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Abstract

Most of the fundamental problems in science and engineering, when formulated

mathematically give rise to non-linear partial differential equations. Thermal ex-

pulsion of fluid from a long slender heated tube is one of them. The direct search

for the exact solution of the thermal expulsion equation is usually a hard task.

Therefore, finding the techniques that give the approximate solution of this prob-

lem needs special attention. There are different ways to find approximate solution

of a non-linear partial differential equation (PDE), but one of them is to reduce

it from a non-linear PDE to an ordinary differential equation (ODE) by similarity

transformation. Then by finding the solution of the reduced ODE, one may get

the solution of non-linear PDE. Unfortunately, most often the similarity transfor-

mations reduce the non-linear PDEs to non-linear ODEs that is again difficult to

solve. So, the idea is to find the numerical solution of this reduced ODE and then

approximate it by a function. Then by applying the inverse similarity transforma-

tions to the approximated function, one may get the approximate solution of the

non-linear PDE in the form of a function. Another way to find the approximate

solution of non-linear PDE is to apply the direct numerical techniques. In this The-

sis, we will use both approximation techniques to find the solution of non-linear

thermal expulsion PDE, and then compare both solutions and analyze the errors.
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Symbols

cp Specific heat (Jkg−1K−1).

c Speed of sound.

D Hydraulic diameter of helium filled part of the conductor.

f Fanning friction.

F Frictional forces per unit mass (Ng−1).

p Pressure (Pa).

q̇ Heating rate per unit mass of helium (Wg−1).

t Time (sec).

T Temperature (K).

u Specific internal energy (Jkg−1).

v Flow velocity (msec−1).

x Distance (m).

β Volume coefficient of thermal expansion.

ρ Density (kgm−3).

τ Specific Volume (ρ−1).
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Chapter 1

Introduction

One of the important and subtle features of mathematics is the great difference be-

tween linearity and non-linearity. One always tries to linearize, whenever possible

because linear problems are easier to solve. Unfortunately, the mathematical mod-

eling of most physical processes in fields like diffusion and fluid mechanics are not

linear, so we have to learn how to deal with these non-linear problems. Similarly, in

PDEs the distinction between the linear and non-linear equations is extremely im-

portant. Linear PDEs can be solved easily by using techniques such as separation

of variable, superposition, Fourier series, Laplace transform and Fourier transform,

etc. But non-linear PDEs are difficult to solve analytically. Non-linear PDEs have

always remained the center of great attention, because of their vast range of ap-

plications in science and engineering. Therefore, special attention should be given

in seeking the solutions of these non-linear PDEs.

A powerful general technique for analyzing non-linear PDE is given by Lie symme-

try method also called similarity method [1, 2, 3]. About a hundred years ago, an

Austrian physicist Boltzman was the first who used the algebraic symmetries to

study diffusion equation. Boltzman did not mention explicitly the transformation

groups or the symmetries that he used. After this, in 1950s, American mathe-

matician Garrett Brikhoff reviewed Boltzman’s procedure of algebraic symmetry
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of diffusion equation and then generalized this procedure to other PDEs including

non-linear ones. He showed, that the solution of the PDE can be found easily by

merely solving related reduced ODE [4].

By applying the similarity method, the non-linear PDEs is reduced in to an ODEs.

The solution of this reduced ODE leads us to solution of the given non-linear PDE.

But the difficulty is increased, when the resulting ODE is also non-linear and is

not integrable in term of elementary functions. Thus, we implement numerical

approach to find the solution of the reduced ODE. But the numerical solution of

the reduced ODE cannot be easily utilized to get the approximate solution of the

PDE. Thus, we approximate the numerical solution of the ODE in the form of a

function to get the approximate solution of non-linear PDE. We, then compare

this approximate solution with the numerical solution of the PDE and analyze the

errors.

The main contribution of this thesis is to solve a non-linear heat equation known

as thermal expulsion problem. The application of this problem is in cable-in con-

duit superconductors which uses Helium as a fluid. The warm helium is treated

as a perfect gas having uniform pressure and temperature and its temperature is

presumed as a function of time. Whereas, the cold helium is treated as dense fluid

and when it is heated by conductors then it causes its temperature to rise. When

the pressure of in cable-in-conduit conductor rises then the helium is expelled from

its ends of the conductor. The hazard that one faces is that the pressure rise can

damage the structure of the conductor. In addition to this, the rapid expulsion of

the helium from the conductor back into the refrigeration system may also cause

damage. To overcome these problems, we should know the rate of efflux of helium

for the first few seconds, because after this the refrigeration system is protected by

the valves that control the flow [5].
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The mathematical formulation of this problem enables to obtain an equation in

the form of non-linear PDE. By solving that equation, we get an expression that

shows explicitly the dependence of expulsion velocity on various parameters of con-

ductor. For this, we should know some basic definitions of heat transfer in fluid.

The rest of the chapter includes the basic definitions of heat and the mathematical

formulation of thermal expulsion problem.

1.1 Basics of Heat

Temperature plays an important role in the theory of heat transfer. It is a measure

of hotness or coldness of a body with units of Kelvin, Fahrenheit, etc. In thermo-

dynamical point of view, it is an intensive property, i.e., it does not depend upon

the amount of a material within the substance. Heat is basically a form of energy

(usually called heat energy) that is transferred from one substance to another sub-

stance by thermal interactions. Its SI unit is Joule (1J = 1Nm). Both heat and

temperature are closely related to each other. As a general statement, when heat

energy of a system rises its temperature also rises.

Heat transfer is a phenomenon which concerns to the conversion or exchange of

energy and heat between two physical systems. When a fluid is heated then energy

enters into the fluid. Due to this energy, the kinetic energy of molecules increases.

This is the way through which the heat transfer takes place in the fluid and results

in increase of the temperature of the fluid.

Specific heat

It is the amount of heat required to raise the temperature of unit mass of a sub-

stance by one degree celsius.

Q ∝ m∆T,
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or

Q = cpm∆T, (1.1)

where Q is heat, m is mass and ∆T is change in temperature. In Eq. (1.1) cp is

the constant of proportionality and is known as specific heat. Its unit is Jkg−1K−1.

Kinetic and potential energies are macroscopic forms of energy of a substance

but there are also some microscopic forms of energies which are caused by rota-

tions, vibrations, translations and interactions among the molecules of a substance.

These microscopic forms of energies are collectively called the internal energy (U).

Specific internal energy, u, is defined as an internal energy U per unit mass m,

defined as

u =
U

m
.

Volume Coefficient of Thermal Expansion

When the temperature of a substance changes then the energy stored in the inter-

molecular bonds of atoms changes. When the stored energy increases, the length of

molecular bonds also increases. This change in volume with temperature is called

volume coefficient of thermal expansion.

First Law of Thermodynamics

We can increase the energy of a system by doing work on it or by heating it. In

general, the change in the internal energy of a closed system is given by

∆U = Q+W. (1.2)

The quantity ∆U represents the change in the energy of a system due to heating

(Q > 0) or cooling (Q < 0) and W is the work done on the system. Eq. (1.2)
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expresses the law of conservation of energy and also known as the first law of

thermodynamics [7].

Fanning Friction Factor

Fanning friction factor is used to calculate the pressure loss due to friction in a

pipe. It depends upon the roughness of pipe and the level of turbulence in the

liquid flow and is given as

F =
2fv2

D
, (1.3)

where f represents the frictional forces, v is the velocity, and D is the diameter of

the pipe.

Fluid Flow

There are three states of matter: Solids, liquids and gases. Gases and liquids have

flow property but solids do not have this property. On the basis of flow property

gases and liquids are called fluids. In general, fluid flow is classified into two types

on the basis of velocity of the fluid. These include laminar flow and turbulent flow.

In laminar flow different streamlines run parallel to one another and do not cross.

Fluid moving with very low velocity possess laminar flow. Fluid in which different

streamlines start crossing one another and fluid flow remains no longer steady is

called turbulent flow.

1.2 Mathematical Formulation of Thermal Ex-

pulsion Problem

Fluid motion is governed by equation of continuity and the Bernoulli equation. For

flow in heated pipe, the momentum equation is an additional equation.
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Continuity Equation

The equation of continuity is the mathematical form of the law of conservation of

mass. The rate at which mass enters into the systems is equal to the rate at which

it leaves the system. Mathematical form of continuity equation is written as

∂ρ

∂t
+ div(ρv) = 0, (1.4)

where ρ is the density and v is the velocity of the fluid in x, y and z directions.

For incompressible fluids the density is constant and equation reduces into divv=0

and

∂v

∂x
+
∂v

∂y
+
∂v

∂z
= 0 (1.5)

Bernoulli’s Equation

Bernoulli equation is a direct consequence of law of conservation of energy. The

law of conservation of energy states that any change in the energy of the fluid

within the control volume is equal to the net thermal energy transferred into the

control volume plus the rate of work done by external forces.

ρ
d

dt

(
u+

v2

2

)
= − ∂

∂x
(pv) + ρq̇, where q̇ =

dq

dm
, (1.6)

In Eq. (1.6) q̇ represents heating rate per unit mass and ρ is the density of fluid.

The energy of the fluid is the sum of absolute thermodynamics internal energy per

unit mass u, and the kinetic energy per unit mass 1
2
v2.

Momentum Equation

The law of conservation of momentum is given by the momentum equation. It

states that the rate of change of momentum in the control volume must be equal

to net momentum flux plus any external forces.

ρ
dv

dt
= −∂p

∂x
− ρF, (1.7)
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where F is fanning friction. The frictional forces appear only in momentum equa-

tion, but not in energy equation because the work done by frictional forces is not

removed by the fluid but it is returned to it as heat.

If we multiply Eq. (1.7) by v and then subtract it from Eq. (1.6), we get

du

dt
+
p

ρ

∂v

∂x
= q̇ + Fv. (1.8)

The mathematical equation of second law of thermodynamics is

Tds = du+ pdτ, (1.9)

where τ = 1/ρ. Dividing Eq. (1.9) by dt and using Eq. (1.4), we have

T
ds

dt
=
du

dt
+
p

ρ

∂v

∂x
. (1.10)

From Eqs. (1.8) and (1.10), we get

T
ds

dt
= q̇ + Fv. (1.11)

From the thermodynamics identity [6]

dρ =
dp

c2
− βρ

cp
Tds, (1.12)

or

1

ρ

dρ

dt
=

1

c2ρ

dp

dt
− β

cp
T
ds

dt
, (1.13)

from Eq. (1.11), we have

1

ρ

dρ

dt
=

1

c2ρ

dp

dt
− β

cp
(q̇ + Fv) . (1.14)

where cp is specific heat, c is speed of sound, and β is the volume cofficient of

thermal expansion. The term Fv in Eq. (1.14) represents Entropy. Using Eq.

(1.4) in Eq. (1.14), we get

∂v

∂x
+

1

ρc2

∂ρ

∂t
=
β

cp
(q̇ + Fv) . (1.15)
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At t = 0, initially when pressure rise is zero, imagine q̇ is nonzero. At this stage,

when v has not risen too much, we have

q̇ >> Fv,

or (using Eq. (1.3))

v3 <<
q̇D

2f
.

When this condition is fulfilled, Eq. (1.15) becomes as

∂v

∂x
+

1

ρc2

∂p

∂t
=
βq̇

cp
. (1.16)

The main assumption of this work is that the frictional forces largely dominate the

inertial forces in long, narrow tube. Due to these frictional forces the left hand

side of Eq. (1.7) is far less than the term on the right hand side. In other words,

the pressure gradient expends itself in overcoming friction, not in accelerating the

fluid [5]. Hence, set dv/dt = 0, in left hand side of Eq. (1.7)

∂p

∂x
= −ρF, (1.17)

or

∂p

∂x
=
−2ρfv2

D
. (1.18)

When q̇ = 0, Eq. (1.16) takes the form

∂v

∂x
+

1

ρc2

∂p

∂t
= 0, (1.19)

In special units, we take ρ = c = D/4f = 1. So the above Eqs. (1.18) and (1.19)

become

∂v

∂x
+
∂p

∂t
= 0, (1.20)

and

∂p

∂x
+
v2

2
= 0. (1.21)
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Taking partial derivative of Eqs. (1.20) and (1.21) with respect to x and t respec-

tively, and comparing both equations, we get

∂2v

∂x2
= v

∂v

∂t
. (1.22)

Since the pressure rise p is zero at x = 0 at the open end of the pipe so, from Eq.

(1.16) the boundary condition become as(
∂v

∂x

)
x=0

=
βq̇

cp
, (1.23)

and

v(x, 0) = 0, v(∞, t) = 0.

In dimensionless variables V = v/c, X = −βq̇x/ccp, T = Dβ2q̇2t/4fcc2
p, Eqs.

(1.22) and (1.23), take the form

∂2V

∂X2
= V

∂V

∂T
, (1.24)

and the initial and the boundary conditions of Eq. (1.24) becomes(
∂V

∂X

)
X=0

= −1, (1.25)

V (X, 0) = 0, V (∞, T ) = 0.

In Chapter 2 a brief review of the numerical methods for PDEs is presented. Chap-

ter 3 illustrates the approach that we used to obtain the approximate solution of

the non-linear thermal expulsion equation. In addition, last chapter of this thesis

includes the comparative analysis of the approximate and numerical solutions of

thermal expulsion problem.
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Chapter 2

Numerical Methods for Partial
Differential Equations

Mathematical formulation of most of the physical and engineering problems are

governed by PDEs, whose analytical solutions are difficult to find. In such cases, we

may have to content with an approximate solution. There are different techniques

to find the approximate solution of PDEs, but numerical techniques are most

commonly used. The basic concept of numerical scheme is based on approximation

of partial derivatives by algebraic expressions. These algebraic expressions are then

solved numerically. This chapter is devoted to study different numerical techniques,

such as finite difference and finite volume methods. In this this thesis we have used

only finite difference to solve our problem. However, some light is also shed on finite

element and spectral methods.

2.1 Finite Difference Method (FDM)

Finite difference method is a simple and commonly used technique to solve PDEs,

generally having regular domain. In this method, we place a rectangular grid on

the given regular domain consisting of vertical lines which are h units apart and

horizontal lines which are k units apart. Next, we write the difference equation

at each grid point [8]. These difference equations are then approximated by the
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Taylor series expansion. The Taylor series expansion at u(x+ ∆x, t) is given as

u(x+ ∆x, t) = u+ ∆x
∂u

∂x
+

(∆x)2

2!

∂2x

∂x2
+

(∆x)3

3!

∂u3

∂x3
+ ...

Ignoring all the terms involving (∆x)2 and all its higher powers

u(x+ ∆x, t) = u+ ∆x
∂u

∂x
+O(∆x)2. (2.1)

Similarly, the Taylor series for u(x, t+ ∆t) is given as

u(x, t+ ∆t) = u+ ∆t
∂u

∂t
+

(∆t)2

2!

∂2u

∂t2
+

(∆t)3

3!

∂u3

∂t3
+ ...,

or

u(x, t+ ∆t) = u+ ∆t
∂u

∂t
+O(∆t)2. (2.2)

Solving Eqs. (2.1) and (2.2) for ∂u/∂x and ∂u/∂t respectively, we get forward

difference equations

∂u

∂x
=
u(x+ ∆x, t)− u(x, t)

∆x
+O(∆x),

and

∂u

∂t
=
u(x, t+ ∆t)− u(x, t)

∆t
+O(∆t).

Similarly, the Taylor series expansion for u(x − ∆x, t) and u(x, t + ∆t) can be

written as

u(x−∆x, t) = u−∆x
∂u

∂x
+

(∆x)2

2!

∂2x

∂x2
− (∆x)3

3!

∂u3

∂x3
+ ...

and

u(x, t−∆t) = u−∆t
∂u

∂t
+

(∆t)2

2!

∂2u

∂t2
− (∆t)3

3!

∂u3

∂t3
+ ....

or

u(x−∆x, t) = u−∆x
∂u

∂x
+O(∆x)2, (2.3)
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and

u(x, t−∆t) = u−∆t
∂u

∂t
+O(∆t)2. (2.4)

From Eqs. (2.3) and (2.4), we get the backward difference equations for ∂u/∂x

and ∂u/∂t as following

∂u

∂x
=
u(x, t)− u(x−∆x, t)

∆x
+O(∆x),

and

∂u

∂t
=
u(x, t)− u(x, t−∆t)

∆t
+O(∆t).

Central difference equation, for ∂u
∂x

, can be obtain by adding Eqs. (2.1) and (2.3)

∂u

∂x
=
u(x+ ∆x, t)− u(x−∆x, t)

2∆x
+O(∆x2).

For ∂u/∂t, the central difference equation is obtained by subtracting Eqs. (2.2)

and (2.4)

∂u

∂t
=
u(x, t+ ∆t)− u(x, t−∆t)

2∆t
+O(∆t2).

Similarly, central difference equations for ∂2u/∂x2 is obtained as

∂2u

∂x2
=
u(x+ ∆x, t)− u(x−∆x, t)

(∆x)2
+O(∆x2).

For ∂2u/∂t2, we have

∂2u

∂t2
=
u(x, t+ ∆t)− u(x, t−∆t)

(∆t)2
+O(∆t2).

We shall use the following notations

u(x±∆x, t) = ui±1,j,

u(x, t±∆t) = ui,j±1,
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∆x = h,

∆t = k.

So, the expression for forward difference takes the form

∂u

∂x
=
ui+1,j − ui,j

h
+O(h), (2.5)

∂u

∂t
=
ui,j+1 − ui,j

k
+O(k). (2.6)

For backward difference, we have

∂u

∂x
=
ui,j − ui−1,j

h
+O(h), (2.7)

∂u

∂t
=
ui,j − ui,j−1

k
+O(k). (2.8)

And the central difference equations are given as

∂u

∂x
=
ui+1,j − ui−1,j

2h
+O(h), (2.9)

∂u

∂t
=
ui,j+1 − ui,j−1

2k
+O(k), (2.10)

∂2u

∂x2
=

(ui+1,j + ui−1,j − 2ui,j)

h2
+O(h2), (2.11)

∂2u

∂t2
=
ui,j+1 − 2ui,j + ui,j−1

k2
+O(k2). (2.12)

Most of the concepts associated with the numerical solution of PDEs by FDM can

be illustrated and understand by considering a simple diffusion equation in one

dimensional (1D) of the form

∂u

∂t
= α

∂2u

∂x2
, 0 < x < l, t > 0, (2.13)
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subject to the following initial and boundary conditions

u(0, t) = u(l, t) = 0, t > 0,

u(x, 0) = f(x), 0 ≤ x ≤ l.

This is parabolic heat equation in 1D that describes heat flow in a rod or a thin wire.

The function u(x, t) is temperature and α is called thermal diffusivity. Following

are the three types of schemes that are used in finite difference method.

2.1.1 Explicit Finite Difference Scheme

In this scheme, first order forward difference equation for time and second order

central difference for space derivative are used. Substituting Eqs. (2.6) and (2.12)

in (2.13), we get

ui,j+1 − ui,j
k

= α
(ui+1,j + ui−1,j − 2ui,j)

h2
,

or

ui,j+1 − ui,j = α
k

h2
(ui+1,j + ui−1,j − 2ui,j),

Substituting r = αk/h2, the final discretizationn of this scheme is as follow

ui,j+1 = (1− 2r)ui,j + r(ui+1,j + ui−1,j). (2.14)

From boundary conditions, we have

u0,0 = f(x0), u1,0 = f(x1), ..., um,0 = f(xm).
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For each i = 1, 2, ...,m and j = 1, we get the following equations

u0,1 = 0,

u1,1 = (1− 2r)u1,0 + r(u2,0 + u0,0),

u2,1 = (1− 2r)u2,0 + r(u3,0 + u1,0),

...
...

um−1,1 = (1− 2r)um−1,0 + r(um,0 + um−2,0),

um,1 = 0.

The values of ui,1 are used to find the values of ui,2. These equations generate a

tridiagonal form of matrix of order (m− 1)× (m− 1) as follow

A =


(1− 2r) r 0 · · · 0

r (1− 2r) r
. . .

...

0
. . . . . . . . . 0

...
. . . . . . . . . r

0 · · · 0 r (1− 2r)


where, r = αk/h2,

u(0) = (f(x1), f(x2), ..., f(xm−1))t,

and

u(j) = (u1,j, u2,j, ..., u(m−1),j), for each j = 1, 2, ..., (2.15)

u(j) = Au(j−1), for each j = 1, 2, ...,

This is known as an explicit method called Forward Time Central Space

(FTCS).

Stability Analysis

In general, different types of error occur in FDM. Two of them are very important,

one is round off error and other is truncation error. These errors are caused by
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rounding-off error or by application of particular numerical scheme. If the error

introduced in numerical scheme is not controlled, then the method is unstable.

Understanding and controlling these errors is very essential for successful solution

of the PDE. It is done by the stability analysis which provides limitations on step

size that are needed for stable solution. A numerical scheme is stable, if the error

at each step does not increase with time when the computations are carried out

for next steps. Now, we find the stability conditions for explicit forward difference

scheme. The Vonn Nuemman stability analysis is commonly used method for

determining the stability requirements for finite difference scheme [10]. It is based

upon the Fourier series of the form

ui,j = eιβxξt. (2.16)

Putting Eq. (2.16) in Eq. (2.14), we get the following expression

eιβxξt+1 = eιβxξt + r(eιβ(x+1)ξt − 2eιβxξt + eιβ(x−1)ξt),

or

eιβxξt+1 = eιβxξt(1 + r(eιβ − 2 + e−ιβ)).

After simplification, we get

ξ = 1 + r(eιβ + e−ιβ − 2). (2.17)

From the trigonometric identity

sin2 (β)

2
= −(eβ + e−ιβ − 2)

4
, (2.18)

and using Eq. (2.18) in (2.17), we get

ξ = 1− 4r sin2 (β)

2
.
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For stable solution, we require |ξ| ≤ 1, such that

|1− 4r sin2 (β)

2
| ≤ 1, when r ≤ 1

2
.

Thus, we can say that explicit FDM is applicable only when h and k are selected

such that r ≤ 1
2
.

Truncation Error

The truncation error is introduced when we replace the infinite Taylor series by

a finite number of terms in difference equations. Truncation error is the sum of

all remaining terms that we do not include in the formulation of the difference

equations. Again considering Eq. (2.14) and applying the Taylor series at ui,j+1,

ui+1,j and ui−1,j, we get

(ui,j + kut +
k2

2!
utt +

k3

3!‘
uttt +

k4

4!
utttt + ...− ui,j) =

k

h2
(ui,j + hux +

h2

2!
uxx +

h3

3!
uxxx

+
h4

4!
uxxxx + ...− 2ui,j + ui,j − hux +

h2

2!
uxx −

h3

3!
uxxx +

h4

4!
uxxxx + ...).

After simplification, we obtain

k(ut − uxx) + (
k2

2!
utt +

k3

3!
uttt +

k4

4!
utttt + ...) =

kh2

2!
(uxxxx + ...),

or

k

2!
utt +

k2

3!
uttt +

k3

4!
utttt + ... =

h2

2!
uxxxx + ...,

or

k(
utt
2!

+
k

3!
uttt +

k2

4!
utttt + ...) = h2(

uxxxx
2!

+ ...).

This shows that the FTCS has truncation error of an O(k + h2).

The drawback of FTCS scheme is that it is difficult to apply because we have to

choose h and k in such a way that we can attain sufficient accuracy. For example,

if we choose h = 0.1 then k ≤ 0.005. To reach the desired value of t, we have to
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perform many number iterations. To overcome this problem, we should look for a

method which does not impose any restriction on the choice of r = h/k2, which

means we need an unconditional scheme.

2.1.2 Implicit Finite Difference Scheme

In this scheme, backward-difference equation for the time ∂u/∂t and second order

central difference for the space derivative ∂2u/∂x2 are used. This is also called

BTCS.

Considering Eq. (2.13) and apply BTCS scheme, we get,

ui,j − ui,j−1

k
= α

ui+1,j + ui−1,j − 2ui,j
h2

,

or

ui,j − ui,j−1 =
αk

h2
(ui+1,j + ui−1,j − 2ui,j),

or

ui,j−1 = (1 + 2r)ui,j − rui+1,j − rui−1,j, for each i = 1, 2, 3, ...,m− 1 and j = 1, 2, ...,
(2.19)

And we have ui,0 = f(xi) and um,j = u0,j = 0.

The matrices representation of Eq. (2.28) takes the following form
(1 + 2r) −r 0 · · · 0

−r . . . . . . . . .
...

0
. . . . . . . . . 0

...
. . . . . . . . . . . . −r

0 · · · 0 −r (1 + 2r)



u1,j

u2,j
...

um−1,j

 =


u1,j−1

u2,j−1
...

um−1,j

 ,

or

Au(j) = u(j−1), for each j = 1, 2, .... (2.20)

This is an implicit method called Backward Time Central Space.
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Stability Analysis

To determine the stability conditions, we again consider the Fourier series of the

form ui,j = eιβxξt. Substitute this expression in Eq. (2.14), we have

eιβxξt = eιβxξ(t−1) + r(eιβ(x+1)ξt + eιβ(x−1)ξt − 2eιβxξt),

or

eιβxξt = eιβxξt(ξ−1 + r(eιβ + e−ιβ − 2).

Using the trigonometric identity given in Eq. (2.18) and after simplifying the above

equation, we get

ξ−1 = 1 + r(eβ + e−ιβ − 2),

or

ξ =
1

1 + 4r sin2(β
2
)
. (2.21)

The value of ξ determine the stability condition. From Eq. (2.21), 0 < |ξ| ≤

1 for all r > 0. This shows that the backward time central space method is

unconditionally stable. Similarly the backward difference method has truncation

error of an order k + h2. The weakness of this method results from the fact that

the truncation error has portion with order k, requiring that time interval should

be made much smaller than the spatial interval. It would be clearly desirable to

have a scheme with truncation error of O(k2 + h2). The first step in this direction

is to use a difference equation that has order k2 instead of k. To overcome this

problem Richardson scheme was introduced [9].

2.1.3 Richardson Scheme (CTCS)

In Richardson scheme, partial derivatives, i.e, ∂u/∂t and ∂2u/∂x2 are replaced by

central difference equations. The discretizationn of this scheme is as follow

ui,j+1 − ui,j = r(ui+1,j − 2ui,j + ui−1,j). (2.22)
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For stability condition, substitute ui,j = eιβxξt in Eq. (2.22)

ξt+1eιβx − ξt−1eιβx = r(ξt+1eιβ(x+1) − 2ξteιβx + ξteιβ(x−1)).

After simplifying, we get

ξ2 + 4rξ sin2

(
β

2

)
− 1 = 0. (2.23)

Eq. (2.23) is quadratic in ξ. Let ξ1 and ξ2 are the roots of this equation. The sum

and product of the roots are as follow

ξ1 + ξ2 = 4 sin2

(
β

2

)
,

and

ξ1ξ2 = −1.

For stability |ξ1| ≤ 1 and |ξ2| ≤ 1. From the product of roots, if |ξ1| ≤ 1 then

|ξ2| ≥ 1. Also if ξ1 = 1 and ξ2 = −1 then β = 0. The above two results show that

Richardsons method is unconditionally unstable.

2.1.4 Crank-Nicolson Scheme

A more rewarding method is obtained by averaging the backward difference

method and the forward difference method [9]. The Forward difference method

at jth step is given as

ui,j+1 − ui,j
k

=
ui+1,j − 2ui,j + ui−1,j

h2
. (2.24)

Similarly, the backward difference method at (j + 1)th step is

ui,j+1 − ui,j
k

=
ui+1,j+1 − 2ui,j+1 + ui−1,j+1

h2
. (2.25)

After averaging Eqs. (2.24) and (2.25), we get the following relation

(ui,j+1 − ui,j)
h

=
1

2
(
ui+1,j + ui−1,j − 2ui,j

h2
+
ui+1,j+1 − 2ui,j + ui−1,j+1

h2
).
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After simplifying, the above equation takes the following form

(2 + 2r)ui,j+1 − rui+1,j−1 − rui+1,j+1 = (2− 2r)ui,j + rui−1,j + rui−1,j+1. (2.26)

The above discretization results in the system of linear equations. The solution is

found by solving this system of equations. The matrix representation of the above

discretization is

Au(j+1) = Bu(j), for each j = 1, 2, 3, ... (2.27)

where u(j) = (u1,j, u2,j, ..., um−1)t,

and the matrices A and B are given as

A =


(2 + 2r) −r 0 · · · 0

−r . . . . . . . . .
...

0
. . . . . . . . . 0

...
. . . . . . . . . . . . −r

0 · · · 0 −r (2 + 2r)

 ,

B =


(2− 2r) r 0 · · · 0

r
. . . . . . . . .

...

0
. . . . . . . . . 0

...
. . . . . . . . . . . . r

0 · · · 0 r (2− 2r)

 .

Stability Analysis

Now we find the stability requirements for the Crank-Nicolson scheme. Substitut-

ing ui,j = eιβhξt in the Eq. (2.26), we get

(2 + 2r)ξ(t+1)eιβx − rξteιβ(x+1) − reιβ(x+1)ξ(t+1) = (2− 2r)ξteιβx + rξteιβ(x−1)

+ reιβ(x−1)ξ(t+1),

or

ξteιβx[(ξ(2 + 2r)− reιβ − rξeιβ] = ξteιβx[(ξ(2− 2r) + re−ιβ + rξe−ιβ],
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or

ξ − 1 =
r

2
[(eιβ + e−ιβ − 2) + ξ(eιβ + e−ιβ − 2)].

Using the trigonometric identity given in Eq. (2.18), we get

ξ =
1− 2r sin2 β

2

1 + 2r sin2 β
2

. (2.28)

Eq. (2.28) shows that |ξ| ≤ 1 for all r ≥ 0. The local truncation error of the

Crank-Nicolson is of the order k2 + h2.

This proves that Crank-Nicolson method is unconditional stable. This is also an

Implicit method and best scheme for small steps.

Crack-Nicolson scheme has significant advantages over the FTCS and BTCS be-

cause of unconditional stability and order of accuracy respectively . Finite Differ-

ence method is difficult to apply on PDEs having the boundary conditions involv-

ing derivatives or having irregular boundary shape. Another drawback of FDM

is that when applied to engineering fluid problems great care has to be taken in

approximation in order to ensure conservative property, especially in discontinuous

solutions.

2.2 Finite Volume Method (FVM)

Finite volume methods was introduced in early 1970’s [11]. Finite volume method

can be easily implemented on structured as well as unstructured grids. In FVM,

we do not discretize the differential form of equation, but discretization is applied

on integral form. To understand the concepts related to FVM consider the 1D

heat equation.

∂u

∂t
=

∂

∂x

(
α
∂u

∂x

)
, (2.29)

subject to the following initial and boundary conditions

u(x, 0) = f(x), x ε [xa, xb],
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u(xa, t) = ua(t), u(xb, t) = ub(t).

In finite volume method divide the whole solution domain in two small cells called

control volume.

Applying integral over the control volume, Ωp, we get

∫ xe

xw

∂u

∂t
dx = (α

∂u

∂x
)e − (α

∂u

∂x
)w. (2.30)

Next, we define cell average temperature, up, in control volume, Ωp, by integrating

u(x, t) over the domain [xe, xw] and then divide it by xe − xw = ∆xp to get the

average temperature over the given control volume as

up =
1

∆xp

∫ xe

xw

∂u

∂t
dx. (2.31)

Using Eq. (2.31) in Eq. (2.30), we get

∆xp
dup
dt

=

(
α
∂u

∂x

)
e

−
(
α
∂u

∂x

)
w

. (2.32)

Next, we approximate cell average, ue, at eastern side as(
∂u

∂x

)
e

≈ ue − up
xe − xw

. (2.33a)
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and at western cells, uw, is given as(
∂u

∂x

)
w

≈ up − uw
xp − xw

. (2.33b)

So the above Eqs. (2.33) now takes the form

∆xp
dup
dt

= α

(
ue − up
xe − xw

− up − uw
xp − xw

)
. (2.34)

At the boundaries, the approximation of
(
∂u
∂x

)
a

is given as(
∂u

∂x

)
a

≈ u1 − ua
x1 − xa

. (2.35)

Similarly, at the right boundary we have the following approximation for
(
∂u
∂x

)
b(

∂u

∂x

)
b

≈ ub − ujmax
xb − xjmax

. (2.36)

We are dividing the interval [xa, xb] into N cells [xj− 1
2
, xj+ 1

2
], for each j=1, 2, 3,

...N . We apply Eq. (2.33) to each cells, except for the first and last ones, to have

∆xj
duj
dt

= α

(
uj+1 − uj
xj+1 − xj

− uj − uj−1

xj − xj−1

)
, for each j = 2, ..., N − 1. (2.37)

After simplifying, we have

duj
dt

=
α

∆x2
(uj+1 − 2uj + uj−1), for each j = 2, ..., N − 1. (2.38)
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Approximate slopes at the boundaries are

∂u

∂x
(x i

2
, t) ≈ u1 − a

∆x
2

≈ 2

(
u1 − a

∆x

)
, (2.39)

and

∂u

∂x
(xjmax+ i

2
, t) ≈ b− ujmax

∆x
2

≈ 2

(
b− ujmax

∆x

)
. (2.40)

Thus, the final equation at left boundary cell is

du1

dt
=

α

∆x2
[u2 − u1 − 2(u1 − a)]

du1

dt
=

α

∆x2
(u2 − 3u1 + 2a). (2.41)

At the right boundary cell, we get

dujmax
dt

=
α

∆x2
[2(b− ujmax)− (ujmax − ujmax−1) =

α

∆x2
(2b− 3ujmax + ujmax−1).

(2.42)

Thus, we get a system of N ordinary differential equations of the form

du

dt
= Rk(u), k = 1, 2, 3, . . . , N. (2.43)

Where, R1, Rj and RN are as follow

R1 =
α

∆x1
(u2 − 3u1 + 2a), (2.44)

Rj =
α

∆x2
(uj+1 − 2uj + uj−1), for each j = 2, ..., N − 1, (2.45)

RN =
α

∆x2
(2b− 3ujmax + ujmax−1). (2.46)

The unknown vectors are

U = [u1, u2, u3, ...., ujmax]. (2.47)

In the next step, we solve the system of ODEs by the following schemes.
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Explicit Euler Scheme

In explicit Euler method, we solve du/dt by forward time integration

un+1 − un

∆t
= Rk(u

n), k = 1, 2, 3, . . . , N,

or

un+1 = un + ∆tRk(u
n), k = 1, 2, 3, . . . , N,

where, r = α/∆x2. In this scheme, solution can be found explicitly. This scheme

is stable for 0 ≤ r ≤ 1
2
. The truncation error is of the order ∆t. The explicit FVM

is simple and easy to implement. However, the disadvantage of this scheme is low

accuracy and severe stability condition applied to it for convergent solution.

Implicit Euler Scheme

To get rid of stability condition, we solve the system of ODEs by an implicit Euler

method

un+1 − un

∆t
= Rk(u

n+1), k = 1, 2, 3, . . . , N,

un+1 −∆tRk(u
n+1) = un, k = 1, 2, 3, . . . , N. (2.48)

Then, the FVM with the implicit Euler method can be expressed as

(1 + 3r)un+
1 − run+1

2 = un1 + 2ra, (2.49)

−run+1
j−1 + (1 + 2r)un+1

j − run+1
j+1 = unj , j = 2, ..., N − 1, (2.50)

−run+1
N−1 + (1 + 3r)un+1

N = unN + 2rb. (2.51)

These N equation can be represented in the matrix form

Aun+1 = bn, (2.52)
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or 
(1 + 3r) −r 0 · · · 0

−r (1 + 2r) −r . . . 0

0
. . . . . . . . . 0

0
. . . −r (1 + 2r) −r

0 · · · 0 −r (1 + 3r)




un+1

1

un+1
2
...

un+1
N−1

unN

 =


un1 + 2ra

un2
...

unN−1

unN + 2rb


For each time level we solve the linear system of equations. This scheme is uncon-

ditionally stable for all r ≥ 0.

Crank-Nicolson Method

The Crank-Nicolson scheme is also an implicit scheme and is second order in time.

In this scheme, we average the forward Euler method at (n+1)th step and backward

Euler scheme at nth step as

un+1 − un

∆t
=

1

2
(Rk(u

n) +Rk(u
n+1),

un+1 − 1

2
∆tRk(u

n+1) = un +
1

2
∆tRk(u

n). (2.53)

It is unconditionally stable and is second order in time and space. The important

feature of FVM is the use of integral form that ensures the conservation of mass,

momentum and energy . This feature of FVM makes it quite attractive for those

problems for which flux is of importance, such as fluid mechanics, semi conductor

device simulation, heat and mass transfer. FVM keeps the local conservativity of

numerical fluxes, that is the numerical flux remain conserved from one discretiza-

tion cell to its neighboring cell.

2.3 Finite Element Method (FEM)

Finite element method was developed in mid of 1950s [12]. FEM is best to han-

dle the problems, whose solution domain are having arbitrary geometry. In this
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method, we divide the solution domain into elements and this is the fundamental

building block in FEM. The finite element discretization allows a variety of ele-

ments shapes, for example triangle, quadrilaterals, etc. Each element is formed

by the connection of certain number of nodes. The number of nodes employed to

form an element depend on the type of element (or interpolating function). In the

next step, the unknown function say, is represented within each element by an in-

terpolating polynomial which is continuous along with its derivative to a specified

order within the element.

2.4 Spectral Method

Spectral method was developed by Steven Orszag in 1969 [13]. It is used to solve

ODEs, PDEs and eigenvalue problems. When applying spectral methods to time-

dependent PDEs, the solution is typically written as a sum of basis functions

with time-dependent coefficients. After substituting this in the PDE it yields a

system of ODEs in the coefficients which can be solved using any numerical method

for ODEs. The implementation of this method is normally accomplished either

with collocation or a Galerkin method. Spectral methods are computationally less

expensive than finite element methods, but become less accurate for problems with

complex geometries and discontinuous coefficients.
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Chapter 3

Approximate Solution of Thermal
Expulsion Problem

The governing mathematical equation of the thermal expulsion problem is the

non-linear diffusion equation, that is given as

C
∂C

∂t
=
∂2C

∂z2
, (3.1)

where C represents the flow velocity induced in the fluid by heating the tube wall.

The initial and the boundary conditions are

C(z, 0) = 0, z > 0, (3.2a)

Cz(0, t) = −b, t > 0, (3.2b)

C(∞, t) = 0, t > 0, (3.2c)

where b is a constant given by

b =
βq̇

cp
. (3.3)

Here β is the volume coefficient of thermal expansion (K−1), q̇ is the heating rate

per unit mass (Wkg−1) and cp is the specific heat (Jkg−1K−1).

The space coordinate z measures the distance into the tube from the open end

z = 0 [4]. Now we have to find the solution of Eq. (3.1) with given boundary

conditions. The analytical solution of non-linear thermal expulsion is too difficult
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to find. Thus, we find its approximate solution. The procedure that is employed

here is as follows. At first, the similarity transformation is used to reduce the PDE

to an ODE. The solution of this reduced ODE leads us to the solution of PDE.

The difficulty in this procedure is that most often the similarity transformations

reduce the non-linear PDE to non-linear ODE, which is again difficult to solve

analytically. Thus, we find the numerical solution of this reduced ODE and then

approximate it by a function. Finally, we apply inverse similarity transformations

to the approximate solution of the reduced ODE, and get the approximate solution

of the PDE.

3.1 Similarity Method

Similarity method is a powerful technique for determining transformations that re-

duces PDEs to ODEs. This method takes advantage of the natural symmetries in

a PDE and allows us to define special variables that give rise to reduction. Those

equations that model physical phenomenon, inherit symmetries from the under-

lying system: for example, a physical system that is translation invariant, often

produces governing equations that are unchanged under translation coordinates.

If Eq. (3.1) is invariant under one parameter stretching groups that are [14]

C∗ = εαC, (3.4)

t∗ = εβt, (3.5)

z∗ = εz, (3.6)

where ε is the group parameter that labels the individual transformation, α and β

are parameters connected by a linear relation

Mα +Nβ = L, (3.7)
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where M , N and L are fixed constants determined by the structure of a particular

PDE. The characteristic equations of (3.4), (3.5) and (3.6) are

dC

αC
=
dz

z
=
dt

βt
. (3.8)

By solving these three independent integrals given in Eq. (3.8), we get the following

transformations

x =
z

t
1
β

, (3.9)

y(x) =
C

t
α
β

,

C(z, t) = t
α
β y(x). (3.10)

Taking partial derivatives of Eq. (3.10) w.r.t z and t respectively, we get

Cz(z, t) = t
α
β y′(x)t

−1
β , where

dy

dx
= y′(x), (3.11)

and

Ct(z, t) =
1

β
t
α
β
−1(αy − xy′). (3.12)

Again differentiating Eq. (3.11) w.r.t z, we have

Czz(z, t) = t
α−2
β y′′(x). (3.13)

Substituting Eqs. (3.12) and (3.13) in Eq. (3.1) and then simplifying, we get

t
α−β+2

β (αy2 − xyy′) = βy′′ (3.14)

with condition t
α+2−β

β = 1. This implies that α− β = −2. By initial and boundary

conditions of Eqs. (3.2a) - (3.2c) we choose α = 1 and β = 3 in Eq. (3.14). After

Substituting α, β in Eqs. (3.10) and (3.9) become

C(z, t) = t
1
3y(x), x =

z

t
1
3

(3.15)

or

C(z, t) = t
1
3y

(
z
√

3t
1
3

)
. (3.16)
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In Eq. (3.16) the factor
√

3 is introduced for convenience. Now by using this

transformation the Eq. (3.14) take the following form

y2 − xyy′ = y′′,

or

y(y − xy′) = y′′. (3.17)

Using the transformation given in Eq. (3.16), the initial and boundary conditions

given in Eqs. (3.2a), (3.2b) and (3.2c) become

y′(0) = −b, (3.18)

and

y(∞) = 0. (3.19)

Now these are the initial and boundary conditions of the reduced ODE given in

Eq. (3.17).

3.1.1 Numerical Solution of the Reduced ODE

The resulting reduced ODE is non-linear and its analytical solution is difficult to

find. Thus, we find numerical solution of the reduced ODE and then approximate

it by a function. For the numerical solution of the reduced ODE, we are going to

use MATLAB built in function bvp4c. We are converting the reduced non-linear

ODE in to system of ODES as follow.

Let y1 = y, y2 = y′, then, Eq. (3.17) implies that

y′1 = y2, (3.20)

y′2 = y′′ = y1(y1 − xy2), (3.21)

with the boundary conditions

y2(0) = −b
√

3,
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y1(∞) = 0.

The graph of numerical solution of the reduced ODE is given in Fig. (3.1).

Figure 3.1: Graph of ynum

3.1.2 Approximation of the Numerical Solution of the Re-
duced ODE

The numerical solution is not practical in real time problem because the result has

long list of points, not an equation, so the idea is to approximate numerical solution

of non-linear ODE given in Eq. (3.17) by a function. In this section we review

the procedure to obtain the required function as given in [15]. From the curve of

numerical solution given in Fig. (3.1), the maximum value of y(x) is 1.5112. The

curve is similar to the graph of exponential function of the form

y(x) = 1.5112e−ax, (3.22)

Differentiating Eq. (3.22) w.r.t x, we get

y′(x) =
dy

dx
= −1.5112ae−ax, (3.23)

and from the boundary condition reduced ODE, we get

y′(0) = −1.5112a = −
√

3. (3.24)
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This gives us the value of a given below

a =

√
3

1.5112
. (3.25)

Thus, Eq. (3.22) that is the approximation of numerical solution in a form of a

function f(x) takes the following form

f(x) = 1.5112e−
√
3

1.5112
x. (3.26)

The graph of f(x) is shown in Fig. (3.2).

Figure 3.2: Graph of f(x)

Fig.(3.3) shows the graphs of ynum and the function, f(x), that is an approxi-

mation of numerical solution of reduced ODE.
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Figure 3.3: Graph of ynum and f(x)

The above Fig. (3.3) shows that there is an error in approximation of numerical

solution of reduced ODE. This error is shown by the graph in Fig. (3.4).

Figure 3.4: Graph of error between f(x) and ynum(x)

From the graph, we can see that the maximum error in approximation of nu-

merical solution is 0.1073. In order to reduce the maximum error we find the
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function v(x) which approximate the error graph and then add up this to f(x) to

get approximate solution which will reduced the error. The graph of this error is

similar to the following function

v(x) = αxβeγx, (3.27)

In the function v(x): α, β and γ are unknown constants. In order to find these

unknowns take three points on curve i.e. (x1, v1), (x2, v2) and (x3, v3). By substi-

tuting these points, we get following three equations

v1 = αxβ1e
γx1 , (3.28)

v2 = αxβ2e
γx2 , (3.29)

v3 = αxβ3e
γx3 . (3.30)

Dividing Eq. (3.28) by Eq. (3.29) and then taking log on both sides

ln

(
v1

v2

)
= β ln

(
x1

x2

)
+ γ(x1 − x2). (3.31)

Similarly, dividing Eq. (3.29) and Eq. (3.30) and then taking log on both sides,

we get

ln

(
v1

v3

)
= β ln

(
x1

x3

)
+ γ(x1 − x3). (3.32)

Multiplying Eqs. (3.31) and (3.32) by (x1−x3) and (x1−x2) respectively, we have

(x1 − x3) ln

(
v1

v2

)
= β(x1 − x3) ln

(
x1

x2

)
+ γ(x1 − x2)(x1 − x3), (3.33)

and

(x1 − x2) ln

(
v1

v3

)
= β(x1 − x2) ln

(
x1

x3

)
+ γ(x1 − x3)(x1 − x2). (3.34)

Subtracting Eq. (3.34) from Eq. (3.33), we get

(x1 − x3) ln

(
v1

v2

)
− (x1 − x2) ln

(
v1

v3

)
= β((x1 − x3) ln

(
x1

x2

)
− (x1 − x2) ln

(
x1

x3

)
,
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or

β =
(x1 − x3) ln(v1

v2
)− (x1 − x2) ln(v1

v3
)

(x1 − x3) ln(x1
x2

)− (x1 − x2) ln(x1
x3

)
. (3.35)

Now from Eq. (3.31), we have

γ =
ln(v1

v2
)− β ln(x1

x2
)

x1 − x2

. (3.36)

From Eq. (3.28), we get the value of α

α =
v1

xβ1e
γx1

(3.37)

Now we take three points on the graph of error curve given in Fig. (3.4) as

(0.8794, 0.0596), (2.1357, 0.1073), and (7.5377, 0.0304).

After substituting these points in Eqs. (3.28), (3.29) and (3.30), we get the values

of unknowns α, β and γ as

α = 0.12009, β = 1.4836, γ = −0.57982.

Using these values in Eq. (3.27), we have

v(x) = 0.12009x1.4836e−0.57982x. (3.38)

Fig. (3.5) shows the error graph and its approximation in form of function v(x)
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Figure 3.5: Graph of error and v(x)

Fig. (3.6) shows graph of error between numerical solution and initial approx-

imation f(x) and error between numerical and approximate yapprox solutions.

Figure 3.6: Graph of error between f(x) and ynum(x), ynum and yapprx

Now, we can see from the above graph, maximum error is reduced to 0.0148.
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The approximate solution is

yapprox(x) = f(x) + v(x),

or

yapprox(x) = 1.5112e−
√
3

1.5112
x + 0.12009x1.4836e−0.57982x. (3.39)

Fig. (3.7) represents graph of ynum, f(x) and yapprox.

Figure 3.7: Graph of f(x), ynum and yapprox
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3.2 Numerical Solution of Thermal Expulsion Equa-

tion

There are many other ways to find the approximate solution of thermal expulsion

PDE, one of them is the numerical technique. There are different numerical meth-

ods, explained in Chapter 2, but the method that we use here is finite difference

method. As explained earlier, in this method we approximate the partial deriva-

tive by difference equations. First of all, partition the domain using mesh points

in space z0, z1, ..., zn, similarly, in time t0, t1, ..., tm, assume uniform partition in

both space and time. The distance between two consecutive space points is h and

time is k. Suppose

C(zi, tj) = Ci,j. (3.40)

Using a backward difference at time tj and central difference for space zj, and then

substituting difference Eqs. (2.8) and (2.11) in Eq. (??), we get the following

discretization

Ci,j (−Ci,−1+j + Ci,j)

k
− C−1+i,j − 2Ci,j + C1+i,j

h2
= 0, (3.41)

or

2Ci,j
h2
− Ci−1,j

h2
− Ci+1,j

h2
+
C2
i,j

k
− Ci,j−1Ci,j

k
= 0. (3.42)

Taking h = 0.25, k = 0.03125, Eq. (3.42) becomes

−16.C−1+i,j + 32.Ci,j − 32.Ci,−1+jCi,j + 32.C2
i,j − 16.C1+i,j = 0. (3.43)

The resulting discretization is non-linear equations. For i = 1, 2, 3, . . . , 99 and

j = 1, we get system of non-linear equations. We obtain the value of Ci,j by

solving the resulting system of equations. For this we use the Mathematica build

in command FindRoot. The 3D plot of numerical solution of non-linear thermal

expulsion equation is shown in Fig. (3.8).
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Figure 3.8: Graph of the Cnum

3.3 Closed Form Approximate Solution of Ther-

mal Expulsion Equation

Again considering the similarity transformation given in Eq. (3.10) which is

C(z, t) = t
1
3y(x), where x =

z
√

3t
1
3

. (3.44)

Substituting Eq. (3.39) in above equation, we get

C(z, t) = t
1
3

(
1.5112e

−
√
3

1.5112
x + 0.12009x1.4836e−0.57982x

)
, (3.45)

or

C(z, t) = t
1
3

(
1.5112e

− z

1.5112t1/3 + 0.12009

(
z√

3t1/3

)1.4836

e
−0.57982 z√

3t1/3

)
, (3.46)

which is the closed form approximate solution of thermal expulsion problem. The

3D plot of closed form approximate solution of non-linear thermal expulsion equa-

tion is shown in Fig. (3.9).
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Figure 3.9: Graph of the close form solution of nonlinear thermal expul-
sion PDE

3.4 Comparison Between the Closed Form Ap-

proximate and Numerical Solution of Ther-

mal Expulsion Equation

In this step, we compare both closed form and numerical solution of thermal ex-

pulsion equation. For this we will keep t constant and discuss the corresponding

curve for all the values of z and t. Both are the approximate solutions and are

giving almost same results. The behavior of both solutions can be analyzed from

the following graphs. At t = 0.03125 the approximate and numerical solution of

thermal expulsion equation is as
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Figure 3.10: Graph of the Cnum and Capprox at t = 0.03125

At t = 0.125 we have the following graph

Figure 3.11: Graph of the Cnum and Capprox at t = 0.125

similarly at t = 0.21875
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Figure 3.12: Graph of the Cnum and Capprox at t = 0.21875

At t = 0.3125 we have

Figure 3.13: Graph of the Cnum and Capprox at t = 0.3125

The difference between the numerical and approximate solutions of C at t =

0.03125 is represented in Fig. (3.14).
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Figure 3.14: Graph of difference between Cnum and Capprox at t = 0.03125

The absolute maximum difference at t = 0.03125 is 0.144918 at z = 0, after

this, difference decreases and then goes to zero. Similarly the difference at at t =

0.125, 0.21875, and 0.3125 are show in Fig. (3.15)

Figure 3.15: Graph of difference between Cnum and Capprox, dotted line
represent the curve at t = 0.125, dashed line at t = 0.21875 and solid line
at t = 0.3125
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These graphs clearly show that error at z = 0 decreases as we go for larger

value of t. The 3D plot of difference is shown in Fig. (3.16).

Figure 3.16: 3D plot of difference between Cnum and Capprox

Note that, the maximum error between the numerical and closed form approx-

imate solution of thermal expulsion equation is at z = 0 when t = 0.03125, after

this when we carry our calculations for larger values of t the error at z = 0 is

decreases and goes to zero as z is increases.
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Chapter 4

Conclusions

In this thesis, we have solved the non-linear thermal expulsion PDE. As the exact

solution of this equation was not available, we have found its approximate solu-

tion in form of a function. It follows these four steps. First step is to reduce the

non-linear thermal expulsion equation to an ODE via similarity variables. Second

step involves finding numerical solution of the reduced ODE. In third step, we

approximate it by a function and then improve it up to desired level of accuracy

to obtain approximate solution of reduced ODE. In fourth step, with the help of

this approximate solution of the reduced ODE we find the approximate solution of

thermal expulsion PDE by using the similarity variables. Now, the exact solution

of the thermal expulsion equation is not available, therefore we find its numerical

solution by finite difference method and then made the comparison between both

solutions. From the section 3.14 that is the comparison of closed form and approxi-

mate solution it is cleared that the closed form approximate solution is satisfactory

except at the start when t = 0. The approximate solution of thermal expulsion

equation obtained in the form of function has more advantages over the numerical

solution. Since, it involves parameters and variables of problems, so it require less

time for processing and is more applicable in real time applications. As we have

observed that there is error between the closed form approximate and numerical

solutions of thermal expulsion equation. This error is due to the approximation of
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numerical solution of reduced ODE. For further work it is required to refine the

closed form approximate solution of thermal expulsion equation and also reduce

the error at start when t = 0. That can be done by refining the approximation of

numerical solution of reduced ode. And also solve thermal expulsion equation by

other numerical methods like FVM or FEM, etc, then compare both solutions and

analyze errors between them.
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Appendix

The MATLAB code that was used to solve reduced non-linear ODE is given below

clc

function thermal bvp

”%” solution

sol = bvpinit(linspace(0,25), [1 0]);

sol1 = bvp4c(@ode, @bc, sol);

clf reset

x=linspace(0,25,200);

y=deval(sol1,x);

size(y)

f = 1.5112 ∗ exp(−3(1/2) ∗ x/1.5112);

maxerror=max(imabsdiff(f,y(1,:)))

figure(1)

plot(x,y(1,:),x,f,’r’)

diff=y(1,:)-f;

figure(2)

plot(x,diff,’g’)

g = 0.12009. ∗ x.1.4836. ∗ exp(−0.57982. ∗ x);

figure(3)

plot(x,diff,’g’,x,g,’r’)

fn=f+g;
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nmaxerror=max(imabsdiff(fn,y(1,:)))

figure(4)

plot(x,y(1,:),x,f,’r’,x,fn,’g’)

figure(5)

plot(x,maxerror)

”%” Boundary conditions

function res = bc(y0, yinf)

res = [y0(2) + sqrt(3); yinf(1)];

end

”%” First Order ODEs

function yprime = ode(x,y)

yy1 = y(1).2 − x ∗ y(2) ∗ (y(1));

yprime = [y(2);yy1];

end

end”

This is the Mathematica code for the numerical solution of thermal expulsion PDE

Czz = (Ci+1,j − 2Ci,j + Ci−1,j) /h
2;

Ct = (Ci,j − Ci,j−1)/ k;

Ci,jCt − Czz==0;

e = Expand[%];

v = Table [e/. {Ci,0 → 0, C−1,j → C1,j + 2h,C100,j → 0} , {j, 1, 32}, {i, 0, 99}] ;

v/.{h→ 0.25, k → 0.03125};

sol = FindRoot [%,Flatten [Table [{Ci,j, 0} , {j, 1, 32}, {i, 0, 99}] , 1]] ;

Length[sol];

s = Table[sol[[i, 2]], {i, 1, 3200}];

max = Max[s];

w = Table[s[[i]], {i, 1, 3200}]
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x = Flatten[Table[{0.25 ∗ i}, {j, 1, 32}, {i, 0, 99}]];

q = Flatten[Table[{0.25 ∗ i}, {j, 1}, {i, 0, 99}]];

Length[q]

t = Flatten[Table[{(j ∗ 0.03125)}, {j, 1, 32}, {i, 0, 99}]];

z = Table[{x[[i]], t[[i]], w[[i]]}, {i, 1, 3200}];

int = Table[{q[[i]], 0, 0}, {i, 1, 100}];

points = Join[int, z];

p1 = ListPlot3D[points,AxesLabel→ {zspace,

ttime, C},PlotLabel→ {NUMERICALSOLUTION},PlotRange→ {0, 1.5}]

x1 = z1
/(√

3 ∗ t11/3
)

;

tab = t11/3∗
(
1.5112 ∗ Exp[−(

√
3 ∗ x1)/1.5112] + 0.12009 ∗ x11.4836 ∗ Exp[−0.57982 ∗ x1]

)
;

Length[s2]

w2 = Table[s2[[i]], {i, 1, 3200}]

Length[w2];

z2 = Table[{x[[i]], t[[i]],w2[[i]]}, {i, 1, 3200}];

points2 = Join[int, z2];

p2 = ListPlot3D[points2,AxesLabel→ {zspace,

ttime, C},PlotStyle→ Directive[Pink, Specularity[White, 40]],

PlotLabel→ {APPROXIMATESOLUTION},PlotRange→ {0, 1.5}]

Show[p2, p1]

error = w − w2Length[error];

maxerror = Max[error];

w3 = Table[error[[i]], {i, 1, 3200}];

z3 = Table[{x[[i]], t[[i]],w3[[i]]}, {i, 1, 3200}];

points3 = Join[int, z3];

ListPlot3D[points3,AxesLabel→ {zspace, ttime,

Error},PlotLabel→ {ERRORB/WNUMANDAPRX},PlotRange→ {−0.18, 0.1}]
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