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ABSTRACT 

In this era of digitization where everything is shifted to computer systems, Data and 

Information are the key assets of any organization. To maintain huge amount of data, 

Data center (DC) is considered primary resource. However, as much as we rely on DC 

for storage of data and operations, it is at risk of vulnerability exploitation and attacks. 

Vulnerability assessment is difficult task because different procedures are employed to 

assess different levels of cyber-security weaknesses. There are various repositories 

maintaining database of vulnerabilities but one can see delays and inconsistency in the 

severity scores calculated by them. In this research, effort is put to assess role of ML in 

looking at patterns in the reported vulnerabilities and predicting CVSS scores. The error 

rate caused by the manual calculation procedures that are often employed in 

cybersecurity analysis is reduced by this method. Further, a method is formulated and 

applied to a case study on DC, where focus is on resolution of disparity between various 

scores provided by various sources including NVD, Vulner and VulDb with the help of 

CVE Details API for the retrieval of pertinent DC related equipment records and applied 

Arithmetic mean scoring system along ML model.To validate the suggested method, 

NVDdata base is referred and CVSSv2 and CVSSv3 scores are calculated and increased 

accuracy is gained. In addition to that, CISA KEV catalog is analyzed and priority 

preferences to mitigate the vulnerabilities are provided to help in performing risk 

estimation. 

Keywords: Artificial Intelligence, Data Center, CISA, CVE, CVSS, KEV, Machine 

Learning, NVD, Prediction. 
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INTRODUCTION 

1.1 Background 

Development is moving at an unprecedented rate right now. Almost every 

significant aspect of our routine involves the use of computer systems, including 

everyday tasks like paying bills, doing vacations, purchasing, sharing documents, 

educating others or self, talking and video conferencing [1].  

All these operations are carried out by using a large amount of data and 

information and data center is a home for computer systems where organizations keep 

every type of information and data. In addition to that, a data center manages all network 

workflow and data transmission. With the current state of technology, many 

organizations have come to the realization that to provide real-time, fast, and 

uninterrupted data transfer, they must fully set up their data center possible [2]. 

It is necessary that the information must always be available to an organization, 

regardless of the issues it faces. This has an impact on the assumption that data centers 

will operate properly to serve the company. Data centers are created as one of the 

organization's resources for handling data management, as well as for the dissemination 

of data and secondary storage media [3]. 

Vulnerabilities that accompany with increasing dependency on these systems in 

our daily lives also become a part of what we do. In terms of the risks they offer, if 

exploited, these vulnerabilities might range from being essentially innocuous to quite 

deadly. [1]. 

A vulnerability is an issue in a computer program or hardware which can be 

directly exploited by a hostile actor to obtain access to a system or network and 

manipulate it in an unfavorable way [4]. The frequency of vulnerability exposure is 

increasing due to the complexity of logic and the large number of source codes [5]. 
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One may consider vulnerabilities to be a particular class of flaws. They can be 

more significant than bugs depending on the application, and their discovery calls for a 

different procedure than that of defects. Vulnerabilities typically go undetected while 

flaws are discovered by users or developers amid routine system operation. [6].  

Researchers have created vulnerability prediction techniques; the proposed 

frameworks identify features that are expected to be vulnerable and use that information 

to direct security assessments, such as code audits or security assessments [5].In addition 

to increasing the effectiveness of vulnerability recovery and management, properly 

classifying, and managing vulnerabilities can lower the likelihood of a system attack and 

harm, which is critical for the system's security performance [7]. 

To enhance patch selection operations and offer forecasting, contemporary 

security procedures encourage the use of statistical analytical techniques. In general, 

vulnerability scoring is carried out using Common Vulnerability Scoring System (CVSS), 

which necessitates human inputs from an expert, to assess a vulnerability instance based 

on predetermined parameters [8].  
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Figure 0.1: Basic calculation cycle of CVSS 

CVSS is extensively used in educational research and business settings to 

evaluate vulnerability severities. [9,10] but, in practical use, CVSS presents several 

difficulties. [11]. Essentially, individual experts determine the severity of a vulnerability 

since it has been reported in CVE and have the possibility that it will take some time to 

do so. The longer it takes to assess vulnerabilities, the more likely it is that threats will 

turn into real breaches [12]. It is consequently expected that vulnerability scoring 

automation will eliminate the attack vector for zero-day vulnerabilities [13]. 

Fig. 1 Basic calculation cycle of CVSS 
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Common Vulnerabilities and Exposures dataset is a main source of data, National 

Vulnerability Database (NVD) additionally assigns CVSS scores and other quantitative 

metrics to vulnerability reports derived from CVE [8]. However, it may be an influenced 

and ambiguous choice to only rely on NVD only for assessing and handling 

vulnerabilities [14]. Furthermore, disparities exist across current iterations of the CVSS, 

resulting in metrics that are not consistent. These challenges were not sufficiently 

addressed in earlier research [13] subsequently producing contradictory results. 

For instance, NVD uses CVSS version 3 scores to rate vulnerability instances 

reported only from 2015 onwards. The issues of varying CVSS cores as well as delays 

incurred are highlighted by the help ofFigure 0.1,we can see that for any vulnerability, 

the score generated as taking formula from First.org and each organization generates their 

own data which is most of the time not same. [13] 

1.2 Research Objective 

In this research, we suggest a vulnerability rating method to measure the severity 

of a reported vulnerability occurrence. By converting quantitative signs into actionable 

intelligence, the calculated scores will help to improve contextual awareness.This 

approach overcomes problems with compatibility between different CVSS versions and 

improves vulnerability prediction. Standard CVSS criteria serve as a foundation for rating 

vulnerabilities' exploitability as well as the effects of nefarious exploitation. 

To achieve these goals, we correlate vulnerability scores and reports from several 

online cybersecurity data sources, such as NVD, CVE details, and other websites like 

Vulner and Vuldb.For the vulnerability-severity calculation approach based on Machine 

Learning (ML), this research works on generating ground truth. After that, it will utilize 

these cases to train machine learning model, then it further assesses using vulnerabilities 

found in vulnerability repositories like NVD, VulDb, and Vulner. 

The research objectives are: 

1. To investigate the potential benefits of AI-based vulnerability prediction of a 

data center 
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2. To explore the patterns of vulnerability in NVD and other sources using AI 

The assessment of DC vulnerability and associated variables demonstrates a 

higher degree of automation in cybersecurity evaluations. 

1.3 Contribution 

The following summarizes this research’s primary contributions: 

1. A unique machine learning framework for vulnerability assessment that 

deduces vulnerability instances' CVSS severity scores. As part of the 

suggested machine-learning paradigm, this technique uses an arithmetic mean 

system to handle compatibility difficulties of CVSS scores. To provide a 

shared computational semantic that enhances consistency in vulnerability 

assessment, the technique can be modified to support a preferred version of 

the CVSS. 

2. A case study on DC vulnerability analysis that supports the suggested 

machine-learning-based method for vulnerability assessment. 

3. A prioritization mechanism for mitigation of vulnerabilities based on analysis 

of CISA KEV catalog. 

1.4 Structure 

The remaining portions of this study are arranged as follows: 

1. Chapter 2, is the literature review of how other researchers work is related to 

VSS, NVD and Management of Data Center and the existing standards of 

CVSS calculations. It also discusses data sources of vulnerability scores.  

2. Chapter 3,presents prototype for vulnerability assessment, which uses text 

analysis techniques to reconcile disparate CVSS versions on a collection of 

vulnerability reports and compares current CVSS scores against other security 

warning signs. 
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3. Chapter 4,is the analysis of vulnerability finding and assessment methods in 

DC applications primarily using NVD and CVE information API, through 

some investigation. It discusses the results of experimental work done to 

process correlated data and achieve accuracy. 

4. Chapter 5, elaborates the processes done on the mitigation and prioritization 

work. It discusses the analysis done on CISA KEV catalog and suggests a way 

forward. 

5. Chapter 6, offer some closing thoughts by providing conclusion of the 

research work carried out and provides several potential paths for further 

study. 
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LITERATURE REVIEW 

 This chapter presents a detailed overview of the importance of vulnerability 

assessment in cyber security in general and Data center in particular by studying previous 

research work and exploring the possibility and implementation of AI and ML 

techniques. Section 2.1 explains the diversified work carried out for vulnerability severity 

assessment and importance of Data Center management.  Section 2.2 introduces various 

Data set sources used to carry out the work. Section 2.3 Discusses Vulnerability Severity 

Metrics and how each of it weighs the final score calculation. 

2.1 Related Work 

2.1.1  Data Center and Vulnerabilities 

 According to Matthieu et. al [6], The goal of vulnerability projection modelling, a 

relatively new area of research, is to automatically categorize software entities as 

susceptible or not. By identifying the entities to concentrate on, this sort of approach aims 

to assist code reviewers. These methods are beneficial as they are independent of any 

precise information or dependency of the program, they are working on to garner the 

investigation. Therefore, they can mold into varying projects by using relevant training 

data. One way to think of vulnerability prediction is as a branch of flaw prediction. Hall 

et al [15] carried out athorough survey and provides a summary of these strategies. 

D. Achmadi et. Al. [16] says that, In today’s digital epoch, the most important and 

pivotal entity is data center, especially for a business. Since a point where data goes 

through progression, broadcast and accumulated, it becomes of a great deal of value that 

it should be available in terms of service and support. 

Levy et. Al. [17] claims that as world is heavily dependent on data centers for its 

operations, the need to intelligently supervise and administer them with improvement in 

its efficiency and output increases tremendously. In addition to that, the risk of collapse 

will be very less. According to Colombelli et. Al. [18] Vulnerabilities are flaws in 
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systems, processes, and strategies that result in risks. Later on, the researchers [18] with 

other researcher gives perspective on vulnerabilities in data center as they said that 

vulnerabilities are available in data centers and we need to tackle them as early as they 

are discovered as they can pose severe threat to the stability and operation of 

organization. 

Most of the attacks are not carried out by exploiting zero-day vulnerabilities 

rather they are done using known exploited vulnerabilities which are out in public since a 

long time like months or years [19]. 

2.1.2  Diverse Approaches 

Sharma et al [1] performed vulnerability prioritization based on the textual 

description of vulnerabilities. The total number of vulnerabilities in the dataset used is 

10,000 and they are divided into three categories based on their CVSS scores. They have 

made 5 different data sample, the dataset includes data from three vendors viz, Linux 

(V1), Microsoft (V2) and Google(V3). Each of this data sample contains 2000 

vulnerabilities and 90,282, 70,594, 76,006 words in description. The other two data 

samples (MV1 and MV2) also contain 2000 vulnerabilities each, but they are not vendor 

specific and contains vulnerabilities detected in products from different vendors. MV1 

contains 91,750 words and MV2 contains 78,893 words. 

Ziems et. al. [20] explores use of Natural Language processing (NLP) deep 

learning models to automatically detect vulnerabilities on National Vulnerability 

Database and used C language as programming tool. They claim 93% accuracy in 

detecting security vulnerabilities. Whereassharma et. al. [21] developed a semi-automatic 

model that is based on CVSS score and evaluated Critical threat intelligence feed (CTI) 

and claims that their model provides strength to mitigate vulnerabilities in a network. 

Amarasinghe et. al. [22] worked on the prediction of cyber-attacks by using 

convolutional neural networks and algorithm SARIMA. Their approach works in two 

steps, first is the detection of vulnerabilities and second is the prevention by using AI 
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based models. Dash claims that prediction of an attack is possible by looking at patterns 

in the Data, resultantly help to protect system from vulnerabilities.  

Blinowski& Piotrowski [23] did classification of vulnerability record into seven 

unique types: the SCADA system, Commercial & Networks, cell phones, PC 

equipment, other products which are not for home use and Small Office / Home 

Office.An SVM classifier has been used with the handpicked dataset in order to forecast 

the categories of novel vulnerabilities. with this they achieved classification accuracy and 

recall rates of approximately fifty percent or less for fewer-populated groups and seventy 

to eight for more populated categories. SVM is accurate for classifying text data, albeit 

the results are not optimal. 

Zhang et. Al [24] work primarily focuses on predicting the time in days until the 

next vulnerability. Utilizing the MulVAL attack-graph analyzer, a quantitative risk 

assessment methodology based on known vulnerabilities, they have implemented the 

prediction model.They think that another useful metric for estimating the risk-level of 

zero-day vulnerabilities may be the quantity of zero-day vulnerabilities (of each 

software).  Researchers also need to consider the severity of each vulnerability for each 

application, since the number of active zero-day vulnerabilities could not be sufficient to 

evaluate the risk-level of zero-day vulnerabilities. 

S. Na et al [25] have given proposal to use the naïve Bayes classifier to classify 

CVE entries into vulnerability types.The experimental dataset has been categorized into 

two groups, CWE, 119 and CWE 79, based on the highest number of CWEs. They claim 

that their categorization model's accuracy was 99.8%. The accuracy for subsequent 

experiment's classification which was done for top three and top five CWEs was found to 

be 95.1% and 84.5%, respectively. 

2.1.3  Correlated Studies 

The integration of diverse viewpoints from several stakeholders can be achieved 

by correlation studies linking multiple cybersecurity data sources, linking intricate 

analysis into more comprehensive statistical relationships [8].Some popularly used 
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vulnerability database, cyber-attack and advisory sources are Mitre [26], CVE [27], NVD 

[28], VulDb [29], Canadian Center for Cyber Security [30]. Afterwards, other websites 

like 0day.today [31], ExploitDB.com [32], and cvedetails[33] use these sources. 

Using PoCs taken from ExploitDB.com as ground truth, the researchers [34] use 

SecurityFocus and NVD to forecast the exploitability and use of vulnerabilities.The 

researchers [35] examine the initial public release dates of several data sources, such as 

SecurityFocus, ExploitDB,NVD and certain companies like Cisco, Wireshark and 

Microsoft. In comparison to other data sources, they note that vulnerability occurrences 

disclosed in NVD are behind schedule by one to seven days. 

Jimenez et al [6] put an effort in differentiating between components that are 

vulnerable and non-vulnerable, researchers have evaluated the efficacy of vulnerability 

prediction models. They have used regular expression to gather data from git URLs. The 

vulnerable files that were obtained are specifically relevant to the Linux Kernal and are 

written in C. A total of 1,640 with 743 different types of vulnerabilities have been 

collected since 2005. They demonstrated that vulnerability models for prediction can be 

more accurate and more effective than random selection when applied to the Linux 

kernel. They employed libSVM module of the Weka3 core library as their model. 

Jacobs et. al. [36] performed a thorough study and proposed their own 

exploitability scoring. They extracted common multi-word expressions from the raw text 

using Rapid Automatic Keyword Extraction and manually culled and normalized a list of 

191 tags encoded as binary features for each vulnerability.Exploit code was extracted 

from Exploit DB,weaponized exploits were found by looking at the modules in Rapid 7’s 

Metasploit framework,D2 Security’s Elliot Framework,and the Canvas Exploitation 

Framework. The Outcome variable, information about whether the vulnerability was 

exploited in the wild, comes from Proofpoint, Fortinet and AlienVault. (exploitations 

within the first 12 months after the CVE was published). They used 159 vulnerabilities 

from June 1, 2016, and June 1, 2018 from MITRE’s CVE and NVD including CVSS base 

severity score, sub-metrics, CPE and used logistic regression model. 
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Jiang& Atif [8] proposed a mechanism to predict CVSS scores by using NVD 

data and other third parties. They used majority voting system for selection of CVSS 

scores and performed a case study on CPS based system. They claim that disadvantage of 

earlier AI-based CVSS calculating methods is that their models may be biased because 

they use the vulnerability reports and CVSS scores from NVD only as their training data. 

Instead, the researchers [8] have combined multiple data sources with NVD like other 

related vendor reports with independent cyber security analyzers like CERT reports. 

Further they performed a case study on Cyber Physical Systems and gathered 

vulnerabilities related to them. 

This research is inspired by their work and is an effort on implementing the future 

work proposed by them and applying another ML model. In addition to that, suggesting 

mitigation ways by performing in-depth analysis of Cyber Security and Infrastructure 

Security Agency’s Known Exploited Vulnerabilities catalog.  

2.2 Research Gap 

The dataset is rich and contains options to explore in various ways. One of them is 

to analyze vulnerabilities, Risks and cyber-attacks in Data center environment, and give 

recommendations according to study carried out on CISA KEV catalog analysis. In 

addition to that, previous researchers [6] use majority voting scheme and that can neglect 

work of other sources. Therefore, scheme of calculating arithmetic mean of various 

sources scores can be implemented to analyze the results. Further, it is observed that the 

source used [6] Security focus is discontinued as it is now owned by Symantec is not 

publicly available. The aim of this research work is to overcome the issue of non-

availability of other sources by incorporation of available vulnerability databases and 

performing different ways of corelating data with different ML model and Arithmetic 

means, resultantly, acquiring better results in predicting vulnerabilities. Moreover, 

analyzing CISA KEV for providing a mechanism to prioritize vulnerabilities to mitigate. 

2.3 Data Repositories 

2.3.1 Common Vulnerability Enumeration 
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In 1999, the MITRE Corporation organized a collaborative effort to create the 

CVE List [27].For giving each disclosed vulnerability a unique identification, MITRE 

Organization releases the CVE [26] industry standard. Furthermore, it keeps an openly 

searchable list of all identifiers via CNA which stands for Common Vulnerability 

Enumeration Numbering Authority.  

Every vulnerability on the CVE List gets a distinct CVE Record. After a 

vulnerability is found, it is reported to the CVE program. A CVE ID is then requested by 

the reporter and set aside for the disclosed vulnerability. The record is added to the CVE 

List once the vulnerability that was reported has been verified by determining the 

minimal set of data pieces needed to create a CVE Record. Worldwide partners of the 

CVE Program publish CVE Records. Process of CVE is shown inFigure 0.1. 

The fields that are usually present in a CVE entry are: an identification number, a 

synopsis of the reported vulnerability, and any relevant references. The crucial factor that 

sets one security vulnerability apart from another is its own CVE ID. By doing this, CVE 

IDs offer a dependable means of interacting with these various databases to obtain further 

details on the security vulnerabilities that have been disclosed. 

2.3.2 National Vulnerability Database 

NVD [28] expands on the data included in CVE entries to offer more detailed 

information for every entry, including impact ratings and severity scores that are 

determined using the CVSS standard. The structured JSON or XML formats are created 

from the unstructured CVE data by NVD.NVD offers sophisticated searching options, 

including OS, manufacturer, product, edition number, vulnerability type, and severity, as 

part of its improved information. Affected product names and versions have 

corresponding string entries in CPE entries, among these additional features. The 

Common Weakness Enumeration (CWE) [32] repository provides features for 

vulnerability categories by abstracting reported errors and weaknesses into common 

groupings of vulnerabilities and adding data about expected behaviors, impacts, and extra 

implementation details. The CVSS version 3 and version 2 guidelines are used to 

determine the vulnerability severity score. 
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Figure 0.1: CVE complete process 
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2.3.3 Other Sources 

2.3.3.1 CVE Details 

It is a website thatprovides information about Common Vulnerabilities and 

Exposures (CVE). CVE is a system that assigns unique identifiers, called CVE IDs, to 

vulnerabilities in software and hardware. These identifiers help standardize the process of 

tracking and addressing security vulnerabilities. Typically, the workflow of it is as 

follows: 

1. Database of Vulnerabilities: A thorough database of known vulnerabilities is 

kept up to date by CVE Details. Every vulnerability has its own CVE 

ID.Search and Browse: Users can peruse the database by vendor, product, or 

vulnerability type, or they can search for individual vulnerabilities. 

2. Vulnerabilities Details: The website offers comprehensive information on 

each CVE entry, including a description of the problem, an estimate of its 

severity, the date it was found, and links to relevant security warnings. 

3. Statistics and Trends: Statistics on the number of vulnerabilities per 

manufacturer, product, or severity level are frequently displayed on the 

website. Users may use this to evaluate the security posture of various 

hardware and software components. 

4. CVSS Scores: For every vulnerability, scores from the Common Vulnerability 

Scoring System (CVSS) are often given. A methodology called CVSS is used 

to evaluate the seriousness of security flaws and assigns a number to each one 

that represents the risk involved. 

5. References And Links: CVE Details usually provide links to other resources, 

including security advisories and patches, where users may obtain further 

details about the vulnerability and instructions on how to address or mitigate 

it. 

2.3.3.2VulDb 
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It’s a leading platform for vulnerability management and threat information, was 

developed to help businesses remain ahead of security threats. By offering a 

comprehensive database of known vulnerabilities and exposures, VulDB makes it easier 

for enterprises to quickly identify, assess, and mitigate security risks [29]. 

2.3.3.3Vulners 

Several essential elements and characteristics are: 

1. Vulnerability Database: It keeps an extensive database of known 

vulnerabilities, along with information on severity levels, descriptions, and 

links to relevant security warnings. 

2. Search Engine: It allows users to search for specific vulnerabilities, exploits, 

or other security-related information. The platform pulls pertinent information 

from its large database using its search engine. 

3. API Access: Developers and security experts may programmatically access 

vulnerability information with the help of Vulners.com's API (Application 

Programming Interface). Integrating vulnerability data into security tools, 

apps, or scripts can benefit from this. 

4. Monitoring and alerts: Users can keep track of new vulnerabilities or exploits 

that align with their interests by configuring alerts and monitoring based on 

certain criteria. 

5. Integration with Security tools: it is frequently utilized in tandem with 

additional security tools and resources. Threat intelligence platforms, security 

information and event management (SIEM) systems, and other security 

solutions can include its data. 

6. OpenSource Contributions: It is connected to several open-source 

cybersecurity initiatives. This covers scripts and tools for automating the 

collection and analysis of vulnerability data. 

  



16 

 

METHODOLOGY 

3.1 Introduction 

Based on the previous chapter’s research gap, this chapter presents a framework 

for AI based vulnerability scoring prediction in general and using corelated data to 

predict score for Datacenter Environment in particular. This chapter provides an in-depth 

exploration of the tasks executed at each point of planned framework. The ensuing 

argument comprehensively describes the Vulnerability dataset, software, Websites / other 

Sources, and libraries used in this research. 

3.2 Framework Planned 

The planned framework uses ML model to predict vulnerability scoring by 

ensuring sufficient training. The dataset used to train ML model in the proposed 

framework has been adopted from [28] and the case study carried out on DC is done with 

the help of [27][33][37]. The method employed is basically adopted from [8] and the 

research gap after identifying in [8] as highlighted in the previous chapter is met by 

performing arithmetic mean of multiple sources. The framework uses NVD Dataset from 

the year 2002-2022 for training and 2023 for validation. The TF-IDF [38] is used for 

extracting features appropriate from the textual description of the vulnerabilities provided 

with each entry of NVD record. The files are downloaded from [27] in JSON format 

using Jupyter notebook by python code and then changed into Common Separated Values 

(CSV) format. The Figure 0.1 shows a broader picture of Vulnerability Severity Scores 

Calculation for the proposed model that employs ML technique to predict severity scores 

with the help of data provided from NVD [28].  First data is extracted from NVD website 

and necessary fields are stored in JSON format. Most import fields are description of 

vulnerabilities, associated scores, and labels of the classes of different parameters 

associated with each CVE. At the second step of Figure, the collected data’s description 

is passed through feature extraction process. At third step, the data is classified into 

training and testing parts. At this step we can see that the data is processed with the help 
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of Machine learning algorithm and simultaneously the metrics properties and methods are 

taken from FIRST website. The obtained results at the next step are evaluated and 

appropriate labels are associated with the predictions. At the next step, accuracy of the 

model is calculated and if the desired accuracy is not achieved then data is again 

processed through machine learning model with different set of parameters.Finally, after 

achieving desired results, severity scores are finalized. 

 

Figure 0.1: Detailed representation of CVSS score calculation with NVD 
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TheFigure 0.2 shows detailed picture of Vulnerability Severity Scores Calculation 

for the corelated model that employs ML technique to predict severity scores with the 

help of data provided from sources [28][29] [37].  It has a different scores calculation 

mechanism as it is at first step taking scores from 3 sources including Vulners, VulDb 

and NVD. It then takes arithmetic mean of these scores and thenuse those calculated 

scores for further calculations same as previous methodology. 

3.3 Vulnerability Severity Metrics 

An open framework called the Common Vulnerability Scoring System (CVSS) is 

used to communicate the features and intensity of software flaws. CVSS has various 

versions including 3.1, 3.0, 2 and 1. This scoring system is developed by Forum of 

Incident Response and Security Teams (FIRST). The three metric groupings that make up 

CVSS are Base metrics, Temporal metric, and Environmental metric. Widely used CVSS 

V2 and V3 calculates the Base Score considers the probable worst-case effect across 

various deployed contexts and represents the degree of severity of a vulnerability based 

on its basic properties, which remain consistent over time. Based on variables that vary 

over time, including the accessibility of exploit code, the Temporal Metrics modify the 

Base severity of a vulnerability. The Base and Temporal severities are adjusted to a 

particular computer environment by the Environmental Metrics. They consider things 

like the environment's mitigations. The organization that maintains a vulnerable item or a 

third party assessing on their behalf often generate Base Scores. [39]. The base score 

metrics for CVSS V2 are six which are Access Vector (AV), Access Complexity (AC), 

Authentication (Au), Confidentiality (C), Integrity (I) and Availability (A). For V3, the 

base score metrics are eight including AV, AC, C, I, A, Authentication (Au) in place of 

Privileges Required, and additionally User interaction (UI) and Scope (S). Moreover, 

Access Vector and Access Complexity are called Attack Vector and Attack Complexity 

in V3. 

3.3.1 Exploitability Metrics 

The features of what is vulnerable—formally referred to as the vulnerable 

system—are reflected in exploitability metrics.  
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Figure 0.2: Broad representation of CVSS score calculation with NVD 
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3.3.1.1 Attack Vector (AV) 

This measure illustrates the environment in which vulnerability exploitation might 

occur. The further an attacker may be from the susceptible system, both physically and 

conceptually, the greater the metric value and, as a result, the severity that results. AV 

has further four classes Network, Adjacent Network, Local and Physical. 

3.3.1.2 Attack Complexity (AC) 

Attack complexity measures the tangible actions that an attacker needs to do in 

order to actively avoid or go around current security-enhancing circumstances put in 

before they can produce a functional exploit. AC has further two classes Low and High. 

3.3.1.3 Authentication (Au) 

This metric counts how many times an attacker needs to authenticate with an 

intended user before they can take advantage of a vulnerability. Au has further three 

classes Multiple, Single and None. 

3.3.1.4 Privileges Required (PR)  

This measure indicates the minimum degree of privilege required by an attacker 

to effectively take advantage of the vulnerability. When no privileges are needed, the 

Base Score is at its highest. PR is further divided two classes Low and High. 

3.3.1.5 User Interaction (UI)  

This measure indicates the minimum degree of privilege required by an attacker 

to effectively take advantage of the vulnerability. When no privileges are needed, the 

Base Score is at its highest. UI is further divided into two classes None and Required. 

3.3.2 Scope (S) 

When a vulnerability in one component affects resources in other components that 

are not inside its security scope, the scope metric records this information. S is further 

divided into two classes Unchanged and Changed. 
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3.3.3 Impact Metrics 

Impact metrics quantify the consequences of a successfully exploited 

vulnerability on the most directly and reliably attacked component that experiences the 

worst possible outcome. Impacts should be limited to a feasible, ultimate result that 

analysts are certain an attacker can accomplish. 

3.3.3.1 Confidentiality (C) 

This statistic assesses how an effectively exploited vulnerability impacts the 

confidentiality of the data assets that a software component manages. C is further divided 

into three classes High, Low and None. 

3.3.3.2 Integrity (I)  

This metric assesses how effectively vulnerabilities that are exploited 

affects integrity. Integrity is the quality of being able to rely on and verify information. I 

is further divided into three classes High, low and None.  

3.3.3.3 Availability (A) 

This metric calculates the effect that an effectively exploited vulnerability has on 

the affected component's availability. A is further divided into three classes High, low 

and None. 

3.4 Vulnerability Computation 

3.4.1 Version 2 

To calculate the base score for version 2, first Impact is calculated, Equation 3.1 

shows the relation of confidentiality, integrity and availability (CIA) in calculation of 

impact: 

 𝐼𝑚𝑝𝑎𝑐𝑡 = 10.41 ∗ (1 − (1 − 𝐶) ∗ (1 − 𝐼) ∗ (1 − 𝐴)) (3.1) 
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 Equation 3.2 shows how to measure exploitability by multiplying attack vector, 

attack complexity, authentication with twenty. 

 𝐸𝑥𝑝𝑙𝑜𝑖𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 20 ∗ 𝐴𝑉 ∗ 𝐴𝐶 ∗ 𝐴𝑢 (3.2) 

This condition describes that function of impact is equal to zero f(Im)=0, if 

calculated impact is zero Im=0, otherwise it will be 1.176 

AV is different for each class, 

 If local access = 0.395 

Else if adjacent network accessible = 0.646 

Else network accessible = 1.0 

ACis different for each class, 

If high = 0.35 

Else if medium = 0.61 

Else low = 0.71 

Authentication is different for each class, 

If multiple = 0.45 

Else if single = 0.56 

Else none =  0.704 

CIA 

C is different for each class, 

If none = 0.0 

Else if partial = 0.275 
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Else = 0.660 

I is different for each class, 

If none = 0.0 

Else partial = 0.275 

Else complete = 0.660 

A is different for each class, 

If none = 0.0 

Else if partial = 0.275 

Else complete = 0.660 

Finally, all the values are put into the Equation 3.3 for Base Score calculation 

which is: 

 𝐵𝑎𝑠𝑒 𝑆𝑐𝑜𝑟𝑒 = 𝑅𝑜𝑢𝑛𝑑 (((0.6 ∗ 𝐼𝑚) + (0.4 ∗ 𝐸) − 1.5) ∗ 𝑓(𝐼𝑚)) (3.3) 

3.4.2 Version 3 

 In CVSS V3 calculations, the sub score calculations for impact (ISS) and 

exploitability determine the Base Score. Equation 3.4 is showing calculation forISS: 

 𝐼𝑆𝑆 = 𝐼 − [(1 − 𝐶) ∗ (1 − 𝐼) ∗ (1 − 𝐴)] (3.4) 

Where as Impact (Im) is dependent on Scope (S), which has two conditions, If S 

is changed, then: 

Im = 6.44 x ISS 

If S is Unchanged, then Equation 3.5 shows the calculation: 

 𝐼𝑚 = 7.52 ×  (ISS −  0.029) −  3.25 ×  (𝐼𝑆𝑆 − 0.02)15 (3.5) 
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Whereas, the exploitability is calculated as Equation 3.6: 

 E = 8.22 × AV × AC ×PR × UI (3.6) 

Finally, the Base Score is calculated as, ifIm<=0, then Base Score =0, 

Base score is dependent on Scope (S), which has two conditions, If S is changed, then 

Else if S is changed, and Equation 3.7 shows calculation of Base Score: 

 Base Score =Round (Min [(I + E), 10]) (3.7) 

Else if S is Unchanged, then Equation 3.8 shows calculation of Base Score: 

 Base Score =Round (Min [1.08 × (I + E), 10]) (3.8) 

3.5 Workflow for proposed Framework 

This section explains the techniques employed for data analysis to predict 

vulnerability effectively. It is pertinent to mention that the prediction is divided into two 

parts, Parent is where the predictions are carried out on pure data set from NVD and child 

part which makes the case study about the Data Center and that part is the corelated 

study. In both the cases, the process consists of different stages including Data extraction, 

Data Cleaning, Arithmeic mean, Vulnerability severity calculation, Evaluation, 

Validation, Feature extraction, ML Model application and Libraries used. TF-IDF 

method of Natural Language Procession (NLP) is used extract features from textual 

descriptions taken from the reports of each CVE. Data is divided into training and testing 

parts and input to Machine Learning Models.  

3.5.1 Data Extraction 

3.5.1.1 For Overall Data Extraction 

Direct downloads of NVD data streams are made, and they are saved in JSON 

format in a database on the computer. For CVSS V2, NVD website was crawled, 171219 



25 

 

vulnerability data for the years 2002–2023 are obtained and for V3, 123838 vulnerability 

data is obtained.Value pairs for characteristics that are understandable by 

humans, makes up the open standard file format known as JSON, which is used for 

exchanging data. JSON objects have a tendency to be nestled inside other JSON objects, 

and every nested object within the tree-like structure has an individual access path. 

NVD includes a wide range of data, including impact measurements (like CVSS), 

security checklist references (like the CVE dataset), software vulnerabilities connected to 

security (like CWE), and more. When using NVD, it is typical for researchers to use 

itaccording to the requirement from set of values [42]. 

3.5.1.2 For DC Data Extraction 

In this research numerous methods have been used to extract vulnerability data 

from online available platforms or sources, as represented inFigure 0.3.  

 

Figure 0.3: DC data extraction cycle 
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Initially, the CVE data details is collected from the official website [33] in 

accordance with the defined DC set. Multiple selection mechanism employed for this 

data extraction phase including CVE api option named as ‘>_API’ [33] along with 

Selenium IDE [43] that used mainly for the automation of steps that have been executed 

for data filtration and export page wise information as per the selection criterion. The 

Selenium IDE (where IDE stands for Integrated Development Environment) enables web 

application automation and the recording, editing, replaying, and debugging of functional 

web app use cases [43]. Total number of vulnerabilities found for the selected categories 

of DC (Servers, IPS, Router, Switches and Firewall) are for V2 there are 377 records and 

for V3 there are 214 records. 

3.5.2 Data Set Preparation 

3.5.2.1 For pure NVD Dataset 

After performing the data extraction procedure, the data generated for the 

preparation of data sets that is used for the experimental work in the form of test and train 

stacks. Precisely, the NVD data feeds that are directly downloaded is JSON format are 

than converted and stored in a local machine in .CSV format. Microsoft Excel can create 

and edit a unique kind of file called Comma Separated Value - CSV file. Information is 

stored in CSV files separated by commas as opposed to columns. Transferring text and 

numbers between programs is simple when they are stored in a CSV file [44]. Table of 

the record for each CVE kept in V2 dataset is shown in Table 0.1and for V3 inTable 0.2. 

Table 0.1: Dataset features for each CVE record CVSS V2 

S No Data Features 

1.  CVE_ID 

2.  Report 

3.  CVSSV3 
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4.  Access Vector 

5.  Access Complexity 

6.  Authentication 

7.  ConfidentialityImpact 

8.  AvailabilityImpact 

9.  IntegrityImpact 

 

Table 0.2: Dataset features for each CVE record – CVSS V3 

S No Data Features 

1.  CVE_ID 

2.  Report 

3.  CVSSV3 

4.  AttackVector 

5.  AttackComplexity 

6.  PrivilegesRequired 

7.  User Interaction 

8.  Scope  

9.  ConfidentialityImpact 

10.  AvailabilityImpact 

11.  IntegrityImpact 
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3.5.2.2 For DC corelated Dataset 

Now, the CVE data set prepared in the ‘Data Extraction’ phase (section 3.5.1.2) is 

matched with NVD data set. The NVD data sets downloaded from the official website 

[28] starting from the year 2002 till 2023 for each year separately. The Data Correlation 

is performed and the matched results within NVD Data sets included in the main data set 

and those that are not found are rejected.  

Moreover, the scraping technique (i.e. the process of extracting information from 

a website that after being gathered is transported into a form that is more beneficial to the 

user either an application programming interface or a spreadsheet [45] is employed to 

obtain vulnerability data released in vendor web applications, 

like VulDB[29], Vulners[37], and other vendor applications. Following the process of 

retrieving and extracting specific information, the data is formatted appropriately for its 

intended use. Consider data that is kept in the CSV (comma-separated values) format. For 

V2 correlated records are 352 and for V3 197. 

3.5.3 Data Cleaning 

Data cleaning involves the process of identifying and addressing errors, 

inadequate structure, duplication, or missing values within the dataset. There are various 

ways through which data duplication or incorrect classification might occur during the 

integration of different data sources [40]. The lack of a widely accepted methodology for 

defining each stage of the data cleaning process may lead to anomalies in dataset. The 

reliability of results and algorithms can be compromised by the presence of inaccurate 

data, despite achieving accuracy. Establishing a standardized framework for data cleaning 

process is imperative to ensure accuracy and consistency across all iterations. The data 

set finally compiled and used in this research is cleaned by dropping duplicate, missing, 

Rejected values. Reports that receive a REJECT mark are not given any more attention. 

Hence, after removal for pure NVD data set V2 vulnerabilities become 171180 and V3 

123837. For case study V2 vulnerabilities become 351 and V3 they remain 197. 
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Complete methodology for the process of data creation from scratch is illustrated in 

Figure 0.4. 

 

Figure 0.4: Complete Data generation cycle 
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3.5.4 Arithmetic Mean (AM) 

Utilizing NVD scores as the only basis for training models may introduce 

partiality into vulnerability evaluation [41]. This is because the human scoring method is 

thought to be the reason of tiny fraction of inaccuracies in score records of NVD [11]. 

Different perspectives on vulnerability grading are provided by different data sources 

such vulDb, Vulners, and CVE details, in along with statistical vulnerability patterns 

extracted from CVE files. In this research, The true score, also known as the ground truth 

score, is the arithmetic mean of the scores from all data sources 

([CVSS𝑉1,…,CVSSVn,…, CVSSVN] where 0⟨n < N, N>2) that agree on.  

Equation 3.9 shows arithmetic mean for calculation of scores is: 

 AM = {Sum of Scores}÷{Total numbers of Scores} (3.9) 

If there are just two score sources[CVSS𝑉1, CVSS𝑉2], an average score is calculated. 

Here, as an example, a vulnerability CVE-2023-5552 is given score of 7.5 by NVD, 6 by 

VulDb and 7.3 by Vulners. By taking the Arithmetic Mean we got the value 6.9. 

3.5.5 Vulnerability Severity Calculation 

Using text-mining techniques, collected vulnerability reports from current 

cybersecurity repositories are compared against vulnerability descriptors. Data is 

categorized using a pipeline of ML algorithms to fill CVSS score gaps. 

3.5.6 Evaluation 

Training and evaluating the classification performance is based on the difference 

between predicted severity that the original labels. To evaluate this comparison, we use 

the Accuracy, Balanced Accuracy metrics in addition to the F1- score, Reciprocal rank 

and mean reciprocal rank.  
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The performance connotation takes into consideration classes that are not 

balanced, like the Authentication (Au) class, where the sample size for the "Single" and 

"None" group is significantly bigger than that of the "Multiple" categories. 

Multi-class associations may be involved in the authentication (Au) classification 

process. In this case, the mean value across class associations is calculated using a micro-

average. The distinction between macro- and micro-averages is that the former takes the 

average inputs from all classes, whilst the latter collects the weighted contributions of all 

classes. Thus, for multi-class classification issues with class imbalance, the micro-

average is preferred. The method is also used for other instances involving several 

classes. Binary classifiers, such as the one used for User Interface (UI), deduce the 

balanced-accuracy and F1-score values of the classification using a confusion matrix. 

3.5.7 Validation 

The validation method involves conducting two evaluation tests using data from 

crawled websites and data for reports that are acquired from pre-existing repositories. A 

portion of data is provided in the first experiment to test the validation, and in the second 

experiment, textual description is provided to provide CVE ratings.In addition, we 

evaluated the trained algorithm using a validation set of vulnerabilities that were released 

in 2023. This enables us to extensively evaluate our classifiers with data that was 

undoubtedly not utilized in any of the training stages. 

The second method employed to validate the data works by using some textual 

descriptions as they were passed through a function and CVSS V2base score, impact 

score and exploitability scores were calculated for different CVEs. For example, a textual 

description “Parsing malformed project files in Omron CX-One versions 4.42 and prior, 

including the following applications: CX-FLnet versions 1.00 and prior, CX-Protocol 

versions 1.992 and prior, CX-Programmer versions 9.65 and prior, CX-Server versions 

5.0.22 and prior, Network Configurator versions 3.63 and prior, and Switch Box Utility 

versions 1.68 and prior, may cause a stack-based buffer overflow." associated with 

CVE_ID “CVE-2018-7514” was passed through the function. The calculated scores at 

NVD websites for the vulnerability is base score 4.6, Impact sub score (ISS) is 6.4 and 
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Exploitability (E) score is 3.9. For the same CVE, scores generated by our model are: 

Base score is 4.7, ISS is 6.4 and E is 3.9 If we compare our generated score with the 

website and the generated scoreswe can see that only slight difference is present in base 

score which is of 4.7-4.6 = 0.1.  

For CVSS V3, textual description “Huawei products IPS Module; NGFW 

Module; NIP6300; NIP6600; NIP6800; Secospace USG6300; Secospace USG6500; 

Secospace USG6600; USG9500 with versions of V500R001C00; V500R001C20; 

V500R001C30; V500R001C50; V500R001C60; V500R001C80; V500R005C00; 

V500R005C10; V500R005C20; V500R002C00; V500R002C10; V500R002C20; 

V500R002C30 have an improper authentication vulnerability. Attackers need to perform 

some operations to exploit the vulnerability. Successful exploit may obtain certain 

permissions on the device.” was taken from a csv file for CVE_ID “CVE-2020-9099”. 

This CVE has base score 9.8 on NVD website and the calculated score by our ML model 

is also 9.8. 

3.5.8 Feature Extraction 

 The proposed ML model uses these scores as ground truths for training 

purposes.To create the machine-learning pipeline, which includes feature extraction and 

other data operations, the Python package pipeline in the Scikit-learn library was utilized. 

Therefore, a simplified transformation of severity scores from various CVSS versions is 

performed. Tokenization and subsequent feature extractions using the tools 

CountVectorizer and TdidfTransforer are the first steps in processing the data from NVD 

vulnerability reports. Then, using word characteristics, TF–IDF (Term Frequency–

Inverse Document Frequency) values are computed to create a TF–IDF matrix. Using the 

train_test_split technique, data records are randomly distributed into training (75%) and 

testing (25%) datasets. 

3.5.9 ML Model Application 

3.5.9.1 For NVD Dataset 
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New vulnerability reports are categorized using machine learning classifiers 

within anticipated severity patterns [8]. Since Random Forest (RF) classification 

technique is a well-known and often used algorithm for classification issues, that is why 

in this research RF is used. Using the Random Forest (RF) classifier, the findings for our 

case study and generic prediction were achieved. Table 3.3 shows the prediction 

performances of the CVSS classifiers for the testing datasets. 

The results ensure satisfactory performances when compared to closely related 

CVSS classification researches from [9], who trained CVSS version 3 classifiers using 

Naive Bayes and Neural Networks algorithms on CVE vulnerability reports published 

before and within 2016 and [8] who applied Logistic Regression on NVD dataset and 

corelated dataset produced from year 2002 to 2020. 

Overall, we are more accurate. For instance, the Attack Complexity classifier's 

accuracy is 96% when utilizing corelated data and 96% while using solely NVD 

vulnerability information. By contrast, the Logistic Regression-based Attack Complexity 

classifier [8] has a 95.31% accuracy rate. The overall accuracy achieved in this research 

by using RF is 89%. 

3.5.9.2 For DC Dataset 

For the DC data set, it is unique that not much of literature is found in this 

particular domain related vulnerabilities prediction and correlation. The accuracy 

achieved after correlating is overall 93%. 

3.5.10 Mathematical Modelling 

A method for lowering an estimated prediction function's variance is called 

bootstrap aggregation or bagging. A categorization technique called Random Forest uses 

several decision trees. Using this technique, a randomized decision tree is constructed for 

every bagging method cycle [46]. 

3.5.10.1 Classification 

Formal definition of classification tree is: 
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A decision tree is a classification tree in which every node makes a binary decision on 

whether xi< aor not to for a fixed a(node-dependent) item [47]. 

All the instances (xk and yk) are contained in the top node, and the set of examples 

is further distributed among each node's offspring based on the categorization at that 

node.The examples are further subdivided until there are only examples from a single 

class at each node at the bottom.The features xiand threshold a at each node are selected 

to reduce the 'diversity' that results in the offspring nodes. The Gini criterion is frequently 

used to gauge this diversity. 

3.5.10.2 Gini Criterion 

The subdivision process is repeated until each node at the bottom has only one 

class—assigned to input x as a prediction. 

Gini Criterion: Define class C1=Yes, C2=No 

In relation to these two groups, how can the variance of samples inside a node be 

measured. 

Assume that at our present node, we have instances in set S for classes C1 and C2. 

Creating child nodes now, partition S=S1 U S2 

Each sample S1 and S2 is partitioned into 2 classes C1 and C2 

Recall |S| = Number of objects in set S 

 
P̂(𝑆𝑗) =

|𝑆𝑗|

|𝑆|
= proportion of 𝑆𝑗 in S 

 

(3.10) 

 
P̂(𝐶𝑖|𝑆𝑗) =

|𝑆𝑗 ⋂ 𝐶𝑖|

|𝑆𝑗|
= proportion of 𝑆𝑗 which in 𝐶𝑖 (3.11) 

Variation g(Sj) in set Sj to be: 
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𝑔(𝑆𝑗) = ∑ P̂(𝐶𝑖|𝑆𝑗)(1 − P̂(𝐶𝑖|𝑆𝑗))

2

𝑖=1

 

(3.12) 

Variation is largest, if set is equally divided among Ci. It's smallest when all of Sjis just 

one of the Ci 

We define the variation of this full subdivision of the Sj to be the Gini Index = G if: 

 𝐺 = P̂(𝑆1)𝑔(𝑆1) + P̂(𝑆2)𝑔(𝑆2) 

= 𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑠𝑢𝑚 𝑜𝑓 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛𝑠 𝑔(𝑆1), 𝑔(𝑆2) 

(3.13) 

3.5.11 Library Used 

The Random Forest meta estimator use averaging to enhance predicted accuracy and 

manage over-fitting by training several decision tree classifiers on different sub-samples 

of the dataset. 

Sklearn.ensemble.RandomForestClassifier 

If bootstrap=True (the default), the sub-sample size is managed using the 

max_samples argument; if not, each tree is constructed using the whole dataset. 

3.5.11.1 Parameters 

1. No. of trees in forest 

n_estimaters : int, default = 100 

2. This is used to quantify the value of split. Supported criteria are “log_loss” and 

“entropy” both for the Shannon information gain and “gini” for the Gini impurity. 

Criterion: can be [‘gini’, ‘entropy’, log_loss’]and by default it is ‘gini’ 

3. Maximum depth of tree, if it’s none then nodes will grow till last leaves, or all 

leaves has less than min_samples_split 
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Max_depth, this is integer value and by default it is none 

4. To fragment an internal node, the least number of samples mandatory: 

for interger value, min_samples_split provides least value 

for floating point value, min_samples_split is a fraction and the least samples for each 

split for ceil(min_samples_split * n_samples) 

5. Below isleast samples required to be at a leaf node. If in each left and right node, 

min_samples_leaf training sample remains, that will be condiered split point. It 

will affecton smoothing of the model. 

for interger value, min_samples_leaf provides least value 

for floating point value, min_samples_leafis a fraction and the least samples for 

each node is ceil(min_samples_leaf*n_samples) 

6. Samples will be considered equally if sample_wight is not provided. Least 

weighted fraction for sum total of weights for all input samples are mandatory to 

be a leaf node. 

min_weight_fraction_leaf: float, default =0.0 

7. Best setting of features for split are: 

For integer, max_features features 

For floating point values, max_features is fraction 

and max(1, int(max_features * n_features_in_))for each split 

For square root, max_features=sqrt(n_features) 

For logrithm2, max_features=log2(n_features) 

For none, max_features=n_features 

 

8. To produce trees with max_leaf_nodes in best-first style. Best nodes are distinct 

as comparative decrease in impurity. For none, infinite figure of leaf nodes 
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max_leaf_nodes : int, default =None 

9. If a split makes a reduction in impurity better than or identical to its worth, than 

the node will be split. The subjective impurity reduction equation is as follows: 

𝑁𝑡

𝑁
∗ (𝑖𝑚𝑝𝑢𝑟𝑖𝑡𝑦 −

𝑁𝑡𝑅

𝑁𝑡
∗ 𝑟𝑖𝑔ℎ𝑡𝑖𝑚𝑝𝑢𝑟𝑖𝑡𝑦 −

𝑁𝑡𝐿

𝑁𝑡
∗ 𝑙𝑒𝑓𝑡𝑖𝑚𝑝𝑢𝑟𝑖𝑡𝑦) 

N is total # of samples, 𝑁𝑡 is # of samples at the current node,  𝑁𝑡𝐿
# of samples in 

the left child, and 𝑁𝑡𝑅
 is # of samples in the right child 

For sample_weight is passedN, 𝑁𝑡, 𝑁𝑡𝐿
 and 𝑁𝑡𝑅

 all refer to the weighted sum 

min_impurity_decrease: float, default = 0.0 

10. Bootstrap samples are used, for it used as False, entire dataset is used to build 

each tree 

bootstrap : bool, deault = true 

11. It is used to select out-of-bag samples to estimate the generalization score. By 

default, accuracy_score is used. Provide a callable with 

signature metric(y_true, y_pred) to use a custom metric and can be used if 

bootstrap is true. 

oob_score: boolean pr callable, default=False 

12. It defines # of jobs to run simultaneously. Fit, predict, 

decision_path and apply are all parallelized over the trees. None means 1 unless 

in a joblib.parallel_backend context. -1 means using all processors 

n_jobs : integer, default = none 

13. It takes care of randomness of bootstrap process and feature sampling for best 

split which ismax_features<n_features 

random_state : integer, randomState instance or None, by default it is none 

14. It takes care of verbosity while fitting and predicting 

verbose :integer, by default it is equal to 0 

15. It reutilize the result of previous call to fit and inserts added estimators to 

ensemble for if set to True, else, it simply fits a complete novel forest 

warm_start : Boolean, by default it is false 

16. Class-specific weights in the format {class_label: weight}. All courses are 

expected to have weight one if it is not provided. A list of dicts can be supplied in 
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the same order as the columns of y for multi-output issues.It should be noted that 

weights for multioutput (including multilabel) should be defined in a separate dict 

for each class of each column. For instance, rather than [{1:1}, {2:5}, {3:1}, 

{4:1}], the weights for the four-class multilabel classification should be [{0: 1, 1: 

1}, {0: 1, 1: 5}, {0: 1, 1: 1}, {0: 1, 1: 1}].The balanced mode usensamples/

(nclasses ∗ np. bincount(y)) to automatically modify weights inversely 

proportionate to class frequencies in the input data.The balanced_subsample 

mode is identical to the "balanced" mode; however, weights are calculated using 

the bootstrap sample for each tree that is generated.The weights in each column of 

y will be multiplied for multi-output. keep in mind that if sample_weight is 

provided, these weights will be multiplied by sample_weight (using the fit 

method). 

Class_weight : {“balanced”, “balanced_sample”}, dict or list of dicts, by default 

it is none 

17. Minimal Cost-Complexity Pruning's complexity parameter. The subtree that is 

smaller than 𝑐𝑐𝑝𝑎𝑙𝑝ℎ𝑎 and has the highest cost complexity will be selected. By 

default, there is no pruning done 

ccp_alpha: non-negative float, default = 0.0 

18. The # of samples to take from X for training each base estimator, it is used if 

bootstrap is true. If it is none which is default value than draw 𝑋. 𝑠ℎ𝑎𝑝𝑒[0] 

samples. For it as integer, than takes sample value from max_samplesand for 

floating point, it takes max (𝑟𝑜𝑢𝑛𝑑(𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠 ∗ 𝑚𝑎𝑥𝑠𝑎𝑚𝑝𝑙𝑒𝑠), 1) samples. 

Therefore, max_samples has to be in the interval (0.0, 1.0) 

max_samples : integer or float, default = none 

3.5.11.2 Attributes 

1. The set of fitted sub-estimators was produced using the child estimator template 

estimator_: DecisionTreeClassifier 

2. Estimator used to the ensemble growth 
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base_estimator_: DecisionTreeClassifier 

3. The grouping of adjusted sub-estimators 

estimator_: list of DecisionTreeClassifier 

4. A list of arrays containing class labels (multi-output problem) or the class labels 

themselves (single output problem) 

classes_ :ndarray of shape (n_classes,) or a list of such arrays 

5. A list with the number of classes for each output (multi-output problem) or the 

number of classes (single output problem) 

n_classes_ : int or list 

6. # of features seen during fit 

n_features_in : int 

7. Names of the characteristics observed during the fit. Defined exclusively in the 

case that X has all string feature names 

feature_names_in_ :ndarray of shape (n_features_in,) 

8. The quantity of outputs produced by a fit 

n_outputs : integer 

9. The feature importances dependent on impurities 

feature_importances_ :ndarray of shape (n_feratures,) 

10. The training dataset's score was calculated using an out-of-bag estimate. Only 

when oob_score is True does this property exist 

oob_score_ : float 

11. On the training set, the decision function was calculated using an out-of-bag 

estimate. It is conceivable that a data point was never omitted during the bootstrap 

if n_estimators is tiny. NaN may be present in oob_decision_function_ in this 

instance. Only when oob_score is True does this property exist. 

oob_decision_function_ndarray of shape (n_samples, n_classes) or (n_samples, 

n_classes, n_outputs) 

3.6 Algorithms 

https://scikit-learn.org/stable/glossary.html#term-fit
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Algorithms are used in data storage, sorting, processing, and machine learning to 

determine the optimal solution for a given issue. They increase a program's efficiency in 

the process [49]. Therefore, for each piece of computation during this research, 

algorithms are written. 

3.6.1 Algorithm 1: Calculation of Base Score CVSS V3 

START PROCESSCVSSCalculation (SEML, a, A, C𝑉SS , C𝑉SS′) 

1. SEML is a model of Machine Learning with function 𝑓() 

2. 𝑓𝐵𝑎𝑠𝑒score() is the CVSS evaluator function 

3. [CVSS1, …, CVSS𝑑 , …, CVSS𝐷] (0 <𝑑 ≤ 𝐷, 𝐷> 2) is a data sources array, 

where each element has vulnerability instances ‘R’. An array of severity scores, 

[𝑠s𝑖,1, …, 𝑠s𝑖,𝑑,…, ss𝑖,𝐷], and a set of CVSS vectors, [T𝑖,1, …, T𝑖,𝑑, …, T𝑖,𝐷], 

have been allocated to every vulnerability instance 𝑣𝑖 (0 <𝑖 ≤ R). 

4. A list of vulnerability instances without any severity rating or CVSS 

measurements denoted as C𝑉 ′ of c𝑝 (0 <𝑝 ≤ R′). 

5. The set a consists of CVSS metrics a𝑗 (0 <𝑗 ≤ A) in which every metric a𝑗 

possesses an array of B a𝑗 classes to be mapped that correspond to the value T (a𝑗 

)𝑖∈ {𝑐 1 (a𝑗 ),…, 𝑐𝑘 (a𝑗 ), …, 𝑐B (a𝑗 ) } (0 < b(a𝑗 ) ≤ B (a𝑗 ) ). 

6. 𝐷 = |[C𝑉1 , … , C𝑉𝑑 , …, C𝑉𝐷]|, R = |C𝑉𝑑 |, R′ = |C𝑉 ′|, A = |a|, B(a𝑗 ) = |{𝑐 1 

(a𝑗 ) , … , 𝑐𝑘 (a𝑗 ) , …, 𝑐B (a𝑗 ) }| 

FOR vulnerability instance 𝑣𝑖 (𝑖 = 1, …, R) 

DO 

FOR CVSS metric a𝑗 (𝑗 = 1, … ,) 

DO 

SET T (a𝑗 )𝑖 = arg max B (a𝑗 ) [𝑐𝑎𝑟𝑑({𝑐 1 (a𝑗 ) , …, 𝑐b (a𝑗 

) , …, 𝑐B (a𝑗 ) }‖T (a𝑗 ) 𝑖,𝑑 )](0 <𝑑 ≤ 𝐷) as the reference 

point for measuring CVSS 
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END FOR 

T𝑖 = [T (a1 )𝑖 , … , T (a𝑗 ) 𝑖 , …, T (aA) 𝑖 ] (𝑗 = 1, …,A) 

SET𝑠s𝑖 = 𝑓𝐵𝑎𝑠𝑒score(T𝑖 ) as the base information for the severity score 

END FOR 

FOR𝑗 = 1, … ,A CVSS metric a𝑗 (𝑗 = 1, …,A) 

DO 

Train(SEML) //SEML a model for training and testing of historic datasets 

𝑓 (a𝑗 ) (𝑣𝑖 ) = arg max b (a𝑗 ) 𝑓 (a𝑗 ) b (a𝑗 ) (𝑣𝑖 ) 

END FOR 

FOR vulnerability instance c𝑝 (𝑝 = 1, …, R′ ) 

  DO 

  FOR CVSS metric a𝑗 (𝑗 = 1, …,A) 

DO 

X (a𝑗 )𝑝 = 𝑓 (a𝑗 ) (c𝑝) 

END FOR //Obtain the estimated CVSS measurement from SEML as a result 

X𝑝 = [X (a1 )𝑝 , … , X (a𝑗 ) 𝑝 , … , X(A) 𝑝 ] (𝑗 = 1, …,A) 

END FOR 

The predicted resultant score x𝑝 = 𝑓𝐵𝑎𝑠𝑒score(X𝑝) 

END PROCESS 

3.6.2 Algorithm 2 Generation of Data Product wise from CVE details 
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START PROCESSCveDetailsDataGenerator(𝐷n,Ps,CVEe)  

1. 𝐷n is an empty dictionary to store vulnerabilities organized by product type Ps, 

where s={0,…,4} 

2. The five product types that are imported: P1 for Switch: P2 for Router: P3 for IPS, 

P4 for Firewall:P5 for Server 

3. CVEeis each entry of CVE in CVE details 

FOR each entry in CVE Details 

DO 

   Extract the Ps from the CVEeentry 

IF (Ps not in Dn) 

THEN 

Discard that Ps 

Else 

Add the CVEe entry ofcorresponding Ps in Dn 

END IF 

return the Dn 

END FOR 

SORT dictionary Dn by Ps 

END PROCESS 

3.6.3 Algorithm for Impact Calculation 

START PROCESSImpactCalculation(Im, S, UC, ISS, C, E) 
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1. CVSS calculations, the sub score calculations for impact (ISS) and exploitability 

determine the Base Score. Formula for ISS is:ISS = 1 -  [ (1 – C ) ( 1 – I ) ( 1 – A ) 

]where C = Confidentiality, I = Integrity, A = Availability 

2. WHEN Im is dependent on S: where S = Scope, UC = Unchanged, Im = Impact, C = Changed, E = 

Exploitability  

3. AV is Access Vector: AC is the Access Complexity: UI is User Interaction: PR is 

Privileges Required 

IF S is UC 

THEN  

 Im = 6.44 * ISS 

ELSE IF S is C 

 THEN  

 Im = 7.52 * (ISS - 0.029) - 3.25 * (ISS - 0.02) ^ 15 

WHEREAS E = 8.22 * AV * AC * PR * UI 

END PROCESS 

3.6.4 Algorithm for Base Score Calculation CVSS V2 

START PROCESSBaseScoreCalculation(Im, S, C, UC, ISS, E) 

IFIm< = 0 

THEN  

Base Score = 0 

ELSE IF S is C 

THEN 
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 Base Score = Round (min [ (Im + E), 10]) 

ELSE IF S is UC 

THEN 

 Base Score = Round (min [1.08 * (I + E), 10]) 

([CVSS𝑉1,…,CVSSVn,…,CVSSVN] where 0⟨n < N, N>2) 

END PROCESS 

3.6.5 Algorithm to Calculate Arithmetic Mean 

START PROCESSArithmeticMeanCalculation(Im, S, C, UC, ISS, E) 

1. Define SC := Score 

2. Define S := sum() 

3. Define C := count() 

4. Define AM := Arithmetic Mean, Avg := Average 

IF SC > = 0 

THEN AM = {S (SC) / (C (SC)} 

ELSE IF  

SC = From Two Score Sources [CVSS𝑉1, CVSS𝑉2] 

THEN 

AM = Avg (SC) //An average score is calculated 

Avg = S (All Sources Scores) / 2 

END PROCESS 
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EXPERIMENTS AND RESULTS 

Several experimental findings are provided in this chapter to assess the suggested 

machine-learning model covered in Chapter 3. Experiments have been conducted using 

the NVD dataset. By extracting the metrics to assess the classification performance, the 

effectiveness of the suggested machine learning model is ascertained. There is also a 

comparison of various tried-and-true methods that have been documented in the body of 

literature. 

The results of the experiment are presented in tabular and graphical forms, which 

facilitated the comparison of the algorithms' performance on different data sets. The 

statistics and class imbalances are shown using bar charts, which clearly indicated 

occurrence of vulnerabilities over the period. The accuracy of model is shown using 

confusion matrix for each Label and its classes and keeping the normalization true to 

have results in more understandable form.  

4.1 Evaluation Metrics 

Assessment metrics including precision, recall, F1 score, and accuracy which are 

frequently used in a variety of domains, including vulnerability detection—are used to 

evaluate the suggested models. Each metric's specifics are presented in the sections that 

follow. 

4.1.1 Accuracy 

The degree of accuracy demonstrated by a model's predictions is referred to as its 

"accuracy." The percentage of correctly classified instances including true positives and 

negativesto every instance is referred to as the accuracy rate. Equation 4.1 below is 

utilized in its computation. 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (𝑇𝑃 + 𝑇𝑁)/(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁) (4.1) 

Denoting,  
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1. True Positive - TP = The total number of positive (threat-related) instances that 

have been accurately identified (threats).  

2. True Negative – TN = The total number of cases that were accurately classified as 

negative (non-threats).  

3. False Positive - FP = The number of cases that were misclassified as positive—

that is, non-threats that seemed erroneously thought to be threats. 

4. False Negative – FN = The number of cases that are mislabelled as negative (that 

is, threats that are mislabelled as non-threats). 

4.1.2 Precision 

The level of accuracy in positive estimations is referred to as precision. The 

percentage of accurately foretold positive instances, including both true and false 

positives, to the total number of positively predicted positive instances is known as the 

true positive rate. The following is the precision formula: 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = (𝑇𝑃)/(𝑇𝑃 + 𝐹𝑃) (4.2) 

4.1.3 Recall 

The number of correctly estimated positive events (true positives) about all actual 

positive scenarios (true positives along with false negatives) is known as 'Recall', also 

referred to as sensitivity as well as true positive rate. Equation 4.3 provides the 

mathematical expression. 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = (𝑇𝑃)/(𝑇𝑃 + 𝐹𝑃) (4.3) 

4.1.4 F1 Score Balanced 

A measure of accuracy that combines recall and precision is referred to as the F1 

score. Particularly in the case of an unequal class distribution, the F1 score frequently 

provides more information than raw accuracy. Therefore, reaching a state of balance 
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between each of the measurements. It is widely used to assess a classification model's 

performance in machine learning, deep learning, and statistical analysis. Equation 4.3 and 

4.4, below demonstrates the F1 score in mathematical form: 

 
𝐹1 𝑆𝑐𝑜𝑟𝑒 = (2)/(

1

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜
+

1

𝑅𝑒𝑐𝑎𝑙𝑙
) (4.3) 

 
𝐹1 𝑆𝑐𝑜𝑟𝑒 = (2).

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛. 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

(4.4) 

There are several variants of the F1 score, such weighted, macro, and micro F1 

scores, which are better suited for situations involving multiple classes or when you wish 

to assign various weights to the classes. 

4.1.4.1 Accuracy Macro Score 

The macro method involves calculating the F1 score for every class separately 

and averaging them. This method assumes that every class matters equally, which isn't 

necessarily the case. Equation 4.5 shows calculation of Macro F1: 

 

𝑀𝑎𝑐𝑟𝑜 𝐹1 =
1

𝑁
∑ 𝐹1𝑖

𝑁

𝑖=1

 (4.5) 

where the F1 score for each class is denoted by F1i, and N is the total number of classes. 

4.1.4.2 Accuracy Micro Score 

In the micro method, the average F1 score is calculated by adding up the input 

from each class. Smaller classes are given the identical weight as bigger classes in this 

strategy, which is helpful if your dataset has an imbalance in classes. The steps involve in 

calculating F1 Score are: 

1. Calculate True positive (TP), True Negative (TN), False Positive (FP) and False 

Negative (FN). 

2. Use the calculated TP, TN, FP and FN to calculate recall and precision. 
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3. Use recall and precision values to calculate F1 Score. 

 
𝑀𝑖𝑐𝑟𝑜 𝐹1 𝑆𝑐𝑜𝑟𝑒 = (2).

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑚𝑖𝑐𝑟𝑜. 𝑅𝑒𝑐𝑎𝑙𝑙𝑚𝑖𝑐𝑟𝑜

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑚𝑖𝑐𝑟𝑜 + 𝑅𝑒𝑐𝑎𝑙𝑙𝑚𝑖𝑐𝑟𝑜
 (4.6) 

4.1.5 Support 

The number of real instances of the class in the given dataset is known as support. 

It shows how many actual instances there are of each class. In multiclass classification 

settings, support is frequently used to show how cases are distributed throughout several 

classes. 

4.1.6 Reciprocal Rank and Mean Reciprocal Rank 

Reciprocal rank is a statistic that is used in ranking assessment and information 

retrieval to gauge how well a search engine or system for retrieving information is 

working. It is especially prevalent when assessing how well systems function when they 

return ranked lists of responses to user queries. 

Given a ranked list of objects, Reciprocal Rank (RR) is determined as the 

reciprocal of the rank at which the first relevant item is discovered. If the first relevant 

item is at position k, the Reciprocal Rank (RR) is as shown in Equation 4.7: 

 
𝑅𝑅 =

1

𝑘
 (4.7) 

In the field of data extraction, an exploration or system of recommendations often 

generates the ranked list, and things are ranked according to certain criteria (e.g., if an 

item fulfills a user's information requirement or desire). 

To calculate Mean Reciprocal Rank (MRR), we use RR calculated using formula 

of Reciprocal Rank (RR). Then we take sum of all RR we get (Reciprocal Rank for the ith 

instance) and divide it by the sum of total instances (which is n). Equation 4.8 shows 

calculation for MRR: 
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𝑀𝑅𝑅 =

∑ 𝑅𝑅𝑖
𝑛
𝑖=1

𝑛
 (4.8) 

4.2 Results of Random Forest Model 

4.2.1 RF Classifier specification 

In this research, practical work is done in two parts: First part is where pure NVD 

dataset is preprocessed, and ML model RF is applied on it and secondly the correlated 

data for DC environment is taken and RF is applied on it. All the work is done using 

Jupyter Notebook and coding is done using Python language. The specification or 

parameters applied of RF classifier is shown isError! Reference source not found..1.  

Table 0.1: RF parameters 

S No RF Parameters Values 

1.  n_estimaters 40-180 

2.  Criterion gini 

3.  Max_depth none 

4.  min_weight_fraction_leaf 0.0 

5.  max_features n_features 

6.  max_leaf_nodes none 

7.  min_impurity_decrease 0.0 

8.  bootstrap true 

9.  oob_score false 

10.  n_job none 
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11.  random_state none 

12.  verbose 0 

13.  warm_start false 

14.  Class_weight none 

15.  ccp_alpha 0.0 

16.  max_samples none 

4.2.2 Data Breakdown 

No of CVSS V2 vulnerabilities spread over period of years are shown in the 

Figure 0.1 and CVSS V3 in Figure 0.2 below: 

 

Figure 0.1: Count wise vulnerabilities of CVSS V2 
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Figure 0.2: Count wise vulnerabilities of CVSS V3 

Spread of vulnerabilities product wise for the case study of DC is shown in Figure 0.3: 

 

Figure 0.3: Count wise vulnerabilities of DC products 
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Spread of vulnerabilities over years product wise for the case study of DC is shown in 

Figure 0.4: 

 

Figure 0.4: Count wise vulnerabilities of DC products 

The CVSS V2 data of NVD has clear class imbalances which can be seen by Figure 0.5to 

Figure 0.10. 

 

Figure 0.5:Percentage of different classes data in Access Vector – CVSS V2 
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Figure 0.6: Percentage of different classes data in Access Complexity– CVSS V2 

 

Figure 0.7: Percentage of different classes data in Authentication – CVSS V2 
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Figure 0.8: Percentage of different classes data in Confidentiality Impact – CVSS V2 

 

Figure 0.9: Percentage of different classes data in Integrity Impact – CVSS V2 
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Figure 0.10: Percentage of different classes data in Availability Impact – CVSS V2 

The CVSS V3 data of NVD has clear class imbalances which can be seen by fig 4.11 to 

fig 4.18 

 

Figure 0.11: Percentage of different classes data in Attack Vector – CVSS V3 



56 

 

 

Figure 0.12: Percentage of different classes data in Attack Complexity – CVSS V3 

 

Figure 0.13: Percentage of different classes data in Privileges Required – CVSS V3 
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Figure 0.14: Percentage of different classes data in User Interaction – CVSS V3 

 

Figure 0.15: Percentage of different classes data in Scope – CVSS V3 
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Figure 0.16: Percentage of different classes data in Confidentiality Impact – CVSS V3 

 

 

Figure 0.17: Percentage of different classes data in Integrity – CVSS V3 
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Figure 0.18: Percentage of different classes data in Availability Impact – CVSS V3 

4.2.3 Results and Comparison 

In this research the main performance gauging indicator was the comparison of 

results of the work of [8] when performing CVSS score prediction for pure NVD dataset. 

For CVSS V2 and V3 score calculation, the accuracy achieved is more than [8] which 

can be seen inTable 0.2andTable 0.3. 

Table 0.2: Comparison Table LR & RF for CVSS V2 NVD Only 

Attributes Logistics Regression Random Forest 

Access Vector 95.09% 95.36% 

Access Complexity 84.02% 85.12% 

Authentication 93.92% 93.90% 

Confidentiality Impact 82.45% 82.86% 
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Integrity Impact 84.43% 84.86% 

Availability Impact 80.53% 81.71% 

Table 0.3: Comparison Table LR & RF for CVSS V3 NVD Only 

Attributes Logistics Regression Random Forest 

Attack Vector 90.36% 90.47% 

Attack Complexity 95.31% 96.01% 

Privileges Required 85.77% 85.82% 

User Interaction 92.11% 92.62% 

Scope 96.29% 96.16% 

Confidentiality Impact 86.67% 86.81% 

Integrity Impact 87.45% 87.47% 

Availability Impact 89.18% 89.38% 

To obtain the highest accuracy, a range of parameters were given to the model and 

resultantly best accuracy is acquired. Details of the parameters and its effect on 

accuracy is as shown in Table 0.4for CVSS V2 pure NVD Dataset, 

Table 0.5 for CVSS V3 pure NVD Dataset, Table 0.6for CVSS V2 DC corelated dataset 

and 

 



61 

 

 

Table 0.7 for CVSS V3 DC corelated dataset.  

 

Table 0.4: Comparison Table RF with different parameters for CVSS V2 NVD Only 

n_estimators 50 60 70 80 90 100 

AV 92.08% 93.71% 92.11% 94.55% 94.62% 95.36% 

AC 84.21% 84.55% 84.31% 85.27% 85.63% 85.12% 

Au 90.33% 91.73% 91.01%- 92.89% 92.68% 93.90% 

C 80.37% 80.74% 81.03% 83.06% 81.54% 82.86% 

I 83.23% 83.88% 84.02% 84.41% 83.32% 84.86% 

A 80.81% 81.28% 81.02% 81.72% 81.08% 81.71% 

Acc 82.65% 83.05% 83.47% 85.84% 88.24% 89.09% 

 110 120 130 140 150 

AV 94.16% 94.28% 94.28% 94.46% 94.44% 

AC 84.42% 85.41% 85.23% 85.11% 85.15% 

Au 93.44% 93.44% 92.66% 92.87% 92.99% 

C 81.63% 81.63% 82.10% 82.44% 82.97% 

I 83.88% 83.88% 84.12% 84.23% 84.52% 



62 

 

A 80.97% 80.97% 81.56% 81.80% 81.85% 

Acc 88.36% 88.36% 86.89% 85.17% 85.67% 

 

Table 0.5: Comparison Table RF with different parameters for CVSS V3 NVD Only 

n_estimators 50 60 70 80 90 100 

AV 88.41% 89.21% 89.44% 89.91% 90% 90.47% 

AC 92.75% 94.94% 95.04% 95.23% 95.74% 96.01% 

PR 80.58% 82.96% 83.22% 83.89% 84.60% 85.82% 

UI 90.87% 91.77% 92.13% 92.23% 92.46% 92.62% 

S 94.79% 95.03% 95.31% 95.68% 95.97% 96.16% 

C 84.11% 85% 85.14% 85.36% 85.58% 86.81% 

I 84.14% 86.27% 86.56% 86.97% 87.08% 87.47% 

A 86.01% 88.54% 88.89% 89.04% 89.26% 89.38% 

Acc 87% 89% 89.17% 89.88% 90% 90.45% 

 110 120 130 140 150 

AV 90.21% 90.08% 89.83% 89.49% 89.12% 

AC 95.44% 95% 94.97% 94.63% 93.86% 
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PR 84.32% 84.13% 83.98% 83.54% 83.23% 

UI 93.27% 93.04% 92.59% 92.34% 92.17% 

S 95.42% 95.33% 95.01% 94.96% 94.67% 

C 85.47% 85.13% 85% 84.88% 83.41% 

I 88.42% 88.18% 87.63% 87.42% 86.32% 

A 87.65% 87.05% 86.86% 86.55% 84.94% 

Acc 90.33% 89.65% 89.32% 89.07% 88.56% 

Table 0.6: Comparison Table RF with different parameters for CVSS V2DC Data 

n_estimators AV AC Au C I A Accuracy 

20 96.12% 89.32% 90.45% 81.65% 80.55% 77.12% 77.11% 

30 96.45% 89.67% 90.88% 81.65% 80.55% 77.12% 77.11% 

40 96.33% 89.77% 90.89% 81.82% 80.68% 77.27% 77.27% 

50 96.43% 89.86% 90.90% 82.95% 81.82% 78.41% 81.82% 

60 96.59% 89.77% 90.91% 80.68% 79.55% 77.27% 95.45% 

70 96.36% 89.63% 90.65% 81.56% 80.65% 77.26% 80.22% 

80 96.27% 89.36% 90.32% 81.87% 80.65% 77.34% 77.77% 

90 96.13% 89.02% 90% 81.03% 80.23% 77.12% 76.56% 
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100 95.45% 89.77% 90.91% 80.68% 81.82% 73.86% 75.45% 

 

 

 

Table 0.7: Comparison Table RF with different parameters for CVSS V3DC Data 

n_esti

mators 

AV AC PR UI S C I A Accurac

y 

20 92% 94% 95.6 

% 

77.56

% 

88.22

% 

77.35% 81.21% 90.12% 88% 

30 92% 94% 96% 78% 88.69

% 

78.02% 82% 90.50% 90% 

40 92% 94% 96% 78% 90% 78% 82% 90% 93.33% 

50 92.36

% 

94.45

% 

96.12

% 

78.23

% 

90% 78.14% 82.32% 90.02% 94.66% 

60 96% 95% 96.33

% 

79% 90.23

% 

78.64% 82.66% 91% 95.36% 

70 92.12

% 

94.32

% 

96% 78.12

% 

89.66

% 

78% 82.21% 90% 94.03% 

80 92% 94% 95.65

% 

78% 89.43

% 

78% 82.04% 88.36% 93% 

90 92% 94% 95.5% 77.3

% 

89% 77.3% 82.3% 88.6% 89.24% 
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100 91.54

% 

93% 95.3% 77% 89% 77% 81% 88% 88% 

 

 

 

Results of CVSS score prediction for V2 for correlated data of DC dataset is shown in 

Table 0.8and for V3 is shown inTable 0.9 

Table 0.8: RF for CVSS V2 DC correlated data 

Attributes Random Forest 

Access Vector 95.59% 

Access Complexity 89.77% 

Authentication 90.91% 

Confidentiality Impact 80.68% 

Integrity Impact 79.55% 

Availability Impact 77.27% 

Validation  95.45% 

Table 0.9: RF for CVSS V3 DC correlated data 

Attributes Random Forest 
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Attack Vector 96% 

Attack Complexity 95% 

Privileges Required 96.33% 

User Interaction 79% 

Scope 90.23% 

Confidentiality Impact 78.64% 

Integrity Impact 82.66% 

Availability Impact 91% 

Validation 95.36 

4.2.4 Performance Study 

To conduct performance analysis of the classification and prediction performed by the 

model, in this research, precision, recall, F1 Score and Support for each class is 

calculated using libraries of Machine Learning. These scores are shown inTable 

0.10and 

 

Table 0.11.11 for pure NVD dataset CVSS V2, V3, andTable 0.12.12,  

Table 0.13.13 for DC data CVSS V2, V3, where the best accuracy is achieved. 

Table 0.10: Evaluation metrics for pure NVD dataset CVSS V2 

Attributes Precision Recall F Score Support 

AV 93.69% 73.67% 80.77% 14265 
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AC 87.46% 64.17% 68.86% 14265 

Au 61.19% 50.32% 53.89% 14265 

C 84.60% 76.64% 79.33% 14265 

I 84.91% 78.32% 80.76% 14265 

A 81.82% 78.34% 79.45% 14265 

 

 

Table 0.11: Evaluation metrics for pure NVD dataset CVSS V3 

Attributes Precision Recall F Score Support 

AV 91.34% 61.11% 69.83% 7740 

AC 94.46% 72.06% 78.97% 15480 

PR 86.33% 70.41% 75.67% 10320 

UI 93.48% 90.40% 91.65% 15480 

S 96.79% 89.52% 92.67% 15480 

C 89.71% 79.12% 83.12% 10320 

I 89.38% 84.65% 86.62% 10320 

A 90.20% 70.11% 74.87% 10320 

Table 0.12: Evaluation metrics for DC dataset CVSS V2 

Attributes Precision Recall F Score Support 
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AV 65.38% 61.11% 62.98% 29.333 

AC 62.92% 50.00% 53.57% 29.333 

Au 60.82% 54.43% 56.79% 29.333 

C 78.45% 76.76% 77.14% 29.333 

I 76.96% 70.08% 72.78% 29.333 

A 81.04% 69.01% 71.38% 29.333 

 

Table 0.13: Evaluation metrics for pure DC dataset CVSS V3 

Attributes Precision Recall F Score Support 

AV 97.04% 69.05% 78.25% 16.667 

AC 47.00% 50.00% 48.45% 25 

PR 55.88% 54.67% 52.92% 16.667 

UI 97.83% 83.33% 88.89% 25 

S 94.68% 68.75% 74.46% 25 

C 73.18% 65.50% 67.43% 16.667 

I 81.67% 74.54% 73.97% 16.667 

A 93.27% 90.52% 91.52% 16.667 

The data acquired in  

 

Table 0.11- 
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Table 0.13 is further used to calculate F1 Score. Similarly, RR is calculated and 

further used to calculate MRR. In addition to that, balanced accuracy score is also 

calculated. All these calculations of F1 Score, RR, MRR and Balanced accuracy score are 

shown inTable 0.14 andTable 0.15for pure NVD data set CVSS V2, V3 andTable 

0.16,Table 0.17for DC related dataset CVSS V2, V3. 

Table 0.14: Calculation on Evaluation Metrics for pure NVD dataset CVSS V2 

Attributes F1 Score MRR Balanced Accuracy 

AV 82.48% 94.28% 73.67% 

AC 74.03% 85.41% 64.17% 

Au 55.22% 92.13% 50.32% 

C 80.42% 82.37% 76.64% 

I 81.48% 84.02% 78.32% 

A 80.04% 81.48% 78.34% 

Table 0.15: Calculation on Evaluation Metrics for pure NVD dataset CVSS V3 

Attributes F1 Score MRR Balanced Accuracy 

AV 73.23% 90.47% 61.11% 

AC 81.75% 96.01% 72.06% 

PR 77.56% 84.42% 70.41% 

UI 91.91% 92.62% 90.40% 

S 93.02% 96.16% 89.52% 

C 84.08% 86.01% 79.12% 
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I 86.95% 87.17% 84.65% 

A 78.90% 89.38% 70.11% 

Table 0.16: Calculation on Evaluation Metrics for DC dataset CVSS V2 

Attributes F1 Score MRR Balanced Accuracy 

AV 63.18% 96.59% 61.11% 

AC 55.72% 89.77% 50.00% 

Au 57.44% 90.91% 54.43% 

C 77.60% 80.68% 76.76% 

I 73.36% 79.55% 70.08% 

A 74.54% 77.27% 69.01% 

Table 0.17: Calculation on Evaluation Metrics for DC dataset CVSS V3 

Attributes F1 Score MRR Balanced Accuracy 

AV 80.68% 92.00% 69.05% 

AC 48.45% 94.00% 50.00% 

PR 55.27% 78.00% 54.67% 

UI 90.00% 96.00% 83.33% 

S 79.66% 90.00% 68.75% 

C 69.13% 78.00% 65.50% 

I 77.94% 82.00% 74.54% 
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A 91.87% 90.00% 90.52% 

The computed confusion matrix is also generated for each label. The in-depth 

analysis of model’s behavior on CVSS V2 is shown by Figure 0.19 to Figure 0.24. 

 

Figure 0.19:Confusion matrix for Access Vector – CVSS V2 
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Figure 0.20: Confusion matrix for Access Complexity – CVSS V2 

 

Figure 0.21: Confusion matrix for Authentication – CVSS V2 
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Figure 0.22: Confusion matrix for Confidentiality – CVSS V2 

 

Figure 0.23: Confusion matrix for Integrity – CVSS V2 
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Figure 0.24: Confusion matrix for Availability – CVSS V2 

The Figure 0.25 from Figure 0.32shows the in-depth analysis of model’s behavior on 

CVSS V3. 
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Figure 0.25: Confusion matrix for Attack Vector – CVSS V3 
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Figure 0.26: Confusion matrix for Attack Complexity – CVSS V3 

 

Figure 0.27: Confusion matrix for User Interaction – CVSS V3 
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Figure 0.28: Confusion matrix for Privileges Required – CVSS V3 

 

Figure 0.29: Confusion matrix for Scope– CVSS V3 
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Figure 0.30: Confusion matrix for Confidentiality Impact – CVSS V3 

 

Figure 0.31: Confusion matrix for Integrity Impact – CVSS V3 
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Figure 0.32: Confusion matrix for Availability Impact – CVSS V3 

4.3 Analysis 

The Random Forest's tree count may be adjusted using the n_estimators 

argument. Up to a certain point, a more stable and precise model is often produced by 

increasing the number of trees. But there are decreasing gains, and overfitting and higher 

computing costs might result from using too many trees. In this research, experiments 

were conducted to examine the effect of changing the number of trees in the RF model. 

We adjusted the n_estimators parameter using the grid-search strategy, which involves 

training and assessing our model on varying numbers of trees and use the model's 

hyperparameters to get the best accuracy for our set of data. The specifications of the RF 

model are presented in detail Table 4.1. Results with different hyperparameters for pure 

NVD and DC case study are shown in Tables 4.4, 4.5, 4.6 and 4.7. It can be observed 
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that,n_estimatorsranging from 50 to 150 for NVD and 20 to 100 for DC are used and are 

giving different results. For CVSS V2, the model attained the highest accuracy of 89.09% 

for pure NVD dataset at n_estimators 100 and 95.45% for DC corelated data at 

n_estimators 60. Whereas for CVSS V3, the highest accuracy of 90.45% is achieved for 

pure NVD dataset at atn_estimators 100 and 95.36% for DC related data at n_estimators 

60. For the DC case study, the corelated data is gathered from multiple sources and 

arithmetic mean is taken of various sources score to improve prediction.  

For pure NVD data, LR of [8] gives 84.02% accuracy for label “Access 

Complexity” whereas RF is giving 85.12% accuracy for the same. Similarly, [8] has 

“Availability Impact” with accuracy 80.53% while this study calculated it at 81.71%. 

Overall accuracy of [8] is 85.69% for CVSS V2, which is lesser than that of RF which is 

89.09%.  
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RECOMMENDATIONS FOR MITIGATION 

A good amount of breakdown was presented in Chapter 3 regarding the 

mechanism of vulnerability scoring, data gathering and correlating, evaluation metrics, 

ML model and its algorithm. Analysis with the help of comparison tables of results, 

parameters and figures depicting proportions of class imbalances and confusion matrix 

representing accuracy attained by the model in calculating CVSS scores were shown in 

chapter 4. After obtaining the ratings, one of the most difficult tasks will be to mitigate 

the vulnerabilities. 

Specifically, determining the severity of a specific vulnerability—often with the 

help of the CVSS—is a typical method of determining the order in which vulnerability 

mitigation should be prioritized. Organizations that store or process credit cards are 

required by the payment card industry data security standard (PCI-DSS) to remediate 

vulnerabilities greater than CVSS four. Additionally, back in 2019, the Department of 

Homeland Security published an official operational orders directing federal departments 

to fix high and critical vulnerabilities conferring to CVSS standard [36]. 

In this chapter, an in-depth analysis of Known Exploited Vulnerabilities (KEV) 

catalog is carried out which is issued by Cyber and Information Security Agency (CISA). 

CISA maintains the official source of vulnerabilities that have been exploited in the wild 

for the usage of network administrators and cybersecurity professionals, as well as to 

assist every company in better managing vulnerabilities and staying up to date with threat 

activities [50]. CISA advice that KEV catalog should be incorporated by organizations 

into their vulnerability management priority system [50]. Experiments have been 

conducted using the KEV catalog to analysis the trends and patterns in the dataset of 

exploited vulnerabilities and keeping in view the analysis recommendations are outlined 

to mitigate the vulnerabilities. 

5.1 Known Exploited Vulnerabilities (KEV) 
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KEV is a 10 labels-based catalog, which is maintained by CISA has by the end of 

year 2023, 1055 entries. The catalog is available on website in 2 formats CSV and JSON 

(CISA provides JSON Schema too). The catalog has different labels which are shown 

inTable 0.1. 

Table 0.1: CISA catalog format 

Lables 

Cve ID Vendor Project Product Vulnerability Name Date Added 

Short 

Description 

Required Action Due Date Known Ransomware 

Campaign Use 

Notes 

5.2 Analysis for Patterns 

In this research, an in-depth analysis of KEV is carried out to observe any pattern 

in KEV keeping CVSS score as base parameter. To do so, the catalog was appended with 

another label of CVSS score fetched from pure NVD dataset and a year label was 

included which was extracted from CVE_ID label. 

To look at the pattern and trend of vulnerabilities exploitation, analysis is done 

with the help of chart showing trend year wise in Figure 0.1 and Figure 0.2.By looking at 

both charts we can see the increasing trend of vulnerabilities exploitation year wise.  
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Figure 0.1: Year wise occurances of CVSS V2 vulnerabilities 

 

Figure 0.2: Year wise occurances of CVSS V3 vulnerabilities 

To further analyse to find out which CVSS score vulnerabilities were more 

exploited count of CVSS V2 and V3 vulnerabilities was done. Table 0.2shows the count 

of occurrences grouped by the category of CVSS scores they fall into and Figure 0.3 and 

Figure 0.4shows the graphical representation. 



84 

 

Table 0.2: Occurrences CVSS score range-wise 

Category ranges CVSS Score Count of CVSS V2 entries Count of CVSS V3 entries 

9.1-10 296 291 

8.1-9      6 186 

7.1-8      266  296   

6.1-7 137 50 

5.1-6 60 44 

4.1-5 95 12 

3.1-4 6 3 

2.1-3      8 0 

1.1-2 1 0 

0-1 0 0 
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Figure 0.3: KEV entries CVSS score wise V2 

 

Figure 0.4: KEV entries CVSS score wise V3 
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The data set was further examined for the exploitation range of the score wise 

instances occurred each year. Figure 0.5 and Figure 0.6are depicting occurrence of 

vulnerability exploitation in each year and with their corresponding range scale of CVSS. 

 

Figure 0.5: KEV entries CVSS score category wise V2 

 

Figure 0.6: KEV entries CVSS score category wise V3 
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5.3 Recommendations 

By doing in-depth analysis of the data represented in section 5.2, at first, 

vulnerabilities of score 6.1-8, 9.1-10 are exploited on the higher side and vulnerabilities 

lying between 4.1 to 6 are second highest to be exploited. For CVSS V3 the score range 

8.1-9 is also on the higher side but for CVSS V2, 8.1-9 are exploited on the lower side.  

By looking at the statistics, recommended priorities to fix the vulnerabilities are 

displayed in Table 0.3 

Table 0.3: Priority of Vulnerability mitigation 

Score range Priority 

6.1-10 First 

4.1-6 Second 

0-4 Rest 
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CONCLUSION AND FUTURE WORKS 

Identifying and evaluating vulnerabilities is an essential and challenging task. To 

evaluate the severity of a stated vulnerability instance, it is suggested in this research to 

improve the effectiveness of vulnerability severity scoring systems that adhere to CVSS 

standards. This research approach reduces potential delays in calculation of severity 

scores by implying a machine-learning model, which is trained using suitable 

vulnerability instances as ground truth, which acts as a basis for scoring. When compared 

to similar studies, the performance of the suggested model demonstrates high precision as 

well as micro F1-score thresholds, resultantly higher producing accuracy.  

To verify the suggested vulnerability assessment model, a case study that involve 

Data center vulnerability observations from multiple repositories is presented. The case 

study is conducted keeping in view the conflicts arising from different CVSS 

mechanisms and addresses erratic vulnerability severity scores contributed by different 

cybersecurity analysers. The arithmetic mean method was used to determine the score of 

incoherent indications for identical vulnerabilities in various cybersecurity repositories.  

The case study's results further demonstrate that vulnerability scoring differ 

depending on the cybersecurity data sources utilized, which could possibly distort 

cybersecurity decisions about patch prioritization and funding. Therefore, to increase 

cybersecurity awareness even further, an analysis of vulnerabilities approach which 

correlates various sources of information is required.  

In addition to that, an in-depth analysis of CISA’s KEV is done to suggest which 

vulnerabilities scores should ne prioritize in mitigation of vulnerabilities according to 

scores.Exploring the application of Deep learning-based models for predicting CVSS 

scores and the types of threats associated with each vulnerability will enable the proposed 

research to be investigated further. By applying computational intelligence techniques, 

such startup settings could be dynamically adjusted in addition to being provided by 

security experts. 
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To assess the dependability of the scores obtained from various sources, 

arithmetic means of multiple scores from more sources could be another potential future 

pathway.Subsequently, this research has been planned to keep in mind investigating the 

importance of vulnerabilities and their mitigation parameters in general and specifically 

for data center environment.  

In addition to that, further study of CISA KEV entries with CVSS scores and their 

relevant labelsfor different versions including AV, AC, Au, PR, S, C, I, Aand their sub-

classes can be carried out to analyse the relationship and impact between scores and 

classes.  
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