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ABSTRACT

Wind power is having a significant effect on the global energy landscape, providing sustain-

able choices that address environmental, economic, and social concerns. Forecasting wind

power is of the utmost importance for the successful incorporation of wind power into the

network of electrical power distribution systems. Accurate forecasts empower electric grid

operators to foresee variations in wind energy generation. In order to accurately anticipate

wind power, meteorological data, weather occurrences, wind turbine performance, and grid

limits are all taken into consideration. In this context, we have proposed a novel approach

called DBSCAN-RFE-XGBoost a two-stage process. The initial stage, we have proposed a

clustering algorithm that uses density-based spatial clustering (DBSCAN) to automate the

EPS value that is required for DBSCAN clustering by using K-dist plot and Knee Point De-

tection Algorithm. Additionally, we have removed outliers from the dataset. In the second

stage, we applied two fold scheme, first we enginered temporal features and then applied

recursive feature elimination to the preprocessed dataset which identifies best suited features

to feed into the XGBoost algorithm to predict wind power. To determine effectiveness of

proposed model, we have utilized SCADA dataset obtained from a wind farm in Pakistan.

In comparison to existing benchmarking approaches, our suggested model achieves a perfor-

mance that is 38.89% higher (RMSE), and its effectiveness is demonstrated by an R2 value

of roughly 5.10%.

Keywords — Wind Energy Forecasting, DBSCAN, Recursive Feature Elimination, XGBOOST,

Deep Learning, Wind energy forecasting in Pakistan

xiii



Chapter 1

INTRODUCTION

1.1 Motivation

As the world faces climate change issues and continuously depleting fossil fuels, there is a growing

need for sustainable and renewable energy sources. In an effort to address these difficulties, nations

are constantly increasing the proportion of renewable energy sources that they include in their overall

energy mix [1]. Wind energy has emerged as a potential alternative among the vast portfolio of

renewable energy sources due to the fact that it is widely available and has a relatively low impact

on the environment. According to the statistics values of installed wind generation capacity of 2023

that were published by the Energy Institute [2], the year 2022 witnessed the installation of 100 GW

of new wind power, which represents a 9.1% increase in comparison to the installations that took

place in 2021. After analyzing these numbers, it was discovered that the global growth rate for

collective installed wind capacity from 2012 to 2022 was observed to be 12.9%. Listed below are

the top five countries in terms of the pace of increase of installed wind capacity. In terms of their

respective growth rates, Jordan is the country that leads the world with an astounding growth rate

of 83.7%, followed by South Africa with a growth rate of 77.2%, the Russian Federation with a

growth rate of 71.6%, Uruguay with a growth rate of 39.9%, and Pakistan with a growth rate of

38.3%. Significantly, it should be emphasized that Pakistan exhibits the highest growth rate among

the countries in the Asia-Pacific region in this context.There is a lack of standardized datasets for

forecasting wind energy in Pakistan. This impedes the progress of developing precise and efficient

machine learning based forecasting algorithms for wind energy forecasting specifically tailored for

Pakistan.

The significance of wind power generation in the current energy scenario is substantial, fueled by

the worldwide transition towards sustainable energy sources. Nevertheless, the inherent fluctuations

and irregularity of wind resources present significant challenges impede the successful incorporation

of wind power into the electric grid. The key obstacles to establishing widespread integration of wind

energy into the electricity grid are efficient scheduling, effective management, and optimal utilization

of wind power. To tackle these problems, it is imperative to develop precise wind energy forecasting

systems that may improve the reliability of wind power output. This is essential for maintaining grid
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stability, maximizing energy production, ensuring economic feasibility, and promoting environmental

sustainability.

1.2 Scope

The thesis endeavors to clarify the viability and efficiency of artificial intelligence (AI)-driven models

for wind energy prediction in the setting of Pakistan. The research endeavors to create predictive

models that are specifically customized to the intricate details of Pakistan’s wind patterns by utilizing

advanced artificial intelligence techniques, meteorological insights, and historical wind data. The

goal goes beyond simple theoretical research; actual wind power generating data will be used to

validate and evaluate these models.

1.3 Goals

This work is dedicated to addressing the specific challenges of wind energy forecasting in Pakistan

through the development of an AI based Wind Energy forecasting model. The ultimate goal is to play

a pivotal role in optimizing the utilization of wind energy in Pakistan, fostering sustainable energy

practices and addressing the specific challenges faced by the country in its pursuit of renewable energy

sources. Through a comprehensive case study, this research article aims to explore the feasibility and

effectiveness of AI-driven wind energy forecasting in the Pakistani context. The study will leverage

historical wind data, meteorological information, and AI techniques to construct predictive models

customized for the distinct characteristics of wind patterns in Pakistan. By evaluating the accuracy

and reliability of these models against real-world wind power generation data, valuable insights can be

gained into the capabilities of AI-driven forecasting for enhancing energy planning and management

in the country. To achieve the aforementioned goals, We will summarize innovations of our work as

follows

■ Applied clustering analysis to eliminate outliers and enhance predicting accuracy.

■ Proposed knee-point detection based algorithm for Automation of Eps value required for clus-

tering.

■ Engineered features that can potentially capture temporal patterns and structures.

■ Applied Recursive feature elimination to eliminate redundant features from dataset before

feeding it to XGBoost for prediction to improve accuracy of model.

■ This work introduces an improved forecasting model called enhanced DBSCAN-RFE-

XGBoost. The model utilizes clustering analysis based on enhanced DBSCAN approach and
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Recursive Feature Elimination (RFE) to enhance the forecasting capability of the XGBoost

model for wind power forecasting. The analysis of the findings demonstrates that the perfor-

mance of this model outperforms other benchmark models.

1.4 Observations

Wind energy forecasting is a vital component in the contemporary energy landscape, driven by the

global transition towards sustainable and renewable energy sources. The inherent variability and in-

termittency of wind resources pose significant challenges to the seamless incorporation of produced

wind power into the electric grid. This work explores the pivotal role of wind energy forecasting in

ensuring grid stability, optimizing energy production, enhancing economic viability, and contribut-

ing to environmental sustainability. By delving into the technological advancements and innovative

methodologies underpinning accurate wind energy forecasts, This study emphasizes the crucial sig-

nificance of forecasting systems within the context of the ongoing renewable energy revolution. Ac-

curate wind energy forecasting is paramount for maintaining grid stability and ensuring a reliable

supply of electricity. In a grid increasingly reliant on intermittent renewable sources, forecasts en-

able grid operators to anticipate fluctuations in wind power generation, facilitating effective resource

allocation and mitigating the risk of power outages [3].

Wind farm operators rely on precise forecasts to optimize energy production. By leveraging fore-

casts to align turbine operations with expected wind conditions, operators can improve energy capture

efficiency, reduce maintenance costs, and extend the operational lifespan of equipment. The eco-

nomic feasibility of wind energy projects hinges on the reliability of forecasting systems. Investors

and project developers utilize accurate forecasts to make informed decisions about project locations

and financing structures, thereby minimizing financial risks and bolstering investor confidence. Wind

energy forecasting plays a pivotal role in the seamless integration of wind power into the electrical

grid. Grid operators use forecasts to anticipate wind power output fluctuations and make real-time

adjustments to maintain grid stability, reducing the need for backup fossil fuel generation and facili-

tating the transition to renewable-dominated grids [4].

Precise wind energy forecasts enable wind farm operators to participate effectively in energy mar-

kets. By bidding their expected energy production into electricity markets, operators enhance market

efficiency and revenue generation potential, while also reducing market price volatility. Accurate

wind energy forecasting contributes to environmental sustainability by enabling the replacement of

power generation using fossil fuel with clean, renewable sources. This transition results in reducing

greenhouse gas emissions, align with global initiatives to address and mitigate climate change. The

3



development of wind energy forecasting technologies stimulates innovation across multiple fields,

including meteorology, data science, and renewable energy systems. Continuous research and de-

velopment efforts lead to more sophisticated forecasting models, benefiting not only the wind energy

sector but also scientific and technological advancements at large. Artificial Intelligence (AI) [5] tech-

nologies have revolutionized various sectors, and their potential in addressing complex and dynamic

challenges in wind energy forecasting is increasingly being recognized. The fusion of advanced

machine learning algorithms, big data analytics, and meteorological insights has paved the way for

AI-driven wind energy forecasting [6], enabling stakeholders to make informed decisions in the realm

of energy management, grid stability, and investment strategies.

Traditional forecasting methods, often based on meteorological models, struggle to capture the

complex and non-linear interactions influencing wind patterns. Herein lies the motivation for incor-

porating AI-driven approaches. By harnessing the power of AI, this research seeks to address the

limitations of conventional forecasting methods and contribute to the realization of a sustainable en-

ergy future in Pakistan. However, making the most of wind power requires accurate predictions of

wind conditions, a task that has been greatly improved through employing AI/ML techniques, includ-

ing Neural Networks, Support Vector Machines, and Random Forests, are increasingly instrumental

in refining wind energy forecasts [7]. These algorithms can capture intricate relationships between

various meteorological variables, historical wind patterns, and their impact on wind power generation.

By processing vast datasets encompassing historical weather records and wind turbine performance,

machine learning models can discern complex patterns and optimize forecasting accuracy [8].

1.5 National Interests and Benefits

Wind energy forecasting is highly relevant to national needs as it supports the efficient assimilation

of wind power into the energy mix. Accurate forecasts aid in optimizing grid management, ensur-

ing a reliable and stable electricity supply. They contribute to energy security, cost reduction, and

carbon emissions reduction goals. Wind energy forecasting also supports the growth of renewable

energy industries, job creation, and economic development, while helping nations transition towards

a sustainable and low-carbon future. Conducting research and improving wind energy forecasting

capabilities can benefit Pakistan by reducing dependency on foreign expertise and fostering local

expertise and knowledge in wind energy management. It will make ways to save costs, to be more

self-sufficient and the development of a skilled workforce within the country’s renewable energy sec-

tor. It aligns with national objectives of promoting domestic resources and sustainable development

in the energy sector.
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1.6 Wind Power Installations

The data from the Global Wind Report [9] over the past decade reveals a clear upward trajectory in

global wind power installations. Notably, the figures show consistent year-on-year growth in installed

wind power capacity, with only minor fluctuations. The surge from 36 GW in 2013 to 77.6 GW in

2022 reflects a doubling of global wind power capacity over this period. This impressive growth is

indicative of several factors driving the adoption of wind energy. First and foremost is the growing

awareness of climate change and the need to reduce carbon emissions. It is anticipated that this

trend will continue to gain rise in the coming years as the world strives to meet its sustainability and

environmental targets.

Figure 1.1: Global Wind Power New Installation

In Pakistan, there has been a noticeable and significant trend towards the adoption of wind energy

as a critical component of the country’s power generation mix. This trend reflects Pakistan’s com-

mitment to addressing energy challenges and its desire to harness the potential of renewable energy

sources. According to data from the National Electric Power Regulatory Authority (NEPRA), the

historic development of wind power capacity in Pakistan has shown substantial growth in the last

ten years. Over the last decade, NEPRA’s industry state report [10] highlights Pakistan’s noteworthy

emphasis on wind energy. The nation has made commendable strides in this sector, evident in the

data revealing its growth from a modest 50 MW in 2013 to a significant 1,838 MW in 2022. This

remarkable progression underscores Pakistan’s commitment to advancing its wind energy landscape.
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Notably, the addition of 590 MW in 2022 reflects the country’s ongoing dedication to expanding its

wind energy infrastructure. This consistent growth aligns with Pakistan’s broader sustainability and

environmental objectives. Looking ahead, it is anticipated that Pakistan will sustain its momentum,

further enhancing its wind energy sector in the years to come. This trajectory not only contributes to

the nation’s energy diversification but also reinforces its position in the global shift towards cleaner

and more sustainable energy sources.

Figure 1.2: Installed Wind Capacity, Pakistan

1.7 Research Objective

Following are the objectives of this work.

1. To build AI driven Model for Wind Energy Forecasting.

2. Compare the model with state-of-the-art technique.

1.8 Thesis Structure

This work is organized into five main chapters. The first chapter provides an introduction to the topic,

covering aspects such as motivation, contributions, goals, observations, national interests, and bene-

fits. The chapter concludes by outlining the structure of the thesis. Moving on to the second chapter,

a comprehensive literature review is presented. The third chapter delves into the methodology em-

ployed to reach the set milestones, detailing the data pre-processing techniques, feature selection and

6



provides a detailed examination of the proposed models. The fourth chapter provides discussing the

outcomes of proposed model and comparing their results through tables and graphs. Finally, the fifth

and concluding chapter offers a conclusion and discussing potential future contributions in this field.
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Chapter 2

LITERATURE REVIEW

2.1 Related Work

Numerous approaches to wind (WS/WP) forecasting exist, categorized in 2.1 Forecast models are

also classified by timescales (ultra-short, short, medium, long-term) as shown in 2.1, aiding real-time

control, planning, trading, and maintenance scheduling in power systems.

Figure 2.1: WS/WP Forecasting Classification

Forecasting models for WS/WP can also be classified into two types depending on their forecast-

ing goals: wind turbine based forecasting and wind farm based forecasting. Wind turbine models

estimate individual turbine output, while wind farm models predict the combined power output of

multiple turbines, the latter being more complex [11]. Deterministic models offer point forecasts but

may produce unsatisfactory results due to environmental complexity. Probabi listic models provide

decision-makers with prediction intervals (PIs) [12], classifiable as parametric or non-parametric.
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Parametric methods [13] assume forecast uncertainty follows a specific probability distribution, in-

cludes Gaussian Process (GP), delta method, and MVE (mean variance estimation). Quartile Regres-

sion (QR) and Lower Upper Bound Estimation (LUBE) [14] are the non-parametric methods that are

distribution free and generate PIs with the help of techniques like quality measures for LUBE based

models and asymmetric Laplace loss for QR models.

Forecasting models can be classified into four types based on their modeling theory [8]: physical

models, traditional or statistical models, artificial intelligence (AI) / Machine learning (ML) based

models, and hybrid models. In these models, the physical models are the models that forecast the

metrological factors like air pressure, temperature and humidity for the WS forecasts [15], as they are

good in this medium and can provide long term forecasts. They use Weather Research Forecasting

(WRF) and Numerical Weather Prediction (NWP) techniques for these forecasts that enable them

to forecast the wind power using the turbine curves. Other are the traditional models that use Au-

toregressive Integrated Moving Average (ARIMA), Frictional-ARIMA (f-ARIMA) Autoregressive

Moving Average (ARMA) [16] and Hammerstein Autoregressive model. Their main focus is on the

WS/WP time series data linear fluctuations to be able to perform well in short term to enable the short

term forecasting.

Many of the researchers have tried to find out some wind power forecasting models that are more

accurate and reliable. Along with the two types of forecast (probabilistic and deterministic), liter-

atures also discuss the four forecasting models as stated above (artificial intelligence based mod-

els, statistical models, physical models and hybrid model). The physical models use computational

weather prediction to forecast wind speeds. They use meteorological data and computational meth-

ods to make these predictions, similar to conventional wind speed forecasting techniques. While the

traditional or the statistic models use the statistical equations that analyze the relationships in the

historical data and reveal enhanced performance in short term forecasting. It performs this function

with the help of different forms like Autoregressive (AR), Persistence model (PM), Moving Average

(MA), ARIMA, ARMA and SARIMA. Statistical models tend to be more accurate for short-term

forecasts, diminishing in accuracy for longer forecast horizons.

The increased computation capability of processors and advancements in AI approaches have re-

sulted in the extensive use of AI or ML-based models for wind power forecasting. The literature

discusses different Supervised learning models like Extreme Learning Machine (ELM), Support Vec-

tor Machine (SVM), Kernel ELM (KELM) and Least Squares Support Vector Machine (LSSVM)

models [17]. The usage of SVM models in wind energy and solar forecasting was reviewed in de-

tail [18]. The research paper by [19] introduces a novel method that combines Extreme Learning
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Machine (ELM) with the Adaboost algorithm, and further enhances its performance using parti-

cle swarm optimization. The paper [20] presents a self-adaptive kernel Extreme Learning Machine

(KELM) that aims to enhance forecasting accuracy, minimize re-training expenses, and optimize

training efficiency. [21] has utilized random forest [RF] for hour ahead wind power forecasting. [22]

has employed Stacked denoising autoencoder with LSTM.

Along with the above discussed model, the paper also discusses different types of Artificial Neural

Networks (ANNs). Both [23], [24] have used Back Propagation Neural Network (BPNN) in their

research methodologies. In [25], modified multi-objective dragonfly algorithm helped to improve

the loads of the BPNN. In [26], a hybrid decomposition technique was used for multi-step wind

speed forecasting by constructing an upgraded BPNN. The study by [27] used three different funda-

mental predictors, namely Multi-layer Perceptron (MLP), Long Short-Term Memory (LSTM), and

ARIMA, to forecast wind speed (WS). The combination weights of these predictors were adjusted

using an intelligent optimization technique. To enhance the accuracy of forecasts, [28] employed

the optimization of the Wavelet Neural Network through the utilization of the Multi-objective Sine

Cosine algorithm. In addition, the authors of [29] have forecasted wind velocity by employing three

artificial neural networks: an Elman neural network, a generalized regression neural network and

cascade backpropagation neural network. The results were enhanced using the multi-objective parti-

cle swarm optimization technique and merged with an echo state network to provide the final wind

power predictions. In order to make precise predictions about wind speed at a specific location, [30]

introduced a multidimensional spatial-temporal graph neural network method. This method utilizes

a Wind-Transformer as a node in a graph neural network to effectively gather information about local

and surrounding wind speeds. Different forms of data like the wind direction, speed, air pressure and

temperature is combined in it.

Moreover, deep neural networks are gaining substantial attention owing to their remarkable profi-

ciency in addressing intricate nonlinear problems. The literature extensively discusses Long Short-

Term Memory (LSTM) [31], Bidirectional LSTM (BiLSTM) [32], Gated Recurrent Unit (GRU) [33],

Convolutional Neural Network (CNN) [34], Deep Belief Network (DBN) [35], Bidirectional GRU

(BiGRU) [36], and Auto-encoder (AE) [37].

Recent research in wind power forecasting has demonstrated a significant shift towards employing

hybrid models, integrating traditional numerical weather prediction techniques with modern machine

learning algorithms. These models leverage the qualities of both methodologies, boosting the accu-

racy and dependability of wind power projections by properly reflecting the complex and dynamic

nature of atmospheric conditions. As researchers continue to research novel combinations and op-
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timizations, hybrid models emerge as a possible route for increasing the progress in wind power

forecasting. Optimization methods such as Grey Combination Model and PSO-SVR [38] , Rao-1

algorithm [39] , and enhanced Jaya algorithm [40] have been introduced into forecasting frameworks

to enhance overall predictive skills. Wavelet Transform (WT) and Autoregressive Moving Average

(ARMA) have been integrated by Kaur et al. [41].

Recent research in wind power forecasting has demonstrated a significant shift towards employing

hybrid models, integrating traditional numerical weather prediction techniques with modern machine

learning algorithms. These models leverage the qualities of both methodologies, boosting the accu-

racy and dependability of wind power projections by properly reflecting the complex and dynamic

nature of atmospheric conditions. As researchers continue to research novel combinations and opti-

mizations, hybrid models emerge as a possible route for increasing the state-of-the-art in wind power

forecasting. Optimization methods such as PSO-SVR and Grey Combination Model [38] , Rao-1

algorithm [39] , and enhanced Jaya algorithm [40] have been introduced into forecasting frameworks

to enhance overall predictive skills. Wavelet Transform (WT) and Autoregressive Moving Average

(ARMA) have been integrated by Kaur et al. [41]. It used a method called Wavelet Transform to ana-

lyze the wind speed data. First, the nonlinear time series was decomposed into smaller subsequences.

Then it applied individual ARMA model to each subsequence. By combining the results of several

ARMA applications, were able to get the final prediction, revealing that this hybrid model signifi-

cantly enhanced the precision of the forecasts. In order to tackle the challenges of making multi-step

forecasts for the near term, Liu et al. [42] improved wind power generation forecasting by combining

K-shape, K-means, CNN, and Gate Recurrent Unit (GRU) into a complete hybrid model. The op-

erational dataset was used to validate this model, which takes physical, geographical, and temporal

information as input tensors. Xiong et al. [43] used Attention Mechanism to resolve the model issue

not noticing the importance of the input data by assigning weights to physical attribute data. They

minimized the likelihood of erroneous predictions caused by data mixing and preprocessed datasets

by using CNN to extract relevant features for the short term and LSTM to capture trends in localized

multidimensional characteristics.
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Chapter 3

METHODOLOGY

We have introduced a new model for wind power forecasting based on artificial intelligence and data-

driven. The model’s flowchart is shown in 3.1. There are following two main steps, each tailored to

tackle a different problem: (i) Clustering stage (ii) Features selection and Model training. The Clus-

tering stage employs DBSCAN clustering Algorithm and proposed our enhance DBSCAN method

to eliminate outliers from the dataset, it add value to refining predictions by eliminating outliers and

enhancing accuracy. In Features Selection and Model Training stage, we have utilized Recursive

Feature Elimination (RFE) coupled with XGBoost to elevate the model’s precision in wind power

predictions. This dynamic duo refines the feature set by iteratively eliminating redundant variables.

The outcome is a lean and optimized set of features, ensuring the model’s heightened capacity for

generating accurate wind power predictions. The ensuing points highlight our forecasting model’s

contributions.

■ Applied clustering analysis to eliminate outliers and enhance predicting accuracy.

■ Proposed knee-point detection based algorithm for Automation of Eps value required for clus-

tering.

■ Engineered features that can potentially capture temporal patterns and structures.

■ Applied Recursive feature elimination to eliminate redundant features from dataset before

feeding it to XGBoost for prediction to improve accuracy of model.

This model represents a sophisticated integration of clustering analysis and recursive feature elim-

ination (RFE), strategically employed to augment the forecasting capabilities of the XGBoost model.

The utilization of clustering analysis ensures effective outlier removal and improved data accuracy,

while RFE systematically refines the feature set, optimizing the model for enhanced predictive per-

formance.
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Figure 3.1: Proposed Methodology Structure

3.1 Outlier Removal Using Proposed Algorithm with DBSCAN

There are different clustering techniques that have been presented in the literature, including k-

means [44], mean shift [45], DBSCAN [22], spectral clustering [46], mixes of Dirichlet model [47],

clustering based on supervised learning [48], and clustering by local cores [49]. Adaptive to cluster

forms, noise handling, and complicated pattern discovery—these are the hallmarks of DBSCAN, a

strong clustering method. Due to its robustness, DBSCAN is able to adapt to varied densities in train-

ing samples and effectively filter noise, making it quite effective for wind power forecasting. Two

parameters are required: the scanning radius reffered as Eps and the density threshold reffered as

MinPts, that assesses whether a point to be considered as a core point.

The algorithm 1 shows how the conventional DBSCAN clustering algorithm works. Step one is

to go through the dataset point by point, mark them as visited, and then use the EPS parameter to

find their neighborhood. The point is classified as noise if there are less than MIN_PTS points in

the neighborhood; otherwise, it starts a new cluster. In order to grow the cluster and include nearby

points, the algorithm iteratively investigates the area around the core points. Every visited point and
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its neighbors help to form clusters, as outlined in the iterative process. A set of clusters (CS) found

in the provided dataset by DBSCAN is the output.

Algorithm 1 AL:DBSCAN Clustering
Require: Dataset D, ε, MIN_PTS
Ensure: Clusters Set CS

1: procedure DBSCAN(D, ε,MIN_PTS)
2: for Each traversed point dp ∈ X do
3: Set dp as Visited
4: N ← NN(dp, ε)
5: if |N | < MIN_PTS then
6: Set dp as Noise
7: else
8: CS ← {dp}
9: for dp′ ∈ N do

10: N ← N \ dp′
11: if dp′ is not visited then
12: Set dp′ as visited
13: N ′ ← NN(dp′, ε)
14: if |N ′| ≥MIN_PTS then
15: N ← N ∪N ′

16: end if
17: end if
18: if dp′ /∈ CS then
19: CS ← CS ∪ {dp′}
20: end if
21: end for
22: end if
23: end for
24: end procedure

The literature advises employing a K-distance plot or other optimization methods to identify pa-

rameters values. Using the formula from Euclidean geometry, we can find the distances between any

two points in a k-distance plot. Equation 3.1 shows that the K-th value is obtained by sorting these

distances in ascending order to create a distance array dist(x). Visualizing the k-distance plot is the

traditional method for locating the knee point. In [22] they developed a novel approach for deep fea-

ture extraction. Their proposed method relies on visualizing the k-dist plot to identify the EPS value.

After that, LSTM neural networks were fed the deep features retrieved from the raw historical data

in order to make predictions.

Kdist = {distMinPts(x) | x ∈ D} (3.1)

An comprehensive visualization with three separate clusters is produced by applying the DBSCAN
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clustering framework to a subset of the data. Figure 3.2 shows the clustering results when the Minpts

value is 20 and the EPS value is 0.8. The diagram gives a detailed picture of the various types of

cluster points. Solid circles encircled by solid line circles distinguish core points, which are important

in cluster definition, and emphasize their importance in the clustering process. A solid triangle inside

a dotted line circle represents a non-core point, indicating the outer limits inside the cluster. A triangle

with a cross mark on top makes noise points, or points that don’t fit the clustering patterns, easy to

detect. This visual assistance makes it easy to identify data points that don’t belong in the specified

clusters, which provides useful context for understanding the dataset’s subtleties.

Figure 3.2: DBSCAN Process

Also, the in-depth view of one cluster in Figure 3.3 helps to clarify things even more. A solid red

circle stands out at the core block’s center, drawing attention to its a vital role in the cluster. Owing to

this visualization and the provided Minpts and EPS data, we can see a larger context of the clustering

dynamics, which simplifies and clarifies the complex process.
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Figure 3.3: DBSCAN Cluster View

Our approach stands out in its distinct advantage over traditional methods of visualizing k-distance

plots, as discussed in the literature [22], [50]. In contrast to the conventional approach, our proposed

methodology integrates enhanced DBSCAN, introducing a more efficient and automated process.

Notably, our approach eliminates the need for manually interpreting k-distance plots.

In our methodology, the determination of the knee point in the k-distance plot is revolutionized

through the implementation of an automated process for calculating Eps values as shown in Figure

3.4. This innovative step is achieved through our algorithm, which operates in a data-driven manner.

Rather than relying on the visual analysis of k-distance plots, our algorithm mathematically computes

the Eps value for DBSCAN. Specifically, it identifies the maximum curvature along the k-distance

plot, as expressed in Equation 3.2, 3.3, and 3.4. This data-driven calculation not only streamlines the

process but also enhances the accuracy of Eps determination, contributing to the overall robustness

and efficiency of our approach in comparison to conventional visualization techniques.

Slope

mi =
yi+1 − yi
xi+1 − xi

(3.2)

Second Derivative

D2
i =

mi+1 −mi

mi+2 +mi+1
(3.3)

Knee Point

K D2
K = min(D2) (3.4)
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Figure 3.4: Proposed Enhanced DBSCAN vs Traditional clustering approach
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To identify outlier points without affecting with the cluster determination process, a suitable

MinPts value is required. The accuracy of the cluster identification process can be affected by a

smaller MinPts number, which could be used for outlier detection, or the reverse, depending on the

situation. Hence, we have chosen a marginally higher MinPts value of 10. After we found the two

parameters needed for DBSCAN, we ran the algorithm on our dataset. It removed samples from out-

liers and helped us choose more representative samples to use as training for our forecasting model.

Not only does this cut down on effort, but it also makes parameter selection less susceptible to human

bias. While k-distance charts have long been the go-to for manually selecting Eps values, doing so

can introduce inaccuracies or slow down the algorithm if not done correctly.

3.2 Application of Recursive Feature Elimination with XGBoost

Previous research conducted by researchers has used a variety of machine learning methods for fore-

casting, with algorithms chosen for their strengths in certain areas and compatibility with existing

datasets. Factors such as data characteristics, input variables, and particular components are used to

select these models. As an example, [51] suggested a Support Vector Machine classifier for electric

price predictions that uses differential evolution, based on the features of the input data and the pres-

ence of high frequency components. Similarly, researchers propose robust linear regression models

for data when there is a high degree of linear correlation between the input features and the predicted

variables. In his proposed method for wind energy forecasting, [52] used multiple linear regression

in his study. Iteratively building decision trees is how XGBoost optimizes model accuracy; the al-

gorithm is prominently accurate in predictions. By modifying the weights of misclassified samples,

XGBoost uses gradient boosting to improve predictions as shown in Figure 3.5, in contrast to con-

ventional trees that are susceptible to overfitting. Its superiority over other forecasting models is

demonstrated by its capacity to manage noisy data. When it comes to training and improving the

models’ robustness, feature selection is just as important as model selection. The model’s robustness

can be affected by redundant features. That is why these superfluous features are targeted for removal

using the recursive feature elimination method.

A loss function and a regularization term make up XGBoost’s objective function for regression,

which is rooted in the gradient boosting framework. Along with the second-order derivative, the loss

function measures the model’s data fit, while the regularization term limits the model’s complexity by

penalizing an excess of leaf nodes. The penalty increases with the number of leaf nodes, effectively

limiting the complexity of the model. The objective function can be generally stated mathematically

as in Equation 3.5.
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ŷmi =
N∑
j=1

fj(xi) = ŷ
(m−1)
i + ft(xm) (3.5)

Given that ŷmi represents the outcome of the forecast for the m-th iteration of sample i. fj is the

outcome of the prediction made by the j-th tree on sample i, and j is the set of CART trees. ft(xm) is

the outcome of the m-th tree, while ŷ
(m−1)
i is the outcome of the first m− 1 trees. The loss function

and regularization term defined as

O =
N∑
i=1

l(yi, ŷi) +
T∑

j=1

Ω(fi) (3.6)

Here, l(yi, ŷi) is the loss function, which measures the difference between the true label yi and the

predicted value ŷi, and N represents the total number of training instances. Ω(fi) is the regularization

term for the i-th tree, T represents the number of trees in the combination. The Taylor series of the

loss function is often approximated to the second order by removing the constant term. When there

are m CART trees, the objective function takes the following form:

O =
N∑
i=1

[
difm(xi) +

1

2
hif

2
m(xi) + Ω(fm)

]
(3.7)

di =
∂

∂y
(t−1)
i

l(yi, ŷ
(m−1)
i ) (3.8)

hi =
∂2

∂(y
(t−1)
i )2

l(yi, ŷ
(m−1)
i ) (3.9)

Where di and hi are the first-order and second-order derivatives, respectively, and the regulariza-

tion term in the above equation will be as follows:

Ω(f) = γN +
1

2
λ

n∑
j=1

W 2
j (3.10)

Where Wj is the weight fraction for the j-th child node of the tree f , n is the total number of

nodes in tree f , γ and λ are custom parameters. γ represents the penalty term for the L1 norm,

while γN controls tree complexity by adjusting the number of leaf nodes and their coefficients,

thereby regulating model complexity. Additionally, λ is the penalty term for the L2 norm, where

1
2λ

∑n
j=1W

2
j helps control the weight distribution among leaf nodes to prevent overfitting.
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Figure 3.5: XGBoost Structure

3.3 PURPOSED DBSCAN-RFE-XGBOOST

An important factor influencing the accuracy of wind speed forecasts is the wind farm dataset. Wind

farm data, however, contains abnormal samples. Due to noise introduction and lower learning effi-

ciency, wind speed forecasting algorithms can be severely hindered by outliers and incorrect entries

in wind farm statistics. In response, we offer a refined DBSCAN method for pre-processing data,

which can detect outliers and remove them from the training set.

While density-based clustering is an advantage of DBSCAN, the effectiveness of the method is

highly dependent on the value of the epsilon (eps) parameter. The determination of eps in traditional
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approaches frequently involves visually inspecting k-distance maps, which can lead to discrepancies

and human error. In response to this difficulty, we present an enhanced DBSCAN method (as shown

in algorithm 2 that uses an effective algorithm based on knee point detection to automate eps selec-

tion. Optimal clustering for wind power forecasts is guaranteed by this automation, which removes

subjectivity. Models for predicting wind speeds frequently include a number of meteorological vari-

ables, such as wind speed, wind direction, temperature, humidity, and pressure. Having said that, the

predictive power of every feature is not proportional to its own. Using recursive feature selection, a

method that systematically assesses feature subsets and selects the top 10 features from our dataset

that show the best predictive potential, we are able to discover the most important features. This

focused method increases prediction accuracy while decreasing model complexity and increasing

computational efficiency.

In algorithm 2 The first phase of is to process the dataset, which is represented as F ′, by scaling

its features with a scaling function, SF . The next step is to make a NN model and then use the

Model.Fit() operation to fit it to the scaled dataset. Each point in the processed dataset D(F ′) is

then used to calculate the k-distance using the NN model. Then, we use the Knee Locator algorithm

to find the knee point on the k-distance curve, and we set this knee point as the epsilon (EPS)

parameter. At last, the dataset D that has been processed after outliers have been removed is acquired

by using the standard DBSCAN algorithm in conjunction with the calculated EPS and MinPts.

This mixed method uses a knee-point detection algorithm to improve DBSCAN clustering’s optimal

neighborhood radius determination.

Algorithm 2 Proposed Approach for Outlier Removal
Require: Dataset D, MinPts = 10
Ensure: Processed Dataset D′

1: Scaling F ′ = SF (D)
2: Compile Model = NN(MinPts)
3: Apply Model.Fit()
4: Compute k-dist using D(F ′)
5: Dist = Model.kneighbors(F ′, return_distances=True)
6: K-dist = Dist[:,−1]
7: Set curve =′ convex′, direction =′ increasing′ for Knee Locator
8: Get

• kneedle = knee.elbow

• Kneedle = KneeLocator(range(len(K-dist)),

• K − dist, curve=curve, direction=direction).elbow
9: Set

• EPS= kneedle
10: D′ = DBSCAN(EPS,MIN_PTS,D(F ′))
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Algorithm 3 Recursive Feature Elimination (RFE)
Require:

• Dataset X of shape (m,n), where m is the number of samples, and n is the
number of features.

• Target variable y of shape (m, 1).

• XGBoost Model XGB.

• k, the desired number of features
Ensure: Subset of features selected for the model: xselected

1: Initialize xselected = ∅
2: Initialize model XGB
3: Segregate temporal feature

• X["year"] = X["DnT"].dt.year

• X["month"] = X["DnT"].dt.month

• X["day"] = X["DnT"].dt.day

• X["hour"] = X["DnT"].dt.hour

4: while len(xselected) < k do
5: XGB.Train(X)
6: Feature Importance FI = XGB.FI(X)
7: Identify ftop = argmax(FI)
8: Mark the selected feature: xselected.append(ftop)
9: Remove the feature from dataset

10: end while
11: Return the selected features subset xselected

Algorithm 3 outlines a feature selection model designed to identify a subset of features that sig-

nificantly contribute to the predictive performance of a model. Given a dataset X with dimensions

(m,n), representing m samples and n features, along with the corresponding target variable y, the

model employs XGBoost (XGB) as the underlying predictive model. The user specifies the desired

number of features to be selected, denoted as k. The algorithm initializes an empty set xselected and

the XGBoost model. After that temporal features year, month, day and hour are segregated from

feature Date and Time.It iteratively trains the XGBoost model on the dataset X , computes the feature

importance (FI), identifies the feature with the highest importance (ftop), adds it to the selected fea-

tures, and removes it from the dataset. This process continues until the desired number of features,

k, is reached. The final output is the subset of selected features, xselected, representing the most in-

fluential features for the given XGBoost model and dataset. This approach ensures that the selected

features collectively contribute to the model’s predictive accuracy. We build a prediction model with

the best features found and clusters created by enhanced DBSCAN using XGBoost, a scalable and

very efficient gradient boosting algorithm. A promising option for wind speed prediction, XGBoost
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can deal with nonlinear interactions and avoid overfitting. Our improved DBSCAN-RFE-XGBoost

framework as shown in figure 3.7 provides a reliable method for wind power forecasting by com-

bining XGBoost’s predictive powers with automated eps selection and feature optimization. We

demonstrate that our proposed model works well in situations where data quality is poor by includ-

ing automatic estimation for missing data, XGBoost’s built-in protections (such as regularization and

random sampling), and accurate forecasts.

Figure 3.6: Proposed Enhanced DBSCAN-RFE-XGBoost

Our enhanced DBSCAN-RFE-XGBoost framework consists of two phases, as shown in Figure

3.7 During the first stage of data preprocessing, we have implemented a clustering algorithm based

on density-based spatial clustering (DBSCAN). This algorithm automatically removes outliers from

the dataset and calculates the eps value needed for DBSCAN clustering using a K-dist plot and the

Knee Point Detection Algorithm. The second stage involves applying recursive feature elimination
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on the preprocessed dataset to select the most suitable features. These features will then be fed into

the XGBoost algorithm, which can forecast wind power and offer comparisons with benchmarking

methods.

3.4 Benchmarking Methods

After that, we compare the outcomes of our enhanced DBSCAN-RFE-XGBoost model to those of

two well-known benchmark methods: SVMs and Long Short-Term Memory networks (LSTMs).

3.4.1 Long Short-Term Memory networks (LSTMs)

Long short-term memories (LSTMs) are widely utilized in wind power forecasting because to their

exceptional ability to grasp temporal relationships. In addition to wind power forecasting, it finds

extensive usage in load forecasting, price forecasting, and solar energy forecasting [53], [54], and

[55], respectively. For the purpose of day-ahead wind power forecasting, Ko et al. [56] employ

LSTMs.

The vanishing gradient problem is one obstacle that conventional RNNs have when trying to learn

and remember data over long time periods; LSTMs were developed to circumvent this difficulty.

LSTM’s have a complex structure in which we have three gates with a memory cell. These three gates

are the input gate, the output gate and the forget gate. At each time step t, the relevant information for

new input (xt) is determined by the input gate (it), the information to be discarded from the previous

cell state (Ct−1) is decided by the forget gate (ft), and the information to be outputted is controlled

by the output gate (ot). These gates and the input (gt), which represents the new data that could be

added to the cell state, are used to update the cell state (Ct).

Input Gate Activation (it): It decides which parts of the new input (xt) and the previous hidden

state (ht−1) should be added to the cell state.

it = σ(Wiixt + bii +Whiht−1 + bhi) (3.11)

Forget Gate Activation (ft): It determines which parts of the previous cell state (Ct−1) should be

forgotten or retained.

ft = σ(Wifxt + bif +Whfht−1 + bhf ) (3.12)

Cell State Update (Ct): The cell state is updated by combining the information from the input gate

(it) and the new information (gt).

gt = tanh(Wigxt + big +Whght−1 + bhg) (3.13)

Ct = ft ⊙ Ct−1 + it ⊙ gt (3.14)
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Output Gate Activation (ot): It regulates the information that will be outputted as the hidden state

(ht).

ot = σ(Wioxt + bio +Whoht−1 + bho) (3.15)

Hidden State Update (ht): The final hidden state is computed by applying the output gate to the

cell state.

ht = ot ⊙ tanh(Ct) (3.16)

Figure 3.7: LSTM Network Cell

3.4.2 Support Vector Machines (SVMs)

A supervised machine learning technique, Support Vector Machine (SVM) excels at handling com-

plex correlations and patterns, making it a useful tool for predicting. Many applications have made

use of support vector machines (SVM), including wind speed forecasting [57], demand forecast-

ing [58], stock price prediction [59], GDP forecasting [60], and several others. Achieving the maxi-

mum margin between classes while finding the best hyperplane to divide data points into them is its

main goal. How far is the hyperplane from the closest data point in either class? That’s the margin.

A key component of support vector machines (SVMs) is their ability to detect support vectors, or

data points that are critical for hyperplane positioning. Important in determining the margin are these

support vectors, which are located around the decision border.

The equation of the hyperplane in a linear SVM can be expressed as

f(x) = w · x+ b (3.17)

where f(x) is the decision function that predicts the class of a given input x. w represents the
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weight vector, which is perpendicular to the hyperplane and determines its orientation. b is the bias

term, allowing for the translation of the hyperplane. SVM finds the optimal values for w and b that

maximize the margin while ensuring that all data points are correctly classified.

To gain insight into the workings of Support Vector Machines (SVM), Figure 3.8, the visualization

portrays that an n dimensional space represent each data item, where ’n’ signifies the number of

features. Each data item, denoted as a feature within the dataset, is associated with a particular value

that belongs to its specific coordinate in this multidimensional space. This representation allows us to

visually comprehend the distribution and relationships among data points across the various features,

forming a comprehensive understanding of the dataset’s structure in the context of SVM.

In scenarios where achieving linear separation poses challenges, Support Vector Machines (SVM)

offer a powerful solution by leveraging kernel functions. These functions help convert the input in-

formation into a higher-dimensional space. This allows us to find a hyperplane that is capable of

separating the data. By employing kernel functions, SVM enhances its capacity to handle complex

relationships and patterns that may not be linearly separable in the original feature space. This ap-

proach allows SVM to capture intricate decision boundaries, making it particularly advantageous in

situations where a linear classification is not viable. The ability to map data into higher dimensions

through kernel functions broadens the applicability of SVM, enabling it to address a wide range of

real-world problems characterized by intricate and non-linear relationships among variables.

Figure 3.8: Visualization of Support vector machine
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Chapter 4

RESULTS DISCUSSION

4.1 Dataset Description

We used a dataset obtained from the Three Gorges Wind power plant in Jhimpir, Pakistan, to evalu-

ate the proposed model’s performance using real-time data.Accurate date and time records spanning

from January 1, 2015, to July 31, 2018, along with 31392 samples, make up the wind farm dataset,

which contains environmental and meteorological parameters suitable for Wind Power Forecasting.

The dataset also includes wind speed data from three separate sensors, wind direction, wind pres-

sure, temperature, and humidity. An additional feature, denoted as "Date and Time" (DnT), has

been thoughtfully integrated into our dataset, partitioned into year, month, day, and hour components

enabling a more detailed and granular analysis of the data.

Notably, the wind speed measurements are recorded in "meter/second," exhibiting a dynamic range

spanning from 0 m/s to 18.02 m/s. The wind direction data, collected at a height of 80 meters above

ground level, is expressed in degrees and ranges from 0 to 356. An additional feature, denoted

as "Date and Time" (DnT), has been thoughtfully integrated into our dataset, partitioned into year,

month, day, and hour components. These temporally resolved variables will play a pivotal role within

our AI-Xgboost model, facilitating a more intricate and granular analysis of the data. This integration

empowers our model to draw on temporal trends and patterns, further enhancing its capabilities in

wind power prediction and optimization.

The box plot, depicted visually in Figure 4.1, shows the monthly average wind speed. Different

patterns become apparent when looking at the figure, especially in the IQR. The IQR values are

much higher in May, June, July, and August, suggesting a wider range of wind speeds throughout the

summer. The interquartile range (IQR) for July, for example, covers a wide range of wind speeds,

from 8.75 m/sec to 12 m/sec.

On the other hand, November, December, January, and February had lower IQR values. Winter

weather is typically more predictable and consistent, with wind speeds staying within a narrow range,

thus this finding fits in with that. With the help of the box plot, we can see how the average wind

speed changes with the seasons and how it trends overall. Figures 4.2, 4.3, 4.4, and 4.5 depict datasets

representing wind power, wind speed, and corresponding weather parameters (temperature and hu-
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midity). These visualizations offer concise insights into the samples associated with each dataset.

They provide a clear overview of the variations and trends in wind-related variables, facilitating a

quick understanding of the data characteristics.

Figure 4.1: Dataset

Figure 4.2: Wind Speed
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Figure 4.3: Wind power

Figure 4.4: Wind Temprature
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Figure 4.5: Wind Humidity

4.2 Performance Assessment

When assessing the accuracy of the model’s predictions, we have used four distinct metrics: MSE,

RMSE, MAE, and R2. Those Metrics can be defined as

MSE =
1

n

n∑
i=1

(yi − ŷi)
2 (4.1)

Where:

• n is the number of data points.

• yi is the actual value for data point i.

• ŷi is the predicted value for data point i.

The first of these criteria is the Mean Squared Error (MSE), which measures the average squared

difference between the predicted and actual values. A better fit is indicated by lower MSE values,

which provide a better understanding of the overall model fit.

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (4.2)

Where:

• n is the number of data points.
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• yi is the actual value for data point i.

• ŷi is the predicted value for data point i.

Another variant of Mean Squared Error, Root Mean Squared Error (RMSE) is computed by divid-

ing the average squared error by its square root. It gives a numerical number to the mean discrepancy

between expected and observed data. An essential statistic for assessing prediction ability, lower

RMSE values show improved model accuracy.

MAE =
1

n

n∑
i=1

|yi − ŷi| (4.3)

Where:

• n is the number of data points.

• yi is the actual value for data point i.

• ŷi is the predicted value for data point i.

The mean absolute deviation (MAE) is a measure of the variance between the actual and expected

values. It provides a direct estimate of the precision of the model, is resilient, and is less affected by

outliers. Better predictive performance is shown by smaller MAE values.

R2 = 1− SSRES

SSTOT
= 1−

∑
i(yi − ŷi)

2∑
i(yi − ȳi)2

(4.4)

Where:

• SSRES is the sum of squared regression.

• SSTOT is the sum of squared total.

• yi is the actual value.

• ŷi is the predicted value.

• ȳi is the mean of actual values.

The coefficient of determination, or R2, measures how much of the variation in the dependent

variable can be explained by the independent variables in the model. A greater correlation and a

better fit of the predictive model are indicated by a higher R2.
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4.3 Experiment Results and Analysis

After cleaning the dataset of any outliers using the proposed enhanced DBSCAN technique, we

divided it into training and testing sets. We have made sure that our subsequent modelling approach

is more accurate and robust by removing these noisy data points. We have automated the process

of determining Eps values for DBSCAN using a newly presented method. Using Recursive Feature

Elimination, we were able to narrow down the features to ten that were most crucial for improving

our prediction models. After that, the XGBoost model—a robust gradient boosting algorithm—is fed

these chosen characteristics. Using a grid search method, the model’s hyperparameters are fine-tuned

to optimise its performance. In order to get the most accurate predictions from the model, grid search

determines which parameters work best.

4.4 Enhanced DBSCAN Model Comparison

• All Features in Enhanced DBSCAN: The model using DBSCAN produces an MSE of

0.001737 in this comparison, as shown in Table 4.1, but the model without DBSCAN has

a little higher MSE of 0.002294. With a lower MSE, the model that is based on DBSCAN

shows better prediction accuracy. In the same way, the RMSE of the DBSCAN-incorporated

model (0.041677) is lower than that of the non-DBSCAN-incorporated model (0.043602),

highlighting the benefit of DBSCAN incorporation. When it comes to MAE, the tendency is

the same: the model that incorporates DBSCAN has a lower error rate (0.018828) than the one

that does not (0.020667). In addition, the model that incorporates DBSCAN has a higher R2

value (96.9555%) compared to the model without DBSCAN (95.9957%), indicating a more

suitable fit to the data.

• Selected Features (Power, Wind Speed, and Wind Direction) with DBSCAN: By narrow-

ing our attention to a subset of the features, we can observe from Table 4.1 that the model

utilising DBSCAN performs superbly with an MSE of 0.001737, in contrast to the model de-

void of DBSCAN, which exhibits a larger MSE of 0.001928. Using this reduced set of features

does not affect the DBSCAN approach’s superior performance in terms of root-mean-square

error (RMSE) (0.041677 vs. 0.043915), mean absolute error (MAE) (0.018828 vs. 0.019462),

and root-square percentage (R2) (96.9555 vs. 96.6859). That the DBSCAN-based model

stands up well with varying feature sets can be observed.
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Table 4.1: Results w.r.t Feature Selection
Metric WITH DBSCAN WITHOUT DBSCAN

All Features Wind Speed,
Wind Direction,

All Features Wind Speed,
Wind Direction,

Wind Power Wind Power
MSE 0.001737 0.001901 0.002294 0.001928
RMSE 0.041677 0.043602 0.043602 0.043915
MAE 0.018828 0.018947 0.020667 0.019462
R2 96.9555% 96.6211% 95.9957% 96.6859%

4.5 Model Comparison with LSTM and SVM

In Table 4.2 and Fgures 4.7, 4.8, we compare the proposed model with DBSCAN against two other

models (LSTM and SVM).

• MSE: The effectiveness of the proposed model is evident as it surpasses the predictive accu-

racy of both LSTM (with an accuracy of 0.004645) and SVM (with an accuracy of 0.008374).

Notably, the DBSCAN model achieves this superiority by minimizing the Mean Squared Error

(MSE) to the lowest recorded value of 0.001737.

• RMSE: The RMSE of the proposed model, at 0.041677, is lower than that of the LSTM (at

0.068160) and SVM (at 0.091513) models, demonstrating that the DBSCAN-based model

yields more accurate predictions.

• MAE: With a minimum MAE of 0.018828 compared to LSTM’s 0.038600 and SVM’s

0.064810, the proposed model surpasses both LSTM and SVM, having reduced prediction

errors.

• R2: The R-squared value of 96.9555% is the highest for the proposed model, signifying its

ability to account for a larger portion of the variance in the target variable. This shows that the-

proposed model has better explanatory power in capturing and interpreting the data variability

compared to both LSTM (91.8571%) and SVM (85.6094%).

Table 4.2: Comparison of Proposed Model with LSTM & SVM
Metrics Proposed Model LSTM SVM
MSE 0.001737 0.004645 0.008374
RMSE 0.041677 0.068160 0.091513
MAE 0.018828 0.038600 0.064810
R2 96.9555% 91.8571% 85.6094%
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Figure 4.6: Actual Power vs Predicted Power (Comparison of Proposed with benchmark
methods)

Figure 4.7: MSE,RMSE,MAE Comparison of Proposed with benchmark methods
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Figure 4.8: R-Sqaured Comparison of Proposed with benchmark methods
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Chapter 5

FUTURE WORK AND CONCLUSION

For wind energy to be reliably and efficiently integrated into the power grid, wind power forecasting is

essential. Wind energy output is inherently unpredictable and erratic, which makes it difficult for grid

operators to maintain a steady power supply. In order to keep consumers’ electricity demands met

consistently and reliably, operators need accurate wind power forecasts that allow them to anticipate

and proactively control these changes. The DBSCAN-RFE-XGBoost model is our recommendation

for reliable wind power prediction. We have created a clustering technique called DBSCAN that

takes into account the SCADA dataset’s inherent uncertainty. This approach uses a K-dist plot and

the Knee Point Detection approach to automatically compute the epsilon value needed for DBSCAN

clustering. This eliminates the need for tedious, hand-tuning of parameters while yet guaranteeing

dataset flexibility. An outlier detection and removal approach is presented for use in clustering data.

We have utilized the preprocessed dataset first to extract tempoal features and then applied recursive

feature elimination (RFE) to choose most suitable features. When using the XGBoost algorithm to

forecast wind power, RFE is useful for determining which features are most relevant to use. We

used the SCADA dataset collected from Pakistan’s Three Gorges Wind Farm to evaluate our sug-

gested model’s performance using real-time data. By reducing Root Mean Squared Error (RMSE) by

38.89% and improving R-squared (R2) by about 5.10%, our model outperformed other benchmark

methods, proving the efficacy of our methodology.

Adding advanced feature extraction methods will greatly improve our model’s performance in

the next stages of our research. This requires diving farther into the input data to find and extract

important elements that could lead to better forecasts. Our goal is to discover links and patterns in

the data by using advanced algorithms and techniques for feature extraction. Additionally, we may

look at other approaches for prediction.
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