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Abstract

Most of the natural phenomena are completely described by a system of non-

linear PDEs, because, often a single PDE fails to explain all the properties.

In fluid mechanics, boundary layer problems are those in which conservation

of more than one quantities is necessary i.e. mass, momentum, and energy

of the flowing fluid are studied simultaneously. The exact solution to such

system of PDEs is difficult to find. Therefore, we go for reducing system

of nonlinear PDEs to a system of ODEs via similarity transformations (in-

variant transformations) which hopefully can be solved for exact solutions.

Unfortunately, the reduced system of ODEs is again a difficult task to solve

for exact solution and we rely over its numerical solution. But it is difficult

to get a solution of system of PDEs using the numerical solution of reduced

system of ODEs. A technique in [1] is then useful for determining approxi-

mate closed-form solution of the original PDE. In this thesis, we extend the

technique described in [1] for a system of PDEs and implement it to a bound-

ary layer problem. Residues of the system of ODEs and PDEs are calculated

with respect to the approximate closed-form solutions. The results strongly

support the approximate closed-form solution presented in the thesis.
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Chapter 1

Introduction

Mathematical models interpret our thoughts for a number of phenomena oc-

curring in the world. We acquire a thorough knowledge of these phenomena

by translating them into a concise language i.e. Mathematics. Models are

formulated by well-defined rules. Solving the model which come up with real

world problem means to find a solution of mathematical equations present in

it. Many natural phenomena are governed by relations (equations) involving

rates at which things happen (derivatives). Equations which contain deriva-

tives are differential equations. In vast fields of science and engineering, the

natural phenomena are modeled by non-linear partial differential equations

(PDEs) because most of the processes are non-linear in nature. For example,

shock waves occur in explosions, traffic flow, glacier waves, airplanes break-

ing the sound barrier, and so on which are modeled by non-linear hyperbolic

PDEs [2]. The key defining property of a partial differential equation is that

there are more than one independent variables x, y, . . . and there is a depen-
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dent variable, u, that is an unknown function of these variables u(x, y, . . .),

where a PDE is an identity that relates the independent variables, the de-

pendent variable u, and the partial derivatives of u [2].

Definition 1.1. [3] Let u : Ω → R, x = (x1, x2, . . . , xn) ∈ Ω ⊆ R(n ≥ 2),

we usually write uxi = ∂u
∂xi
, uxixj = ∂2u

∂xixj
, uxixjxk = ∂3u

∂xixjxk
and so on. A

vector of the form α = (α1, α2, . . . , αn), where each component αi is a non

negative integer, is called a multi-index of order | α |= (α1 + α2 + . . .+ αn).

Given a multi index α, define

Dαu(x) :=
∂αu(x)

∂xα1
1 . . . xαnn

= ∂x1α1
. . . ∂xnαn .

Fix an integer k ≥ 1 such that Dku(x) := {Dαu(x) :| α |= k}. An expression

of the form:

F (Dku(x), Dk−1u(x), . . . , Du(x), u(x),x) = 0, (1.1)

is called a kth order partial differential equation, where F : Rnk × Rnk−1 ×

. . .×Rn ×R× Ω→ R is given and u : Ω→ R is the unknown.

The solution of a PDE refers to all possible functions u(x) which are in

explicit form. If it is difficult to find a solution explicitly then we deduce

the existence and other properties of its solution. Solution of PDE also

satisfies the additional boundary conditions on some part of the boundary

of the domain. A single PDE can scarcely describe a natural phenomena,

therefore, a system of coupled PDEs is needed for complete description. For

example, let us say that we want to compute the distribution of heat with

a microwave oven then we must first compute the electrical wave E that
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generates the heat which is given by the Helmholtz equation

∆E + ω2E = 0,

where ω is the frequency of the wave and secondly, we must solve the heat

equation

∆T =| E |2,

for the temperature, T , within the microwave oven since T depends on E

hence this is a coupled problem with two partial differential equations [4]. In a

system of partial differential equations several unknown dependent variables

are involved.

Definition 1.2. [3] An expression of the form:

F(Dku(x), Dk−1u(x), . . . , Du(x),u(x),x) = 0, (1.2)

is called a kth order system of partial differential equations, where F : Rmnk×

Rmnk−1 × . . .×Rmn ×Rm × Ω→ Rm is given u : Ω→ Rm is the unknown.

In this definition, we have m number of scalar PDEs with m unknowns i.e.

u1, u2, . . . , um. In general, solution of every PDE cannot be obtained using

some specific method. So every problem has to be dealt separately and if

non of the techniques yield a solution then there is always an existence the-

ory which shows the existence of solution and vice versa. Various partial

differential equations that are proved important in various fields of science

and engineering are studied in computational mathematics. Solution of such

equations help us to understand the prominent features of many naturally

occurring phenomena. The term “exact” generalizes a solution that describes
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the entire physics and mathematics of a problem. Thus an analytical solu-

tion of a given PDE is often referred to as its exact solution. The solution

also satisfies the boundary and initial conditions, if any. In computational

mathematics our goal is to find solution of various types of PDEs. A well

posed problem is accompanied with all features to solve its PDEs.

Definition 1.3. [3] A problem is said to be well-posed if it satisfies the fol-

lowing:

1. the problem actually has a solution,

2. the solution is unique,

3. the solution continuously depends on the variables and parameters of

the original PDE.

If any of the above is not satisfied then the problem is said to be ill-posed.

Thus by solving PDEs we mean to find an explicit formula, if possible,

which satisfies above criteria. Solution of a PDE of order k should be

infinitely differentiable more specifically at least k times differentiable. Now

let us take example of scalar conservation law, which is given by a PDE as

follows:

ut + uux = 0, u(x, 0) = f(x).

Mathematical modeling of various one dimensional phenomena in fluid dy-

namics e.g. gas dynamics, traffic flow, etc, and particularly formation as well

as propagation of shock waves is governed by above PDE. Since this equation

models the physical phenomena so there is a solution but a shock wave has
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discontinuous solution. Therefore, the study of conservation laws lead us to

the solutions which are not continuous. In general, the conservation laws are

not described by classical solution defined in definition (1.3). The well-posed

conservative problems are then defined by weak solutions.

Definition 1.4. If we are able to write the partial differential equation of or-

der k such that no derivative of solution appears, this is the weak formulation

and its solution is weak solution which may not be differentiable k times.

Some of the difficulties entailed while solving PDEs include high order, non-

linearity and large number of independent variables. Finding an explicit

formula of solution for a PDE is often difficult. So if analytical methods fail

to provide a solution (either strong or weak form), we use some numerical

method to observe the behavior of solution. A numerical method results in

the form of numbers. However, our goal is to find the solution in the form

of some function where the variables and parameters of the original problem

are involved.

Remark 1.1. A numerical method is an explicit scheme to yield the solution

of PDEs involved in some problem. The study and applications of numerical

method is Numerical Analysis.

In the field of computational mathematics, non-linear PDEs whose analyti-

cal solution (closed-form) is difficult to find is investigated through various

numerical methods. The method of transforming the nonlinear PDEs to

ordinary differential equations (ODEs) is important. This method is con-

structive in the analysis of PDEs in many physical problems. A procedure

5



was developed in [1] that uses the numerical solution of the reduced ODE

to find an approximate closed-form solution of the original PDE. System of

PDEs is harder to solve as compared to a single PDE. In this thesis, we

apply the procedure developed in [1] to a system of non-linear PDEs. The

convergence of the residuals by the approximate closed-form solution is also

checked to observe their accuracy.

The system of equations in the incompressible boundary layer flow problem is

a non-linear PDE system composed of the continuity, the momentum, and the

energy equations which shows the conservation of mass, momentum, and en-

ergy, respectively. In this system, effect of the velocity field (u(x, y), v(x, y))

and the temperature distribution T (x, y) is to be analyzed with respect to

the flow directions x and y of the fluid. In order to solve such system of

PDEs, one often uses similarity transformations, that reduces the system of

PDEs to a system of ODEs. However, exact solution of the reduced system

of ODEs is difficult to be obtained in most of the cases. Therefore, one looks

for the numerical solution of the reduced system. However, difficulty arises

in using the numerical solution in similarity transformations to get the solu-

tion of the system of PDEs. To deal with such situation we approximate the

numerical solution of the reduced system of ODEs by closed-form function,

that can easily be used in the similarity transformations to get an approxi-

mate closed-form solution of the original system of PDEs.

In Chapter 2, a review of a single PDE with the example of non-linear dif-

fusion equation is discussed. Approximate closed-form solution for a PDE

is calculated and compared with its numerical solution. Comparison shows

that the difference between values of approximate closed-form and numerical
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solution is insignificant. In Chapter 3, a system of PDEs which govern the

phenomena of incompressible boundary layer flow in two dimensions is con-

sidered. The approximate closed-form solution of the system is calculated

and the convergence of the residuals of this solution is checked and relative

errors are presented.

1.1 Basic Definitions

Fluid mechanics concerns with the behavior of fluids which deforms contin-

uously under the action of shear stress.

Viscosity

Dynamic viscosity µ is a measure of the resistance between a layer of a fluid.

Fluids such as paint, honey, engine oil, etc have much higher viscosities than

water [5]. Also the density ρ of a fluid is its mass per unit volume which

highly varies in gases and increases nearly proportionally to the pressure level

whereas density in fluids is nearly constant. The ratio of dynamic viscosity

to density is called kinematic viscosity ν, which is written as

ν =
µ

ρ
,

SI units of ν is m2s−1.

7



Newton’s Law of Viscosity

The relationship between shear stress τ and strain rate is given by

τ = µ
du

dy
,

which is dimensionally consistent, therefore, µ has dimensions of stress-time

i.e. ( M
LT

) [6]. The fluids observing this relation are Newtonian fluids.

Specific Heat of a Fluid

Specific heat also termed as heat capacity is the amount of heat required to

raise a temperature of a unit mass of the fluid by one degree which can be

done at constant volume or at constant pressure. It is denoted by cp. The

SI unit is Jkg−1K−1 [7].

Thermal Diffusivity

Thermal diffusivity measures the change in temperature produced in unit

volume of the material by the amount of heat that flows in unit time through

a unit area. We have

α =
λ

ρ cp
,

where λ is the thermal conductivity of the material and SI units of α are

m2s−1.
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Boundary Layer Theory

It is a thin layer near a surface which is also called the boundary layer. The

boundary layer divides the flow past a surface into two regions. A region

near the surface where the viscosity’s effect are important while the region

outside of boundary layer where the effect of viscosity is negligible.

Laminar Flow

In laminar flow the layer of fluids are well defined and consistent. Reynolds

number is the ratio of inertial forces to viscous forces. Mathematically

Re =
ρUL

µ
,

where ρ is the density, U is the characteristic velocity, L is the characteristic

length and µ is the dynamic viscosity. If the Reynolds number is small then

the flow is laminar otherwise its turbulent.

Steady Flow

A flow in which properties like velocity, pressure, temperature, etc do not

depend on time. Mathematically

∂P

∂t
= 0,

where P is any fluid property.
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Incompressible Fluid

A fluid in which density ρ of the fluid is constant known as incompressible

fluid. Mathematically, we write

dρ

dt
= 0.

Prandtl Number

The Prandtl Number is a dimensionless number approximating the ratio of

momentum diffusivity (kinematic viscosity) ν to thermal diffusivity α and

can be expressed as:

Pr =
ν

α
.

Prandtl number of gases is about 1. In this case both momentum and heat

flux dissipate in a fluid medium approximately at the same rate. The mo-

mentum and thermal boundary layers will be identical for Pr = 1.

Eckert Number

The Eckert number, Ec, is a dimensionless quantity useful in determining

the relative importance in a heat transfer situation of the kinetic energy of

a flow. It is the ratio of the kinetic energy to the enthalpy

Ec =
U2

cp∆T
,

where U is the flow velocity of the fluid, cp is the specific heat at constant

pressure, and ∆T = Tw − T∞ is the temperature difference between the

surface and the free stream [8].
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1.2 Governing Equations of Fluid Flow

The motion of a fluid can be described by kinematic and dynamic conserva-

tion laws for mass, momentum, and energy, these will be formulated in terms

of independent spatial variables ~x = (x, y, z) and temporal variable t. The

dependent variables are denoted as:

1. velocity vector ~u = (u, v, w),

2. density ρ,

3. pressure p,

4. temperature T .

1.2.1 Conservation of mass

Let us take an arbitrary small volume element dV within a flowing fluid and

the velocity of the fluid is ~u having density ρ along an arbitrary fixed closed

surface element dS as shown in the following figure (1.1). We will start by

the definition of mass m within the control volume V , thus across dS the

local volume rate of flow is,

(n̂ · ~u)dS,

where n̂ is a unit normal vector directed outwardly as shown in the fig-

ure (1.1). If the flow is in outward direction then the above dot product is

taken as positive and negative if the flow is inward. The local mass rate of

flow is

(n̂ · ρ~u)dS.
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Figure 1.1: Schematic view of control volume [9].

According to the law of conservation of mass, the total mass of fluid within

V will increase only because of net influx of fluid across the bounding surface

S. Mathematically,

d

dt

∫
V

ρdV = −
∫
S

(n̂ · ρ~u)dS. (1.3)

Definition 1.5. [6] Gauss divergence theorem says that if V is a closed region

in space enclosed by a surface S, then∫
V

(∇ · ~u)dV =

∫
S

(n̂ · ~u)dS.
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Thus we have from equation (1.3)

d

dt

∫
V

ρdV = −
∫
V

(∇ · ρ~u)dV,∫
V

∂ρ

∂t
dV = −

∫
V

(∇ · ρ~u)dV,∫
V

(∂ρ
∂t

+∇ · (ρ~u)
)
dV = 0,

∂ρ

∂t
+∇ · (ρ~u) = 0, (1.4)

which is the equation of continuity for a compressible fluid. For incompress-

ible fluids the above equation (1.4) becomes

∇ · (ρ~u) = 0 or ∇ · ~u = 0.

1.2.2 Conservation of Momentum

The Navier-Stokes equation describes the conservation of momentum within

the control volume V . If volume flow rate (n̂ · ~u)dS is multiplied with mo-

mentum per unit volume ρ~u (i.e.),

(n̂ · ~u)ρ~udS = n̂ · (ρ~u~u)dS,

which is the rate at which momentum is carried out across the surface element

dS where ρ~u~u is the momentum flux. In addition to the momentum transport

by the flow, there will also be the momentum transferred by means of the

molecular motions and interactions within the fluid which will be denoted

by π. Thus, according to the law of conservation of momentum, the total

momentum within V will increase due to the net influx (internal forces) and
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the external force of gravity [6]. Mathematically

d

dt

∫
V

ρ~udV = −
∫
S

(n̂ · ρ~u~u) dS −
∫
S

(n̂ · π)dS +

∫
V

ρ~gdV,

by using Gauss divergence theorem

d

dt

∫
V

ρ~udV = −
∫
V

(∇ · ρ~u~u)dV −
∫
V

∇ · πdV +

∫
V

ρ~gdV,∫
V

(
∂

∂t
(ρ~u) +∇ · (ρ~u~u) + (∇ · π)− ρ~g

)
dV = 0,

∂

∂t
(ρ~u) +∇ · (ρ~u~u) + (∇ · π)− ρ~g = 0. (1.5)

Using the identity

∇ · (ρ~u~u) = ρ(~u · ∇)~u+ ~u(∇ · (ρ~u))

and simplifying using continuity equation we have

ρ

(
∂~u

∂t
+ (~u · ∇)~u

)
= −∇ · π + ρ~g,

ρ(
d~u

dt
) = −∇ · π + ρ~g, (1.6)

The surface forces occurred due to the stresses on the sides of the control

volume. They include forces due to pressure on the sides by the molecules

and also the viscous or frictional forces in a moving fluid. If the fluid is at

rest then the pressure is the only surface force. Thus the sum of the viscous

stresses τij which arises from the motion of the velocity gradients plus the

hydrostatic pressure is the surface force πij (πij is the stress in j direction on

a face normal to i-axis). These stresses are written as

πij = −
(
p+

2

3
µ∇ · ~u

)
δij + µ

(∂ui
∂xj

+
∂uj
∂xi

)
, (1.7)
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where δij is the Kronecker delta

δij =

 1, if i = j;

0, if i 6= j,

and p is the hydrostatic pressure [10]. For an incompressible flow ∇ · ~u = 0

and the simplified Navier-Stokes equation for an incompressible fluid is given

by

ρ(
d~u

dt
) = −∇p+ µ∇2~u+ ρ~g.

1.2.3 Conservation of Energy

Let us look at various forms of heat flow in the control volume V. If local

volume rate of flow across dS i.e. (n̂ · ~u)dS is multiplied by 1
2
ρ~u2, we get the

rate of convective flows of kinetic energy across dS

(n̂ · 1

2
ρ~u2~u)dS.

If Û is the internal energy per unit mass then the rate of convective flows of

internal energy across dS is given by

(n̂ · ρÛ~u)dS.

In addition to the rate of convective flows of kinetic and internal energies

across dS, there may be a transfer of energy occurred due to the molecu-

lar motions which is a mode of transport linked with the heat conduction.

Let ~q be the corresponding heat flux then heat flow across dS by the heat

conduction will be

(n̂ · ~q)dS.
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The rate of doing work by the fluid outside V on the fluid inside V will be

−(n̂ · π) · ~udS.

According to the first law of thermodynamics, which states that

“Rate of increase of the sum of kinetic and internal energies equal the rate

of energy addition both by the bulk flow and the conduction plus the rate at

which the fluid outside V is doing work on the fluid inside V and the energy

addition due to gravitational force on the fluid”.

Mathematically

d

dt

∫
V

(
1

2
ρ~u2 + ρÛ

)
dV = −

∫
S

n̂·(1

2
ρ~u2+ρÛ)~udS−

∫
S

(n̂·~q)dS−
∫
S

((n̂·π)·~u)dS+

∫
V

(ρ~g·~u)dV,

by using the Gauss divergence theorem∫
V

∂

∂t

(
1

2
ρ~u2 + ρÛ

)
dV =

∫
V

(
−∇·

(
1

2
ρ~u2 + ρÛ

)
~u−∇·~q−∇·(π·~u)+ρ~g·~u

)
dV

or

∂

∂t

(
1

2
ρ~u2 + ρÛ

)
= −∇ ·

(
1

2
ρ~u2 + ρÛ

)
~u−∇ · ~q−∇ · (π · ~u) + ρ~g · ~u. (1.8)

Now from momentum equation (1.5)

∂

∂t
(ρ~u) = −∇ · (ρ~u~u)− (∇ · π) + ρ~g,

now taking dot product with ~u

∂

∂t
(
1

2
ρ~u2) = −∇ · (1

2
ρ~u2~u)− (∇ · π) · ~u+ ρ~g · ~u, (1.9)

Substituting equation (1.9) in equation (1.8), we get

∂

∂t
(ρÛ) = −∇ · (ρÛ)~u−∇ · ~q + (∇ · π) · ~u− (∇ · (π · ~u)). (1.10)
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Now we can write
∂

∂t
(ρÛ) = Û

∂ρ

∂t
+ ρ

∂Û

∂t
, (1.11)

using continuity equation in the first term of the equation (1.11), we get

∂

∂t
(ρÛ) = ∇ · (ρ~u)Û + ρ

∂Û

∂t
,

and using the following identity,

∇ · (ρÛ)~u = (ρÛ)(∇ · ~u) + ~u · (∇(ρÛ)),

this leads us to the following form of equation (1.10),

ρ
dÛ

dt
= −∇ · ~q −∇ · (π · ~u) + (∇ · π) · ~u, (1.12)

in which the stress tensor πij is defined as,

πij = −pδij + τij,

τij = µ

(
∂ui
∂xj

+
∂uj
∂xi

)
+ λ

∂uk
∂xk

δij,

and heat flux ~q is given by Fourier’s law of heat conduction,

~q = −k∇T,

where k is the thermal conductivity which indicates the rate at which heat

energy is transferred through a medium by conduction process. The most

familiar form of the energy balance equation is as follows,

ρ
dT

dt
= −dp

dt
+∇ · (k∇T ) + τij

∂ui
∂xj

,

in which last term refers to the viscous dissipiation.
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Chapter 2

Approximate Closed-form

Solution of a PDE

The history of diffusion goes back to several centuries as many natural and

technical process are governed by diffusion, for example, molecules of the

perfume diffuses into air, sugar molecules in the crystals diffuses into water

slowly, conduction process, flat soda, etc. In 1785, Jan Ingenhousz (Nether-

lands) wrote about random motion of coal dust particles in alcohol also in

1827, Scottish botanist Robert Brown saw tiny particles, smaller than pollen,

wiggling around in water [11]. The natural phenomena of diffusive trans-

portation is of great interest and the method of finding approximate closed-

form solution for such a problem is disscused in [1] and [12]. This chapter

gives a review of their work in which the flow of gas through a semi-infinite

porous medium at uniform pressure P0 > 0 at t = 0 is governed by the
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following non-linear PDE, [12]

∂

∂x

(
u
∂u

∂x

)
= c

∂u

∂t
, (2.1)

for which we have the following conditions:

u(x, 0) = P0, 0 ≤ x <∞, (2.2)

u(0, t) = P1(< P0), 0 < t <∞, (2.3)

u(∞, t) = P0, 0 < t <∞. (2.4)

The flow of gas through porous medium is viscous and as the gas flows the

pressure P0 is reduced to P1 > 0. The lower pressure is then maintained. Let

P0 = 1 then we have

u(x, 0) = 1, 0 ≤ x <∞, (2.5)

u(0, t) = P1(< 1), 0 < t <∞, (2.6)

u(∞, t) = 1, 0 < t <∞. (2.7)

2.1 Reduction of PDE to ODE

The PDE in equation (2.1) is transformed to an ODE using following simi-

larity transformations [13]

z =
x

2

√
c

t
, (2.8)

w =
(1− u2)

α
, where α = 1− P 2

1 . (2.9)

Equation (2.9) can be re-written as

u =
√

1− αw. (2.10)
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Now differentiating equations (2.8) and (2.10) w.r.t ‘x’, we have

∂z

∂x
=

1

2

√
c

t
, (2.11)

∂u

∂x
= − α

4
√

1− αw
c

t

∂w

∂z
, (2.12)

and again differentiating equations (2.8) and (2.10) w.r.t ‘t’, we have

∂z

∂t
= − x

4t

√
c

t
, (2.13)

∂u

∂t
= − αx

8t
√

1− αw
c

t

∂w

∂z
. (2.14)

and

u
∂u

∂x
= −α

4

√
c

t

∂w

∂z
. (2.15)

Differentiating equation (2.15) w.r.t ‘x’

∂

∂x

(
u
∂u

∂x

)
= −αc

8t

∂2w

∂z2
. (2.16)

Substituting derivatives in equation (2.1), we get

w′′ +
2z√

1− αw
w′ = 0, (2.17)

and the corresponding boundary conditions transform as follows:

w = 1 when z = 0, (2.18)

w = 0 when z →∞. (2.19)

2.2 Numerical Solution of the Reduced ODE

The exact solution of the non-linear reduced ODE is difficult to find so we

find a numerical solution using MATLAB built-in solver bvp4c. We need to
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convert equation (2.17) into a system of first order ODEs and corresponding

boundary conditions. The numerical solution of equation (2.17) is shown in

figure (2.1):

0 0.5 1 1.5 2 2.5 3
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0.1

0.2
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1

z

w

Figure 2.1: Numerical solution of the reduced ODE.

2.3 Approximate Closed-form Solution of the

Reduced ODE

A lower solution of equation (2.17) is considered as a good initial guess in

terms of error function “erf” i.e.

initial approximation= wlower = 1− erf(
z√
P1

).
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An initial approximation can be improved when the lower solution is consid-

ered as follows:

1− erf(kz), (2.20)

with k ≈ k0 =
1√
P1

. As there is a decrement in value of k from k0, a solution

close enough to numerical solution is attained. For some appropriate value

of n and values ε > 0, δi > 0, we have a sequence of values

k = ki = k0 − δi, (i = 1, 2, . . . , n).

Equation (2.20) generates a sequence of curves wki which uniformly ap-

proaches the numerical solution. Thus we say that

wapprox. = wki ,

which lies in some ε− band around the graph of numerical solution wnum.

2.3.1 Initial Approximate Closed-form Solution for P1 =

0.9

For P1 = 0.9 lower solution of the reduced ODE becomes

wlower = 1− erf(
z√
0.9

),

or

wlower ≈ 1− erf(1.054092z). (2.21)

The graph of wnum and wlower is shown in figure (2.2).
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Figure 2.2: Comparison between wnum and wlower with P1 = 0.9.

2.3.2 Refined Approximate Closed-form Solution for

P1 = 0.9

Now decreasing the value of h0 = 1.054092 to hn = 1.0111, we get the

approximate closed-form solution for the reduced ODE with P1 = 0.9 as

below

wapprox. = 1− erf(1.0111z). (2.22)

The numerical wnum, initial approximate closed-form wlower and refined ap-

proximate closed-form wapprox. solutions are shown in figure (2.3).
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Figure 2.3: Graph of wnum, wlower and wapprox. with P1 = 0.9.

2.4 Comparison between Numerical and Ap-

proximate Closed-form Solution of Re-

duced ODE

The graph of differences in values at each point between two solutions is

represented as:

diffnl(z) = wnum(z)− wlower(z),

diffna(z) = wnum(z)− wapprox.(z),

which is shown in figure (2.4). The maximum absolute differences are

max | wnum(z)− wlower(z) |= 0.0143,
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and

max | wnum(z)− wapprox.(z) |= 0.0081.
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| numerical solution − lower solution |
| numerical solution − approximate solution|

Figure 2.4: Graph of | wnum − wlower | and | wnum − wapprox. | with P1 = 0.9.

2.5 Approximate Closed-form Solution for Dif-

fusion Problem

An approximate closed-form solution for diffusion problem can be obtained

by applying the inverse similarity transformations to the approximate closed-

form solution of the reduced ODE. Substituting the approximate closed-form

solution from equation (2.22) in transformations given by equations (2.8) and
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(2.9), we get the approximate closed-form solution of the original PDE as

u(x, t) =

√
0.81 + 0.19erf(1.0111

x

2

√
c

t
), (2.23)

which satisfies the boundary conditions in equations (2.5), (2.6) and (2.7) as

follows

lim
t→0 u(x, t) = lim

t→0

√
0.81 + 0.19erf(1.0111

x

2

√
c

t
),

=
√

0.81 + 0.19erf(∞),

= 1.

(2.24)

lim
x→0 u(x, t) = lim

x→0

√
0.81 + 0.19erf(1.0111

x

2

√
c

t
),

=
√

0.81 + 0.19erf(0),

= 0.9.

(2.25)

lim
x→∞ u(x, t) = lim

x→∞

√
0.81 + 0.19erf(1.0111

x

2

√
c

t
),

=
√

0.81 + 0.19erf(∞),

= 1.

(2.26)

The surface plot for approximate closed-form solution in equation (2.23) of

PDE in equation (2.1) is shown in figure (2.5).
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Figure 2.5: Approximate closed-form solution for diffusion problem.

2.6 Numerical Solution for Diffusion Prob-

lem

The numerical solution of diffusion problem is obtained using MATLAB

built-in function pdepe( ) in PDE Toolbox and is shown in figure (2.6).

2.7 Comparison between Numerical and Closed-

form Solution for Diffusion Problem

A comparison between results obtained from approximate closed-form and

numerical solutions of original PDE for diffusion problem where P1 = 0.9

shows a maximum difference of 0.0023.
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Figure 2.6: Numerical solution for diffusion problem.
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Figure 2.7: Comparison between numerical and closed-form solution for dif-

fusion problem.
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Chapter 3

Approximate Closed-form

Solution of System of PDEs

A great deal of interest has been generated in the area of two-dimensional

boundary layer flow over a continuous moving solid surface in the recent

years, due to its numerous and wide-ranging applications, in various fields

like aerodynamics extrusion of polymer sheets such as a polymer fiber which

is extruded continuously from a die with an understood assumption that the

fiber is inextensible, etc [14]. The manufacturing processes such as glass

blowing, continuous casting, and spinning of fibers involve interaction of

stretched sheet with the ambient fluid, both thermally and mechanically. In

many situations one encounters the boundary layer flow over the non-linear

stretching surfaces. For example, in a melt-spinning process, the extrudate is

stretched into a filament while it is drawn from the die and finally, this surface

solidifies while it passes through an effectively controlled cooling system in
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order to acquire the top quality property of the final product [14]. The

pioneering work on the steady boundary layer flow due to a continuously

moving surface was done by Sakiadis [15]. Prandtl showed for the first time

in 1904, usually the viscosity of a fluid only plays a role in a thin layer [16].

A thin layer of viscous fluid that is close to the surface of a wall which is in

contact with a moving stream has the thickness say L and the flow velocity

varies from zero at the wall to the free stream velocity u∞. In this region the

flow sticks to the wall because of its viscosity. Such a layer is termed as a

momentum boundary layer. Also the temperature of the wall Tw is different

from that of the free stream temperature T∞, variation of temperature in

this small region forms a thermal boundary layer. In this thesis, we have

considered a fluid over a semi-infinite flat plate situated at y = 0. Let the

ambient fluid is at rest i.e. u∞ = 0 and the flat plate is set to move impulsively

at some time with constant velocity uw. At the same time the temperature

of the flat plate Tw is suddenly raised from the surrounding fluid temperature

T∞ thus, both momentum and thermal boundary layers are developed.

When the surface is moved impulsively in an ambient fluid, the inviscid flow

is developed almost immediately but the viscous flow within the boundary

layer develops slowly and it becomes a fully developed flow after sometime.

In the light of above assumptions the system of PDEs which governs this
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phenomena is as follows:

∂u

∂x
+
∂v

∂y
= 0, (3.1)

u
∂u

∂x
+ v

∂u

∂y
= υ

∂2u

∂y2
, (3.2)

u
∂T

∂x
+ v

∂T

∂y
= α

∂2T

∂y2
+
υ

cp

(
∂u

∂y

)2

, (3.3)

where α is the thermal diffusivity and cp is the specific heat at a constant

pressure of the fluid. The boundary conditions on velocity and temperature

are

u(x, 0) = uw, u(x,∞) = 0,

v(x, 0) = 0, (3.4)

T (x, 0) = Tw, T (x,∞) = T∞.

3.1 Reduction to a Non-linear System of ODEs

Consider the following similarity transformations as given in [17],

η = y

√
uw
xν
, (3.5)

Ψ(x, y) =
√
νuwx f(η), (3.6)

θ(η) =
T − T∞
Tw − T∞

, (3.7)

the velocities of the fluid in x and y directions take the form

u(x, y) = Ψy, v(x, y) = −Ψx,

u(x, y) = uwf
′(η), v(x, y) =

1

2

√
νuw
x

(ηf ′(η)− f(η)). (3.8)
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From equations (3.8), we have

∂u

∂x
= −

yuw
√
uw

2x
√
xν

f ′′, (3.9)

∂u

∂y
=

uw
√
uw√
xν

f ′′, (3.10)

∂v

∂y
=

yuw
√
uw

2x
√
xν

f ′′. (3.11)

Differentiating equation (3.10) w.r.t ‘y’, we get

∂

∂y

(
∂u

∂y

)
=

∂

∂y

(
uw
√
uw√
xν

f ′′
)
, (3.12)

∂2u

∂y2
=

u2w
xν
f ′′′. (3.13)

Using equations (3.9) and (3.11), the PDE (3.1) vanishes. The non-linear

PDE (3.2) reduces to the following non-linear ODE by using equations (3.9),

(3.10) and (3.13) with the transformations u and v given by equations (3.8)

f ′′′ + ff ′′ = 0. (3.14)

From equation (3.7), we have

∂T

∂x
=

θ′

2x
η(T∞ − Tw), (3.15)

∂T

∂y
= −θ

′

y
η(T∞ − Tw), (3.16)

∂2T

∂y2
= −uw

xν
θ′′(T∞ − Tw). (3.17)

Using equation (3.10) alongwith the transformations given by equations (3.8),

the non-linear PDE (3.3) takes the following form

θ′′ + Pr f θ′ + Pr Ec f ′′2 = 0, (3.18)
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where

Pr =
ν

α
, Ec =

U2

cp(Tw − T∞)
.

The corresponding boundary conditions are transformed as

f(0) = 0, f ′(0) = 1, f ′(∞) = 0,

θ(0) = 1, θ(∞) = 0. (3.19)

This completes the reduction of the initial boundary value problem of system

of PDEs given by equations (3.1), (3.2), (3.3) and (3.4) to a boundary value

problem of system of ODEs given by equations (3.14), (3.18) and (3.19).

3.2 Numerical Solution of the Reduced Non-

linear System of ODEs

It is difficult to solve the reduced non-linear system of ODEs analytically, so

a numerical solution using bvp5c is obtained using MATLAB, and is shown

in figure (3.1) and (3.2).
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Figure 3.1: Numerical solution of the function f .
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Figure 3.2: Numerical solution of the function θ.
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3.3 Approximate Closed-form Solution of the

Reduced System of ODEs

Numerical solution of the reduced system of ODEs cannot describe the sys-

tem from which it is deduced i.e. the system of PDEs. Hence we need to

determine the approximate closed-form solution from the above numerical so-

lution which leads us to the approximate closed-form solution of the system

of PDEs.

3.3.1 Approximate Closed-form Solution for the Func-

tion f

The graph of the numerical solution of the function f , in figure (3.1) is similar

to the graph of function “−e−η” therefore, we assume an initial approxima-

tion for the function f as

finitial(η) = α− βe−γη, (3.20)

where α, β and γ are constants to be determined. Notice that f ′(∞) =

0 is satisfied by finitial if γ is positive. Using the condition f(0) = 0 in

equation (3.20), we have β = α, and f ′(0) = 1 implies γ = 1
α

. So finitial takes

the form

finitial(η) = α(1− e−
η
α ), (3.21)

which satisfies the boundary conditions. Using different data points on the

graph of f , we get an appropriate value of the unknown constant α = 1.6116,
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to have

finitial(η) = 1.6116(1− e−
η

1.6116 ). (3.22)

Figure (3.3) shows finitial(η) alongwith fnum and the difference between the

numerical and its initial approximate closed-form solutions is shown in fig-

ure (3.4) which is similar to the graph of function ηe−η. In the table (3.1),

we can observe that the maximum difference between the values is 0.0743.

Table 3.1: Table showing the difference between the initial approximate so-

lution and the numerical solution for the function f .

η fnum finitial fnum − finitial

0.0000 0.0000 0.0000 0.0000

0.5263 0.4655 0.4490 0.0165

1.0526 0.8165 0.7729 0.0436

1.5789 1.0706 1.0066 0.0640

2.1053 1.2489 1.1752 0.0737

2.6316 1.3711 1.2968 0.0743

3.1579 1.4535 1.3845 0.0691

3.6842 1.5085 1.4478 0.0608

4.2105 1.5449 1.4934 0.0515

4.7368 1.5688 1.5263 0.0425

η fnum finitial fnum − finitial

5.2632 1.5845 1.5501 0.0344

5.7895 1.5946 1.5672 0.0274

6.3158 1.6012 1.5796 0.0216

6.8421 1.6054 1.5885 0.0169

7.3684 1.6081 1.5949 0.0131

7.8947 1.6097 1.5996 0.0101

8.4211 1.6107 1.6029 0.0078

8.9474 1.6112 1.6053 0.0059

9.4737 1.6115 1.6071 0.0044

10.000 1.6116 1.6083 0.0032
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Figure 3.3: Graph of finitial.
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In correspondence to figure (3.4), let the following expression approximates

the graph of the difference between the numerical and initial approximate

solutions

δf (η) = α ηβ e−γη. (3.23)

Let us take three points (η1, δ1), (η2, δ2) and (η3, δ3) to determine the expres-

sions for α, β and γ, then the equation (3.23) gives

δ1 = α ηβ1 e
−γη1 , (3.24)

δ2 = α ηβ2 e
−γη2 , (3.25)

δ3 = α ηβ3 e
−γη3 . (3.26)

Dividing equation (3.24) by equation (3.25) and taking ‘ln’ on both sides, we

have

ln

(
δ1
δ2

)
= ln

(
ηβ1 e

−γη1

ηβ2 e
−γη2

)
,

= β ln

(
η1
η2

)
+ γ(η2 − η1).

(3.27)

Now dividing equation (3.24) by equation (3.26) and taking ‘ln’ on both

sides, to get

ln

(
δ1
δ3

)
= ln

(
ηβ1 e

−γη1

ηβ3 e
−γη3

)
,

= β ln

(
η1
η3

)
+ γ(η3 − η1).

(3.28)

Multiply equation (3.27) by (η3 − η1) and equation (3.28) by (η2 − η1), we

get

(η3 − η1) ln

(
δ1
δ2

)
= β(η3 − η1) ln

(
η1
η2

)
+ γ(η3 − η1)(η2 − η1), (3.29)

(η2 − η1) ln

(
δ1
δ3

)
= β(η2 − η1) ln

(
η1
η3

)
+ γ(η2 − η1)(η3 − η1). (3.30)
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Subtract equation (3.30) from equation (3.29), to have

(η3−η1) ln

(
δ1
δ2

)
−(η2−η1) ln

(
δ1
δ3

)
= β(η3−η1) ln

(
η1
η2

)
−β(η2−η1) ln

(
η1
η3

)
,

which gives us the expression for β as

β =
(η3 − η1) ln

(
δ1
δ2

)
− (η2 − η1) ln

(
δ1
δ3

)
(η3 − η1) ln

(
η1
η2

)
− (η2 − η1) ln

(
η1
η3

) . (3.31)

Using equation (3.31) in equation (3.27) and simplifying, we have

γ =
ln
(
δ1
δ2

)
− β ln

(
η1
η2

)
η2 − η1

, (3.32)

and finally equation (3.24) with equations (3.31) and (3.32) gives the expres-

sion for α as

α =
δ1

ηβ1 e
−γη1

. (3.33)

Now choosing some appropriate points from the table (3.1), we get the fol-

lowing approximation to the graph in figure (3.4),

δf (η) = 0.06516394126η3.100000001e−1.089970273η, (3.34)

which is shown in figure (3.5). Adding this difference approximation given

by equation (3.34) in equation (3.22), we get the approximate closed-form

solution for the function ‘f ’ as

fapprox(η) = 1.6116(1− e−
η

1.6116 ) + 0.06516394126η3.100000001e−1.089970273η,

(3.35)

which satisfies the associated boundary conditions as well. Clearly,
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fapprox(η = 0) = 0. Differentiating equation (3.35), we get

f ′approx(η) = e−0.6205013651η + 0.2020082180η2.100000001e−1.089970273η

− 0.07102675884η3.100000001e−1.089970273η,

f ′approx(0) = 1,

and as η →∞ then we have

lim
η→∞ f

′
approx(η) = lim

η→∞

(
e−0.6205013651η + 0.2020082180η2.100000001e−1.089970273η

− 0.07102675884η3.100000001e−1.089970273η
)
.

The first term in the above equation clearly goes to 0 when η → ∞ and

for the rest of the terms we use L’Hospitals rule, writing remaining terms as

follows:

e−1.089970273η
(

0.2020082180η2.100000001 − 0.07102675884η3.100000001
)

=
0.2020082180η2.100000001 − 0.07102675884η3.100000001

e1.089970273η
,

and differentiating upto four times we get

lim
η→∞

0.2020082180η2.100000001 − 0.07102675884η3.100000001

e1.089970273η
= lim

η→∞

−0.04199750895
η1.899999999

− 0.05086226261
η0.899999999

1.411427627e1.089970273η
,

= 0.

The difference between the numerical and the approximate closed-form solu-

tions for the function ‘f ’ is shown in table (3.2) where

max | fnum − fapprox |= 0.0194.
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Figure 3.5: Approximation for the difference in graph of the function f .
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Figure 3.6: Approximate closed-form solution of the function f .
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Table 3.2: Table showing the difference between the approximate and the

numerical solutions.

η fnum fapprox | fnum − fapprox |

0.0000 0.0000 0.0000 0.0000

0.5263 0.4655 0.4540 0.0115

1.0526 0.8165 0.7972 0.0194

1.5789 1.0706 1.0546 0.0160

2.1053 1.2489 1.2412 0.0077

2.6316 1.3711 1.3711 0.0000

3.1579 1.4535 1.4581 0.0046

3.6842 1.5085 1.5147 0.0062

4.2105 1.5449 1.5505 0.0056

4.7368 1.5688 1.5727 0.0038

η fnum fapprox | fnum − fapprox |

5.2632 1.5845 1.5863 0.0018

5.7895 1.5946 1.5946 0.0000

6.3158 1.6012 1.5998 0.0014

6.8421 1.6054 1.6031 0.0023

7.3684 1.6081 1.6053 0.0028

7.8947 1.6097 1.6068 0.0029

8.4211 1.6107 1.6079 0.0028

8.9474 1.6112 1.6087 0.0025

9.4737 1.6115 1.6094 0.0021

10.000 1.6116 1.6099 0.0017

3.3.2 Approximate Closed-form Solution for the Func-

tion θ

Now the graph of numerical solution for the function ‘θ’ in figure (3.1) is

similar to the graph of function e−η. So let us assume the initial approximate

closed-form solution for the function ‘θ’ as follows

θinitial(η) = αe−βη, (3.36)

which is when subjected to the following boundary conditions,

θ(0) = 1, θ(∞) = 0, (3.37)
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becomes

θinitial(η) = e−βη, (3.38)

where β > 0 is arbitrary which satisfies the boundary conditions. Now using

different data points on the graph of θ, we get an appropriate value of the

unknown constant β = 0.6910 and equation (3.38) becomes

θinitial(η) = e−0.6910η, (3.39)

which is shown in the following figure (3.7). The differ-

ence between the numerical solution of ‘θ’ and its initial

approximate closed-form solution is shown in figure (3.8).
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Figure 3.7: Initial approximation for the function θ.
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Table 3.3: Table showing the difference between the numerical solution and

the initial approximate solution.

η θnum θinitial θnum − θinitial

0.0000 1.0000 1.0000 0.0000

0.5263 0.8595 0.6951 0.1644

1.0526 0.6910 0.4832 0.2078

1.5789 0.5244 0.3359 0.1885

2.1053 0.3804 0.2335 0.1469

2.6316 0.2668 0.1623 0.1046

3.1579 0.1828 0.1128 0.0700

3.6842 0.1232 0.0784 0.0447

4.2105 0.0820 0.0545 0.0275

4.7368 0.0541 0.0379 0.0162

η θnum θinitial θnum − θinitial

5.2632 0.0354 0.0263 0.0091

5.7895 0.0230 0.0183 0.0047

6.3158 0.0148 0.0127 0.0021

6.8421 0.0095 0.0088 0.0006

7.3684 0.0059 0.0061 0.0002

7.8947 0.0036 0.0043 0.0007

8.4211 0.0021 0.0030 0.0009

8.9474 0.0011 0.0021 0.0010

9.4737 0.0004 0.0014 0.0010

10.000 0.0000 0.0010 0.0010
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The graph of figure (3.8) is similar to the graph in figure (3.4). Following

the similar procedure as adopted in subsection (3.3.1), we get the following

closed-form approximation of the graph in figure (3.8)

δθ(η) = 0.9660913990η2.100000001e−1.562329683η, (3.40)

which approximates the difference θnum − θinitial as shown in figure (3.9).

Adding equation (3.40) in equation (3.39), we have

θapprox.(η) = e−0.6910η + 0.9660913990η2.100000001e−1.562329683η, (3.41)

which satisfies the boundary conditions θ(0) = 1 and lim
η→∞ θ(η) = 0.

θapprox(η) is shown in figure (3.10).
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Figure 3.9: Approximation to the difference θnum − θinitial.
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Figure 3.10: Approximate closed-form solution of the function θ.

Table 3.4: Table showing the difference between the approximate closed-form

and the numerical solutions of function ‘θ’.

η θnum θapprox | θnum − θapprox |

0.0000 1.0000 1.0000 0.0000

0.5263 0.8595 0.8054 0.0541

1.0526 0.6910 0.6909 0.0001

1.5789 0.5244 0.5498 0.0254

2.1053 0.3804 0.4055 0.0251

2.6316 0.2668 0.2830 0.0162

3.1579 0.1828 0.1906 0.0078

3.6842 0.1232 0.1257 0.0025

4.2105 0.0820 0.0820 0.0000

4.7368 0.0541 0.0534 0.0007

η θnum θapprox | θnum − θapprox |

5.2632 0.0354 0.0348 0.0006

5.7895 0.0230 0.0229 0.0002

6.3158 0.0148 0.0151 0.0003

6.8421 0.0095 0.0101 0.0006

7.3684 0.0059 0.0068 0.0009

7.8947 0.0036 0.0046 0.0010

8.4211 0.0021 0.0031 0.0010

8.9474 0.0011 0.0021 0.0010

9.4737 0.0004 0.0015 0.0011

10.000 0.0000 0.0010 0.0010
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The difference between the numerical and the approximate closed-form so-

lution for the function ‘θ’ is shown in the table (3.4), where max | θnum. −

θapprox. |= 0.0541.

3.3.3 Residual Analysis of the Approximate Closed-

form Solution of the Reduced System of ODEs

The residuals of the reduced system of ODEs given by equations (3.14) and

(3.18), with respect to their approximate closed-form solutions given by equa-

tions (3.35) and (3.41), respectively are shown in figure (3.11). Tables (3.5)

and (3.6) give values of the residuals for equations (3.14) and (3.18), respec-

tively, with Pr = Ec = 1 for different values of η.
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Figure 3.11: Residuals for the system of ODEs.
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Table 3.5: Table showing the residuals for f ′′′(η) + f(η)f ′′(η) = 0.

η Residuals

0.0000 0.3850219441

0.5263 0.0612030390

1.0526 -0.1384880536

1.5789 -0.1743087983

2.1053 -0.1550527289

2.6316 -0.1192493839

3.1579 -0.0835325433

3.6842 -0.0546321943

4.2105 -0.0339198418

4.7368 -0.0202683429

η Residuals

5.2632 -0.0118161682

5.7895 -0.0068314244

6.3158 -0.0040005845

6.8421 -0.0024351401

7.3684 -0.0015789942

7.8947 -0.0011044087

8.4211 -0.0008280371

8.9474 -0.0006523037

9.4737 -0.0005278954

10.000 -0.0004312413

Table 3.6: Table showing the residuals for θ′′ + Prfθ′ + PrEcf ′′2 = 0.

η Residuals

0.0000 0.8625029441

0.5263 0.1999315611

1.0526 -0.2242285067

1.5789 -0.2399013184

2.1053 -0.1941108639

2.6316 -0.1451904223

3.1579 -0.1033586304

3.6842 -0.0709328181

4.2105 -0.0475262938

4.7368 -0.0314568530

η Residuals

5.2632 -0.0207606455

5.7895 -0.0137479758

6.3158 -0.0091662274

6.8421 -0.0061603431

7.3684 -0.0041721124

7.8947 -0.0028443897

8.4211 -0.0019495748

8.9474 -0.0013417278

9.4737 -0.0009261877

10.000 -0.0006407319
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3.4 Approximate Closed-form Solution of the

System of PDEs

Substituting the expressions of f from equation (3.35) and θ from equa-

tion (3.41) in the transformations given by equations (3.5), (3.7) and (3.8),

we get the approximate closed-form solution for the system of PDEs as

u(x, y) = uw

(
e−

y
1.6116

√
uw
xν + e−1.089970273y

√
uw
xν

(
0.2020082180

(
y

√
uw
xν

)2.100000001

− 0.07102675884

(
y

√
uw
xν

)3.100000001))
,

(3.42)

v(x, y) = 0.5

√
uwν

x

(
y

√
uw
xν
e−

y
1.6116

√
uw
xν + e−1.089970273y

√
uw
xν

(
0.1368442767

(
y

√
uw
xν

)3.100000001

− 0.07102675884

(
y

√
uw
xν

)4.100000001)
− 1.6116

(
1− e−

y
1.6116

√
uw
xν

)
,

(3.43)

T (x, y) =
(
Tw−T∞

)(
e−0.691y

√
uw
xν +0.9660913990

(
y

√
uw
xν

)2.100000001

e−1.562329683y
√

uw
xν

)
+T∞.

(3.44)

u, v and T are shown in the figures (3.12), (3.13) and (3.14) respectively.
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Figure 3.12: Approximate closed-form solution of u(x, y).
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Figure 3.13: Approximate closed-form solution of v(x, y).
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Figure 3.14: Approximate closed-form solution of T (x, y).

To check that u, v and T satisfy the boundary conditions given by equa-

tions (3.4), notice that as y → 0 with x > 0 then u(x, 0) = uw holds and

when (x, y)→ (0, 0), we have

lim
(x,y)→(0,0)

u(x, y) = lim
(x,y)→(0,0)

(
uw

(
e−

y
1.6116

√
uw
xν + e−1.089970273y

√
uw
xν

(
0.2020082180

(
y

√
uw
xν

)2.100000001

− 0.07102675884

(
y

√
uw
xν

)3.100000001)))
.

To evaluate the above limit, we choose the path y = mx, that yields 4

lim
x→0 u(x, y) = lim

x→0

(
uw

(
e−

mx
1.6116

√
uw
xν + e−1.089970273mx

√
uw
xν

(
0.2020082180

(
mx

√
uw
xν

)2.100000001

− 0.07102675884

(
mx

√
uw
xν

)3.100000001)))
,
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or

lim
x→0 u(x, y) = lim

x→0

(
uw

(
e−

m
√
x

1.6116

√
uw
ν + e−1.089970273m

√
x
√

uw
ν

(
0.2020082180

(
m
√
x

√
uw
ν

)2.100000001

− 0.07102675884

(
m
√
x

√
uw
ν

)3.100000001)))
,

= uw.

Also as x→ 0 when y > 0, the first term in equation (3.42) goes to zero

lim
x→0 uw

(
e−

y
1.6116

√
uw
xν

)
= 0,

and for the other terms, treat y as a constant and using L’Hospitals rule

repeatedly, we have

0.2020082180uwy
2.100000001

(√
uw
ν

)2.100000001

lim
x→0

(
1√
x

)2.100000001
e1.089970273y

√
uw
xν

,

= 0.03603603973ν

√
ν

uw

1

y0.899999999

(√
uw
ν

)2.100000001

lim
x→0

x0.45

e1.089970273y
√

uw
xν

= 0.

Similarly third term goes to 0 and finally we have

lim
x→0 u(x, y) = 0.

Thus, we have verified the left boundary condition given by equation (3.4)

for u. The right boundary condition given by equation (3.4) for u also holds

as first term in equation (3.42) clearly goes to zero as

lim
y→∞ uw

(
e−

y
1.6116

√
uw
xν

)
= 0,

and for the rest of the terms we form the following expression using

L’Hospitals rule,

lim
y→∞ A

yB

eCy
= A lim

y→∞ (
i∏

n=0

(B − n))
y(B−i)

CieCy
,
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until (B − i) < 0 where A, B and C are constants, and the limit goes to

zero. Equation (3.43) clearly goes to 0 when y = 0 and finally following the

similar procedure as for u(x, y), the left as well as right boundary conditions

for T (x, y) can be verified.

3.4.1 Residual Analysis of Approximate Closed-form

Solution of System of PDEs

Using the approximate closed-form solution in equations (3.42), (3.43)

and (3.44), we find the residuals of the original system of PDEs given

by equations (3.1) - (3.3). The residual surfaces for equations (3.1),

(3.2) and (3.3) are shown in figures (3.15), (3.16) and (3.17) respectively.
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Figure 3.15: Residuals for the continuity equation.
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Figure 3.16: Residuals for the momentum equation.
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Figure 3.17: Residuals for the energy equation.
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Tables (3.7) , (3.8) and (3.9) show the residuals of the continuity, momentum,

and energy equations, respectively, for some values of x and y.

Table 3.7: Table showing residuals for the continuity equation; all values are

multiples of 10−10.

x \ y 0.2900 1.3121 2.3342 3.8674 5.4005 6.9337 7.9558 8.4668 9.4889 10.0000

0.1000 1.922 1.039 0.191 0.015 0.001 0.000 0.000 0.000 0.000 0.000

1.1474 0.058 0.194 0.194 0.117 0.057 0.027 0.016 0.013 0.008 0.006

2.1947 0.022 0.086 0.108 0.091 0.060 0.036 0.025 0.021 0.015 0.012

3.2421 0.012 0.051 0.070 0.069 0.054 0.037 0.028 0.024 0.018 0.016

4.2895 0.008 0.034 0.050 0.055 0.046 0.035 0.028 0.025 0.019 0.017

5.3368 0.006 0.025 0.038 0.044 0.040 0.032 0.027 0.025 0.020 0.018

6.3842 0.004 0.019 0.030 0.037 0.035 0.030 0.026 0.024 0.020 0.018

7.4316 0.004 0.016 0.025 0.031 0.031 0.027 0.024 0.022 0.019 0.018

8.4789 0.003 0.013 0.021 0.027 0.028 0.025 0.023 0.021 0.018 0.017

9.5263 0.002 0.011 0.018 0.024 0.025 0.023 0.021 0.020 0.018 0.017

10.5737 0.002 0.009 0.015 0.021 0.022 0.021 0.020 0.019 0.017 0.016

11.6211 0.002 0.008 0.013 0.019 0.020 0.020 0.019 0.018 0.016 0.015

12.6684 0.002 0.007 0.012 0.017 0.019 0.018 0.017 0.017 0.015 0.015

13.7158 0.001 0.006 0.011 0.015 0.017 0.017 0.016 0.016 0.015 0.014

14.7632 0.001 0.006 0.010 0.014 0.016 0.016 0.015 0.015 0.014 0.014

15.8105 0.001 0.005 0.009 0.013 0.015 0.015 0.015 0.014 0.013 0.013

16.8579 0.001 0.005 0.008 0.012 0.014 0.015 0.014 0.014 0.013 0.012

17.9053 0.001 0.004 0.007 0.011 0.013 0.014 0.013 0.013 0.012 0.012

18.9526 0.001 0.004 0.007 0.010 0.012 0.013 0.012 0.012 0.012 0.011

20.0000 0.001 0.004 0.006 0.009 0.011 0.012 0.012 0.012 0.011 0.011
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Table 3.8: Table showing residuals for the momentum equation; all values

are multiples of 10−1.

x \ y 0.2900 1.3121 2.3342 3.8674 5.4005 6.9337 7.9558 8.4668 9.4889 10.000

0.1000 -0.353 -0.222 -0.020 0.003 0.000 0.000 0.000 0.000 0.000 0.000

1.1474 -2.021 0.177 0.146 -0.006 -0.019 -0.006 -0.002 -0.000 0.001 0.001

2.1947 -1.312 -0.035 0.115 0.042 0.020 -0.011 -0.008 -0.007 -0.004 -0.002

3.2421 -0.977 -0.111 0.070 0.053 0.037 -0.005 -0.007 -0.007 -0.006 -0.005

4.2895 -0.780 -0.140 0.036 0.052 0.042 0.002 -0.004 -0.005 -0.006 -0.005

5.3368 -0.651 -0.152 0.013 0.046 0.041 0.007 0.000 -0.002 -0.004 -0.004

6.3842 -0.559 -0.155 -0.004 0.040 0.038 0.011 0.004 0.001 -0.002 -0.003

7.4316 -0.490 -0.154 -0.016 0.033 0.034 0.014 0.007 0.004 -0.000 -0.001

8.4789 -0.436 -0.151 -0.025 0.028 0.030 0.015 0.009 0.006 0.002 0.000

9.5263 -0.394 -0.147 -0.031 0.022 0.026 0.016 0.010 0.008 0.003 0.002

10.5737 -0.359 -0.143 -0.036 0.018 0.022 0.017 0.011 0.009 0.005 0.003

11.6211 -0.329 -0.139 -0.040 0.014 0.019 0.017 0.012 0.010 0.006 0.004

12.6684 -0.305 -0.134 -0.043 0.010 0.016 0.017 0.012 0.010 0.007 0.005

13.7158 -0.283 -0.130 -0.045 0.007 0.013 0.016 0.013 0.011 0.007 0.006

14.7632 -0.265 -0.126 -0.046 0.004 0.011 0.016 0.013 0.011 0.008 0.006

15.8105 -0.249 -0.122 -0.047 0.002 0.009 0.015 0.013 0.011 0.008 0.007

16.8579 -0.234 -0.118 -0.048 -0.000 0.007 0.015 0.013 0.011 0.008 0.007

17.9053 -0.222 -0.115 -0.048 -0.002 0.005 0.014 0.012 0.011 0.009 0.007

18.9526 -0.210 -0.111 -0.049 -0.004 0.003 0.013 0.012 0.011 0.009 0.008

20.0000 -0.200 -0.108 -0.049 -0.005 0.002 0.013 0.012 0.011 0.009 0.008
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Table 3.9: Table showing residuals for the energy equation; all values are

multiples of 10−1.

x \ y 0.2900 1.3121 2.3342 3.8674 5.4005 6.9337 7.9558 8.4668 9.4889 10.000

0.1000 4.765 -0.211 0.005 0.001 0.000 0.000 0.000 0.000 0.000 0.000

1.1474 -3.951 0.523 0.114 -0.023 -0.008 -0.001 0.000 -0.001 0.000 0.000

2.1947 -2.786 0.195 0.195 0.012 -0.012 -0.006 -0.003 -0.002 -0.000 -0.000

3.2421 -2.143 0.006 0.178 0.044 -0.004 -0.008 -0.005 -0.004 -0.002 -0.001

4.2895 -1.744 -0.097 0.142 0.061 0.006 -0.006 -0.006 -0.005 -0.003 -0.003

5.3368 -1.473 -0.156 0.107 0.069 0.016 -0.002 -0.005 -0.005 -0.004 -0.003

6.3842 -1.276 -0.191 0.076 0.071 0.023 0.001 -0.003 -0.004 -0.004 -0.004

7.4316 -1.126 -0.211 0.051 0.070 0.028 0.005 -0.001 -0.002 -0.004 -0.004

8.4789 -1.009 -0.222 0.029 0.067 0.032 0.008 0.001 -0.001 -0.003 -0.003

9.5263 -0.914 -0.228 0.012 0.062 0.034 0.011 0.003 0.001 -0.002 -0.002

10.573 -0.835 -0.231 -0.002 0.057 0.036 0.014 0.005 0.003 -0.001 -0.002

11.621 -0.769 -0.231 -0.014 0.053 0.036 0.016 0.007 0.004 0.000 -0.001

12.668 -0.713 -0.230 -0.024 0.048 0.037 0.018 0.009 0.006 0.001 0.000

13.715 -0.665 -0.227 -0.032 0.043 0.036 0.019 0.010 0.007 0.003 0.001

14.763 -0.623 -0.224 -0.039 0.038 0.036 0.020 0.012 0.008 0.004 0.002

15.810 -0.586 -0.221 -0.044 0.034 0.035 0.021 0.013 0.009 0.004 0.003

16.857 -0.553 -0.217 -0.049 0.030 0.034 0.021 0.014 0.010 0.005 0.004

17.905 -0.524 -0.214 -0.053 0.026 0.033 0.022 0.014 0.011 0.006 0.004

18.952 -0.497 -0.210 -0.057 0.023 0.031 0.022 0.015 0.012 0.007 0.005

20.000 -0.474 -0.206 -0.060 0.020 0.030 0.022 0.015 0.013 0.008 0.006
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Chapter 4

Conclusions

In this thesis, we have solved a system of PDEs for a particular boundary

layer flow problem following some simple steps. Firstly, the exact solution of

such system is hard to find so we have applied the similarity transformations

under which system of PDEs is reduced to a system of ODEs. Also exact

solution of reduced system of the ODEs is hard to find, so we found the

numerical solution using bvp5c in MATLAB. Our next step was to approx-

imate the numerical solution by some closed-form functions. To check the

error involved between the numerical and the approximate closed-form solu-

tion of the reduced system of ODEs, we found the residuals by approximate

closed-form solution for this system, that supports validity of our approx-

imate closed-form solution for the reduced system of ODEs. On the next

stage we again considered the similarity transformations to write approxi-

mate closed-form solution of the original system of PDEs. To check the error

involved in our approximate closed-form solution of the system of PDEs, we

work out residuals, with respect to the approximate closed-form solution, of
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the system of PDEs, that again supports the approximate closed-form solu-

tion of the system of PDEs. It will be interesting to determine numerical

solution of the original system of PDEs for the boundary layer problem so

that one can compare the results with the approximate closed-form solution.
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