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Abstract 

 

 

Agriculture plays an important role in Pakistan due to its food demand and population growth. The 

problem can be tackled with robust machine learning and deep learning techniques which can 

reduce the monitoring time can help in data-driven decision making. 

We commenced the training of models over the dataset of plant village dataset having 20642 

images, with 15 different classes of 3 species, including pepper, potato, and tomato we used 

ResNet50 with a span of 10 epochs, and we were able to obtain the utmost training accuracy of 

98.09%. Nevertheless, the pinnacle of the validation (testing) accuracy culminated at 91.5%. 

we used the Fine-Tuning method with the ResNet50 pre-trained model in Keras, we selectively 

designated the last 75 layers of the ResNet50 model as trainable, enabling it to adapt and identify 

patterns in the current dataset, The model demonstrated notable improvements during this fine-

tuning process, with training accuracy of 98.09 percent and testing accuracy of 95.23 percent, 

These results outperform the original ResNet50 model, demonstrating how the fine-tuning 

approach may be used to enhance the model's performance for the given job. 

Additionally, in this study, two distinct instructional methodologies were examined for the Vision 

Transformer (VIT). The model underwent rigorous training over the course of 10 epochs However, 

despite these endeavors, the testing accuracy fell short of expectations, remaining at approximately 

60%, Subsequently, an alternative approach was implemented whereby a pre-trained Vision 

Transformer (VIT) was utilized Through this utilization of pre-trained models, the aforementioned 

methodology exhibited a marked improvement in performance, ultimately attaining an accuracy 

level of 98%. The study also focuses on the regulatory compliance challenges for data. 
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1. Chapter 1: INTRODUCTION 

1.1 Overview 

 

In today's rapidly advancing world, where Agriculture stands as a cornerstone of our economy, it 

is crucial to address the challenges that hinder its growth and productivity. In today’s modern 

world, nobody is interested in farming due to the many issues that farmers face. The Issue of 

keeping plants safe from diseases is connected to practical adaptation to climate change [1]. 

Research shows how climate change can impact the different stages and rates at which plant 

diseases develop, also the ability of the plants to resist these diseases may change [2]. There are 

methods for automating the detection of plant diseases using artificial intelligence, deep learning, 

and machine learning [3], these methods can effectively identify and detect plant diseases without 

any human interventions. Computer Vision has proven the best results over the course of time 

which is being used for feature detection, extraction, and enhancement for classification and 

identification of different applications including Vehicle detection, medical diagnosis, robotics, 

and processing of agricultural items [4]-[7], for feature extraction, segmentation, and classification 

the image processing was used before deep learning. Deep learning is state of art Machine learning 

technology, the more advanced methods of deep learning such as transfer learning have proven 

their worth in terms of performance for identification and classification-related tasks [8]. Let’s 

now understand the few more concepts. 

1.2 Convolutional neural networks 

 

Convolutional neural networks belong to a class of neural networks specifically crafted for image 

recognition and classification, yielding outstanding outcomes. Initially, CNN has found 

widespread application in addressing object recognition challenges. However, its utilization has 

expanded into novel domains, including text recognition, object tracking, action detection, visual 

saliency detection, and scene labeling. Presently, CNN is extensively employed for the detection 

of diverse plant leaf diseases. Grasping the advancements in CNN architecture relies on a thorough 

understanding of the diverse components of CNN and their respective applications. Figure 2 

illustrates multiple elements of CNN [20]. For the input images pixels are the foundational 

components of a computer image, representing visual data in binary form. Arranged in a matrix-

like layout within the digital image, these pixels are sequentially organized from 0 to 255. The 

pixel value uniquely determines the brightness and hue of each pixel, In the training process of 

CNN layers, the emphasis is on recognizing fundamental patterns like lines and curves initially, 

followed by more sophisticated patterns such as faces and objects. This progression suggests that 

the adoption of CNNs could empower computers with visual perception [21-22]. 
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Figure 1: Components of CNN 

 

1.3 The Convolutional Neural Network Generalization 

 

When aiming to establish robust generalizations for CNN models, the central hurdle is addressing 

over-fitting. Over-fitting arises when a model excels on training data but falters when applied to 

test data, representing data it hasn't encountered previously, as detailed in the following section. In 

situations where the model doesn't capture enough information from the training data, it is deemed 

under-fitted. A model is deemed "appropriately fitted" when it yields satisfactory outcomes on both 

the training and testing datasets as shown in Fig 2 [23-24]. 

 

Figure 2: Convolutional Neural Network Generalization 
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1.4 Popular Convolutional Neural Network Models 

 

R-CNN [36–38] stood out as a groundbreaking model, introducing convolutional neural networks 

(CNN) into the scene. The model, tasked with classifying images, generates 2000 region proposals, 

resizing them to 227 × 227. Its distinctive features include a region-of-interest (RoI) classifier 

based on a deep convolutional neural network (DCN) for specific region classification within input 

images. The process involves utilizing a convolutional neural network (CNN) for feature 

extraction and model training, followed by object categorization using a support vector machine 

(SVM) classifier. Despite its effectiveness, the model operates at a notably slow pace. In response, 

Fast R-CNN emerged in 2015 to address both accuracy and speed concerns [37,38], emphasizing 

RoI extraction from feature maps in SPPNet and Fast R-CNN, an advanced iteration of R-CNN 

that outperformed the conventional framework. 

Faster R-CNN advances this trajectory by introducing region proposal networks for feature 

extraction, aiming to eliminate storage costs [37,38]. This enhanced version of Fast R-CNN 

achieves comprehensive end-to-end training using RPN-based fully contained region proposal 

networks. Regression-based region-of-interest (RoI) networks (RPNs) play a crucial role in 

generating RoIs. 

 

Compared to its predecessors, Faster R-CNN excels in accuracy and speed; however, a 

misalignment between ground truth and predicted bounding boxes persists. To address 

inaccuracies in the region of interest (RoI) pooling layer stemming from the quantization process, 

the authors propose the incorporation of Mask R-CNN. 

Mask R-CNN takes a step further, building upon Faster R-CNN by adding a mask prediction 

branch, enabling simultaneous object detection and mask prediction. R-FCN, meanwhile, opts for 

replacing fully connected layers with position-aware score maps, resulting in improved object 

detection capabilities. 

1.5 RESNET50 

 

Often used in transfer learning, the AlexNet, AlexNetOWTBn, GooLeNet, Overfeat, and VGG 

models have a stacked configuration of convolutional layers. Deep CNN networks do, however, 

face difficulties such degradation problems, the vanishing gradient problem, and network 

optimization. To tackle these issues, the Residual network (ResNet) presents a revolutionary 

method that improves detection accuracy and provides solutions for complex jobs. ResNet focuses 

on deep CNN training challenges, including as saturation and accuracy degradation. This work 

uses the ResNet50 architecture, which is represented in Fig. 3 and consists of 50 layers of residual 

networks. 

In Fig. 3, several groups of similar layers that make up the ResNet50 structure are indicated by 

different colors. The curving lines represent identity blocks, which indicate that later levels make 
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use of earlier layers. This feature, which mitigates problems like vanishing or expanding gradients 

and the degradation issue during the training of deep networks, is crucial to ResNet50. The first 

layer in Figure 3 consists of 64 filters with a 7×7 kernel size and is succeeded by a max-pooling 

layer that is 3×3. Different sets of layers, each denoted by a different hue, are made up of different 

numbers of similar blocks. Blue curves represent the connections between layers of varying sizes. 

For the classification challenge, a total of 38 fully connected layers are created after these blocks. 

Nevertheless, these completely connected layers are not used in our suggested model. 

 

Figure 3: ResNet50 Architecture 
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1.6 Vision Transformer 

 

ViTs are inspired by the well-known Transformer approach that is commonly used in natural 

language processing [26]. Because of their self-attention mechanisms, which maintain the 

dependency of words in the sequence representation, transformers—which are specifically made 

for processing word sequences—are excellent at maintaining long-distance dependencies [26]. In 

the field of computer vision, Ref. [27] offered a pure Transformer technique after several 

approaches for hybrid architectures fusing convolutional processes and self-attention mechanisms. 

Compared to state-of-the-art CNNs, the first version of ViT uses a transformer applied directly to 

picture patch sequences, and it achieves similar results on a variety of image classification datasets 

with a much less training computational cost. An image is divided into fixed-size patches that are 

all linearly embedded during the ViT process. After adding position embedding, the vector 

sequence is put into a typical Transformer encoder. ViTs are distinguished by their relaxation of 

the CNN-associated locally constrained receptive field and the translation invariance constraint. 

This suggests that ViTs are more appropriate for encapsulating an image's global object 

organization [28]. 

New self-supervised learning (SSL) techniques specifically designed for ViTs highlight the already 

noted performance advantage of ViTs over CNNs. The main goal of an SSL approach in computer 

vision is to force a network to predict any concealed portion of an image from an unhidden portion. 

The concealed portion could entail cropping and zooming, as in DINO (self-distillation with no 

labels) [29], or partial masking of image patches, as in Masked AutoEncoders (MAE) [30], or the 

Bidirectional Encoder representation from Image Transformer (BeiT) SSL method [31], which was 

particularly selected and assessed for this study. The model can be more effectively fine-tuned in 

a traditional supervised fashion on datasets having picture labels, like ImageNet, after being pre-

trained using the SSL technique on a large collection of unlabeled photos. This rigorous procedure, 

as demonstrated in this paper, produces a new, better-pretrained model that may then be improved 

for a variety of downstream tasks. The second part of this study consists of private data protection 

challenges, and regulatory compliance challenges in cybersecurity, with increasing automation 

technologies, big data, and Artificial Intelligence, making human lives easier but also bringing new 

kinds of cyber threats and challenges [9]. Recital 1 of GDPR which is the “Data protection as the 

fundamental rights” declares that one of the fundamental rights is the protection of natural persons 

with regard to the handling of their personal data. 2 Everyone has the right to the protection of 

personal information pertaining to them, as stated in Article 8(1) of the Charter of Fundamental 

Rights of the European Union (the "Charter") and Article 16(1) of the Treaty on the Functioning 

of the European Union (TFEU) [34]. On the other hand, Pakistan lacks comprehensive data 

protection laws that strictly govern issues pertaining to the handling of personal data. Currently, 

the main piece of legislation that offers a legal framework for many types of electronic crimes and 

also covers illegal access to personal data is the Prevention of Electronic Crimes Act, 2016 

(commonly known as "PECA"). To amend the Personal Data Protection Act, 2023 (also known as 

"the Act"), MOITT has introduced the Personal Data Protection Bill 2023 (also known as "the 

Bill"). The Act has not yet been signed into law. Once the Bill is passed into law, it will serve as 

the primary piece of legislation governing data controllers and processors in Pakistan. It will apply 
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to anyone who handles, oversees, or approves the processing of any personal data, as long as the 

data subject, data controller, or data processor (local or foreign) is based in Pakistan [35]. In 

addition to all above, the core objectives of cyber security regulations are to prevent data breaches 

and protect private data ensuring the confidentiality and integrity of private data, also regulatory 

compliances have many further challenges for example they must be continuously updated to 

address the emerging and advanced threats to protect the private data [10]. 
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2.  Chapter 2: LITERATURE REVIEW 

 

This section of our study is about the discussion of recent related work on Plant health monitoring 

and disease detection based on deep learning models. Digital photography is a very useful tool for 

early-stage symptom recognition when it comes to plant disease detection and identification. 

Several scientists have developed agricultural applications, such as ones for fruit and leaf disease 

detection [11]. Even though conventional techniques are accurate, there is a rising need for 

automated disease detection to reduce the need for human involvement in the analysis and 

diagnosis of illnesses in plant leaf patterns [12]. Using their plant-specific datasets, Sladojevic and 

colleagues [13] applied the CaffeNet model for the identification of illnesses in various plants. To 

improve the training of their models, they included a data augmentation procedure, especially to 

deal with issues related to tiny datasets, after 100,000 iterations, the top-5 success rate was 99.99 

percent and the top-1 success rate was 96.3 percent. These findings show how well the deep 

convolutional network model recognizes plant illnesses from leaf photos, with a high degree of 

efficiency and accuracy. In a different study, Mohanty et al. [14] used both transfer learning and 

the learning-from-scratch method for model training. They used AlexNet and GoogleNet to detect 

26 illnesses of 14 crops in the plant village dataset. With GoogleNet in place, a phenomenal peak 

accuracy of 99.34 percent was achieved. Ferentinos [15] identified 58 plant leaf diseases with 

success using five different pre-trained deep learning models: VGG, AlexNet, AlexNetOWTBn, 

Overfeat, and GoogleNet. In order to detect plant illnesses, Geetharamani and Pandian [16] used 

a nine-layer deep CNN, achieving a 96.46 percent accuracy rate. By replacing the fully linked 

layer of AlexNet with the inception layer, Liu et al. [17] created a model that was inspired by the 

topologies of GoogleNet and AlexNet. This model had a 97.62 percent accuracy rate in correctly 

identifying four different apple leaf diseases. For plant leaf disease identification, Transfer learning 

of deep convolutional neural networks was used by Junde et al. [18]; the authors pre-trained 

VGGNet using ImageNet and selected the Inception modules for the approach. The recommended 

approach outperforms other state-of-the-art methods and achieves a validation accuracy of at least 

91.83 percent on the publicly available dataset. In this paper [19], the author created a deep 

ensemble neural network that incorporates transfer learning as part of an efficient model to identify 

plant leaf disease within limited computational resources, hence reducing false positives and false 

negatives. The architecture of this proposed methodology is illustrated in Fig. 4. Additionally, the 

authors in their study used an ensemble neural network and DenseNet. DenseNets serve to 

streamline the connectivity patterns between layers by establishing direct connections among 

them, addressing the constraint on maximum information flow. In comparison to traditional CNN, 

DenseNets exhibit a reduced number of feature maps. 
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Figure 4: Architecture of the proposed study. 

Deep learning models, specifically ResNet-50 and VGG-19, for identifying and classifying 

diseases in banana plants based on leaf images the Convolutional Neural Networks (CNN) to 

process the image data and classify it into different disease categories such as health, Sigatoka, 

Cordana, and Pestaloptiosis the use of ResNet-50 and VGG-19 models to achieve accurate disease 

identification and classification [32] several research papers and articles that have utilized deep 

learning models for various image processing tasks, including disease diagnosis, image captioning, 

and object classification but the architecture and features of ResNet-50 and VGG-19, highlighting 

their capabilities in handling image data and extracting meaningful patterns for classification 

purposes, explains the study methods in further detail, covering model evaluation, model 

architecture design, and dataset processing. In an effort to determine the best method for 

identifying diseases in banana plants, it also compares the outcomes of the ResNet-50 and VGG-

19 models. In general, the work focuses on employing deep learning models—ResNet-50 and 

VGG-19 in particular—to handle the significant challenge of using leaf pictures to identify and 

categorize illnesses in banana plants [32]. 

The paper's authors [33] address the shortcomings of Pakistan's cyber security framework and offer 

suggestions for how to make it better. They also emphasize the country's evolving cyber laws and 

the Electronic Transactions Ordinance, 2002's narrow scope. They also talk about Pakistan's 

difficulties in controlling the digital world, particularly internet users' lack of information 

technology literacy. To protect financial assets and respond to cyberattacks, the study suggests 

establishing a thorough cybersecurity policy, collaborating with other countries, and setting up a 

National Cyber Coordination Center. Furthermore, recommended by the authors are running 

awareness programs and taking part in global initiatives to establish cyber norms.  
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3. Chapter 3: METHODOLOGY 

 

3.1 Material and Methods 

 

The primary aim of this study is to facilitate the seamless integration of computer vision 

technologies in order to address common challenges in the classification of symptoms associated 

with plant diseases. Beyond plant disease diagnosis, the suggested approaches find use in a variety 

of industrial settings where the quick development of machine learning algorithms is required. 

When a large enough training dataset is available, prior studies have demonstrated the remarkable 

performance of sophisticated convolutional neural networks (CNNs) in these kinds of tasks. But 

it's frequently not possible to get a lot of photos for particular crop-disease combos. By using data 

augmentation approaches, which allow CNNs to learn unique aspects of illness classes, this lack 

of data and class imbalance are efficiently addressed. 

Furthermore, inaccuracies in data collection from natural settings could lead to misclassification 

due to issues including dim lighting, blurry images, and unclear symptoms. Due to their high 

computational costs, large model sizes, and lengthy running times, classical CNNs are not as 

successful when employed in mobile devices with limited resources. This document offers a 

thorough explanation of the experimental configuration created to examine the effects of these 

circumstances and suggests fixes inside our process.  

We suggest a unique method that use a CNN without a dense layer to address model size concerns. 

As a result, there are far fewer add-multiplication processes, which makes the model more efficient 

and compact. Furthermore, we recognize the potential of vision transformers to bring about 

transformation and systematically incorporate this architecture into our methodology. Since vision 

transformers use attention techniques to extract long-range relationships from the data, they 

present a viable option, particularly in situations when computational resources are scarce. The 

datasets and their difficult qualities are thoroughly discussed in the portions of the study that 

follow. Comprehensive justifications of the methods utilised to improve the overall functionality 

of our suggested system—which now includes vision transformers—are also provided. 

3.2 Dataset 

 

Many well-known datasets, such as the Plant Pathology Dataset, Fruit Disease Dataset, Tomato 

Leaf Dataset, and others, include a large number of photos intended for the purpose of identifying 

plant diseases. A large variety of crops and illnesses are covered by these datasets. For example, 

the Plant Pathology dataset available on Kaggle displays leaves impacted by rust, scab, and several 

leaf spot kinds. The Fruit Disease Dataset, which is also accessible on Kaggle, is an important tool 

for researchers studying fruit-related disorders. Conversely, the Tomato Leaf dataset addresses 

particular tomato-related illnesses. Additionally, there are crop-specific datasets for wheat, rice, 

and soybeans, which contribute to a comprehensive comprehension of plant diseases across 

various crops. In the quest for an advanced computer vision algorithm for detecting crop diseases, 
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the PlantVillage Dataset was selected as a fundamental learning resource. The approach involved 

transfer learning using a pretrained model from the ImageNet dataset, followed by fine-tuning it 

with the extensive PlantVillage dataset. This method took advantage of the pretrained model’s 

proficiency in identifying objects and features within images. 

3.2.1. The PlantVillage Dataset 

 

The PlantVillage dataset is a large and comprehensive collection of plant photos that have been 

carefully selected to further the development of computer vision algorithms for agricultural disease 

detection. The National Science Foundation and the Bill and Melinda Gates Foundation have 

generously provided financial support to the Penn State PlantVillage team, led by Dr. David 

Hughes. This team has worked to create this dataset. The PlantVillage initiative has demonstrated 

a noteworthy dedication to advancing agricultural research by providing the public with 

unrestricted and open access to this dataset.  The extensive PlantVillage dataset contains more than 

54,000 high-quality photos that illustrate 26 major agricultural diseases affecting 14 different plant 

species. A total of 38 class labels are added to the dataset by include photos of healthy plants. This 

repository was assembled by a collaborative effort involving contributions from professional 

photographers, citizen scientists, and farmers. In Figure 5, a representative snapshot of leaf images 

sourced from the PlantVillage dataset provides a visual insight into the diversity and scope of this 

invaluable resource. 

 

 

 

  

 

 

 

Figure 5: The Plant Village Dataset 
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It is crucial to underline that the PlantVillage dataset incorporates images not only of leaves but 

also fruits, showcasing the comprehensive nature of the dataset. The spectrum of plant species 

featured in this collection is extensive and diverse, encompassing apple, blueberry, cherry, corn, 

grape, orange, peach, pepper, potato, raspberry, soybean, squash, strawberry, and tomato. This 

deliberate inclusion ensures that the dataset mirrors the agricultural landscape with a rich variety 

of plants susceptible to diseases. 

Plant diseases such as early blight, bacterial spot, common rust, late blight, leaf curl, mosaic virus, 

powdery mildew, Septoria leaf spot, spider mites, target spot, tomato yellow leaf curl virus, and 

two-spotted spider mites are all included in the PlantVillage dataset. The inclusion of these varied 

illnesses highlights the importance of the dataset in tackling the complex problems caused by plant 

diseases in a range of crops. In addition, Figure 6 below shows the distribution of each class in the 

dataset. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Class Distribution of PlantVillage dataset 
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As mentioned above in fig 6, our PlantVillage dataset contains 15 different classes, the classes 

explicitly are: 

• Pepper__bell___Bacterial_spot 

• Pepper__bell___healthy 

• Potato___Early_blight 

• Potato___healthy 

• Potato___Late_blight 

• Tomato__Target_Spot 

• Tomato__Tomato_mosaic_virus 

• Tomato__Tomato_YellowLeaf__Curl_Virus 

• Tomato_Bacterial_spot 

• Tomato_Early_blight 

• Tomato_healthy 

• Tomato_Late_blight 

• Tomato_Leaf_Mold 

• Tomato_Septoria_leaf_spot 

• Tomato_Spider_mites_Two_spotted_spider_mite 

 

3.2.2. The ImageNet Dataset 

The research is greatly aided by the use of the ImageNet dataset [25], which produces a number of 

benefits. It's one of the biggest datasets out there right now, which makes it a great tool for building 

machine learning models. Using the WordNet hierarchy to classify photographs improves the 

precision and effectiveness of object recognition models. Machine-learning algorithms have 

benefited greatly from the use of the ImageNet dataset. 

This research's favored data source includes over 50,000 color images of crop leaves, including 

both healthy and injured plants. This dataset's significant sample size, accurate labeling, and 

capacity to detect agricultural illnesses are among its noteworthy qualities.  

14,197,122 annotated photos arranged according to the WordNet hierarchy make up the ImageNet 

dataset. The richness and diversity of the dataset are further enhanced by the fact that there are 

1000 separate object categories, and each category has an average of 1000 photos. 

3.3 Data Pre-Processing 

The process of analyzing data involves extracting pertinent information from data sources, and in 

this investigation, the utilization of Tensor Flow played a crucial role in guaranteeing meticulous 

findings. Various Python libraries were utilised to examine the information contained in the 

PlantVillage databases. In particular, Matplotlib was used to visualise the libraries used in the 

study, and Tensor Flow, NumPy, and Keras were used to build the neural network architecture. 

These libraries are essential to the research and provide different functions. Among these, 
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TensorFlow stands out as an essential library for machine learning model development and 

implementation, offering a feature-rich and flexible neural network construction environment. One 

important feature of this study is that it is particularly well-suited for managing large datasets due 

to its effectiveness and scalability. Unquestionably, data analysis ensures the accuracy and 

dependability of information. TensorFlow, NumPy, Keras, and Matplotlib are just a few of the 

Python-based tools that make it easier to analyse PlantVillage datasets. These tools work together 

to ensure that the data is analysed thoroughly and effectively, producing reliable results. 

3.4 Models 

3.4.1 CNN 

One popular deep learning framework that is often used for image and video analysis is the 

Convolutional Neural Network (CNN). Its architecture is made up of several layers that are 

intended to extract information from input movies or photos. Low-level characteristics like edges 

and corners are identified by the first layer, sometimes referred to as the convolutional layer. In 

order to extract higher-level features like forms and objects, the ensuing layers expand upon these 

low-level properties. Pooling layers are used after the convolutional layer to down-sample the 

feature maps and reduce spatial dimensions without losing important information. For tasks 

involving classification or regression, the output from the convolutional and pooling layers is 

subsequently flattened and fed through fully connected layers. CNNs are able to process images 

of different sizes and orientations because of their special capacity to learn the spatial hierarchies 

of features through convolution and pooling processes. We especially used the well-known to be 

successful ResNet50 CNN architectures and ResNet50 with transfer learning for our investigation. 

In the framework of this work, we first designed a data generator that efficiently handles input 

data, from which we were able to construct a strong model for image classification. Then, we 

leveraged the ResNet50 architecture that we had acquired from Keras Applications to apply 

transfer learning. The ResNet50 model's layers were all made non-trainable in order to improve 

the model's flexibility. Additionally, we introduced a specialized final classification layer to 

accurately categorize 15 distinct classes. Following this configuration, the model was compiled, 

integrating a carefully selected optimizer, loss function, and evaluation metric. 

Furthermore, the model was systematically trained on the PlantVillage dataset, adjusting its 

parameters to optimize performance for the specific classification task at hand. The subsequent 

phase involved fine-tuning, where a pretrained model was used, but only a subset of the layers was 

designated as trainable in order to identify patterns within the current dataset. To further improve 

the robustness of the model, regularization was implemented through the strategic inclusion of 

dropout layers. 

During the fine-tuning process of the ResNet50 model, we loaded the model from Keras 

Applications and specifically designated the last 75 layers of the ResNet50 model as trainable. A 

final layer was then added to facilitate classification across the 15 distinct classes. Following this 

fine-tuning configuration, the model was compiled, incorporating a suitable optimizer, loss 

function, and evaluation metric. The concluding step involved training the model on the available 

dataset, and refining its parameters to optimize performance that is specifically tailored to the 

classification task at hand. 
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3.4.2 Vision Transformer 

To construct a Vision Transformer architecture, the procedure encompasses multiple stages. 

Initially, an image is divided into patches, and these patches are subsequently flattened into a 

singular dimension, resulting in feature maps of dimensions (196, 768). The resultant output is 

then converted into the desired format of N×(P^2⋅C), where P represents the patch size, and C 

signifies the channel dimension. 

a. Normalization layer 
In order to facilitate the Transformer's encoder, essential layers are incorporated, commencing with 

Layer Normalization (LN or LayerNorm) utilizing torch.nn.LayerNorm(). This process of 

normalization, employed over the final dimension, aids in enhancing training efficiency and the 

model's generalization ability to unseen data. 

b. Multi-head Attention 
The Multi-Head Self Attention (MSA) layer is implemented by utilizing 

torch.nn.MultiheadAttention(), with parameters such as the embedding dimension (D), the number 

of attention heads, and the option to apply dropout for regularization. This particular layer is of 

utmost importance in capturing intricate relationships within the data. 

c. MLP block 
Additionally, an MLP Block is seamlessly integrated into the architecture, and the complete 

Transformer Encoder block is assembled by amalgamating the custom-made layers mentioned 

above. This comprehensive block plays a pivotal role in processing and extracting meaningful 

features from the input data.  

Once these components are in place, the subsequent step entails creating the entirety of the Vision 

Transformer. Now the architecture has been established shown in Fig 7, the model is trained using 

the PlantVillage dataset. The training process encompasses optimizing the model parameters to 

enhance its proficiency in performing image classification or other pertinent tasks. 



15 
 

 

Figure 7: Architecture of Vision Transformer 

During the initial phase of the training process, the effort was directed towards training the Vision 

Transformer (VIT) from the ground up. The dataset was divided into separate sets for training and 

testing purposes. In order to make efficient use of the computational resources, a batch size of 32 

was utilized, and the available CPU count was taken into account by setting NUM_WORKERS 

appropriately. It is worth noting that the image size was standardized to 224, and for optimal feature 

extraction, a patch size of 16 was employed. The input image, which adhered to the dimensions 

torch Size ([1, 3, 224, 224]), underwent a transformation that resulted in an output patch 

embedding with dimensions torch Size ([1, 196, 768]). Throughout the training process, which 

spanned 10 epochs, the model was refined using the Cross Entropy Loss technique to optimize its 

parameters and improve its capabilities in image classification and other relevant tasks. This 

rigorous training process aimed to equip the Vision Transformer with the ability to discern complex 

patterns and relationships within the data, ultimately leading to enhanced performance across 

various image-based tasks. 
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4. Chapter 4: Results 

4.1 Results and Discussion 

 

We commenced the training of ResNet50 with a span of 10 epochs, wherein we were able to attain 

an utmost training accuracy of 98.09%. Nevertheless, the pinnacle of the validation (testing) 

accuracy culminated at 91.5%. Training accuracy and validation accuracy graph is shown in fig 8.  

 

Figure 8: Resnet50 

In order to improve even more, we used the Fine-Tuning method with the ResNet50 pre-trained 

model in Keras. The ImageNet dataset was used to train ResNet50 initially. In this approach, we 

selectively designated the last 75 layers of the ResNet50 model as trainable, enabling it to adapt 

and identify patterns in the current dataset. Additionally, regularization methods were integrated 

by incorporating dropout layers. The model demonstrated notable improvements during this fine-

tuning process, with training accuracy of 98.09 percent and testing accuracy of 95.23 percent, as 

indicated in table 1. These results outperform the original ResNet50 model, demonstrating how 

the fine-tuning approach may be used to enhance the model's performance for the given job. The 

training accuracy and validation accuracy are shown graphically in figure 9. 

 

Figure 9: Resnet50 with transfer learning 
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Furthermore, in this study two distinct instructional methodologies were examined for the Vision 

Transformer (VIT). At first, the focus was on carefully dividing the dataset into training and testing 

sets in order to train the VIT architecture from the start. A batch size of 32 was utilized, and 

computational resources were fine-tuned by setting NUM_WORKERS to the available CPU 

count. The standardized image size was established at 224, employing a patch size of 16 to 

facilitate efficient feature extraction. Input images underwent transformation, leading to an output 

patch embedding.  

Figure 10: VIT Scratch 

The model underwent rigorous training over the course of 10 epochs, shown in fig 10 utilizing 

Cross Entropy Loss for parameter optimization in the realm of image classification and related 

tasks. However, despite these endeavors, the testing accuracy fell short of expectations, remaining 

at approximately 60% given in table 1. 

Subsequently, an alternative approach was implemented whereby a pretrained Vision Transformer 

(VIT) was utilized. Through this utilization of pretrained models, the aforementioned methodology 

exhibited a marked improvement in performance, ultimately attaining an accuracy level of 98% 

given in table 1. This observation serves to underscore the efficacy of harnessing pre-existing 

knowledge in the guise of pretrained models, thereby augmenting the overall performance and 

accuracy of the Vision Transformer. The figure 11 depicts the graphical representation of the 

training accuracy and validation accuracy. 
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Figure 11: VIT pretrained 
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The evaluations encompassed various performance metrics, such as: 

1. Training Accuracy: The percentage of successfully predicted occurrences relative to the 

total number of training examples is measured by the training accuracy statistics. It 

provides insightful information on how well the model learned from the given training set. 

 

2. Test Accuracy: The ratio of accurately predicted instances to the total number of test 

instances is known as test accuracy. It functions as a gauge of the model's generalization 

ability by assessing how well it performed on unknown data during training. 

 

3. F1 Score: The F1 score represents the harmonic mean of precision and recall. This score 

strikes a balance between precision, which denotes the ratio of true positive predictions to 

the total predicted positives, and recall, which signifies the ratio of true positive predictions 

to the total actual positives. The F1 score proves particularly valuable when confronted 

with an imbalanced class distribution. 

 

4. Recall: Recall, also referred to as sensitivity or true positive rate, quantifies the ratio of true 

positive predictions to the total actual positives. It serves as a measure of the model's 

aptitude in accurately identifying instances belonging to a specific class. 

 

5. Precision: Precision, on the other hand, denotes the ratio of true positive predictions to the 

total predicted positives. It quantifies the accuracy of positive predictions and is 

particularly critical when the occurrence of false positives bears significant consequences. 

 

6. Confusion matrix: A tabular representation called a confusion matrix compares the actual 

and predicted class labels to assess how well a classification model performs. There are 

four types of predictions in it: False Positives (positives that are not accurately anticipated), 

False Negatives (negatives that are correctly predicted), and True Positives (positives that 

are correctly predicted) (negatives incorrectly predicted). The heatmap provides a visual 

representation of these measures; the cell colours represent the frequency of predictions 

shown in Figures 7 and 8, respectively, for resnet50 and resnet50 with transfer learning. 

S.no Model Epochs Training 

accuracy 

Testing 

accuracy 

1. Resnet50 10 97.50% 91.474 

2. Resnet50 with 

transfer learning 

10 98.09%  95.23% 

3. VIT 10 48 64% 

4. Pretrained VIT  10 99 97% 

Table 1: Comparison of Models 
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Resnet50 

 

Resnet50 with Transfer Learning 

Classes Precision Recall F1-score Precision Recall F1-score 

Pepper bell Bacterial spot 0.88       0.93       0.90 0.96       1.00       0.98 

Pepper bell healthy 0.90       0.99       0.95 0.99       0.98       0.99 

Potato Early blight 0.96       0.93       0.94 1.00       0.99       0.99 

Potato Late blight 0.95       0.72       0.82 0.84       0.95       0.89 

Potato healthy 0.89       0.50       0.64 0.74       0.88       0.80 

Tomato Bacterial spot 0.87       0.96       0.91 0.99       0.99       0.99 

Tomato Early blight 0.86       0.55       0.67   0.89       0.94       0.91        

Tomato Late blight 0.82            0.88 0.85 0.97       0.90       0.94 

Tomato Leaf Mold 0.84       0.93       0.88 0.99       0.97       0.98 

Tomato Septoria leaf spot 0.82       0.95       0.88 0.98       0.96       0.97 

Tomato Spider mites Two 

spotted spider mite 

0.96       0.79       0.86   0.94       0.89       0.92 

Tomato Target Spot 0.85       0.85       0.85 0.92       0.87       0.90 

Tomato Yellow Leaf Curl Virus

  

0.96       0.96       0.96 0.98       0.98       0.98 

Tomato mosaic virus 0.93       1.00       0.96 0.88       1.00       0.94 

Tomato healthy 0.98       0.99       0.98 0.95       0.99       0.97 

Table 2: Classes and Scores 

 

Figure 12: Resnet50 
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Figure 13: Confusion matrix for resnet50 with transfer learning 
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4.2 Data Protection and Challenges: 

 

As an emerging country located in the Global South, Pakistan acquired internet connectivity in the 

early 1990s. Currently, according to the Pakistan Telecommunication Authority (PTA), broadband 

penetration is reported at 40.95%, with an impressive 87 million subscribers. Currently, 54% of 

the nation's populace enjoys mobile broadband access, and mobile internet penetration is 

documented at 26% (GSMA, 2020). 

With a significant population relying on information and communication technologies, the cyber 

domain has emerged as a new frontier, bringing forth challenges associated with the regulation of 

cybersecurity. As per the 2018 Global Cyber Security Index Report (GCI), Pakistan secured the 

94th global ranking (International Telecommunication Union, 2018). 

Within the current context of shaping cybersecurity regulations in Pakistan, the foremost challenge 

revolves around effective implementation. As previously highlighted, the deficient institutional 

structure in Pakistan poses a major impediment to executing cybersecurity laws. This challenge is 

further compounded by other inherent issues, including the presence of adversarial intelligence 

networks and elements that are against the state. 

There is a lack of sufficient technological expertise, especially in monitoring foreign spy agencies. 

Moreover, the nation is susceptible to malware, capable of installing additional malicious software 

and pilfering personal information from infected computer systems. Another vulnerability arises 

from Distributed Denial of Service (DDOS) attacks or the unauthorized transmission of data within 

a computer without the user's knowledge. A notable illustration is the banking sector in the country, 

which faces the risk of cyber-attacks, leading to a trust deficit between customers and banks. 

Similar to any digital information, the security of plant health data is susceptible to cyber threats. 

The ongoing challenge involves implementing strong cybersecurity measures to shield against data 

breaches and cyber-attacks. 

To tackle these difficulties, a comprehensive and cooperative strategy is necessary. This approach 

should engage government entities, research institutions, industry stakeholders, and the public to 

formulate regulatory frameworks for plant health data that are both effective and ethical. 
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5. Chapter 5: CONCLUSION 

 

Conclusion 

 

Our research significantly advances the field of smart agriculture by introducing innovative 

methodologies for advanced computer vision algorithms. The acknowledgment of data protection 

and cybersecurity challenges, particularly in regions like Pakistan, underscores the necessity for 

collaborative efforts in establishing ethical regulatory frameworks to protect forest health data. In 

summary, our investigation into plant disease classification reveals the profound impact of model 

architecture and training approaches. ResNet50, initially achieving a training accuracy of 97.50%, 

exemplifies the efficacy of transfer learning, resulting in a noteworthy testing accuracy of 95.23%. 

While Vision Transformers (VIT), a transformative shift occurred with a pretrained VIT model, 

achieving an exceptional training accuracy of 99% and an impressive testing accuracy of 97%. 

These findings underscore the crucial role of leveraging pre-existing knowledge, highlighting the 

broader applicability of transfer learning to optimize model performance. As we navigate the 

landscape of smart agriculture, these insights contribute significantly to the ongoing refinement of 

advanced computer vision algorithms, promoting precision and resilience in plant disease 

detection. 
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