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ABSTRACT 

The estimation of force through electromyography (EMG) assumes paramount importance in 

diverse domains, including neurorehabilitation, myoelectric control, and neurofeedback systems. 

The intricate relationship between muscle contraction and force, characterized by linear 

associations in small muscles with narrow motor units and nonlinear relationships in larger 

muscles with wider motor units, underscores the complexity of this physiological interplay. 

Against the backdrop of a global demand for advanced technologies to address limb loss 

limitations, with an estimated 100 million individuals worldwide in need of prosthetics, there arises 

an urgent need for sophisticated solutions. Meeting the diverse needs of prosthetic users 

emphasizes the crucial role of EMG-based force prediction, striving to provide adaptive and 

personalized solutions for an inclusive and effective approach to limb rehabilitation. This 

comprehensive study explores the dynamic interplay between surface electromyography (sEMG) 

and intramuscular electromyography (iEMG) signals and force estimation. Leveraging a diverse 

set of machine learning and deep learning models, the research aims to predict forces in both 

healthy individuals and those with trans-radial amputations. Across sEMG and iEMG modalities, 

deep learning models, including Long Short-Term Memory (LSTM), Temporal Convolutional 

Network (TCN), and the hybrid LSTM-TCN, consistently exhibit remarkable efficacy. These 

models, boasting R² values surpassing 0.90 in force prediction, offer promising advancements in 

refining force estimation through electromyography. Notably, the TCN emerges as an exemplary 

performer, yielding R² values of 0.98 for able-bodied individuals and 0.87 for amputees in sEMG. 

Simultaneously, the hybrid TCN-LSTM model maintains strong performance with R² values of 

0.98 for able-bodied individuals and 0.85 for amputees in sEMG. The LSTM model also upholds 

notable performance, showcasing R² values of 0.99 for able-bodied individuals and 0.80 for 

amputees in sEMG. Beyond unraveling the intricacies of EMG-based force estimation, this study 

sheds light on the unique challenges posed by amputations, contributing substantively to the 

ongoing quest for enhanced precision and effectiveness in rehabilitation interventions.  

Keywords: Electromyography Signal, EMG based force estimation, Long Short-Term Memory 

(LSTM), Temporal Convolutional Network (TCN), Trans-Radial amputation  
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CHAPTER 1: INTRODUCTION 

2.1 Background 

The field of Human-Machine Interaction (HMI) faces a significant challenge in the estimation of 

gripping force from electromyography (EMG) signals. This challenge holds crucial implications 

for developing interfaces that facilitate fluent and precise control of robots based on EMG inputs. 

While EMG signals generated by human hand movements are commonly employed for accurate 

decoding of different action types, existing classifications of gestures often overlook the impact of 

force dynamics. Specifically, the estimation of grasp force during natural grasping movements has 

been an area of neglect. Addressing this gap is essential as it could significantly enhance the 

accuracy of prosthesis control systems. 

In addition to prosthesis control, there is a broader need for accurate force estimation, particularly 

in strength training exercises such as biceps curls. The feedback of muscle force levels is pivotal 

in improving the quality of strength training workouts. Beyond the direct measurement of end-

point force levels at the hand during exercises, surface electromyography (EMG) signals emerge 

as a valuable source of force information related to the biceps muscle. Various methods, including 

biomechanical models like the Hill-type model, have been proposed to estimate force levels from 

EMG signals. However, despite these advancements, accurately modeling the intricate and person-

specific relationship between EMG and force remains a challenging problem. 

2.2 Research Problem 

The core research problem centers around the accurate estimation of force or torque generated by 

muscle contractions, particularly in the context of EMG signals. The nonlinear, dynamically 

changing, and person-specific nature of the EMG–force relationship poses a substantial challenge 

in developing an accurate model that can generalize across participants. The research aims to 

address this problem by exploring different approaches, including physiologically based models 

such as Hill's muscle model and activation-based models, to enhance the accuracy and applicability 

of force estimation from EMG signals.  
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2.3 Objective 

This research endeavors to delve into the realm of electromyography (EMG) signals for force 

prediction, aiming to contribute valuable insights into the comparative effectiveness of such 

signals in both healthy and amputee subjects. The primary objective is to rigorously investigate 

and compare the accuracy and precision of force prediction, utilizing EMG data from surface 

electromyography (sEMG) and intramuscular electromyography (iEMG). By scrutinizing the 

effectiveness of these EMG modalities, the study seeks to uncover their unique contributions to 

predicting forces in diverse populations. Moreover, the research extends its focus to the 

development and validation of enhanced force prediction models. The innovative approach 

involves integrating insights derived from both sEMG and iEMG data, recognizing the potential 

synergy in combining these complementary sources of information. The ultimate goal is to refine 

and validate models that not only improve precision but also exhibit heightened applicability in 

both healthy and amputee individuals. 
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CHAPTER 2: LITERATURE REVIEW 

Electromyograph signals are the measure of electrical current generated in the muscle during 

contraction and relaxation.  

 

Figure 2.1 Muscle and its EMG signal 

2.1 Motor unit and motor unit potentials 

A motor unit (MU) is the essential working unit in our neuromuscular system. It consists of an 

alpha-motoneuron and the group of muscle fibers it controls. These MUs can vary significantly in 

size, depending on the number and size of the muscle fibers they connect to.  

 

Figure 2.2 Motor unit is composed of motor neurons and all the muscle fibers. 

When you want to move a muscle, like lifting your arm, your brain sends an electrical signal down 

a nerve to the muscle. This signal, or action potential, travels from the nerve cell's body to the ends 
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of its branches, which connect to the muscle fibers. At these connections, called neuromuscular 

junctions, the action potential triggers the muscle fibers to contract. This is how muscle movement 

begins. When the muscle fibers get this signal, they generate two action potentials that travel in 

opposite directions along the muscle fiber. These action potentials travel until they reach the ends 

of the muscle fiber, where they create a kind of electrical standing wave, marking the end of this 

electrical cycle in the muscle. This whole process creates a changing electrical current within the 

muscle, which produces changes in the area around the muscle. Electrical signals are conducted 

by the tissues of muscles just like how electric potentials are generated by the nerves in the nervous 

system. There are two types of electromyography signals: Surface Electromyograph and 

intramuscular electromyography. Intramuscular electromyography is an invasive EMG recording 

method. The signals are recorded by inserting a fine wire electrode into the muscle via skin. 

Surface Electromyography is a noninvasive method of recording the signal using surface 

electrodes. The surface electrodes are placed on the skin above the muscle with the help of gel.  

   

Figure 2.3 Surface and intramuscular electrodes 

Each muscle fiber within a motor unit is linked to the central nervous system. This means that 

motor units work together as a functional team. They all have similar characteristics in terms of 

how they respond to electrical signals and how they function. The 'size principle' determines how 

motor units are recruited. When you need more force, your body activates motor units starting with 

the smaller, weaker ones and then moving up to the larger, stronger ones. This process ensures that 

your muscles can produce the right amount of force for the task at hand. 

In EMG, what you see on the skin's surface is the combined effect of all the motor unit action 

potentials (MUPs). These MUPs are like the basic building blocks of the EMG signal, and they 
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provide information about how your muscles are working and which motor units are being used 

when you move or perform tasks. The EMG signal at any given time can be either positive voltage 

or negative voltage. The useful frequency range of an EMG signal is between 0 to 500 Hz. The 

amplitude ranges from 5 to -5 mV before any amplification. While the EMG signal is being 

recorded and its journey through various tissues, it picks up unwanted noise. There are different 

types of noises affecting electromyography that are inherent electronic noise, ambient noise, 

motion artifact, and inherent signal stability electronic equipment generates noise, which, 

unfortunately, cannot be eliminated. The use of high-quality electronic components can only 

minimize this type of power line noise. Electromagnetic radiation is a significant source of ambient 

noise. Our bodies are continuously exposed to electromagnetic radiation, making it nearly 

impossible to avoid. Ambient noise can have amplitudes of one to three orders of magnitude 

greater than the EMG signal itself. Motion artifacts can distort the EMG signal, resulting in 

irregularities in the data. It primarily originates from two sources: the electrode interface and the 

electrode cable. 

 

Figure 2.4 Parts of EMG signal 

Proper design of the electronic circuitry and setup can help reduce motion artifacts.EMG signal 

amplitudes exhibit a random nature. This noise in the signal is primarily due to the firing rate of 

motor units, which typically operate in the frequency range of 0 to 20 Hz. This type of noise is 

called inherent signal stability. 



6 

 

 

Figure 2.5 Different kind of noises in an EMG signal 

2.2 Factors affecting EMG signal.  

To understand the factors that influence the quality of electromyography (EMG) signals, we can 

categorize them into three main groups: causative factors, intermediate factors, and deterministic 

factors. Causative factors have a direct impact on the signals and can be divided into two 

subcategories. Extrinsic causative factors relating to the structure and placement of electrodes used 

in EMG measurements. These include considerations such as the size and shape of the electrodes, 

the distance between them, and their precise location concerning motor points within the muscle. 

Intrinsic causative factors, on the other hand, are influenced by physiological, anatomical, and 

biochemical aspects. These encompass factors like the number of active motor units, the 

composition of muscle fiber types, blood flow, fiber diameter, depth, and the tissue between the 

muscle surface and the electrode. Intermediate factors represent physical and physiological 

phenomena influenced by one or more causative factors. These factors may involve aspects like 

the band-pass filtering characteristics of the electrodes and their detection volume, the 

superposition of action potentials within the recorded EMG signal, and the conduction velocity of 

action potentials along the muscle fiber membrane. Additionally, crosstalk from nearby muscles 

can be considered an intermediate factor, as it affects the recorded EMG signal. Deterministic 

factors are influenced by intermediate factors and encompass elements such as the number of 

active motor units, the rate at which motor units fire, and the mechanical interactions between 
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muscle fibers. The amplitude, duration, and shape of motor unit action potentials also play a role 

in determining the quality of the EMG signal. 

To optimize the quality of EMG signals, it is essential to consider several key practices. 

Maximizing the signal-to-noise ratio is crucial to preserve as much information from the EMG 

signal as possible while minimizing noise contamination. Distortion of the EMG signal should be 

minimized by avoiding unnecessary filtering, with a general recommendation against using notch 

filters. During the processing of EMG signals, the analysis of only positive values can be 

advantageous. This can be achieved through half-wave rectification, which removes negative data, 

or full-wave rectification, which uses the absolute value of each data point. Typically, full-wave 

rectification is preferred in EMG signal processing to enhance signal quality and extract 

meaningful information. 

2.3 Relationship between EMG and force 

When a muscle contracts, it also generates a force signal. There are three factors influencing 

muscle force: number of active MUs, their size, and their firing rate. For the estimation of force, 

spatial and temporal information. Spatial information is related to active Mus and temporal 

information is related to firing rates of MUs. Together they are referred to as muscle activation. 

Muscle activation is an abstract, time-varying model input variable that scales the ultimate model 

output: muscle force. It is estimated using the amplitude of electromyography signal amplitude. 

This amplitude is influenced by various aspects, including MU size, the number of active MUs, 

and their firing rates. However, because this amplitude is a one-dimensional signal, it can only 

provide an imperfect representation of all three critical factors. The force generated by a single 

motor unit is regulated by its firing rate. When an alpha motor neuron initiates an action potential, 

it leads to the generation of motor unit potential. The motor unit then generates a monophasic 

contraction named twitch. Twitch exerts tensile force lasting from fifty to one hundred and fifty 

milliseconds. This duration is significantly longer than the duration of the MUP as recorded with 

sEMG. Because of the longer twitch duration, twitches from different MUs will overlap and 

summate, even at low MU firing rates. This overlapping and summation of twitches are what leads 

to a functionally relevant increase in force as the firing rate of MUs increases. This increase in 

force reaches a saturation point at around 30 to 40 pulses per second, which is below the maximum 
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MU firing rate. When the firing rate exceeds this point, it begins to affect the EMG signal and can 

compromise the accuracy of force estimation Firing rates above 40 pulses per second are known 

to be more useful for controlling the rate of force development rather than the overall force output. 

While some models, like the forward dynamic model for wrist movement driven by EMG signals, 

consider the dynamics of muscle activation, many models assume a direct (albeit time-delayed) 

relationship between EMG and muscle force. In cases where high firing rates are involved, doublet 

MUPs, which are essentially two MUPs occurring very close together in time (within 20 

milliseconds), have been observed, especially at the initiation of fast movements. Although 

doublets are brief and occur in only a limited number of MUs, they can contribute to an overshoot 

in force predictions derived from EMG, particularly at the onset of a contraction. 

 

Figure 2.6 EMG and Force signal recorded simultaneously [8]. 

2.4 EMG-based Force Estimation 

Accurate EMG-based force estimation is integral for many fields and applications like robotics, 

prosthesis control, rehabilitation, sports, and clinical diagnostics. Since 1950, scientists have used 

EMG for the estimation of force [2]. The relationship between force and EMG varies from subject 

to subject and is nonlinear and quite complex. Over the years, many scientists have proposed 
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different models for the prediction of force but there is still a more accurate model. Physiological 

models and data-driven models are the two main types of models that are used for the estimation 

of force [3]. Physiological models include models like Hills muscle models and musculoskeletal 

models where the biomechanical properties of muscles are required for force prediction. However, 

the physiological models have limitations since the performance of these models is dependent 

upon the accuracy of the physiological parameter estimated and their suitability as some 

parameters can’t be measured experimentally [4-8]. Another study introduces a multi-scale 

physiological model for EMG-based force estimation, incorporating neural activation frequency 

and force-velocity properties. Results indicate that this model outperforms traditional Hill models, 

offering enhanced accuracy across a wider range of contraction conditions [16]. Data-driven 

models are machine learning or deep learning models that are given EMG as input and estimate 

the force. In 2019, Ali Ameri et al proposed convolutional neural networks as a model for force 

estimation[9]. The study demonstrates the inaugural validation of a regression CNN model for 

online Fitts' law-style tests involving individual and simultaneous wrist motions, surpassing a 

support vector regression-based system in throughput, especially with high EMG amplitudes. 

These findings underscore the CNN model's ability to extract motor control information from 

EMG signals for both single and multiple degree-of-freedom tasks, offering independent and 

simultaneous motion control, and distinguishing it from prior classification CNN models[9].In 

2021 Gelareh Hajian et al proposed multimodal deep CNN for EMG-based force estimation. Their 

proposed model extracts EMG and IMU data to create effective force estimation embeddings, 

evaluated on a new dataset across diverse experimental conditions. Results demonstrate 

robustness, with R2 values ranging from 0.59 to 0.91, highlighting significant improvement in 

force estimation when including kinematic information [3]. In another study, Gelareh Hajian 

explores channel selection methods for enhancing force estimation using the FOS algorithm with 

sEMG signals from biceps brachii and brachioradialis. It introduces a novel approach based on 

high PSD mean and low cross-correlations among channels, resulting in improved force estimates 

compared to using all available channels [10]. Hashemi, Javad, et al researched to observe the 

effect of angle-based EMG amplitude calibration and parallel cascade identification (PCI) 

modeling on EMG-based force estimation and observed Lower force estimation errors [11]. In 

another study, Hashemi, Javad, et al proposed a calibration method to address SEMG amplitude 

changes with joint angle. Calibrated models show a significant improvement in force estimation, 
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indicating the method's effectiveness in compensating for SEMG-force relationship variations with 

changing joint angles, reducing the need for nonlinear, joint angle-dependent terms in the model 

[21]. Another study proposed a nonnegative matrix factorization method to identify activation 

patterns as well as select EMG channels for force estimation. The method provides a way to find 

proper electrode placement for force estimation [14]. 

A study conducted in 2013 used the root mean square of the EMG signal as an input to support 

vector regression and autoregressive coefficient for emg-based force estimation[17]. Another 

study conducted used a linear regressor with a feature section to estimate early transient EMG 

from grasp force achieving an absolute error of 2.52% [12]. In another study, the mean frequency 

was calculated from cwt and was given as an input to the artificial neural network. A root means 

square error of 0.710 was observed by the researcher [13].In another study, J. Luo proposed a 

three-domain fuzzy neural network. Mean absolute values were used as an input of the model and 

an R2 of 1 and an average mean square error of .0486 was observed [15]. Linfeng Chu in his study 

used a convolutional neural network, long short term memory, and hybrid architecture of CNN 

and LSTM for EMG-based force estimation and observed mean root mean square percentages of 

12.13 ± 1.98, 9.07 ± 1.29, and 8.67 ± 1.14 respectively [18]. Changchang Wu proposes a 

generalized regression neural network as a model for EMG based forced estimation [19]. Another 

study proposes an adaptive method using EMG signals and radial basis function neural networks 

(RBFNNs) to estimate active joint torque for a lower limb robotic exoskeleton. The method 

enables practical and adaptive torque estimation, ensuring accurate exoskeleton movement control 

in both simulations and experiments, particularly during the swing phase [20]. Cao proposed 

Extreme machine learning as a model for force prediction and compared its performance with 

support vector regression and multiple nonlinear regression. ELM possesses relatively good 

accuracy and little consumed time, although SVM is effective for handgrip force estimation in 

terms of accuracy[22]. Yang Zheng used motor unit (MU) discharge data extracted from high-

density EMG via Fast ICA to estimate isometric finger extension force in real time. Results 

demonstrated stable real-time MU decomposition accuracy (86%) and superior, stable force 

estimation using the neural-drive method compared to the EMG amplitude method during 

prolonged muscle contractions [23]. Yasheng Wu conducted a study to find differences in 

musculation using sEMG signal in the process of increasing and decreasing force and to create a 

model of the relationship between sEMG and force and concluded that the sEMG signal evoked 
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via musculation is not the same in the two processes, with a more significant difference when the 

muscle contraction strength is weaker, and a less significant [24]. Sakamoto, Sei-ichi, et al used 

EMG and imu data as an input to a long short-term memory to estimate ground reaction force and 

observed a root mean square error of 8,22 and 11.17 for posture control motion and stepping 

motion [25]. He Mao proposed a hybrid EMG and acceleration multimodal scheme for the 

estimation of force and wrist angles and observed an R2 of 97.18±0.96% [26]. In another study, 

He Mao proposed a hybrid Generalized neural network and multilinear regression model and 

observed R2 = 96.33 ± 1.13% and MAE= 2.11 ± 0.52% for the intact subjects, and R2 = 86.86% 

and MAE= 2.13% for the amputee [27]. Another study examines the applicability of HD-sEMG 

for force prediction in ecologically relevant conditions using four input force profiles. It finds that 

the crest factor of input signals significantly affects the performance of EMG-Force models, with 

the minimum crest factor signal showing the best results, underscoring the importance of 

considering this parameter during model training [28]. Xinyu Jiang proposed to employ a forest 

ensemble model and observed an R2 of 95.12 % [29]. A study was conducted to investigate the 

Long Short-Term Memory (LSTM) network for the kinetics and kinematics prediction of human 

lower limbs when performing different activities without using force plates after the learning and 

average R2 scores for knee angle was 97.25%, knee moment was 94.9%, ankle angle was 91.44%, 

and ankle moment was 85.44% [30]. 
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CHAPTER 3: METHODOLOGY 

In this study, two databases were utilized. One was a self-acquired dataset, and the other was a 

publicly available dataset. The publicly available dataset in this study was downloaded from an 

online database named DB3 available on the website Ninapro [30]. The data consists of the 

simultaneously acquired data of both electromyography and force signals. And data is acquired 

from 11 trans-radial amputees.  

3.1 Publicly available dataset 

3.1.1 Electromyography Signal 

The EMG data was acquired using Delsys double differential sEMG electrodes in the database. 

The data was acquired from 12 muscles using 12 Trigno wireless electrodes. 

 

Figure 3.1 Delsys Trigno Delsys and Its double differential sEMG electrodes 

Each electrode is equipped with a self-contained rechargeable battery and can operate within a 

range of 40 meters. These electrodes also come with a wireless receiving base station. The sEMG 

(surface electromyography) signals are recorded at a sampling rate of approximately 2,000 samples 

per second, and they exhibit a baseline noise level of less than 750 nanovolts RMS. Additionally, 

these electrodes are equipped with 3-axis accelerometers that sample data at a rate of 148 samples 

per second. To facilitate acquisition, the electrodes are affixed to the forearm using the standard 

adhesive bands provided by the manufacturer. To ensure secure placement during data collection, 

a hypoallergenic elastic latex-free band is applied around the electrodes. Eight electrodes are 
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evenly distributed around the forearm, situated at the level of the radio-humeral joint. Two 

additional electrodes are positioned on the primary active regions of the flexor digitorum 

superficialis and extensor digitorum superficialis muscles. In the second configuration, two more 

electrodes are added to target the primary active areas of the biceps brachii and triceps brachii 

muscles. These critical muscle activity sites were determined through palpation. 

 

Figure 3.2 Electrode Placement in db3 

3.1.2 Force Signal 

Force signal was acquired using a Finger force linear sensor. Koiva, Risto, Barbara Hilsenbeck, 

and Claudio Castellini developed this device in 2012[31]. Accommodating various hand sizes, the 

FFLS ensures precision with up to 100N force measurement for each finger and a total of 200N, 

providing a linear signal response within the ±10V range. Strain gauge sensors from ME-

Meßsysteme GmbH and Honigmann Industrielle Elektronik GmbH, along with custom bolts and 

adjustable hook-and-loop bands, secure the fingers to the sensors. The FFLS's reliability and 

precision were validated through testing, demonstrating its effectiveness within the physiological 

range.. 
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Figure 3.3 Finger force Linear Sensor 

3.1.3 Protocol 

In this study, individuals with abled bodies were instructed to experiment using their right hand, 

while amputated individuals were asked to mentally replicate the movements as naturally as 

possible with their missing limb. It is crucial to note that amputees, as a rule, cannot provide 

reliable ground truth data since they cannot operate any sensors with their missing limbs. To 

address this inherent challenge, previous research has employed two primary approaches: (a) 

instructing subjects to perform a task bilaterally while recording the ground truth data from the 

abled limb or (b) instructing subjects to follow a visual stimulus. There is no consensus on the 

optimal procedure, so each amputee participant was given the freedom to choose their preferred 

approach following a brief training phase. Consequently, only two subjects opted for bilateral 

execution, resulting in the database containing solely the visual stimulus as the ground truth 

reference. Nevertheless, it is worth noting that analyses using the visual stimulus as ground truth 

have already yielded successful results in previous work. The  figure 3.4 shows the nine-force 

pattern used in this study. 

3.2 Self-Acquired Dataset 

3.2.1 Subjects 

This study was a collaborative effort with King's College London, where the data acquisition 

process was conducted. The study involved 10 able-bodied participants, comprising six men and 

four women, with ages ranging from 23 to 26 years. All protocols strictly adhered to the principles 

outlined in the Declaration of Helsinki and received approval from the Danish Local Ethical 
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Committee (approval no. N-20080045). Before participating in the experimental procedures, 

subjects provided written and informed consent. Importantly, none of the participants had a history 

of upper extremity or other musculoskeletal disorders. 

3.2.2 Force Signal 

 Customized hand support, incorporating a commercially available dynamometer (Gamma FT-

130-10; ATI Industrial Automation, Apex, NC), provided subjects with feedback on activation 

levels for each task. Two torque signals, corresponding to the two Degrees of Freedom (DoF), 

were recorded. 

3.2.3 EMG Signal 

 Six pairs of surface EMG electrodes were equally placed around the forearm, starting a few 

centimeters laterally to the ulnar exposure at the point of the largest circumference. Intramuscular 

EMG was captured using six bipolar wire electrodes, inserted underneath each surface EMG 

electrode pair, ensuring an equidistant distribution around the forearm. Teflon-coated stainless 

steel wire electrodes were inserted into each muscle with a sterile, 25-gauge hypodermic needle. 

 

Figure 3.4 Force pattern followed in study 
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The insulated wires, exposing only the cross-section at the tip, provided high selectivity, typically 

encompassing up to 14 Motor Units (MUs) at 10–12% maximum voluntary The needle, inserted 

to a depth of 10–15 mm below the muscle fascia, was then removed, leaving the wire electrodes 

inside the muscle. To maintain consistency with prior force estimation studies only the end of the 

wires was exposed, ensuring high selectivity. A reference electrode was positioned around the 

wrist. All signals underwent anti-alias filtering and amplification and were sampled at 10 kHz.  

EMG and torque signals were collected during isometric contractions, simulating two wrist 

Degrees of Freedom (DoF). The experiment comprised two trials with a 5-minute rest interval, 

each involving six task combinations. These tasks, categorized into individual and simultaneous 

DoF, aimed to assess torque estimation in isolated and dual DoF settings. The chosen DoFs were 

wrist flexion/extension (DoF1) and wrist supination/pronation (DoF2). Tasks included wrist 

flexion/extension, supination/pronation, and simultaneous flexion-pronation/extension-

supination. The study focused on two DoFs, mirroring the limitations of current prosthetic devices. 

Tasks followed a dynamic, sinusoidal profile lasting 30 seconds with maximum amplitudes of 3 

Nm for men and 2 Nm for women. Torque levels for female subjects were capped at 2 Nm due to 

comfort concerns, while 3 Nm was adopted for comparable EMG activation in females. Each 30-

second profile began and ended with a rest period. To induce dynamic contractions necessitating 

constant torque and EMG intensity changes, sinusoidal profiles were employed. Subjects, seated 

with their right arm on an armrest and left arm relaxed on the table, tracked one or two 

simultaneous profiles based on the task. The task order was randomized, with visual feedback 

provided for accuracy. Subjects received ample training time to familiarize themselves with the 

profiles. Profile frequency was set at 0.5 Hz. Figure 3.6 shows the workflow of study 

 

Figure 3.5 Ot Bioelectronica EMG USB2+ 
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3.3 Data Preprocessing  

After the data was downloaded, the EMG and force data both were preprocessed to get rid of noise 

and artifacts. To remove the power line interference, we used a notch filter with a cutoff frequency 

of 50Hz for both EMG and force signals. For the EMG signal, a fourth-order Butterworth bandpass 

filter with a lower cutoff frequency of 500 and a higher cutoff frequency of 20 was applied. For 

force signal, a fourth-order Butterworth lowpass filter with a lower cutoff frequency of 20 HZ was 

applied. Both the electromyographic (EMG) signals, including surface EMG (sEMG) and 

intramuscular EMG (iEMG), along with the force signal, were segmented into overlapping 

segments of 300 ms duration with a 50% overlap. Figure 3.7-3.13 shows the time and frequency 

spectrum of raw and filtered EMG and force signal. 

 

 

Figure 3.6 Workflow of the study. 
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Figure 3.7 Raw force 

 

Figure 3.8 Filtered force signal. 

 

Figure 3.9 Frequency spectrum of Raw and filtered force signal. 

   

Figure 3.10  Raw and filtered sEMG signal. 

         

Figure 3.11 Frequency spectrum of both raw 

and filtered signal. 
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Figure 3.12  Raw and filtered iEMG signal,  

 

Figure 3.13 Frequency spectrum of both raw 

and filtered signal. 

3.4 Feature Extraction 

After segmentation feature extraction was done for machine learning models, segmented signal 

was given directly as an input to the Deep learning models. 13 time domain features were extracted 

from the segmented sEMG and iEMG signal. 

Table 3.1 Features and their mathematical expressions. 

Sr No Features Mathematical expressions 

1 Difference Absolute Mean Value 𝐷𝐴𝑀𝑉 =
1

𝑀−1
 ∑ |𝑧𝑗+1 − 𝑧𝑗|𝑀−1

𝑗=1  [34,33] 

2 Log Difference Absolute Mean 

Value 

𝐿𝐷𝐴𝑀𝑉 = ∑ |𝑧𝑗+1 − 𝑧𝑗
𝑀−1
𝑗=1  [35] 

3 Mean Absolute Value 𝑀𝐴𝑉 =
1

𝑀
∑ |𝑧𝑗|𝑀

𝑗=1   [32] 

4 Modified Mean Absolute Value 𝑀𝐴𝑉1 =
1

𝑀
∑ 𝑥𝐽 |𝑍𝐽|𝑀

𝐽=1       [37] 

𝑥𝑗 = {
1,   𝑖𝑓 0.25𝑁 ≤ 𝐼 ≤ 0.75𝑁
0                        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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5 Waveform Length 𝑊𝐿 = ∑ |𝑧𝑗+1 − 𝑧𝑗|𝑀−1
𝑗=1  [36] 

6 Standard Deviation 
𝜎 = √

∑ 𝑧𝑗−𝑀𝑒2

𝑀
  [37] 

7 Root Mean Square 
𝑅𝑀𝑆 =  √

1

𝑀
 ∑ 𝑧𝑗

2𝑀
𝑗=1   [37] 

8 Absolute Value Of The 

Summation Of Square Root 

𝐴𝑉𝑆𝑅 = |∑ 𝑧𝑗
1/2𝑀

𝑗=1 |  [28] 

9 Mean Absolute Deviation 𝑀𝐴𝐷 = 𝑚𝑒𝑑𝑖𝑎𝑛 (|𝑍𝑖 − 𝑍̃|) 

10 Integral Absolute Value 𝐼𝐴𝑉 = ∑ |𝑥𝑖|𝑀
𝑖=1    [31] 

11 Interquartile Range IQR = Q3 - Q1 [30] 

12 Maximum Fractal Length 
𝑀𝐹𝐿 = 𝐿𝑜𝑔10(√∑ (𝑧𝑗+1 − 𝑧𝑗)

2𝑀−1
𝑗=1  [ 40] 

13 V Order 
𝑉 = (

1

𝑀
∑ 𝑧𝐽

𝑣𝑀
𝑗=1 )

1

𝑣
 [39] 

3.5 Models for force prediction 

Force prediction is done using Regression models. In this study we are using a variety of machine 

learning, deep learning, and shallow neural networks. Gaussian process regression (Gpr), cubic 

support vector machine (cSVM), medium neural network (MNN), narrow neural network (NNN), 

multilayer perceptron (Mlp), backpropagational neural network (BPNN), long short term memory 

(LSTM), Temporal convolutional network (TCN) and hybrid architecture of both TCN and LSTM. 
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3.5.1 Temporal Convolutional Network (TCN) 

Temporal Convolutional Neural Networks (TCNs) stand as versatile convolutional networks 

designed specifically for sequence modeling tasks, enforcing a causal constraint. In the context of 

an input sequence (x₀ to xₜ) and its corresponding output sequence (y₀ to yₜ), a sequence modeling 

network is trained to predict the output sequence (ŷ₀ to ŷₜ) based on a defined loss function. The 

crucial causal constraint dictates that the prediction ŷₜ solely relies on the past inputs (x₀ to xₜ) and 

remains independent of future inputs (xₜ₊₁ to xᵀ). Temporal Convolutional Networks (TCNs) 

distinguish themselves with two key features: firstly, the use of causal convolutions, preventing 

information leakage from the future to the past; and secondly, the ability to handle sequences of 

variable lengths, aligning with the functionality of Recurrent Neural Networks (RNNs). Beyond 

these attributes, the emphasis is on constructing extensive effective history sizes. This entails 

leveraging very deep networks, enhanced by residual layers, and the strategic integration of dilated 

convolutions to enable the model to effectively examine a substantial portion of the past for making 

accurate predictions. TCN utilizes three main techniques: causal convolutions, dilated 

convolutions, and residual connections. Causal convolutions, a fundamental aspect of TCNs, 

ensure that the output at a given time step depends solely on the present or past inputs from the 

previous layer. This concept enhances the network's ability to capture temporal dependencies 

effectively. Zero-padding is strategically used in hidden layers to maintain consistent 

dimensionality with the input layer, facilitating seamless convolutions. Dilated convolutions 

represent another key feature of TCNs, introduced to address the challenge of capturing long-range 

dependencies. Unlike causal convolutions alone, which may require a very deep neural network, 

dilated convolutions enable larger receptive fields without an excessively deep architecture. The 

dilated convolutional operator operates on sequence elements, considering a defined filter, input 

sequence, filter size, and dilation factor. The dilation factor increases exponentially with the 

network's depth, creating a pyramidal structure that effectively expands the network's receptive 

field [41]. 

Residual connections, inspired by residual blocks, play a crucial role in overcoming the gradient 

vanishing problem often encountered in deep networks. By integrating shortcut connections in the 

form of residual blocks, TCNs allow the network to learn modifications to the identity mapping 

rather than the entire transformation. This mechanism contributes to more stable training and 
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facilitates the learning of complex relationships within the data. The architecture of a TCN includes 

a series of dilated causal convolutional layers within a residual block. However, challenges arise 

when the input and output of the residual block have different widths. To address this, a 1x1 

convolutional layer is applied, ensuring consistent widths for the element-wise addition operation. 

This meticulous design enhances the network's ability to capture intricate patterns in sequential 

data. The advantages of TCNs are notable across various dimensions. Their larger receptive field 

size allows for the effective capture of long-range dependencies, providing a significant advantage 

in tasks requiring memory of past inputs. Stable gradients, a key characteristic of TCNs, are 

facilitated by a backpropagation path that differs from the temporal direction of the sequence. This 

feature mitigates the issues of exploding or vanishing gradients, which can be prominent concerns 

in recurrent architectures. Additionally, TCNs offer benefits in terms of parallelism, flexibility in 

receptive field size, stability of gradients, low memory requirements for training, and the ability to 

handle variable-length inputs. Unlike recurrent neural networks (RNNs), where predictions for 

later time steps are contingent on predecessors completing, TCNs enable parallel processing since 

the same filter is used in each layer. This parallelism accelerates both training and evaluation, 

allowing a long input sequence to be processed as a whole. The flexible receptive field size of 

TCNs is a notable advantage. By stacking more dilated (causal) convolutional layers, adjusting 

dilation factors, or increasing filter size, the model can adapt to different domains and memory 

requirements. This flexibility allows for better control over the model's memory size, catering to 

diverse application scenarios. Additionally, TCNs offer benefits in terms of parallelism, flexibility 

in receptive field size, stability of gradients, low memory requirements for training, and the ability 

to handle variable-length inputs. Unlike recurrent neural networks (RNNs), where predictions for 

later time steps are contingent on predecessors completing, TCNs enable parallel processing since 

the same filter is used in each layer. This parallelism accelerates both training and evaluation, 

allowing a long input sequence to be processed. The flexible receptive field size of TCNs is a 

notable advantage. By stacking more dilated (causal) convolutional layers, adjusting dilation 

factors, or increasing filter size, the model can adapt to different domains and memory 

requirements. This flexibility allows for better control over the model's memory size, catering to 

diverse application scenarios. 

Stable gradients further distinguish TCNs from traditional recurrent architectures. The 

backpropagation path in TCNs differs from the temporal direction of the sequence, mitigating the 
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problem of exploding or vanishing gradients. This characteristic is crucial for training deep 

networks effectively, contributing to improved convergence and model performance. Another 

noteworthy advantage is the low memory requirement for training, especially in the case of long 

input sequences. While long short-term memory (LSTM) and gated recurrent units (GRUs) can 

consume substantial memory to store partial results for multiple cell gates, TCNs share filters 

across a layer, leading to lower memory usage. This efficiency is particularly beneficial in 

resource-intensive applications where memory constraints are a concern. Furthermore, TCNs 

demonstrate adaptability to variable-length inputs. Like RNNs, which model inputs with variable 

lengths recurrently, TCNs can process inputs of arbitrary lengths by sliding 1D convolutional 

kernels. This feature makes TCNs versatile and capable of serving as drop-in replacements for 

RNNs in scenarios involving sequential data of varying lengths.A deeper exploration of TCNs 

reveals their reliance on residual blocks containing two layers of dilated causal convolution and 

non-linear activation, typically implemented using the rectified linear unit (ReLU). For 

normalization, weight normalization is applied to convolutional filters and spatial dropout is 

incorporated after each dilated convolution for regularization. The combination of these techniques 

within a residual block contributes to the model's ability to learn complex patterns and adapt to 

different datasets. In summary, Temporal Convolutional Networks present a compelling solution 

for sequence modeling tasks, leveraging causal convolutions, dilated convolutions, and residual 

connections to address key challenges associated with long-range dependencies, gradient stability, 

and memory efficiency. The architectural innovations within TCNs contribute to their superior 

performance in various applications, making them a promising choice for researchers and 

practitioners working on tasks involving sequential data analysis. 
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Figure 3.14 Residual block 

 

Figure 3.15 Architecture of TCN 
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3.5.2 Long Short-Term Memory 

Long Short-Term Memory (LSTM) stands as a pivotal architecture within the realm of recurrent 

neural networks (RNNs), especially renowned for its prowess in capturing long-term 

dependencies—a quality that renders it particularly well-suited for sequence prediction tasks. In 

essence, LSTM has become a cornerstone in the landscape of deep learning, offering an effective 

solution for processing sequential data such as time series, text, and speech. Proposed by 

Hochreiter and Schmidhuber, LSTM revolutionized sequential data processing by offering a 

mechanism to retain information over extended periods. Unlike its predecessor, where predicting 

words stored in long-term memory proved challenging, LSTM excelled in providing more accurate 

predictions by effectively leveraging recent information. The inefficiency of RNNs in handling 

increased gap lengths further underscored the need for LSTM's intervention [42]. The genesis of 

LSTM can be traced back to the persistent challenge encountered by traditional RNNs—the 

vanishing error problem. This limitation prompted the development of LSTM as a gradient-based 

method specifically tailored to address the shortcomings associated with long-term dependencies 

in RNNs. 

In contrast to conventional neural networks, LSTM introduces feedback connections, endowing it 

with the capability to process entire sequences of data rather than focusing on individual data 

points. This intrinsic feature empowers LSTM networks to discern and predict patterns embedded 

within sequential data, making them invaluable in diverse applications. The structural 

underpinning of LSTM comprises a chain-like arrangement housing four neural networks and 

specialized memory blocks known as cells. These cells play a crucial role in facilitating the 

handling of information over prolonged durations, a distinctive trait that sets LSTM apart. The 

following equation is on the Cell state operation of LSTM:𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ 𝐶𝑡̆ 

The Forget Gate represents an integral component of LSTM, acting as the mechanism for removing 

information that is deemed no longer useful in the cell state. It operates through the inputs at a 

particular time (𝑥𝑡) and the previous cell output( ℎ𝑡−1). The gate utilizes weight matrices and bias, 

followed by an activation function, to decide whether to forget or retain specific information. The 

forget gate's ability to selectively discard irrelevant information ensures the efficiency of LSTM 

in managing memory. 
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𝑓𝑡 = 𝜎(𝑊𝑓|ℎ𝑡−1, 𝑥𝑡| + 𝑏𝑡 

 

 

 

Figure 3.16 Architecture of LSTM 

Where t=timestep, 𝑓𝑡=Forgot gate at t,  𝑏𝑓=connection bias at t, 𝑥𝑡=input, ℎ𝑡−1 =Previous hidden 

state, 𝑤𝑓=Weight matrix between forget gate and input gate 

The Input Gate, another crucial element within the LSTM structure, plays a pivotal role in 

determining what information should be added to the memory cell. This gate operates through a 

series of computations involving inputs at a specific time (𝑥𝑡) and the previous cell output ( ℎ𝑡−1). 

The weighted inputs, combined with bias, undergo an activation function, typically a sigmoid 

function. The sigmoid activation function squashes the output to a range between 0 and 1, 

effectively serving as a gating mechanism. If the output is close to 1, it indicates that the 

corresponding information is essential and should be retained in the memory cell. Conversely, if 

the output is closer to 0, it suggests that the information is less relevant and can be filtered out. 

it = σ(Wi|ht−1, xt| + bt 
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𝐶𝑡̆ = tanh( 𝑊𝐶 ∗ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐 

Where t=timestep, 𝑖𝑡=input gate at t,  𝑥𝑡=input, ℎ𝑡−1 =Previous hidden state , 𝑏𝑡=connection bias 

at t,  𝑏𝑡=connection bias at t w.r.t 𝑊𝑐, 𝑊𝑖=Weight matrix of sigmoid operator between input gate 

and output gate, 𝑊𝑐=Weight matrix of tanh operator between cell state information and network 

output 

Conversely, the Output Gate plays a complementary role in LSTM, extracting valuable 

information from the current cell state for presentation as the output. The process involves 

generating a vector through the application of the hyperbolic tangent (tanh) function on the cell. 

This vector is then regulated using the sigmoid function, filtering the values to be remembered 

based on the inputs h_t-1 and x_t. The final step involves multiplying the vector with the regulated 

values, serving as both the output and input to the next cell. The output gate's meticulous regulation 

ensures that only pertinent information is disseminated, contributing to LSTM's ability to learn 

and remember complex patterns in sequential data. 

𝑜𝑡 = 𝜎(𝑊𝑜|ℎ𝑡−1, 𝑥𝑡| + 𝑏𝑜 

ht = ot ∗ tanh(Ct) 

Where t=timestep, 𝑜𝑡=output gate at t,,  𝑥𝑡=input, ℎ𝑡−1 =Previous hidden state, 𝑏𝑜= connection 

bias at t w.r.t 𝑊𝑜, 𝑊𝑜=Weight matrix of the output gate 

The architecture of LSTM extends beyond its components, allowing for the stacking of multiple 

LSTMs to create deep LSTM networks. This stacking enhances the model's capacity to discern 

intricate patterns within sequential data, contributing to its versatility in handling complex datasets. 

In the broader landscape of deep learning, LSTMs find compatibility with other neural network 

architectures, showcasing their adaptability. The fusion of LSTMs with Convolutional Neural 

Networks (CNNs) in image and video analysis exemplifies the model's flexibility and applicability 

across diverse domains. In conclusion, Long Short-Term Memory emerges as a robust and 

versatile architecture within the realm of recurrent neural networks. Its distinctive features, 

including causal convolutions and the ability to handle sequences of varying lengths, position it as 

a key player in sequence prediction tasks. The structural components, such as Forget Gates and 
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Output Gates, contribute to LSTM's efficacy in managing long-term dependencies and discerning 

complex patterns. The evolution of LSTM reflects a pivotal advancement in the field of deep 

learning, offering solutions to challenges encountered by traditional RNNs and proving 

instrumental in various applications, from natural language processing to time series forecasting. 

3.5.3 Hybrid Architecture with Temporal Convolutional Networks (TCNs) and Long 

Short-Term Memory (LSTM) Networks 

Combining Temporal Convolutional Networks (TCNs) and Long Short-Term Memory (LSTM) 

networks creates a powerful hybrid architecture for dealing with sequences of data. TCNs are great 

at quickly understanding short-term patterns in sequences, while LSTMs excel at grasping longer-

term dependencies. This hybrid approach aims to get the best of both worlds, addressing the 

weaknesses of each model. TCNs work well in parallel, handling short-term patterns efficiently. 

They use convolutional layers to extract features from the input data. On the other hand, LSTMs 

are good at storing and learning from long-term dependencies in sequences. By combining TCNs 

and LSTMs, the hybrid model becomes capable of understanding both the immediate context and 

crucial historical information. 

In this setup, TCNs often process the input sequence first, capturing short-term dependencies. 

LSTMs then come into play at later stages of the network, focusing on storing important long-term 

dependencies that may stretch across the entire input sequence. This way, the hybrid model 

maintains a balance between recognizing immediate patterns and retaining crucial historical 

information. 

Practically, this hybrid architecture has shown promise in various applications. For example, in 

predicting time series data, the model can effectively capture short-term changes and long-term 

trends, leading to more accurate forecasts. Similarly, in natural language tasks, the hybrid approach 

proves useful in understanding both the immediate meaning of words and the overall structure of 

sentences. As we look to the future of deep learning, this blending of TCNs and LSTMs reflects a 

pragmatic approach to handling real-world data complexities. The hybrid architecture offers a 

flexible solution that combines the strengths of two effective models, providing a well-rounded 

approach to analyzing sequences of data. It not only pushes the boundaries of what deep learning 
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can achieve but also highlights the significance of integrating different methods to explore new 

possibilities in research and practical applications. 

3.5.4 Artificial Neural Networks 

3.5.1.1 Medium Neural Networks: 

Medium neural networks strike a balance between the simplicity of narrow networks and the power 

of wider ones. The term "medium" refers to a moderate number of neurons, chosen intentionally 

to handle complexity while staying computationally efficient. These networks are versatile and 

work well for various tasks and datasets. With a moderate capacity, they capture intricate patterns 

without getting too complex and overfitting, a common problem in larger models. Medium 

networks have reasonable computational demands, making them suitable for datasets of different 

sizes. Their adaptability makes them practical for applications where finding a balance between 

efficiency, generalization, and modeling intricate data relationships is important. Just like any 

neural network, it's essential to fine-tune and experiment to tailor the model to specific task needs.  

 

Figure 3.17 Hybrid Architecture with Temporal Convolutional Networks (TCNs) and Long 

Short-Term Memory (LSTM) Networks 
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3.5.1.2 Narrow Neural Networks: 

Narrow neural networks, within the realm of artificial intelligence, denote architectures 

characterized by a more modest count of neurons in their hidden layers when compared to wider 

counterparts. The term "narrow" does not imply a limitation, but rather a conscious choice toward 

a more restrained complexity. These networks, with their fewer hidden layer neurons, offer distinct 

advantages in certain contexts. Computational efficiency emerges as a notable strength, as the 

training and inference processes are expedited due to the reduced number of parameters to compute 

and update. Moreover, narrow networks often exhibit enhanced generalization capabilities, 

particularly in scenarios where datasets are limited. Their propensity to avoid overfitting, a 

phenomenon where the model memorizes training data rather than learning patterns, is a valuable 

characteristic, contributing to improved performance on new, unseen data. This is particularly 

relevant in cases where simplicity and interpretability are priorities. The elegance of narrow 

networks lies in their ability to strike a balance, offering computational efficiency without 

compromising the model's capacity to discern intricate patterns within the data. Experimentation 

with various architectures, including different widths, remains a common practice to tailor the 

neural network to the unique demands of specific tasks and datasets.  

3.5.1.3 Multilayer Perceptron (MLPs): 

Multilayer Perceptron (MLPs) represent a fundamental and versatile class of artificial neural 

networks that have played a pivotal role in shaping the landscape of machine learning. Originating 

from the broader family of neural networks, MLPs have evolved into a cornerstone of deep 

learning, demonstrating exceptional prowess in various applications. In this comprehensive 

exploration, we delve into the intricacies of MLPs, unraveling their theoretical foundations, 

architectural components, training methodologies, and diverse real-world applications. 

At its essence, an MLP is a feedforward neural network with three or more layers: an input layer, 

one or more hidden layers, and an output layer. The neurons, or nodes, within each layer, are 

interconnected, forming a network structure that allows information to flow in a unidirectional 

manner, from the input layer through the hidden layers to the output layer. The term "perceptron" 

reflects the basic unit of computation within these networks, inspired by the mathematical model 

of a biological neuron. The strength of MLPs lies in their capacity to learn complex patterns and 
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representations from data. Each connection between neurons is associated with a weight, and each 

neuron has an associated bias. During training, these weights and biases are adjusted through an 

iterative optimization process, commonly known as backpropagation, to minimize the difference 

between the predicted and actual outputs. The non-linear activation functions applied to each 

neuron introduce non-linearity into the model, enabling MLPs to capture intricate relationships 

within the data. 

The hidden layers of an MLP contribute to its ability to learn hierarchical representations. As data 

passes through successive hidden layers, the network can extract progressively abstract features. 

This hierarchical feature learning is crucial for tasks such as image recognition, where lower layers 

may capture basic shapes, and higher layers combine these shapes to recognize more complex 

patterns. A defining feature of MLPs is their universal approximation theorem, which states that a 

feedforward neural network with a single hidden layer containing a finite number of neurons can 

approximate any continuous function on a closed and bounded input space to arbitrary accuracy. 

This theorem underscores the expressive power of MLPs, making them capable of approximating 

highly complex and non-linear mappings between inputs and outputs. Training an MLP involves 

presenting the network with a set of input-output pairs, known as the training dataset, and adjusting 

the weights and biases to minimize the error between the predicted and actual outputs. The 

backpropagation algorithm, coupled with optimization techniques like stochastic gradient descent, 

facilitates this weight adjustment process. Regularization techniques, such as dropout and weight 

decay, are often employed to prevent overfitting and enhance generalization to unseen data. 

The architecture of MLPs can vary widely based on the specific task and dataset. Common variants 

include deep MLPs with multiple hidden layers, wide MLPs with a large number of neurons in 

each layer, and specialized architectures like convolutional neural networks (CNNs) for image 

data and recurrent neural networks (RNNs) for sequential data. 

3.5.1.4 Backpropagation Neural Networks: 

Backpropagation Neural Networks leverage the backpropagation algorithm for training, marking 

a significant advancement in the field of neural networks. The backpropagation algorithm allows 

networks to iteratively adjust their weights based on the error between predicted and actual outputs. 

This optimization process enables the efficient learning of intricate patterns in diverse datasets. 
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Backpropagation networks are often implemented with multiple layers, contributing to the 

emergence of deep learning architectures. These networks have played a pivotal role in the success 

of neural networks, overcoming challenges associated with vanishing and exploding gradients. 

The ability to efficiently train deep networks has led to breakthroughs in various domains, 

including computer vision, natural language processing, and speech recognition. While the training 

of deep networks can be computationally intensive, the benefits in terms of improved performance 

and feature representation have fueled their widespread adoption in modern machine learning 

applications. 

3.5.1.5 Cubic Support Vector Machine 

Support Vector Machine (SVM) analysis stands as a cornerstone in the realm of machine learning, 

with its roots tracing back to 1992 when Vladimir Vapnik and his colleagues introduced this 

powerful tool for classification and regression. The SVM approach revolutionized the field, 

offering a robust framework for solving complex problems in various domains. In this exploration, 

we delve into the intricacies of SVM regression, a nonparametric technique that hinges on the 

ingenious use of kernel functions to unearth patterns and relationships within data. 

SVM regression is fundamentally distinct from its classification counterpart but inherits the core 

principles that make SVM a stalwart in the machine learning landscape. While SVM classification 

carves decision boundaries to segregate data into distinct classes, SVM regression takes a different 

path, aiming to predict continuous outcomes. It does so by fitting a hyperplane in a high-

dimensional space defined by the chosen kernel function, seeking optimal generalization 

performance. The primary concept driving SVM regression is the identification and minimization 

of residuals, the differences between predicted and actual values. This is achieved by defining a 

tube, often cubic in nature, of a specified width (ε-sensitivity). The algorithm then selectively 

considers residuals falling within this tube, effectively prioritizing those that align closely with the 

predicted function. Points inside the tube are considered ε-close and are not penalized, fostering a 

nuanced approach to handling deviations from the expected outcome. 

Conversely, points lying outside the tube are penalized based on their distance from the predicted 

function. This penalization mechanism ensures that the algorithm not only captures the general 

trend within the data but also accounts for variations that fall outside the designated tolerance. This 
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bears a resemblance to the penalization strategy employed by SVMs in classification, underlining 

the unified nature of SVM principles across different problem domains. The elegance of SVM 

regression lies in its ability to strike a balance between capturing essential patterns within the data 

and mitigating the impact of outliers or noise. By focusing on residuals within the defined tube, 

the model aims to achieve a robust fit that generalizes well to unseen data. This approach to 

regression aligns with the broader philosophy of SVM, emphasizing structural risk minimization 

and the pursuit of a solution that maintains a favorable bias-variance trade-off. 

The broader context of SVM regression, as an extension of the SVM framework, also brings forth 

considerations related to kernel functions. These functions play a pivotal role in SVM by 

transforming the input data into a higher-dimensional space, where the underlying patterns become 

more apparent. The choice of kernel function significantly influences the model's ability to capture 

complex relationships, and popular choices include radial basis functions (RBF), polynomial 

kernels, and, in the case of cubic SVM, cubic kernels.The cubic SVM, with its emphasis on a cubic 

tube for handling residuals, aligns with the overarching objective of SVM regression—to find a 

well-fitting hyperplane in a kernel-induced feature space. This hyperplane encapsulates the 

essential relationships within the data, and the cubic nature of the tube provides the model with 

the capacity to navigate non-linearities inherent in the data distribution. 

While the detailed theoretical underpinnings of Support Vector Regression (SVR) are not 

explicitly covered in this exploration, it is essential to acknowledge the wealth of knowledge 

available in seminal works such as Burges (1998) and references like Awad and Khanna. These 

sources offer in-depth insights into SVR theory, providing a comprehensive understanding of the 

mathematical foundations and principles that govern the successful application of SVM regression. 

The cubic kernel function, a key feature of Cubic SVMs, introduces a cubic transformation to the 

input data. This transformation enables the model to capture complex patterns and non-linear 

relationships that may exist in the data. Mathematically, the cubic kernel function is defined as  

𝑘(𝑥, 𝑦) = ((𝑥 ∗ 𝑦) + 𝑐)3 

, where 'c' is a constant term. 
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3.6 Evaluation metrics 

 The models will be evaluated using 4 evaluation metric i-e mean square error (MSE), root mean 

square error (RMSE), mean absolute error (MAE) and coefficient of determination (R2). 

3.6..1 Mean absolute error. 

Mean absolute error is key metric for evaluating the performance of a regression model. he term 

"error" denotes the difference between the actual force values and the corresponding predictions 

made by the model. To quantify these differences, the absolute function is employed, ensuring that 

all disparities are considered in a positive light. 

Mathematically, the Absolute function transforms any negative values to their positive 

counterparts, capturing the magnitude of the error. The MAE is then computed by determining the 

average of these absolute error values. Crucially, the units associated with MAE remain consistent 

with those of the true and predicted force, maintaining uniformity in the measurement scale (e.g., 

Newton, N). 

In our context, where force is the focal parameter, MAE encapsulates the average magnitude of 

the disparities between predicted and actual force values. Therefore, a lower MAE indicates a more 

accurate model, suggesting that, on average, the predictions closely align with the true force 

measurements. The mathematical formula of Mean absolute error is: 

𝑀𝐴𝐸 =
∑ |𝑦𝑖 − 𝑥𝑖|𝑛

𝑖=1

𝑛
 

3.6..2 Mean Square Error 

Mean Squared Error (MSE) is a crucial metric for evaluating the performance of regression 

models. It quantifies the average of the squared differences between observed and predicted values. 

The mathematical formulation for MSE involves squaring each individual error, emphasizing the 

significance of larger errors in the overall assessment of model accuracy. 

𝑀𝑆𝐸 =
1

𝑛
∑(𝑥𝑖 − 𝑦𝑖)2

𝑛

𝑖=1
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This mathematical metric emphasizes larger errors, assigning them greater weight in the 

assessment of model performance. When a model is perfectly accurate, MSE equals zero, but as 

errors increase, so does its value. MSE is synonymous with Mean Squared Deviation (MSD), 

highlighting its role in quantifying the deviation or discrepancy between observed and predicted 

values. The units of MSE are the square of the original units of the observed and predicted values, 

such as square Newtons (N²) if the variable of interest is force in Newtons. While sensitive to 

outliers due to the squaring of errors, MSE provides a comprehensive measure, aiding in the 

nuanced evaluation of regression models based on the nature of the dataset and the desired 

emphasis on different types of errors. 

3.6..3 Root Mean Square Error 

Root Mean Squared Error (RMSE) is a pivotal metric for assessing the predictive accuracy of a 

statistical model, capturing the average difference between the model's predicted values and the 

actual observed values.  

𝑅𝑀𝑆𝐸 = √
∑ (𝑥𝑖 − 𝑦𝑖)2𝑛

𝑖

𝑛
 

Mathematically, RMSE corresponds to the standard deviation of the residuals, where residuals 

denote the vertical distance between individual data points and the regression line. In essence, 

RMSE serves as a comprehensive measure by quantifying the dispersion of these residuals. It 

provides insight into how closely the observed data points cluster around the predicted values, 

offering a holistic view of the model's precision. As a root mean square, RMSE accounts for both 

the magnitude and direction of errors, making it a valuable tool for evaluating the overall 

performance and predictive power of regression models across a dataset. 

3.6..4 Coefficient of Determination (R2) 

The coefficient of determination, commonly known as R2, is a crucial metric in regression analysis 

that evaluates the proportion of the variance in the dependent variable that is explained by the 

independent variables. Specifically, R2 measures the goodness of fit of a regression model.  
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𝑅2 = 1 −
∑ (𝑥𝑖 − 𝑦𝑖)

2𝑛
𝑖=1

∑ (𝑥𝑖 − 𝑦𝑖)2𝑛
𝑖=1

 

It is calculated as the ratio of the explained variance to the total variance in the data. A higher R2 

value, closer to 1, indicates that a larger proportion of the variability in the dependent variable is 

accounted for by the model, suggesting a better fit. Conversely, a lower R2 value, closer to 0, 

suggests that the model is less effective in explaining the variability. It's important to note that R2 

does not indicate the correctness of the model's coefficients but rather the adequacy of the model 

in capturing the variance in the data. While R2 is a valuable metric, it should be used in conjunction 

with other evaluation measures to provide a comprehensive assessment of the model's 

performance. 

3.7 Statistical Analysis 

The evaluation of all model performances will be conducted using analysis of variance (ANOVA) 

to systematically assess which model demonstrates superior performance and whether there exists 

a statistically significant difference among them. This rigorous statistical approach will provide 

valuable insights into the effectiveness of each model in predicting force, helping identify the most 

reliable and accurate one. Furthermore, a comparative analysis of results will be undertaken for 

force prediction based on surface electromyography (SEMG) and integrated electromyography 

(IEMG). This investigation aims to unveil any significant disparities between the predictive 

capabilities of these two methodologies. Additionally, a comparative examination of model 

outcomes between healthy individuals and amputees will be conducted, shedding light on potential 

distinctions in predictive accuracy for these diverse user groups. Through this comprehensive 

analysis, the study seeks to discern not only the optimal model for force prediction but also 

potential variations in performance across different prediction methodologies and user 

demographics. 

  



37 

 

 

CHAPTER 4: RESULTS 

4.1 Abled bodies 

Following the stages of filtration and segmentation, the process proceeded to feature extraction for 

the machine learning models. The extracted features were then utilized as inputs for these models. 

Conversely, for the deep learning model, the segmented and filtered data itself served as the input. 

In the case of able-bodied individuals, eight distinct force patterns were identified, with two force 

profiles recorded for each. This detailed approach in handling the data ensures a robust foundation 

for both machine learning and deep learning models, contributing to a comprehensive analysis of 

force patterns in able-bodied subjects. 

4.1.1 Temporal Convolutional network 

The Temporal Convolutional Network (TCN) exhibited remarkable performance in predicting 

force using both surface electromyography (sEMG) and integrated electromyography (iEMG) 

signals. The R2 values demonstrated exceptional accuracy, ranging from 0.95 to 0.97 for sEMG-

based predictions and 0.93 to 0.95 for iEMG-based predictions. These high R2 values signify a 

strong correlation between the predicted and actual force values, highlighting the precision and 

reliability of the TCN model. Additionally, the models showcased minimal error values, with all 

error-related metrics consistently remaining below 0.5N. This exceptional accuracy and low error 

rate underscore the effectiveness of TCN in capturing and leveraging the temporal dynamics within 

the signals for robust force prediction. 
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Figure 4.1 R2 of TCN-based force prediction 

using sEMG and iEMG signals in able-

bodied individuals. 

 

Figure 4.2 MAE of TCN-based force 

prediction using sEMG and iEMG signals in 

able-bodied individuals

 

Figure 4.3 MSE of TCN-based force 

prediction  

 

Figure 4.4 RMSE of TCN-based force 

prediction 

In Figure 25-27, the performance of TCN stands out prominently, exhibiting exceptional results 

with a higher R2 value and lower error. Although there is a noticeable decrease in prediction 

accuracy when compared to surface EMG, the R2 values still range impressively from 0.9 to 0.95. 

Additionally, the error values, while slightly increased, consistently remain below 1. This 
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underscores the robust performance of TCN in comparison to surface EMG, emphasizing its 

efficacy in achieving accurate predictions with minimal error. 

4.1.2 Hybrid Architecture with Temporal Convolutional Networks (TCNs) and Long 

Short-Term Memory (LSTM) Network 

The hybrid architecture, combining Temporal Convolutional Networks (TCN) and Long Short-

Term Memory (LSTM), demonstrated remarkable performance in predicting force based on both 

surface electromyography (sEMG) and intramuscular electromyography (iEMG) signals in able-

bodied individuals. Figures 4.5 to 4.8 illustrate the trends of key metrics, including R2 (coefficient 

of determination), RMSE (Root Mean Square Error), MAE (Mean Absolute Error), and MSE 

(Mean Squared Error). 

For sEMG-based force prediction, the coefficient of determination (R2) exhibited a high range 

from 0.9988 to 0.92235. This indicates a strong correlation between the predicted and actual force 

values. Additionally, MSE, MAE, and RMSE values showed consistent performance, ranging 

between 0.7 and 0.0024. These low values signify accurate predictions with minimal errors. 

Similarly, in the case of iEMG-based force prediction, the hybrid architecture displayed excellent 

results. The R2 ranged from 0.995 to 0.91, emphasizing the model's ability to capture the 

underlying patterns in the data. The MSE, MAE, and RMSE values in iEMG also demonstrated 

reliable performance, falling within the range of 1.07 to 0.01. These metrics collectively indicate 

the effectiveness of the hybrid TCN and LSTM architecture in accurately predicting force from 

iEMG signals. 

In summary, the hybrid model consistently performed well across both sEMG and iEMG, as 

evidenced by high R2 values and low MSE, MAE, and RMSE values. This suggests its potential 

for robust and precise force prediction, making it a promising approach in the field of 

electromyography-based applications for able-bodied individuals. 
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Figure 4.5 R2 of TCN_LSTM-based force 

prediction  

 

Figure 4.6 MAE of TCN_LSTM-based force 

prediction

 

Figure 4.7 MSE of TCN_LSTM-based force 

prediction  

 

Figure 4.8  RMSE of TCN_LSTM-based 

force prediction

4.1.3 /Long Short-Term Memory  

Long Short-Term Memory (LSTM) architecture showcased remarkable efficacy in predicting 

force based on both intramuscular electromyography (iEMG) and surface electromyography 

(sEMG) signals in individuals with normal physical abilities. Figures 4.9 to 4.12 visually depict 

the performance trends, highlighting key metrics such as R2 (coefficient of determination), RMSE 
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(Root Mean Square Error), MAE (Mean Absolute Error), and MSE (Mean Squared Error). he 

LSTM model, when applied to surface electromyography (sEMG)-based force prediction, 

exhibited exceptional performance, as indicated by various evaluation metrics. The Mean Absolute 

Error (MAE) values ranged from 0.03 to 0.09, underscoring the model's ability to make highly 

accurate predictions with minimal deviation from the true values. Mean Squared Error (MSE) 

values spanned from 0.00 to 0.03, further highlighting the precision of the LSTM model in 

capturing the intricacies of the sEMG data. Root Mean Square Error (RMSE) values for sEMG 

prediction demonstrated a consistent range between 0.04 and 0.14. The coefficient of 

determination (R2) values for sEMG predictions were consistently high, ranging from 0.97 to 1.00. 

This signifies an exceptionally strong correlation between the predicted and actual force values 

derived from sEMG signals. 

Moving on to intramuscular electromyography (iEMG) results, the LSTM model continued to 

showcase outstanding predictive accuracy. For iEMG-based force prediction, the MAE ranged 

from 0.03 to 0.09, and MSE values spanned from 0.00 to 0.03, emphasizing the model's ability to 

make accurate predictions. The RMSE values for iEMG prediction demonstrated a narrow range, 

varying between 0.04 and 0.14, indicating consistent and accurate predictions. The coefficient of 

determination (R2) for iEMG predictions was notably high, ranging from 0.97 to 1.00. This 

suggests an exceptionally strong correlation between the predicted and actual force values derived 

from iEMG signals. 

In summary, the LSTM model consistently demonstrated exceptional predictive accuracy for both 

sEMG and iEMG-based force predictions. The low values of MAE, MSE, and RMSE, coupled 

with high R2 values, underscore the robustness of the LSTM model in capturing and predicting 

force dynamics accurately from electromyography signals. 

4.1.4 Gaussian process regression  

4.1.4.1 Matern 5/2 kernel 

The Gaussian Process Regression model proved to be a robust and effective approach for 

predicting force based on surface electromyography (sEMG) signals. Analyzing the results from 

Figures 4.13 to 4.16, the model demonstrated its capabilities with compelling metrics. The Mean 
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Absolute Error (MAE) for sEMG-based force prediction ranged from 0.13 to 0.45, showcasing the 

model's accuracy in minimizing deviations from actual force values. Correspondingly, the Mean 

Squared Error (MSE) varied between 0.03 and 0.41, and the Root Mean Square Error (RMSE) 

showed a range from 0.18 to 0.63, emphasizing the precision of the predictions. The Coefficient 

of Determination (R2) values for sEMG predictions were noteworthy, ranging from 0.89 to 0.96.  

 

 

Figure 4.9 R2 determination of LSTM-based force prediction  
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Figure 4.10 MAE of LSTM-based force prediction 

 

Figure 4.11 MSE of LSTM-based force 

prediction  

  

Figure 4.12 RMSE of LSTM-based force 

prediction

Turning to intramuscular electromyography (iEMG) predictions, the Gaussian Process Regression 

model continued to showcase its effectiveness. The MAE for iEMG-based force prediction ranged 

from 0.23 to 0.58, demonstrating accurate predictions with minimal deviations. The MSE values 

varied between 0.13 and 0.64, and the RMSE values showed a consistent range from 0.35 to 0.79, 

highlighting the model's reliability. The R2 values for iEMG predictions were also notable, ranging 

from 0.86 to 0.92. These high R2 values indicated a strong correlation between the predicted and 

actual force values derived from iEMG signals.In summary, Gaussian Process Regression 
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exhibited a robust performance for both sEMG and iEMG-based force predictions, as reflected in 

the presented metrics. The low MAE, MSE, and RMSE values, coupled with high R2 values, 

underscore the model's accuracy and precision in capturing the dynamics of force prediction from 

electromyography signals. 

 

 

Figure 4.13 MAE of GPR (mat)-based force 

prediction  

 

Figure 4.14  MSE  of GPR (mat)-based force 

prediction 

 
Figure 4.15 RMSE of GPR (mat)-based 

force prediction  

Figure 4.16 R2 of GPR (mat)-based force 

prediction  
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4.1.4.2 Exponential kernel 

Employing Gaussian Process Regression with an Exponential Kernel for surface 

electromyography (sEMG)-based force prediction yielded compelling results, as illustrated in 

Figures 4.17 to 4.19. The model exhibited noteworthy performance metrics, showcasing its ability 

to accurately predict force dynamics. The Mean Absolute Error (MAE) for sEMG predictions 

ranged from 0.14 to 0.45, indicating minimal deviation from actual force values. The Mean 

Squared Error (MSE) values varied between 0.04 and 0.39, underscoring the model's precision in 

capturing the intricacies of the sEMG data. The Root Mean Square Error (RMSE) values showed 

a consistent range from 0.19 to 0.61, further highlighting the accuracy of the model's predictions. 

The Coefficient of Determination (R2) values for sEMG predictions using the Exponential Kernel 

ranged from 0.89 to 0.96. These high R2 values affirm a strong correlation between the predicted 

and actual force values derived from sEMG signals, indicating the effectiveness of the Gaussian 

Process Regression model with an Exponential Kernel. 

Turning to intramuscular electromyography (iEMG) predictions, the model continued to exhibit 

robust performance. The MAE for iEMG-based force prediction ranged from 0.24 to 0.58, 

showcasing accurate predictions with minimal deviations. The MSE values varied between 0.15 

and 0.66, while the RMSE values consistently ranged from 0.38 to 0.80, emphasizing the reliability 

of the model's predictions. The R2 values for iEMG predictions using the Exponential Kernel were 

notable, ranging from 0.86 to 0.92. These high R2 values indicate a strong correlation between the 

predicted and actual force values derived from iEMG signals, highlighting the effectiveness of the 

Gaussian Process Regression model with an Exponential Kernel. 

In summary, Gaussian Process Regression with an Exponential Kernel demonstrated robust 

performance for both sEMG and iEMG-based force predictions. The low MAE, MSE, and RMSE 

values, coupled with high R2 values, underscore the model's accuracy and precision in capturing 

force dynamics from electromyography signals. 
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Figure 4.17  R2 of GPR (EXPO)-based force prediction using sEMG and iEMG signals 

 

Figure 4.18 Performance Metrics for GPR 

(expo) in sEMG-Based Force Prediction 

 

Figure 4.19 Performance Metrics for GPR 

(expo) in iEMG-Based Force Prediction
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4.1.5 Multilayer Perceptron 

Utilizing Multilayer Perceptron (MLP) for force prediction based on surface electromyography 

(sEMG) signals yielded promising results, as demonstrated in Figures 4.20 and 4.21. The model 

showcased its predictive capabilities with compelling performance metrics. The Mean Absolute 

Error (MAE) for sEMG-based force prediction ranged from 0.15 to 0.49, indicating the model's 

ability to provide accurate predictions with minimal deviation from the actual force values. The 

Mean Squared Error (MSE) values varied between 0.04 and 0.51, while the Root Mean Square 

Error (RMSE) values consistently ranged from 0.21 to 0.71, highlighting the precision of the 

model's predictions. The Coefficient of Determination (R2) values for sEMG predictions with MLP 

ranged from 0.87 to 0.96, indicating a strong correlation between the predicted and actual force 

values derived from sEMG signals. This emphasizes the effectiveness of the MLP model in 

capturing the underlying patterns in sEMG data for force prediction. 

Similarly, for intramuscular electromyography (iEMG) predictions, the MLP model demonstrated 

reliable performance. The MAE for iEMG-based force prediction ranged from 0.26 to 0.69, 

indicating accurate predictions with minimal deviations. The MSE values varied between 0.17 and 

0.97, while the RMSE values consistently ranged from 0.3 to 0.83, showcasing the model's 

precision in predicting force dynamics based on iEMG signals. The Coefficient of Determination 

(R2) values for iEMG predictions with MLP ranged from 0.82 to 0.90, signifying a strong 

correlation between the predicted and actual force values derived from iEMG signals. This 

underscores the effectiveness of the MLP model in accurately capturing force dynamics from 

intramuscular electromyography. 

Figure 4.20 Performance Metrics for MLP in 

sEMG-Based Force Prediction 

Figure 4.21 Performance Metrics for in 

iEMG-Based Force Prediction
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4.1.6 Medium Neural Network  

The implementation of a Medium Neural Network for force prediction, utilizing surface 

electromyography (sEMG) and intramuscular electromyography (iEMG) signals, is outlined in 

Figures 4.22-4.24. The model's performance is characterized by key evaluation metrics, illustrating 

its capacity for accurate force predictions. The Medium Neural Network employed for force 

prediction based on surface electromyography (sEMG) and intramuscular electromyography 

(iEMG) signals has demonstrated varied effectiveness, as indicated by key evaluation metrics. 

However, the minimum values of the Coefficient of Determination (R2), specifically 0.5 for sEMG 

and 0.44 for iEMG predictions, suggest limitations in the model's ability to explain the variability 

in the actual force values. These relatively lower R2values signify that a substantial portion of the 

force dynamics remains unaccounted for by the Medium Neural Network, indicating potential 

shortcomings in capturing the complex relationship between electromyography signals and force. 

The observed lower R2 values may stem from several factors, including the complexity of the 

underlying physiological processes, the need for a more sophisticated model architecture, or the 

presence of noise and variability in the data. These findings imply that the current model may not 

be as effective in accurately predicting force based on electromyography signals compared to other 

approaches. 

 

Figure 4.22 R2 of MNN based force prediction using sEMG and iEMG signals. 
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Figure 4.23 Performance Metrics for MNN 

in sEMG-Based Force Prediction 

      

Figure 4.24 Performance Metrics for MNN 

in iEMG-Based Force Prediction 

4.1.7 BPNN

The Backpropagation Neural Network (BPNN) employed for force prediction based on surface 

electromyography (sEMG) and intramuscular electromyography (iEMG) signals has exhibited 

varied performance, as outlined in Figures 48 and 49. The model's effectiveness is characterized 

by key evaluation metrics, shedding light on its ability to accurately predict force dynamics. 

For sEMG-based force prediction, the BPNN demonstrated a range of performance metrics. The 

Mean Absolute Error (MAE) varied from 0.21 to 0.84, indicating the model's ability to make 

predictions with varying degrees of accuracy. The Mean Squared Error (MSE) values ranged from 

0.07 to 1.19, and the Root Mean Square Error (RMSE) values consistently varied from 0.27 to 

1.08. The Coefficient of Determination (R2) values ranged from 0.68 to 0.93, indicating a moderate 

to strong correlation between the predicted and actual force values derived from sEMG signals. 

Turning to iEMG-based force prediction, the BPNN showcased a similar spectrum of performance. 

The MAE for iEMG predictions ranged from 0.35 to 0.98, showcasing variations in accuracy. The 

MSE values varied between 0.37 and 1.58, while the RMSE values consistently ranged from 0.50 

to 1.25. The Coefficient of Determination (R2) values for iEMG predictions ranged from 0.67 to 
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0.82, indicating a moderate correlation between the predicted and actual force values derived from 

iEMG signals. 

It's noteworthy that the minimum R2 values observed for both sEMG and iEMG predictions fall 

below 0.7. While the model exhibits moderate to strong correlations, the minimum R2 suggests 

that the BPNN may have limitations in explaining a significant portion of the variability in the 

actual force values. A value below 0.7 could indicate that the model might not perform optimally 

in capturing complex relationships within the electromyography data for force prediction. 

 

Figure 4.25 Performance Metrics for BPNN 

in sEMG-Based Force Prediction 

 

Figure 4.26 Performance Metrics for BPNN 

in iEMG-Based Force Prediction

4.1.8 Narrow Neural Network

The Narrow Neural Network, utilized for predicting force based on surface electromyography 

(sEMG) and intramuscular electromyography (iEMG) signals, reveals varied performance metrics 

as depicted in Figures 4.25 and 4.26. These metrics provide insights into the model's accuracy in 

predicting force dynamics. 

For sEMG-based force prediction, the Narrow Neural Network demonstrates a range of 

performance metrics. The Mean Absolute Error (MAE) varies from 0.19 to 0.62, indicating the 

model's capability to make predictions with varying degrees of accuracy. The Mean Squared Error 

(MSE) values range from 0.06 to 1.15, and the Root Mean Square Error (RMSE) consistently 
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varies from 0.25 to 1.00. The Coefficient of Determination (R2) values range from 0.62 to 0.94, 

suggesting a moderate to strong correlation between the predicted and actual force values derived 

from sEMG signals. 

Turning to iEMG-based force prediction, the Narrow Neural Network demonstrates a similar 

spectrum of performance. The MAE for iEMG predictions ranges from 0.31 to 0.80, showcasing 

variations in accuracy. The MSE values vary between 0.20 and 1.64, while the RMSE consistently 

ranges from 0.44 to 1.18. The Coefficient of Determination (R2) values for iEMG predictions range 

from 0.62 to 0.86, indicating a moderate correlation between the predicted and actual force values 

derived from iEMG signals. 

While the model's performance metrics indicate a moderate to strong correlation for both sEMG 

and iEMG predictions, the minimum R2values, specifically 0.62, suggest that there may be room 

for improvement in explaining variability for more robust force predictions. Further exploration 

and optimization could enhance the model's ability to capture complex relationships within the 

electromyography data. 

 

Figure 4.27 Performance Metrics for NNN in 

sEMG-Based Force Prediction 

 

Figure 4.28 Performance Metrics for NNN in 

sEMG-Based Force Predictio

4.1.9 Cubic Support Vector Machine 

The performance of the Cubic Support Vector Machine (SVM) in predicting force based on surface 

electromyography (sEMG) and intramuscular electromyography (iEMG) signals is detailed in 
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Figures 4.29-4.31. The model's effectiveness is reflected in various performance metrics, 

providing insights into its accuracy in capturing force dynamics. 

For sEMG-based force prediction, the Cubic SVM exhibits a range of performance metrics. The 

Mean Absolute Error (MAE) varies from 0.18 to 0.83, showcasing the model's varying degrees of 

accuracy in predictions. The Mean Squared Error (MSE) values range from 0.06 to 1.54, and the 

Root Mean Square Error (RMSE) consistently varies from 0.24 to 2.42. Interestingly, the 

Coefficient of Determination (R2) values range from -2.55 to 0.94, indicating a broad spectrum of 

correlation, with negative values suggesting a poor fit of the model to the data. 

Turning to iEMG-based force prediction, the Cubic SVM demonstrates a similar spectrum of 

performance. The MAE for iEMG predictions ranges from 0.33 to 0.88, showcasing variations in 

accuracy. The MSE values vary between 0.28 and 17.54, while the RMSE consistently ranges from 

0.52 to 2.42. The Coefficient of Determination (R2) values for iEMG predictions range from -2.55 

to 0.83. 

The average R2 values for sEMG and iEMG, calculated as 0.112 and 0.534, respectively, further 

emphasize the model's limitations in capturing the underlying patterns in the data. These low 

average R2 values suggest that the Cubic SVM may not be an effective model for predicting force 

dynamics based on electromyography signals, as the correlation between predicted and actual force 

values is notably weak. In summary, the Cubic SVM exhibits a wide range of performance for 

both sEMG and iEMG-based force predictions, with notably low average R2 values. These findings 

indicate that the model may not be the most suitable for capturing the intricate relationships within 

the electromyography data for accurate force predictions. Further exploration and consideration of 

alternative models may be beneficial to improve predictive capabilities. 
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Figure 4.29 R2 for cSVM in 

EMG-Based Force 

Prediction 

 

Figure 4.30 Performance 

Metrics for cSVM in 

sEMG-Based Force 

Prediction 

 

Figure 4.31 Performance 

Metrics for cSVM in 

iEMG-Based Force 

Prediction 

4.2 Amputees 

4.2.1 Temporal Convolutional Networks 

 The force prediction using Temporal Convolutional Networks (TCN) in amputee subjects, using 

surface electromyography (sEMG) signals, exhibits promising results, as illustrated in Figures 4.32 

and 4.33. Examining various evaluation metrics, the average Mean Absolute Error (MAE) is 1.31, 

indicating the model's accuracy in predicting force values. The Mean Squared Error (MSE) 

averages 5.64, reflecting the overall squared differences between predicted and actual force values. 

The Root Mean Square Error (RMSE) provides an average measure of prediction accuracy of 1.76. 

Notably, the Coefficient of Determination (R2) reaches an average value of 0.87, indicating a 

robust correlation between predicted and actual force values. 

Breaking down further, the minimum MAE is observed at 0.45, reflecting instances of particularly 

accurate predictions. The minimum MSE and RMSE are 0.57 and 0.61, respectively, signifying 

low overall prediction errors. The minimum R2 value is 0.81, indicating a strong relationship 

between predicted and actual force values in the least favorable scenarios. 

Conversely, the model's maximum performance metrics exhibit its capacity to handle variations 

in force prediction. The maximum MAE is 1.92, representing the largest absolute errors in 
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prediction. The maximum MSE is 9.37, and the maximum RMSE is 2.50, suggesting instances of 

higher prediction errors. However, even under these conditions, the model maintains a 

commendable performance, highlighted by the maximum R2 value of 0.93, showcasing a 

substantial correlation between predicted and actual force values. 

 

Figure 4.32 R2 of TCN-based sEMG Force 

Prediction for Amputees.  

. 

 

Figure 4.33 Performance Metrics of TCN-

based sEMG Force Prediction for Amputee

4.2.2 LSTM_TCN 

The illustration of LSTM-TCNN model results on the sEMG dataset is presented in Figures 4.34 

and 4.35. These metrics offer valuable insights into the model's accuracy in predicting force 

dynamics. 

For sEMG-based force prediction, the LSTM-TCNN demonstrates notable performance metrics. 

The Mean Absolute Error (MAE) ranges from 0.3229 to 1.4521, indicating the model's capability 

to make predictions with varying degrees of accuracy. The Mean Squared Error (MSE) values 

span from 0.3905 to 12.6173, while the Root Mean Square Error (RMSE) consistently varies from 

0.4605 to 2.3174. The Coefficient of Determination (R2) values range from 0.6842 to 0.9344, 

suggesting a strong correlation between the predicted and actual force values derived from sEMG 

signals. 

The LSTM-TCNN's overall performance metrics indicate its ability to capture complex 

relationships within the sEMG data for accurate force predictions. The minimum R2 values, 

specifically 0.6842, suggest room for improvement in explaining variability for more robust force 

predictions. Further exploration and optimization could enhance the model's ability to capture 

intricate patterns within the electromyography data. 
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Figure 4.34 R2 of TCN-based sEMG Force 

Prediction for Amputees.  

 

Figure 4.35 Performance Metrics of TCN-

based sEMG Force Prediction for Amputees

4.2.3 LSTM

The LSTM model, applied to predict force based on surface electromyography (sEMG) signals, is 

elucidated through performance metrics in Figures 4.36 and 4.37. These metrics offer 

comprehensive insights into the model's accuracy in forecasting force dynamics. 

For sEMG-based force prediction, the LSTM model demonstrates varied performance metrics. 

The Mean Absolute Error (MAE) spans from 0.3369 to 1.7162, highlighting the model's capacity 

for predictions with differing levels of accuracy. Mean Squared Error (MSE) values range from 

0.4004 to 13.6549, while Root Mean Square Error (RMSE) consistently varies from 0.4816 to 

2.4411. Coefficient of Determination (R2) values range from 0.5848 to 0.9374, suggesting a strong 

correlation between the predicted and actual force values derived from sEMG signals. 

The LSTM model's overall performance metrics indicate its ability to capture intricate patterns 

within the sEMG data for accurate force predictions. The minimum R2 value, specifically 0.5848, 

suggests opportunities for improvement in explaining variability for more robust force predictions. 

Further exploration and optimization could enhance the model's ability to discern complex 

relationships within the electromyography data. 
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Figure 4.36 R2 of LSTM-based sEMG Force 

Prediction for Amputees.  

 

 

Figure 4.37 Performance Metrics of LSTM-

based sEMG Force Prediction for Amputees

4.2.4 Gaussian Process Regression  

4.2.3.1 Matern 5/2 kernel 

The Gaussian Process Regression (Matern 5/2 kernel), applied to predict force based on surface 

electromyography (sEMG) signals, is detailed through performance metrics. The following results 

are illustrated in Figures 4.38 and 4.39. 

For sEMG-based force prediction, the model demonstrates consistent performance metrics. The 

Mean Absolute Error (MAE) averages at 0.8792, ranging from 0.3207 to 1.2197, indicating the 

model's capability to provide accurate predictions with varying degrees of precision. The Mean 

Squared Error (MSE) has an average value of 3.6164, with values ranging from 0.3780 to 6.4235, 

and the Root Mean Square Error (RMSE) consistently varies from 0.6056 to 2.3979. The 

Coefficient of Determination (R2) values range from 0.7175 to 0.8961, suggesting a strong 

correlation between the predicted and actual force values derived from sEMG signals. 

The Matern 5/2 kernel's overall performance metrics underscore its ability to capture complex 

relationships within the sEMG data for accurate force predictions. The minimum R2 value, 

specifically 0.7175, implies that the model performs well, and further refinement could potentially 
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enhance its explanatory power. These findings provide a comprehensive overview of the Gaussian 

Process Regression with Matern 5/2 kernel in the context of sEMG-based force prediction. 

4.2.3.1 Exponential kernel

The Gaussian Process Regression with an exponential kernel, employed for predicting force based 

on surface electromyography (sEMG) signals, is characterized by the following performance 

metrics. The results are elucidated in Figures 4.40 and 4.41. 

 

Figure 4.38 R2 of Gpr(mat)-based sEMG 

Force Prediction for Amputees. 

 

Figure 4.39 Performance Metrics of 

Gpr(mat)-based sEMG Force Prediction for 

Amputees.

For sEMG-based force prediction, the Gaussian Process Regression with an exponential kernel 

exhibits varied performance metrics. The Mean Absolute Error (MAE) averages at 1.1328, with 

values ranging from 0.3917 to 1.7864. This indicates the model's capability to make predictions 

with varying degrees of accuracy. The Mean Squared Error (MSE) has an average value of 9.5532, 

ranging from 0.8888 to 23.3377, and the Root Mean Square Error (RMSE) consistently varies 

from 0.9203 to 4.7869. The Coefficient of Determination (R2) values range from 0.3729 to 0.8679, 

suggesting a moderate to strong correlation between the predicted and actual force values derived 

from sEMG signals. 

The overall performance metrics of the Gaussian Process Regression with an exponential kernel 

underscore its ability to capture intricate relationships within the sEMG data for force prediction. 

The minimum R2 value, specifically 0.3729, implies some variability in capturing the underlying 

patterns, suggesting potential areas for model improvement. These insights contribute to a 

comprehensive understanding of the Gaussian Process Regression model with an exponential 

kernel in the context of sEMG-based force prediction. 
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Figure 4.40 R2 of Gpr(expo)-based sEMG 

Force Prediction for Amputees. 

 

Figure 4.41 Performance Metrics of 

Gpr(expo)-based sEMG Force Prediction for 

Amputees.

4.2.5 Multilayer Perceptron 

The Multilayer Perceptron (MLP) model, utilized for predicting force based on surface 

electromyography (sEMG) signals, is characterized by various performance metrics as detailed in 

Figures 4.42 and 4.43. These metrics provide valuable insights into the model's accuracy in 

forecasting force dynamics. 

For sEMG-based force prediction, the MLP model demonstrates consistent performance metrics. 

The Mean Absolute Error (MAE) averages at 1.0971, ranging from 0.3829 to 1.54. This indicates 

the model's capability to provide accurate predictions with varying degrees of precision. The Mean 

Squared Error (MSE) has an average value of 5.3243, with values ranging from 0.4885 to 8.62, 

and the Root Mean Square Error (RMSE) consistently varies from 0.699 to 2.93. The Coefficient 

of Determination (R2) values range from 0.7 to 0.84, suggesting a moderate to strong correlation 

between the predicted and actual force values derived from sEMG signals. 

The MLP model's overall performance metrics highlight its ability to capture complex 

relationships within the sEMG data for accurate force predictions. The minimum R2 value, 

specifically 0.7, implies good explanatory power, while the maximum R2 of 0.84 indicates strong 
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correlation under certain conditions. These findings contribute to a comprehensive understanding 

of the Multilayer Perceptron model in the context of sEMG-based force prediction. 

 

Figure 4.42 R2 of MLP-based sEMG Force 

Prediction for Amputees. 

 

Figure 4.43 Performance metrics of MLP-

based sEMG Force Prediction for Amputees. 

4.2.6 Backpropagation Neural Network

The Backpropagation Neural Network (BPNN) employed for predicting force based on surface 

electromyography (sEMG) signals is characterized by the following performance metrics. The 

results are presented in Figures 4.44 and 4.45. 

For sEMG-based force prediction, the BPNN exhibits varying performance metrics. The Mean 

Absolute Error (MAE) averages at 1.8209, with values ranging from 0.7600 to 2.6714. This 

indicates the model's capability to make predictions with varying degrees of accuracy. The Mean 

Squared Error (MSE) has an average value of 12.1282, ranging from 1.6226 to 20.4850, and the 

Root Mean Square Error (RMSE) consistently varies from 1.2738 to 4.5200. The Coefficient of 

Determination (R2) values range from 0.4360 to 0.6496, suggesting a moderate correlation 

between the predicted and actual force values derived from sEMG signals. Given that the minimum 

R2 value for the Backpropagation Neural Network (BPNN) in the context of sEMG-based force 

prediction is 0.4360, it suggests that this model may have limitations in accurately capturing the 

underlying patterns in the data. In situations where force prediction accuracy is crucial, especially 

for amputee applications requiring precise control, alternative models with higher R2 values may 

be more suitable. Therefore, careful consideration and exploration of alternative models are 

recommended for applications involving amputee users. 
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Figure 4.44 R2 of BPNN-based sEMG Force 

Prediction for Amputees. 

 

Figure 4.45 Performance metrics of BPNN -

based sEMG Force Prediction for Amputees.

4.2.7 Medium Neural Network 

The Medium Neural Network, applied for predicting force based on surface electromyography 

(sEMG) signals, is detailed through performance metrics illustrated in Figures 4.46 and 4.47. 

These metrics provide insights into the model's accuracy in forecasting force dynamics. 

For sEMG-based force prediction, the Medium Neural Network exhibits varied performance 

metrics. The Mean Absolute Error (MAE) averages at 1.4092, with values ranging from 0.4879 to 

2.1206. This indicates the model's capability to make predictions with varying degrees of accuracy. 

The Mean Squared Error (MSE) has an average value of 7.8218, ranging from 0.6180 to 18.6655, 

and the Root Mean Square Error (RMSE) consistently varies from 0.7830 to 4.2677. The 

Coefficient of Determination (R2) values range from 0.4364 to 0.7736, suggesting a moderate to 

strong correlation between the predicted and actual force values derived from sEMG signals. 

Given that the minimum R2 value is 0.4364, it is advisable to exercise caution when considering 

the use of this model for applications involving amputees, where precision in force prediction is 

crucial. Exploring alternative models with higher R2 values may be recommended for applications 

requiring enhanced predictive accuracy in amputee-related contexts. 
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Figure 4.46 R2 of MNN-based sEMG Force 

Prediction for Amputees. 

 

Figure 4.47 Performance metrics of MNN -

based sEMG Force Prediction for Amputee

4.2.8 Narrow Neural Network  

The performance of the Narrow Neural Network (NNN) in predicting force based on surface 

electromyography (sEMG) signals is detailed in Figures 4.48 and 4.49. These figures provide a 

visual representation of the model's performance across various metrics. The model demonstrates 

varied performance metrics, and the results are presented as follows: 

For sEMG-based force prediction, the Narrow Neural Network exhibits diverse performance 

metrics. The Mean Absolute Error (MAE) averages 1.5012, ranging from 0.4928 to 2.2376, 

indicating the model's capability to make predictions with varying degrees of accuracy. The Mean 

Squared Error (MSE) has an average value of 9.3760, ranging from 0.7761 to 17.8217, and the 

Root Mean Square Error (RMSE) consistently varies from 0.8640 to 3.9796. The Coefficient of 

Determination (R2) values range from 0.4172 to 0.8202, suggesting a moderate to strong 

correlation between the predicted and actual force values derived from sEMG signals. 

Given the range of R2 values, it is important to carefully consider the model's performance 

characteristics. In situations where precise force control is critical, users may want to explore 

alternative models with higher R2 values for applications involving amputee users. 
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Figure 4.48 R2 of NNN-based sEMG Force 

Prediction for Amputees. 

 

Figure 4.49 Performance metrics of NNN -

based sEMG Force Prediction for Amputees

 

4.2.9 Cubic Support Vector Machine 

The performance of the Cubic Support Vector Machine (SVM) in predicting force based on surface 

electromyography (sEMG) signals is detailed in Figures 4.50 and 4.51. The model's effectiveness 

is reflected in various performance metrics, providing insights into its accuracy in capturing force 

dynamics. 

For sEMG-based force prediction, the Cubic SVM exhibits varied performance metrics. The Mean 

Absolute Error (MAE) averages at 1.2562, ranging from 0.4783 to 1.7291, indicating the model's 

capability to make predictions with varying degrees of accuracy. The Mean Squared Error (MSE) 

has an average value of 9.5203, ranging from 0.8467 to 14.8519, and the Root Mean Square Error 

(RMSE) consistently varies from 0.9095 to 3.6696. The Coefficient of Determination (R2) values 

range from 0.4421 to 0.7794, suggesting a moderate correlation between the predicted and actual 

force values derived from sEMG signals. 

Considering the minimum R2 value of 0.4421, it indicates that the Cubic SVM may have 

limitations in explaining variability for more robust force predictions. In the context of applications 

involving amputee users where precise force control is crucial, alternative models with higher R2 
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values may be more suitable. It is advisable to explore and consider alternative models to improve 

predictive capabilities for such applications. 

 

Figure 4.50 R2 of cSVM-based sEMG Force 

Prediction for Amputees. 

 

Figure 4.51 Performance metrics of cSVM-

based sEMG Force Prediction for Amputee

4.3 Comparison of Surface EMG-Based Force Prediction Models in Amputees 

For EMG based force prediction for amputees, the R2 values obtained from various models serve 

as key indicators of their predictive performance. The R2 values quantify how well the models can 

explain the variability in the force data based on the EMG signals. Among the models assessed, 

TCN and LSTM_TCN emerge as the top performers, boasting R2 values of 0.87 and 0.85, 

respectively. These high R2 scores suggest that these models excel in capturing the intricate 

relationships between EMG signals and force predictions for amputees. 

The LSTM model also demonstrates commendable predictive capability, yielding an R2 of 0.84. 

This implies that the LSTM model effectively captures patterns in the EMG data, contributing to 

accurate force predictions. Additionally, the GPR model with a Matern kernel exhibits competitive 

performance with an R2 of 0.84. Conversely, models like GPR with an exponential kernel, MNN, 

NNN, cSVM, and BPNN show comparatively lower R2 values ranging from 0.67 to 0.55. While 
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these models still offer predictive insights, their lower R2 scores suggest a potential limitation in 

accurately modeling the relationship between EMG signals and force for amputees. Given that the 

ANOVA analysis indicates no significant difference among the TCN, LSTM_TCN, LSTM, and 

GPR with a Matern 5/2 kernel models (p > 0.05), it suggests that these models perform similarly 

in terms of their predictive capabilities for EMG-based force prediction in amputees. In practical 

terms, this lack of statistical significance implies that the choice between these models may depend 

on various factors, such as computational efficiency, interpretability, and specific requirements of 

the application. 

TCN, known for its ability to capture long-range dependencies in sequential data, might be favored 

in scenarios where temporal relationships in the EMG signals play a critical role in force 

prediction. On the other hand, LSTM_TCN, combining the strengths of both TCN and LSTM, 

could be a suitable choice when dealing with complex patterns and varying signal lengths. LSTM, 

with its effectiveness in modeling sequential data, may be preferred when temporal nuances are of 

utmost importance, especially if interpretability is a key consideration. GPR with a Matern kernel, 

while statistically on par with the neural network-based models, offers a different approach by 

providing probabilistic predictions and uncertainty estimates. This could be valuable in 

applications where understanding the confidence or uncertainty of force predictions is crucial. 

Ultimately, the selection among these models should be guided by the specific characteristics of 

the EMG data, the computational resources available, and the interpretability requirements of the 

end-users. A well-informed decision, considering the nuances of the amputee dataset and the 

practical aspects of model deployment, will contribute to the success of the force prediction system 

in real-world applications. 
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Figure 4.52  Comparison of EMG-Based Force Prediction Models in Amputees 

 

4.1 Comparison of sEMG-Based Force Prediction Models in Able-Bodied  

In Figure 4.53, we present the R2 values for various models in sEMG-based force prediction. 

Notably, LSTM, LSTM_TCN, and TCN exhibit outstanding performance with R2 values of 0.988, 

0.986, and 0.971, respectively, showcasing their exceptional predictive capabilities. GPR (mat) 

also performs well with an R2 of 0.938. Among the examined models, LSTM emerges as the 

frontrunner, attaining an impressive R2 value of 0.988, showcasing its exceptional ability to 

capture and predict force dynamics accurately. Following closely, LSTM_TCN and TCN exhibit 

strong performances with R2 values of 0.986 and 0.971, respectively, highlighting their efficacy 

in handling the complexity of sEMG data. 

In the realm of Gaussian Process Regression (GPR), the model with a Matern kernel demonstrates 

notable predictive power, yielding an R2 value of 0.938. Moving to the other models, GPR with 

an exponential kernel, MLP, and BPNN exhibit competitive R2 values of 0.937, 0.931, and 0.872, 

respectively, suggesting their effectiveness in contributing to the predictive accuracy of force 

dynamics. Meanwhile, NNN, MNN, and cSVM demonstrate R2 values of 0.871, 0.856, and 0.573, 

respectively, signifying varying degrees of performance across different models. The statistical 

analysis reveals that LSTM, LSTM_TCN, and TCN models exhibit no significant difference 
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among themselves (p > 0.05), suggesting comparable performance in sEMG-based force 

prediction. However, their R2 values significantly outshine those of other models in the study. 

This lack of distinction between the three models underscores their collective superiority and 

positions them as the most effective choices for accurate force predictions from sEMG signals. 

Consequently, any one of these models can be confidently employed, offering flexibility in 

selection based on implementation preferences, computational considerations, or other practical 

constraints. The robust performance of LSTM, LSTM_TCN, and TCN models underscores their 

reliability and applicability in enhancing the precision of force prediction tasks in diverse contexts 

4.2 Comparison of iEMG-Based Force Prediction Models in Able-Bodied Individuals 

Figure 4.54 provides a comprehensive comparison of R2 values obtained from various models 

utilized for integrated electromyography (iEMG)-based force prediction in able-bodied 

individuals. Interestingly, the overarching trend in model performances echoes that observed in 

sEMG-based analyses. Strikingly, LSTM, LSTM_TCN, and TCN models show no significant 

differences among themselves (p > 0.05), reinforcing their consistently superior performance in 

both sEMG and iEMG scenarios. Unlike other models, the accuracies of LSTM, LSTM_TCN, and 

TCN models remain consistent between the two signal types, suggesting their resilience and 

effectiveness in capturing force dynamics, regardless of the electromyography signal's nature. 

Notably, the absence of a decrease in accuracy for these deep learning models indicates their 

adaptability to the unique characteristics of iEMG signals. 

 

Figure 4.53  Comparison of sEMG-Based Force Prediction Models in Abled bodie



67 

 

GPR models, including both the exponential and matern kernel variants, continue to exhibit 

competitive accuracy in iEMG-based force prediction, each securing an R2 value of 0.877. On the 

other hand, non-deep learning models such as MLP, BPNN, NNN, MNN, and cSVM show a 

decrease in accuracy, highlighting potential challenges in translating their effectiveness to iEMG 

data. 

In summary, the trio of LSTM, LSTM_TCN, and TCN models stands out as reliable choices for 

iEMG-based force prediction, showcasing not only consistent performance but also adaptability 

across different electromyography signal types. This analysis underscores the resilience of deep 

learning models in maintaining accuracy levels in the transition from sEMG to iEMG contexts, 

emphasizing their continued efficacy in providing precise force predictions in able-bodied 

individuals. 

 

Figure 4.54  Comparison of iEMG-Based Force Prediction Models in Abled bodies 

4.3 Comparing sEMG and iEMG-Based Force Prediction Models 

The comparison between surface electromyography (sEMG) and integrated electromyography 

(iEMG) signals for force prediction using various models reveals a consistent trend in model 

performances, albeit with notable differences in R2 values. Across the board, the models exhibit a 

similar pattern in their predictive capabilities for both signal types, indicating a degree of 

generalizability in capturing force dynamics. However, a significant divergence is observed in the 

R2 values, with a notable decrease in accuracy for most models when transitioning from sEMG to 

iEMG. 
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Interestingly, this decrease in accuracy is most pronounced in non-deep learning models such as 

GPR with an exponential kernel, MLP, BPNN, NNN, MNN, and cSVM. These models 

demonstrate a diminished ability to effectively capture and predict force dynamics from iEMG 

signals, suggesting potential challenges in translating their performance from one signal type to 

another. Contrastingly, deep learning models, including LSTM, TCN, and their hybrid architecture 

LSTM_TCN, stand out as exceptions to this trend. These models maintain their superior accuracy 

levels even in the iEMG context, showcasing their robustness and adaptability across different 

electromyography signal types. This resilience of deep learning architectures highlights their 

potential for providing accurate force predictions regardless of the unique characteristics inherent 

in different signal modalities. 

In summary, while the overall trend in model performances remains consistent between sEMG 

and iEMG, the significant decrease in R2 values for most models emphasizes the need for careful 

consideration and potentially model-specific adaptations when transitioning from one type of 

electromyography signal to another. The exceptional performance of deep learning models, 

particularly LSTM, TCN, and LSTM_TCN, underscores their versatility and efficacy in 

maintaining accurate force predictions across diverse electromyography signal scenarios. 

 

Figure 4.55  Comparison of iEMG and sEMG Based Force Prediction Models in Abled bodied. 
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SUMMARY OF RESEARCH WORK 

This study aimed to assess the effectiveness of various predictive models in estimating 

force from surface electromyography (sEMG) and integrated electromyography (iEMG) 

signals. Two distinct datasets were utilized: one from healthy individuals and another from 

transradial amputees. While the healthy dataset contained simultaneous recordings of 

sEMG, iEMG, and force, the amputee dataset comprised only sEMG and force data. The 

analysis of the healthy dataset was split into two parts, focusing separately on force 

prediction using sEMG-based models and iEMG-based models. 

The models evaluated in the study included Temporal Convolutional Networks (TCN), 

Long Short-Term Memory (LSTM), a hybrid of LSTM and TCN (TCN-LSTM), as well as 

Cubic Support Vector Machines (SVM), Medium Neural Networks, Narrow Neural 

Networks, Backpropagation Neural Networks, Multilayer Perceptrons, and Gaussian 

Process Regression (GPR). The assessment relied on four evaluation metrics: Mean 

Absolute Error (MAE), Root Mean Squared Error (RMSE), Mean Absolute Percentage 

Error (MAPE), and the coefficient of determination (R^2). These metrics were used to 

analyze the performance of the models in predicting force based on both sEMG and iEMG 

signals for both subject groups. 

Results indicated that TCN, LSTM, TCN-LSTM, and GPR exhibited superior performance 

compared to the other models in predicting force from both sEMG and iEMG signals, 

irrespective of subject type. Notably, while GPR demonstrated lower performance 

compared to deep learning networks (LSTM, TCN, TCN-LSTM), it still achieved 

satisfactory results, with an R^2 higher than 0.8 in healthy individuals and 0.7 in amputees. 

Additionally, computational cost analysis revealed varying processing times among the 

models. LSTM required the longest processing time, averaging approximately 70 minutes 

per subject, while TCN demonstrated significantly faster processing times, ranging from 3 

to 5 minutes per subject. GPR, on the other hand, completed computations in less than a 

minute. These findings underscore the importance of considering both predictive accuracy 

and computational efficiency when selecting models for force prediction tasks based on 

electromyography signals.  



70 

 

CHAPTER 5: CONCLUSIONS AND FUTURE RECOMMENDATION 

The comparison between surface electromyography (sEMG) and integrated 

electromyography (iEMG) signals for force prediction using various models reveals a 

consistent trend in model performances, albeit with notable differences in R2 values. Across 

the board, the models exhibit a similar pattern in their predictive capabilities for both signal 

types, indicating a degree of generalizability in capturing force dynamics. However, a 

significant divergence is observed in the R2 values, with a notable decrease in accuracy for 

most models when transitioning from sEMG to iEMG. 

Interestingly, this decrease in accuracy is most pronounced in non-deep learning models 

such as GPR with an exponential kernel, MLP, BPNN, NNN, MNN, and cSVM. These 

models demonstrate a diminished ability to effectively capture and predict force dynamics 

from iEMG signals, suggesting potential challenges in translating their performance from 

one signal type to another. Contrastingly, deep learning models, including LSTM, TCN, 

and their hybrid architecture LSTM_TCN, stand out as exceptions to this trend. These 

models maintain their superior accuracy levels even in the iEMG context, showcasing their 

robustness and adaptability across different electromyography signal types. This resilience 

of deep learning architectures highlights their potential for providing accurate force 

predictions regardless of the unique characteristics inherent in different signal modalities. 

In summary, while the overall trend in model performances remains consistent between 

sEMG and iEMG, the significant decrease in R2 values for most models emphasizes the 

need for careful consideration and potentially model-specific adaptations when 

transitioning from one type of electromyography signal to another. The exceptional 

performance of deep learning models, particularly LSTM, TCN, and LSTM_TCN, 

underscores their versatility and efficacy in maintaining accurate force predictions across 

diverse electromyography signal scenarios. 

The study undertook a comprehensive analysis comparing electromyography (EMG)-

based and integrated EMG (iEMG)-based force prediction models, revealing a lack of 

significant difference in performance (P=0.210). This indicates that both methodologies 
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are equally effective in capturing muscle activity, showcasing their versatility across 

different user groups, including both abled bodies and amputees. Despite disparities in 

computational cost, with LSTM exhibiting the longest processing time of approximately 

70 minutes per subject, practitioners have the flexibility to choose models based on factors 

such as computational efficiency without compromising predictive accuracy. This insight 

underscores the importance of understanding computational cost variations for informed 

model selection, striking a balance between performance and resource requirements. 

Notably, Gaussian process regression (GPR), while slightly underperforming compared to 

other models, still yielded satisfactory results, boasting R2 values exceeding 0.8 in abled-

bodied individuals and 0.7 in amputees. 

However, the study is not without its limitations. It highlights the need for further research 

utilizing iEMG signals due to their potential to reduce crosstalk, which could enhance the 

accuracy of force prediction models. Additionally, there is a call for broader investigations 

encompassing diverse populations with various neuromuscular disorders and different 

types of amputations. While the current research focused on healthy individuals and 

transradial amputees, expanding the scope to include individuals affected by conditions 

such as cerebral palsy or stroke would provide a more comprehensive understanding of the 

models' applicability and effectiveness across diverse clinical scenarios. 

Furthermore, the study suggests exploring real-time applications of these force prediction 

models and investigating how external factors might influence the accuracy of force 

estimation. This avenue of research holds promise for advancing the practical 

implementation of EMG-based models in clinical settings and assistive device design. By 

examining real-world scenarios and accounting for external variables, future studies can 

enhance the robustness and reliability of these predictive models, ultimately improving 

their utility in assisting individuals with movement disabilities. 

In conclusion, the findings of this study offer valuable insights into the practical 

implementation of EMG-based force prediction models. Despite certain limitations, such 

as the need for further research on iEMG signals and broader investigations involving 

diverse populations, the study lays a foundation for future research endeavors. By 
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addressing these limitations and exploring new avenues of inquiry, researchers can 

continue to refine and optimize EMG-based force prediction models, ultimately enhancing 

their effectiveness and applicability in clinical practice and assistive device development. 
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