

AI-Driven Vulnerability Prediction and Mitigation in

Datacenter Environment

By

Aaliya Ali

(00000397850)

Supervised by

Cdre. Dr. Nadeem Kureshi

Department of Cyber Security

Pakistan Navy Engineering College (PNEC)

National University of Sciences & Technology (NUST)

Islamabad, Pakistan

(2024)

AI-Driven Vulnerability Prediction and Mitigation in

Datacenter Environment

By

Aaliya Ali

(Registration No: 00000397850)

A Thesis Submitted to the National University of Sciences and Technology,

Islamabad, in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE in

CYBER SECURITY

Supervisor: Cdre. Dr.Nadeem Kureshi

Pakistan Navy Engineering College (PNEC)

National University of Sciences & Technology (NUST)

Islamabad, Pakistan

(2024)

i

vii

ii

iii

iv

v

To the guiding lights of my life,

To my late father, whose unwavering support and wisdom shaped the foundation of my

dreams. Your memory fuels my determination, and I dedicate this thesis to the lessons

you imparted and the love that continues to inspire me. To my resilient mother, whose

sacrifices and love are the foundation of my strength.To my siblings, the source of shared

laughter and enduring bonds. To my precious children, your joy fuels my purpose. To my

husband, your unwavering support is my anchor in life's journey.To my teachers, your

guidance shaped my intellect. To my supervisor, your mentorship was invaluable. This

thesis is dedicated to each of you—my pillars of love, support, and inspiration. I am

grateful for the impact you've had on my life and academic journey.

vi

ACKNOWLEDGEMENTS

I extend my deepest gratitude to Cdre Dr. Nadeem Kureshi, not only for his role as

my esteemed supervisor but also as the Dean of the department. His guidance, support,

and unwavering commitment to academic excellence have been instrumental in shaping

this thesis. I would also like to express my sincere appreciation to the members of the

GEC, Dr. Ayaz Sherazi and Dr. Muhammad Usama, for their valuable insights,

constructive feedback, and dedication to fostering a rigorous academic environment. To

my beloved children, whose understanding, patience, and encouragement sustained me

throughout this academic journey. Your presence added a dimension of joy and purpose

to each step of the way. To my husband, whose unwavering support and belief in my

abilities were my constant motivation. Your encouragement was a driving force behind

the completion of this thesis. To my siblings, thank you for being a source of inspiration

and a pillar of support during both challenging and triumphant moments. Each of you

played a pivotal role in this academic endeavor, and I am profoundly grateful for your

contributions, encouragement, and belief in my capabilities. This achievement reflects

our collective efforts and the strength derived from your support.

vii

viii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS xi
TABLE OF CONTENTS viii
LIST OF TABLES x

LIST OF FIGURES xi

LIST OF SYMBOLS, ABBREVIATIONS AND ACRONYMS XII
ABSTRACT xiv

CHAPTER 1 : INTRODUCTION 1
1.1 Background 1

1.2 Research Objective 4

1.3 Contribution 5

1.4 Structure 5

CHAPTER 2 : LITERATURE REVIEW 7

2.1 Related Work 7
2.1.1 Data Center and Vulnerabilities 7

2.1.2 Diverse Approaches 8
2.1.3 Correlated Studies 9

2.2 Research Gap 11

2.3 Data Repositories 11
2.3.1 Common Vulnerability Enumeration 11

2.3.2 National Vulnerability Database 12

2.3.3 Other Sources 14

CHAPTER 3 : METHODOLOGY 16
3.1 Introduction 16

3.2 Framework Planned 16
3.3 Vulnerability Severity Metrics 18

3.3.1 Exploitability Metrics 18

3.3.2 Scope (S) 20
3.3.3 Impact Metrics 21

3.4 Vulnerability Computation 21
3.4.1 Version 2 21
3.4.2 Version 3 23

3.5 Workflow for proposed Framework 24

3.5.1 Data Extraction 24
3.5.2 Data Set Preparation 26
3.5.3 Data Cleaning 28

3.5.4 Arithmetic Mean (AM) 30
3.5.5 Vulnerability Severity Calculation 30
3.5.6 Evaluation 30
3.5.7 Validation 31
3.5.8 Feature Extraction 32
3.5.9 ML Model Application 32
3.5.10 Mathematical Modelling 33

3.5.11 Library Used 35

3.6 Algorithms 39
3.6.1 Algorithm 1: Calculation of Base Score CVSS V3 40
3.6.2 Algorithm 2 Generation of Data Product wise from CVE details 41
3.6.3 Algorithm for Impact Calculation 42
3.6.4 Algorithm for Base Score Calculation CVSS V2 43

3.6.5 Algorithm to Calculate Arithmetic Mean 44

CHAPTER 4 : EXPERIMENTS AND RESULTS 45
4.1 Evaluation Metrics 45

4.1.1 Accuracy 45
4.1.2 Precision 46
4.1.3 Recall 46

4.1.4 F1 Score Balanced 46
4.1.5 Support 48
4.1.6 Reciprocal Rank and Mean Reciprocal Rank 48

4.2 Results of Random Forest Model 49
4.2.1 RF Classifier specification 49

4.2.2 Data Breakdown 50
4.2.3 Results and Comparison 59

4.2.4 Performance Study 66
4.3 Analysis 79

CHAPTER 5 : RECOMMENDATIONS FOR MITIGATION 81
5.1 Known Exploited Vulnerabilities (KEV) 81
5.2 Analysis for Patterns 82

5.3 Recommendations 87

CHAPTER 6 : CONCLUSION AND FUTURE WORKS 88

REFERENCES 90

LIST OF TABLES

Table 3.1: Dataset features for each CVE record CVSS V2... 26
Table 3.2: Dataset features for each CVE record – CVSS V3.. 27

Table 4.1: RF parameters .. 49
Table 4.2: Comparison Table LR & RF for CVSS V2 NVD Only 59
Table 4.3: Comparison Table LR & RF for CVSS V3 NVD Only 60

Table 4.4: Comparison Table RF with different parameters for CVSS V2 NVD Only ... 61
Table 4.5: Comparison Table RF with different parameters for CVSS V3 NVD Only ... 62
Table 4.6: Comparison Table RF with different parameters for CVSS V2 DC Data 63
Table 4.7: Comparison Table RF with different parameters for CVSS V3 DC Data 64
Table 4.8: RF for CVSS V2 DC correlated data ... 65

Table 4.9: RF for CVSS V3 DC correlated data ... 65
Table 4.10: Evaluation metrics for pure NVD dataset CVSS V2 66
Table 4.11: Evaluation metrics for pure NVD dataset CVSS V3 67
Table 4.12: Evaluation metrics for DC dataset CVSS V2 .. 67
Table 4.13: Evaluation metrics for pure DC dataset CVSS V3 .. 68

Table 4.14: Calculation on Evaluation Metrics for pure NVD dataset CVSS V2 69
Table 4.15: Calculation on Evaluation Metrics for pure NVD dataset CVSS V3 69

Table 4.16: Calculation on Evaluation Metrics for pure DC dataset CVSS V2 70
Table 4.17: Calculation on Evaluation Metrics for DC dataset CVSS V3 70

Table 5.1: CISA catalog format .. 82
Table 5.2: Occurrences CVSS score range-wise .. 84

Table 5.3: Priority of Vulnerability mitigation ... 87

x

LIST OF FIGURES

Figure 1.1: Basic calculation cycle of CVSS .. 3
Figure 2.1: CVE complete process ... 13
Figure 3.1: Detailed representation of CVSS score calculation with NVD 17

Figure 3.2: Broad representation of CVSS score calculation with NVD 19
Figure 3.3: DC data extraction cycle .. 25
Figure 3.4: Complete Data generation cycle ... 29
Figure 4.1: Count wise vulnerabilities of CVSS V2 ... 50

Figure 4.2: Count wise vulnerabilities of CVSS V3 ... 51
Figure 4.3: Count wise vulnerabilities of DC products .. 51
Figure 4.4: Count wise vulnerabilities of DC products .. 52
Figure 4.5: Percentage of different classes data in Access Vector – CVSS V2 52
Figure 4.6: Percentage of different classes data in Access Complexity– CVSS V2 53

Figure 4.7: Percentage of different classes data in Authentication – CVSS V2 53
Figure 4.8: Percentage of different classes data in Confidentiality Impact – CVSS V2 .. 54
Figure 4.9: Percentage of different classes data in Integrity Impact – CVSS V2 54

Figure 4.10: Percentage of different classes data in Availability Impact – CVSS V2 55
Figure 4.11: Percentage of different classes data in Attack Vector – CVSS V3 55
Figure 4.12: Percentage of different classes data in Attack Complexity – CVSS V3 56

Figure 4.13: Percentage of different classes data in Privileges Required – CVSS V3 56
Figure 4.14: Percentage of different classes data in User Interaction – CVSS V3 57
Figure 4.15: Percentage of different classes data in Scope – CVSS V3 57

Figure 4.16: Percentage of different classes data in Confidentiality Impact – CVSS V3 58
Figure 4.17: Percentage of different classes data in Integrity – CVSS V3 58

Figure 4.18: Percentage of different classes data in Availability Impact – CVSS V3 59
Figure 4.19: Confusion matrix for Access Vector – CVSS V2 .. 71
Figure 4.20: Confusion matrix for Access Complexity – CVSS V2 72

Figure 4.21: Confusion matrix for Authentication – CVSS V2.. 72
Figure 4.22: Confusion matrix for Confidentiality – CVSS V2 73

Figure 4.23: Confusion matrix for Integrity – CVSS V2.. 73
Figure 4.24: Confusion matrix for Availability – CVSS V2 .. 74

Figure 4.25: Confusion matrix for Attack Vector – CVSS V3 ... 75
Figure 4.26: Confusion matrix for Attack Complexity – CVSS V3 76

Figure 4.27: Confusion matrix for User Interaction – CVSS V3 76
Figure 4.28: Confusion matrix for Privileges Required – CVSS V3 77
Figure 4.29: Confusion matrix for Scope – CVSS V3.. 77
Figure 4.30: Confusion matrix for Confidentiality Impact – CVSS V3 78

Figure 4.31: Confusion matrix for Integrity Impact – CVSS V3 78
Figure 4.32: Confusion matrix for Availability Impact – CVSS V3 79
Figure 5.1: Year wise occurances of CVSS V2 vulnerabilities .. 83
Figure 5.2: Year wise occurances of CVSS V3 vulnerabilities .. 83

Figure 5.3: KEV entries CVSS score wise V2 ... 85
Figure 5.4: KEV entries CVSS score wise V3 ... 85
Figure 5.5: KEV entries CVSS score category wise V2 ... 86

Figure 5.6: KEV entries CVSS score category wise V3 ... 86

xi

LIST OF SYMBOLS, ABBREVIATIONS AND ACRONYMS

AC Attack Complexity / Access Complexity

AI Artificial Intelligence

API Application Programming Interface

AV Attack Vector / Access Vector

CIA Confidentiality Integrity Availability

CISA Cyber Security and Infrastructure Security Agency

CVE Common Vulnerability Enumeration

CVSS Common Vulnerability Scoring System

CWE Common Weakness Enumeration

FIRST Forum of Incident Response and Security Teams

KEV Known Exploited Vulnerabilities

ML Machine Learning

MRR Mean Reciprocal Rank

NLP Natural Language Processing

NVD National Vulnerability Database

NIST National Institute of Standards and Technology

RF Random Forest

RR Reciprocal Rank

S Scope

TF-IDF Term frequency – Inverse Document Frequency

ABSTRACT

In this era of digitization where everything is shifted to computer systems, Data and

Information are the key assets of any organization. To maintain huge amount of data,

Data center (DC) is considered primary resource. However, as much as we rely on DC

for storage of data and operations, it is at risk of vulnerability exploitation and attacks.

Vulnerability assessment is difficult task because different procedures are employed to

assess different levels of cyber-security weaknesses. There are various repositories

maintaining database of vulnerabilities but one can see delays and inconsistency in the

severity scores calculated by them. In this research, effort is put to assess role of ML in

looking at patterns in the reported vulnerabilities and predicting CVSS scores. The error

rate caused by the manual calculation procedures that are often employed in

cybersecurity analysis is reduced by this method. Further, a method is formulated and

applied to a case study on DC, where focus is on resolution of disparity between various

scores provided by various sources including NVD, Vulner and VulDb with the help of

CVE Details API for the retrieval of pertinent DC related equipment records and applied

Arithmetic mean scoring system along ML model.To validate the suggested method,

NVDdata base is referred and CVSSv2 and CVSSv3 scores are calculated and increased

accuracy is gained. In addition to that, CISA KEV catalog is analyzed and priority

preferences to mitigate the vulnerabilities are provided to help in performing risk

estimation.

Keywords: Artificial Intelligence, Data Center, CISA, CVE, CVSS, KEV, Machine

Learning, NVD, Prediction.

1

INTRODUCTION

1.1 Background

Development is moving at an unprecedented rate right now. Almost every

significant aspect of our routine involves the use of computer systems, including

everyday tasks like paying bills, doing vacations, purchasing, sharing documents,

educating others or self, talking and video conferencing [1].

All these operations are carried out by using a large amount of data and

information and data center is a home for computer systems where organizations keep

every type of information and data. In addition to that, a data center manages all network

workflow and data transmission. With the current state of technology, many

organizations have come to the realization that to provide real-time, fast, and

uninterrupted data transfer, they must fully set up their data center possible [2].

It is necessary that the information must always be available to an organization,

regardless of the issues it faces. This has an impact on the assumption that data centers

will operate properly to serve the company. Data centers are created as one of the

organization's resources for handling data management, as well as for the dissemination

of data and secondary storage media [3].

Vulnerabilities that accompany with increasing dependency on these systems in

our daily lives also become a part of what we do. In terms of the risks they offer, if

exploited, these vulnerabilities might range from being essentially innocuous to quite

deadly. [1].

A vulnerability is an issue in a computer program or hardware which can be

directly exploited by a hostile actor to obtain access to a system or network and

manipulate it in an unfavorable way [4]. The frequency of vulnerability exposure is

increasing due to the complexity of logic and the large number of source codes [5].

2

One may consider vulnerabilities to be a particular class of flaws. They can be

more significant than bugs depending on the application, and their discovery calls for a

different procedure than that of defects. Vulnerabilities typically go undetected while

flaws are discovered by users or developers amid routine system operation. [6].

Researchers have created vulnerability prediction techniques; the proposed

frameworks identify features that are expected to be vulnerable and use that information

to direct security assessments, such as code audits or security assessments [5].In addition

to increasing the effectiveness of vulnerability recovery and management, properly

classifying, and managing vulnerabilities can lower the likelihood of a system attack and

harm, which is critical for the system's security performance [7].

To enhance patch selection operations and offer forecasting, contemporary

security procedures encourage the use of statistical analytical techniques. In general,

vulnerability scoring is carried out using Common Vulnerability Scoring System (CVSS),

which necessitates human inputs from an expert, to assess a vulnerability instance based

on predetermined parameters [8].

3

Figure 0.1: Basic calculation cycle of CVSS

CVSS is extensively used in educational research and business settings to

evaluate vulnerability severities. [9,10] but, in practical use, CVSS presents several

difficulties. [11]. Essentially, individual experts determine the severity of a vulnerability

since it has been reported in CVE and have the possibility that it will take some time to

do so. The longer it takes to assess vulnerabilities, the more likely it is that threats will

turn into real breaches [12]. It is consequently expected that vulnerability scoring

automation will eliminate the attack vector for zero-day vulnerabilities [13].

Fig. 1 Basic calculation cycle of CVSS

4

Common Vulnerabilities and Exposures dataset is a main source of data, National

Vulnerability Database (NVD) additionally assigns CVSS scores and other quantitative

metrics to vulnerability reports derived from CVE [8]. However, it may be an influenced

and ambiguous choice to only rely on NVD only for assessing and handling

vulnerabilities [14]. Furthermore, disparities exist across current iterations of the CVSS,

resulting in metrics that are not consistent. These challenges were not sufficiently

addressed in earlier research [13] subsequently producing contradictory results.

For instance, NVD uses CVSS version 3 scores to rate vulnerability instances

reported only from 2015 onwards. The issues of varying CVSS cores as well as delays

incurred are highlighted by the help ofFigure 0.1,we can see that for any vulnerability,

the score generated as taking formula from First.org and each organization generates their

own data which is most of the time not same. [13]

1.2 Research Objective

In this research, we suggest a vulnerability rating method to measure the severity

of a reported vulnerability occurrence. By converting quantitative signs into actionable

intelligence, the calculated scores will help to improve contextual awareness.This

approach overcomes problems with compatibility between different CVSS versions and

improves vulnerability prediction. Standard CVSS criteria serve as a foundation for rating

vulnerabilities' exploitability as well as the effects of nefarious exploitation.

To achieve these goals, we correlate vulnerability scores and reports from several

online cybersecurity data sources, such as NVD, CVE details, and other websites like

Vulner and Vuldb.For the vulnerability-severity calculation approach based on Machine

Learning (ML), this research works on generating ground truth. After that, it will utilize

these cases to train machine learning model, then it further assesses using vulnerabilities

found in vulnerability repositories like NVD, VulDb, and Vulner.

The research objectives are:

1. To investigate the potential benefits of AI-based vulnerability prediction of a

data center

5

2. To explore the patterns of vulnerability in NVD and other sources using AI

The assessment of DC vulnerability and associated variables demonstrates a

higher degree of automation in cybersecurity evaluations.

1.3 Contribution

The following summarizes this research’s primary contributions:

1. A unique machine learning framework for vulnerability assessment that

deduces vulnerability instances' CVSS severity scores. As part of the

suggested machine-learning paradigm, this technique uses an arithmetic mean

system to handle compatibility difficulties of CVSS scores. To provide a

shared computational semantic that enhances consistency in vulnerability

assessment, the technique can be modified to support a preferred version of

the CVSS.

2. A case study on DC vulnerability analysis that supports the suggested

machine-learning-based method for vulnerability assessment.

3. A prioritization mechanism for mitigation of vulnerabilities based on analysis

of CISA KEV catalog.

1.4 Structure

The remaining portions of this study are arranged as follows:

1. Chapter 2, is the literature review of how other researchers work is related to

VSS, NVD and Management of Data Center and the existing standards of

CVSS calculations. It also discusses data sources of vulnerability scores.

2. Chapter 3,presents prototype for vulnerability assessment, which uses text

analysis techniques to reconcile disparate CVSS versions on a collection of

vulnerability reports and compares current CVSS scores against other security

warning signs.

6

3. Chapter 4,is the analysis of vulnerability finding and assessment methods in

DC applications primarily using NVD and CVE information API, through

some investigation. It discusses the results of experimental work done to

process correlated data and achieve accuracy.

4. Chapter 5, elaborates the processes done on the mitigation and prioritization

work. It discusses the analysis done on CISA KEV catalog and suggests a way

forward.

5. Chapter 6, offer some closing thoughts by providing conclusion of the

research work carried out and provides several potential paths for further

study.

7

LITERATURE REVIEW

 This chapter presents a detailed overview of the importance of vulnerability

assessment in cyber security in general and Data center in particular by studying previous

research work and exploring the possibility and implementation of AI and ML

techniques. Section 2.1 explains the diversified work carried out for vulnerability severity

assessment and importance of Data Center management. Section 2.2 introduces various

Data set sources used to carry out the work. Section 2.3 Discusses Vulnerability Severity

Metrics and how each of it weighs the final score calculation.

2.1 Related Work

2.1.1 Data Center and Vulnerabilities

 According to Matthieu et. al [6], The goal of vulnerability projection modelling, a

relatively new area of research, is to automatically categorize software entities as

susceptible or not. By identifying the entities to concentrate on, this sort of approach aims

to assist code reviewers. These methods are beneficial as they are independent of any

precise information or dependency of the program, they are working on to garner the

investigation. Therefore, they can mold into varying projects by using relevant training

data. One way to think of vulnerability prediction is as a branch of flaw prediction. Hall

et al [15] carried out athorough survey and provides a summary of these strategies.

D. Achmadi et. Al. [16] says that, In today’s digital epoch, the most important and

pivotal entity is data center, especially for a business. Since a point where data goes

through progression, broadcast and accumulated, it becomes of a great deal of value that

it should be available in terms of service and support.

Levy et. Al. [17] claims that as world is heavily dependent on data centers for its

operations, the need to intelligently supervise and administer them with improvement in

its efficiency and output increases tremendously. In addition to that, the risk of collapse

will be very less. According to Colombelli et. Al. [18] Vulnerabilities are flaws in

8

systems, processes, and strategies that result in risks. Later on, the researchers [18] with

other researcher gives perspective on vulnerabilities in data center as they said that

vulnerabilities are available in data centers and we need to tackle them as early as they

are discovered as they can pose severe threat to the stability and operation of

organization.

Most of the attacks are not carried out by exploiting zero-day vulnerabilities

rather they are done using known exploited vulnerabilities which are out in public since a

long time like months or years [19].

2.1.2 Diverse Approaches

Sharma et al [1] performed vulnerability prioritization based on the textual

description of vulnerabilities. The total number of vulnerabilities in the dataset used is

10,000 and they are divided into three categories based on their CVSS scores. They have

made 5 different data sample, the dataset includes data from three vendors viz, Linux

(V1), Microsoft (V2) and Google(V3). Each of this data sample contains 2000

vulnerabilities and 90,282, 70,594, 76,006 words in description. The other two data

samples (MV1 and MV2) also contain 2000 vulnerabilities each, but they are not vendor

specific and contains vulnerabilities detected in products from different vendors. MV1

contains 91,750 words and MV2 contains 78,893 words.

Ziems et. al. [20] explores use of Natural Language processing (NLP) deep

learning models to automatically detect vulnerabilities on National Vulnerability

Database and used C language as programming tool. They claim 93% accuracy in

detecting security vulnerabilities. Whereassharma et. al. [21] developed a semi-automatic

model that is based on CVSS score and evaluated Critical threat intelligence feed (CTI)

and claims that their model provides strength to mitigate vulnerabilities in a network.

Amarasinghe et. al. [22] worked on the prediction of cyber-attacks by using

convolutional neural networks and algorithm SARIMA. Their approach works in two

steps, first is the detection of vulnerabilities and second is the prevention by using AI

9

based models. Dash claims that prediction of an attack is possible by looking at patterns

in the Data, resultantly help to protect system from vulnerabilities.

Blinowski& Piotrowski [23] did classification of vulnerability record into seven

unique types: the SCADA system, Commercial & Networks, cell phones, PC

equipment, other products which are not for home use and Small Office / Home

Office.An SVM classifier has been used with the handpicked dataset in order to forecast

the categories of novel vulnerabilities. with this they achieved classification accuracy and

recall rates of approximately fifty percent or less for fewer-populated groups and seventy

to eight for more populated categories. SVM is accurate for classifying text data, albeit

the results are not optimal.

Zhang et. Al [24] work primarily focuses on predicting the time in days until the

next vulnerability. Utilizing the MulVAL attack-graph analyzer, a quantitative risk

assessment methodology based on known vulnerabilities, they have implemented the

prediction model.They think that another useful metric for estimating the risk-level of

zero-day vulnerabilities may be the quantity of zero-day vulnerabilities (of each

software). Researchers also need to consider the severity of each vulnerability for each

application, since the number of active zero-day vulnerabilities could not be sufficient to

evaluate the risk-level of zero-day vulnerabilities.

S. Na et al [25] have given proposal to use the naïve Bayes classifier to classify

CVE entries into vulnerability types.The experimental dataset has been categorized into

two groups, CWE, 119 and CWE 79, based on the highest number of CWEs. They claim

that their categorization model's accuracy was 99.8%. The accuracy for subsequent

experiment's classification which was done for top three and top five CWEs was found to

be 95.1% and 84.5%, respectively.

2.1.3 Correlated Studies

The integration of diverse viewpoints from several stakeholders can be achieved

by correlation studies linking multiple cybersecurity data sources, linking intricate

analysis into more comprehensive statistical relationships [8].Some popularly used

10

vulnerability database, cyber-attack and advisory sources are Mitre [26], CVE [27], NVD

[28], VulDb [29], Canadian Center for Cyber Security [30]. Afterwards, other websites

like 0day.today [31], ExploitDB.com [32], and cvedetails[33] use these sources.

Using PoCs taken from ExploitDB.com as ground truth, the researchers [34] use

SecurityFocus and NVD to forecast the exploitability and use of vulnerabilities.The

researchers [35] examine the initial public release dates of several data sources, such as

SecurityFocus, ExploitDB,NVD and certain companies like Cisco, Wireshark and

Microsoft. In comparison to other data sources, they note that vulnerability occurrences

disclosed in NVD are behind schedule by one to seven days.

Jimenez et al [6] put an effort in differentiating between components that are

vulnerable and non-vulnerable, researchers have evaluated the efficacy of vulnerability

prediction models. They have used regular expression to gather data from git URLs. The

vulnerable files that were obtained are specifically relevant to the Linux Kernal and are

written in C. A total of 1,640 with 743 different types of vulnerabilities have been

collected since 2005. They demonstrated that vulnerability models for prediction can be

more accurate and more effective than random selection when applied to the Linux

kernel. They employed libSVM module of the Weka3 core library as their model.

Jacobs et. al. [36] performed a thorough study and proposed their own

exploitability scoring. They extracted common multi-word expressions from the raw text

using Rapid Automatic Keyword Extraction and manually culled and normalized a list of

191 tags encoded as binary features for each vulnerability.Exploit code was extracted

from Exploit DB,weaponized exploits were found by looking at the modules in Rapid 7’s

Metasploit framework,D2 Security’s Elliot Framework,and the Canvas Exploitation

Framework. The Outcome variable, information about whether the vulnerability was

exploited in the wild, comes from Proofpoint, Fortinet and AlienVault. (exploitations

within the first 12 months after the CVE was published). They used 159 vulnerabilities

from June 1, 2016, and June 1, 2018 from MITRE’s CVE and NVD including CVSS base

severity score, sub-metrics, CPE and used logistic regression model.

11

Jiang& Atif [8] proposed a mechanism to predict CVSS scores by using NVD

data and other third parties. They used majority voting system for selection of CVSS

scores and performed a case study on CPS based system. They claim that disadvantage of

earlier AI-based CVSS calculating methods is that their models may be biased because

they use the vulnerability reports and CVSS scores from NVD only as their training data.

Instead, the researchers [8] have combined multiple data sources with NVD like other

related vendor reports with independent cyber security analyzers like CERT reports.

Further they performed a case study on Cyber Physical Systems and gathered

vulnerabilities related to them.

This research is inspired by their work and is an effort on implementing the future

work proposed by them and applying another ML model. In addition to that, suggesting

mitigation ways by performing in-depth analysis of Cyber Security and Infrastructure

Security Agency’s Known Exploited Vulnerabilities catalog.

2.2 Research Gap

The dataset is rich and contains options to explore in various ways. One of them is

to analyze vulnerabilities, Risks and cyber-attacks in Data center environment, and give

recommendations according to study carried out on CISA KEV catalog analysis. In

addition to that, previous researchers [6] use majority voting scheme and that can neglect

work of other sources. Therefore, scheme of calculating arithmetic mean of various

sources scores can be implemented to analyze the results. Further, it is observed that the

source used [6] Security focus is discontinued as it is now owned by Symantec is not

publicly available. The aim of this research work is to overcome the issue of non-

availability of other sources by incorporation of available vulnerability databases and

performing different ways of corelating data with different ML model and Arithmetic

means, resultantly, acquiring better results in predicting vulnerabilities. Moreover,

analyzing CISA KEV for providing a mechanism to prioritize vulnerabilities to mitigate.

2.3 Data Repositories

2.3.1 Common Vulnerability Enumeration

12

In 1999, the MITRE Corporation organized a collaborative effort to create the

CVE List [27].For giving each disclosed vulnerability a unique identification, MITRE

Organization releases the CVE [26] industry standard. Furthermore, it keeps an openly

searchable list of all identifiers via CNA which stands for Common Vulnerability

Enumeration Numbering Authority.

Every vulnerability on the CVE List gets a distinct CVE Record. After a

vulnerability is found, it is reported to the CVE program. A CVE ID is then requested by

the reporter and set aside for the disclosed vulnerability. The record is added to the CVE

List once the vulnerability that was reported has been verified by determining the

minimal set of data pieces needed to create a CVE Record. Worldwide partners of the

CVE Program publish CVE Records. Process of CVE is shown inFigure 0.1.

The fields that are usually present in a CVE entry are: an identification number, a

synopsis of the reported vulnerability, and any relevant references. The crucial factor that

sets one security vulnerability apart from another is its own CVE ID. By doing this, CVE

IDs offer a dependable means of interacting with these various databases to obtain further

details on the security vulnerabilities that have been disclosed.

2.3.2 National Vulnerability Database

NVD [28] expands on the data included in CVE entries to offer more detailed

information for every entry, including impact ratings and severity scores that are

determined using the CVSS standard. The structured JSON or XML formats are created

from the unstructured CVE data by NVD.NVD offers sophisticated searching options,

including OS, manufacturer, product, edition number, vulnerability type, and severity, as

part of its improved information. Affected product names and versions have

corresponding string entries in CPE entries, among these additional features. The

Common Weakness Enumeration (CWE) [32] repository provides features for

vulnerability categories by abstracting reported errors and weaknesses into common

groupings of vulnerabilities and adding data about expected behaviors, impacts, and extra

implementation details. The CVSS version 3 and version 2 guidelines are used to

determine the vulnerability severity score.

13

Figure 0.1: CVE complete process

14

2.3.3 Other Sources

2.3.3.1 CVE Details

It is a website thatprovides information about Common Vulnerabilities and

Exposures (CVE). CVE is a system that assigns unique identifiers, called CVE IDs, to

vulnerabilities in software and hardware. These identifiers help standardize the process of

tracking and addressing security vulnerabilities. Typically, the workflow of it is as

follows:

1. Database of Vulnerabilities: A thorough database of known vulnerabilities is

kept up to date by CVE Details. Every vulnerability has its own CVE

ID.Search and Browse: Users can peruse the database by vendor, product, or

vulnerability type, or they can search for individual vulnerabilities.

2. Vulnerabilities Details: The website offers comprehensive information on

each CVE entry, including a description of the problem, an estimate of its

severity, the date it was found, and links to relevant security warnings.

3. Statistics and Trends: Statistics on the number of vulnerabilities per

manufacturer, product, or severity level are frequently displayed on the

website. Users may use this to evaluate the security posture of various

hardware and software components.

4. CVSS Scores: For every vulnerability, scores from the Common Vulnerability

Scoring System (CVSS) are often given. A methodology called CVSS is used

to evaluate the seriousness of security flaws and assigns a number to each one

that represents the risk involved.

5. References And Links: CVE Details usually provide links to other resources,

including security advisories and patches, where users may obtain further

details about the vulnerability and instructions on how to address or mitigate

it.

2.3.3.2VulDb

15

It’s a leading platform for vulnerability management and threat information, was

developed to help businesses remain ahead of security threats. By offering a

comprehensive database of known vulnerabilities and exposures, VulDB makes it easier

for enterprises to quickly identify, assess, and mitigate security risks [29].

2.3.3.3Vulners

Several essential elements and characteristics are:

1. Vulnerability Database: It keeps an extensive database of known

vulnerabilities, along with information on severity levels, descriptions, and

links to relevant security warnings.

2. Search Engine: It allows users to search for specific vulnerabilities, exploits,

or other security-related information. The platform pulls pertinent information

from its large database using its search engine.

3. API Access: Developers and security experts may programmatically access

vulnerability information with the help of Vulners.com's API (Application

Programming Interface). Integrating vulnerability data into security tools,

apps, or scripts can benefit from this.

4. Monitoring and alerts: Users can keep track of new vulnerabilities or exploits

that align with their interests by configuring alerts and monitoring based on

certain criteria.

5. Integration with Security tools: it is frequently utilized in tandem with

additional security tools and resources. Threat intelligence platforms, security

information and event management (SIEM) systems, and other security

solutions can include its data.

6. OpenSource Contributions: It is connected to several open-source

cybersecurity initiatives. This covers scripts and tools for automating the

collection and analysis of vulnerability data.

16

METHODOLOGY

3.1 Introduction

Based on the previous chapter’s research gap, this chapter presents a framework

for AI based vulnerability scoring prediction in general and using corelated data to

predict score for Datacenter Environment in particular. This chapter provides an in-depth

exploration of the tasks executed at each point of planned framework. The ensuing

argument comprehensively describes the Vulnerability dataset, software, Websites / other

Sources, and libraries used in this research.

3.2 Framework Planned

The planned framework uses ML model to predict vulnerability scoring by

ensuring sufficient training. The dataset used to train ML model in the proposed

framework has been adopted from [28] and the case study carried out on DC is done with

the help of [27][33][37]. The method employed is basically adopted from [8] and the

research gap after identifying in [8] as highlighted in the previous chapter is met by

performing arithmetic mean of multiple sources. The framework uses NVD Dataset from

the year 2002-2022 for training and 2023 for validation. The TF-IDF [38] is used for

extracting features appropriate from the textual description of the vulnerabilities provided

with each entry of NVD record. The files are downloaded from [27] in JSON format

using Jupyter notebook by python code and then changed into Common Separated Values

(CSV) format. The Figure 0.1 shows a broader picture of Vulnerability Severity Scores

Calculation for the proposed model that employs ML technique to predict severity scores

with the help of data provided from NVD [28]. First data is extracted from NVD website

and necessary fields are stored in JSON format. Most import fields are description of

vulnerabilities, associated scores, and labels of the classes of different parameters

associated with each CVE. At the second step of Figure, the collected data’s description

is passed through feature extraction process. At third step, the data is classified into

training and testing parts. At this step we can see that the data is processed with the help

17

of Machine learning algorithm and simultaneously the metrics properties and methods are

taken from FIRST website. The obtained results at the next step are evaluated and

appropriate labels are associated with the predictions. At the next step, accuracy of the

model is calculated and if the desired accuracy is not achieved then data is again

processed through machine learning model with different set of parameters.Finally, after

achieving desired results, severity scores are finalized.

Figure 0.1: Detailed representation of CVSS score calculation with NVD

18

TheFigure 0.2 shows detailed picture of Vulnerability Severity Scores Calculation

for the corelated model that employs ML technique to predict severity scores with the

help of data provided from sources [28][29] [37]. It has a different scores calculation

mechanism as it is at first step taking scores from 3 sources including Vulners, VulDb

and NVD. It then takes arithmetic mean of these scores and thenuse those calculated

scores for further calculations same as previous methodology.

3.3 Vulnerability Severity Metrics

An open framework called the Common Vulnerability Scoring System (CVSS) is

used to communicate the features and intensity of software flaws. CVSS has various

versions including 3.1, 3.0, 2 and 1. This scoring system is developed by Forum of

Incident Response and Security Teams (FIRST). The three metric groupings that make up

CVSS are Base metrics, Temporal metric, and Environmental metric. Widely used CVSS

V2 and V3 calculates the Base Score considers the probable worst-case effect across

various deployed contexts and represents the degree of severity of a vulnerability based

on its basic properties, which remain consistent over time. Based on variables that vary

over time, including the accessibility of exploit code, the Temporal Metrics modify the

Base severity of a vulnerability. The Base and Temporal severities are adjusted to a

particular computer environment by the Environmental Metrics. They consider things

like the environment's mitigations. The organization that maintains a vulnerable item or a

third party assessing on their behalf often generate Base Scores. [39]. The base score

metrics for CVSS V2 are six which are Access Vector (AV), Access Complexity (AC),

Authentication (Au), Confidentiality (C), Integrity (I) and Availability (A). For V3, the

base score metrics are eight including AV, AC, C, I, A, Authentication (Au) in place of

Privileges Required, and additionally User interaction (UI) and Scope (S). Moreover,

Access Vector and Access Complexity are called Attack Vector and Attack Complexity

in V3.

3.3.1 Exploitability Metrics

The features of what is vulnerable—formally referred to as the vulnerable

system—are reflected in exploitability metrics.

19

Figure 0.2: Broad representation of CVSS score calculation with NVD

20

3.3.1.1 Attack Vector (AV)

This measure illustrates the environment in which vulnerability exploitation might

occur. The further an attacker may be from the susceptible system, both physically and

conceptually, the greater the metric value and, as a result, the severity that results. AV

has further four classes Network, Adjacent Network, Local and Physical.

3.3.1.2 Attack Complexity (AC)

Attack complexity measures the tangible actions that an attacker needs to do in

order to actively avoid or go around current security-enhancing circumstances put in

before they can produce a functional exploit. AC has further two classes Low and High.

3.3.1.3 Authentication (Au)

This metric counts how many times an attacker needs to authenticate with an

intended user before they can take advantage of a vulnerability. Au has further three

classes Multiple, Single and None.

3.3.1.4 Privileges Required (PR)

This measure indicates the minimum degree of privilege required by an attacker

to effectively take advantage of the vulnerability. When no privileges are needed, the

Base Score is at its highest. PR is further divided two classes Low and High.

3.3.1.5 User Interaction (UI)

This measure indicates the minimum degree of privilege required by an attacker

to effectively take advantage of the vulnerability. When no privileges are needed, the

Base Score is at its highest. UI is further divided into two classes None and Required.

3.3.2 Scope (S)

When a vulnerability in one component affects resources in other components that

are not inside its security scope, the scope metric records this information. S is further

divided into two classes Unchanged and Changed.

21

3.3.3 Impact Metrics

Impact metrics quantify the consequences of a successfully exploited

vulnerability on the most directly and reliably attacked component that experiences the

worst possible outcome. Impacts should be limited to a feasible, ultimate result that

analysts are certain an attacker can accomplish.

3.3.3.1 Confidentiality (C)

This statistic assesses how an effectively exploited vulnerability impacts the

confidentiality of the data assets that a software component manages. C is further divided

into three classes High, Low and None.

3.3.3.2 Integrity (I)

This metric assesses how effectively vulnerabilities that are exploited

affects integrity. Integrity is the quality of being able to rely on and verify information. I

is further divided into three classes High, low and None.

3.3.3.3 Availability (A)

This metric calculates the effect that an effectively exploited vulnerability has on

the affected component's availability. A is further divided into three classes High, low

and None.

3.4 Vulnerability Computation

3.4.1 Version 2

To calculate the base score for version 2, first Impact is calculated, Equation 3.1

shows the relation of confidentiality, integrity and availability (CIA) in calculation of

impact:

 𝐼𝑚𝑝𝑎𝑐𝑡 = 10.41 ∗ (1 − (1 − 𝐶) ∗ (1 − 𝐼) ∗ (1 − 𝐴)) (3.1)

22

 Equation 3.2 shows how to measure exploitability by multiplying attack vector,

attack complexity, authentication with twenty.

 𝐸𝑥𝑝𝑙𝑜𝑖𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 20 ∗ 𝐴𝑉 ∗ 𝐴𝐶 ∗ 𝐴𝑢 (3.2)

This condition describes that function of impact is equal to zero f(Im)=0, if

calculated impact is zero Im=0, otherwise it will be 1.176

AV is different for each class,

 If local access = 0.395

Else if adjacent network accessible = 0.646

Else network accessible = 1.0

ACis different for each class,

If high = 0.35

Else if medium = 0.61

Else low = 0.71

Authentication is different for each class,

If multiple = 0.45

Else if single = 0.56

Else none = 0.704

CIA

C is different for each class,

If none = 0.0

Else if partial = 0.275

23

Else = 0.660

I is different for each class,

If none = 0.0

Else partial = 0.275

Else complete = 0.660

A is different for each class,

If none = 0.0

Else if partial = 0.275

Else complete = 0.660

Finally, all the values are put into the Equation 3.3 for Base Score calculation

which is:

 𝐵𝑎𝑠𝑒 𝑆𝑐𝑜𝑟𝑒 = 𝑅𝑜𝑢𝑛𝑑 (((0.6 ∗ 𝐼𝑚) + (0.4 ∗ 𝐸) − 1.5) ∗ 𝑓(𝐼𝑚)) (3.3)

3.4.2 Version 3

 In CVSS V3 calculations, the sub score calculations for impact (ISS) and

exploitability determine the Base Score. Equation 3.4 is showing calculation forISS:

 𝐼𝑆𝑆 = 𝐼 − [(1 − 𝐶) ∗ (1 − 𝐼) ∗ (1 − 𝐴)] (3.4)

Where as Impact (Im) is dependent on Scope (S), which has two conditions, If S

is changed, then:

Im = 6.44 x ISS

If S is Unchanged, then Equation 3.5 shows the calculation:

 𝐼𝑚 = 7.52 × (ISS − 0.029) − 3.25 × (𝐼𝑆𝑆 − 0.02)15 (3.5)

24

Whereas, the exploitability is calculated as Equation 3.6:

 E = 8.22 × AV × AC ×PR × UI (3.6)

Finally, the Base Score is calculated as, ifIm<=0, then Base Score =0,

Base score is dependent on Scope (S), which has two conditions, If S is changed, then

Else if S is changed, and Equation 3.7 shows calculation of Base Score:

 Base Score =Round (Min [(I + E), 10]) (3.7)

Else if S is Unchanged, then Equation 3.8 shows calculation of Base Score:

 Base Score =Round (Min [1.08 × (I + E), 10]) (3.8)

3.5 Workflow for proposed Framework

This section explains the techniques employed for data analysis to predict

vulnerability effectively. It is pertinent to mention that the prediction is divided into two

parts, Parent is where the predictions are carried out on pure data set from NVD and child

part which makes the case study about the Data Center and that part is the corelated

study. In both the cases, the process consists of different stages including Data extraction,

Data Cleaning, Arithmeic mean, Vulnerability severity calculation, Evaluation,

Validation, Feature extraction, ML Model application and Libraries used. TF-IDF

method of Natural Language Procession (NLP) is used extract features from textual

descriptions taken from the reports of each CVE. Data is divided into training and testing

parts and input to Machine Learning Models.

3.5.1 Data Extraction

3.5.1.1 For Overall Data Extraction

Direct downloads of NVD data streams are made, and they are saved in JSON

format in a database on the computer. For CVSS V2, NVD website was crawled, 171219

25

vulnerability data for the years 2002–2023 are obtained and for V3, 123838 vulnerability

data is obtained.Value pairs for characteristics that are understandable by

humans, makes up the open standard file format known as JSON, which is used for

exchanging data. JSON objects have a tendency to be nestled inside other JSON objects,

and every nested object within the tree-like structure has an individual access path.

NVD includes a wide range of data, including impact measurements (like CVSS),

security checklist references (like the CVE dataset), software vulnerabilities connected to

security (like CWE), and more. When using NVD, it is typical for researchers to use

itaccording to the requirement from set of values [42].

3.5.1.2 For DC Data Extraction

In this research numerous methods have been used to extract vulnerability data

from online available platforms or sources, as represented inFigure 0.3.

Figure 0.3: DC data extraction cycle

26

Initially, the CVE data details is collected from the official website [33] in

accordance with the defined DC set. Multiple selection mechanism employed for this

data extraction phase including CVE api option named as ‘>_API’ [33] along with

Selenium IDE [43] that used mainly for the automation of steps that have been executed

for data filtration and export page wise information as per the selection criterion. The

Selenium IDE (where IDE stands for Integrated Development Environment) enables web

application automation and the recording, editing, replaying, and debugging of functional

web app use cases [43]. Total number of vulnerabilities found for the selected categories

of DC (Servers, IPS, Router, Switches and Firewall) are for V2 there are 377 records and

for V3 there are 214 records.

3.5.2 Data Set Preparation

3.5.2.1 For pure NVD Dataset

After performing the data extraction procedure, the data generated for the

preparation of data sets that is used for the experimental work in the form of test and train

stacks. Precisely, the NVD data feeds that are directly downloaded is JSON format are

than converted and stored in a local machine in .CSV format. Microsoft Excel can create

and edit a unique kind of file called Comma Separated Value - CSV file. Information is

stored in CSV files separated by commas as opposed to columns. Transferring text and

numbers between programs is simple when they are stored in a CSV file [44]. Table of

the record for each CVE kept in V2 dataset is shown in Table 0.1and for V3 inTable 0.2.

Table 0.1: Dataset features for each CVE record CVSS V2

S No Data Features

1. CVE_ID

2. Report

3. CVSSV3

27

4. Access Vector

5. Access Complexity

6. Authentication

7. ConfidentialityImpact

8. AvailabilityImpact

9. IntegrityImpact

Table 0.2: Dataset features for each CVE record – CVSS V3

S No Data Features

1. CVE_ID

2. Report

3. CVSSV3

4. AttackVector

5. AttackComplexity

6. PrivilegesRequired

7. User Interaction

8. Scope

9. ConfidentialityImpact

10. AvailabilityImpact

11. IntegrityImpact

28

3.5.2.2 For DC corelated Dataset

Now, the CVE data set prepared in the ‘Data Extraction’ phase (section 3.5.1.2) is

matched with NVD data set. The NVD data sets downloaded from the official website

[28] starting from the year 2002 till 2023 for each year separately. The Data Correlation

is performed and the matched results within NVD Data sets included in the main data set

and those that are not found are rejected.

Moreover, the scraping technique (i.e. the process of extracting information from

a website that after being gathered is transported into a form that is more beneficial to the

user either an application programming interface or a spreadsheet [45] is employed to

obtain vulnerability data released in vendor web applications,

like VulDB[29], Vulners[37], and other vendor applications. Following the process of

retrieving and extracting specific information, the data is formatted appropriately for its

intended use. Consider data that is kept in the CSV (comma-separated values) format. For

V2 correlated records are 352 and for V3 197.

3.5.3 Data Cleaning

Data cleaning involves the process of identifying and addressing errors,

inadequate structure, duplication, or missing values within the dataset. There are various

ways through which data duplication or incorrect classification might occur during the

integration of different data sources [40]. The lack of a widely accepted methodology for

defining each stage of the data cleaning process may lead to anomalies in dataset. The

reliability of results and algorithms can be compromised by the presence of inaccurate

data, despite achieving accuracy. Establishing a standardized framework for data cleaning

process is imperative to ensure accuracy and consistency across all iterations. The data

set finally compiled and used in this research is cleaned by dropping duplicate, missing,

Rejected values. Reports that receive a REJECT mark are not given any more attention.

Hence, after removal for pure NVD data set V2 vulnerabilities become 171180 and V3

123837. For case study V2 vulnerabilities become 351 and V3 they remain 197.

29

Complete methodology for the process of data creation from scratch is illustrated in

Figure 0.4.

Figure 0.4: Complete Data generation cycle

30

3.5.4 Arithmetic Mean (AM)

Utilizing NVD scores as the only basis for training models may introduce

partiality into vulnerability evaluation [41]. This is because the human scoring method is

thought to be the reason of tiny fraction of inaccuracies in score records of NVD [11].

Different perspectives on vulnerability grading are provided by different data sources

such vulDb, Vulners, and CVE details, in along with statistical vulnerability patterns

extracted from CVE files. In this research, The true score, also known as the ground truth

score, is the arithmetic mean of the scores from all data sources

([CVSS𝑉1,…,CVSSVn,…, CVSSVN] where 0⟨n < N, N>2) that agree on.

Equation 3.9 shows arithmetic mean for calculation of scores is:

 AM = {Sum of Scores}÷{Total numbers of Scores} (3.9)

If there are just two score sources[CVSS𝑉1, CVSS𝑉2], an average score is calculated.

Here, as an example, a vulnerability CVE-2023-5552 is given score of 7.5 by NVD, 6 by

VulDb and 7.3 by Vulners. By taking the Arithmetic Mean we got the value 6.9.

3.5.5 Vulnerability Severity Calculation

Using text-mining techniques, collected vulnerability reports from current

cybersecurity repositories are compared against vulnerability descriptors. Data is

categorized using a pipeline of ML algorithms to fill CVSS score gaps.

3.5.6 Evaluation

Training and evaluating the classification performance is based on the difference

between predicted severity that the original labels. To evaluate this comparison, we use

the Accuracy, Balanced Accuracy metrics in addition to the F1- score, Reciprocal rank

and mean reciprocal rank.

31

The performance connotation takes into consideration classes that are not

balanced, like the Authentication (Au) class, where the sample size for the "Single" and

"None" group is significantly bigger than that of the "Multiple" categories.

Multi-class associations may be involved in the authentication (Au) classification

process. In this case, the mean value across class associations is calculated using a micro-

average. The distinction between macro- and micro-averages is that the former takes the

average inputs from all classes, whilst the latter collects the weighted contributions of all

classes. Thus, for multi-class classification issues with class imbalance, the micro-

average is preferred. The method is also used for other instances involving several

classes. Binary classifiers, such as the one used for User Interface (UI), deduce the

balanced-accuracy and F1-score values of the classification using a confusion matrix.

3.5.7 Validation

The validation method involves conducting two evaluation tests using data from

crawled websites and data for reports that are acquired from pre-existing repositories. A

portion of data is provided in the first experiment to test the validation, and in the second

experiment, textual description is provided to provide CVE ratings.In addition, we

evaluated the trained algorithm using a validation set of vulnerabilities that were released

in 2023. This enables us to extensively evaluate our classifiers with data that was

undoubtedly not utilized in any of the training stages.

The second method employed to validate the data works by using some textual

descriptions as they were passed through a function and CVSS V2base score, impact

score and exploitability scores were calculated for different CVEs. For example, a textual

description “Parsing malformed project files in Omron CX-One versions 4.42 and prior,

including the following applications: CX-FLnet versions 1.00 and prior, CX-Protocol

versions 1.992 and prior, CX-Programmer versions 9.65 and prior, CX-Server versions

5.0.22 and prior, Network Configurator versions 3.63 and prior, and Switch Box Utility

versions 1.68 and prior, may cause a stack-based buffer overflow." associated with

CVE_ID “CVE-2018-7514” was passed through the function. The calculated scores at

NVD websites for the vulnerability is base score 4.6, Impact sub score (ISS) is 6.4 and

32

Exploitability (E) score is 3.9. For the same CVE, scores generated by our model are:

Base score is 4.7, ISS is 6.4 and E is 3.9 If we compare our generated score with the

website and the generated scoreswe can see that only slight difference is present in base

score which is of 4.7-4.6 = 0.1.

For CVSS V3, textual description “Huawei products IPS Module; NGFW

Module; NIP6300; NIP6600; NIP6800; Secospace USG6300; Secospace USG6500;

Secospace USG6600; USG9500 with versions of V500R001C00; V500R001C20;

V500R001C30; V500R001C50; V500R001C60; V500R001C80; V500R005C00;

V500R005C10; V500R005C20; V500R002C00; V500R002C10; V500R002C20;

V500R002C30 have an improper authentication vulnerability. Attackers need to perform

some operations to exploit the vulnerability. Successful exploit may obtain certain

permissions on the device.” was taken from a csv file for CVE_ID “CVE-2020-9099”.

This CVE has base score 9.8 on NVD website and the calculated score by our ML model

is also 9.8.

3.5.8 Feature Extraction

 The proposed ML model uses these scores as ground truths for training

purposes.To create the machine-learning pipeline, which includes feature extraction and

other data operations, the Python package pipeline in the Scikit-learn library was utilized.

Therefore, a simplified transformation of severity scores from various CVSS versions is

performed. Tokenization and subsequent feature extractions using the tools

CountVectorizer and TdidfTransforer are the first steps in processing the data from NVD

vulnerability reports. Then, using word characteristics, TF–IDF (Term Frequency–

Inverse Document Frequency) values are computed to create a TF–IDF matrix. Using the

train_test_split technique, data records are randomly distributed into training (75%) and

testing (25%) datasets.

3.5.9 ML Model Application

3.5.9.1 For NVD Dataset

33

New vulnerability reports are categorized using machine learning classifiers

within anticipated severity patterns [8]. Since Random Forest (RF) classification

technique is a well-known and often used algorithm for classification issues, that is why

in this research RF is used. Using the Random Forest (RF) classifier, the findings for our

case study and generic prediction were achieved. Table 3.3 shows the prediction

performances of the CVSS classifiers for the testing datasets.

The results ensure satisfactory performances when compared to closely related

CVSS classification researches from [9], who trained CVSS version 3 classifiers using

Naive Bayes and Neural Networks algorithms on CVE vulnerability reports published

before and within 2016 and [8] who applied Logistic Regression on NVD dataset and

corelated dataset produced from year 2002 to 2020.

Overall, we are more accurate. For instance, the Attack Complexity classifier's

accuracy is 96% when utilizing corelated data and 96% while using solely NVD

vulnerability information. By contrast, the Logistic Regression-based Attack Complexity

classifier [8] has a 95.31% accuracy rate. The overall accuracy achieved in this research

by using RF is 89%.

3.5.9.2 For DC Dataset

For the DC data set, it is unique that not much of literature is found in this

particular domain related vulnerabilities prediction and correlation. The accuracy

achieved after correlating is overall 93%.

3.5.10 Mathematical Modelling

A method for lowering an estimated prediction function's variance is called

bootstrap aggregation or bagging. A categorization technique called Random Forest uses

several decision trees. Using this technique, a randomized decision tree is constructed for

every bagging method cycle [46].

3.5.10.1 Classification

Formal definition of classification tree is:

34

A decision tree is a classification tree in which every node makes a binary decision on

whether xi< aor not to for a fixed a(node-dependent) item [47].

All the instances (xk and yk) are contained in the top node, and the set of examples

is further distributed among each node's offspring based on the categorization at that

node.The examples are further subdivided until there are only examples from a single

class at each node at the bottom.The features xiand threshold a at each node are selected

to reduce the 'diversity' that results in the offspring nodes. The Gini criterion is frequently

used to gauge this diversity.

3.5.10.2 Gini Criterion

The subdivision process is repeated until each node at the bottom has only one

class—assigned to input x as a prediction.

Gini Criterion: Define class C1=Yes, C2=No

In relation to these two groups, how can the variance of samples inside a node be

measured.

Assume that at our present node, we have instances in set S for classes C1 and C2.

Creating child nodes now, partition S=S1 U S2

Each sample S1 and S2 is partitioned into 2 classes C1 and C2

Recall |S| = Number of objects in set S

P̂(𝑆𝑗) =

|𝑆𝑗|

|𝑆|
= proportion of 𝑆𝑗 in S

(3.10)

P̂(𝐶𝑖|𝑆𝑗) =

|𝑆𝑗 ⋂ 𝐶𝑖|

|𝑆𝑗|
= proportion of 𝑆𝑗 which in 𝐶𝑖 (3.11)

Variation g(Sj) in set Sj to be:

35

𝑔(𝑆𝑗) = ∑ P̂(𝐶𝑖|𝑆𝑗)(1 − P̂(𝐶𝑖|𝑆𝑗))

2

𝑖=1

(3.12)

Variation is largest, if set is equally divided among Ci. It's smallest when all of Sjis just

one of the Ci

We define the variation of this full subdivision of the Sj to be the Gini Index = G if:

 𝐺 = P̂(𝑆1)𝑔(𝑆1) + P̂(𝑆2)𝑔(𝑆2)

= 𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑠𝑢𝑚 𝑜𝑓 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛𝑠 𝑔(𝑆1), 𝑔(𝑆2)

(3.13)

3.5.11 Library Used

The Random Forest meta estimator use averaging to enhance predicted accuracy and

manage over-fitting by training several decision tree classifiers on different sub-samples

of the dataset.

Sklearn.ensemble.RandomForestClassifier

If bootstrap=True (the default), the sub-sample size is managed using the

max_samples argument; if not, each tree is constructed using the whole dataset.

3.5.11.1 Parameters

1. No. of trees in forest

n_estimaters : int, default = 100

2. This is used to quantify the value of split. Supported criteria are “log_loss” and

“entropy” both for the Shannon information gain and “gini” for the Gini impurity.

Criterion: can be [‘gini’, ‘entropy’, log_loss’]and by default it is ‘gini’

3. Maximum depth of tree, if it’s none then nodes will grow till last leaves, or all

leaves has less than min_samples_split

36

Max_depth, this is integer value and by default it is none

4. To fragment an internal node, the least number of samples mandatory:

for interger value, min_samples_split provides least value

for floating point value, min_samples_split is a fraction and the least samples for each

split for ceil(min_samples_split * n_samples)

5. Below isleast samples required to be at a leaf node. If in each left and right node,

min_samples_leaf training sample remains, that will be condiered split point. It

will affecton smoothing of the model.

for interger value, min_samples_leaf provides least value

for floating point value, min_samples_leafis a fraction and the least samples for

each node is ceil(min_samples_leaf*n_samples)

6. Samples will be considered equally if sample_wight is not provided. Least

weighted fraction for sum total of weights for all input samples are mandatory to

be a leaf node.

min_weight_fraction_leaf: float, default =0.0

7. Best setting of features for split are:

For integer, max_features features

For floating point values, max_features is fraction

and max(1, int(max_features * n_features_in_))for each split

For square root, max_features=sqrt(n_features)

For logrithm2, max_features=log2(n_features)

For none, max_features=n_features

8. To produce trees with max_leaf_nodes in best-first style. Best nodes are distinct

as comparative decrease in impurity. For none, infinite figure of leaf nodes

37

max_leaf_nodes : int, default =None

9. If a split makes a reduction in impurity better than or identical to its worth, than

the node will be split. The subjective impurity reduction equation is as follows:

𝑁𝑡

𝑁
∗ (𝑖𝑚𝑝𝑢𝑟𝑖𝑡𝑦 −

𝑁𝑡𝑅

𝑁𝑡
∗ 𝑟𝑖𝑔ℎ𝑡𝑖𝑚𝑝𝑢𝑟𝑖𝑡𝑦 −

𝑁𝑡𝐿

𝑁𝑡
∗ 𝑙𝑒𝑓𝑡𝑖𝑚𝑝𝑢𝑟𝑖𝑡𝑦)

N is total # of samples, 𝑁𝑡 is # of samples at the current node, 𝑁𝑡𝐿
of samples in

the left child, and 𝑁𝑡𝑅
 is # of samples in the right child

For sample_weight is passedN, 𝑁𝑡, 𝑁𝑡𝐿
 and 𝑁𝑡𝑅

 all refer to the weighted sum

min_impurity_decrease: float, default = 0.0

10. Bootstrap samples are used, for it used as False, entire dataset is used to build

each tree

bootstrap : bool, deault = true

11. It is used to select out-of-bag samples to estimate the generalization score. By

default, accuracy_score is used. Provide a callable with

signature metric(y_true, y_pred) to use a custom metric and can be used if

bootstrap is true.

oob_score: boolean pr callable, default=False

12. It defines # of jobs to run simultaneously. Fit, predict,

decision_path and apply are all parallelized over the trees. None means 1 unless

in a joblib.parallel_backend context. -1 means using all processors

n_jobs : integer, default = none

13. It takes care of randomness of bootstrap process and feature sampling for best

split which ismax_features<n_features

random_state : integer, randomState instance or None, by default it is none

14. It takes care of verbosity while fitting and predicting

verbose :integer, by default it is equal to 0

15. It reutilize the result of previous call to fit and inserts added estimators to

ensemble for if set to True, else, it simply fits a complete novel forest

warm_start : Boolean, by default it is false

16. Class-specific weights in the format {class_label: weight}. All courses are

expected to have weight one if it is not provided. A list of dicts can be supplied in

38

the same order as the columns of y for multi-output issues.It should be noted that

weights for multioutput (including multilabel) should be defined in a separate dict

for each class of each column. For instance, rather than [{1:1}, {2:5}, {3:1},

{4:1}], the weights for the four-class multilabel classification should be [{0: 1, 1:

1}, {0: 1, 1: 5}, {0: 1, 1: 1}, {0: 1, 1: 1}].The balanced mode usensamples/

(nclasses ∗ np. bincount(y)) to automatically modify weights inversely

proportionate to class frequencies in the input data.The balanced_subsample

mode is identical to the "balanced" mode; however, weights are calculated using

the bootstrap sample for each tree that is generated.The weights in each column of

y will be multiplied for multi-output. keep in mind that if sample_weight is

provided, these weights will be multiplied by sample_weight (using the fit

method).

Class_weight : {“balanced”, “balanced_sample”}, dict or list of dicts, by default

it is none

17. Minimal Cost-Complexity Pruning's complexity parameter. The subtree that is

smaller than 𝑐𝑐𝑝𝑎𝑙𝑝ℎ𝑎 and has the highest cost complexity will be selected. By

default, there is no pruning done

ccp_alpha: non-negative float, default = 0.0

18. The # of samples to take from X for training each base estimator, it is used if

bootstrap is true. If it is none which is default value than draw 𝑋. 𝑠ℎ𝑎𝑝𝑒[0]

samples. For it as integer, than takes sample value from max_samplesand for

floating point, it takes max (𝑟𝑜𝑢𝑛𝑑(𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠 ∗ 𝑚𝑎𝑥𝑠𝑎𝑚𝑝𝑙𝑒𝑠), 1) samples.

Therefore, max_samples has to be in the interval (0.0, 1.0)

max_samples : integer or float, default = none

3.5.11.2 Attributes

1. The set of fitted sub-estimators was produced using the child estimator template

estimator_: DecisionTreeClassifier

2. Estimator used to the ensemble growth

39

base_estimator_: DecisionTreeClassifier

3. The grouping of adjusted sub-estimators

estimator_: list of DecisionTreeClassifier

4. A list of arrays containing class labels (multi-output problem) or the class labels

themselves (single output problem)

classes_ :ndarray of shape (n_classes,) or a list of such arrays

5. A list with the number of classes for each output (multi-output problem) or the

number of classes (single output problem)

n_classes_ : int or list

6. # of features seen during fit

n_features_in : int

7. Names of the characteristics observed during the fit. Defined exclusively in the

case that X has all string feature names

feature_names_in_ :ndarray of shape (n_features_in,)

8. The quantity of outputs produced by a fit

n_outputs : integer

9. The feature importances dependent on impurities

feature_importances_ :ndarray of shape (n_feratures,)

10. The training dataset's score was calculated using an out-of-bag estimate. Only

when oob_score is True does this property exist

oob_score_ : float

11. On the training set, the decision function was calculated using an out-of-bag

estimate. It is conceivable that a data point was never omitted during the bootstrap

if n_estimators is tiny. NaN may be present in oob_decision_function_ in this

instance. Only when oob_score is True does this property exist.

oob_decision_function_ndarray of shape (n_samples, n_classes) or (n_samples,

n_classes, n_outputs)

3.6 Algorithms

https://scikit-learn.org/stable/glossary.html#term-fit

40

Algorithms are used in data storage, sorting, processing, and machine learning to

determine the optimal solution for a given issue. They increase a program's efficiency in

the process [49]. Therefore, for each piece of computation during this research,

algorithms are written.

3.6.1 Algorithm 1: Calculation of Base Score CVSS V3

START PROCESSCVSSCalculation (SEML, a, A, C𝑉SS , C𝑉SS′)

1. SEML is a model of Machine Learning with function 𝑓()

2. 𝑓𝐵𝑎𝑠𝑒score() is the CVSS evaluator function

3. [CVSS1, …, CVSS𝑑 , …, CVSS𝐷] (0 <𝑑 ≤ 𝐷, 𝐷> 2) is a data sources array,

where each element has vulnerability instances ‘R’. An array of severity scores,

[𝑠s𝑖,1, …, 𝑠s𝑖,𝑑,…, ss𝑖,𝐷], and a set of CVSS vectors, [T𝑖,1, …, T𝑖,𝑑, …, T𝑖,𝐷],

have been allocated to every vulnerability instance 𝑣𝑖 (0 <𝑖 ≤ R).

4. A list of vulnerability instances without any severity rating or CVSS

measurements denoted as C𝑉 ′ of c𝑝 (0 <𝑝 ≤ R′).

5. The set a consists of CVSS metrics a𝑗 (0 <𝑗 ≤ A) in which every metric a𝑗

possesses an array of B a𝑗 classes to be mapped that correspond to the value T (a𝑗

)𝑖∈ {𝑐 1 (a𝑗),…, 𝑐𝑘 (a𝑗), …, 𝑐B (a𝑗) } (0 < b(a𝑗) ≤ B (a𝑗)).

6. 𝐷 = |[C𝑉1 , … , C𝑉𝑑 , …, C𝑉𝐷]|, R = |C𝑉𝑑 |, R′ = |C𝑉 ′|, A = |a|, B(a𝑗) = |{𝑐 1

(a𝑗) , … , 𝑐𝑘 (a𝑗) , …, 𝑐B (a𝑗) }|

FOR vulnerability instance 𝑣𝑖 (𝑖 = 1, …, R)

DO

FOR CVSS metric a𝑗 (𝑗 = 1, … ,)

DO

SET T (a𝑗)𝑖 = arg max B (a𝑗) [𝑐𝑎𝑟𝑑({𝑐 1 (a𝑗) , …, 𝑐b (a𝑗

) , …, 𝑐B (a𝑗) }‖T (a𝑗) 𝑖,𝑑)](0 <𝑑 ≤ 𝐷) as the reference

point for measuring CVSS

41

END FOR

T𝑖 = [T (a1)𝑖 , … , T (a𝑗) 𝑖 , …, T (aA) 𝑖] (𝑗 = 1, …,A)

SET𝑠s𝑖 = 𝑓𝐵𝑎𝑠𝑒score(T𝑖) as the base information for the severity score

END FOR

FOR𝑗 = 1, … ,A CVSS metric a𝑗 (𝑗 = 1, …,A)

DO

Train(SEML) //SEML a model for training and testing of historic datasets

𝑓 (a𝑗) (𝑣𝑖) = arg max b (a𝑗) 𝑓 (a𝑗) b (a𝑗) (𝑣𝑖)

END FOR

FOR vulnerability instance c𝑝 (𝑝 = 1, …, R′)

 DO

 FOR CVSS metric a𝑗 (𝑗 = 1, …,A)

DO

X (a𝑗)𝑝 = 𝑓 (a𝑗) (c𝑝)

END FOR //Obtain the estimated CVSS measurement from SEML as a result

X𝑝 = [X (a1)𝑝 , … , X (a𝑗) 𝑝 , … , X(A) 𝑝] (𝑗 = 1, …,A)

END FOR

The predicted resultant score x𝑝 = 𝑓𝐵𝑎𝑠𝑒score(X𝑝)

END PROCESS

3.6.2 Algorithm 2 Generation of Data Product wise from CVE details

42

START PROCESSCveDetailsDataGenerator(𝐷n,Ps,CVEe)

1. 𝐷n is an empty dictionary to store vulnerabilities organized by product type Ps,

where s={0,…,4}

2. The five product types that are imported: P1 for Switch: P2 for Router: P3 for IPS,

P4 for Firewall:P5 for Server

3. CVEeis each entry of CVE in CVE details

FOR each entry in CVE Details

DO

 Extract the Ps from the CVEeentry

IF (Ps not in Dn)

THEN

Discard that Ps

Else

Add the CVEe entry ofcorresponding Ps in Dn

END IF

return the Dn

END FOR

SORT dictionary Dn by Ps

END PROCESS

3.6.3 Algorithm for Impact Calculation

START PROCESSImpactCalculation(Im, S, UC, ISS, C, E)

43

1. CVSS calculations, the sub score calculations for impact (ISS) and exploitability

determine the Base Score. Formula for ISS is:ISS = 1 - [(1 – C) (1 – I) (1 – A)

]where C = Confidentiality, I = Integrity, A = Availability

2. WHEN Im is dependent on S: where S = Scope, UC = Unchanged, Im = Impact, C = Changed, E =

Exploitability

3. AV is Access Vector: AC is the Access Complexity: UI is User Interaction: PR is

Privileges Required

IF S is UC

THEN

 Im = 6.44 * ISS

ELSE IF S is C

 THEN

 Im = 7.52 * (ISS - 0.029) - 3.25 * (ISS - 0.02) ^ 15

WHEREAS E = 8.22 * AV * AC * PR * UI

END PROCESS

3.6.4 Algorithm for Base Score Calculation CVSS V2

START PROCESSBaseScoreCalculation(Im, S, C, UC, ISS, E)

IFIm< = 0

THEN

Base Score = 0

ELSE IF S is C

THEN

44

 Base Score = Round (min [(Im + E), 10])

ELSE IF S is UC

THEN

 Base Score = Round (min [1.08 * (I + E), 10])

([CVSS𝑉1,…,CVSSVn,…,CVSSVN] where 0⟨n < N, N>2)

END PROCESS

3.6.5 Algorithm to Calculate Arithmetic Mean

START PROCESSArithmeticMeanCalculation(Im, S, C, UC, ISS, E)

1. Define SC := Score

2. Define S := sum()

3. Define C := count()

4. Define AM := Arithmetic Mean, Avg := Average

IF SC > = 0

THEN AM = {S (SC) / (C (SC)}

ELSE IF

SC = From Two Score Sources [CVSS𝑉1, CVSS𝑉2]

THEN

AM = Avg (SC) //An average score is calculated

Avg = S (All Sources Scores) / 2

END PROCESS

45

EXPERIMENTS AND RESULTS

Several experimental findings are provided in this chapter to assess the suggested

machine-learning model covered in Chapter 3. Experiments have been conducted using

the NVD dataset. By extracting the metrics to assess the classification performance, the

effectiveness of the suggested machine learning model is ascertained. There is also a

comparison of various tried-and-true methods that have been documented in the body of

literature.

The results of the experiment are presented in tabular and graphical forms, which

facilitated the comparison of the algorithms' performance on different data sets. The

statistics and class imbalances are shown using bar charts, which clearly indicated

occurrence of vulnerabilities over the period. The accuracy of model is shown using

confusion matrix for each Label and its classes and keeping the normalization true to

have results in more understandable form.

4.1 Evaluation Metrics

Assessment metrics including precision, recall, F1 score, and accuracy which are

frequently used in a variety of domains, including vulnerability detection—are used to

evaluate the suggested models. Each metric's specifics are presented in the sections that

follow.

4.1.1 Accuracy

The degree of accuracy demonstrated by a model's predictions is referred to as its

"accuracy." The percentage of correctly classified instances including true positives and

negativesto every instance is referred to as the accuracy rate. Equation 4.1 below is

utilized in its computation.

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (𝑇𝑃 + 𝑇𝑁)/(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁) (4.1)

Denoting,

46

1. True Positive - TP = The total number of positive (threat-related) instances that

have been accurately identified (threats).

2. True Negative – TN = The total number of cases that were accurately classified as

negative (non-threats).

3. False Positive - FP = The number of cases that were misclassified as positive—

that is, non-threats that seemed erroneously thought to be threats.

4. False Negative – FN = The number of cases that are mislabelled as negative (that

is, threats that are mislabelled as non-threats).

4.1.2 Precision

The level of accuracy in positive estimations is referred to as precision. The

percentage of accurately foretold positive instances, including both true and false

positives, to the total number of positively predicted positive instances is known as the

true positive rate. The following is the precision formula:

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = (𝑇𝑃)/(𝑇𝑃 + 𝐹𝑃) (4.2)

4.1.3 Recall

The number of correctly estimated positive events (true positives) about all actual

positive scenarios (true positives along with false negatives) is known as 'Recall', also

referred to as sensitivity as well as true positive rate. Equation 4.3 provides the

mathematical expression.

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = (𝑇𝑃)/(𝑇𝑃 + 𝐹𝑃) (4.3)

4.1.4 F1 Score Balanced

A measure of accuracy that combines recall and precision is referred to as the F1

score. Particularly in the case of an unequal class distribution, the F1 score frequently

provides more information than raw accuracy. Therefore, reaching a state of balance

47

between each of the measurements. It is widely used to assess a classification model's

performance in machine learning, deep learning, and statistical analysis. Equation 4.3 and

4.4, below demonstrates the F1 score in mathematical form:

𝐹1 𝑆𝑐𝑜𝑟𝑒 = (2)/(

1

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜
+

1

𝑅𝑒𝑐𝑎𝑙𝑙
) (4.3)

𝐹1 𝑆𝑐𝑜𝑟𝑒 = (2).

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛. 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

(4.4)

There are several variants of the F1 score, such weighted, macro, and micro F1

scores, which are better suited for situations involving multiple classes or when you wish

to assign various weights to the classes.

4.1.4.1 Accuracy Macro Score

The macro method involves calculating the F1 score for every class separately

and averaging them. This method assumes that every class matters equally, which isn't

necessarily the case. Equation 4.5 shows calculation of Macro F1:

𝑀𝑎𝑐𝑟𝑜 𝐹1 =
1

𝑁
∑ 𝐹1𝑖

𝑁

𝑖=1

 (4.5)

where the F1 score for each class is denoted by F1i, and N is the total number of classes.

4.1.4.2 Accuracy Micro Score

In the micro method, the average F1 score is calculated by adding up the input

from each class. Smaller classes are given the identical weight as bigger classes in this

strategy, which is helpful if your dataset has an imbalance in classes. The steps involve in

calculating F1 Score are:

1. Calculate True positive (TP), True Negative (TN), False Positive (FP) and False

Negative (FN).

2. Use the calculated TP, TN, FP and FN to calculate recall and precision.

48

3. Use recall and precision values to calculate F1 Score.

𝑀𝑖𝑐𝑟𝑜 𝐹1 𝑆𝑐𝑜𝑟𝑒 = (2).

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑚𝑖𝑐𝑟𝑜. 𝑅𝑒𝑐𝑎𝑙𝑙𝑚𝑖𝑐𝑟𝑜

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑚𝑖𝑐𝑟𝑜 + 𝑅𝑒𝑐𝑎𝑙𝑙𝑚𝑖𝑐𝑟𝑜
 (4.6)

4.1.5 Support

The number of real instances of the class in the given dataset is known as support.

It shows how many actual instances there are of each class. In multiclass classification

settings, support is frequently used to show how cases are distributed throughout several

classes.

4.1.6 Reciprocal Rank and Mean Reciprocal Rank

Reciprocal rank is a statistic that is used in ranking assessment and information

retrieval to gauge how well a search engine or system for retrieving information is

working. It is especially prevalent when assessing how well systems function when they

return ranked lists of responses to user queries.

Given a ranked list of objects, Reciprocal Rank (RR) is determined as the

reciprocal of the rank at which the first relevant item is discovered. If the first relevant

item is at position k, the Reciprocal Rank (RR) is as shown in Equation 4.7:

𝑅𝑅 =

1

𝑘
 (4.7)

In the field of data extraction, an exploration or system of recommendations often

generates the ranked list, and things are ranked according to certain criteria (e.g., if an

item fulfills a user's information requirement or desire).

To calculate Mean Reciprocal Rank (MRR), we use RR calculated using formula

of Reciprocal Rank (RR). Then we take sum of all RR we get (Reciprocal Rank for the ith

instance) and divide it by the sum of total instances (which is n). Equation 4.8 shows

calculation for MRR:

49

𝑀𝑅𝑅 =

∑ 𝑅𝑅𝑖
𝑛
𝑖=1

𝑛
 (4.8)

4.2 Results of Random Forest Model

4.2.1 RF Classifier specification

In this research, practical work is done in two parts: First part is where pure NVD

dataset is preprocessed, and ML model RF is applied on it and secondly the correlated

data for DC environment is taken and RF is applied on it. All the work is done using

Jupyter Notebook and coding is done using Python language. The specification or

parameters applied of RF classifier is shown isError! Reference source not found..1.

Table 0.1: RF parameters

S No RF Parameters Values

1. n_estimaters 40-180

2. Criterion gini

3. Max_depth none

4. min_weight_fraction_leaf 0.0

5. max_features n_features

6. max_leaf_nodes none

7. min_impurity_decrease 0.0

8. bootstrap true

9. oob_score false

10. n_job none

50

11. random_state none

12. verbose 0

13. warm_start false

14. Class_weight none

15. ccp_alpha 0.0

16. max_samples none

4.2.2 Data Breakdown

No of CVSS V2 vulnerabilities spread over period of years are shown in the

Figure 0.1 and CVSS V3 in Figure 0.2 below:

Figure 0.1: Count wise vulnerabilities of CVSS V2

51

Figure 0.2: Count wise vulnerabilities of CVSS V3

Spread of vulnerabilities product wise for the case study of DC is shown in Figure 0.3:

Figure 0.3: Count wise vulnerabilities of DC products

52

Spread of vulnerabilities over years product wise for the case study of DC is shown in

Figure 0.4:

Figure 0.4: Count wise vulnerabilities of DC products

The CVSS V2 data of NVD has clear class imbalances which can be seen by Figure 0.5to

Figure 0.10.

Figure 0.5:Percentage of different classes data in Access Vector – CVSS V2

53

Figure 0.6: Percentage of different classes data in Access Complexity– CVSS V2

Figure 0.7: Percentage of different classes data in Authentication – CVSS V2

54

Figure 0.8: Percentage of different classes data in Confidentiality Impact – CVSS V2

Figure 0.9: Percentage of different classes data in Integrity Impact – CVSS V2

55

Figure 0.10: Percentage of different classes data in Availability Impact – CVSS V2

The CVSS V3 data of NVD has clear class imbalances which can be seen by fig 4.11 to

fig 4.18

Figure 0.11: Percentage of different classes data in Attack Vector – CVSS V3

56

Figure 0.12: Percentage of different classes data in Attack Complexity – CVSS V3

Figure 0.13: Percentage of different classes data in Privileges Required – CVSS V3

57

Figure 0.14: Percentage of different classes data in User Interaction – CVSS V3

Figure 0.15: Percentage of different classes data in Scope – CVSS V3

58

Figure 0.16: Percentage of different classes data in Confidentiality Impact – CVSS V3

Figure 0.17: Percentage of different classes data in Integrity – CVSS V3

59

Figure 0.18: Percentage of different classes data in Availability Impact – CVSS V3

4.2.3 Results and Comparison

In this research the main performance gauging indicator was the comparison of

results of the work of [8] when performing CVSS score prediction for pure NVD dataset.

For CVSS V2 and V3 score calculation, the accuracy achieved is more than [8] which

can be seen inTable 0.2andTable 0.3.

Table 0.2: Comparison Table LR & RF for CVSS V2 NVD Only

Attributes Logistics Regression Random Forest

Access Vector 95.09% 95.36%

Access Complexity 84.02% 85.12%

Authentication 93.92% 93.90%

Confidentiality Impact 82.45% 82.86%

60

Integrity Impact 84.43% 84.86%

Availability Impact 80.53% 81.71%

Table 0.3: Comparison Table LR & RF for CVSS V3 NVD Only

Attributes Logistics Regression Random Forest

Attack Vector 90.36% 90.47%

Attack Complexity 95.31% 96.01%

Privileges Required 85.77% 85.82%

User Interaction 92.11% 92.62%

Scope 96.29% 96.16%

Confidentiality Impact 86.67% 86.81%

Integrity Impact 87.45% 87.47%

Availability Impact 89.18% 89.38%

To obtain the highest accuracy, a range of parameters were given to the model and

resultantly best accuracy is acquired. Details of the parameters and its effect on

accuracy is as shown in Table 0.4for CVSS V2 pure NVD Dataset,

Table 0.5 for CVSS V3 pure NVD Dataset, Table 0.6for CVSS V2 DC corelated dataset

and

61

Table 0.7 for CVSS V3 DC corelated dataset.

Table 0.4: Comparison Table RF with different parameters for CVSS V2 NVD Only

n_estimators 50 60 70 80 90 100

AV 92.08% 93.71% 92.11% 94.55% 94.62% 95.36%

AC 84.21% 84.55% 84.31% 85.27% 85.63% 85.12%

Au 90.33% 91.73% 91.01%- 92.89% 92.68% 93.90%

C 80.37% 80.74% 81.03% 83.06% 81.54% 82.86%

I 83.23% 83.88% 84.02% 84.41% 83.32% 84.86%

A 80.81% 81.28% 81.02% 81.72% 81.08% 81.71%

Acc 82.65% 83.05% 83.47% 85.84% 88.24% 89.09%

 110 120 130 140 150

AV 94.16% 94.28% 94.28% 94.46% 94.44%

AC 84.42% 85.41% 85.23% 85.11% 85.15%

Au 93.44% 93.44% 92.66% 92.87% 92.99%

C 81.63% 81.63% 82.10% 82.44% 82.97%

I 83.88% 83.88% 84.12% 84.23% 84.52%

62

A 80.97% 80.97% 81.56% 81.80% 81.85%

Acc 88.36% 88.36% 86.89% 85.17% 85.67%

Table 0.5: Comparison Table RF with different parameters for CVSS V3 NVD Only

n_estimators 50 60 70 80 90 100

AV 88.41% 89.21% 89.44% 89.91% 90% 90.47%

AC 92.75% 94.94% 95.04% 95.23% 95.74% 96.01%

PR 80.58% 82.96% 83.22% 83.89% 84.60% 85.82%

UI 90.87% 91.77% 92.13% 92.23% 92.46% 92.62%

S 94.79% 95.03% 95.31% 95.68% 95.97% 96.16%

C 84.11% 85% 85.14% 85.36% 85.58% 86.81%

I 84.14% 86.27% 86.56% 86.97% 87.08% 87.47%

A 86.01% 88.54% 88.89% 89.04% 89.26% 89.38%

Acc 87% 89% 89.17% 89.88% 90% 90.45%

 110 120 130 140 150

AV 90.21% 90.08% 89.83% 89.49% 89.12%

AC 95.44% 95% 94.97% 94.63% 93.86%

63

PR 84.32% 84.13% 83.98% 83.54% 83.23%

UI 93.27% 93.04% 92.59% 92.34% 92.17%

S 95.42% 95.33% 95.01% 94.96% 94.67%

C 85.47% 85.13% 85% 84.88% 83.41%

I 88.42% 88.18% 87.63% 87.42% 86.32%

A 87.65% 87.05% 86.86% 86.55% 84.94%

Acc 90.33% 89.65% 89.32% 89.07% 88.56%

Table 0.6: Comparison Table RF with different parameters for CVSS V2DC Data

n_estimators AV AC Au C I A Accuracy

20 96.12% 89.32% 90.45% 81.65% 80.55% 77.12% 77.11%

30 96.45% 89.67% 90.88% 81.65% 80.55% 77.12% 77.11%

40 96.33% 89.77% 90.89% 81.82% 80.68% 77.27% 77.27%

50 96.43% 89.86% 90.90% 82.95% 81.82% 78.41% 81.82%

60 96.59% 89.77% 90.91% 80.68% 79.55% 77.27% 95.45%

70 96.36% 89.63% 90.65% 81.56% 80.65% 77.26% 80.22%

80 96.27% 89.36% 90.32% 81.87% 80.65% 77.34% 77.77%

90 96.13% 89.02% 90% 81.03% 80.23% 77.12% 76.56%

64

100 95.45% 89.77% 90.91% 80.68% 81.82% 73.86% 75.45%

Table 0.7: Comparison Table RF with different parameters for CVSS V3DC Data

n_esti

mators

AV AC PR UI S C I A Accurac

y

20 92% 94% 95.6

%

77.56

%

88.22

%

77.35% 81.21% 90.12% 88%

30 92% 94% 96% 78% 88.69

%

78.02% 82% 90.50% 90%

40 92% 94% 96% 78% 90% 78% 82% 90% 93.33%

50 92.36

%

94.45

%

96.12

%

78.23

%

90% 78.14% 82.32% 90.02% 94.66%

60 96% 95% 96.33

%

79% 90.23

%

78.64% 82.66% 91% 95.36%

70 92.12

%

94.32

%

96% 78.12

%

89.66

%

78% 82.21% 90% 94.03%

80 92% 94% 95.65

%

78% 89.43

%

78% 82.04% 88.36% 93%

90 92% 94% 95.5% 77.3

%

89% 77.3% 82.3% 88.6% 89.24%

65

100 91.54

%

93% 95.3% 77% 89% 77% 81% 88% 88%

Results of CVSS score prediction for V2 for correlated data of DC dataset is shown in

Table 0.8and for V3 is shown inTable 0.9

Table 0.8: RF for CVSS V2 DC correlated data

Attributes Random Forest

Access Vector 95.59%

Access Complexity 89.77%

Authentication 90.91%

Confidentiality Impact 80.68%

Integrity Impact 79.55%

Availability Impact 77.27%

Validation 95.45%

Table 0.9: RF for CVSS V3 DC correlated data

Attributes Random Forest

66

Attack Vector 96%

Attack Complexity 95%

Privileges Required 96.33%

User Interaction 79%

Scope 90.23%

Confidentiality Impact 78.64%

Integrity Impact 82.66%

Availability Impact 91%

Validation 95.36

4.2.4 Performance Study

To conduct performance analysis of the classification and prediction performed by the

model, in this research, precision, recall, F1 Score and Support for each class is

calculated using libraries of Machine Learning. These scores are shown inTable

0.10and

Table 0.11.11 for pure NVD dataset CVSS V2, V3, andTable 0.12.12,

Table 0.13.13 for DC data CVSS V2, V3, where the best accuracy is achieved.

Table 0.10: Evaluation metrics for pure NVD dataset CVSS V2

Attributes Precision Recall F Score Support

AV 93.69% 73.67% 80.77% 14265

67

AC 87.46% 64.17% 68.86% 14265

Au 61.19% 50.32% 53.89% 14265

C 84.60% 76.64% 79.33% 14265

I 84.91% 78.32% 80.76% 14265

A 81.82% 78.34% 79.45% 14265

Table 0.11: Evaluation metrics for pure NVD dataset CVSS V3

Attributes Precision Recall F Score Support

AV 91.34% 61.11% 69.83% 7740

AC 94.46% 72.06% 78.97% 15480

PR 86.33% 70.41% 75.67% 10320

UI 93.48% 90.40% 91.65% 15480

S 96.79% 89.52% 92.67% 15480

C 89.71% 79.12% 83.12% 10320

I 89.38% 84.65% 86.62% 10320

A 90.20% 70.11% 74.87% 10320

Table 0.12: Evaluation metrics for DC dataset CVSS V2

Attributes Precision Recall F Score Support

68

AV 65.38% 61.11% 62.98% 29.333

AC 62.92% 50.00% 53.57% 29.333

Au 60.82% 54.43% 56.79% 29.333

C 78.45% 76.76% 77.14% 29.333

I 76.96% 70.08% 72.78% 29.333

A 81.04% 69.01% 71.38% 29.333

Table 0.13: Evaluation metrics for pure DC dataset CVSS V3

Attributes Precision Recall F Score Support

AV 97.04% 69.05% 78.25% 16.667

AC 47.00% 50.00% 48.45% 25

PR 55.88% 54.67% 52.92% 16.667

UI 97.83% 83.33% 88.89% 25

S 94.68% 68.75% 74.46% 25

C 73.18% 65.50% 67.43% 16.667

I 81.67% 74.54% 73.97% 16.667

A 93.27% 90.52% 91.52% 16.667

The data acquired in

Table 0.11-

69

Table 0.13 is further used to calculate F1 Score. Similarly, RR is calculated and

further used to calculate MRR. In addition to that, balanced accuracy score is also

calculated. All these calculations of F1 Score, RR, MRR and Balanced accuracy score are

shown inTable 0.14 andTable 0.15for pure NVD data set CVSS V2, V3 andTable

0.16,Table 0.17for DC related dataset CVSS V2, V3.

Table 0.14: Calculation on Evaluation Metrics for pure NVD dataset CVSS V2

Attributes F1 Score MRR Balanced Accuracy

AV 82.48% 94.28% 73.67%

AC 74.03% 85.41% 64.17%

Au 55.22% 92.13% 50.32%

C 80.42% 82.37% 76.64%

I 81.48% 84.02% 78.32%

A 80.04% 81.48% 78.34%

Table 0.15: Calculation on Evaluation Metrics for pure NVD dataset CVSS V3

Attributes F1 Score MRR Balanced Accuracy

AV 73.23% 90.47% 61.11%

AC 81.75% 96.01% 72.06%

PR 77.56% 84.42% 70.41%

UI 91.91% 92.62% 90.40%

S 93.02% 96.16% 89.52%

C 84.08% 86.01% 79.12%

70

I 86.95% 87.17% 84.65%

A 78.90% 89.38% 70.11%

Table 0.16: Calculation on Evaluation Metrics for DC dataset CVSS V2

Attributes F1 Score MRR Balanced Accuracy

AV 63.18% 96.59% 61.11%

AC 55.72% 89.77% 50.00%

Au 57.44% 90.91% 54.43%

C 77.60% 80.68% 76.76%

I 73.36% 79.55% 70.08%

A 74.54% 77.27% 69.01%

Table 0.17: Calculation on Evaluation Metrics for DC dataset CVSS V3

Attributes F1 Score MRR Balanced Accuracy

AV 80.68% 92.00% 69.05%

AC 48.45% 94.00% 50.00%

PR 55.27% 78.00% 54.67%

UI 90.00% 96.00% 83.33%

S 79.66% 90.00% 68.75%

C 69.13% 78.00% 65.50%

I 77.94% 82.00% 74.54%

71

A 91.87% 90.00% 90.52%

The computed confusion matrix is also generated for each label. The in-depth

analysis of model’s behavior on CVSS V2 is shown by Figure 0.19 to Figure 0.24.

Figure 0.19:Confusion matrix for Access Vector – CVSS V2

72

Figure 0.20: Confusion matrix for Access Complexity – CVSS V2

Figure 0.21: Confusion matrix for Authentication – CVSS V2

73

Figure 0.22: Confusion matrix for Confidentiality – CVSS V2

Figure 0.23: Confusion matrix for Integrity – CVSS V2

74

Figure 0.24: Confusion matrix for Availability – CVSS V2

The Figure 0.25 from Figure 0.32shows the in-depth analysis of model’s behavior on

CVSS V3.

75

Figure 0.25: Confusion matrix for Attack Vector – CVSS V3

76

Figure 0.26: Confusion matrix for Attack Complexity – CVSS V3

Figure 0.27: Confusion matrix for User Interaction – CVSS V3

77

Figure 0.28: Confusion matrix for Privileges Required – CVSS V3

Figure 0.29: Confusion matrix for Scope– CVSS V3

78

Figure 0.30: Confusion matrix for Confidentiality Impact – CVSS V3

Figure 0.31: Confusion matrix for Integrity Impact – CVSS V3

79

Figure 0.32: Confusion matrix for Availability Impact – CVSS V3

4.3 Analysis

The Random Forest's tree count may be adjusted using the n_estimators

argument. Up to a certain point, a more stable and precise model is often produced by

increasing the number of trees. But there are decreasing gains, and overfitting and higher

computing costs might result from using too many trees. In this research, experiments

were conducted to examine the effect of changing the number of trees in the RF model.

We adjusted the n_estimators parameter using the grid-search strategy, which involves

training and assessing our model on varying numbers of trees and use the model's

hyperparameters to get the best accuracy for our set of data. The specifications of the RF

model are presented in detail Table 4.1. Results with different hyperparameters for pure

NVD and DC case study are shown in Tables 4.4, 4.5, 4.6 and 4.7. It can be observed

80

that,n_estimatorsranging from 50 to 150 for NVD and 20 to 100 for DC are used and are

giving different results. For CVSS V2, the model attained the highest accuracy of 89.09%

for pure NVD dataset at n_estimators 100 and 95.45% for DC corelated data at

n_estimators 60. Whereas for CVSS V3, the highest accuracy of 90.45% is achieved for

pure NVD dataset at atn_estimators 100 and 95.36% for DC related data at n_estimators

60. For the DC case study, the corelated data is gathered from multiple sources and

arithmetic mean is taken of various sources score to improve prediction.

For pure NVD data, LR of [8] gives 84.02% accuracy for label “Access

Complexity” whereas RF is giving 85.12% accuracy for the same. Similarly, [8] has

“Availability Impact” with accuracy 80.53% while this study calculated it at 81.71%.

Overall accuracy of [8] is 85.69% for CVSS V2, which is lesser than that of RF which is

89.09%.

81

RECOMMENDATIONS FOR MITIGATION

A good amount of breakdown was presented in Chapter 3 regarding the

mechanism of vulnerability scoring, data gathering and correlating, evaluation metrics,

ML model and its algorithm. Analysis with the help of comparison tables of results,

parameters and figures depicting proportions of class imbalances and confusion matrix

representing accuracy attained by the model in calculating CVSS scores were shown in

chapter 4. After obtaining the ratings, one of the most difficult tasks will be to mitigate

the vulnerabilities.

Specifically, determining the severity of a specific vulnerability—often with the

help of the CVSS—is a typical method of determining the order in which vulnerability

mitigation should be prioritized. Organizations that store or process credit cards are

required by the payment card industry data security standard (PCI-DSS) to remediate

vulnerabilities greater than CVSS four. Additionally, back in 2019, the Department of

Homeland Security published an official operational orders directing federal departments

to fix high and critical vulnerabilities conferring to CVSS standard [36].

In this chapter, an in-depth analysis of Known Exploited Vulnerabilities (KEV)

catalog is carried out which is issued by Cyber and Information Security Agency (CISA).

CISA maintains the official source of vulnerabilities that have been exploited in the wild

for the usage of network administrators and cybersecurity professionals, as well as to

assist every company in better managing vulnerabilities and staying up to date with threat

activities [50]. CISA advice that KEV catalog should be incorporated by organizations

into their vulnerability management priority system [50]. Experiments have been

conducted using the KEV catalog to analysis the trends and patterns in the dataset of

exploited vulnerabilities and keeping in view the analysis recommendations are outlined

to mitigate the vulnerabilities.

5.1 Known Exploited Vulnerabilities (KEV)

82

KEV is a 10 labels-based catalog, which is maintained by CISA has by the end of

year 2023, 1055 entries. The catalog is available on website in 2 formats CSV and JSON

(CISA provides JSON Schema too). The catalog has different labels which are shown

inTable 0.1.

Table 0.1: CISA catalog format

Lables

Cve ID Vendor Project Product Vulnerability Name Date Added

Short

Description

Required Action Due Date Known Ransomware

Campaign Use

Notes

5.2 Analysis for Patterns

In this research, an in-depth analysis of KEV is carried out to observe any pattern

in KEV keeping CVSS score as base parameter. To do so, the catalog was appended with

another label of CVSS score fetched from pure NVD dataset and a year label was

included which was extracted from CVE_ID label.

To look at the pattern and trend of vulnerabilities exploitation, analysis is done

with the help of chart showing trend year wise in Figure 0.1 and Figure 0.2.By looking at

both charts we can see the increasing trend of vulnerabilities exploitation year wise.

83

Figure 0.1: Year wise occurances of CVSS V2 vulnerabilities

Figure 0.2: Year wise occurances of CVSS V3 vulnerabilities

To further analyse to find out which CVSS score vulnerabilities were more

exploited count of CVSS V2 and V3 vulnerabilities was done. Table 0.2shows the count

of occurrences grouped by the category of CVSS scores they fall into and Figure 0.3 and

Figure 0.4shows the graphical representation.

84

Table 0.2: Occurrences CVSS score range-wise

Category ranges CVSS Score Count of CVSS V2 entries Count of CVSS V3 entries

9.1-10 296 291

8.1-9 6 186

7.1-8 266 296

6.1-7 137 50

5.1-6 60 44

4.1-5 95 12

3.1-4 6 3

2.1-3 8 0

1.1-2 1 0

0-1 0 0

85

Figure 0.3: KEV entries CVSS score wise V2

Figure 0.4: KEV entries CVSS score wise V3

86

The data set was further examined for the exploitation range of the score wise

instances occurred each year. Figure 0.5 and Figure 0.6are depicting occurrence of

vulnerability exploitation in each year and with their corresponding range scale of CVSS.

Figure 0.5: KEV entries CVSS score category wise V2

Figure 0.6: KEV entries CVSS score category wise V3

87

5.3 Recommendations

By doing in-depth analysis of the data represented in section 5.2, at first,

vulnerabilities of score 6.1-8, 9.1-10 are exploited on the higher side and vulnerabilities

lying between 4.1 to 6 are second highest to be exploited. For CVSS V3 the score range

8.1-9 is also on the higher side but for CVSS V2, 8.1-9 are exploited on the lower side.

By looking at the statistics, recommended priorities to fix the vulnerabilities are

displayed in Table 0.3

Table 0.3: Priority of Vulnerability mitigation

Score range Priority

6.1-10 First

4.1-6 Second

0-4 Rest

88

CONCLUSION AND FUTURE WORKS

Identifying and evaluating vulnerabilities is an essential and challenging task. To

evaluate the severity of a stated vulnerability instance, it is suggested in this research to

improve the effectiveness of vulnerability severity scoring systems that adhere to CVSS

standards. This research approach reduces potential delays in calculation of severity

scores by implying a machine-learning model, which is trained using suitable

vulnerability instances as ground truth, which acts as a basis for scoring. When compared

to similar studies, the performance of the suggested model demonstrates high precision as

well as micro F1-score thresholds, resultantly higher producing accuracy.

To verify the suggested vulnerability assessment model, a case study that involve

Data center vulnerability observations from multiple repositories is presented. The case

study is conducted keeping in view the conflicts arising from different CVSS

mechanisms and addresses erratic vulnerability severity scores contributed by different

cybersecurity analysers. The arithmetic mean method was used to determine the score of

incoherent indications for identical vulnerabilities in various cybersecurity repositories.

The case study's results further demonstrate that vulnerability scoring differ

depending on the cybersecurity data sources utilized, which could possibly distort

cybersecurity decisions about patch prioritization and funding. Therefore, to increase

cybersecurity awareness even further, an analysis of vulnerabilities approach which

correlates various sources of information is required.

In addition to that, an in-depth analysis of CISA’s KEV is done to suggest which

vulnerabilities scores should ne prioritize in mitigation of vulnerabilities according to

scores.Exploring the application of Deep learning-based models for predicting CVSS

scores and the types of threats associated with each vulnerability will enable the proposed

research to be investigated further. By applying computational intelligence techniques,

such startup settings could be dynamically adjusted in addition to being provided by

security experts.

89

To assess the dependability of the scores obtained from various sources,

arithmetic means of multiple scores from more sources could be another potential future

pathway.Subsequently, this research has been planned to keep in mind investigating the

importance of vulnerabilities and their mitigation parameters in general and specifically

for data center environment.

In addition to that, further study of CISA KEV entries with CVSS scores and their

relevant labelsfor different versions including AV, AC, Au, PR, S, C, I, Aand their sub-

classes can be carried out to analyse the relationship and impact between scores and

classes.

90

REFERENCES

[1] R. Sharma, R. Sibal, and S. Sabharwal, “Software vulnerability prioritization using

vulnerability description,” International Journal of System Assurance Engineering and

Management, vol. 12, no. 1, pp. 58–64, Jul. 2020, doi: https://doi.org/10.1007/s13198-

020-01021-7.

[2] K. A. Saed, N. Aziz, A. W. Ramadhani, and N. H. Hassan, “Data Governance Cloud

Security Assessment at Data Center,” IEEE Xplore, Aug. 2018, doi:

https://doi.org/10.1109/ICCOINS.2018.8510612.

[3] J. S. Suroso, A. Sutikno, F. G. Br. Ginting, and N. Angelica, “Risk Management &

Mitigation Plan for Data Center Environment,” https://www.ijtre.org, Mar. 2020.

https://www.ijrte.org/wp-content/uploads/papers/v8i6/F7656038620.pdf

[4] Víctor Mayoral Vilches, Juan, Bernhard Dieber, Unai Ayucar Carbajo, and Endika

Gil-Uriarte, “Introducing the Robot Vulnerability Database (RVD),” arXiv (Cornell

University), Dec. 2019, doi: https://doi.org/10.48550/arxiv.1912.11299.

[5] P.-C. Wang, Y. Zhou, B. Sun, and W. Zhang, “Intelligent Prediction of Vulnerability

Severity Level Based on Text Mining and XGBboost,” IEEE Explore, Jun. 2019, doi:

https://doi.org/10.1109/icaci.2019.8778469.

[6] M. Jimenez, M. Papadakis, and Yves Le Traon, “Vulnerability Prediction Models: A

Case Study on the Linux Kernel,” IEEE, Oct. 2016, doi:

https://doi.org/10.1109/scam.2016.15.

[7] G. Huang, Y. Li, Q. Wang, J. Ren, Y. Cheng, and X. Zhao, “Automatic Classification

Method for Software Vulnerability Based on Deep Neural Network,” IEEE Access, vol.

7, pp. 28291–28298, 2019, doi: https://doi.org/10.1109/access.2019.2900462.

[8] Y. Jiang and Y. Atif, “An Approach to Discover and Assess Vulnerability Severity

Automatically in Cyber-Physical Systems,” 13th International Conference on Security of

Information and Networks, Nov. 2020, doi: https://doi.org/10.1145/3433174.3433612.

[9] M. Gawron, F. Cheng, and C. Meinel, “Automatic Vulnerability Classification Using

https://doi.org/10.1007/s13198-020-01021-7
https://doi.org/10.1007/s13198-020-01021-7
https://doi.org/10.1109/ICCOINS.2018.8510612
https://www.ijrte.org/wp-content/uploads/papers/v8i6/F7656038620.pdf
https://doi.org/10.48550/arxiv.1912.11299
https://doi.org/10.1109/icaci.2019.8778469
https://doi.org/10.1109/scam.2016.15
https://doi.org/10.1109/access.2019.2900462
https://doi.org/10.1145/3433174.3433612

91

Machine Learning,” Lecture Notes in Computer Science, pp. 3–17, Jan. 2018, doi:

https://doi.org/10.1007/978-3-319-76687-4_1.

[10] P. Johnson, R. Lagerstrom, M. Ekstedt, and U. Franke, “Can the Common

Vulnerability Scoring System be Trusted? A Bayesian Analysis,” IEEE Transactions on

Dependable and Secure Computing, vol. 15, no. 6, pp. 1002–1015, Nov. 2018, doi:

https://doi.org/10.1109/tdsc.2016.2644614.

[11] K. Scarfone and P. Mell, “An analysis of CVSS version 2 vulnerability scoring,”

IEEE Xplore, 2009. https://ieeexplore.ieee.org/abstract/document/5314220

[12] J. Ruohonen, “A look at the time delays in CVSS vulnerability scoring,” Applied

Computing and Informatics, vol. 15, no. 2, pp. 129–135, Jul. 2019, doi:

https://doi.org/10.1016/j.aci.2017.12.002.

[13] Y. Jiang and Y. Atif, “Towards automatic discovery and assessment of vulnerability

severity in cyber–physical systems,” Array, vol. 15, p. 100209, Sep. 2022, doi:

https://doi.org/10.1016/j.array.2022.100209.

[14] G. D. Stone, “Field versus Farm in Warangal: Bt Cotton, Higher Yields, and Larger

Questions,” World Development, vol. 39, no. 3, pp. 387–398, Mar. 2011, doi:

https://doi.org/10.1016/j.worlddev.2010.09.008.

[15] T. Hall, S. Beecham, D. Bowes, D. Gray, and S. Counsell, “A Systematic Literature

Review on Fault Prediction Performance in Software Engineering,” IEEE Transactions

on Software Engineering, vol. 38, no. 6, pp. 1276–1304, Nov. 2012, doi:

https://doi.org/10.1109/tse.2011.103.

[16] D. Achmadi, Y. Suryanto, and K. Ramli, “On Developing Information Security

Management System (ISMS) Framework for ISO 27001-based Data Center,” IEEE

Xplore, May 01, 2018. https://ieeexplore.ieee.org/document/8471700

[17] M. Levy and A. Subburaj, “Emerging Trends in Data Center Management

Automation,” 2021 IEEE 11th Annual Computing and Communication Workshop and

Conference (CCWC), Jan. 2021, doi: https://doi.org/10.1109/ccwc51732.2021.9375837.

[18] F. Colombelli, Thayne Woycinck Kowalski, and M. Recamonde‐Mendoza, “A

https://doi.org/10.1007/978-3-319-76687-4_1
https://doi.org/10.1109/tdsc.2016.2644614
https://ieeexplore.ieee.org/abstract/document/5314220
https://doi.org/10.1016/j.aci.2017.12.002
https://doi.org/10.1016/j.array.2022.100209
https://doi.org/10.1016/j.worlddev.2010.09.008
https://doi.org/10.1109/tse.2011.103
https://ieeexplore.ieee.org/document/8471700
https://doi.org/10.1109/ccwc51732.2021.9375837

92

hybrid ensemble feature selection design for candidate biomarkers discovery from

transcriptome profiles,” Knowledge Based Systems, vol. 254, pp. 109655–109655, Oct.

2022, doi: https://doi.org/10.1016/j.knosys.2022.109655.

[19] S. Moore, “Focus On The Biggest Security Threats Not The Most Publicized,”

Gartner, Nov. 02, 2017. https://www.gartner.com/smarterwithgartner/focus-on-the-

biggest-security-threats-not-the-most-publicized

[20] N. Ziems and S. Wu, “Security Vulnerability Detection Using Deep Learning

Natural Language Processing,” IEEE Xplore, May 01, 2021.

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9484500&casa_token=JQ15Pvhsz

S0AAAAA:YSjzYXzfRQW09Rc2nkEmNkvLONxVQlHpJJRHhVqsxoJxMvvOAcgbqv

GhXvclCwjW-jIU9W8

[21] G. Sharma, S. Vidalis, C. Menon, and N. Anand, “Analysis and implementation of

semi-automatic model for vulnerability exploitations of threat agents in NIST databases,”

Multimedia Tools and Applications, Nov. 2022, doi: https://doi.org/10.1007/s11042-022-

14036-y.

[22] A. M. S. N. Amarasinghe, W. A. C. H. Wijesinghe, D. L. A. Nirmana, A. Jayakody,

and A. M. S. Priyankara, “AI Based Cyber Threats and Vulnerability Detection,

Prevention and Prediction System,” IEEE Xplore, Dec. 01, 2019.

https://ieeexplore.ieee.org/document/9103372 (accessed Mar. 30, 2022).

[23] G. J. Blinowski and P. Piotrowski, “CVE based classification of vulnerable IoT

systems,” arXiv (Cornell University), Jun. 2020, doi:

https://doi.org/10.48550/arxiv.2006.16640.

[24] S. Zhang, X. Ou, and D. Caragea, “Predicting Cyber Risks through National

Vulnerability Database,” Information Security Journal: A Global Perspective, vol. 24,

no. 4–6, pp. 194–206, Nov. 2015, doi: https://doi.org/10.1080/19393555.2015.1111961.

[25] S. Na, T. Kim, and H. Kim, “A Study on the Classification of Common

Vulnerabilities and Exposures using Naïve Bayes,” Advances on Broad-Band Wireless

Computing, Communication and Applications, pp. 657–662, Oct. 2016, doi:

https://doi.org/10.1007/978-3-319-49106-6_65.

[26] MITRE, “CVE - Common Vulnerabilities and Exposures (CVE),” Mitre.org, 2019.

https://cve.mitre.org/

https://doi.org/10.1016/j.knosys.2022.109655
https://www.gartner.com/smarterwithgartner/focus-on-the-biggest-security-threats-not-the-most-publicized
https://www.gartner.com/smarterwithgartner/focus-on-the-biggest-security-threats-not-the-most-publicized
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9484500&casa_token=JQ15PvhszS0AAAAA:YSjzYXzfRQW09Rc2nkEmNkvLONxVQlHpJJRHhVqsxoJxMvvOAcgbqvGhXvclCwjW-jIU9W8
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9484500&casa_token=JQ15PvhszS0AAAAA:YSjzYXzfRQW09Rc2nkEmNkvLONxVQlHpJJRHhVqsxoJxMvvOAcgbqvGhXvclCwjW-jIU9W8
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9484500&casa_token=JQ15PvhszS0AAAAA:YSjzYXzfRQW09Rc2nkEmNkvLONxVQlHpJJRHhVqsxoJxMvvOAcgbqvGhXvclCwjW-jIU9W8
https://doi.org/10.1007/s11042-022-14036-y
https://doi.org/10.1007/s11042-022-14036-y
https://ieeexplore.ieee.org/document/9103372
https://doi.org/10.48550/arxiv.2006.16640
https://doi.org/10.1080/19393555.2015.1111961
https://doi.org/10.1007/978-3-319-49106-6_65
https://cve.mitre.org/

93

[27] “cve-website,” www.cve.org. https://www.cve.org/

[28] NIST, “NVD - Home,” Nist.gov, 2019. https://nvd.nist.gov/

[29] “Vulnerability Database,” Vuldb.com, 2019. https://vuldb.com/

[30] C. C. for C. Security, “Canadian Centre for Cyber Security,” Canadian Centre for

Cyber Security, Oct. 28, 2022. https://www.cyber.gc.ca/en

[31] “0day.today Agreement - 0day.today Exploit Database : vulnerability : 0day : new

exploits : buy and sell private exploit : shellcode by 0day Today Team,” 151.80.37.64.

http://151.80.37.64/ (accessed Dec. 19, 2023).

[32] Offensive Security, “Offensive Security’s Exploit Database Archive,” Exploit-

db.com, 2019. https://www.exploit-db.com/

[33] CVE Details, “CVE security vulnerability database. Security vulnerabilities,

exploits, references and more,” Cvedetails.com, 2009. https://www.cvedetails.com/

[34] Y. Fang, Y. Liu, C. Huang, and L. Liu, “FastEmbed: Predicting vulnerability

exploitation possibility based on ensemble machine learning algorithm,” PLOS ONE, vol.

15, no. 2, p. e0228439, Feb. 2020, doi: https://doi.org/10.1371/journal.pone.0228439.

[35] L. Rodriguez, J. Trazzi, V. Fossaluza, R. Campiolo, and D. Batista, “Analysis of

Vulnerability Disclosure Delays from the National Vulnerability Database,” SBC, May

2018, Available: https://sol.sbc.org.br/index.php/wscdc/article/view/2394

[36] J. Jacobs, S. Romanosky, B. Edwards, I. Adjerid, and M. Roytman, “Exploit

Prediction Scoring System (EPSS),” Digital Threats: Research and Practice, vol. 2, no.

3, pp. 1–17, Jul. 2021, doi: https://doi.org/10.1145/3436242.

[37] “CVE Database - Security Vulnerabilities and Exploits | Vulners.com,” vulners.com.

https://www.vulners.com (accessed Dec. 20, 2023).

[38] M. Das, Selvakumar Kamalanathan, and Alphonse, “A Comparative Study on TF-

https://www.cve.org/
https://nvd.nist.gov/
https://vuldb.com/
https://www.cyber.gc.ca/en
http://151.80.37.64/
https://www.exploit-db.com/
https://www.cvedetails.com/
https://doi.org/10.1371/journal.pone.0228439
https://sol.sbc.org.br/index.php/wscdc/article/view/2394
https://doi.org/10.1145/3436242
https://www.vulners.com/

94

IDF feature Weighting Method and its Analysis using Unstructured Dataset,” arXiv

(Cornell University), Aug. 2023, doi: https://doi.org/10.48550/arxiv.2308.04037.

[39] “CVSS v4.0 Specification Document,” FIRST — Forum of Incident Response and

Security Teams. https://www.first.org/cvss/v4.0/specification-document

[40] S. M. Kasongo and Y. Sun, “Performance Analysis of Intrusion Detection Systems

Using a Feature Selection Method on the UNSW-NB15 Dataset,” Journal of Big Data,

vol. 7, no. 1, Nov. 2020, doi: https://doi.org/10.1186/s40537-020-00379-6.

[41] A. Anwar, A. Abusnaina, S. Chen, F. Li, and Aziz Mohaisen, “Cleaning the NVD:

Comprehensive Quality Assessment, Improvements, and Analyses,” arXiv (Cornell

University), Jun. 2020, doi: https://doi.org/10.48550/arxiv.2006.15074.

[42] X. Li, S. Moreschini, Z. Zhang, F. Palomba, and D. Taibi, “The anatomy of a

vulnerability database: A systematic mapping study,” Journal of Systems and Software,

vol. 201, pp. 111679–111679, Mar. 2023, doi: https://doi.org/10.1016/j.jss.2023.111679.

[43] “Selenium IDE · Open source record and playback test automation for the web,”

selenium.dev. https://www.selenium.dev/selenium-ide/

[44] Microsoft.com, 2019. https://support.microsoft.com/en-au

[45] M. Perez, “What is Web Scraping and What is it Used For? | ParseHub,” ParseHub

Blog, Aug. 06, 2019. https://www.parsehub.com/blog/what-is-web-scraping/

[46] A. Khazaei, M. Ghasemzadeh, and V. Derhami, “An automatic method for CVSS

score prediction using vulnerabilities description,” Journal of Intelligent & Fuzzy

Systems, vol. 30, no. 1, pp. 89–96, Aug. 2015, doi: https://doi.org/10.3233/ifs-151733.

[47] Boston University, “Homepage | Boston University,” Boston University, 2019.

https://www.bu.edu/

[48] Scikit-learn, “sklearn.ensemble.RandomForestClassifier — scikit-learn 0.20.3

documentation,” Scikit-learn.org, 2018. https://scikit-

learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html

https://doi.org/10.48550/arxiv.2308.04037
https://www.first.org/cvss/v4.0/specification-document
https://doi.org/10.1186/s40537-020-00379-6
https://doi.org/10.48550/arxiv.2006.15074
https://doi.org/10.1016/j.jss.2023.111679
https://www.selenium.dev/selenium-ide/
https://support.microsoft.com/en-au
https://www.parsehub.com/blog/what-is-web-scraping/
https://doi.org/10.3233/ifs-151733
https://www.bu.edu/
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html

95

[49] C. S. GMT +01:00 Route des Acacias 48, CH-1227 Carouge, SUISSE- Tel : +41 22

308 48 60- Fax : +41 22 308 48 68- Timezone:, “Algorithm & computer science:

definition and understanding,”www.iig.ch.https://www.iig.ch/en-en/blog/computer-

science/algorithm-computer-science-definition-and-

understanding#:~:text=Algorithms%20are%20used%20to%20find

[50] Cybersecurity and Infrastructure Security Agency, “Known Exploited

Vulnerabilities Catalog | CISA,” www.cisa.gov, 2023. https://www.cisa.gov/known-

exploited-vulnerabilities-catalog

https://www.iig.ch/en-en/blog/computer-science/algorithm-computer-science-definition-and-understanding#:~:text=Algorithms%20are%20used%20to%20find
https://www.iig.ch/en-en/blog/computer-science/algorithm-computer-science-definition-and-understanding#:~:text=Algorithms%20are%20used%20to%20find
https://www.iig.ch/en-en/blog/computer-science/algorithm-computer-science-definition-and-understanding#:~:text=Algorithms%20are%20used%20to%20find
https://www.cisa.gov/known-exploited-vulnerabilities-catalog
https://www.cisa.gov/known-exploited-vulnerabilities-catalog

