
THE THOMAS-FERMI EQUATION:

COMPARISON OF SOLUTIONS BY VARIOUS METHODS

by

Javeria Ayub

A thesis submitted in partial fulfillment of the requirements

for the degree of Master of Philosophy in Mathematics

Supervised by

Prof. Faiz Ahmed

School of Natural Sciences

National University of Sciences and Technology

Islamabad, Pakistan.





Dedicated to my Parents
Siblings, Friends

and my Late

Grand Father.

ii





Abstract

In this dissertation, several techniques have been used to determine solutions

of the Thomas-Fermi equation. This is an important nonlinear ordinary dif-

ferential equation which models the effective nuclear charge in heavy atoms.

This model is also used to determine charge density, which is helpful to

study the electrons in an atom. First Adomian Decomposition Method is

used to find a series solution of the equation. Accuracy is enhanced when

this solution is expressed in terms of Padé approximants. Secondly we find

an analytical solution based on the Majorana transformation. Finally we

solve the problem by using the Spectral Method. These solutions are com-

pared with each other and also with Liao’s solution found with the Homotopy

Analysis Method.

Javeria Ayub.
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Chapter 1

Introduction

There are many problems in science and engineering associated with physical

phenomena, which are modeled by researchers by differential equations with

imposed initial or boundary conditions or both. Engineering, mechanics,

economics, seismology and climate science are few examples which make use

of mathematical models to solve important problems in their respective fields.

1.1 Thomas-Fermi Equation

The simplest atomic system is the hydrogen atom for which a complete solu-

tion exists. It is modeled as a two body problem, including one proton and

one electron. Problems become complex when we deal with multi-electron

atoms because electrons interact not only with the attractive central electro-

static field of the nucleus, but also undergo mutual repulsion whose strength

depends on the mutual distance between the electrons. Various methods of

approximation described to model this interaction are present in the litera-
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ture [15]. Here we describe the theory developed independently by Thomas

and Fermi suitable for heavy atoms containing many electrons [13].

The statistical model of an atom was first introduced by Thomas and Fermi

in 1927 and was named after them. It was originally introduced to study a

multi-electron atom. After that it has found major applications in molecu-

lar theory, solid state theory and also in defining the contribution from the

electrons to the equation of state of matter at high pressures. The Thomas-

Fermi Model is applied to determine the charge densities and potentials in

an atom of numerous electrons with atomic number Z.

Now we derive the Thomas-Fermi equation. The electron density which is

the number of electrons per unit volume n(r) is defined below, where r is the

distance from the nucleus

n(r) =
1

π2h3

∫ pm

0

p2dp =
p3m

3π2h3
, (1.1)

where
p2m
2m

= µ− E(r). (1.2)

Here m is the mass of an atom, h3 is the volume, µ is the chemical potential,

p is the electron momentum, pm is the maximum electron momentum and

E(r) potential energy function. From Eq.(1.2) we write

p3m = (2m[µ− E(r)])3/2,

which leads to,

n(r) =
(2m[µ− E(r)])3/2

3π2h3
. (1.3)

The function ψ(r) is the electrostatic potential, which is related to poten-

tial energy function through E(r) = −eψ(r), where e is the magnitude of
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the electronic charge. We can write an expression which shows the relation

between the electron density and the electrostatic potential

n(r) =
(2m[µ+ eψ(r)])3/2

3π2h3
. (1.4)

Eq.(1.4) represents the Thomas-Fermi relation between n(r) and ψ(r). We

can rewrite Eq.(1.4) as

n(r) =
(2me[ψ − ψ0])

3/2

3π2h3
, (1.5)

where ψ0 = −µ/e. The Poisson equation relates the potential and the charge

density through:

∇2ψ = 4πen(r). (1.6)

With substitution of n(r) in Eq. (1.6) we get

∇2(ψ − ψ0) =
4e

3πh3
(2me[ψ − ψ0])

3/2. (1.7)

Assuming nucleus at the origin of the coordinate system such that the poten-

tial is spherically symmetric. Therefore, we write the Laplacian for (ψ−ψ0)

as:

∇2(ψ − ψ0) =
1

r

d

dr

[

r2
d

dr
(ψ − ψ0)

]

. (1.8)

When distance from the nucleus r → 0 it means that it is approching to

nucleus. We assume a dimensionless function y(r):

(ψ − ψ0) =
Ze

r
y(r). (1.9)

When r → 0, we have (ψ − ψ0) → Ze
r
. From this we have a condition

y(0) = 1. First compare Eq.(1.7) and Eq.(1.8) then put Eq.(1.9) in them

and after doing some calculation we arrive at:

d2y

dr2
=

[4Z1/2

3πh3
(2me2)3/2

]y3/2

r1/2
. (1.10)
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We introduce here a dimensionless variable x, to make Eq.(1.10) take a sim-

pler form:

r = βx. (1.11)

Use Eq.(1.11) in Eq.(1.10). We can write it as

d2y

dx2
= β3/2

[4Z1/2

3πh3
(2me2)3/2

]y3/2

x1/2
. (1.12)

Now we chose β such that the term in the bracket becomes unity

β =
1

2

(3π

4

)3/2 h3

me2
1

Z1/3
≈ 0.88534b0

Z1/3
, (1.13)

where

b0 =
h3

me2
≈ 0.529× 10−8cm. (1.14)

Thus b0 represents the Bohr radius. Putting the value of β in Eq.(1.12), we

obtain the dimensionless Thomas-Fermi differential equation which is valid

for all Z

y′′ =
y

3

2

x
1

2

, (1.15)

y(0) = 1 , y(∞) = 0. (1.16)

By using an appropriate substitution, we can transform it into well-known

differential equations. Let us assume y = x−3ψ(z) and z = ln x, the Thomas-

Fermi equation is transformed into the following:

ψ
′′ − 7ψ

′

+ 12ψ–ψ
3

2 = 0, (1.17)

where ψ
′

and ψ
′′

are the first and second derivatives of ψ with respect to z.

Also, using y = x−3z and x = exp[
∫

dzψ(z)], one can transform it into the

Abel equation of the first type

ψ
′

+ 7ψ2 + (z
1

2 − 12)zψ3 = 0. (1.18)

4



Here, we can find a way to predict the potential curve y(x) as a function of

the distance between the nuclei. We can easily find electron density n(x).

n(x) =
32

9π3

Z2

b30

[y(x)

x

]

. (1.19)

From this, we are able to know all the structural properties of the molecule.

Molecular electrostatic potential also demonstrate facts about the charge dis-

tribution of a molecule. Electrostatic potential gives knowledge about the

charge distribution of a molecule because of the properties of the nucleus and

nature of electrostatic potential energy. Thus a high electrostatic potential

displays the comparative absence of electrons and a low electrostatic poten-

tial indicates large number of electrons.

Liao [11] used Homotopy analysis method to determine an approximate so-

lution and further used Padé approximate method for finding slope. Salva-

tore Esposito used old Majorana transformation to convert the Thmas-Fermi

equation in a first order differential equation and found an analytical solu-

tion [10]. Both of them are vary accurate results. However the Thomas-

Fermi equation has been applied as a testing ground for a broad assortment.

For example Wazwaz [4] has used the Modified decomposition method, V.

Rudrapatna [7] has used Analytical approximation method and Noor [8] has

used Homotopy perturbation analysis. Further Padé approximants [4, 8, 11],

Spectral Methods with different basis functions in [6, 9] and a technique from

old notes of Ettore Majorana [10] have also been applied for this problem.
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Reference Methods

RV.Ramnath[7] New analytical approximation

A−M.Wazwaz[4] Modified decomposition method

S.Esposito[10] Majorana transformation

Liao[11] Homotopy analysis solution

M.A.Noor[8] Homotopy Perturbation Method

F.Bayatbabolghani,K.Parand[6] Use Hermite function to approximate solution

R.Jovanovicetal.[9] Uses Exponential functions

Table 1.1: Thomas-Fermi bibliography

The problem consists of a nonlinear ordinary differential equation on a semi

infinite interval. There are very few methods of solving nonlinear differen-

tial equations with exact results. When we cannot obtain the exact solution

we use approximate methods. Some of the popular approximate methods

are Spectral Methods, Adomian decomposition method, Homotopy meth-

ods, etc. Success of the method is measured by its accuracy, efficiency and

by its convergence rate.

We use several techniques for solving the nonlinear ordinary differential equa-

tion i.e. the Thomas-Fermi equation. In Chapter 2, we have presented

Wazwaz solution by the Adomian decomposition method [4]. In Chapter 3,

we describe in detail, an analytical solution of the problem. This solution

was found by Majorana but it remained unpublish and S. Esposito worked

out the details and published it in 2002 [10]. In chapter 4, we solve the

problem by Chebyshev Spectral method. These solutions are compared with
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each other in chapter 5.
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Chapter 2

Adomian Decomposition

Method

In this chapter, we have presented the solution of the problem by Wazwaz

[4]. He used the Adomian decomposition method to solve the Thomas-Fermi

problem. A slight change in Adomian decomposition method gives a solu-

tion in which an unknown coefficient appears. To estimate this unknown

coefficient we further apply Padè approximants method.

2.1 Adomain Decomposition Method (ADM)

Adomain decomposition method is a simple process, it is easily utilized and

is a convenient tool for the direct application to the problem. It was first

presented by George Adomian [14] and was developed between 1970’s to

the 1990’s. Adomain decomposition method is widely applicable to different

types of problems in different fields and produces accurate results. It can
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be applied to all types of ordinary or partial differential equations whether

these are linear or nonlinear.

We consider a general non-linear differential equation

Wy = w, (2.1)

where W is the nonlinear operator, y and w are the functions of x. Now, we

can spilt W into three parts like:

Xy + Y y + Zy = w. (2.2)

Where Xy represents the linear portion and Y y represents the remainder of

the linear portion of Wy in Eq.(2.1). Finally Zy represents the nonlinear

portion of Wy. Now we apply the inverse operator of X on both sides of the

Eq. (2.2):

X−1Xy +X−1Y y +X−1Zy = X−1w,

X−1Xy = X−1w −X−1Y y −X−1Zy,

y(x) = g(x)−X−1Y y −X−1Zy. (2.3)

As X is a linear operator, so we have got an equation for y(x). By taking

integration of Eq.(2.2) and using initial condition, we got X−1w = g(x). Now

we will take y(x) as an approximate solution by taking the sum of infinite

components and write as:

y(x) =
∞
∑

i=0

yi(x). (2.4)

To find the nonlinear term Zy, it can be approximated into infinite series of

polynomial

Zy =
∞
∑

i=0

Ai. (2.5)
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In the above equation Ai represents the Adomain polynomials which has its

general form

Ai =
1

i!

[ di

dλi
Zy(λ)

]

λ=0
. (2.6)

By putting Eq.(2.4), (2.5) into Eq.(2.2) we get

∞
∑

i=0

yi = y0 −X−1

∞
∑

i=0

Y yi −X−1

∞
∑

i=0

Ai, (2.7)

If we take

y0 = g(x),

...

yi+1 = X−1Y yi +X−1Ai.

From the above relation, we can find y1, y2, · · · in a recursive manner. The

sum of yi′s give us the approximate solution y(x). Now many researchers use

Modified decomposition method by doing some slight change in the ADM

according to their problem. This change in ADM improves the accuracy

level.

2.1.1 Example

Consider a first order nonlinear ordinary differential equation with the initial

value problem

dy

dx
= y2, (2.8)

y(0) = 1. (2.9)

Its exact solution is y(x) = 1
1−x

. Let X be a linear operator, say

X =
d

dx
, (2.10)
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and inverse operator is given as

X−1 =

∫ x

0

()dx. (2.11)

Let M be a nonlinear operator, then Eq.(2.8) becomes

Xy =My, (2.12)

My = y2. (2.13)

Apply X−1 on the above equation we have

X−1Xy = y(x)− y(0). (2.14)

By using initial condition we have

X−1Xy = y(x)− 1. (2.15)

By putting Eq.(2.15) in Eq.(2.12), we have

y(x) = 1 +X−1My. (2.16)

By Adomian Decomposition Method we can take the infinite series y(x) =
∑∞

i=0 yn(x). And nonlinear term My as the infinite series of Adomian poly-

nomials My =
∑∞

i=0Ai. The above equation becomes

∞
∑

i=0

yi(t) = 1 +X−1

∞
∑

i=0

Ai. (2.17)

By definition Adomian polynomials are

Ai =
1

i!

di

dλi
(

My(λ)
)

|λ=0, (2.18)

y(λ) =
∞
∑

i=0

λiyi, (2.19)
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where λi are scalars. Adomian polynomials found for this example are given

below.

A0 = y20,

A1 = 2y0y1,

A2 = 2y0y2 + y21,

A3 = 2y0y3 + 2y1y2,

...

By Adomian Decomposition Method we can write Eq.(2.17) as

y0 = 1, (2.20)

yi+1 = X−1Ai. (2.21)

We get from above

y0 = 1,

y1 = x,

y2 = x2,

y3 = x3,

...

These series solution is formed from
∑∞

i=0 x
i so

y(x) =
∞
∑

i=0

xi. (2.22)

It is recognized as the Taylor series of 1
1−x

,

y(x) =
1

1− x
. (2.23)
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2.2 Modified Decomposition Method

For a slight change or modification in Eq.(2.5), here we split g(x) into two

components as given below:

g(x) = g0(x) + g1(x), (2.24)

The next step is to take y0 equal to the first component g0.The second com-

ponent g1 is added to the rest of the series of yi. The rest of the term remains

the same for yi′s with i ≥ 2. The new recursive relationship is written below.

y0 = g0,

y1 = g1 −X−1Y y0 −X−1A0,

...

yi+2 = −X−1Y yi+1 −X−1Ai+1, i ≥ 0.

Making some small changes in the ADM, first it increases the convergence of

the solution and second it reduces the calculation. By properly choosing g0

and g1, the exact solution y(x) can be found by using very few components

and sometimes by only two components. The level of success in modification

depends on the best choice of g0 and g1. If g(x) has only one component, then

the standard Adomian decomposition method is applied in this situation.

2.3 Application

The Thomas-Fermi Equation is a nonlinear ordinary differential equation

with [0,∞). It is used to find potentials and charge densities of multi electron
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atoms. It also determines the effective nuclear charge in heavy atoms.

d2y

dx2
=
y

3

2

x
1

2

,

y(0) = 1 , y(∞) = 0.

(2.25)

We apply Modified decomposition method (MDM) on equation (2.25). First

step is to write above problem in operator form.

Xy =
y

3

2

x
1

2

. (2.26)

Here X is the second order linear differential operator. Apply X−1 on both

sides of (2.26) to find the solution y(x)

X−1Xy = X−1
(

y
3

2x
−1

2

)

+Dx+ E , y(0) = 1,

y(x) = 1 +Dx+X−1
(

y
3

2x
−1

2

)

. (2.27)

Take derivative of (2.27) with respect to x then we have y′(0) = D. According

to Modified decomposition method we can write approximate solution of

problem (2.25) as given below.

y(x) =
∞
∑

i=0

yi(x). (2.28)

Here the nonlinear term y
3

2 can be written as approximated infinite series of

polynomial by ADM,

y
3

2 (x) =
∞
∑

i=0

Ai(x). (2.29)

where Ai are the Adomain polynomials. By substituting Eq.(2.28) and (2.29)

in Eq.(2.27)
∞
∑

i=0

yi(x) = 1 +Dx+X−1
(

x
−1

2

∞
∑

i=0

Ai(x)
)

. (2.30)
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It is easy to recognize the first component y0, zeroth component is given

below:

y0(x) = 1 +Dx = g(x), (2.31)

yi+1(x) = X−1
(

x
−1

2 Ai(x)
)

, i≥0. (2.32)

Here we apply Modified decomposition method so that we can split g(x) into

two components g0 and g1.

g0(x) = 1, g1(x) = Dx. (2.33)

Here we have

y0 = g0 = 1, (2.34)

y1 = g1 +X−1
(

x
−1

2 A0(x)
)

= Dx+X−1
(

x
−1

2 A0(x)
)

, (2.35)

...

yi+2 = X−1
(

x
−1

2 Ai+1(x)
)

, i≥0. (2.36)

Taking y0 = 1, instead of y0 = 1 + Dx, it leads to more simplification in

calculation. By using this modification we make a remarkable improvement

in the state of convergence of the series solution. Here is the list of Adomain

polynomials Ai.

A0 = 1,

A1 =
3

2
y1,

A2 =
3

8
y21 +

3

2
y2,

A3 =
−1

16
y31 +

3

4
y1y2 +

3

2
y3,

A4 =
3

128
y41 −

3

16
y21y2 +

3

8
(y22 + 2y1y3) +

3

2
y4,
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A5 =
3

32
y31y2 +

1

16
(− 3y1y

2
2 − 3y21y3) +

3

8
(2y2y3

+ 2y1y4) +
3

2
y5 +

−3

256
y51,

A6 =
7

1024
y61 −

15

256
y41y2 +

3

8
(y23 + 2y2y4

+ 2y1y5) +
1

16
(− y32 − 6y1y2y3 − 3y21y4)

+
3

128
(6y21y

2
2 + 4y31y3) +

3

2
y6,

A7 =
−9

2048
y71 +

21

512
y51y2 −

3

256
(10y31y

2
2

+ 5y41y3) +
3

128
(4y1y

3
2 + 12y21y2y3 + 4y31y4)

+
1

16
(− 3y22y3 − 3y1y

2
3 − 6y1y2y4 − 3y21y5)

+
3

8
(2y3y4 + 2y2y5 + 2y1y6) +

3

2
y7,

A8 =
99

32768
y81 −

63

2048
y61y2 +

7

1024
(15y41y

2
2

+ 6y51y3)−
3

256
(10y21y

3
2 + 20y31y2y3 + 5y41y4)

+
3

128
(y42 + 12y1y

2
2y3 + 6y21y

2
3 + 12y21y2y4

+ 4y31y5) +
1

16
(− 3y2y

2
3 − 3(y22 + 2y1y3)y4

− 6y1y2y5 − 3y21y6) +
3

8
(y24 + 2y3y5 + 2y2y6

+ 2y1y7) +
3

2
y8,
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A9 =
−143

65536
y91 +

99

4096
y71y2 −

9

2048
(21y51y

2
2

+ 7y61y3) +
7

1024
(20y31y

3
2 + 30y41y2y3

+ 6y51y4)−
3

256
(5y1y

4
2 + 30y21y

2
2y3

+ 10y31y
2
3 + 20y31y2y4 + 5y41y5)

+
3

128
(4y32y3 + 12y1y2y

2
3 + 4(3y1y

2
2

+ 3y21y3)y4 + 12y21y2y5 + 4y31y6)

+
1

16
(− y33 − 6y2y3y4 − 3y1y

2
4

− 3(y22 + 2y1y3)y5 − 6y1y2y6 − 3y21y7)

+
3

8
(2y4y5 + 2y3y6 + 2y2y7 + 2y1y8) +

3

2
y9,

By using y0 = 1 from Eq.(2.34) , the remaining components can be found.

y0 = 1,

y1 = Dx+
4x

3

2

3
,

y2 =
2

5
Dx

5

2 +
x3

3
,

y3 =
3

70
D2x

7

2 +
2Dx4

15
+

2x
9

2

27
,

y4 =
−1

252
D3x

9

2 +
D2x5

175
+

31Dx
11

2

1485
+

4x6

405
,

y5 =
x

11

2 61425D4 + 164736D3x
1

2 + 360936D2x+ 374400Dx
3

2 + 124432x2

64864800
,

y6 =
−3D5x

13

2

9152
− 29D4x7

24255
− 623D3x

15

2

351000
− 46D2x8

45045
− 113Dx

17

2

1178100
+

23x9

473850
,
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y7 =
7D6x

15

2

49920
+

68D5x8

105105
+

153173D4x
17

2

116424000
+

1046D3x9

675675
+

799399D2x
19

2

698377680

+
51356Dx10

103378275
+

35953x
21

2

378132300
,

y8 =
−x 17

2

8905153473216000

(

613866278025D7 + 3426706483200D6x
1

2

+ 8590664370420D5x+ 12533963464704D4x
3

2 + 11434694685040D3x2

+ 6492922168320D2x
5

2 + 2132373014464Dx3 + 317159180800x
7

2

)

,

y9 =
99D8x

19

2

2646016
+

256D7x10

1044225
+

705965027D6x
21

2

966226060800
+

43468D5x11

33622875

+
1861464749D4x

23

2

1253187936000
+

27134428D3x12

23880381525
+

17319117797D2x
25

2

30580884180000

+
494880923Dx13

2936459901375
+

172159489x
27

2

7487019540000
,

and so on. By taking t = x
1

2 , the approximation y(t) becomes

y(t) = 1 +Dt2 +
4

3
t3 +

2

5
Dt5 +

1

3
t6 +

3

70
D2t7 +

2

15
Dt8 +

( 2

27
− 1

252
D3

)

t9

+
1

175
D2t10 +

( 31

1485
D +

61425

64864800
D4

)

t11 +
( 164736

64864800
D3 +

4

405

)

t12

−
( 3

9152
D5 +

360936

64864800
D2

)

t13 +
( 374400

64864800
D − 29

24255
D4

)

t14

−
( 623

351000
D3 +

124432

64864800
+

7

49920
D6

)

t15 −
( 46

45045
D2 +

68

105105
D5

)

t16

+
( 153173

116424000
D4 − 613866278025

8905153473216000
D7 − 113

1178100
D
)

t17

+
( 23

473850
+

1046

675675
D3 − 3426706483200

8905153473216000
D6

)

t18

+
( 799399

698377680
D2 +

99

2646016
D8 − 8590664370420

8905153473216000
D5

)

t19

+
( 51356

103378275
D − 12533963464704

8905153473216000
D4 +

256

1044225
D7

)

t20

+O(t21).
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2.4 Padé Approximants

Padé approximants converge on the whole real axis for any function y(x) if

it has no singularity on the real axis. The advantage of Padé approximants

is to get more information of the function y(x) by converting polynomial

approximation into a rational function. For function y(x) and two integers

m ≥ 0 and n ≥ 1, the Padé approximant of order [m/n] is the rational

function.

R(x) =

∑m
j=0 ajx

j

1 +
∑n

k=1 bkx
k
. (2.37)

Above rational functions satisfy following property

y(0) = R(0),

y′(0) = R′(0),

y′′(0) = R′′(0),

...

ym+n(0) = Rm+n(0).

The Padé approximant is unique for every m and n and all the coefficients

can easily be found. Here we use Padé approximant to estimate the value

of y′(0) = D. In the Thomas-Fermi Equation we use the diagonal approx-

imant [m/m] only, because they are efficient and stable. All the diagonal

approximants [m/m] will vanish by using the boundary condition y(∞) = 0.

To satisfy the condition, take the coefficient of the highest power of t in the

numerator equal to zero and calculate the roots of polynomials of D through

Mathematica or Maple. An important fact that the Thomas-Fermi equation

has a solution which is decreasing so y′(0) < 0. Using this fact, complex roots
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and positive roots can be ignored automatically. We used Kobayashi [2] and

Anderson [3] results as a reference. Kobayashi found a highly accurate numer-

ical solution of the Thomas-Fermi equation, and a slope y′(0) = −1.588071.

Anderson calculated the upper and lower bound of y′(0) by using principles

of complementary variation method −1.589 < y′(0) < −1.563.

Padé approximation Initial slope y′(0) Comparison with [2]
[

2/2
]

-1.21413729 23.71
[

4/4
]

-1.550525919 2.36
[

7/7
]

-1.586021037 12.9 ×10−2

[

8/8
]

-1.588076820 3.66 ×10−4

Table 2.1: Padé approximation and initial slopes y′(0)

In above Table 2.1 diagonal approximants [2/2] and [4/4] initial slope y′(0)

does not lie between the limits of Anderson. By increasing the degree of the

Padé approximants the initial slope y′(0) improves rapidly. The initial slope

for [7/7] and [8/8] lies between the limit of Anderson and also approaches

the initial slope of Kobayashi.
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Dashed line --[7/7] Padé approximants

Solid line --[8/8] Padé approximants

2 4 6 8 10
t

-0.2

0.2

0.4

0.6

0.8

1.0

1.2

yHtL

Figure 2.1: Padé approximants [7/7] and [8/8] of the approximations of the

potential y(t).

From figure 2.1, we can see that both the approximants have fast convergence

initially but comparatively [7/7] Pade approximant is a better option. It

slowly converges to zero but it has a dip near t = 4. On the other hand [8/8]

is efficient but becomes negative after t = 5.75. Both these features are bad

marks as far as the accuracy is concerned. More precise view of [7/7] and

[8/8] Padé approximant is following:
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[7/7] Padé approximant 

0 2 4 6 8 10
t

0.2

0.4

0.6

0.8

1.0

yHtL

Increase again

[7/7] Padé approximant 

0 5 10 15 20 25 30
t

0.02

0.04

0.06

0.08

0.10

yHtL

Figure 2.2: More precise view of Padé approximant [7/7].
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[8/8] Padé approximant 

2 4 6 8 10

0.2

0.4

0.6

0.8

1.0

t = 5.75

[8/8] Padé approximant 

2 4 6 8 10
t

-0.04

-0.02

0.02

0.04

yHtL

Figure 2.3: More precise view of Padé approximant [8/8].

From figure 2.2 and 2.3 we can well differentiate between Padé approximants

[7/7] and [8/8]. Numerical values of Padé approximants [7/7] and [8/8] are

given in the table below:
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t [7/7 ] Padé approximants [8/8 ] Padé approximants

00.50 0.7557383 0.7552

01.00 0.426623 0.424

01.50 0.222946 0.215866

02.00 0.12256 0.108321

02.50 0.0784775 0.0554392

03.00 0.0613384 0.0292216

04.00 0.0563062 0.0085627

05.00 0.0604499 0.00205949

05.50 0.0625399 0.000535552

05.75 0.0634375 -0.0000160073

06.00 0.0642223 -0.000469363

10.00 0.0652132 -0.00290523

20.00 0.0480175 -0.00296214

30.00 0.036208 -0.00244271

Table 2.2: Comparrison between Padé approximants.

These Padé approximants give us good initial slope y′(0) but the assuracy

deteriorate for values of t near 5. The [8/8] approximant becomes negative

beyond 5.75 which is, of course, absurd. Also the [7/7] approximant appears

to slowly converge to zero but it has a dip in value near t = 4.
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Chapter 3

Majorana Solution of the

Thomas-Fermi Equation

In this chapter, we use Majorana method to obtain the solution of the

Thomas-Fermi equation. We use Majorana transformations to convert the

Thomas-Fermi equation in a first order differential equation and solve it to

get a series solution. It is an analytical method of finding solution of the

Thomas-Fermi equation. It was discovered by Majorana but remained un-

publish until S. Esposito improved it and published it in 2002 [10].

3.1 Majorana Transformation

The Thomas-Fermi Model is applied to estimate the electron density and

this electron density is used to compute the electrostatic potential due to the

nucleus and the cloud of electrons.

y′′ =
y

3

2

x
1

2

, (3.1)

25



y(0) = 1, (3.2a)

y(∞) = 0. (3.2b)

Eq.(3.1) is the Thomas-Fermi equation with boundary conditions (3.2a) and

(3.2b). Unfortunately, there exists no sufficiently good approximate analtical

solution which satisfies the boundary condition (3.2a) and (3.2b) of Eq (3.1).

Sommerfeld [12] discovered an exact particular solution of the Thomas-Fermi

equation which satisfy condition (3.2b) but his solution had a divergent first

derivative at x = 0 (doesnot satisfy condition (3.2a)),

y =
144

x3
. (3.3)

In 1928 Majorana discovered a semi-analytical series solution of the Thomas-

Fermi equation with appropriate boundary conditions but unfortunately it

remained unpublished. The Majorana solution can be viewed as a modifica-

tion of (3.3).

Let us take a parameter t:

x = x(t), (3.4a)

y = y(t). (3.4b)

These equations are called a parametric representation of the solution of

the Thomas-Fermi equation. Here is a scheme adopted by Majorana i.e to

use double change of variables. If x → t then y(x) → z(t). Now the new

unknown function is z(t). This relation is taken as invertible and connecting
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the two sets of variables which has differential nature.

t = t(x, y), (3.5a)

z = z(y, y′). (3.5b)

The above equations are in their general form. By using these we can trans-

form second-order differential equation (3.1) for y into a first-order differential

equation in z. In addition, these equations are also implicit equations for t

and z, because x and y depend on them. For the Thomas-Fermi equation,

Majorana presented the following transformation shift:

t = 144−
1

6x
1

2y
1

6 , (3.6)

z = −
(16

3

)
1

3

y−
4

3y′. (3.7)

We can see that (3.6) is similar to the Sommerfeld solution (3.3), because it

can be written to the given pattern:

y =
144

x3
t6. (3.8)

For determining the differential equation for z(t), we take derivative of (3.7)

with respect to t and obtain the following:

dz

dt
= −

(16

3

)
1

3

ẋy−
4

3

[

− 4

3

y′2

y
+ y′′

]

, (3.9)

by inserting (3.1) in above equation we have:

dz

dt
= −

(16

3

)
1

3

ẋy−
4

3

[

− 4

3

y′2

y
+
y

3

2

x
1

2

]

. (3.10)

By using (3.6) and (3.7) to eliminate x1/2 and y′2 respectively, we have:

dz

dt
=

(16

3

)
1

3

(4

3

)

ẋy−7/3
[( 3

16

)
2

3

y8/3z2
]

−
(16

3

)
1

3 ẋy1/6

[ty−1/61441/6]
,
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dz

dt
=

(2

3

)
2

3

ẋy1/3z2 −
(2

3

)
2

3 ẋy1/3

t
,

by substitution the values of x1/2 and y′2 we have:

dz

dt
=

(4

9

)
1

3

[tz2 − 1

t

]

ẋy1/3. (3.11)

In the above equation, we have only ẋy1/3 to express into a function of z and

t. We use here (3.6):

x = 1441/3t2y−1/3. (3.12)

Differentiate with respect to t both sides of (3.12) explicitly, we have,

ẋ = 1441/3
[

2ty−1/3 + t2ẋ(−1

3
y−4/3y′)

]

, (3.13)

ẋy1/3 +
1441/3

3
t2y−4/3y′ẋy1/3 = 1441/32t,

ẋy1/3 = 1441/3
2t

1 + 1441/3

3
t2y−4/3y′

,

and after calculation we reach to the following results

ẋy1/3 = 1441/3
2t

1− zt2
. (3.14)

Put (3.14) in (3.11), we finally obtain the differential equation for z(t)

dz

dt
= 8

tz2 − 1

1− t2z
. (3.15)

In Eq.(3.6) for condition (3.2a), we have t = 0 for x = 0. And also from (3.7)

we have:

z(0) =
(16

3

)
1

3

y′0. (3.16)

Where y′0 = y′(x = 0). The unique solution z(t) of (3.15) obtained with

boundary condition(3.2b) must satisfy the initial condition of (3.16). By
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using Sommerfeld expression (3.3) in (3.6) and (3.7). This means that at

x→ ∞, we have t = 1, and

z(1) = 1. (3.17)

Thus we find t varies between t = 0 and t = 1. In this interval we look for

the solution of (3.15) by using a series of expansion in powers of the variable

ν = 1− t:

z = a0 + a1ν + a2ν
2 + a3ν

3 + · · · (3.18)

From (3.17) we have:

a0 = 1. (3.19)

Using ν = 1− t, we convert (3.15) into following:

dz

dν
= −8

(1− ν)z2 − 1

1− (1− ν)2z
. (3.20)

1

8
[(1− ν)2z − 1]

dz

dν
= 8[(1− ν)z2 − 1],

We use (3.18) series of expansion in above, then we compare the coefficients

of νi. For ν0, we have
1

8
[a0 − 1] = [a20 − 1]. (3.21)

Eq. (3.21) is satisfied for a0 = 1, and for ν1, we have

1

8
[a21 − 2a0a1 − 2a2 + 2a2a0] = [−a20 + 2a0a1], (3.22)

1

8
[a21 − 2a1 − 2a2 + 2a2] = [2a1 − 1], with a0 = 1,

we solve (3.22) for a1 and get

a1 = 0.455996. (3.23)
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Let z =
∑∞

p=0 apν
p in (3.20), we have:

1

8

[

n−1
∑

k=0

∞
∑

n=1

(k + 1)an−kak+1ν
n − 2

n−1
∑

k=0

∞
∑

n=1

(k + 1)an−k−1ak+1ν
n+

n−2
∑

k=0

∞
∑

n=2

(k + 1)an−k−2ak+1ν
n
]

−
n

∑

k=0

∞
∑

n=0

an−kakν
n+

n−1
∑

k=0

∞
∑

n=1

an−k−1akν
n = 0.

(3.24)

For n = 2 we can obtain an equation for a2, which is

1

8
[a1a2+2a2a1− 2a21− 4a2+ a0a1] = [a0a2+ a21+ a0a2− a0a1− a0a1], (3.25)

[3a1a2 − 2a21 − 4a2 + a1] = 8[a21 + 2a2 − 2a1], with a0 = 1, a1 = 0.455996,

put value of a1 from (3.23) in above then we have

a2 = 0.304455. (3.26)

Rewriting (3.24), we obtain the following recurrence relation by setting co-

efficients of νn in (3.24) to zero:

n−1
∑

k=0

∞
∑

n=1

(k + 1)an−kak+1 − 2
n−1
∑

k=0

∞
∑

n=1

(k + 1)an−k−1ak+1+

n−2
∑

k=0

∞
∑

n=2

(k + 1)an−k−2ak+1 − 8
n

∑

k=0

∞
∑

n=0

an−kak+

8
n−1
∑

k=0

∞
∑

n=1

an−k−1ak = 0,

(3.27)
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an[a1 + na1 − 2n− 2] = 2
n−2
∑

k=0

(k + 1)an−k−1ak+1 −
n−2
∑

k=1

(k + 1)an−kak+1

−
n−2
∑

k=0

(k + 1)an−k−2ak+1 + 8
n−1
∑

k=1

akan−k

− 8
n−1
∑

k=0

akan−k−1,

from above steps we can easily get an expression for an where n ≥ 3,

an =
A(n)

2− 1
8
[(n+ 1)a1 − 2n]

, (3.28)

where

A(n) =
n−2
∑

k=1

(k + 1)an−kak+1 − 2
n−2
∑

k=0

(k + 1)an−k−1ak+1

+
n−2
∑

k=0

(k + 1)an−k−2ak+1 − 8
n−1
∑

k=1

akan−k

+ 8
n−1
∑

k=0

akan−k−1.

We can figure out that the sum on the right-hand side involves coefficient aj

with j ≤ n− 1. In order to have the relation in which (3.28) gives explicitly

the value of an where all the previous ones n− 1 coefficients are known. By

letting ν = 1, we have t = 0, when we place it in (3.18), certainly we have

z(0) =
∑∞

n=0 an. Assign this value of z at t = 0 in (3.16), here we get the

value of initial slope.

−y′0 = (
3

16
)1/3

∞
∑

n=0

an. (3.29)

The above equation shows that for the finite sum of series in (3.16) we also

have finite value of y′0. As the slope at initial point y′0 of the Thomas-Fermi
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equation is approximately y′0 ≃ −1.588071. For some fixed value of n we

can easily approach this value. Notice that the ai′s are positive definite and

that the series in (3.29) shows geometric convergence with an/an−1 ∼ 4/5 for

n→ ∞.

n
∑∞

n=0 an an/an−1 y′0

20 2.75597 0.806429 -1.5774

40 2.77432 0.814719 -1.5879

60 2.77458 0.818761 -1.58807

Table 3.1: Initial slope for various values of n.

By using the above expression for an, we can find z(t) for different n.
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Here we take n = 60:

z(t) = 2.77461− 7.99965t+ 30.7825t2 − 125.537t3 + 524.566t4 − 2212.5t5 + 9296.78t6

−38389.8t7 + 153707.t8 − 589657.t9 + 2.14688× 106t10 − 7.36728× 106t11

+2.37173× 107t12 − 7.14212× 107t13 + 2.00866× 108t14 − 5.27245× 108t15

+1.29155× 109t16 − 2.9535× 109t17 + 6.30844× 109t18 − 1.25936× 1010t19

+2.3514× 1010t20 − 4.10914× 1010t21 + 6.72531× 1010t22 − 1.03151× 1011t23

+1.48341× 1011t24 − 2.00114× 1011t25 + 2.53321× 1011t26 − 3.00996× 1011t27

+3.3575× 1011t28 − 3.51614× 1011t29 + 3.45694× 1011t30 − 3.19027× 1011t31

+2.76286× 1011t32 − 2.24449× 1011t33 + 1.70956× 1011t34 − 1.22005× 1011t35

+8.15195× 1010t36 − 5.09478× 1010t37 + 2.97503× 1010t38 − 1.62107× 1010t39

+8.23012× 109t40 − 3.88654× 109t41 + 1.70378× 109t42 − 6.91789× 108t43

+2.59485× 108t44 − 8.96454× 107t45 + 2.84259× 107t46 − 8.23993× 106t47

+2.17327× 106t48 − 518660.t49 + 111267.t50 − 21287.6t51 + 3597.06t52

−530.378t53 + 67.1962t54 − 7.16818t55 + 0.626149t56 − 0.0430083t57

+0.00217836t58 − 0.0000723397t59 + 1.18161× 10−6t60.

Now we look for the parametric result (x = x(t)) and (y = y(t)). First, we

make an assumption which also satisfies initial condition y(0) = 1.

y(t) = e
∫ t
0
w(t)dt, (3.30)

where w(t) is to be resolved in terms of z(t). By substituting (3.30) in (3.7)

and using (3.14) we find that:

z = −
(16

3

)1/3 w

ẋy1/3
,
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w = − 6zt

1− t2z
. (3.31)

Briefly, the parametric solution of the Thomas-Fermi equation (3.1) with

boundary condition in (3.2) is:

x(t) =
3
√
144t2e2η(t), (3.32a)

y(t) = e−6η(t), (3.32b)

where

η(t) =

∫ t

0

zt

1− t2z
dt. (3.33)

Expression for z(t) is derived above and by using (3.32) the Majorana solution

of the Thomas-Fermi equation we can figure out the solution.

0 2 4 6 8 10 12 14
xHtL0.0

0.2

0.4

0.6

0.8

1.0

yHtL

Figure 3.1: Majorana solution of the Thomas-Fermi equation.
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t x(t) y(t)

0.00 0.00 1

0.06 0.0190407 0.973236

0.12 0.0780538 0.904205

0.18 0.182384 0.807301

0.24 0.340928 0.694452

0.30 0.567102 0.575581

0.36 0.880773 0.458759

0.42 1.31167 0.350256

0.48 1.90544 0.254581

0.54 2.73493 0.174536

0.60 3.9225 0.111322

0.66 5.688 0.0646767

0.72 8.46396 0.0330854

0.78 13.2173 0.0140444

0.84 22.5707 0.00439949

0.90 46.4753 0.000762342

0.96 169.244 0.0000232514

Table 3.2: Numerical result of Majorana solution of the Thomas-Fermi equa-

tion.

Figure 3.1 and Table 3.2 depict this solution which is a highly accurate

solution of the Thomas-Fermi equation.
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Chapter 4

Chebyshev Spectral Method

4.1 Introduction

The origin of the term, “spectral” is not known but probably arises from

the original use of Fourier sines and cosines as basis functions, especially in

the fundamental frequencies of a process, namely the “spectrum”. Spectral

methods are generally based on the representation of a real and continuous

function g(x), on some interval not necessarily bounded. In spectral methods,

basis functions are global smooth functions.

If we have an equation for any arbitrary function z(x) where x ∈J⊆ R
n

Lz = g, (4.1)

Bz = 0 , x ∈ dJ, (4.2)

then this function z(x) can be approximated on the interval J as:

z(x) ≈ zN(x) =
N
∑

i=0

c
(n)
i ψi(x). (4.3)
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where J denotes a bounded domain R
a with a = 1, 2, or 3 and ψi are the

basis functions with constant coefficients ci which are to be determined. Put

zN(x) in Eq. (4.1) then the residual R can be calculated as

RN(x) = LzN(x)− g(x) 6= 0, x ∈ J. (4.4)

We have to force the residual R to zero, it requires

(RN , φi) :=

∫

J

RN(x)φi(x)w(x) = 0, 0 ≤ i ≤ N, (4.5)

where φi are members of an orthogonal set of functions

< RN , φi >N,w:=
N
∑

j=0

RN(xj)φi(xj)wj = 0, 0 ≤ i ≤ N, (4.6)

where xj with j = 0, 1, ...N are a set of collocation points and wj are the

weights. As z is an approximate solution so the residual R is about to vanish

for all x ∈ J . For high accuracy, the residual function R is minimized. Later

we have to find ci the unknown coefficients, so that the choice of the function

approximates the exact solution in the best way.

4.1.1 Properties of Orthogonal Polynomials

Some properties are mentioned here which are very useful in spectral methods

to find unknown coefficients. We state some of them. Proof may be found

in [5].

Theorem 4.1.1. The polynomials of an orthogonal set stisfy a recurrence

relation of the form

xψi(x) = Eiψi+1(x) + Fiψi(x) +Giψi−1(x), i ≥ 1.

where Ei, Fi and Gi are constants that may depend on i.

37



Theorem 4.1.2. The jth degree polynomial ψj of an orthogonal set has j

real distinct zeros, all of which lie in the interval (a, b).

In the particular case where w(x) = 1 for a ≤ x ≤ b, g1 and g2 are said to be

simply orthogonal. Simply, set of functions {φi(x)}∞i=0 is called an orthogonal

set of functions if the functions are pairwise orthogonal < φi(x), φj(x) >= 0

for i 6= j.

A spectral method of solution of differential equations is based on the ex-

pansion of the solution in a basis set of linearly independent functions. The

choice of basis functions based on the problem. The most commonly used ba-

sis functions are trigonometric functions and orthogonal polynomials which

include following:

1. Fourier Spectral Method

2. Laguerre Spectral Method

3. Chebyshev Spectral Method

4. Legendre Spectral Method

5. Hermite Spectral Method

Here is a list of several classical polynomials orthogonal with respect to weight

function w(x) on the specified interval [a, b].
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Name Symbol w(x) [a,b]

Legendre Pn(x) 1 [−1, 1]

Chebyshev Tn(x)
1√

1−x2
[−1, 1]

Sine sin(nπx) 1 [−1, 1]

Cosine cos(nπx) 1 [−1, 1]

Hermite Hn(x) e−x2

[−∞,∞]

Hermite hn(x) = e−
x2

2 Hn(x) 1 [−∞,∞]

AssociatedLaguerre L
(α)
n (x) xαe−x [0,∞]

Table 4.1: List of basis functions.

Let an example to see how to apply Spectral Methods on a problem.

4.1.2 Example

Let us solve a first order nonlinear ordinary differential equation,

Rz = z′ + q(x) +
1

p(x)
z2 = 0. (4.7)

is called the Riccati differential equation. Where p(x) and q(x) are continuous

on R and p(x) > 0 on R. For p(x) = q(x) = 1, we have

Rz = z′ + 1 + z2 = 0 , z(0) = 0. (4.8)

Let the approximate solution of above equation by using Chebyshev spectral

method be given as

z(x) =
N
∑

i=0

ciTi(x). (4.9)
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As exact solution of (4.8) is z(x) = − tan(x) defined on an interval (−π
2
, π
2
).

So, first step is to transform by using

Ti(x) = Ti
(π

2
x
)

. (4.10)

In[2]:= Array@T, 100, 0D;

In[3]:= Array@L, 100, 0D;

In[4]:= T@n_D@x_D := ‚
k=0

nê2 HnL! x n−2k Ix 2 − 1Mk

H2 kL! Hn − 2 kL!

In[5]:= ForBn = 0, n < 100, L@nD@x_D = T@nDB π

2
xF; n++F

In[6]:= ff := f'@xD + 1 + f@xD^2

In[7]:= ff

Out[7]= 1 + f@xD2 + f′@xD

Then (4.9) becomes

z(x) =
N
∑

i=0

ciTi(x). (4.11)

For N = 3, unknown coefficients ci can easily be computed by using roots

xi′s of Chebyshev polynomial from Theorem 4.1.2 and these are as well called

the Gauss-Radau nodes.

In[10]:= "h@iD=ith root of L@nD+L@n+1D"
n = 3

f@x_D = ‚
i=0

n

j@iD L@iD@xD;

TT = NSolve@L@n + 1D@xD + L@nD@xD � 0, RealsD
For@i = 1, i < n + 2, pp@iD = x ê. TT@@iDD; i++D
For@i = 1, i < n + 2, h@iD = pp@iD; i++D
Print@"h@1D=", h@1D, " ", "h@", n + 1, "D=", h@n + 1DD

Out[10]= h@iD=ith root of L@nD+L@n+1D

Out[11]= 3

Out[13]= 88x → −0.63662<, 8x → −0.396926<, 8x → 0.141661<, 8x → 0.573575<<

h@1D=−0.63662 h@4D=0.573575

In[17]:= g@x_D = ff;
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By using these N nodes in (4.8), we have N number of unknowns and N num-

ber of equations. By solving these systems of equations (4.12) we approach

the solution.

Rz(xi) = z′(xi) + 1 + z2(xi) = 0. (4.12)

In[18]:= LP@3D = FindRoot@8f@0D � 0, g@h@1DD � 0, g@h@2DD � 0, g@h@3DD � 0<
, 88j@0D, 1<, 8j@1D, 0.4<, 8j@2D, 0.5<, 8j@3D, −.5<<D

Out[18]= 8j@0D → −0.0136434, j@1D → −0.7192, j@2D → −0.0136434, j@3D → −0.0341808<

In[19]:= fg@3D@x_D = Simplify@f@xD ê. LP@3DD
Out[19]= 0. − 0.968644 x − 0.0673276 x

2
− 0.52991 x

3

In[21]:= ga3 = PlotBfg@3D@xD, :x, −
π

2
,

π

2
>, PlotRange → AllF

Out[21]=
-1.5 -1.0 -0.5 0.5 1.0 1.5

-3

-2

-1

1

2

3

By using Mathematica, we can find good accuracy by taking N = 50.
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Dashed Line -- Exact Solution 

Thick Line -- CSM's Solution

-1.5 -1.0 -0.5 0.5 1.0 1.5
x

-15

-10

-5

5

10

15

zHxL

Figure 4.1: Comparison of Chebyshev Spectral method with exact solution

of Riccati equation.

For N = 50, we can easily find the best solution of Riccati equation using

Mathematica. Also, we can compare it with the exact solution of Riccati

equation. In figure 4.1, approximated solution calculated by using Chebyshev

spectral method is a good accurate numerical solution of Riccati equation.

4.2 Solution of the Thomas-Fermi Equation

by using Chebyshev Spectral Method

In this section, we have utilized one of the spectral methods on the Thomas-

Fermi Equation which is a nonlinear second order ordinary differential equa-

tion. We have used Chebyshev polynomials as the basis set of orthogonal

polynomials. As interval of Chebyshev polynomial is [−1, 1], so first we

transform its interval according to our problem. Then use roots of these
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polynomials to find unknown coefficients.

4.2.1 Application

As we saw in section-4.1 that Spectral methods are suitable for nonlinear

problems with complicated coefficients. The Thomas-Fermi equation is de-

fined on the semi infinite interval and we can’t solve it exactly. So we use

Spectral methods on Thomas-Fermi equation. Here we are using its standard

form.

xy′′2 − y3 = 0, (4.13)

y(0) = 1 , y(∞) = 0. (4.14)

First, we write y in its approximated form. Let {φi(x)}∞0 be a set of basis

functions and ci are unknown coefficients then we can write it as:

yN(x) =
N
∑

i=0

ciφi(x) (4.15)

It is an approximate solution of the Thomas-Fermi equation. From Eq.(4.13),

(4.14) the residual function Rn(x) can be written as

RN(x) = x(y′′N(x))
2 − (yN(x))

3. (4.16)

In order to find n + 1 unknown coefficients in Eq.(4.15), we need to solve

n + 1 systems of equations. By applying boundary conditions on Eq.(4.15)

we find following equations

n
∑

i=0

cni φi(0) = 1, (4.17)

n
∑

i=0

cni φi(∞) = 0. (4.18)
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For rest of n equations we set residual to zero at N from n+ 1 nodes xi, i =

1, 2, ..., n + 1. For finding these nodes xi we use a approach what are called

Gauss-Radau nodes. In this method we use zeros of φn(x)+φn+1(x) as xi in

Eq.(4.16).

Rn(xi) = 0 , i = 1, 2, ..., n. (4.19)

4.2.2 Chebyshev Spectral Methods

For finding a solution of the Thomas-Fermi equation by spectral methods, we

use φi(x) as Chebyshev polynomials in Eq.(4.15). Chebyshev polynomials of

the first kind Tn(x), are solutions of the Chebyshev differential equation

(1− x2)T ′′
n (x)− xT ′

n(x) + n2Tn(x) = 0, (4.20)

which is written in summation form as given below

Tn(x) =

n
2

∑

k=0

n!xn−2k(x2 − 1)k

(2k)!(n− 2k)!
, n ≥ 0.

Our problem is defined over the interval [0,∞) and Chebyshev polynomials

are defined on [−1, 1]. First step is to transform its interval from [−1, 1] to

[0,∞). We use small program on Mthematica for the transformation of the

interval

Tn(x) = Tn(
x− 1

x+ 1
). (4.21)
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In[1]:= Array@T, 100, 0D;

In[2]:= Array@L, 100, 0D;

In[3]:= T@n_D@x_D := ‚
k=0

nê2 HnL! x n−2k Ix 2 − 1Mk

H2 kL! Hn − 2 kL!

In[4]:= ForBn = 0, n < 61, L@nD@x_D = T@nDB x − 1

x + 1
F; n++F

In[5]:= ff := x f''@xD^2 − f@xD^3

In[6]:= ff

Out[6]= −f@xD3 + x f′′@xD2

Now, the second step is to use transformed Chebyshev polynomial Ti(x) as

basis function in Eq.(4.15). We have

yN(x) =
N
∑

i=0

ciTi(x). (4.22)

By increasing number of terms N the residual function RN(x) minimized

easily

RN(x) = x(y′′N(x))
2 − (yN(x))

3. (4.23)

Then, the next step is to find unknown coefficient ci. From Theorem ?? in

section-4.1 we know that if set of polynomials {φi(x)}∞0 is orthogonal then

there exist n zeros of φn. So Chebyshev polynomial Ti(x) have N zeros. We

can also use zeros of Ti(x) or Ti(x) + Ti+1(x), the second one is also called

Gauss-Radau nodes. we use Mathematica to find these nodes.
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___ ___ ___ ___ ___ _

In[7]:= "h@iD=ith root of L@nD+L@n+1D"
n = 3

f@x_D = ‚
i=0

n

j@iD L@iD@xD;

TT = NSolve@L@n + 1D@xD + L@nD@xD � 0, RealsD
For@i = 1, i < n + 2, pp@iD = x ê. TT@@iDD; i++D
For@i = 1, i < n + 2, h@iD = pp@iD; i++D
Print@"h@1D=", h@1D, " ", "h@", n + 1, "D=", h@n + 1DD

Out[7]= h@iD=ith root of L@nD+L@n+1D

Out[8]= 3

Out[10]= 88x → 0.<, 8x → 0.231914<, 8x → 1.57242<, 8x → 19.1957<<

h@1D=0. h@4D=19.1957

The above program is for N = 3, we can easily improve the solution by

increasing N . We use these nodes xi in Eq.(4.22) and use these y(xi) in

Eq.(4.23). In this manner we have N equations to find N unknown coeffi-

cients ci

RN(xi) = xi(y
′′
N(xi))

2 − (yN(xi))
3 = 0. (4.24)

In[14]:= g@x_D = ff;

In[15]:= LP@3D = FindRoot@8f@0D � 1, g@h@2DD � 0, g@h@3DD � 0, g@h@4DD � 0<
, 88j@0D, 1<, 8j@1D, 0.4<, 8j@2D, 0.5<, 8j@3D, −.5<<D

Out[15]= 8j@0D → 0.451652, j@1D → −0.517543, j@2D → 0.0354849, j@3D → 0.00468068<

In[16]:= fg@3D@x_D = Simplify@f@xD ê. LP@3DD

Out[16]=
1. + 1.76529 x + 0.589779 x2 − 0.0257255 x3

H1. + xL3

In[17]:= ga3 = Plot@fg@3D@xD, 8x, 0, 8<, PlotRange → 80, 1.3<D

Out[17]=

0 2 4 6 8

0.2

0.4

0.6

0.8

1.0

1.2
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By using Chebyshev Spectral Method, here are some solutions of The Thomas-

Fermi equation yN(x) for N = 10, 15 and 20.

y10(x) =
1

(1.+ x)10

(

1.+ 8.52548x+ 34.8683x2 + 72.6484x3 + 121.032x4

+ 99.6885x5 + 67.2864x6 + 25.4258x7 + 3.78336x8 − 0.0799839x9

+ 0.000338145x10
)

,

y15(x) =
1

(1.+ x)15

(

1.+ 13.4888x+ 89.1748x2 + 316.538x3 + 1103.05x4

+ 1129.41x5 + 4320.5x6 + 524.37x7 + 4785.99x8 + 188.725x9

+ 1262.04x10 + 91.3591x11 + 67.0276x12 + 1.34155x13 − 0.013637x14

+ 0.0000259715x15
)

,

y20(x) =
1

(1.+ x)20

(

1.+ 18.4701x+ 168.444x2 + 845.934x3 + 4686.6x4

+ 2313.17x5 + 69388.1x6 − 106352.x7 + 413903.x8 − 453600.x9

+ 635853.x10 − 330078.x11 + 221883.x12 − 33677.3x13 + 16952.6x14

+ 1828.59x15 + 393.202x16 + 83.4827x17 + 0.744736x18 − 0.0047709x19

+ 5.30493 ∗ 10−6x20
)

.

We can see that for different values of N , solutions are displayed in a very

simple and short form. Here is the graphical view for different values of N .
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For N = 10, Chebyshev Spectral Method

0 2 4 6 8 10
x

0.2

0.4

0.6

0.8

1.0

yHxL

For N = 20, Chebyshev Spectral Method

0 2 4 6 8 10 12 14
t

0.2

0.4

0.6

0.8

1.0

yHtL

Figure 4.2: Plot For N = 10, 20 using Chabyshev Spectral Method.
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For N = 30, Chebyshev Spectral Method

0 2 4 6 8 10 12 14
t

0.2

0.4

0.6

0.8

1.0

yHtL

For N = 40, Chebyshev Spectral Method

0 2 4 6 8 10 12 14
t

0.2

0.4

0.6

0.8

1.0

yHtL

Figure 4.3: Plot For N = 30, 40 using Chabyshev Spectral Method.
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For N = 50, Chebyshev Spectral Method

0 2 4 6 8 10 12 14
t

0.2

0.4

0.6

0.8

1.0

yHtL

Figure 4.4: Plot For N = 50 using Chabyshev Spectral Method.

Combined Plot For N = 10, 20, 30, 40, 50.

 Chebyshev Spectral Method

0 2 4 6 8 10 12 14
x

0.2

0.4

0.6

0.8

1.0

yHxL

Figure 4.5: Combined Plot For N = 10, 20, 30, 40, 50 using Chabyshev

Spectral Method.

From figure 4.2, 4.3, 4.6 and 4.5 we can easily observe that by increasing N,

solution of the problem approximately remains the same.
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x N = 10 N = 20 N = 30 N = 40 N = 50

0.5 0.607045 0.606993 0.606988 0.606987 0.606987

1.0 0.424003 0.424014 0.424009 0.424009 0.424008

2.0 0.243087 0.243014 0.24301 0.243009 0.243009

3.0 0.156647 0.156631 0.156633 0.156633 0.156633

4.0 0.108321 0.108408 0.108404 0.108404 0.108404

5.0 0.0787195 0.0788086 0.0788083 0.0788077 0.0788078

10.0 0.024464 0.0243177 0.0243148 0.0243144 0.0243144

20.0 0.00578872 0.00578131 0.00578519 0.00578495 0.00578489

30.0 0.00209271 0.00225696 0.00225594 0.00225587 0.00225589

40.0 0.000880967 0.00111761 0.0011132 0.00111338 0.00111359

50.0 0.000382537 0.000636264 0.000631891 0.000632181 0.000632242

Table 4.2: Approximate solution varies by increasing N.

In the above table we can see that by increasing number of terms N the

solution also rapidly converges.

From Kobayashi and Anderson [2, 3] we can compare how much our solution

is precise at the starting points. Kobayashi calculated highly accurate nu-

merical solution of the Thomas-Fermi equation and found y′(0) = −1.588071.

Anderson calculated the upper and lower bound of y′(0) by using comple-

mentary variation method principles

−1.589 < y′(0) < −1.563. (4.25)

By using Chebyshev Spectral Method our slop is y′(0) = −1.56801, which is

a much better result as compared with Liao [11].
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Order N y′(0) SM % Comparison with [2] y′(0) Liao [11] % Comparison with [2]

10 -1.47452 7.15 -1.28590 19.03

20 -1.52987 3.66 -1.40932 11.26

30 -1.54894 2.50 -1.46306 7.87

40 -1.5586 1.85 -1.49236 6.03

50 -1.56443 1.49 -1.51063 4.88

60 -1.56801 1.26 -1.52309 4.09

Table 4.3: Comparison of initial slope y′(0) with Liao[11], and compared

with Kobayashi’s numerical result y′(0) = −1.58801.

Chabyshev Spectral Method For N = 60

0 2 4 6 8 10 12 14
t

0.2
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0.8

1.0

1.2

yHtL

Figure 4.6: Approximate Solution by Using Chabyshev Spectral Method for

N=60.
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4.2.3 Results and Discusion

We know that y(x) tends to zero algebraically as x→ ∞. Under this condi-

tion we have obtained the convergent results of the original Thomas-Fermi

equation in the whole region 0 ≤ x <∞.

x Expo RC-SK RC-TK Hermite CSM

0.5 0.606986951 0.605270502 0.602998554 0.606658908 0.606987

1.0 0.424010148 0.420343948 0.416399658 0.423811203 0.424008

1.5 0.314780118 0.318737461 0.314761643 — 0.363202

2.0 0.243010373 0.256010764 0.252344355 0.242918233 0.243009

2.5 0.192984580 0.213705386 0.210384924 0.192917948 0.192984

3.0 0.156631657 0.183318729 0.180313058 0.156573773 0.156633

3.5 0.129367328 0.160461449 0.157728304 0.129316613 0.12937

4.0 0.108401057 0.142653971 0.140154047 0.108360441 0.108404

5.0 0.078803669 0.116720187 0.114592127 — 0.0788078

15 0.010808302 0.041370727 0.040533524 0.010803774 0.0108054

20 0.005789307 0.031271686 0.030630632 0.005792831 0.00578493

30 0.002260351 — — 0.002252634 0.00225587

50 0.000632255 0.012687078 0.012420906 — 0.000632268

75 0.000219970 0.008484835 0.008305908 — 0.0002182

100 0.000101341 0.006373709 0.006238954 — 0.000100214

Table 4.4: Comparrison of the Thomas-Fermi equation solution by using

(CSM) with other spectral methods using different basis functions.

In the above table, solution are given by using Exponential function as
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a basis function (Expo)[9], Rational Chebyshev second kind(RC-SK), Ra-

tional Chebyshev third kind(RC-TK), Hermite function as basis function

(Hermite)[6] and our Chebyshev Spectral method (CSM).

x PA [7/7] PA [8/8] Majorana Liao [11] CSM

00.50 0.755738 0.7552 0.606982 0.606987 0.606987

01.00 0.426623 0.424 0.424007 0.424008 0.424008

02.00 0.12256 0.108321 0.243009 0.243009 0.243009

03.00 0.0613384 0.0292216 0.156633 0.156633 0.156633

04.00 0.0563062 0.0085627 0.108404 0.108404 0.108404

05.00 0.0604499 0.00205949 0.0788078 0.0788078 0.0788078

10.00 0.0652132 -0.00290523 0.0243142 0.0243143 0.0243143

15.00 0.056417 -0.00316081 0.0108054 0.0108054 0.0108054

20.00 0.0480175 -0.00296214 0.00578493 0.00578494 0.00578493

25.00 0.0413783 -0.00269538 0.00347375 0.00347375 0.00347375

50.00 0.0239109 -0.00172492 0.000632257 0.000632255 0.000632268

75.00 0.0167075 -0.00124431 0.000218206 0.000218210 0.0002182

100.0 0.0128253 -0.000970104 0.000100243 0.000100243 0.000100214

1000 0.00136446 -0.00010745 — 1.3513× 10−7 2.25317× 10−7

Table 4.5: Comparrison between Chebyshev Spectral Method Tn(x) and An-

alytic results of Liao [11].

Spectral methods has been a new approach for solving the Thomas-Fermi

equation. We have demonstrated by using Chebyshev polynomials as basis

function, a very high level of accuracy of the approximate solution can be

attained when we compare it with more accurate results of Liao[11] and
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Majorana[10].
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Chapter 5

Conclusion

We have presented the solution of Wazwaz [4] by using the Adomian de-

composition method to solve the Thomas-Fermi problem. A slight change

in Adomian decomposition method gives a solution in which an unknown

coefficient appears which is equal to initial slope. Then we use Padé approx-

imants, which give us good value for initial slope y′(0). But these results

have bad marks as far as the accuracy is concerned. After that we describe

an analytical solution of the problem. This solution was founded by famous

Italian physicist Majorana but it remained unpublished and S. Esposito [10]

worked out the details and published it in 2002. We observe that the Majo-

rana solution of the Thomas-Fermi equation is a highly accurate solution of

the Thomas-Fermi equation. Then we utilized one of the spectral methods

on the Thomas-Fermi Equation. We have used Chebyshev polynomials as

the basis set of orthogonal polynomials. As the interval of Chebyshev poly-

nomial is [−1, 1] we transform its interval according to our problem. We use

roots of these polynomials to find unknown coefficients. We have demon-
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strated by using Chebyshev polynomials as basis function, a very high level

of accuracy and compare it with accurate result of Majorana [10]. Also, we

find that both the Spectral solution and the Majorana solution can be made

as accurate as desired by increasing the number of terms.
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