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Preface

Boundary layer flow induced by the motion of stretching surfaces have special sig-

nificance in numerous engineering and industrial processes. The processes of metal

extrusion, manufacture of plastics and rubber, drawing of plastic film, wire drawing,

food processing, glass fiber and paper production involve such flows. In such pro-

cess, the quality of final product depends on the rate of cooling which is determined

through the structure of thermal boundary layer near the moving sheet. This the-

sis deals with the analytic solutions of non-linear problems arising in the flow with

heat/mass transfer of viscoelastic fluids over a stretching sheet. Constitutive equa-

tions for upper-convected Maxwell (UCM) fluid are taken into account. The energy

equation through more general Cattaneo-Christov heat flux model is analyzed.

Chapter 1 is introductory and contains some basic definitions and concepts. Bound-

ary layer equations governing the three dimensional flow and heat transfer of an

upper-convected Maxwell fluid are also derived. A detailed review about the prob-

lem considered in subsequent chapters is presented. At the end, basic idea of homo-

topy analysis method (HAM) is explained.

Chapter 2 deals with the stagnation-point flow and mass transfer of Maxwell fluid.

Here analytic solutions of the arising non-linear problem are constructed by HAM.

Graphical results showing the influence of physical parameters on velocity and con-

centration fields are presented.

Chapter 3 is concerned with the magnetohydrodynamic (MHD) three-dimensional

flow of upper-convected Maxwell (UCM) fluid over a bi-directional stretching sur-

face by using the Cattaneo-Christov heat flux model. This model has tendency

to capture the characteristics of thermal relaxation time. The governing partial

differential equations even after employing the boundary layer approximations are



non linear. Accurate analytic solutions for velocity and temperature distributions

are developed through well-known homotopy analysis method (HAM). It is noticed

that velocity decreases and temperature rises when stronger magnetic field strength

is accounted. Penetration depth of temperature is a decreasing function of thermal

relaxation time. The analysis for classical Fourier heat conduction law can be ob-

tained as a special case of the present work.

In chapter 4, the main conclusions of the thesis are reported .
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Chapter 1

Introduction

Fluids can be characterized as Newtonian and non-Newtonian based on their rheo-

logical behavior.

1.1 Newtonian fluids

Newtonian fluids are distinguished by Newton’s law of viscosity which states that

shear stress is directly as well as linearly proportional to the deformation rate.

Mathematically,

τyx = µ
du

dy
, (1.1)

where µ is the dynamic viscosity, du/dy is the rate of strain and τyx denotes the

shear stress. Most common Newtonian fluids are air, water, gasoline and organic

solvents.

1.2 Non-Newtonian fluids

In contrast to the Newtonian-fluids, these fluids have non-linear relationship be-

tween stress and deformation rate. For such fluids, the power-law model holds.
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Mathematically, for unidirectional flow the power-law model is given by

τyx = K(
du

dy
)n, (1.2)

= η
du

dy
, (1.3)

where η = K(du/dy)n−1 is the apparent viscosity, n is the flow behavior index and

K is the consistency index. Most common fluids under this category are pastes,

ketchup, blood and polymer solutions. Non-Newtonian fluids are divided into three

groups.

• Time independent fluids.

• Time dependent fluids.

• Viscoelastic fluids.

1.2.1 Time independent fluids

Apparent viscosity of such type of fluids is independent of the time for which stress

is applied. These are further subdivided into three classes.

(a) Pseudoplastics(η < 1)

In these fluids, the apparent viscosity decreases with an increase in the deformation

rate. These are also called shear thinning fluids. Examples includes cement, clay,

syrup, blood, colloidal suspensions and polymer solutions.

(b) Dilatants(η > 1)

Dilatants are called shear thickening fluids, i.e their apparent viscosity increases

with an increase in deformation rate. Examples includes quicksand and suspension

of corn starch in water. Practically very few fluids behave in this manner.
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(c) Plastics

Fluids which behave as a solid until a minimum yield stress τyx is exceeded and

subsequently exhibits a linear relation between stress and rate of strain. Mathemat-

ically,

τyx = A+B

(
du

dy

)n
, (1.4)

where A, B and n are constants. If n = 1, Eq. (1.4) represents Bingham plastic

fluids. Examples of such fluids are jellies, drilling mud, clay suspension and sewage

sludge.

1.2.2 Time dependent fluids

In this subclass of non-Newtonian fluids, apparent viscosity is dependent upon time.

These fluids are further subdivided into two classes.

(a) Thixotropic fluids

Under the influence of constant applied shear stress, these fluids show a decrease

in dynamic viscosity with time. Examples of such fluids are honey and thixotropic

jelly paints.

(b) Rheopectic fluids

Under the influence of applied shear stress, these fluids show an increase in dynamic

viscosity with time. Examples of such fluids include gypsum, pastes and suspension

in water.

1.2.3 Viscoelastic fluids

Viscoelastic fluids possess both viscous and elastic properties. These fluids return

back to their original shape when the stress is released.
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Examples of viscoelastic materials would be toothpaste, gelatine and blood clots.

1.3 Boundary layer equations for flow of an upper-

convected Maxwell (UCM) fluid

The constitutive equation for Maxwell fluid is

ρ
dV

dt
= −∇p+∇.S, (1.5)

S + λ1
DS

Dt
= µA1, (1.6)

where V = [u(x, y, z), v(x, y, z), w(x, y, z)] is the velocity vector for three dimen-

sional flow, S is the extra stress tensor, µ is the dynamic viscosity, λ1 is the fluid

relaxation time, D/Dt is the convected time derivative and A1 is the first Rivlin-

Erickson tensor defined as

A1 = ∇V + (∇V)t, (1.7)

=


2∂u
∂x

∂u
∂y

+ ∂v
∂x

∂u
∂z

+ ∂w
∂x

∂u
∂y

+ ∂v
∂x

2∂v
∂y

∂v
∂z

+ ∂w
∂y

∂u
∂x

+ ∂w
∂z

∂v
∂x

+ ∂w
∂z

2∂w
∂z

 .
For any vector (α)i, the convected time derivative D/Dt is given by

D

Dt
(α)i =

∂

∂t
(α)i + Vr(α)i,r −Vi,r(α)r. (1.8)

Assigning the operator (1 + λ1
D
Dt

) on both sides of Eq. (1.5), one obtains

ρ

(
1 + λ1

D

Dt

)
dV

dt
= −

(
1 + λ1

D

Dt

)
∇p+

(
1 + λ1

D

Dt

)
(∇.S), (1.9)

where
D

Dt
(∇·) = ∇ ·

(
D

Dt

)
(1.10)
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Taking into account Eq. (1.10) in Eq. (1.9) and then using Eq. (1.6), we arrive at

the following:

ρ

(
1 + λ1

D

Dt

)
dV

dt
= −

(
1 + λ1

D

Dt

)
∇p+∇.

(
1 + λ1

D

Dt

)
S, (1.11)

= −
(

1 + λ1
D

Dt

)
∇p+ µ(∇.A1). (1.12)

In the absence of pressure gradient, Eq. (1.12) takes the following form:

ρ

(
1 + λ1

D

Dt

)
dV

dt
= µ(∇.A1). (1.13)

The components of Eq. (1.13) are as under

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
= ν

(
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2

)
− λ1

(
∂2u

∂t2
+ 2u

∂2u

∂x∂t
+ 2v

∂2u

∂y∂t

+2w
∂2u

∂z∂t
+ u2

∂2u

∂x2
+ v2

∂2u

∂y2
+ w2∂

2u

∂z2
+ 2uv

∂2u

∂x∂y

+2vw
∂2u

∂y∂z
+ 2uw

∂2u

∂x∂z

)
, (1.14)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
= ν

(
∂2v

∂x2
+
∂2v

∂y2
+
∂2v

∂z2

)
− λ1

(
∂2v

∂t2
+ 2u

∂2v

∂x∂t
+ 2v

∂2v

∂y∂t

+2w
∂2v

∂z∂t
+ u2

∂2v

∂x2
+ v2

∂2v

∂y2
+ w2∂

2v

∂z2
+ 2uv

∂2v

∂x∂y
+

2vw
∂2v

∂y∂z
+ 2uw

∂2v

∂x∂z

)
. (1.15)

Utilizing the usual boundary layer approximations, Eq. (1.14) and Eq. (1.15) re-

duces to

u
∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
= ν

∂2u

∂z2
− λ1

(
u2
∂2u

∂x2
+ v2

∂2u

∂y2
+ w2∂

2u

∂z2
+ 2uv

∂2u

∂x∂y

+2vw
∂2u

∂y∂z
+ 2uw

∂2u

∂x∂z

)
, (1.16)

u
∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
= ν

∂2v

∂z2
− λ1

(
u2
∂2v

∂x2
+ v2

∂2v

∂y2
+ w2∂

2v

∂z2
+ 2uv

∂2v

∂x∂y

+2vw
∂2v

∂y∂z
+ 2uw

∂2v

∂x∂z

)
. (1.17)
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1.4 Energy equation for three-dimensional flow

through Cattaneo-Christov heat flux model

The energy equation in absence of viscous dissipation and heat generation/absorption

is expressed as

ρcp(V.∇)T = −∇.q, (1.18)

where ρ is the fluid density, cp is the specific heat, V = [u(x, y, z), v(x, y, z), w(x, y, z)]

is the velocity vector and q is the heat flux. According to Christov [3], q satisfies

the following:

q + λ2

[
∂q

∂t
+ V.∇q− q.∇V + (∇.V)q

]
= −k∇T, (1.19)

in which λ2 is the thermal relaxation time, k is the thermal conductivity of the fluid

and T is the temperature of the Maxwell fluid. When λ2 = 0, Eq. (1.19) reduces to

the Fourier’s law. For incompressible flow, ∇.V = 0, and Eq. (1.19) becomes

q + λ2

[
∂q

∂t
+ V.∇q− q.∇V

]
= −k∇T. (1.20)

Now we apply Del operator on Eq. (1.20)

∇.q + λ2∇.
[
∂q

∂t
+ V.∇q− q.∇V

]
= −∇.(k∇T ). (1.21)

Make use of the following identities

∂

∂t
(∇.) = ∇.

(
∂

∂t

)
(1.22)

∇.(V.∇q) = V.∇(∇.q) +∇V;∇q (1.23)

∇.(q.∇V) = q.∇(∇.V) +∇q;∇V (1.24)

Eq. (1.21) takes the following form

−∇.q = λ2[(∇.q)t + V.∇(∇.q)] +∇.(k∇T ) (1.25)
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In view of the above equation, Eq. (1.18) takes the following form

ρcp(V.∇)T = λ2[(∇.q)t + V.∇(∇.q)] +∇.(k∇T ), (1.26)

Eq. (1.26) in component form is given below:

u
∂T

∂x
+ v

∂T

∂y
+ w

∂T

∂z
=

k

ρcp

∂2T

∂z2
− λ2

[
u2
∂2T

∂x2
+ v2

∂2T

∂y2
+ w2∂

2T

∂z2
+ 2uv

∂2T

∂x∂y

+2vw
∂2T

∂y∂z
+ 2uw

∂2T

∂x∂z
+ (u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
)
∂T

∂x

+(u
∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
)
∂T

∂y
+ (u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z
)

∂T

∂z

]
. (1.27)

1.5 Homotopy Analysis Method (HAM)

1.5.1 Background

Most phenomena in nature are described by non-linear differential equations. These

equations are much more difficult to solve than the linear ones. Traditional pertur-

bation and asymptotic techniques are applied to obtain analytic approximations of

these non-linear problems. Generally, these techniques strongly rely on small/large

parameters which often make them valid for only weak non-linear problems. In

1992, Liao [37] presented an effective analytic technique known as homotopy anal-

ysis method (HAM) which has no such type of limitations and valid for strongly

non-linear problems. HAM provides us a convenient way to control the convergence

of series solutions. The basic idea of HAM is explained below:

1.5.2 Basic idea of HAM

Consider a differential equation

N [f(η)] = 0, (1.28)
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where N is the non-linear operator, η is the independent variable and f(η) is the

unknown function.

Suppose φm(η)|η ≥ 0 is a set of functions such that f(η) can be expressed in the

form of series is

f(η) =
∞∑
m=0

cmφm(η), (1.29)

in which cm are coefficients. The auxiliary linear operator L is chosen as

L[w(η)] = 0, (1.30)

where w(η) can also be written by

w(η) =

m1∑
m=0

bkφm(η). (1.31)

(a) Zeroth order deformation equation

Let q ∈ [0, 1] be an embedding parameter and ~ be the non-zero auxiliary parameter,

then zeroth-order deformation problem for Eq. (1.28) can be expressed as

(1− q)L[f̂(η; q)− fo(η)] = q~N [f̂(η; q)], (1.32)

with the initial condition

f̂(0; q) = 0. (1.33)

It is easy to note that when q = 0, Eq. (1.32) gives the initial guess f0(η) while final

solution is recovered by setting q = 1 i.e

f̂(η; 0) = f0(η), (1.34)

f̂(η; 1) = f(η). (1.35)

Now we expand f̂(η; q) by using Taylor series about q = 0 as

f̂(η; q) =
∞∑
m=0

1

m!

∂mf̂(η; q)

∂qm

∣∣∣∣
q=0

qm. (1.36)
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Assuming that series (1.36) converges at q = 1, we get

f(η) = f0(η) +
∞∑
m=1

fm(η). (1.37)

(b) mth-order deformation equation

Now differentiating the Eq. (1.32) m-times and then setting q = 0, one arrive at the

following set of equations

Lf [fm(η)− χmfm−1(η)] = ~Rf
m(η), m = 1, 2, 3, · · ·m− 1 (1.38)

where

Rf
m(η) =

1

(m− 1)!

∂m−1N (f̂(η; q))

∂pm−1

∣∣∣∣
p=0

(1.39)

χm =

0, if m ≤ 1

1, if m > 1.

(1.40)

1.6 Literature survey

The phenomenon of heat transfer has widespread industrial and bio-medical appli-

cations such as cooling of electronic devices, nuclear reactor cooling, power gener-

ation, heat conduction in tissues and many others. The heat flux model proposed

by Fourier [1] has been the most successful model for understanding heat transfer

mechanism in diverse situations. One of the limitations of this model is that it

often leads to a parabolic energy equation which indicates that initial disturbance

is instantly experienced by the medium under consideration. This physically un-

realistic feature is referred in the literature as “Paradox of heat conduction”. In

order to overcome this enigma, various researchers have proposed alterations in the

Fourier’s heat conduction law. Cattaneo [2] modified this law through the inclusion

of thermal relaxation time which is defined as the time required establishing heat

9



conduction once the temperature gradient is imposed. Christov [3] further modified

the Cattaneo model by replacing the ordinary derivative with the Oldroyd’s upper-

convected derivative. He also presented the energy equation for arbitrary velocity

and temperature fields. Straughan [4] applied Cattaneo-Christov model to study

thermal convection in horizontal layer of incompressible Newtonian fluid under the

influence of gravity. Ciarletta and Straughan [5] proved the uniqueness and stabil-

ity of the solutions for the Cattaneo-Christov equations. Tibullo and Zampoli [6]

investigated the uniqueness of solutions for an incompressible flow problem by using

Cattaneo-Christov model. Han et al. [7] considered the two-dimensional flow and

heat transfer of viscoelastic fluid over a stretching sheet using the Cattaneo-Christov

heat flux model. In this study the analytic solutions were achieved by homotopy

analysis method (HAM). Mustafa [8] developed both numerical and homotopy so-

lutions for rotating flow of Maxwell fluid through Cattaneo-Christov theory. Later,

Khan et al. [9] presented numerical approximations for viscoelastic flow over an

exponentially stretching surface with the consideration of Cattaneo-Christov model.

In a recent paper Hayat et al. [10] discussed the impact of Cattaneo-Christov heat

conduction on the flow problem involving oldroyd-B fluid.

The analysis of magnetohydrodynamic (MHD) in viscous or non-newtonian flow

is important in MHD generators, plasma studies, thermal therapy for cancer treat-

ment, contrast enhancement in magnetic resonance imaging (MRI), nuclear reactors,

geothermal energy extraction and many others. More precisely, MHD flow caused

by the deformation of the walls of vessel containing the fluid has special value in

modern metallurgical and metal working processes. Several recent attempts have

been put forward in this direction in which Zheng et al. [11] studied the velocity slip

and temperature jump conditions for MHD flow and heat transfer due to shrinking

surface. Mixed convection flow of nanofluid under the influence of magnetic force

10



was numerically explored by Dhanai et al. [12]. Mabood et al. [13] describe the

influence of magnetic field on the nanofluid flow driven by a non-linearly stretching

surface. Second order slip effects on the boundary layer flow of nanofluid adjacent to

stretching/shrinking sheet were discussed by Abdul Hakeem et al. [14]. Rashidi et

al. [15] numerically explored the magnetic field effects on mixed convection flow of

nanofluid in a vertical channel having sinusoidal walls. Hayat et al. [16] analytically

investigates the peristaltic transport of in inclined channel under inclined magnetic

field effects. In another paper Hayat et al. [17] discussed the MHD peristaltic mo-

tion of nanofluid in complaint wall channel.

Present work is undertaken to study the heat transfer in MHD three-dimensional

flow of upper-convected Maxwell fluid by using Cattaneo-Christov heat flux model.

Maxwell fluid is one of the popular viscoelastic models that can address the influence

of fluid relaxation time. The boundary layer flows of Maxwell fluid have received

remarkable attention in the past. Some interesting flow problems involving Maxwell

fluid can be found in refs. [18-27]. The equations are formulated and then solved

for convergence of series solution by homotopic approach. Graphs are sketched to

see the influence of important parameters on the velocity and temperature fields.
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Chapter 2

Stagnation point flow of an

upper-convected Maxwell (UCM)

fluid with mass transfer

This chapter is the review of an article by Hayat et al. [38]. This chapter deals

with the effects of mass transfer due to stagnation point flow of an upper-convected

Maxwell (UCM) fluid. The analytical solutions for velocity and concentration fields

are obtained by homotopy analysis method (HAM). Suitable values of the conver-

gence control parameters are selected by plotting the so-called h-curves. Influence

of parameters appearing in the solution is examined graphically.

2.1 Problem formulation

Consider a steady and incompressible stagnation point flow of an upper-convected

Maxwell (UCM) fluid bounded by a stretching surface at y = 0. Fluid occupies

the region y ≥ 0. A uniform magnetic field of strength B0 is taken into account in

transverse direction. The concentration at the sheet surface is cw, while c∞ denote

12



the concentration rate far away from the sheet and k1 is the constant reaction rate.

The component of free stream velocity are as below:

u = ue(x) = ax, ve(y) = −ay (2.1)

Let uw(x) = cx be the velocity of the stretching sheet. The boundary layer equations

governing the flow and mass transfer of upper-convected Maxwell (UCM) fluid are

as below:
∂u

∂x
+
∂v

∂y
= 0, (2.2)

∂u

∂x
+v

∂u

∂y
+λ1

[
u2
∂2u

∂x2
+v2

∂2u

∂y2
+2uv

∂2u

∂x∂y

]
= ν

∂2u

∂y2
+ue

due
dx
−σB

2
0

ρ

(
u−ue+λ1v

∂u

∂y

)
,

(2.3)

u
∂C

∂x
+ v

∂C

∂y
= D

∂2C

∂y2
− k1C. (2.4)

where u and v are the velocity components along the x− and y− directions re-

spectively, ρ is the fluid density, λ1 is the fluid relaxation time, ν is the kinematic

viscosity and D is the mass diffusion, C is the concentration field and k1 is the re-

action rate. The body force due to the applied magnetic field is taken from [28-36].

The boundary conditions of the above problem are

u = uw = cx, v = 0, C = Cw at y = 0,

u→ ue(x) = ax, C → C∞ as y →∞
(2.5)

Considering the following similarity transformations [28, 30, 32, 34, 36]

η =

√
c

v
y, u = cxf ′(η), v = −

√
cvf(η), φ =

C − C∞
Cw − C∞

. (2.6)

The Eqs. (2.3)-(2.5) can be reduced to the following system of ODEs.

f ′′′ −M2(f ′ − α) + (M2β + 1)ff ′′ − f ′2 + α2 + β(2(ff ′f ′′ − f 2f ′′′) = 0, (2.7)

φ′′ + Scfφ′ − Scγφ = 0, (2.8)
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f = 0, f ′ = 1, φ = 1 at η = 0,

f ′ = α, φ = 0 as η →∞,
(2.9)

so

M2 =
σB2

0

ρc
, β = λ1c, α =

a

c
, Sc =

ν

D
, γ =

K1

c
. (2.10)

Here M , γ and Sc denote the Hartman number, chemical reaction parameter and

Schmidt number respectively. The Deborah number β appears here due to the

presence relaxation time λ1. We now define the local Sherwood number as

Sh =
xjw

D(Cw − C∞)
, (2.11)

in which jw is the wall mass flux given by

jw = −D
(
∂C

∂y

)
y=0

, (2.12)

In dimensionless form we have,

Sh/Re
1
2
x = −φ′(0). (2.13)

2.2 Series solutions

In this section, we deal with the series solutions by homotopy analysis method

(HAM) [37] for non-linear system of equations (2.7) and (2.8) with boundary con-

ditions (2.9).

In order to proceed, we choose initial approximations for functions f0 and φ0 as

follows:

f0(η) = αη + (1− α)(1− e−η),

φ0(η) = e−η,

(2.14)
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The auxiliar linear operators are selected as

Lf (f) = f ′′′ − f ′,

Lφ(φ) = φ′′ − φ,

(2.15)

where

Lf (C1 + C2e
η + C3e

−η) = 0,

Lφ(C4e
η + C5e

−η) = 0

(2.16)

where Ci(i = 1····5) are the arbitrary constants. If p ∈ [0, 1] is an embedding param-

eter, ~ is the non-zero convergence control parameter then zeroth-order deformation

problems can be constructed as

(1− p)Lf [f̂(η; p)− f0(η)] = p~Nf [f̂(η; p)], (2.17)

(1− p)Lφ[φ̂(η; p)− φ0(η)] = p~Nφ[f̂(η; p), φ̂(η; p)], (2.18)

f̂(η; p)

∣∣∣∣
η=0

= 0,
∂f̂(η; p)

∂η

∣∣∣∣
η=0

= 1,
∂f̂(η; p)

∂η

∣∣∣∣
η→∞

= α,

φ̂(η; p)

∣∣∣∣
η=0

= 1, φ̂(η; p)

∣∣∣∣
η→∞

= 0.

(2.19)

Now consider the non-linear operators Nf and Nφ as below:

Nf [f̂(η; p)] = ∂3f̂(η;p)
∂η3

−M2

(
∂f̂(η;p)
∂η
− α

)
+ (M2β + 1)f̂(η; p)∂

2f̂(η;p)
∂η2

−(
∂f̂(η;p)
∂η

)2

+ α2 + β

(
2f̂(η; p)∂f̂(η;p)

∂η
∂2f̂(η;p)
∂η2

− f̂ 2(η; p)∂
3f̂(η;p)
∂η3

)
, (2.20)

Nφ
[
f̂(η; p), φ̂(η; p)

]
=
∂2φ̂(η; p)

∂η2
+ Scf̂(η; p)

∂φ̂(η; p)

∂η
− Scγφ̂(η; p), (2.21)
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The zeroth-order deformation problems for p = 0 and p = 1 in Eqs. (2.17)-(2.19)

have the following form.

f̂(η; 0) = f0(η), f̂(η; 1) = f(η),

φ̂(η; 0) = φ0(η), φ̂(η; 1) = φ(η).
(2.22)

Now utilizing Taylor series expansion we have

f̂(η; p) = f0(η) +
∞∑
m=1

fm(η)pm, (2.23)

φ̂(η; p) = φ0(η) +
∞∑
m=1

φm(η)pm, (2.24)

where,

fm(η) =
1

m!

∂mf̂(η; p)

∂pm

∣∣∣∣
p=0

, φm(η) =
1

m!

∂mφ̂(η; p)

∂pm

∣∣∣∣
p=0

. (2.25)

The non-zero auxiliary parameter ~ can be chosen in such a way that the series

(2.23) and (2.24) converges at p = 1. Substituting p = 1 in Eqs. (2.23) and (2.24)

we get

f(η) = f0(η) +
∞∑
m=1

fm(η), (2.26)

φ(η) = φ0(η) +
∞∑
m=1

φm(η). (2.27)

The mth-order deformation problems are

Lf [fm(η)− χmfm−1(η)] = ~Rf
m(η),

Lφ[φm(η)− χmφm−1(η)] = ~Rφ
m(η),

(2.28)

fm(0) = f ′m(0) = f ′m(∞) = 0,

φm(0) = φm(∞) = 0,

(2.29)
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Rf
m = f ′′′m−1 −M2

(
f ′m−1 − β

m−1∑
k=0

[fm−k−1f
′′
k ]

)
+ (1− χm)(αM2 + α2]

+
m−1∑
k=0

[fm−k−1f
′′
k − f ′m−k−1f ′k] + β

m−1∑
k=0

fm−k−1

k∑
l=0

[2f ′k−1f
′′
l − fk−1f ′′′l ],

(2.30)

Rφ
m = φ′′m−1 − Scγφm−1 + Sc

m−1∑
k=0

φ′m−k−1fk, (2.31)

χm =

0, if m ≤ 1,

1, if m > 1.

(2.32)

The general solutions are

fm(η) = f ∗m(η) + C1 + C2e
η + c3e

−η, (2.33)

φm(η) = φ∗m(η) + C4e
η + C5e

−η, (2.34)

where f ∗m and φ∗m denote the particular solutions of (2.29), the constants Ci(i =

1 · · · ·5) are defined by

C2 = C4 = 0, C3 =
∂f ∗m(η)

∂η

∣∣∣∣
η=0

, (2.35)

C1 = −C3 − f ∗m(0), C5 = −φ∗m(0). (2.36)

2.3 Convergence of homotopy solutions

The non-zero auxiliary parameter ~ in the analytic series solutions of Eqs. (2.26)

and (2.27) plays an important role in controlling the convergence of homotopic series

solutions. ~− curves are plotted at 15th-order of approximations to find the appro-

priate value of ~ for which series solutions are convergent. The convergence series

solutions are only possible in the range of −0.6 ≤ ~ ≤ −0.3. Table 2.1 shows the con-

vergence rate of the series solutions when α = 0.2, M = 1, Sc = 1 = γ and β = 0.2.
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f''(0)

Φ'(0)

-1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0.0
-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

Ñ

f'
'H

0L
,Φ

'H
0L

Fig. 2.1 – ~− curves for 15th-order of approximations.

Order of approximation -f ′′(0) - φ′(0)

1 1.160640 1.160640

2 1.232442 1.146636

5 1.270624 1.166805

10 1.272458 1.167852

15 1.272465 1.167858

20 1.272469 1.167860

25 1.272469 1.167860

30 1.272469 1.167860

40 1.272469 1.167860

50 1.272469 1.167860

Table 2.1 – Convergence of homotopy series solutions for different orders of approx-

imations when α = 0.2, M = 1, Sc = 1 = γ, β = 0.2 and ~ = −0.7.
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2.4 Results and discussion

In this section, we present the effects of parameters on the velocity field f ′ and con-

centration field φ. For this purpose, the graphical results are presented in Fig. (2.2)-

Fig. (2.9). Figs. (2.2) and (2.3) depict the behavior of α and M on f ′. It is noticed

that velocity and boundary-layer thickness are increasing function of α, whereas the

velocity and boundary-layer thickness decrease when M is increased. Figs. (2.4) and

(2.5) depict the behavior of Deborah number β on velocity field f ′ and concentration

field φ respectively. It can be seen that fluid velocity decreases upon increasing the

parameter β. However concentration φ is found to increase upon increasing β.

In Figs. (2.6) and (2.7) influence of M and Sc on concentration field φ is examined.

Concentration φ appears to increase upon increasing the strength of magnetic force.

The behaviors of Schmidt number Sc on φ is qualitative similar to that of M . The

behavior of generative and destructive chemical reaction parameter are sketched in

Figs. (2.8) and (2.9). We noticed that the concentration field φ increases/decreases

when generative/destructive chemical reactor parameter is increased. Concentration

distribution is much sensitive to the generative chemical reaction parameter. The

values of surface mass transfer −φ′(0) are presented in the Table 2.2
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Α = 0, 0.1, 0.2, 0.3.

Β = 0.2, M = 1.0

0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

Η

f'
H
Η
L

Fig. 2.2 – Variation of α on f ′(η).

M = 0, 0.5, 1, 1.5.

Α = 0.2, Β = 0.3

0 1 2 3 4

0.2

0.4

0.6

0.8

1.0

Η

f'
H
Η
L

Fig. 2.3 – Variation of M on f ′(η).

.
Β = 0, 0.2, 0.4, 0.6.

Α = 0.2, M = 1

0 1 2 3 4

0.2

0.4

0.6

0.8

1.0

Η

f'
H
Η
L

Fig. 2.4 – Variation of β on f ′(η).

Α= 0.2, Sc=1 = -Γ, M = 0.5

 Β = 0, 0.3, 0.6, 1. 

0 2 4 6 8
0.0

0.5

1.0

1.5

Η

Φ
H
Η
L

Fig. 2.5 – Variation of β on φ(η).
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M = 0, 0.5, 1, 1.5.

Α = 0.2, Β = 0.3, Sc =1, Γ = 0.5

0 2 4 6 8
0.0

0.2

0.4

0.6

0.8

1.0

Η

Φ
H
Η
L

Fig. 2.6 – Variation of M on φ(η).

Sc = 0.1, 0.5, 1, 1.5.

Α = 0.2, Β = 0.3, M = 0.5, Γ = 1.0

0 2 4 6 8
0.0

0.2

0.4

0.6

0.8

1.0

Η

Φ
H
Η
L

Fig. 2.7 – Variation of Sc on φ(η).

. Γ = 0, -0.3, -0.6, -1.

Α = 0.2, Β = 0.3, M = 0.5, Sc = 1

0 2 4 6 8
0.0

0.2

0.4

0.6

0.8

1.0

Η

Φ
H
Η
L

Fig. 2.8 – Variation of γ < 0 on φ(η).

Γ = 0.0, 0.3, 0.6, 1.

Α = 0.2, Β = 0.3, M=0.5, Sc=1

0 2 4 6 8
0.0

0.2

0.4

0.6

0.8

1.0

Η

Φ
H
Η
L

Fig. 2.9 – Variation of γ > 0 on φ(η).
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α M β −φ′(0)

0.0 1.0 0.2 1.15092

0.2 1.16815

0.4 1.18727

0.7 1.22675

0.2 0.0 1.18142

0.3 1.17980

0.7 1.17385

1.2 1.16351

1.5 1.15680

1.0 0.0 1.17169

0.4 1.16524

0.7 1.15125

1.0 1.15505

Table 2.2 – Values of surface mass transfer −φ′(0) when Sc = 1.0 = γ.
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Chapter 3

MHD three-dimensional flow of

upper-convected Maxwell fluid

using Cattaneo-Christov heat flux

model

Here we consider the MHD three-dimensional flow of upper-convected Maxwell

(UCM) fluid due to bi-directional stretching surface by considering the Cattaneo-

Christov heat flux model. Cattaneo-Christov heat flux model is employed to inves-

tigate heat transfer process.

3.1 Problem formulation

Consider the flow of upper-convected Maxwell fluid induced by an elastic sheet

stretching in two lateral directions. The sheet is coincident with the plane z = 0,

whereas the fluid occupies the region z ≥ 0. The electric field is absent while induced

magnetic field is neglected due to the consideration of small magnetic Reynolds
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number. The velocities of the stretching sheet along the x− and y− directions are

uw(x) = ax and vw(y) = by respectively. The sheet is kept at constant tempera-

ture Tw, whereas T∞ is the ambient value of the temperature such that Tw > T∞.

Considering the velocity vector V = [u(x, y, z), v(x, y, z), w(x, y, z)] and the temper-

ature T the boundary layer equations for three-dimensional flow and heat transfer

of Maxwell fluid can be expressed as below:

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0, (3.1)

u
∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
= ν

∂2u

∂z2
− λ1

(
u2
∂2u

∂x2
+ v2

∂2u

∂y2
+ w2∂

2u

∂z2
+ 2uv

∂2u

∂x∂y

+2vw
∂2u

∂y∂z
+ 2uw

∂2u

∂x∂z

)
− σB2

0

ρ

(
u+ λ1w

∂u

∂z

)
, (3.2)

u
∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
= ν

∂2v

∂z2
− λ1

(
u2
∂2v

∂x2
+ v2

∂2v

∂y2
+ w2∂

2v

∂z2
+ 2uv

∂2v

∂x∂y

+2vw
∂2v

∂y∂z
+ 2uw

∂2v

∂x∂z

)
− σB2

0

ρ

(
v + λ1w

∂v

∂z

)
, (3.3)

ρcp

(
u
∂T

∂x
+ v

∂T

∂y
+ w

∂T

∂z

)
= −∇.q, (3.4)

where u, v and w are the velocity components along the x−, y− and z− directions

respectively, ν is the kinematic viscosity, cp is the specific heat, σ is the electri-

cal conductivity, ρ is the fluid density, T is the fluid temperature, λ1 is the fluid

relaxation time and q is the heat flux which satisfies the following relationship [3].

q + λ2

[
∂q

∂t
+ V.∇q− q.∇V + (∇.V)q

]
= −k∇T, (3.5)

in which λ2 is the thermal relaxation time and k is the thermal conductivity of the

fluid. Following Christov [3], we eliminate q from Eq. (3.4) and Eq. (3.5) to obtain
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the following:

u
∂T

∂x
+ v

∂T

∂y
+ w

∂T

∂z
=

k

ρcp

∂2T

∂z2
− λ2

[
u2
∂2T

∂x2
+ v2

∂2T

∂y2
+ w2∂

2T

∂z2
+ 2uv

∂2T

∂x∂y
+

2vw
∂2T

∂y∂z
+ 2uw

∂2T

∂x∂z
+ (u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
)
∂T

∂x
+ (u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
)
∂T

∂y
+ (u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z
)
∂T

∂z

]
(3.6)

Boundary conditions for the present problem are:

u = uw(x) = ax, v = vw(y) = by, w = 0, T = Tw at z = 0,

u→ 0, v → 0, T → T∞ as z →∞. (3.7)

Considering the following similarity transformations

η =

√
a

ν
z, u = axf ′(η), v = ayg′(η), w = −

√
aν[f(η) + g(η)],

θ =
T − T∞
Tw − T∞

.

(3.8)

Eq. (3.1) is identically satisfied and Eq. (3.2), Eq. (3.3), Eq. (3.6) and Eq. (3.7)

take the following forms:

f ′′′ + (M2β + 1)(f + g)f ′′ − f ′2 + β

[
2(f + g)f ′f ′′ − (f + g)2f ′′′

]
−M2f ′ = 0,(3.9)

g′′′ + (M2β + 1)(f + g)g′′ − g′2 + β

[
2(f + g)g′g′′ − (f + g)2g′′′

]
−M2g′ = 0,(3.10)

1

Pr
θ′′ + (f + g)θ′ − γ

[
(f + g)(f ′ + g′)θ′ + (f + g)2θ′′)

]
= 0, (3.11)

f(0) = g(0) = 0, f ′(0) = 1, g′(0) = λ, θ(0) = 1,

f ′(∞)→ 0, g′(∞)→ 0, θ(∞)→ 0,

(3.12)

25



where λ = b/a is the ratio of the stretching rate along the y− direction to the

stretching rate along the x− direction, β = λ1a is the non-dimensional fluid relax-

ation time, γ = λ2a is the non-dimensional relaxation time for heat flux and Pr is

the Prandtl number. It can be noticed that when λ = 0, the two-dimensional case

is jumped. Further λ = 1 corresponds to the case of axisymmetric flow.

3.2 Analytic solutions by homotopy analysis method

In this section, we deal with series solutions by homotopy analysis method (HAM)

[28] for non-linear coupled equations (3.9), (3.10) and (3.11) with boundary condi-

tions (3.12). In order to proceed, we choose initial approximations for functions f0,

g0 and θ0 as follows:

f0(η) = 1− e−η, g0(η) = λ(1− e−η), θ0(η) = e−η. (3.13)

The auxiliary linear operators Lf , Lg and Lθ are selected as

Lf (η) = f ′′′ − f ′, Lg(η) = g′′′ − g′, Lθ(η) = θ′′ − θ. (3.14)

Now consider the non-linear operators Nf , Ng and Nθ as below:

Nf [f̂(η; p), ĝ(η; p)] =
∂3f̂(η; p)

∂η3
−
(
∂f̂(η; p)

∂η

)2

+ (M2β + 1)(f̂(η; p) + ĝ(η; p))

∂2f̂(η; p)

∂η2
+ β

(
2(f̂(η; p) + ĝ(η; p))

∂f̂(η; p)

∂η

∂2f̂(η; p)

∂η2
−

(f̂(η; p) + ĝ(η; p))2
∂3f̂(η; p)

∂η3

)
−M2∂f̂(η; p)

∂η
, (3.15)

Ng[ĝ(η; p), f̂(η; p)] =
∂3ĝ(η; p)

∂η3
−
(
∂ĝ(η; p)

∂η

)2

+ (M2β + 1)(f̂(η; p) + ĝ(η; p))

∂2ĝ(η; p)

∂η2
+ β

(
2(f̂(η; p) + ĝ(η; p))

∂ĝ(η; p)

∂η

∂2ĝ(η; p)

∂η2

−(f̂(η; p) + ĝ(η; p))2
∂3ĝ(η; p)

∂η3

)
−M2∂ĝ(η; p)

∂η
, (3.16)
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Nθ[θ̂(η; p), f̂(η; p), ĝ(η; p)] =
1

Pr

∂2θ̂(η; p)

∂η2
+ (f̂(η; p) + ĝ(η; p))

∂θ̂(η; p)

∂η
− γ
(

(f̂(η; p)

+ĝ(η; p))(
∂f̂(η; p)

∂η
+
∂ĝ(η; p)

∂η
)
∂θ̂(η; p)

∂η
+ (f̂(η; p) +

ĝ(η; p))2
∂2θ̂(η; p)

∂η2

)
. (3.17)

The auxiliary linear operators in equation (3.14) satisfy the following:

Lf (C1 +C2e
η +C3e

−η) = 0, Lg(C4 +C5e
η +C6e

−η) = 0, Lθ(C7e
η +C8e

−η) = 0,

(3.18)

in which Ci(i = 1− 8) are constants.

Following the basic idea of HAM [28], we express the zeroth-order deformation

problems for Eqs. (3.9)-(3.12) are listed as

(1− p)Lf
[
f̂(η; p)− f0(η)

]
= p~Nf

[
f̂(η; p), ĝ(η; p)

]
, (3.19)

(1− p)Lg
[
ĝ(η; p)− g0(η)

]
= p~Ng

[
f̂(η; p), ĝ(η; p)

]
, (3.20)

(1− p)Lθ
[
θ̂(η; p)− θ0(η)

]
= p~Nθ

[
f̂(η; p), ĝ(η; p), θ̂(η; p)

]
. (3.21)

The boundary-conditions are

f̂(η; p)

∣∣∣∣
η=0

=0,
∂f̂(η; p)

∂η

∣∣∣∣
η=0

= 1,
∂f̂(η; p)

∂η

∣∣∣∣
η→∞

= 0,

ĝ(η; p)

∣∣∣∣
η=0

=0,
∂ĝ(η; p)

∂η

∣∣∣∣
η=0

= λ,
∂ĝ(η; p)

∂η

∣∣∣∣
η→∞

= 0,

θ̂(η; p)

∣∣∣∣
η=0

=1, θ̂(η; p)

∣∣∣∣
η→∞

= 0, (3.22)

where p ∈ [0, 1] is an embedding parameter and ~ is the non-zero convergence control

parameter. When p = 0 and p = 1 we have:

f̂(η; 0) = f0(η), ĝ(η; 0) = g0(η), θ̂(η; 0) = θ0(η),

f̂(η; 1) = f(η), ĝ(η; 1) = g(η), θ̂(η; 1) = θ(η). (3.23)
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Now expanding f̂(η; p), ĝ(η; p) and θ̂(η; p) in Taylor’s series about p = 0.

f̂(η; p) = f0(η) +
∞∑
m=1

fm(η)pm, (3.24)

ĝ(η; p) = g0(η) +
∞∑
m=1

gm(η)pm, (3.25)

θ̂(η; p) = θ0(η) +
∞∑
m=1

θm(η)pm, (3.26)

f̂(η; p)

∣∣∣∣
η=0

=0,
∂f̂(η; p)

∂η

∣∣∣∣
η=0

= 1,
∂f̂(η; p)

∂η

∣∣∣∣
η→∞

= 0,

ĝ(η; p)

∣∣∣∣
η=0

=0,
∂ĝ(η; p)

∂η

∣∣∣∣
η=0

= λ,
∂ĝ(η; p)

∂η

∣∣∣∣
η→∞

= 0,

θ̂(η; p)

∣∣∣∣
η=0

=1, θ̂(η; p)

∣∣∣∣
η→∞

= 0. (3.27)

where

fm(η) =
1

m!

∂mf̂(η; p)

∂pm

∣∣∣∣
p=0

, gm(η) =
1

m!

∂mĝ(η; p)

∂pm

∣∣∣∣
p=0

, θm(η) =
1

m!

∂mθ̂(η; p)

∂pm

∣∣∣∣
p=0

.

The auxiliary parameter ~ can be chosen in such a way that the series (3.24)-(3.26)

converges at p = 1. Substituting p = 1 in (3.24)-(3.26), we obtain

f(η) = f0(η) +
∞∑
m=1

fm(η), (3.28)

g(η) = g0(η) +
∞∑
m=1

gm(η), (3.29)

θ(η) = θ0(η) +
∞∑
m=1

θm(η). (3.30)

The problems at mth-order satisfy the following:

Lf [fm(η)− χmfm−1(η)] = ~Rf
m(η), (3.31)

Lg[gm(η)− χmgm−1(η)] = ~Rg
m(η), (3.32)

Lθ[θm(η)− χmθm−1(η)] = ~Rθ
m(η), (3.33)
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where

fm(0) = f ′m(0) = gm(0) = g′m(0) = θm(0) = 0,

f ′m(∞) = g′m(∞) = θm(∞) = 0. (3.34)

Here

Rf
m(η) =f ′′′m−1 + (M2β + 1)

m−1∑
k=0

[(fm−1−k + gm−1−k)f
′′
k − f ′m−1−kf ′k] + β

m−1∑
k=0

[2

(fm−1−k + gm−1−k)
k∑
l=0

f ′k−lf
′′
l − (fm−1−k

k∑
l=0

fk−l + gm−1−k

k∑
l=0

gk−l+

2fm−1−k

k∑
l=0

gk−l)f
′′′
l ]−M2f ′m−1, (3.35)

Rg
m(η) =g′′′m−1 + (M2β + 1)

m−1∑
k=0

[(fm−1−k + gm−1−k)g
′′
k − g′m−1−kg′k] + β

m−1∑
k=0

[2

(fm−1−k + gm−1−k)
k∑
l=0

g′k−lg
′′
l − (fm−1−k

k∑
l=0

fk−l + gm−1−k

k∑
l=0

gk−l + 2fm−1−k

k∑
l=0

gk−l)g
′′′
l ]−M2g′m−1, (3.36)

Rθ
m(η) =

1

Pr
θ′′m−1 +

m−1∑
k=0

[(fm−1−k + gm−1−k)θ
′
k]− γ

m−1∑
k=0

[2(fm−1−k + gm−1−k)

k∑
l=0

(f ′k−l + g′k−l)θ
′
l + (fm−1−k

k∑
l=0

fk−l + gm−1−k

k∑
l=0

gk−l + 2fm−1−k

k∑
l=0

gk−l)θ
′′
l ], (3.37)

χm =

0, if m ≤ 1

1, if m > 1

.
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3.3 Convergence of homotopy series solutions

Note that the series solutions given in (3.27)-(3.29) contain an auxiliary parameters

~ which has an important role in controlling the convergence of homotopic solu-

tions. To select an appropriate value of ~, we have plotted the so-called ~− curves

for f ′′(0), g′′(0) and θ′(0) in Fig. 3.1. Here the valid range of ~ lies where the ~−

curves are parallel to ~− axis. From Fig. 3.1, we expect that series solutions for f ,

g and θ would converge in the range −1.5 ≤ ~ ≤ −0.4. Table 3.1 is plotted to see

the convergence rate of the solutions. We observe that tenth-order approximations

are sufficient for convergent solutions at ~ = −0.8.

f '' H0L

g '' H0L

Θ ' H0L

Β = Γ = 0.25,Λ = M = 0.5, Pr= 1

-1.5 -1.0 -0.5 0.0

-1.4

-1.2

-1.0

-0.8

-0.6

-0.4

Ñ

f
''
H0
L,

g
''H

0
L,
Θ
'H

0
L

Fig. 3.1 – ~− curves for the functions f(η), g(η) and θ(η).

30



Order of approximations f ′′(0) g′′(0) θ′(0)

5 -1.31282 -0.57423 -0.71696

10 -1.31296 -0.57435 -0.71497

15 -1.31296 -0.57435 -0.71492

20 -1.31296 -0.57435 -0.71491

25 -1.31296 -0.57435 -0.71491

30 -1.31296 -0.57435 -0.71491

35 -1.31296 -0.57435 -0.71491

40 -1.31296 -0.57435 -0.71491

Table 3.1 – Convergence of HAM solutions for different orders of approximations

when β = γ = 0.25, Pr = 1, M = λ = 0.5 and ~ = −0.8.

3.4 Results and discussion

This section focuses on the physical interpretation of the behaviour of the embedded

parameters on the solutions. For this purpose, we display graphical results in Fig.

3.2- Fig. 3.11. Table 3.1 includes the numerical values of wall temperature gradient

θ′(0) for different value of β, γ and M . The entries of this table are obtained at

suitable choice of ~. It is observed that θ′(0) has direct relationship with the ther-

mal relaxation time. However it is a decreasing function of the fluid relaxation time

β. The presence of magnetic field also causes diminution in the magnitude of heat

transfer rate from the surface.

The behavior of non-dimensional relaxation time β on both the u− and v− com-

ponents of velocity can be observed from Fig. 3.2 and Fig. 3.3 respectively. The

velocity profiles are tilted towards the wall when β is increased indicating that ve-

locity and boundary layer thickness are decreasing function of β.
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Physically, bigger β indicates stronger viscous force which restricts the fluid mo-

tion and consequently the velocity decreases. Fig. 3.4 and Fig. 3.5 show the impact

of stretching rates ratio λ on the velocity fields f ′ and g′ respectively. Bigger values

of λ indicates larger rate of stretching along the v− direction compared to u− di-

rection. Therefore, with an increase in λ, the velocity in the v− direction increases

and velocity in the original u− direction decreases simultaneously.

In Fig. 3.6 and Fig. 3.7, the velocity distributions are presented for different value

of Hartman number M . Velocities in both u− and v− directions decrease upon

increasing the M . This decrease in the velocity is due to resistance offered by the

Lorentz force acting in the normal direction. From Fig. 3.8, we observe that the

resistance associated with Lorentz force supports the penetration depth of temper-

ature.

In Fig. 3.9, the temperature profiles are presented for different Prandtl numbers.

Here γ = 0 indicates the corresponding results for the classical Fourier law. Prandtl

number has inverse relationship with thermal diffusivity. Therefore an increase in

Pr reduces conduction and hence causes a reduction in the penetration depth of

temperature. The results are qualitatively similar in both Fourier and Cattaneo-

Christov heat flux models.

The effects of non-dimensional relaxation time γ on temperature distribution can

be analyzed from Fig. 3.10. Temperature θ decreases and profiles smoothly descend

to zero at shorter distance from the sheet when γ is incremented. This indicates

that there will be thinner thermal boundary layer when relaxation time for heat

flux is larger. Here the profiles become steeper in the vicinity of the boundary as γ
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increases which is an indication of the growth in wall slope of temperature θ.

The impact of stretching rates ratio on the temperature distribution can be an-

alyzed through Fig. 3.11. Although we do not include the results for entrainment

velocity here but our computations indicate that entrainment velocity f(∞)+g(∞)

is an increasing function of λ. Due to this reason, an increase in λ enhances the

intensity of the cold fluid at the ambient towards the hot stretching surface. Conse-

quently the fluid temperature drops within the boundary layer, when λ is increased.

Β = 0, 0.3, 0.6, 0.9

Pr = 1,  M = Λ =  0.5, Γ = 0.25.

0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

Η

f'
H
Η
L

Fig. 3.2 – Effect of β on f ′(η).

Pr = 1, M = Λ = 0.5, Γ = 0.25.

Β = 0, 0.3, 0.6, 0.9

0 1 2 3 4 5
0.0

0.1

0.2

0.3

0.4

0.5

Η

g
'H
Η
L

Fig. 3.3 – Effect of β on g′(η).
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Pr = 1, M = 0.5,  Β = Γ = 0.25.

Λ = 0, 0.25, 0.5, 0.75

0 1 2 3 4
0.0

0.2

0.4

0.6

0.8

1.0

Η

f'
H
Η
L

Fig. 3.4 – Effect of λ on f ′(η).

Λ = 0, 0.25, 0.5, 0.75, 1

Pr = 1, M = 0.5,  Β = Γ = 0.25.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.2

0.4

0.6

0.8

1.0

Η

g
'H
Η
L

Fig. 3.5 – Effect of λ on g′(η).

M = 0.3, 0.6, 0.9, 1.2

Pr = 1, Λ = 0.5, Β = Γ = 0.25.

0 1 2 3 4

0.0

0.2

0.4

0.6

0.8

1.0

Η

f'
H
Η
L

Fig. 3.6 – Effect of M on f ′(η).

Pr = 1, Λ = 0.5, Β = Γ = 0.25.

M = 0.3, 0.6, 0.9, 1.2

0 1 2 3 4
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0.2

0.3

0.4

0.5

Η

g
'H
Η
L

Fig. 3.7 – Effect of M on g′(η).
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M = 0.3, 0.6, 0.9, 1.2

Pr = 1, Λ = 0.5, Β = Γ = 0.25.

0 1 2 3 4 5 6
0.0

0.2

0.4

0.6

0.8

1.0

Η

Θ
H
Η
L

Fig. 3.8 – Effect of M on θ(η).

Pr = 0.1, 0.5, 0.7, 1

M = Λ = 0.5, Β = Γ = 0.25.

0 2 4 6 8 10 12
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0.4
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1.0

Η

Θ
H
Η
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Fig. 3.9 – Effect of Pr on θ(η).

Γ = 0, 0.2, 0.4, 0.6

 Pr = 1, M = Λ = 0.5, Β = 0.25.

0 1 2 3 4 5
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0.4

0.6
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Η

Θ
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Η
L

Fig. 3.10 – Effect of γ on θ(η).

Λ = 0.1, 0.3, 0.7, 1

Pr = 1, M = 0.5, Β = Γ = 0.25. 
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L

Fig. 3.11 – Effect of λ on θ(η).
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β γ M θ′(0)

0 0.25 0.5 -0.75689

0.2 -0.72298

0.4 -0.69171

0.6 -0.66313

0.25 0 -0.67657

0.2 -0.70680

0.4 -0.74072

0.6 -0.77877

0.25 0 -0.74203

0.5 -0.71491

1 -0.64859

Table 3.2 – Values of wall temperature gradient θ′(0) for different value of β ,γ, M

when ~ = −0.8 Pr = 1 and λ = 0.5.
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Chapter 4

Conclusions

This thesis deals with analytic solutions for flow and heat/mass transfer problem

involving upper-convected Maxwell (UCM) fluid. Heat transfer through recently

proposed Cattaneo-Christov model is considered. The following are the main obser-

vation of this study.

• In homotopy analysis method (HAM), there is freedom to choose initial guess

and linear operator.

• Convergence of the obtained homotopy solution is ensured by choosing the

suitable value of the convergence control parameter ~.

• The velocity and boundary layer thickness are decreasing functions of the fluid

relaxation time λ1.

• The velocity gradients f ′′(0) and g′′(0) are found to increase upon increasing

the fluid relaxation time λ1.

• The concentration field φ decreases when Sc increases.

• The concentration field φ has opposite results for destructive γ > 0 and gen-

erative γ < 0 chemical reactions.
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• Hartman number M supports the thickness of thermal boundary layer.

• Temperature and thermal boundary layer have inverse relationship with relax-

ation time for heat flux λ2.

• The present model reduces to the case of Newtonian fluid by choosing β = 0.
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