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Abstract

In this dissertation, the problem of an unsteady magnetohydrodynamics boundary layer

slip flow with heat and mass transfer of nanofluids is investigated numerically. The anal-

ysis is carried on Cu-water and Al2O3-water based nanofluids. The thermal conductivity

of the nanofluid is assumed to be a function of temperature and slip conditions are em-

ployed in terms of the shear stress. The similarity transformations are used to transform

the governing system of partial differential equations (PDEs) into a system of ordinary

differential equations (ODEs) and then solved numerically. The numerical values ob-

tained for the velocity, temperature and concentration depend on nanofluid’s volume

concentration parameter, unsteadiness parameter, thermal conductivity parameter, slip

parameters, magnetic parameter and thermal radiation parameter. The effects of various

parameters on the flow, heat and mass transfer characteristics as well as on skin friction

coefficient, Nusselt number and Sherwood number are presented and discussed through

graphs and tables.
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Chapter 1

Introduction

This chapter includes the basic introduction and brief literature review on boundary layer

flow with heat and mass transfer of nanofluids over a stretching surface.

The boundary layer flow with the interaction of heat and mass transfer over a stretching

surface has diverse applications in industry and technology. The applications of boundary

layer theory include, but not limited to, the calculation of friction drag of a flat plate,

a ship, an airfoil, the body of an airplane or a turbine blade, cooling devices, industrial

flows such as conveyors etc.

1.1 Literature Review

Sakiadis [1] first solved the famous boundary layer equation for a continuously moving

flat plate. Crane [2] extended the idea and studied the flow due to linearly stretching

sheet. Thereafter, authors extensively studied the boundary layer flow including heat and

mass transfer over a stretching sheet by considering parameters such as suction/injection,

porosity, magnetic field, thermal radiation, viscous dissipation, joule heating, convective

and slip boundary conditions (see [3–11]). Andersson [12, 13] studied the flow of non-

Newtonian fluids over a stretching sheet including the effects of applied magnetic field.

Whereas, Pop [14] studied the MHD flow over a stretching permeable surface. This work

is further extended by Ganji et al. [15] and presented the analytical solution of MHD flow

over a nonlinear stretching sheet. Elbashbeshy and Bazid [16] discussed the flow and heat
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transfer analysis over an unsteady stretching surface. Ishak [17] analysed the unsteady

MHD flow and heat transfer over a stretching plate and gave the numerical solution using

similarity transformation technique. Ibrahim et al. [18] examined the influence of viscous

dissipation and radiation on unsteady MHD mixed convection flow of micropolar fluids.

Mukhopadhyay [19] included the effects of thermal radiation and porous medium on flow

and heat transfer of fluid over an unsteady stretching sheet. Fang et al. [20] presented

the unsteady stagnation point flow with mass transfer. Recently, Bhattacharyya [21]

presented the heat transfer analysis of an unsteady boundary layer flow with unsteady

temperature profile towards a shrinking/stretching sheet. Slip flow past a stretching

surface was studied by Andersson [22]. Pal and Talukdar [23] did the perturbation

analysis of an unsteady MHD convective heat and mass transfer in a boundary layer slip

flow. Slip effects on MHD boundary layer flow over a stretching sheet were analysed

by Mukhopadhyay [24]. Recently, Asim Aziz et al. in their work [25] examined the slip

effects on steady boundary layer flow along with heat and mass transfer over a flat porous

plate. Hayat et al. [26] studied unsteady MHD flow over an exponentially stretching sheet

with slip conditions.

In order to model the flow and heat transfer at high temperature appropriately, it

becomes essential to consider the variation in viscosity and thermal conductivity. Lai and

Kulacki [27] considered the effects of variable viscosity on convective heat transfer along

with a vertical surface in a porous medium. Pop et al. [28] presented the influence of vari-

able viscosity on boundary layer flow and heat transfer due to a continuously moving flat

plate. Chiam [29,30] in his work examined the effects of variable thermal conductivity on

the boundary layer flow over a stretching sheet. Mukhopadhyay et al. [31, 32] presented

some significant investigations on the flow and heat transfer over a stretching sheet in-

cluding the variable viscosity effects under different physical conditions. Recently, Hayat

et al. [33] analysed numerically the effects of variable thermal conductivity on the mixed

convective flow over a porous stretching surface subjected to the convective boundary

conditions in the presence of uniform applied magnetic field.

Nanofluid is a new class of heat transfer fluid with enhanced thermal conductivity.

Choi [34] for the first time coined the term nanofluid by introducing the nanoparticles in
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the base fluids and theoretically demonstrated the feasibility of the concept of nanoflu-

ids. A comprehensive survey of convective transport in nanofluids was done by Buon-

giorno [35], who considered seven slip mechanisms that can produce a relative velocity

between the nanoparticles and the base fluid. Nanofluids got an eminent scientific and

engineering applications after Eastman et al. [36] extended the idea and studied an un-

usual thermal conductivity enhancement in copper (Cu) nanofluids at small nanoparticle

volume fraction. Khan and Pop [37] first studied the boundary layer flow of a nanofluid

past a stretching sheet and gave numerical results of the problem. The boundary layer

flow induced in a nanofluid due to linearly stretching sheet was reported by Makinde and

Aziz [38]. The MHD boundary layer flow of a nanofluid past vertical stretching perme-

able surface with suction/injection was investigated by Kandasamy et al. [39]. This work

is further extended by Bhattacharya and Layek [40] while studying MHD boundary layer

flow of nanofluid over an exponentially stretching permeable sheet. An unsteady MHD

flow, heat and mass transfer over stretching sheet with a non-uniform heat source/sink

is studied by Shankar and Yirga [41]. Nanofluid flow over an unsteady stretching surface

in the presence of thermal radiation was studied by Kalidas et al. [42]. Effects of thermal

radiation on boundary layer flow of nanofluids over a permeable stretching flat plate were

discussed by Motsumi [43]. An unsteady MHD boundary layer flow of nanofluids with

thermal radiation and viscous dissipation was observed by Shakhaoath et al. [44]. Noghre-

habadi et al. [45] observed the effects of partial slip boundary conditions on the flow and

heat transfer of nanofluids. Syahira and Anuar [46] analysed unsteady boundary layer

flow of a nanofluid over a stretching sheet with a convective boundary condition. Zheng

et al. [47] extended the idea and analysed the effects of velocity slip with temperature

jump on MHD flow and heat transfer of nanofluid over a porous shrinking sheet. A list of

the key references on boundary layer flow with slip condition can be found in [48]− [51].

Reddy et al. [52] carried out an analysis to investigate the influence of variable thermal

conductivity and partial velocity slip on hydromagnetic two-dimensional boundary layer

flow of nanofluid over a stretching sheet with convective boundary condition. Noghre-

habadi et al. [53] carried out a comprehensive study on the effects of variable thermal

conductivity and viscosity on the natural convective heat transfer of nanofluid over a
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vertical plate. Recently, Rashid [54] worked on heat and mass transfer of MHD flow

of nanofluid over a stretching sheet using qusi-linearization technique. MHD boundary

layer flow of a nanofluid over an exponentially permeable stretching sheet with radiation

and heat source/sink was studied by N. Kishan et al. [55]. A comprehensive literature

survey on variable thermophysical properties of nanofluids is presented in [56]− [58].

Thesis contribution

In this thesis we have extended the previous investigations to study the slip effects on un-

steady MHD boundary layer flow of nanofluid over a nonuniform porous stretching sheet.

The governing system of partial differential equations (PDEs) is converted into a system

of ordinary differential equations (ODEs) using similarity transformation technique and

solved numerically. The computational results are discussed for various physical param-

eters effecting the flow, heat and mass transfer of the nanofluid.

This dissertation is divided as follow:

Chapter 2 contains basic definitions regarding the nanofluid flow. The basic governing

equations for the fluid flow, continuity, momentum, energy and concentration are also

introduced. These preliminary concepts are then employed in the subsequent chapters. In

Chapter 3 the slip effects on magnetohydrodynamic flow and heat transfer of nanofluids

over a porous unsteady stretching sheet with variable thermal conductivity and thermal

radiation are being discussed. The analysis is carried for Cu-water and Al2O3-water

nanofluids. The associated governing system of partial differential equations (PDEs) is

transformed into a non-linear system of ordinary differential equations (ODEs), which is

then solved numerically. The behaviour of physical parameters which influence the model

is presented in the graphs and tables. In Chapter 4 the study presented in chapter 3

is extended by including the mass transfer analysis of MHD nanofluid flow under slip

conditions. Chapter 5 summarizes the dissertation, gives the major results concluded

from the entire research and recommendations for the future work.
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Chapter 2

Basic Definitions

In this chapter basic definitions regarding the fluid flow, types of flow, and basic governing

equations for fluid flow are stated. Heat transfer, modes of heat and mass transfer are

also introduced. In addition an introduction to nanofluid, types and nanofluid’s physical

parameters are also delineated.

2.1 Fluid and Fluid Flow

A fluid is a substance that deforms continuously under the action of shearing forces, how-

ever small they may be. Liquids, gases, plasmas and some plastic solids are categorized

as fluids. Motion of the fluid under unbalanced stresses is called fluid flow.

2.2 Laminar and Turbulent Flow

The fluid flow in which the particles move in smooth layers, or laminas is called laminar

flow. In such flow, the path lines of fluid particles do not intersect each other. Turbulent

flow is the flow in which velocity of the fluid particles at a given point changes continuously

and they mix rapidly with each other along the path line due to their three dimensional

velocity fluctuations.
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2.3 Steady and Unsteady Flow

A flow in which the fluid properties at every point in a flow field remain constant with

time variation is called steady flow. Mathematically, it is stated as

∂γ

∂t
= 0, (2.1)

where γ represents any fluid property.

A flow in which fluid’s properties in a flow field vary with time is called unsteady flow,

i.e.,
∂γ

∂t
̸= 0. (2.2)

2.4 Incompressible and Compressible Flow

A fluid flow in which density of the fluid remains constant is called an incompressible

flow, i.e.,
Dρ

Dt
=
∂ρ

∂t
+V.∇ρ = 0, (2.3)

where ρ = mass
volume

denotes the fluid density and D
Dt

is the material derivative given by

D

Dt
=

∂

∂t
+V.∇, (2.4)

where V is the velocity of the fluid flow and ∇ is the differential operator which in

cartesian coordinate system is given by

∇ =
∂

∂x
î+

∂

∂y
ĵ +

∂

∂z
k̂. (2.5)

In equation (2.5) î, ĵ and k̂ represent unit vectors in x, y and z directions, respectively.

Compressible flow is that in which density of the fluid does not remain constant, i.e.,

Dρ

Dt
̸= 0. (2.6)

Liquids are almost incompressible and gases are compressible fluids.
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2.5 Viscosity

Viscosity is a physical property of fluid associated with shearing deformation of fluid

particles when subjected to the applied forces. It measures resistance to the moving fluid

by the applied shearing forces. Mathematically, it is stated as

µ =
shear stress

deformation rate
(2.7)

where µ is called the dynamic viscosity or absolute viscosity. Unit of dynamic viscosity

in SI system is kg/ms and dimension [ML−1T−1].

Kinematic viscosity (ν) is the ratio of dynamic viscosity to density of the fluid. Mathe-

matically,

ν =
µ

ρ
. (2.8)

Its SI unit is m2/s and dimension [L2T−1].

2.6 Viscous and Non-Viscous Flow

The fluid flow in which the internal viscous forces do not allow fluid to flow readily

is called viscous flow. In non-viscous or inviscid flow the fluid flows due to negligible

internal frictional forces.

2.7 Newtonian and Non-Newtonian Fluid

Fluids can be characterized as Newtonian and non-Newtonian based on their rheological

behavior.

Newtonian fluids are characterized by Newton’s law of viscosity; which states that shear

stress varies linearly with the deformation rate. Mathematically,

τyx = µ
du

dy
, (2.9)

where µ is the dynamic viscosity, du/dy is the deformation rate and τyx denotes the shear

stress. Most common Newtonian fluids are water, air, gasoline and organic solvents. In

contrast to the Newtonian-fluids, these fluids have non-linear relationship between stress
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and deformation rate. These fluids obeys power-law. Mathematically, for unidirectional

flow the power-law model is given by

τyx = K(
du

dy
)n, (2.10)

= η
du

dy
, (2.11)

where η = K(du/dy)n−1 is the apparent viscosity, n is the flow behavior index and K

is the consistency index. Most common fluids under this category are pastes, ketchup,

blood and polymer solutions.

2.8 Continuity Equation

According to the law of conservation of mass, mass can neither be created nor be demol-

ished but, can be transformed from one form to another. It suggests that if we consider

the differential control volume system enclosed by a surface fixed in a space, then the

mass inside a fixed control system will remain constant. The equation of continuity is be

expressed as [59]
∂ρ

∂t
+∇.(ρV) = 0, (2.12)

where V = [u(x, y, z), v(x, y, z), w(x, y, z)] is the velocity field.

For incompressible flow, equation (2.12) becomes

∇.V = 0. (2.13)

2.9 Momentum Equation

According to the Newton’s second law of motion the generalized linear momentum equa-

tion for fluid particle is given by net force F acting on a fluid particle equal to the time

rate of change of linear momentum. Consider the system of control surface having in-

finitesimally small dimensions dx, dy and dz and a constant mass enclosed within the

surface. For this system Newton’s second law is

m
DV

Dt
= F. (2.14)
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The law of conservation of momentum for fluid flow is given in ( [59]) as

ρ
DV

Dt
= ∇.τ + ρb, (2.15)

where τ is the Cauchy stress tensor, ∇.τ(= −∇P + µ∇2V ) represents surface forces and

ρb gives the net body force. Equation (2.15) for newtonian fluids takes the form

ρ

(
∂V

∂t
+ (V.∇)V

)
= −∇P + µ∇2V + ρb. (2.16)

2.10 Magnetohydrodynamics

Magnetohydrodynamics (MHD) is the branch of engineering in which the behaviour of

magnetic field in electrically conducting fields is studied. The word magnetohydrodynam-

ics is derived from magneto meaning magnetic field, hydro meaning liquid and dynamics

stands for movement.

The set of equations which represents MHD flow is a combination of equations of motion

and the Maxwell’s equation of electromagnetism. The momentum equation (2.16) for the

MHD fluid flow becomes

ρ

(
∂V

∂t
+ (V.∇)V

)
= −∇P + µ∇2V + (J×B). (2.17)

In the above equation, J is the current density and B = B+Bi is the total magnetic

field and Bi is the induced magnetic field. Using small magnetic Reynold’s number

approximation for MHD flow, Bi is considered to be negligible in comparison to external

magnetic field.

By Ohm’s law , current density J is given as

J = σ(E +V ×B), (2.18)

where σ is the electrical conductivity and E is the electrical field which is assumed to be

negligible. Equation (2.18) is simplified as

J×B = −σB2V, (2.19)

Using equation (2.19) the momentum equation (2.17) becomes

ρ
DV

Dt
= −∇P + µ∇2V − σB2V. (2.20)
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2.11 Heat Transfer

Heat transfer is the thermal exchange of energy between physical systems. Whenever

there is a temperature difference between physical systems heat transfer must takes place.

Heat transfer between systems can take place through three different ways, Conduction,

Convection, Radiation.

2.11.1 Conduction

Conduction is the process of heat transfer due to molecular collisions. The word ”conduc-

tion” is repeatedly used for three different kinds of behaviour: Heat conduction, Electrical

conduction and Sound conduction.

Fourier proposed that heat transfer rate per unit area varies directly with temperature

gradient, i.e.,
Q

A
= −κdT

dx
. (2.21)

In the above equation, κ is the constant of proportionality known as thermal conductivity,

Q is the heat transfer rate, A is the area and dT/dx is the temperature gradient. The

equation (2.21) is known as Fourier’s Law.

2.11.2 Convection

Convection refers to the movement of fluid particles from the region of high thermal

energy to the region of low thermal energy. In fluid dynamics, convection is the energy

transfer due to bulk fluid motion. Convective heat transfer arises between a fluid in a

motion and a bounding surface. Convective heat transfer depends upon the nature of the

flow. Therefore convection has three forms: Forced convection, Natural (free) convection,

Mixed convection. Heat transfer mechanism given by Newton’s law of cooling as

Q

A
= h(Ts − Tf ), (2.22)

where, h is the heat transfer coefficient, Ts and Tf represent the temperature of the

object’s surface and that of the environment, respectively.
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2.11.3 Radiation

Radiation is the transfer of heat energy when it is carried by photons of light in the

infrared and visible portion of electromagnetic spectrum. All bodies constantly emit

thermal energy by the process of radiation. It does not require any medium for its

transmission.

2.12 Thermal Conductivity

The intrinsic property of a material that relates its ability to conduct heat is called

thermal conductivity. Mathematically, it is stated as

κ =
Q∇L
A∇T

, (2.23)

where Q measures the quantity of heat transmitted through the unit length ∇L per unit

area A and ∇T is the unit temperature gradient.

2.13 Electrical Conductivity

Electrical conductivity is defined as the ability of a material to allow the flow of electric

current. Mathematically, it is given as

σ =
l

RA
, (2.24)

where l, R and A represent length, resistance and area of the material, respectively. The

SI unit of electrical conductivity is siemens per meter (S/m).

2.14 Energy Equation

First law of thermodynamics suggests that the rate of change of energy of fluid inside

a control volume is equal to the rate of heat addition plus the rate of work done. The

energy equation is given by the total change in energy as a result of net heat conduction

and the work done by the stresses. Thus the simplest form of heat equation is

De

Dt
= −∇q +H, (2.25)
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where e(= ρCpT ) represents the amount of heat per unit volume and q = −κ∇T is the

heat flux. The governing equation for conservation of energy can then be written as

ρCp

(
∂T

∂t
+ (V.∇)T

)
= ∇.(κ∇T ) +H, (2.26)

where T is temperature of the fluid, Cp is the specific heat (energy per unit mass per

degree Kelvin) at constant temperature, κ is the thermal conductivity, and H is a source

term for the heat that can be generated in a region by different ways, like radioactive

decay, viscous dissipation and shear heating etc.

2.15 Mass Transfer

The relative motion of chemical species from one region to another due to the concen-

tration gradient is called mass transfer. Mass transfer by diffusion is the same as heat

transfer by conduction. Heat and mass transfer are kinetic processes that can be studied

separately or jointly. In case of diffusion-convection phenomenon, it is efficient to couple

heat and mass transfer equations.

2.16 Concentration Equation

The law of conservation of concentration is defined as ( [59])

DC

Dt
= −∇.−→K +G, (2.27)

where C(x,y,z) is a concentration field in moles (or grams) per unit volume,
−→
K is diffusion

flux in moles per unit area per unit time and G is a source term due to chemical, nuclear,

or other factors.

The Fick’s first law states that the diffusion flux is proportional to the negative concen-

tration gradient, i.e.,
−→
K = −D∇C, (2.28)

where D is a constant of proportionality known as diffusivity. Substituting equation

(2.28) into equation (2.27) we get the following form of governing concentration equation

∂C

∂t
+ (V.∇)C = D∇2C +G. (2.29)
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2.17 Reynolds Number (Re)

Reynolds number is a dimensionless number defined as the ratio of inertial forces to the

viscous forces.

Re =
ρU2

L
µU
L2

=
LU

ν
, (2.30)

where, U is the free stream velocity and L is the characteristic length.

It is used to identify the different flow behaviors like laminar or turbulent flow. At

low Reynolds number laminar flow arises, where viscous forces are dominant. At high

Reynolds number the flow is turbulent, where inertial forces are preeminent.

2.18 Prandtl Number (Pr)

Prandtl number is a dimensionless number which is defined as the ratio of momentum

diffusivity (ν) to the thermal diffusivity (α). Mathematically, it is written

Pr =
ν

α
=

µ
ρ
κ

ρCp

=
µCp

κ
. (2.31)

2.18.1 Skin Friction Coefficient

Skin friction coefficient Cf measures the resistance between the fluid and solid surface.

It is defined as

Cf =
τw
ρU2

w

, (2.32)

where Uw is the surface velocity and τw is the wall shear stress.

2.19 Nusselt Number

Nusselt number defines the ratio of convective to the conductive heat transfer at the

surface of plate. Mathematically it is given as

Nu =
qL

κ
, (2.33)

where q is the convective heat transfer coefficient and L is the characteristic length.
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2.19.1 Sherwood Number

The Sherwood number Sh which is also called mass transfer Nusselt number is a ratio

between rate of total mass transfer and the rate of mass transfer due to diffusion. It is

defined as

Sh =
Z

D/L
, (2.34)

where Z is the mass transfer coefficient and D is the mass diffusivity.

2.19.2 Lewis Number

Lewis number is a dimensionless number which is a measure of heat diffusion relative to

mass diffusion. It gives relative magnitudes of heat and mass diffusion in the thermal

and concentration boundary layers. Mathematically, it is given as

Le =
ν

D
. (2.35)

2.20 Slip Conditions

When the velocity, temperature and concentration of the fluid is different from that of the

wall of the bounding surface through which the fluid is passing, the condition is referred

as velocity slip, temperature slip and concentration slip, respectively.

2.21 Nanofluid

Nanofluid is a new class of heat transfer fluid with enhanced thermal conductivity.

Nanofluid contains a base fluid and nano-sized (diameter less than 100 nm) material

particles or fibers suspended in the ordinary fluids. The nanoparticles are actually made

up of metals (Cu, Al, Ag), oxides ceramics (Al2O3, CuO), nitride ceramics (AlN, SiN),

carbide ceramics (SiC, TiC) and common base fluids are water, oil and ethylene glycol.
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2.21.1 Types of Nanofluid

Based on nature of the base fluid (organic or inorganic) and the nanoparticles nanofluids

can be categorized into different types like, process extraction nanofluids, environmen-

tal (pollutant-controlling nanofluids), bio-, pharmaceutical, polymer and drag-reduction

nanofluids.

2.21.2 Nanofluid’s Physical Parameters

Following Reddy et al. [52], the viscosity, density and specific heat capacity of the

nanofluid are given as

µnf =
µf

(1− ϕ)2.5
, ρnf = (1− ϕ)ρf + ϕρs, (ρCp)nf = (1− ϕ)(ρCp)f + ϕ(ρCp)s,(2.36)

where, ϕ is nanoparticle volume fraction coefficient, µf , ρf and (Cp)f are the dynamic

viscosity, density and specific heat capacity of the base fluid, ρs and (Cp)s are the density

and specific heat of the nanoparticles, respectively.

Maxwell [60] suggested that the thermal conductivity of the nanofluid κnf is a function

of thermal conductivity of nanoparticles κs, conductivity of the base fluid κf and the

volume fraction of nanoparticles ϕ. Similarly, the electrical conductivity of the nanofluid

σnf is a function of electrical conductivity of nanoparticles σs, conductivity of the base

fluid σf and the volume fraction of nanoparticles ϕ, i.e.,

κnf = [
(κs + 2κf )− 2ϕ(κf − κs)

(κs + 2κf ) + ϕ(κf − κs)
]κf , σnf = [1 +

3( σs

σf
− 1)ϕ

( σs

σf
+ 2)− ( σs

σf
− 1)ϕ

]σf . (2.37)

2.22 Similarity Transformation

Similarity transformation is a mathematical technique which reduces the number of inde-

pendent variables of system of partial differential equations and convert it into a system

of ordinary differential equations. It can be viewed as a rule for grouping the indepen-

dent variables into a new variable. The following three steps are involved in generalized

similarity transformation.
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• Any continuous one-to-one transformation can be resolved into one or more basic

transformation of the form

ξ = ξ(x), η = η(x, y), (2.38)

• The transformed equation in terms of independent variables (ξ, η) is required to

satisfy the state requirements.

• Using similarity transformation the associated boundary conditions are also trans-

formed and expressed in terms of new similarity variables.
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Chapter 3

Unsteady MHD Slip Flow and Heat

Transfer of Nanofluids over a Porous

Stretching Sheet

This chapter includes the study of boundary layer flow and heat transfer of electrically

conducting nanofluids (Cu-water and Al2O3-water) over an unsteady stretching sheet.

The analysis is carried out by considering temperature dependent thermal conductivity,

radiative heat flux and slip boundary conditions. The thermal conductivity is considered

to vary linearly with the temperature and slip conditions are employed in terms of shear

stress. The governing system of partial differential equation (PDEs) is transformed into

a system of nonlinear ordinary differential equations (ODEs) using similarity transfor-

mation, which is then solved numerically using MATLAB bvp4c code. The obtained

numerical values for skin friction coefficient and Nusselt number, velocity and tempera-

ture are presented through graphs and tables. In sections (3.4.1) -(3.4.8) the effects of

various parameters on the flow and heat transfer characteristics are discussed through

graphs and tables.
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3.1 Problem Formulation

Consider the unsteady magnetohydrodynamic flow of two dimensional, laminar and in-

compressible nanofluid over a non-uniform porous stretching surface. The surface of a

sheet is moving with non-uniform velocity

U(x, t) =
cx

1− αt
. (3.1)

The c is an initial stretching rate and 1
1−αt

(αt < 1)is the effective stretching rate. The

surface of the plate is insulated and admits partial slip condition. The leading edge

of the plate is at x = 0 and coincides with the plane y = 0. The temperature of the

plate is Tw and the temperature far away from the plate is T∞. The geometry of the

flow model is given in Figure (3.1). The magnetic field B(t) = Bo√
1−αt

is applied in

the transverse direction to the plate and induced magnetic field is ignored by taking

low Reynolds number approximation. In view of the above assumptions, as well as of

the usual boundary layer approximations equations (2.13), (2.20) and (2.26) take the

following form
∂u

∂x
+
∂v

∂y
= 0, (3.2)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
=
µnf

ρnf

∂2u

∂y2
− σnfB

2(t)u

ρnf
, (3.3)

(ρCp)nf (
∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
) =

∂

∂y
(κ∗nf (T )

∂T

∂y
)− ∂qr

∂y
. (3.4)

In equations (3.2)-(3.4), u and v are the velocities in x and y directions, respectively, t

is time of the flow, µnf is dynamic viscosity of the nanofluid, ρnf is nanofluid density,

σnf is electrical conductivity and (Cp)nf is specific heat capacity of the nanofluid as

introduced in Chapter 2 and equation (2.36). In above equation (3.4) T is temperature

of the nanofluid, Tw(x, t) = T∞ + cx
1−αt

is the sheet surface (wall) temperature and qr is

the radiative heat flux.

The corresponding boundary conditions are

u(x, 0) = Uw + A1µnf
∂u

∂y
, v(x, 0) = Vw , T (x, 0) = Tw +D1(

∂T

∂y
), (3.5)

u→ 0, as y → ∞, and T → T∞, as y → ∞. (3.6)
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Figure 3.1: Geometry of the problem

Here Vw is constant suction/injection velocity with Vw > 0 for injection and Vw < 0 for

suction, A1 = A0

√
1− αt is the velocity slip factor and D1 = D0

√
1− αt is the thermal

slip factor with A0 and D0 be the initial values of velocity and thermal slip parameters,

respectively. κ∗nf (T ) is the temperature dependent thermal conductivity first introduced

by Maxwell [60] as

κ∗nf (T ) = κnf (1 + ϵ
T − T∞
Tw − T∞

), (3.7)

where κnf is the thermal conductivity of the nanofluid and ϵ is the variable thermal

conductivity parameter.

Using Rosseland approximation [61] for thermal radiation the radiative heat flux is

simplified to

qr = −4σ∗

3k∗
∂T 4

∂y
, (3.8)

where k∗ is the mean absorption coefficient and σ∗ is the Stefan Boltzmann constant.

It is assumed that the difference in temperature within the flow is such that T 4 can

be represented as a linear combination of the temperature. Therefore, expanding T 4 in
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Taylor’s series about T∞ and considering only the linear terms gives us

T 4 ∼= 4T 3
∞T − 3T 4

∞. (3.9)

Equation (3.8) together with equation (3.9) becomes

∂qr
∂y

= −16T 3
∞σ

∗

3k∗
∂2T

∂y2
. (3.10)

Substitution of equations (3.7) and (3.10) into equation (3.4) gives

(ρCp)nf (
∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
) =

∂

∂y

(
κnf

(
1 + ϵ

T − T∞
Tw − T∞

)
∂T

∂y

)
+

16T 3
∞σ

∗

3k∗
∂2T

∂y2
. (3.11)

3.2 Method of Solution

In this section we transform the system of equations (3.2), (3.3) and (3.11) along with

the boundary conditions (3.5) and (3.6) into a dimensionless form. For this purpose, the

stream function ψ(x, y) of the form

u =
∂ψ

∂y
, v = −∂ψ

∂x
, (3.12)

identically satisfies the continuity equation (3.2). Using equation (3.12) equations (3.3)

and (3.11) become

∂2ψ

∂t∂y
+
∂ψ

∂y

∂2ψ

∂x∂y
− ∂ψ

∂x

∂2ψ

∂y2
=
µnf

ρnf

∂3ψ

∂y3
− σnfB

2(t)

ρnf

∂ψ

∂y
, (3.13)

(ρCp)nf (
∂T

∂t
+
∂ψ

∂y

∂T

∂x
− ∂ψ

∂x

∂T

∂y
) =

∂

∂y

(
κnf

(
1 + ϵ

T − T∞
Tw − T∞

)
∂T

∂y

)
+

16T 3
∞σ

∗

3k∗
∂2T

∂y2
.

(3.14)

The boundary conditions are likewise transformed into the following form

∂ψ

∂y
= Uw + A1µnf

∂2ψ

∂y2
,

∂ψ

∂x
= −Vw, T = Tw +D1

(
∂T

∂y

)
, at y = 0, (3.15)

∂ψ

∂y
→ 0, T → T∞, as y → ∞. (3.16)

The introduction of dimensionless similarity variable, dimensionless stream function ψ(η)

and temperature θ(η) of the form

η =

√
c

vf (1− αt)
y, ψ(x, y) =

√
vfc

1− αt
xf(η), θ(η) =

T − T∞
Tw − T∞

, (3.17)
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transforms the differential equations (3.13) and (3.14) to the form

f ′′′+(1−ϕ)2.5[(1−ϕ+ϕρs
ρf

){ff ′′−f ′2−A(f ′+
1

2
f ′′η)}−M(1+

3( σs

σf
− 1)ϕ

( σs

σf
+ 2)− ( σs

σf
− 1)ϕ

)f ′] = 0,

(3.18)

θ′′(1+ϵθ+
κf

κnf
PrNr)+ϵθ′2+Pr

κf
κnf

(1−ϕ+ϕ (ρCp)s
(ρCp)f

)[fθ′−f ′θ−A(θ+ η

2
θ′)] = 0, (3.19)

where, A = α
c
, Pr=

υf
αf

is Prandtl number, αf=
κf

(ρCp)f
is thermal diffusivity of fluid,

Nr=16
3

σ∗T 3
∞

κ∗νf (ρCp)f
is thermal radiation parameter and M =

σfB
2
o

cρf
is magnetic parameter.

The transformed boundary conditions (3.15) and (3.16) are

f(0) = S, f ′(0) = 1 +
Λ

(1− ϕ)2.5
f ′′(0), θ(0) = 1 + Ωθ′(0), (3.20)

f ′(η) → 0, as η → ∞, θ(η) → 0, as η → ∞. (3.21)

In equations (3.20) and (3.21) S = −Vw
√

1−αt
νf c

is suction/injection parameter (with S < 0

for injection and S > 0 for suction), Λ = A0

√
c
νf
µf is first order velocity slip parameter,

and Ω = D0

√
c
νf

is thermal slip parameter.

The important physical quantities of interest are skin friction coefficient and Nusselt

number. The skin friction coefficient defined in section (2.18.1) with wall shear stress

τw = −µnf (
∂u

∂y
)y=0, (3.22)

is transformed into

CfRe
1/2
x = − f ′′(0)

(1− ϕ)2.5
. (3.23)

Local Nusselt number Nux

Nux =
xqw

κf (Tw − T∞)
, (3.24)

with qw defined as

qw = −κnf (
∂T

∂y
)y=0. (3.25)

Equation (3.24)is transformed into

NuxRe
−1/2
x = −θ′(0)κnf

κf
. (3.26)
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3.3 Numerical Scheme of Solution

The transformed non dimensional governing equations (3.18) and (3.19) with conditions

(3.20) and (3.21) are converted into simultaneous first order ordinary differential equa-

tions and then solved numerically by MATLAB built-in bvp4c solver. The resulting

higher order ordinary differential equations are reduced to first order differential equa-

tions by taking

y1 = f, y2 = f ′, y3 = f ′′, y4 = θ, y5 = θ′. (3.27)

The non-linear differential equations (3.13) and (3.14) become

y′1 = y2, (3.28)

y′2 = y3, (3.29)

y′3 = −(1−ϕ)2.5[(1−ϕ+ϕρs
ρf

){y1y3−y22−A(y2+
η

2
y3)}−M(1+

3( σs

σf
− 1)ϕ

( σs

σf
+ 2)− ( σs

σf
− 1)ϕ

)y2] = 0,

(3.30)

y′4 = y5, (3.31)

y′5 =
1

(1 +
κf

κnf
Nr + ϵy4)

[Pr
κf
κnf

(1− ϕ+ ϕ
(ρCp)s
(ρCp)f

){A(y4 +
η

2
y5) + y2y4 − y1y5} − ϵ(y5)

2].

(3.32)

The boundary conditions (3.20) and (3.21) become

y1(0) = S, y2(0) = 1 +
Λ

(1− ϕ)2.5
y3(0), y3(0) = a, y4(0) = 1 + Ωy5(0), y5(0) = b.

(3.33)

where a and b are unknown which are to be determined such that the boundary conditions

y2(∞) and y4(∞) are satisfied.

3.3.1 Verification of Numerical Results

We have compared our results with Hayat [62] for several values of skin friction coefficient

and Nusselt number by assuming Pr = 1.0, Nr = 0.2667, ϵ = 0.0,Ω = 0.5, and ϕ = 0.0.

The comparsion is shown in Table (3.1) and the results are found to be in an excellent

agreement. Thus, we are very much confident that the present results are accurate.
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M S Λ A −f ′′(0) −f ′′(0) −θ′(0) −θ′(0)

Hayat [62] Present Hayat [62] Present

0.0 0.580873 0.580873 0.724131 0.724148

0.25 1.0 1.0 0.2 0.601575 0.601571 0.715271 0.715316

1.0 0.645009 0.645009 0.697184 0.697207

2.25 0.689086 0.689084 0.679832 0.679856

0.0 0.557754 0.557753 0.460126 0.460508

1.0 0.2 1.0 0.2 0.575633 0.575634 0.501501 0.501691

0.7 0.619717 0.619717 0.621022 0.621115

1.0 0.645009 0.645009 0.697176 0.697207

0.0 1.733191 1.73317 0.695134 0.695153

1.0 0.5 1.0 0.2 0.602285 0.602285 0.571204 0.57133

5.0 0.175027 0.175027 0.491062 0.491301

10.0 0.093228 0.0932284 0.471421 0.47152

Table 3.1: Comparison of values of −f ′′(0) and −θ′(0) with that obtained by Hayat [62].

3.4 Results and Discussion

In this section, we discuss the numerical results presented in the form of graphs and

tables. The computations are performed to study the effects of variation of unsteady

parameter A, magnetic parameter M , velocity slip parameter Λ, thermal slip parameter

Ω, thermal radiation Nr, variable thermal conductivity ϵ, suction/injection parameter S

and volume fraction parameter ϕ on velocity and temperature profiles of Cu-water and

Al2O3-water nanofluids and demonstrated graphically in sections (3.4.1) - (3.4.8). The

behaviour of skin friction coefficient and Nusselt number with the variation in physical

parameters is shown in Tables (3.3) and (3.4).

The thermophysical properties of the base fluid water and the two different nanoparticles

copper (Cu), Alumina (Al2O3) are given in Table (3.2).
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Physical properties Base fluid Nanoparticle Nanoparticle

Water Cu Al2O3

Cp(J/kgK) 4179 385 765

ρ(kg/m3) 997.1 8933 3970

k(W/mK) 0.613 400 40

σ(Ω.m)−1 0.05 5.96× 107 10−12

Table 3.2: Thermophysical properties of the base fluid and nanoparticles.

3.4.1 Effect of Unsteadiness Parameter A

Figures (3.2) and (3.3) illustrate the influence of unsteady parameter A on velocity and

temperature profiles. It is observed that the velocity decreases with the increase in A.

The momentum boundary layer thickness decreases in result. Moreover, the velocity

attains its maximum value near the surface and gradually decreases to zero at the free

stream far away from the plate satisfying the boundary conditions thus, supporting the

validity of the obtained numerical results. It is important to note that temperature is

dependent on velocity in situations where heat transfer is accomplished by convection,

as this principle will also be important for the following discussions. In Figure (3.3) the

temperature profiles θ(η) decrease with the increase in unsteadiness parameter A for a

given distance from the plate. The comparison of curves in Figures (3.2) and (3.3) shows
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the impact of A on temperature profiles is more pronounced than that on the velocity

profiles.

From Table (3.3), it is evident that values of skin friction coefficient increase with the

increase in A, for both Cu-water and Al2O3-water based nanofluids. Similarly, from

Table (3.4) an increase in Nusselt number is observed with the increase in an unsteady

parameter A.

3.4.2 Effect of Volume Fraction Parameter ϕ

The effect of variation of nanoparticle volume fraction ϕ on temperature and velocity

profiles is illustrated in Figures (3.4) and (3.5), respectively. From Figure (3.4) it is

observed that an increase in ϕ causes decrease in velocity profiles for Cu-water nanofluid.

For Al2O3-water nanofluid the behaviour is slight different i.e. near the surface (at about

η = 0.5) the velocity profiles show the cross-over point. Before this point the velocity

is decreasing and after this it starts increasing. Increase in ϕ causes an increase in

temperature due to the fact that when the volume of nanoparticles increases, the thermal

conductivity increases, which leads to the increase in thickness of thermal boundary layer.

From Table (3.3), the increase in skin friction coefficient with the increase in volume
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friction parameter is observed for both the Cu-water and Al2O3-water nanofluids. Table

(3.4) shows the increase in Nusselt number with increase in volume fraction parameter.
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3.4.3 Effect of Velocity Slip parameter Λ

The increase in first order velocity-slip parameter Λ causes decrease in velocity and in-

crease in temperature as shown in Figures (3.6) and (3.7). The decrease in velocity is

obvious from the increase in lubrication and slipperiness at the surface due to which the

flow retards because the stretching pull can be only partly transmitted to the fluid. The

increase in thermal boundary layer thickness is due to the fact that the fluid flow in the

boundary layer due to stretching of the sheet.

It is observed from Table (3.3) that increase in Λ leads to decrease in skin friction coef-

ficient both for Cu-water and Al2O3-water nanofluids. As expected, the slip effects are

to reduce the friction at the solid fluid interface and thus reduce skin friction coefficient.

The reduction in Nusselt number is obvious from Table (3.4) by increasing Λ.
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Figure 3.6: Velocity profiles for different val-
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3.4.4 Effect of Thermal Slip parameter Ω

Figure (3.8) shows the reduction in the thickness of thermal boundary layer due to

increase in thermal slip parameter. The increase in thermal slip parameter causes the

less transfer of heat from sheet to the fluid which leads to the decrease in boundary layer

temperature.

The temperature gradient at the surface decreases due to the thermal slip, and thus
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decreases the Nusselt number as evident from Table (3.4), which represents the less heat

transfer rate at the surface.
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Figure 3.8: Temperature profiles for different values of thermal slip parameter Ω.

3.4.5 Effect of Magnetic Parameter M

The influence of magnetic parameter M on velocity and temperature profiles is shown

in Figures (3.9) and (3.10), respectively. The increase in M causes decrease in velocity

of the nanofluids. This is due to the fact that the applied transverse magnetic field

produces a body force, called the Lorentz force, which resists the motion of the fluid. This

causes decrease in thickness of the thermal boundary layer. Since magnetic parameter is

inversely proportional to the density by M =
σfB

2
o

cρf
, hence increase in M causes decrease

in density and consequently, the temperature of the fluid rises.

From Table (3.3) we concluded that the skin friction coefficient increases with increase in

M as expected due to the influence of the Lorentz force. The decrease in Nusselt number

is observed with the increase in M from Table (3.4) due to the decrease in heat transfer

rate.

3.4.6 Effect of Variable Thermal Conductivity Parameter ϵ

Thermal conduction is the spontaneous transfer of thermal energy from the region of

high temperature to the region of low temperature. Figure (3.11) shows that increase

in variable thermal conductivity parameter ϵ results in increase in thickness of thermal
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Figure 3.9: Velocity profiles for different val-

ues of magnetic parameter M.
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boundary layer. It is noticed that an increase in thermal conductivity parameter increases

the fluid temperature across the boundary layer. This is because κ∗nf > κnf when ϵ > 0

hence, an increasing ϵ results in increasing thermal conductivity, thereby raising the

temperature. It would also increase the thermal boundary layer thickness. Furthermore,
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Figure 3.11: Temperature profiles for different values of variable thermal conductivity

parameter ϵ.

it is observed from Table (3.4) that the Nusselt number decreases with the increase in ϵ

because, large amount of heat transfer causes decrease in temperature gradient.
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3.4.7 Effect of Radiation Parameter Nr

The effect of variation of thermal radiation parameter Nr is delineated in Figure (3.12).

Thermal radiation parameter is the ratio of thermal radiation to the conductive radiation.

Raising Nr depicts the dominance of thermal heat transfer over conductive heat transfer.

Consequently, large amount of heat is transferred into the system, raising the temperature

of the boundary layer. Increase in Nr leads to the decrease in the Nusselt number as

observed from Table (3.3). This behaviour is true for both the Cu-water and Al2O3 water

nanofluids.
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Figure 3.12: Temperature profiles for different values of thermal slip parameter Nr.

3.4.8 Effect of Suction Parameter S > 0/Injection Parameter

S < 0

Figures (3.13) - (3.16) demonstrate the effects of variation of suction/injection parameter

on temperature and velocity profiles, respectively. Since applying suction leads to draw

the amount of fluid particles into the wall hence, increase in S causes decrease in velocity

of the nanofluid as shown in Figure (3.13). Opposite behavior is noted for injection

(S < 0) in Figure (3.15). The physical explanation for such behavior is that as more

fluid is injected, the heated fluid is pushed farther from the wall where due to less influence

of the viscosity, the flow is accelerated.

It is observed from Figure (3.14) that increasing suction decreases temperature while

increasing injection enhances it, as seen from Figure (3.16). Within the boundary layer
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the momentum and thermal distributions are made uniform by applying the effects of

suction and injection. Imposition of the suction on the surface causes reduction in the

thermal boundary layer thickness whereas, the injection causes increase in it.

It can be seen from Tables (3.3) and (3.4) that the skin friction coefficient and the Nusselt

number show the gradual reduction with the increase in injection parameter but, gradual

rise with the increase in suction parameter.
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Figure 3.13: Velocity profiles for different

values of suction parameter S > 0.
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S > 0.
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A ϕ Λ Ω M ϵ Nr S − f ′′(0)
(1−ϕ)2.5

− f ′′(0)
(1−ϕ)2.5

Cu− water Al2O3 − water

0.0 0.630249 0.585716

0.2 0.1 1.0 1.0 1.0 1.0 0.1 0.1 0.642642 0.599083

0.5 0.659226 0.617033

0.0 0.456858 0.456858

0.2 0.1 1.5 1.5 1.5 1.0 0.1 0.1 0.498264 0.472301

0.2 0.531318 0.488702

0.5 0.974604 0.88388

0.2 0.1 1.0 1.0 1.0 1.0 0.1 0.1 0.642642 0.599083

1.5 0.482192 0.456043

0.5 0.607699 0.566197

0.2 0.1 1.0 1.0 1.0 1.0 0.1 0.1 0.642642 0.599083

1.5 0.668917 0.624708

-0.1 0.759879 0.765432

0.2 0.1 1.0 1.0 1.0 1.0 0.1 -0.2 0.6099 0.569901

-0.3 0.599049 0.560282

0.1 0.642642 0.599083

0.2 0.1 1.0 1.0 1.0 1.0 0.1 0.2 0.653495 0.608837

0.3 0.66425 0.618563

Table 3.3: Values of skin friction coefficient for the variation of parameters for fixed

Pr = 6.2.
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A ϕ Λ Ω M ϵ Nr S −θ′(0)κnf

κf
−θ′(0)κnf

κf

Cu− water Al2O3 − water

0.0 0.655484 0.686876

0.2 0.1 1.0 1.0 1.0 1.0 0.1 0.1 0.710806 0.728076

0.5 0.772466 0.778936

0.0 0.443119 0.443119

0.2 0.1 1.5 1.5 1.5 1.0 0.1 0.1 0.54032 0.550718

0.2 0.2 0.644043 0.669053

0.5 0.758684 0.773032

0.2 0.1 1.0 1.0 1.0 1.0 0.1 0.1 0.710806 0.728076

1.5 0.68053 0.698121

0.5 0.92843 0.964542

0.2 0.1 1.0 1.0 1.0 1.0 0.1 0.1 0.710806 0.728076

1.5 0.569825 0.5787

0.5 0.731951 0.745763

0.2 0.1 1.0 1.0 1.0 1.0 0.1 0.1 0.710806 0.728076

1.5 0.693923 0.713231

0.0 0.778698 0.791302

0.2 0.1 1.0 1.0 1.0 0.5 0.1 0.1 0.744205 0.759283

1.0 0.710806 0.728076

0.1 0.710806 0.728076

0.2 0.1 1.0 1.0 1.0 1.0 0.5 0.1 0.565924 0.584549

1.0 0.4711 0.48884

-0.1 0.637068 0.657116

0.2 0.1 1.0 1.0 1.0 1.0 0.1 -0.2 0.604018 0.624238

-0.3 0.573973 0.593755

0.1 0.710806 0.728076

0.2 0.1 1.0 1.0 1.0 1.0 0.1 0.2 0.749829 0.764538

0.3 0.788742 0.800418

Table 3.4: Values of Nusselt number for the variation of parameters for fixed Pr = 6.2.
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Chapter 4

Unsteady MHD Boundary Layer

Slip Flow, Heat and Mass Transfer

of Nanofluids over Porous Stretching

Sheet

In this chapter we discuss the boundary layer flow with the interaction of heat and

mass transfer of electrically conducting nanofluids (Cu-water and Al2O3-water) over an

unsteady stretching sheet. The focus of the present analysis is to study the effects of

temperature dependent thermal conductivity, radiative heat flux and partial slip bound-

ary conditions on velocity, temperature and concentration profiles of the nanofluids. The

thermal conductivity is depending on the temperature and slip conditions are considered

in terms of shear stress. The obtained numerical values for skin friction coefficient, Nus-

selt number, Sherwood’s number, velocity, temperature and concentration are presented

through graphs and tables.

4.1 Problem Formulation

In addition to equations (3.2) to (3.6) the present model includes the boundary layer

concentration equation with slip condition. The concentration equation (2.29) under
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boundary layer approximation becomes

∂C

∂t
+ u

∂C

∂x
+ v

∂C

∂y
= DB

∂2C

∂y2
, (4.1)

where C is the ambient concentration of the fluid and DB is the Brownian diffusion

coefficient.

The corresponding boundary conditions

C(x, 0) = Cw +K1
∂C

∂y
, (4.2)

C → C∞, as y → ∞. (4.3)

In equations (4.2) and (4.3), Cw(x, t) = C∞+ cx
1−αt

is the nanoparticle volume fraction on

the sheet surface, K1 = K
√
1− αt is concentration slip parameter with K being initial

value of concentration, and C∞ is constant nanoparticle volume fraction at free stream.

4.2 Method of Solution

Introduction of stream function ψ(x, y) given in the equation (3.12) will transform the

equations (4.1) to (4.3) to

∂C

∂t
+
∂ψ

∂y

∂C

∂x
− ∂ψ

∂x

∂C

∂y
= DB

∂2C

∂y2
, (4.4)

C(x, 0) = Cw +K
√
1− αt

∂C

∂y
, (4.5)

C → C∞, as y → ∞. (4.6)

The dimensionless concentration variable β(η) defined as,

β(η) =
C − C∞

Cw − C∞
, (4.7)

transforms the differential equation (4.4) to the form

β′′ + Le{fβ′ − f ′β − A(β +
η

2
β′)} = 0. (4.8)

The transformed boundary conditions are

β(0) = 1 + δβ′(0), (4.9)
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β(η) → 0, as η → ∞. (4.10)

In equation (4.9), δ =
√

c
νf
K is the concentration slip parameter.

Local Sherwood number Shx is defined as

Shx =
xhm

DB(Cw − C∞)
. (4.11)

The mass flux hm from the plate given as

hm = −DB(
∂C

∂y
)y=0, (4.12)

transforms equation (4.11) into

ShxRe
−1/2
x = −β′(0). (4.13)

4.3 Numerical Scheme of Solution

The governing equations for the present model are (3.18), (3.19) and (4.8) along with

the conditions (3.20), (3.21), (4.9) and (4.10). In order to solve the system numerically,

we convert the higher order differential equations into a system of first order differential

equations by taking

y1 = f, y2 = f ′, y3 = f ′′, y4 = θ, y5 = θ′, y6 = β, y7 = β′. (4.14)

The corresponding higher order non-linear differential equations become

y′1 = y2, (4.15)

y′2 = y3, (4.16)

y′3 = −(1−ϕ)2.5[(1−ϕ+ϕρs
ρf

){y1y3−y22−A(y2+
η

2
y3)}−M(1+

3( σs

σf
− 1)ϕ

( σs

σf
+ 2)− ( σs

σf
− 1)ϕ

)y2] = 0,

(4.17)

y′4 = y5, (4.18)

y′5 =
−1

(1 + ϵy4 +
κf

κnf
Nr)

[ϵ(y5)
2+Pr

κf
κnf

{(1−ϕ+ϕ
(ρCp)s
(ρCp)f

){A(y4+
η

2
y5)+ y2y4− y1y5}}],

(4.19)
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y′6 = y7, (4.20)

y′7 = Le{y2y6 − y1y7 + A(y6 +
η

2
y7)}, (4.21)

with the initial conditions as :

y1(0) = S, (4.22)

y2(0) = 1 +
Λ

(1− ϕ)2.5
y3(0), (4.23)

y3(0) = a1, (4.24)

y4(0) = 1 + Ωy5(0), (4.25)

y5(0) = b1, (4.26)

y6(0) = 1 + δy7(0), (4.27)

y7(0) = c1, (4.28)

where, a1, b1, and c1 being unknown are to be determined such that the boundary

conditions y2(∞), y4(∞) and y6(∞) are satisfied.

4.4 Results and Discussion

This section will discuss the numerical results of the analysis in the form of graphs and

tables. The computations are performed to study the effects of variation of unsteady

parameter, volume fraction parameter, slip parameters, magnetic parameter, thermal

radiation, variable thermal conductivity, suction/injection parameter, and Lewis number

Le on velocity, temperature and concentration profiles of Cu-water and Al2O3-water

nanofluids. It is observed that the velocity and temperature profiles for the present

model are the same as discussed in the sections (3.4.1) - (3.4.8) so, here we will present

only the concentration profiles to study the effects of various parameters. The behaviour

of skin friction coefficient, Nusselt number and Sherwood number with the variation in

physical parameters is shown in Tables (4.1)-(4.3).
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4.4.1 Effect of Unsteadiness Parameter A

Figure (4.1) illustrates the influence of an unsteady parameter A on concentration profile.

From Table(4.3) the increase in values of Sherwood number is observed with the increase

in an unsteady parameter A, depicting the enhanced mass transfer rate.
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Figure 4.1: Concentration profiles for different values of unsteady parameter A.

4.4.2 Effect of Volume Fraction Parameter ϕ

Effect of variation of nanoparticle volume fraction ϕ on concentration profile is illustrated

in Figure (4.2). Increase in ϕ causes increase in concentration as shown in Figure (4.2).
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Figure 4.2: Concentration profiles for different values of volume fraction parameter ϕ.

Table(4.3) shows decrease in Sherwood number with increase in volume fraction pa-

rameter.
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4.4.3 Effect of Velocity Slip Parameter Λ

The increase in first order velocity-slip parameter Λ causes increase in concentration

profile as shown in Figure (4.3). Since the nanofluid slips over the bounding surface, it

causes an increase in nanoparticle volume fraction within the boundary layer as observed

from Figure (4.3).

It is observed from the Table (4.3) that increase in Λ leads to decrease in Sherwood

number both for Cu-water and Al2O3-water nanofluids showing the less mass transfer

rate across the boundary.
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Figure 4.3: Concentration profiles for different values of velocity slip parameter Λ.

4.4.4 Effect of Concentration Slip Parameter δ
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Figure 4.4: Concentration profiles for different values of concentration slip parameter δ.
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Figure (4.4) depicts that the increasing δ has decreasing effect on concentration profiles.

It can be seen from Table 4.3 that mass transfer rate shows gradual reduction by the

variation of δ.

4.4.5 Effect of Lewis Number Le

Lewis number Le is defined as the ratio of thermal diffusivity to the mass diffusivity.

As we increase the Lewis number the Brownian effect becomes prominent for which the

concentration boundary layer thickness decreases as shown in Figure (4.5).

From Table (4.3) we concluded that increasing value of Le has increasing effect on Sher-

wood number.
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Figure 4.5: Concentration profiles for different values of Lewis number Le.

4.4.6 Effect of Magnetic Parameter M

Since the magnetic field produces a Lorentz force that opposes motion of the nanofluid

due to which concentration across the boundary increases with the increase in M .

The decrease in Sherwood number is observed with the increase in M (4.3) due to influ-

ence of applied magnetic field.
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Figure 4.6: Concentration profiles for different values of magnetic parameter M.

4.4.7 Effect of Suction Parameter S > 0/Injection Parameter

S < 0

It is observed from Figure (4.7) that the concentration boundary layer thickness decreases

with the increase in suction parameter since, we are drawing the nanofluid from the

porous boundary which decreases the nanoparticle concentration within the boundary

layer while it increases by increasing injection parameter as delineated in Figure (4.8).

It can be seen from Table (4.3) that the Sherwood number shows gradual raise with

the increase in suction parameter but gradual reduction with the increase in injection

parameter
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Figure 4.7: Concentration profiles for

different values of suction parameter

S > 0.
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A ϕ Λ Ω δ Le M ϵ Nr S − f ′′(0)
(1−ϕ)2.5

− f ′′(0)
(1−ϕ)2.5

Cu− water Al2O3 − water

0.0 1.57765 1.3471

0.2 0.1 0.1 0.1 0.1 2.0 0.5 0.1 0.1 0.2 1.64055 1.40449

0.5 1.73102 1.48711

0.0 0.575634 0.575633

0.2 0.1 1.0 2.0 2.0 2.0 1.0 0.5 0.5 0.2 0.653494 0.608837

0.2 0.715023 0.642842

0.0 2.19094 1.81157

0.2 0.1 0.5 1.0 1.0 3.0 1.0 1.0 0.1 0.1 0.974604 0.88388

1.0 0.642642 0.599083

0.0 1.39419 1.21069

0.2 0.1 0.1 0.1 0.1 2.0 0.5 0.1 0.1 0.1 1.57672 1.35611

1.0 1.73055 1.48114

-0.1 1.4557 1.26395

0.2 0.1 0.1 0.1 0.1 2.0 0.5 0.1 0.1 -0.2 1.39866 1.22023

-0.3 1.34398 1.17811

0.1 1.57672 1.35611

0.2 0.1 0.1 0.1 0.1 2.0 0.5 0.1 0.1 0.2 1.64055 1.40449

0.3 1.70647 1.45433

Table 4.1: Values of skin friction coefficient for the variation of parameters with fixed

Pr = 6.2.
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A ϕ Λ Ω δ Le M ϵ Nr S −θ′(0)κnf

κf
−θ′(0)κnf

κf

Cu− water Al2O3 − water

0.0 2.21253 2.25919

0.2 0.1 0.1 0.1 0.1 2.0 0.5 0.1 0.1 0.2 2.30425 2.34323

0.5 2.43981 2.46751

0.0 0.334251 0.334251

0.2 0.1 1.0 2.0 2.0 2.0 1.0 0.5 0.5 0.2 0.42167 0.427714

0.2 0.523628 0.536738

0.0 0.856228 0.856857

0.2 0.1 0.5 1.0 1.0 3.0 1.0 1.0 0.1 0.1 0.758684 0.773031

1.0 0.710806 0.728075

0.5 0.997271 1.03089

0.1 0.1 1.0 1.0 1.0 3.0 1.0 1.0 0.1 0.2 0.749828 0.764536

1.5 0.594015 0.600904

0.0 0.53502 0.531926

0.2 0.1 0.1 0.1 0.1 2.0 0.5 0.1 0.1 0.1 0.531729 0.529519

1.0 0.528793 0.527345

0.0 2.04913 2.09977

0.5 0.1 0.5 0.1 0.5 3.0 5.0 1.0 0.1 0.1 1.5309 1.57684

2.0 1.25026 1.291060

0.1 2.14664 2.18681

0.2 0.1 0.1 0.1 0.1 2.0 0.5 0.1 0.5 0.1 1.39018 1.43293

1.0 1.01891 1.05915

-0.1 1.85475 1.89433

0.2 0.1 0.1 0.1 0.1 2.0 0.5 0.1 0.1 -0.2 1.72269 1.76045

-0.3 1.60089 1.63594

0.1 2.14664 2.18681

0.2 0.1 0.1 0.1 0.1 2.0 0.5 0.1 0.1 0.2 2.30424 2.34322

0.3 2.46785 2.50475

Table 4.2: Values of Nusselt number for the variation of parameters with fixed Pr = 6.2.
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A ϕ Λ Ω δ Le M ϵ Nr S −β′(0) −β′(0)

Cu− water Al2O3 − water

0.0 1.32708 1.3856

0.2 0.1 0.1 0.1 0.1 2.0 0.5 0.1 0.1 0.2 1.39629 1.44783

0.5 1.49761 1.53974

0.0 0.357859 0.357859

0.2 0.1 1.0 2.0 2.0 2.0 1.0 0.5 0.5 0.2 0.349817 0.356931

0.2 0.343719 0.355841

0.0 0.614282 0.623177

0.2 0.1 0.5 1.0 1.0 3.0 1.0 1.0 0.1 0.1 0.546627 0.563696

1.0 0.514358 0.532563

0.0 1.37299 1.47062

0.2 0.1 1.0 1.0 1.0 3.0 1.0 0.2 0.1 0.1 0.578591 0.595243

2.0 0.366524 0.373136

1.0 0.856688 0.902056

0.3 0.1 1.0 3.0 0.01 3.0 0.1 0.01 0.5 0.2 1.7259 1.80075

5.0 2.40364 2.49471

0.0 1.35751 1.39826

0.2 0.1 0.1 0.1 0.1 2.0 0.5 0.1 0.1 0.1 1.31448 1.36474

1.0 1.27819 1.33558

-0.1 1.16313 1.20926

0.2 0.1 0.1 0.1 0.1 2.0 0.5 0.1 0.1 -0.2 1.09423 1.1376

-0.3 1.03009 1.1376

0.1 1.31448 1.36474

0.2 0.1 0.1 0.1 0.1 2.0 0.5 0.1 0.1 0.2 1.39629 1.44783

0.3 1.4816 1.53391

Table 4.3: Values of Sherwood’s number number for the variation of parameters with

fixed Pr = 6.2.
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Chapter 5

Conclusions and Future

Recommendations

In this thesis, we studied the MHD slip flow with heat and mass transfer of Cu-water

and Al2O3-water based nanofluids over a porous stretching sheet with variable thermal

conductivity and thermal radiation. The significance of the current investigation is that

the velocity, thermal and mass slip conditions are considered at the boundary and thermal

conductivity is taken to vary linearly with the temperature.

We have drawn the following conclusions from our analysis:

1. Nanoparticles are known to enhance the thermal behaviour of the fluid. Increase in

concentration of the nanoparticles enhances the temperature and concentration of

the nanofluid. Nanoparticles volume fraction is found to increase the skin friction

coefficient by decreasing the velocity of the nanofluid within the boundary layer.

2. In general, an increase in velocity slip parameter decreases the velocity and in-

creases the temperature and mass transfer of nanofluids within the boundary layer.

Thermal slip parameter reduces the thermal boundary layer thickness whereas, it

has no effect on velocity and concentration of the nanofluids. Concentration slip has

decreasing effect on mass transfer rate and renders the velocity and temperature

profiles unchanged.

3. Unsteady parameter has same decreasing effect on velocity, temperature and con-
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centration profiles of nanofluids. It increases the skin friction, heat and mass trans-

fer rate across the boundary layer.

4. Magnetic field has pronounced effects on the nanofluid’s physical profiles. Stronger

magnetic field decreases the nanofluid’s velocity and enhances the temperature and

concentration at the boundary.

5. Temperature dependent thermal conductivity decreases the thermal boundary layer

thickness hence, increases the heat transfer rate at the boundary. It’s variation has

no effect on velocity and concentration profiles.

6. Cu water nanofluids are better thermal conductors than Al2O3 water nanofluids

under the considered assumptions.

The present model has revealed the significant results to focus on the slip effects,

unsteadiness and temperature dependent thermal conductivity on the flow of nanofluids

over a nonlinear porous stretching sheet. Future investigations may involve the study

of the use of temperature dependent viscosity, variable porosity and multidimensional

MHD slip flow and heat transfer of nanofluids. An interesting area to explore in future

analysis would be the study of the above mentioned effects on the power-law and third

grade fluid. Clearly, there is an opportunity for practical work on these systems.
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