/ (x)v™ (2)Ax = / (@ov ) (y)Ay, (2.4.5)

(a)

or,

b v(b) 3
/ d(z)vY (z)Vr = /( | (®ov ) (y)Vy. (2.4.6)

Substitution rule for decreasing fnction v : T — R is given and proved in [4]. The

result stated as follows:

Theorem 2.4.3. Let v : T — R be strictly decreasing and T = v(T) be a time scale.
If ® : T — R be a continuous function and v is differentiable wit rd-continuous

derivative, then for a,b € T
b v(b) B
[ @ wac= [ @ov vy, 247
a v(a)

or,

b v(b) B
/ &(z)(—vV)(2)Vz = /( | (@ ov ) (y)Ay. (2.4.8)

We refer the reader to consult [11] fo more and detailed calculus of time scales.
Moving toward logarithmic function on time scales we must refer to an open ques-

tion asked by Martin Bohner in [10].

Definea’nice” logarithmic function on time scales.

To answer this open problem Dorota Mozyrska and Delfm F.M. Torres in [34]

discussed natural logarithm and its properties.

Definition 2.4.4. Let T be a time scale with 1 € T, there is atleast one x € T such
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that 0 < x # 1. The natural logarithm is defined as
1
Ly = / -As, z € TN(0,+00). (2.4.9)
L s

The properties and examples of defined natural logarithm can be seen in [34].
Now we pay our attention to convex functions and some related inequalities on time

scales. Convex functions on time scales are discussed in [34, 16|

Definition 2.4.5. [16] A function @ : T — R is called convex on Ir, if for ¢,s € Iy =
INT (with I be an interval in R) and a € [0, 1] such that ot + (1 —a)s € It we have,

D(at+ (1 —a)s) < ad(t) + (1 — a)d(s). (2.4.10)

& is called strictly convex if the inequality is strict and o € (0,1). @ is concave
if —@ is convex.

In [16] (Remark 3.2) Dinu showed that (2.4.10) is equivalent to definition of con-
vexity given by Mozyrska and Torres in [34], that is

A continuous function @ : T — R is said to be convex on It (where It is time

scale interval) if for all ¢;,t5 € It

(ty — )D(ty) + (ty — t2)D(t) + (t — t1)P(ty) >0, t € Ir. (2.4.11)
@ is called concave if the inequality reverses. The following theorem can be seen in
[16].

Theorem 2.4.6. A differentiable function @ : It — R is convex (concave) on Ir, if

@2 is non decreasing (non increasing) on IX.

More properties and examples of convex functions on time scales can be studied
in [34, 16].
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Chapter 3

Invex and Preinvex Functions

3.1 Invex Functions

Hanson in [22] pointed out that the sufficiency of Krush-kuhn-Tucker conditions and
weak duality could be obtained by substituting the linear term (u; — uy), appearing
in convexity for differentiable convex functions, by an arbitrary vector valued func-
tions, usually denoted by w(uy,us) and also called “kernel” and Craven in [13] named

these functions invex functions abbreviation for “Invariant Convex”.
Definition 3.1.1. A diffrentiable function f:€ — R (with € C R" be an open set) is
called invex if there exists a vector function w : € x € — R" such that,

flur) — f(ug) > @w(ur, up) V£ (uy), Yuy, us € K. (3.1.1)
It can be observed that the specific class of (differentiable) convex functions is obtained
from this group by making w(uy, us) = uy — us.

In [49], functions with stationary points as global minimizers are observed and
their applications in mathematical programming. In [14] Craven and Glover proved

that the class of invex functions is equivalent to the class of functions whose sta-
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tionary points are global minima. The following theorem was first stated Crave and

Glover.

Theorem 3.1.2. Th necessary and sufficient condition for a function f to be invex

18 that every stationary point s global minimum.
The proof of this theorem can be directly seen in [14, 33].
Corollary 3.1.3. A function f with no stationary points is invewz.

Definition 3.1.4. If for a function f:R"” - R
@(u, ) 'Vfv) >0 = f(u) — f(v) >0. (3.1.2)
holds, then it is called pseudoinvex, whereas, f is quasiinvex with respect to w if,
flu) = fv) <0 = w(u,v)'Vf(v) <0, (3.1.3)

holds.

3.1.1 Invexity with other Generalizations of Convexity

Here the relationship of invexity with other generalizations of convexity is discussed.
The counterpart of convexity and generalized convexity is, concavity and generalized
concavity receptively, same for invexity is incavity.

Firstly, note that:

1. A function is differentiable and convex then, it is invex by taking (w(z,y) =
x — y) but not converse. Here we take, for example, ®(x) = log(z), z € R,

which is invex, because of no stationary points but it is not convex.

2. A differentiable pseudo-convex function on R" is also invex, but not in opposite

direction if n > 1. For n =1 the two classes coincide. (Remark 2.3 [41]).
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3. There exist invex functions which are not quasi-convex and there are also func-
tions which are quasi-convex but not invex. In other words, the intersection of
the classes of invex functions and quasi-convex functions is non empty (Remark

2.4 [41]).

4. In light of theorem of stationary points the groups of pseudoinvex and invex

functions is one and only one.

This relationship can be understand by diagram given in [8].

Pseudoconvex

Quasi-convex

Cuasi-Invex

Figure 3.1.1: Invexity and generalized convexity

3.2 Preinvex Functions

Since invexity requires the diffrentiability conditions, in [8, 44| a class of preinvex

functions, not necessarily differentiable was introduced.

Definition 3.2.1. (Mohan and Neogy [32]) A subset S C R™ is called invex with to
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w: R*" x R" — R™ if

v+ aw(u,v) €S u,v €S, acl0,1]. (3.2.1)

From definition we can conclude that S has a path originating from u and is limited
to S. It would not be necessary that v should be one of the end points of this path.
However, if we require that u should be end point then we define w(u,v) = u — v,
which reduces the definition to convexity.

We pick up the following example of invex set from [32].

Example 3.2.2. S = [-7,—-2] U [2,10] is invex set in R respecting w : R x R — R
defined by,
U — v, uv >0
w(u,v) =< 7 v, u>0,v<0: (3.2.2)

More examples of invex sets can be found in [43].
The following proposition from [32] enables us to construct invex sets in R", starting
from invex set in R. However, the general problem of recognizing the classes of invex

sets in R™ which is useful in optimization theory remains open.

Proposition 3.2.3. Suppose K1 C R, Ky C R such that they are invex with respect to

wy and wo respectively. Then K, x Ky C R? is invex respecting w defined by

uy, v wq(ug,v
w( b ) — ( 1, 01) ) (3.2.3)
Uz, V2 wa(uz, v2)
Example 3.2.4. Suppose we are given with two invex sets K; = [—6, —3] U [1, 6] and
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Ky = [-7,—1] U [2,13] respecting w; and wy respectively defined by

( (
up — vy, uvy 2> 05 Up — Vg, Uy > 0;
= —6—v, u>0,0,<0; AdT=9 70y uy >0, vy <0;
1 — vy, up <0, v > 0. 2 — vy, uz <0, vg >0,
\ \

w1
then we can easily prove that K; x K5, is invex with respect to w = ( )
W2

The following definition is adopted from [43].

Definition 3.2.5. Let @ be a function defined in invex set K respecting w. @ is said

to be preinvex with respect to w if],
D(v+ Aw(u,v)) < AP(u) + (1 — N)P(v), Vu,v € K, Y\ € [0,1]. (3.2.4)

We can see that, the class of convex functions is strictly contained in preinvex

functions by taking w(u,v) =u — v.

Example 3.2.6. [40]. Let #:R — R be given as @(u) = —|u|, then @ is preinvex

respecting

v—u, uv>0;
w(u,v) =
u—uv, uv<O0.

Like pseudo-convex and quasi-convex functions we also have prepseudoinvex and

prequasiinvex functions. Let us look at them one by one with relation with preinvexity.

Definition 3.2.7. Let K be an invex set respecting some w. A function @ is said

to be prepseudoinvex respecting w if,
D(u) < P(v) = P(v+ aw(u,v)) < P(v) + ala — 1)b(u,v) with a € (0,1), (3.2.5)
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where b is positive function.
The following result can be seen in [41].

Theorem 3.2.8. A function @ is preinvex with respect to w on some invex set K only

if @ is prepseudoinver respecting the same w.
Definition 3.2.9. Let K be an invex set with respect to w. A function @ is said to
be prequasiinvex on K if we have,

O(v+ aw(u,v)) < maz{P(u),P(v)}, (3.2.6)

for all u,v € K and « € (0,1).

It can be seen in ([6], p.60) that a prequasiinvex function on K possesses the
minimum property on every segment [v,v + w(u,v)] for all u,v € K.
Like quasiconvex functions prequsiinvex functions can also be characterized by it’s

lower level sets. We have the next propositions from[41].

Proposition 3.2.10. A function & : K — R (where K is invexr respecting w) is

prequasiinver respecting wonly if it’s lower sets are invex respecting .

Proposition 3.2.11. Let @ : K — R (where K is invez respecting w(u,v) # 0 whenever
u # v) is prequasiinver respecting w. Then every local minimum of ® is absolute

manimum and the set of all these points in invex respecting w.
The following theorem is proved in [8].

Theorem 3.2.12. If @ is differentiable and is preinvex with respect to some w then,

@ is invex with respect to the same w.

The converse of the above theorem is not true in general. It seems that prein-

vexity is stronger condition, as shown by Pini [41] by the following example.
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Example 3.2.13. The function &(u) = u? is invex respecting @ defined by

2 2

S v#

2v

0, v =0.

but not preinvex.

In [32], Mohan and Neogy imposed a condition called “Condition C” on w with
which a differentiable function which is invex on K, respecting w, is also preinvex on
K.

Let w : R™ x R* — R™; we say the function w satisfies condition C if for any
u,v € K

w(v, v+ Aw(u,v)) = —Aw(u,v), (3.2.7)

and

w(u, v+ Aw(u,v)) = (1 — Nw(u,v), (3.2.8)

for all A € [0, 1].

An important consequence of Condition C is,

w(v+ ayw(u,v),v+ asw(u,v)) = (a1 — ag)w(u, v) ag, ay € [0, 1]. (3.2.9)

The following results are taken from [32].

Theorem 3.2.14. Let K be an invexr set respecting w, with w satisfying Condition
C and O be an open set such that K C O. Let & : O — R be differentiable function,

then we have the following,
o & is inver on K respecting w only if @ is preinvexr on K respecting w.
o O is quasitnver on K respecting w then @ is prequasiinver on K respecting w.

The following results show us the relation of prepseudoinvex functions with quasi-

invex and prequasiinvex functions.
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Theorem 3.2.15. Let K C R" be an tnvexr set with respect to some w and @ : R" —

R be differentiable and prepseudoinvex on K, then @ is quasiinver on K.

Theorem 3.2.16. If ® : R" — R be prepseudoinvex then @ is prequasiinvex respecting

the same .
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Chapter 4

Inequalities

This chapter presents discrete and integral versions of some inequalities for convex
functions and same inequalities for preinvex functions and after that we discuss unified

version of inequalities for convex functions on time scales.

4.1 Inequalities for Convex Functions

Let us first start with Jensen’s inequality taken from [30].

Theorem 4.1.1. Let & : I = [z,y] — R is convex function, suppose ux € I, k =
1,2,3,...,n and a, € RT k € {1,2,..,n} then the following holds

@(ZZ=1 O"““’“) < 2o uP(u) (4.1.1)
ZL a /o ZL Q

If Y i  ax =1 then

@(iakuk> < iak@(uk). (4.1.2)

In literature this is called Jensen’s Inequality. It was proved by J.L.W.V Jensen
in [27, 28].
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He applied the well-known inductive approach used via Cauchy (1821) within the
proof respecting the arithmetic-geometric mean inequality. However, inequality ap-
pears, under specific assumptions, plenty earlier. Jensen himself pointed out in the
appendix in accordance with his paper that O. Holder proved inequality in 1889,
supposing to that amount @ is a doubly differentiable function on I such as ¢"(u) >
0 on that interval. This assumption is of the case about double differentiable func-
tions equivalent together with the consideration that @ is convex.The above inequal-
ity was once proved, after Holder, the usage of the identical assumptions by R. Hen-
derson in 1895. However, namely a long way again as much 1875 a specific cas of
the above inequality, the case when o, = 1, V& =1,2,..,n was proved by J. Grolous
by using an utility of the centroid method. This is, so far so we may want to find, the
first inequality for convex functions to show up within the mathematical literature.
J. Grolous also introduced the assumption that ¢”(u) > 0, but that may be viewed
from the textual content itself as it is enough according to expect as @ is a convex
function, in the geometric sense (see [37]).

It is also known that the assumption a, > 0 can be relaxed at the expense of
restricting uy, k = 1,2,3,...,n more severely [42]. Namely, if a = (a1, @9, ..., ) is

a real n-tuple such that for every j € {1,2,3,...,n},

0<> <> ay, (4.1.3)

then for any monotonic n-tuple u = (uy, us, ..., u,) € I" (increasing or decreasing)
we get & = Y ., agxy € I, and for any function @ convex on I still (4.1.1) holds.
Under such assumptions this inequality is called the Jensen—Steffensen inequality for
convex functions and (4.1.3) are called Steffensen’s conditions due to J. F. Steffensen.

The Jensen inequality for integrals takes the form as follows, see [27].

Theorem 4.1.2. Let ¢ € C(I,R) is convex on I CR and g € C([z,y],R), with
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x,y € R and v <y, then,

@(fj’g(u)dU) - J2 2(g(u))du.

4.1.4
- — (4.1.4)

Now we present an inequality that is sharply related in accordance with Jensen in-
equality. It is Hermite-Hadamard inequality(also called the first fundamental inequal-
ity) for convex function. It was once first established by Hermite in 1881. But, it
was additionally proved by Hadamard of 1893 whoever was no longer aware of Hermit’s
work. Therefore, in general, this inequality is called Hermite-Hadamard inequality and

offers to us an estimate for the integral arithmetic mean:

@(”’"1 ”2) <1 / Pu)dy < L) FP(x2) (4.1.5)

2 T X9 — I 1 2

with 1,29 € R with 27 < 9 and @ is convex function on [z1, zs].
Hadamard’s inequality for convex functions has received renewed attention in re-
cent years and a remarkable variety of refinements and generalizations have been

found, see [19, 20, 18, 21|.

Theorem 4.1.3. A function @ is convexr on conver set K = [xq,xs] if and only if it

satisfies the Hermite-Hadamard Inequality (4.1.5).

Now we move toward two useful inequalities with enormous usage: Holder’s and
Minkowski’s Inequality. We shall also present some of their variants. For this purpose
we firstly introduce Young’s Inequality [47, 48].

In 1912, Young presented the following inequality called Young’s inequality

zy < /Ow & (u)du + /Oy(@_l)(v)dv, (4.1.6)

for any real valued continuous function, @ : [0,00) — [0, c0) satisfying @(0) = 0 with
& is strictly increasing on [0,00) and z,y € [0,00). The equality holds if and only if

y = f(x). The classical Young’s inequality is a useful consequence and can be obtained
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by setting ®(u) = uP~'with % + % = 1 and is given as ,

p q
< —+ L (4.1.7)
p q
Equality holds if and only if 2P = 9.

The Holder’s inequality can be found in [15], which is states as follow:

Theorem 4.1.4. Let uq,uo,...,u, and vi,vs,...,v, be any positive real numbers and

p,q > 1 such that %%— % = 1. Then,

n n 1 n
> q
3wy < ( uf,;)”(z ;g) . (4.1.8)
k=1 k=1 i=1
Equality occurs if and only if
uy _uy g
T

The inequality holds in reverse if p < 1andp # 0.

In integrals Holder’s inequality takes the form

/: |D(u)g(u)|du < {/:\qﬁ(u)v’du}’l’[/:Wu),qdu}i’ (4.1.9)

where z,y € R and &, ¢ € C([z,y],R).
In the above theorem if we let p = ¢ = 2, then the inequality is called Cauchy’s
inequality. The Minkowski’s inequality can be seen in [15], which states that,

Theorem 4.1.5. Let uy,us,us, ..., upyand vy, Vg, vs, ..., v, be posilive real numbers and

p > 1. Then

n n 1 n 1

(j{:(uk-+zagp) p)5-+ <2£:z£>;. (4.1.10)

I/\mH
—
g

?S
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Equality holds if and only if

Uy U2 Up,

U1 (%) Un

The integral version of Minkowski’s inequality can be seen in [23|, which is given

as,

/|q5 ) + B(u) |pdu% /|qs |pdu /|¢ |du . (4.1.11)

4.2 Inequalities for Preinvex Functions

Now we want to see some inequalities of convex functions for preinvex functions. We
shall discuss Jensen and Hermite-Hadamard inequalities with some refinements for
preinvex functions but before that we give a theorem under validity of Condition C
which shows us where preinvexity coincides with convexity. The results in this section

are adopted from [40, 36].

Theorem 4.2.1. Let @ be a preinver function on inver set K with respect to w sat-
isfying condition C. Then the function @ is conver on the segment |[u,u + w(v,u)]

for every pair of points u,v € K.

Corollary 4.2.2. Let 0 < aq,as, s, ...a, < 1 be such that

zn: . = 1.
k=1

Let
{tk}ZZI - [07 1]7

and

t= i Oéktk.
k=1
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Then under the hypothesis of the theorem( 4.1.1) @ satisfies the inequalities,

D(u+ tw(v,u)) < i ap®(u+ trw(v,u)) < (1 —6)P(u) + tP(u + w(v,u)), (4.2.1)
k=1

and

@(u +3 a1 - ty)w (v, u)> < 1d(u) + (1 — )D(u + D(v, u))

< B(u) + B(u+ w(v,u) = 3 B + hw (v, u)) (4.2.2)

for every pair of points u,v € K.

The first inequality in (4.2.1) provides Jensen inequality for preinvex functions, we

can write it as
n

@(Z ar(u+ tyw(v,u)) < Z P (u + tyw(v,u)).

k=1 k=1

Theorem 4.2.3. Let S C R be invex set regarding some w that satisfies condition

C. Assume @ : S — R be a preinvex function on S with regards to the same w. Then
the following holds

wo(ug, uq) 1
@(u + ) < /
' 2 e (uz, ur)l| J,

for every pair uyus € S with w(ug, uy) # 0.

uytw(ug,ug

) B()du < D(uy) + @(u;—l— w(u2,u1))’
(4.2.3)

1

New we look at a refinement of this inequality and with that we shall close this

section.

Theorem 4.2.4. Let S CR be inver set reqarding some w that satisfies condition

C. Assume @ : S — R be a preinvexr function on S with regards to the same w.
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Then the following holds

@(u + M) < t@(u + Ew(v,u)) +(1— t)@(u + %w(v, u))

2 2
< 1 u+w(v,u) B .
- W/u (u)du (4.2.4)
< tP(a) + (1 —t)P(u+ w(v,u)) + P(u + tw(v,u))
- 2
< P+ @(u2+ w (v, u))

for every pair u,v € S with w(v,u) # 0, and t € [0, 1].

4.3 Inequalities on Time Scales

The purpose of this section is to present extension of inequalities on time scales that
are discussed in previous section.

The following are unified versions of Young’s inequality and are adopted from [45, 3]

Theorem 4.3.1. Let @ be rd-continuous on [0,c]r = [0,c] N'T for ¢ > 0, strictly
increasing, with ®(0) = 0. Then for x € [0,c|r and y € [0,2(c)] the inequality

xy < /095 @7 (u)Au + /Oy(ép_l)a(v)Av. (4.3.1)

For T = R this yields classical young’s inequality.
and for T = Z and &(u) = u, this theorem says that

I
L

ry <y (u+1)+ _ (v+1)= %x(m +1) + %y(y +1). (4.3.2)

<
Il
o

S

Theorem 4.3.2. Let T be any time scales (unbounded above) with 0 € T. Further,

suppose that @ :[0,00)r — R is a real-valued function satisfying
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e O is continuous on [0,00)r, rd-continuous at 0;
o O is strictly increasing on [0,00)r such that ®(T) is also a time scales.

Then for any x € [0,00)1 and y € [0,00)s), we have

20y < /Om[@(u) + 07 (u)|Au + /Oy[@l(v) + & (o (v))]Av (4.3.3)

with equality if and only if y = @(z).
Many more versions of Young’s inequality can be found in literature. Now let us

look at Holder’s inequality which can be found in [2].

Theorem 4.3.3. Let z,y € T. For rd-continuous @,¢ : [x,y] — R we have

/|qs )| Au < /|qs 2k /|¢ \mu | (4.3.4)

Wherep>1and%+$:1.

The proof of this is similar as that of classical Hélder’s Inequality.

For p = ¢ = 2 this inequality yields Cauchy inequality for time scales.

Next we present unified version of Minkowski’s Inequality which can be seen in [2]

and it’s proof is similar to that of Minkowski inequality in classical version.

Theorem 4.3.4. Let x,y € T. For rd-continuous functions @, : [x,y] = R we have

/ B(u) + o) Au)” / D(u) P Au)” / B(ulau)”

There seems no big difference between these inequalities on time scales and that in
classical inequalities.

Let us move toward other inequalities for convex function to see that there is dif-
ference or not and after that we are closing this chapter.

Firstly we see Jensen Inequality from [2].
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Theorem 4.3.5. Let ¢ € Coy([x,y], (r,s)) where z,y € T and r,s € R. If ¢ €
C((r,s),R) is convex then,

¢<ff¢(u)Au> . Ll eew)sn (435)

y—x y—x
Hermite-Hadamard inequality for time scales is discussed in [5] for Z and for arbi-

trary time scale it can be seen in [4].

Theorem 4.3.6. Suppose @ : Z — R is a convez function on |a,blz with a,b € Z,

a <b, and a + b is even number. Then

@(a;(’) < 2(1)1_@) Uab@(xmw/ab@(x)w} < w (4.3.6)

holds.

Theorem 4.3.7. Suppose @ :T — R be a convex function on [a,bly. Then

A\

o(mat)) < 1 | /[ PLCLEIE /[ N ()6 (2)(2) V|
< mmu@(@) -+ (1 — m[o,ﬂ)@(b),

where ¢ : [a, bt — [a, bl and k : [a, bl — RT defined by
S(ha+ (1= A)b) = (1— Na+ b,

with A € [0, 1], and

d(x)—m .
S—, T # mja,bl;

%, r = mya,b].

where mpqy s midpoint of [a, blr and myy ) is midpoint of [0, 1].

40



Chapter 5

Preinvex Functions on Time Scales

The theory of time scales developed by Hilger was actually the theory of unification
of discrete and continuous analysis. Many people worked in this theory and developed
the concepts of calculus and analysis in this theory. Like other people C. Dinu in 2008
introduced the concept of convex functions on time scales. After C. Dinu, Abe-i-kpeng
in 2016 put quasi-convex functions in the context of time scales. However, a vast class
of preinvex functions has not been examined up until now on time scales. So, the
basic thing in this chapter is that we discuss preinvex functions in time scales and also

discuss Hermite-Hadamard inequality for these functions.

5.1 Preinvex Functions

Definition 5.1.1. Let R be the set of reals and T be a time scale. A subset K. C
T is T — invex or simply invex respecting 7, if and only if there exists an invex set
K C R respecting 1 such that, K, = K NT where 7, is restriction of 7 to time scale
T that is n, = n for all (z,y) € T x T.

Formally the definition becomes as under.

Definition 5.1.2. Let T be a time scales , a subset K, C T is called an invex set
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with respect to 7, : K, x K. — Rif Va,b € K, and X € [0, 1] the generated segment
[a,a + An,(b,a)] is contained in K.

Example 5.1.3. Let T = R, then K_ = [-3,—1] U [0, 5] is invex respecting

(
a—b, ab > 0;
n(a,b) =9 -3 —y, a>0,b<0;
Y, (I<O,b>0,
\

Definition 5.1.4. Let K1 C T be an invex set respecting n,. A function ¢ : Ky —

R is said to be preinvex respecting 7,, if
D(a+ A, (b,a)) < AP(b) 4+ (1 — N)D(a), (5.1.1)

holds for all a,b € Kt and X € [0, 1].

Theorem 5.1.5. A function f : Ky — R is preinver with respect to n,. if and only
if the epigraph of f is invex set in T x R.

Proof. Let epif = {(x,y) eTxR: f(z) < y} is an invex set respecting

77((331,91), (9527y2)) = (77T(332,x1),y2 - y1>, then for (331,3/1)7 (1’2>y2) €epif and \ €
[0,1]

(z1,91) + )‘ﬁ((‘rlayl)a (952,?/2)> = (v1,91) + A(UT(%,xl),yz - yl)

= (xl + A (22, 1), Ay + (1 — A)yl) € epif.

Then by invexity of epif, we have

[+ Mnr(xg, 1)) < Aya + (1 = Ny
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We also have

Af(x2) + (1= A)f(21) < Aya + (1 = My

From these two inequalities we deduce that,

f(x1 + Agr(22, 1)) < Af(x2) + (1= N) f(21).

This prove preinvexity of f.
Conversely, we prove invexity of epi f respecting 7, when f is given to be preinvex.

For this, since (x1,y1), (z2,92) € epif and X\ € [0, 1] we have,
(z1,91) + Aﬁ((xla Y1), ($2792)> = (r1,91) + )\<771r($2, 1), Y2 — yl)

= <331 + Anr(xg, 1), Ays + (1 — /\)yl>~

By preinvexity of f,

[+ Anr(22,21)) < Af(22) + (1= A) f(21)
< s+ (1= V. (5.1.2)

Hence we are done with the proof. O

Theorem 5.1.6. Let K, = K NT be an invex set respecting 1, in T where K 1is
inver with respect to some n in R. A function f : K. — R is preinver respecting

n. if and only if there exists a preinvex function f : R — R respecting some n and
such that f(t) = f(t) for allt € K,.

Proof. Sufficiency follows from preinvexity of f.

To see necessary part let us assume that f is invex set with respect to n,on K.
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We define f: K — R by

f(z), if v e K;
f( ) f(y)+%(x—y), x € (y,t) with x € K\Kr and t,y € Kr;
z) =
f(y), x € (t,y) with x € K\Kr and y € Kr;
f(t), x € (t,y) with z € K\Kr and t € Kr.

The proof of f is preinvex is divided into three cases:

Case 1: z,y € K_then we are done.

Case 2: x € K,and y € K\ K, then we argument as follows, We have either z+n(y, z) €
Kt or in K\ Kr. In first subcase we are done. But, if x + An(y,z) € K\ Ky then
we can find t € Kt such that t >y and = + M(y, z) € (x,t), and so

P f(t) — f(z)

flx+ My, v)) = f(o) + (D) (z 4+ Ay, z) — )

By using the fact that n(y,x) < nr(z,t), we obtain

; ft) — flx)

flx+ My, z) < f(o) + (o) Anpr(z, )

fla+ My, ) < (1= A)f(z) +Af(1)

And

flx+n(y, z)) < (L= XA f(x) + Af(y).

Case 3: z,y € K\ K_ then preinvexity of f follows from previous two cases.

44



Remark 5.1.7. In the above result if nr(a,b) = b — a we get Theorem (3.4) of [16].
We can define Condition C for time scales as follows.
Definition 5.1.8. Let K, C T be an invex set respecting a function n,. We say

that 7, satisfies condition C if the following equalities holds

n'r(xﬂx + t%(y’x)) = —t%(y@)' (513)

ey, x +tn (y,z)) = (1 = t)n,(y, ). (5.1.4)

Theorem 5.1.9. Let a,b € T be a pair of points, let [a,b] = I N'T be an invex

set respecting a mapping n.. Then n.(y,xz) is collinear with b — a for every pair of

points in [a, b].

Proof. Let z,y € [a,b] , x =a+t;(b—a), t; € [0,1]. Since

2+ iy, @) € [a,b)

then,
r+tn,(y,x) = a+t(b— a),
a+1t(b—a) +in(y,z) = a+t2(b— a),
n(y2) = 2 b~ a).
This proves the collinearity . O

Corollary 5.1.10. Let K, C T be an invexr set with respect to a mapping n,. Let
a,b € Kr be a pair of points such that the generated time scale interval [a, a+n,(b, a)]

is invex respecting n.. Then n.(y,x) is collinear with n,(b,a) for every pair of points

x and y.

Proof. Let x,y € [a,a + n,(b,a)] then x = a + t1n.(b,a), where ¢; € [0,1] and since
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la,a 4+ n.(b,a)] is invex respecting n.(y, x), then

z+tn,(y,x) € [a,a+n,(b,a)] with t € [0, 1].

Therefore,
T+t (y, ¥) = a+ tan, (b, a).

Inserting value of x and simplifying results in,

t
to — 11

ny(b,a) = n:(y, ).

This shows that the two are collinear. ]

Theorem 5.1.11. Let K, C T be an invex set respecting 1, that satisfies condition C,
and let f: K. — R be a preinver function with respect to n.. Then the function f
is convezr on the generated time scale interval [a,a + n,(b,a)] for every pair of points

a,be K,.

Proof. Let x,y € [a,a+n.(b,a)] then x = a+t1m,(b, a) and y = a+tan.(b, a) we have,

z+ M (y, ) = a+ ting (b, a) + An(a + tin, (b, a), a + a0, (b, a))
=a+n,(b,a)+ A(ta — t1)n,(b, a)
= a+1:(b,a) = Al(ty = t2)1, (b, @) + a — d]
= (1= XN(a+tin.(b,a)) + Aa + tan,(b,a))
= (1 - ANz + \y.

Now consider,

=Nz +Ay) = flz+ A (y,2) < (1 =A)f(z) + Af(y).

which proves convexity of f. O]
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5.2 Hermite-Hadamard Inequality

In this section we discuss time scales version of Hermite-Hadamard inequality for
preinvex functions and compare that with that given for reals.

First we present some notations adopted from [4].

Let T be a time scale with all points as right scattered and a,b € T then by [a, b|r
we mean time scale interval, let us define T,y = {2=£;t € [a,b]r}. Clearly it can be
seen that Ty, C [0,1] and T = [0,1] if T is continuous, also we can see there is
bijection between [a, b]r and T, .

We first establish the inequality for Z and then for general time scales.

Theorem 5.2.1. Suppose that @ : Kz — R be a preinver function respecting wy,
which satisfy condition C and @ is rd-continuous with Kz an invex set respecting the
same wy, and let a,b € Ky be such that I = [a,a + wz(b,a)] has an odd number of

points then, prove that

’WZ(Z), a) 1 a+wgz(b,a) a+wz(b,a)
<
q5<a+ 5 )_ M)[/a (r)ac+ | b(x)Vz|  (5.2.1)

2@2(

< D(a) + (P(az—i- wyz(b,a))

holds.

Proof. Let

Iio1) = Zijg,a4-w(b,a)]

then, for fix A € Ijp ) define
r=a+ A wz(b,a), y=a+(1—XNwz(b,a).

then, it can be easily seen that x,y € I and we can write

wz(b,a)  x+y a4+ Awg(b,a)+a+ (1 — Nwz(b,a)

@t 2 2
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and by Theorem (5.1.11) @ is convex on /. We have,

—_

@(a+ wyz (b, a)) <

5 (@(a+)\wz(b, a)) + B(a + (1 — Nz (b, a))).

2

Integrating both sides over I} ;) we have,

/IM ¢<a+wZ(Qb, a))A/\ < %[/1[0,1] D (a+Awy (b, a))A)\Jr/z[o,l] ?(a+(1—N)woz (b, a))A)\]

Now let us look closely at both integrals on right side.

First we conside
/ D(a + Awz(b,a)) AN
1j0,1]

Let us define v : I — Ijg by v(z) = ==

—£24_ = )\ v is increasing clearly and we have
wZ(bva) ’

x = v~ 1()\), by using substitution rule (2.4.5) we have

v(a+wz(b,a))
/ D(a + Awz(b,a) AN = / (@ov H(N)AX
Ij0,1) v(a)
a+wyz(b,a) A 1 a+woy(b,a)
/ @) = = | (1),
where v2 (1) = %

Next let us observe the second integral

/ D(a+ (1 — N)wz(b,a))AN.

Tj0,1]

Define,

it can be seen that v=!(1 —\) = u~1()) is decreasing and we have by substitution rule

(2.4.7), it can be obtain that,
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u(a+wz(b,a))
/ D(a+ (1 — Nwz(b,a)AXN = —/ (®o u_l)(/\)A/\
Ij0,1) u(a)
a+woz(b,a) o 1 a+woz(b,a)
= —/a O(z)u’ (z)Vr = — a)/a &(z)Ve,
where
1
v - _
=

This proves left side of (5.2.1), that is,

wz(b, CL) 1 a+wz(b,a) /a+wz(b,a)
< . . .
@(a * 2 > ~ 2wy(b, a) [/a P(z)Ax + ’ &(z)Vx (5.2.2)

Now we move to the proof of right side,

Since @ is convex on I, we have,

D(a+ Awz(b,a)) = D((1 — Na + Aa + wz(b,a)))

< (1= Nd(a) + \(a + wz(b, a))

that is
D(a+ Awz(b,a)) < (1 — N)Pa+ AP(a + wy(b,a)).

and

S(a+ (1= Nwz(b,a)) < APa+ (1 —N)P(a+ wyz(b,a)).

adding these two and integrating over Ijg ), we get

1
wZ(ba a)

a+wyz(b,a) a+wyz(b,a)
[ / B(z) Az + / B(2)Vz] < B(a) + Bla+ wa(b,a)). (5.2.3)
Combining (5.2.2) and (5.2.3) we have the required result.

49



Now we discuss the described iequality for general discrete time scales and show

that the continous case follows from here. O

Theorem 5.2.2. Suppose that @ : Ky — R be a preinver function respecting wr
which satisfy condition C and P is rd-continuous with Kran invezr set respecting the
same wr, and let a,b € Kt be such that I = [a,a + wr(b,a)] has an odd number of

points and there exists functions ¢ : I — I and k : I — R* defined by

¢(a+ Awr(b,a)) =a+ (1 — Nwr(b,a)

with A € T[a,a+w1y(b,a)]7 and

k(x) =

where m s midpoint of I. Then

o(m) < ;a)[ / b A / T @) ()b V] (5.2.0

w']r<b

<my®(a) + (1 —mpa))P(a + wr(b,a)).

holds, where my 1y 1s midpoint of Tia ayowr(b,a))-
Proof. Let

Io1) = Tia,aq-m0(b,a)]

then, for fix A € Ijg ) define
r=a+ dwr(b,a), y=a+ (1—Nwr(b,a).

then, it can be easily seen that z,y € I and we have m,,) = m where my,, is

midpoint of the segment [z, y] and m is midpoint of I,
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we have for z # m

— My, Mgy — T
Mgy = Y [’y]x—l— [z,y]
y—x y—x

Y.

y—m m—ux
=t —y,
y—x y—x

m

with m = Mg,y

By using convexity on the segment [ we have

@(m) < k(2)D(z) + k(y)D(y).

Integrating both sides over Ijo ;) we have

[ emarns [ w@ewsas [ kwom)ax

Ij0,1] Tj0,1 Tj0,1]

Now let us look closely at both integrals on right side.

First we consider

/ k(x)@(z)AN.
Ijo,q)

Let us define

v:l— 1[071}

v(x) = o IR

v is increasing clearly and we have x = v=!(\). By setting G := k - &. Then we

have k(z)®(z) = G(v~*(\)). And using substitution rule (2.4.5) we have

v(a+wr(ba))
/ Gr™ (A) AN = / (G ov (VAN

1[0,1] v(a)
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a+wor(b,a) A 1 a+wr(b,a) A
:/a G(z)v=(z) :W/a G(z)Azx

a+wr(b,a)
= ;) / k(z)®(x)Az.

W'ﬂ'(b, a

1
wT(bva) ’

where v (z) =

Next let us observe the second integral
/ k(x)@(x)AN.
Tjo,1]

Define u(x) = % = 1— \,it can be seen that v™1(1—\) = u~1()) is decreasing

and we have by substitution rule 2.4.7, it can be obtained that,

u(a+wr(b,a))
/ G(v_l(z\))A/\ = —/ (Go u_l)()\)A)\
[0,1] u(a)

a+wr(b,a) . a+wr(b,a)
_ / Gla)® (2) Vi = —1) / k(2)6" (2)8(2) Va,

a w'ﬂ*<b, a

(z)—u(p(z))
T— p(l’)

_() )

_ v(p
Ca—p(x)

y—a p(y)—
wr]l-(b,a) wr]r(b,u)
z—p(z)

_ 1 y=p)
wr(ba) 2—p(x)

_ 1 ¢@)=¢(p(x))
wr(ba) o pla)
_ ¢V (x)

wT(b,a) :

This proves left side of (5.2.4) , that is,

where u¥ (z) =
®)
)

1 a+wyz(b,a) a+woz(b,a)
P(m) < —s [ / k()b (z) Ax — / k(x)¢v(x)d5(x)Vx]. (5.2.5)
Now we move to the proof of right side,
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Since @ is convex on I, we have,

O(z) =2((1 — Na+ Aa + wr(b,a)))

< (1=XN2(a) + AP(a+ wr(b, a))

that is
P(z) < u(z)P(a) +v(z)P(a+ wr(b, a))

= k(2)®(x) < k(x)u(r)®(a) + k(z)v(r)@(a + wr(b, a)).

and
k(y)P(y) < k(y)u(y)®(a) + k(y)v(y)®(a + wr(b, a)).

Adding these two inequalities we have,

k(@)®(x)+k(y)P(y) < [k(z)u(z)+k(y)u(y)]P(a)+ [k(z)v(z)+kE(y)v(y)P(a+m(b, a)),
(5.2.6)

by simple calculation

u(@)k(z) +u(y)k(y) =

wr(b, a) y—x wr(b, a) T —y
we have
_ atwr(ba) —m —u(m) =m
wr(b, a) [0.1]>
and
m—a
v(x)k(x) + v(y)k(y) = p— =v(m) =1—mp
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Integrating both sides of (5.2.6) over Iy}, we get

1
wT(b7 CL)

[/anrwqr(b,a) k()P (r)Az — /aa+ww;(b,a) k(g;)qﬁv(x)@(m)Vw]

< mpP(a) + (1 —m1))P(a + wr(b, a)). (5.2.7)
[

Corollary 5.2.3. For T = 7Z. Prove that the above inequality becomes the inequality
given in (5.2.3).

Proof. Here ¢(z) = 2a + wz(b,a) — x and k(z) = § with ¢V(z) = —1. Inserting this
data we have the desired inequality. O]

Corollary 5.2.4. Let T =R then prove that (5.2.7) becomes Hermite-Hadamard in-

equality for preinvex functions given by

@(a—l— G a)) < w(l ) /;era)m D(x)dx

P(a) + P(a+w(b, a))
2 b,a '

2

IN

Proof. Since @ : K — R is actually an extension of § : Kz — R, and we know that 6

satisfies (5.2.5), so as @, and also we have,

a+w(b,a)
lim > b)) = / &(z)dz,

Ht)=0 t€la,a+w(b,a))

and
a+w(b,a)
li = )
u(i)n—lm Z w(t)d(t) /a & (z)dx
te(a,a+w(b,a)]
Hence it follows the result. O]

Theorem 5.2.5. (Jensen Inequality). Let Tbe time scales and Kt be an invex set

respecting wr. Also, let a,b € Ky we have |a,a + wr(b,a)] C Kr. Let

g:la,a+ wr(ba)] = K
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be and rd-continuous function. Then prove that every preinvex function

?:la,a+w(b,a)] > R

satisfy the following inequality

o fa“*““”’”g(x)m) LT ag() A
wT(bv CL) B wT<b7 CL) .

Proof. By using convexity of @ on [a,a + w(b,a)] and Jensen inequality for convex

functions we arrive at the desired result.

%)
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Chapter 6

Conclusion

This chapter finishes up the thesis by expressing and summarizing the inferences and
findings. The knowledge assists the reader to understand the essence of the study and
parting ways for future undertakings identified with this territory of research.

We have given Jensen and Hermite-Hadamard inequalities in this settings of time
scale which were previously proved for real numbers. We have observed that our
findings are consistent with mentioned inequalities in the case preinvex functions on
reals and for convex functions on time scales. In future, we can carry out refinements of
Hermite-Hadamard inequality for preinvex functions on time scales. Also, we can define
an analogue of invex functions, named as delta invex functions and study applications

of these functions in optimization, engineering and computer science.

26



Bibliography

[1] Abe-i-kpeng, G. (2016). Quasiconvex functions on time scales and applications.

[2] Agarwal, R., Bohner, M., Peterson, A. (2001). Inequalities on time scales: a survey.
Mathematical Inequalities and Applications, 4, 535-558.

[3] Anderson, D. R. (2007). Young’s integral inequality on time scales revisited. J.
Inequalities in Pure Appl. Math, 8(3).

[4] Arslan, A., Atici, F. M. (2016). Discrete Hermite-Hadamard inequality and its
applications. Appl. Anal. Discrete Math, 10, 366-377.

[5] Atici, F. M., and Yaldiz, H. (2016). Convex functions on discrete time domains.
Canadian Mathematical Bulletin, 59(2), 225-233.

|6] Avriel, M., Diewert, W. E., Schaible, S., Zang, 1. (2010). Generalized concavity
(Vol. 63). Siam.

[7] Barani, A., Ghazanfari, A. G., Dragomir, S. S. (2012). Hermite-Hadamard in-
equality for functions whose derivatives absolute values are preinvex. Journal of

Inequalities and Applications, 247(1).

[8] Ben-Israel, A., Mond, B. (1986). What is invexity?. The ANZIAM Journal, 28(1),
1-9.

[9] Bohner, M., Peterson, A. (2001). A survey of exponential functions on time scales.

Cubo Mat. Educ, 3(2), 285-301.

o7



[10] Bohner, M. (2005). The logarithm on time scales. Journal of Difference Equations
and Ap plications, 11(15), 1305-1306.

[11] Bohner, M., Peterson, A. (2012). Dynamic equations on time scales: An introduc-

tion with applications. Springer Science and Business Media.

[12] Cambini, A., Martein, L. (2008). Generalized convexity and optimization: Theory
and applications (Vol. 616). Springer Science Business Media.

[13] Craven, B. D. (1981). Invex functions and constrained local minima. Bulletin of

the Australian Mathematical society, 24(3), 357-366.

[14] Craven, B. D., Glover, B. M. (1985). Invex functions and duality. Journal of the
Australian Mathematical Society, 39(1), 1-20.

[15] Cvetkovski, Z. (2012). Inequalities: theorems, techniques and selected problems.

Springer Science and Business Media.

[16] Dinu, C. (2008). Convex functions on time scales. Annals of the University of

Craiova-Mathematics and Computer Science Series, 35, 87-96.

[17] Dinu, C. (2008). Hermite-Hadamard inequality on time scales. Journal of Inequal-
ities and Applications, 287947(1).

[18] Dragomir, S. S., Pecari¢, J. E., Sandor, J. (1990). A note on the Jensen-Hadamard
inequality. Mathematica-Rev. Anal. Numér. Théor. Approx., 19(1), 29-34.

[19] Dragomir, S. S. (1992). On Hadamard’s inequalities for convex functions. Mat.
Balkanica, 6, 215-222.

[20] Dragomir, S. S. (1992). Two mappings in connection to Hadamard’s inequalities.

Journal of Mathematical Analysis and Applications, 167(1), 49-56.

[21] Dragomir, SS. (1955). Some inequalities of Hadamard type. Soochow J. Math.
21(3), 335-341.

28



[22] Hanson, M. A. (1981). On sufficiency of the Kuhn-Tucker conditions. Journal of
Mathematical Analysis and Applications, 80(2), 545-550.

[23] Hardy, G. H., Littlewood, J. E., Polya, G. (1952). Inequalities Cambridge Univer-
sity Press. Cambridge, England, 89.

[24] Hilger, S. (1988). Ein makettenkalkiil mit Anwendung auf Zentrumsmannig-
faltigkeiten Ph. D, PhD thisis (Doctoral dissertation, thesis).

[25] Hilger, S. (1990). Analysis on measure chains—a unified approach to continuous

and discrete calculus. Results in Mathematics, 18(1-2), 18-56.

[26] Hilger, S. (1997). Differential and difference calculus—unified!. Nonlinear Analysis:
Theory, Methods and Applications, 30(5), 2683-2694.

[27] Jensen, J. L. W. V. (1905). On konvexe funktioner og uligheder mellem middlI-
vaerdier. Nyt. Tidsskr. Math. B, 16, 49-69.

[28] Jensen, J. L. W. V. (1906). Sur les fonctions convexes et les inégalités entre les

valeurs moyennes. Acta mathematica, 30, 175-193.
[29] Mangasarian, O. L. (1969). Nonlinear programming. McGraw-Hill.

[30] Mitrinovi¢, D. S., Vasi¢, P. M. (1975). The centroid method in inequalities. Pub-
likacije Elektrotehnic¢kog fakulteta. Serija Matematika i fizika, (498/541), 3-16.

[31] Mangasarian, O. L. (1975). Pseudo-convex functions. In Stochastic Optimization

Models in Finance (pp. 23-32). Academic Press.

[32] Mohan, S. R., Neogy, S. K. (1995). On invex sets and preinvex functions. Journal
of Mathematical Analysis and Applications, 189(3), 901-908.

[33] Mishra, S. K., Giorgi, G. (2008). Invexity and optimization (Vol. 83). Springer

Science and Business Media.

[34] Mozyrska, D., Torres, D. F. (2009). The natural logarithm on time scales. Journal
of Dynamical Systems and Geometric Theories, 7(1), 41-48.

29



[35] Noor, M. A. (2005). Invex equilibrium problems. Journal of Mathematical Analysis
and Applications, 302(2), 463-475.

[36] Noor, M. A. (2007). Hermite-Hadamard integral inequalities for log-preinvex func-
tions. J. Math. Anal. Approx. Theory, 2(2), 126-131.

[37] Mitrinovic, D. S., Vasic, P. M. (1970). Analytic inequalities (Vol. 1). Berlin:

Springer-verlag.

[38] Noor, M. A. (2009). Hadamard integral inequalities for product of two preinvex
functions. In Nonlinear Anal. Forum (Vol. 14, pp. 167-173).

[39] Ortega, J. M., Rheinboldt, W. C. (1970). Iterative solution of nonlinear equations

in several variables (Vol. 30). Siam.

[40] Pavic, Z., Wu, S., Novoselac, V. (2016). Important inequalities for preinvex func-
tions. Journal of Nonlinear Sciences and Applications. JNSA, 9(6), 3570-3579.

[41] Pini, R. (1991). Invexity and generalized convexity. Optimization, 22(4), 513-525.

[42] Steffensen, J. F. (1919). On certain inequalities and methods of approximation.
Journal of the Institute of Actuaries, 51(3), 274-297.

[43] Weir, T., Mond, B. (1988). Pre-invex functions in multiple objective optimization.
Journal of Mathematical Analysis and Applications, 136(1), 29-38.

[44] Weir, T., Jeyakumar, V. (1988). A class of nonconvex functions and mathematical

programming. Bulletin of the Australian Mathematical Society, 38(2), 177-189.

[45] Wong, F. H., Yeh, C. C., Yu, S. L., Hong, C. H. (2005). Young’s inequality and
related results on time scales. Applied Mathematics Letters, 18(9), 983-988.

[46] Yang, X. M., Li, D. (2001). On properties of preinvex functions. Journal of Math-
ematical Analysis and Applications, 256(1), 229-241.

60



[47] Young, W. H. (1912). On classes of summable functions and their Fourier series.
Proceedings of the Royal Society of London. Series A, Containing Papers of a
Mathematical and Physical Character, 87(594), 225-229.

[48] Young, W. H. (1912). On classes of summable functions and their Fourier series.
Proceedings of the Royal Society of London. Series A, Containing Papers of a
Mathematical and Physical Character, 87(594), 225-229.

[49] Zang, 1., Choo, E. U.; Avriel, M. (1977). On functions whose stationary points are
global minima. Journal of Optimization Theory and Applications, 22(2), 195-208.

61



	Binder1.pdf
	Scan370
	Scan371


