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Abstract

In this thesis we will present some results of variable viscosity for boundary layer

flow and heat transfer over an exponentially stretching sheet.Also some results of

MHD stagnation point flow with variable viscosity and variable thermal conductiv-

ity will also be discussed. Three different cases ie. constant fluid properties, variable

viscosity and the exponential temperature dependency will be considered to see the

solutions of the flow problems.

By using similarity parameters the non-linear partial differential equations are con-

verted in to non-linear odinary differential equations. The numerical solutions are

calculated by using a shooting technique and results will be compared by usnig a

MATLAB built-in solver bvp4c. Velocity and temperature curves are analyzed by

varying different values of prandtl number. Graphs have been developed to investi-

gate the impact of parameters on temperature and velocity profiles.
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Chapter 1

Introduction and Preliminaries

This chapter includes literature review and some basic definitions. Boundary layer

equations, relevant definitions to this research work and few details about numerical

methods will also be presented.

1.1 Literature review

The momentum and thermal boundary layers developing along a moving plate and

over a stretching sheet in a quiescent ambient is considered. While considering mag-

netohydrodynamic (MHD), temperature’s effect on viscosity and variable thermal

conductivity are observed.

Many industrial processes are dependent on the comprehension of fluid flow over

a surface.The first person who investigated the behaviour of boundary layer flow

over solid surface moving continuously with persistent rate of speed was none other

than Sakiadis [1]. Andersson and Aarseth [4] analyzed the effects of temperature

on variable fluid properties in the Sakidis flow problems. Elbashbeshy and Bazid

[5] investigated the influence of variable viscosity on heat transfer over a continuous

surface in motion. Hayat et al. [14] examined stagnation point flow of Jaffrey fluid

while incorporating thermal radiation and magnetic field effects. Swain et al. [26]
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analyzed the stagnation point flow with variable fluid properties under the general

setup of viscous, incompressible conducting fluid. Adnan et al. [27] studied bound-

ary layer flow and heat analysis along with convected heat, partial slip and suction

over a shrinking surface. Mukhopadhyay [28] studied MHD flow and analyzed heat

transfer while considering exponentially stretching sheet inserted in thermally lay-

ered medium. Parasad et al. [29] examined the influence of temperature dependent

fluid properties on hydrodynamic flow and heat transfer over a non-linear stretching

surface. Ishak [30] analyzed how radiation effect the MHD flow when an exponen-

tially stretching sheet is considered. Mustafa et al. [31] calculated the numerical

and series solutions for stagnation-point flow past an exponentially stretching sheet.

Subhas et al. [32] carried out an analysis to study the influence of variable viscos-

ity and variable thermal conductivity on mixed convection heat transfer due to an

exponentially stretching sheet with external magnetic field.

1.2 Preliminaries and basic definitions

1.2.1 Fluid

A material which can flow and deform continuously, no matter how small the shear

stress may be applied. The fluid flow and assume the shape of the container they

are poured into.

Although different in many respects both liquids and gases are classified as fluids

because of their common characteristic that they offer a permanent resistance to a

shearing force.

1.2.2 Boundary layer flow

When the fluid flows over a solid boundary, the layer of the fluid immediately in

contact with the surface, where the fluid flow is affected by the viscous forces is
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called boundary layer.

As the real fluid flows over a solid body the particles of the fluid cling on the surface

of a solid boundary. Velocity of the fluid particles on the surface will have the same

velocity as that of the surface of the solid boundary i.e. zero. As we start going up,

the velocity starts to rise which is a witness that there is an existence of velocity

gradient as we go away from the boundary of the sloid body. After certain height

and certain time velocity will no longer vary with distance and this velocity is called

the free stream velocity. So the veocity gradient exists in small layers above the

surface and beyond this velocity gradient will vanish. The region in which velocity

gradient is occurring i.e. velocity is varying with respect to the distance from the

surface of a body. This small layer is called boundary layer. (see Fig.1.1)

Figure 1.1: Boundary layer flow (Source: Internet).

1.2.3 Stagnation point flow

In a flow field stagnation point refers to a point where the fluid becomes stagnant

by the solid body. (see Fig.1.2)
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Figure 1.2: Stagnation point flow (Source: Internet).
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1.2.4 MHD

The analysis of magnetic properties of electrically conducting fluids is called mag-

netohydrodynamic (MHD). Plasmas, liquid metals and salt water or electrolytes are

some examples of magneto-fluids. The basic concept behind MHD is that magnetic

field may generate currents in the flowing conductive fluid.

1.2.5 Nusselt number

The dimensionless number which is regarded as the ratio of the thermal energy con-

vected to the fluid to the thermal energy conducted within the fluid. Mathematically

defined as Mustafa [33]:

:

Nux =
xqw

Tw − T0
(1.2.1)

where qw is the heat flux given by

qw = −k∂T
∂y

(1.2.2)

1.2.6 Skin friction coefficient

Measure of resistance between the fluid and solid surface is known as skin friction

coefficient. It is defined as,

Cf =
τw

ρUw
2 (1.2.3)

where Uw is the surface velocity and τw is the total wall shear stress.
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1.2.7 Prandtl number

A dimensionless number regarded as momentum diffusivity divided by thermal dif-

fusivity. Mathematically it is defined as:

Pr =
ν

α
(1.2.4)

where ν is momentum diffusivity defined as µ/ρ and α is thermal diffusivity defined

as κ/ρcp. Here µ, κ, cp and ρ represents dynamic viscosity, thermal conductivity,

specific heat and fluid’s density .

1.2.8 Reynolds number

A Reynolds number is regarded as a dimensionless number which is used to specify

the behaviour of the fluid flow i.e. whether flow is laminar or turbulent. It is the

fraction of inertial forces to viscous forces. Mathematically represented as:

Re =
UL

ν
(1.2.5)

where U , L and ν are velocity, reference length and viscosity of the fluid.

1.2.9 Thermal conductivity

The extent to which a specific material can transmit heat. It can be mathematically

expressed as,

k =
QL

A∆T
(1.2.6)
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1.2.10 Steady flows and unsteady flows

Steady flow refers to the fluid flow in which the properties of the fluid (velocity,

pressure, temperature etc.) within the control volume is independent of time i.e.

∂v

∂t
=
∂P

∂t
=
∂T

∂t
= 0 (1.2.7)

Non-steady flow refers to the fluid flow in which the properties of the fluid (velocity,

pressure, temperature etc.) within the control volume is time dependent i.e.

∂v

∂t
6= 0,

∂P

∂t
6= 0,

∂T

∂t
6= 0 (1.2.8)

1.2.11 Compressible flows and incompressible flows

Flows in which fluid’s density is variable are called compressible flows. For instance

air.

Flows in which fluid’s density is constant are called incompressible flows. For

instance water.

1.2.12 Mach number

Mach number is a dimensionless number representing the ratio of speed of object to

the speed of sound. Mathematically given as:

M =
u

c
(1.2.9)

where the velocity of the object is denoted by u and speed of sound is denoted by c.

Mach number is an important parameter to classify the fluid either as incompressible

or compressible. Fluids having Mach number greater than 0.3 are called compress-

ible fluids and fluids have Mach number less than 0.3 are called incompressible fluids.
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1.2.13 Laminar and turbulent flow

In laminar flow the fluid particles follow a definite path that never interfere with

one another. In turbulent flows the fluid particles undergoes irregular mixing and

fluctuations and does not follow a definite path.

1.2.14 Newtonian fluid

A fluid that experiences shear stress that is linearly correlated to the strain rate.

Mathematically defined as:

τxy ∝
du

dy
(1.2.10)

τxy denotes shear stress and du/dy denotes deformation rate respectively. Some

common examples of Newtonian fluids are air and water.

1.3 Governing equations

The essentials of fluid dynamics are continuity equation, the conservation of mo-

mentum and energy equation which can be mathematically explained as follows:

1.3.1 Continuity equation

The mass conservation principle deals with the equation of continuity.

∂ρ

∂t
+∇.(ρ~v) = 0 (1.3.1)

Above mention equation represents continuity equation for compressible fluid. In

case if the flow is steady we consider,

∂ρ

∂t
= 0
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and equation (1.3.1) will reduce to

∇.(ρ~v) = 0

Further if we consider density is constant then we have,

~∇.~v = 0.

1.3.2 Conservation of momentum

The vector equation of conservation of momentum is expressed as

ρ(
d~v

dt
) = −∇.Π + ρ~g (1.3.2)

where
d~v

dt
represents material derivative and right side of equation (1.3.2) represents

stresses applied on the surface and body force due to gravity.

So,

~∇.Π = −~∇P + ~∇.τ

The surface forces are due to the stresses on the sides of control surface. These

stresses are the sum of hydrostatic pressure and the viscous stresses (δij) which

arise from the fluid motion.

Π = −τ

equation (1.3.2) becomes

ρ(
d~v

dt
) = −∇.ρ+∇.δ + ρ~g.

1.3.3 Conservation of energy

The equation for conservation of energy is derived from the first law of thermody-

namics ,whereas ,first law of thermodynamics states that,

Rate of increase of the sum of kinetic and internal energies equals the rate of energy
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addition (by flow and by heat conduction) plus the rate at which fluid outside V is

doing work on the fluid inside V .

ρ
dÛ

dt
= −~∇.~q − ~∇.(Π.~v) + (~∇.Π).~v

1.4 Numerical methods

In this study we convert PDEs in to ODEs to obtain the solution of the problem

with the use of numerical methods. There are few numerical methods like shooting

method, bvp4c and finite difference method used to convert boundary value problem

into an initial value problem.

This research deals with the shooting method and bvp4c to obtain numerical ap-

proximation of the problem. Furthermore through similarity transformations PDEs

are converted in to ODEs. Some basic features of these numerical methods are

mentioned below.

1.4.1 Shooting method

In numerical analysis, the shooting method is a numerical method approach that

works by reducing the boundary value problem into the solution of an initial value

problem. Shooting technique can be used for odinary linear differential equations

as well as non-linear ODEs . The solution begin to occurr at one extreme of the

boundary value problem and shoot to the other extreme until the boundary condition

to the other extreme approaches to its accurate value.

Let us take a second order two point BVP subjected to the boundary conditions

and is expressed in the following form as

q′′ = f(x, q, q′), q(a) = α, q(b) = β, (1.4.1)

where α,β are unknowns.

Following method is adapted to convert Eq. (1.4.1) into an IVP.
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Let us consider the IVP

q′′ = f(x, q, q′), q(a) = α, q′(a) = λ. (1.4.2)

In the above Eq. (1.4.2) λ is unknown so we have to find the λ because value of λ

will help us calculating the value of q(b) = β. Omitting the few cases, the strategy

for both linear and non-linear shooting method is identical to solve the IVPs. Non-

linear problems has the similar solution as linear problems except that the base

solution can not be expressed as a linear combination of each other. In case of

non-linear shooting method we use an iterative technique inspite of using a simple

formula so that solutions of two IVPs can be combined. We have to find the zero of

the function that will represent the error i.e. the amount by which the solution to

IVP fails to satisfy the boundary conditions at x=b. It can be explained in another

similar statement that the amount by which q(b, λ) misses the target value β. The

error is represented by F (λ) which is a function of the initial slope of our own choice.

We obtain different errors by taking different values of λ so F (λ) is defined as

F (λ) = y(b, λ)− β = 0. (1.4.3)

When q′(a) = λ∗ has been calculated then the q′(x, λ) is the wanted solution. Now

zero of the error function can be found by two methods. One method is Secant

method and the other one is Newton’s method. We will only explain Newton’s

method here. For Newton’s method, we will find derivative of the zero function i.e.

F (λ) to choose the value of λ∗ such that Eq. (1.4.3) holds. Then

λ∗ =
q(b)− q(a)

b− a
= q′(a) (1.4.4)

λ∗ =
β − α
b− a

(1.4.5)

We use Newton’s method to approximate the solution of q(b, λ)− β = 0 and find a

next guess λi+1.

λi+1 = λi −
y′(b, λi)− β
y′(b, λi)

(1.4.6)
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1.4.2 bvp4c

MATLAb yield a convenient and suitable routine known as bvp4c, which is able

to resolve quite sophisticated problems. The algorithm of bvp4c depends on an

iteration formation to solve a scheme of non-linear equations. Bvp4c is premarily

a collocation formula in which solution begins with an initial guess provided initial

mesh points.
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Chapter 2

SOME RESULTS OF VARIABLE

VISCOSITY FOR BOUNDARY

LAYER FLOW AND HEAT

TRANSFER OVER AN

EXPONENTIALLY

STRETCHING SHEET

Chapter 2 is structured in a systematic way. Section 2.1 of this chapter is formulation

of the problem. Three different cases are discussed in section 2.2. Implementation

of numerical technique is in section 2.3 and section 2.4 is all about results and

discussions.
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2.1 Mathematical Model

We assume a steady, two dimensional, laminar flow of a Newtonian fluid past an

exponentially stretching sheet.Temperature of ambient fluid is constant and is de-

noted by T0 .Also the temperature of sheet is denoted by Tw. The flat surface is

moving in the positive x-direction with constant speed u and y- axis is normal to it.

Considering these assumptions, the governing equations following the general set up

of Anderson and arseth are as follows [4]:

∂x(ρu) + ∂y(ρv) = 0, (2.1.1)

ρuux + ρvuy − ∂y(µuy) = ρue
∂ue
∂x

(2.1.2)

Cp(ρuTx + ρvTy)− ∂y(kTy) = 0 (2.1.3)

where ρ is the density of the fluid and velocity in the horizontal direction is u

and the velocity in the vertical direction is v, Cp represents the specific heat The

temperature of the fluid is represented by T and thermal conductivity of the fluid

is denoted by k.

The flow problem has the following boundary conditions:

(u(x, 0), v(x, 0), T (x, 0)) = (Uw = ae
x
L , 0, Tw) (2.1.4)

u→ Ue(x) = be
x
L , T → T∞ as y →∞

We employ the following similarity variables[4],

η =

√
a

2ν0L
e

x
2L

∫ y

0

ρ

ρ0
dy, ψ = ρ0

√
2aν0Le

x
2Lf(η), θ(η) =

T − T∞
Tw − T∞

,

(2.1.5)
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A stream funtion ψ(x, y) is defined as: [4]

ρu =
∂ψ

∂y
, ρv = −∂ψ

∂x
. (2.1.6)

The continuity equation is automatically satisfied under condition (2.1.6). The

velocity components u and v are given by:

u = ae
x
Lf ′(η), v = −ρ0

ρ

√
aν0
2L

e
x
2L [f(η) + ηf ′(η)] (2.1.7)

Using Eqs. (2.1.5), (2.1.6) and (2.1.7) into Eqs. (2.1.1), (2.1.2) and (2.1.3) we

get

2f ′2 − ff ′′ = (
µρ

µ0ρ0
f ′′)′ + 2ε2, (2.1.8)

Pr0
Cp
Cp0

fθ′ +

(
kρ

k0ρ0
θ′
)′

= 0, (2.1.9)

where Pr0 = µ0Cp0/k0 is Prandtl number, ε = b
a

,

Boundary conditions for similarity variable will be transformed as follows:

f(0) = 0, f ′(0) = 1, θ(0) = 1,

f ′(η) = ε, θ(η) = 0 as η →∞, (2.1.10)

the prime represents differentiation with respect to η, f ′ and θ represent dimension-

less velocity and temperature respectively.

The skin friction coeffcient Cf and local Nusselt number Nux are defined as follows

Mustafa [33]:

Cf =
τw
ρU2

w

, Nux =
xqw

Tw − T0
, (2.1.11)

15



where τw is the shear stress and qw is the heat flux, and are defined as :

τw = µw
∂u

∂y
, qw = −k∂T

∂y
, (2.1.12)

using equation (2.1.11) and (2.1.12) we get

CfRe
1/2 =

1√
2L
f ′′(0), Nux =

−xθ′(0)√
2L

Re1/2, (2.1.13)

where Re denotes the local Reynolds number.

Following cases are discussed here as mentioned in Andersson and Aarsaeth[4] .

2.2 Special Cases

2.2.1 Case A: Constant Fluid Properties

Considering fluid properties to be constant, the similarity variable η is transformed

to Blasius variable [2, 6].

η =

√
a

2ν0L
e

x
2Ly, , (2.2.1)

and Eqs. (2.1.8) and (2.1.9) become

f ′′′ + ff ′′ − 2f ′2 + 2ε2 = 0 (2.2.2)

θ′′ + fθ′Pr0 = 0. (2.2.3)

Boundary conditions in this case will also remain the same as calculated above in

Eq. (2.1.10) Ishak et al.[4].

2.2.2 Case B: Variable Fluid Properties

Andersson and Aarseth [4], Elbashbeshy and Bazid [5] and Pantokratoras[14] fol-

lowing the work of Pop et al. considered viscosity as a function of temperature by
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considering other fluid properties to be constant.

The momentum boundary layer Eq. (2.1.8) in this case takes the form

2f ′2 − ff ′′ = (
µ

µ0

f ′′)′ + 2ε2, (2.2.4)

and the thermal boundary layer Eq. will remain the same as in case A. For a

viscous fluid, Pop et al.[6] followed Lai and Kulacki [7] and proposed following

correspondence between viscosity and temperature and demonstrated µ(T ) [1], [5],[7]

as follows:

µ(T ) =
µref

[1 + γ(T − Tref )]
(2.2.5)

Writing Tref ≈ To, then formula is rewritten as [4]

µ =
µ0

1− T−T0
θref (Tw−T0)

=
µ0

1− θ(η)
θref

, (2.2.6)

here θref ≡ −1
(Tw−To)γ and operating temperature difference is represented by (Tw−T0)

= ∆T [1].

2.2.3 Case C: Exponential Temperature Dependency

In this case, again viscosity is taken variable similar to case B but its different

realtion with temperature is used here.[1]

ln(
µ

µref
) = −2.10− 4.45

Tref
T

+ 6.55(
Tref
T

)2, (2.2.7)

was suggested by White [1]. Here µref = 0.00179 kg/ms and Tref = 273 K.
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2.3 Numerical Methods

Shooting method is employed to solve numerically the non linear odinary differential

equations along with boundary conditions for different cases.The purpose of shooting

method is t0 convert a boundary value problem into an initial value problem. Two

computing steps are generally involved in shooting method.The first one is to find

the root by Newton-Raphson method and in the second step fifth order Runge-Kutta

is used to obtain the solution of an initial value problem. We compare the results

of shooting method by bvp4c which is a built-in solver in MATLAB.

Numerical solutions for the case A,B and C can be calculated with the following

form of governing equations[9] The momentum and energy equations for the case A

are,

f ′′′ + ff ′′ − 2f ′2 + 2ε2 = 0 (2.3.1)

θ′′ + fθ′Pr0 = 0. (2.3.2)

The momentum equation for variable viscosity for case B becomes,

f ′′′ = − f ′′θ′

0.25− θ
− 0.25− θ

0.25
[ff ′′ − 2f ′2 + 2ε2] (2.3.3)

The momentum equation for exponential dependence of viscosity on temperature

for case C becomes,

f ′′′ = (2f ′2 − ff ′′ − 2ε2)(
µo
µ

)− f ′′θ′(Tw − T0)(4.45
Tref
T 2
− 13.1

T 2
ref

T 3
) (2.3.4)

here [1]
µ

µ0

=
µref
µ0

exp(−2.10− 4.45(
Tref
T

) + 6.65(
Tref
T

)2). (2.3.5)
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2.4 Results and Discussions

This section involves tabular and graphical representation of numerical results.

Computations are performed to study the effect of variation of prandtl number

Pr, velocity ratio parameter denoted by ε. We observe variation in velocity gradient

f”(0) and temperature gradient θ′(0) by changing Prandtl number. A slight change

is observed in skin friction coefficient when prandtl number is increased keeping

the velocity ratio parameter constant whereas the tenperature shows the increasing

behaviour as shown in table 1.While for both case B and C skin friction coefficient

and temperature gradient both shows the increasing behaviour.
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Table 2.1: Values of −∂2f
∂η2

(0) and − ∂θ
∂η

(0) for different parameters for Case

A.

bvp4c shooting method

Pr ε −∂2f
∂η2

(0) − ∂θ
∂η

(0) −∂2f
∂η2

(0) − ∂θ
∂η

(0)

1 0.1 1.253586 0.57114134 1.25358 0.5714134

0.7 0.1 1.2535866 0.4519569 1.25358 0.451957

10 0.1 1.2535804 2.2661002 1.25358 2.26609

Table 2.2: Values of −∂2f
∂η2

(0) and − ∂θ
∂η

(0) for different values of M for Case

B.

bvp4c shooting method

Pr ε −∂2f
∂η2

(0) − ∂θ
∂η

(0) −∂2f
∂η2

(0) − ∂θ
∂η

(0)

1 0.1 2.8760822 0.4394255 2.8760559 0.43942452

0.7 0.1 2.859222 0.34476157 2.85919 0.344761

10 0.1 3.2192836 1.9808132 3.21926 1.9808
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Table 2.3: Values of −∂2f
∂η2

(0) and − ∂θ
∂η

(0) with different values of ε for Case

C.

bvp4c shooting method

Pr ε −∂2f
∂η2

(0) − ∂θ
∂η

(0) −∂2f
∂η2

(0) − ∂θ
∂η

(0)

1 0.1 2.7696185 0.44790541 2.7695906 0.44790573

0.7 0.1 2.7487684 0.35107849 2.74871 0.351077

10 0.1 3.1656117 2.0029514 3.1656 2.00294

Table 2.4: Comparison of values of wall temperature gradient [− ∂θ
∂η

(0)] with-

values of Magyari and Keller[10] and Z.Abbas et al. [11] for different

values of prandtl numbers in case with a=0.

Pr Magyari and Keller Z.Abbas et al. Present

0.5 -0.330493 -0.330493 0.330494

1 -0.549643 -0.549643 0.549645

3 -1.122188 -1.122147 1.122092

5 -1.521243 -1.521243 1.521245

8 -.1991847 -1.1991846 1.991842

10 -2.257429 -2.257424 2.257424

In order to demonstrate the effects of viscosity and thermal conductivity, three

different cases have been solved. T0 is the ambient fluid temperature which is taken

as 278K for water. TW is the surface temperature taken as 358K. Results for constant

fluid properties will be compared with inversely linear viscosity variation and the

exponential variation. θref is taken as -0.25 for water as suggested by Ling and

Dybbs[22]. The velocity and temperature profiles are shown in Fig. 2.1 and 2.2.
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Figure 2.1: Depiction of velocity curve for

case A with distinct values of Prandtl num-

ber (ε = 0.1).
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Chapter 3

Some Results of variable Viscosity

for MHD Boundary Layer Flow

Over an Exponentially Stretching

Sheet

3.1 Mathematical Model

Let us consider two dimensional steady incompressible flow near a stagnation point

located at y=0 over a stretching sheet. B0 is the uniform magnetic field that is

applied normal to the sheet.A small reynold’s number is a justification to neglect

the induced magnetic field for MHD flow. The flow is restricted to y > 0. Tw(x) is

the temperature of the sheet.We suppose T = Tw(x) = T0 + T∞e
cx
2L where T0 is the

ambient temperature and c is constant.

The basic equations governing such type of MHD flow can be written as follows

[4]:
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∂x(ρu) + ∂y(ρv) = 0 (3.1.1)

ρ(uux + vuy) = ∂y(µuy) + ρU0
dU0

dx
+ σB2

0(U0 − u) (3.1.2)

ρCp(uTx + vTy) = ∂y(kTy) (3.1.3)

where ρ, µ and Cp and k represents fluid viscosity, coefficient of fluid viscosity,

specific heat and variable thermal conductivity. Temperature of the respective fluid

is represented by T .

The suitable boundary conditions for the velocity and temperature components for

Eqs. (3.1.1)-(3.1.3) are given by;

(u(x, 0), v(x, 0), T (x, 0)) = (Uw = ae
x
L , 0, Tw = T0 + T∞e

cx
2L ), (3.1.4)

u→ U0(x) = be
x
L , T → T0 as y →∞.

Here stretching velocity of the fluid in the x-direction is Uw(x) = ae
x
L at y=0

when the plate is stretched along x-axis.The temperture of the stretching sheet is

Tw where a and b are constants.

The following similarity variables are introduced in this problem [4],

η =

√
a

2ν0L
e

x
2L

∫ y

0

ρ

ρ0
dy, ψ = ρ0

√
2aν0L

x
2Lf(η), θ(η) =

T − T0
Tw − T0

,

(3.1.5)

where ψ is the stream function [4]. Velocities and the stream function has the

following relationship [6]

ρu =
∂ψ

∂y
, ρv = −∂ψ

∂x
. (3.1.6)
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x and y components of velocity are produced as

u = ae
x
Lf ′(η), v = −ρ0

ρ

√
aν0
2L
e

x
L [f(η) + ηf ′(η)] (3.1.7)

ux and uy are calculated as follows

∂u

∂x
= ux =

a

L
e

x
Lf ′(η) +

a

2L
e

x
Lηf ′′(η) (3.1.8)

∂u

∂y
= uy = ae

x
Lf ′′(η)

√
a

2ν0L
e

x
2L
ρ

ρ0
(3.1.9)

Multiply ∂u
∂x

by ρu and ∂u
∂y

by ρv we get,

ρu
∂u

∂x
=
ρa2

L
e

2x
L f ′2(η) +

ρa2

2L
e

2x
L ηf ′(η)f ′′(η) (3.1.10)

and

ρv
∂u

∂y
= −ρa

2

2L
e

2x
L f(η)f ′′(η)− ρa2

2L
e

2x
L ηf ′(η)f ′′(η) (3.1.11)

Adding above two equations we get,

ρu
∂u

∂x
+ ρv

∂u

∂y
=

ρa2

L
e

2x
L f ′2(η)− 1

2
f(η)f ′′(η) (3.1.12)

Next we multiply µ by ∂u
∂y

and calculating a derivative with respect to y, equation

changes to

∂y(µ
∂u

∂y
) = ∂y(µae

x
Lf ′′(η)

√
a

2ν0L
e

x
2L
ρ

ρ0
) (3.1.13)

∂y(µ
∂u

∂y
) =

a2

2ν0L
e

2x
L
ρ

ρ0
[µ
ρ

ρ0
f ′′(η)

′
] (3.1.14)

Subsituting all above equations in Eq (3.1.2) transform them into following BVP(
ρu
∂u

∂x
+ ρv

∂u

∂y

)
=

∂

∂y

(
µ
∂u

∂y

)
+ ρU0

dU0

dx
+ σB2

0(U0 − u), (3.1.15)
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(
ρa2

L
e

2x
L f ′2(η)−1

2
f(η)f ′′(η)) = (

a2

2ν0L
e

2x
L
ρ

ρ0
[µ
ρ

ρ0
f ′′(η)

′
])+ρ(be

x
L )(

b

L
e

x
L )+σB2

0((be
x
L )−(ae

x
Lf ′(η))),

(3.1.16)

Multipling whole equation by L

ρa2e
2x
L

we get,

f ′2 − 1

2
ff ′′ =

1

2
[
µρ

µ0ρ0
f ′′]′ +

b2

a2
+
σB2

0L

ρae
x
L

(
b

a
− f ′(η)) (3.1.17)

f ′2 − 1

2
ff ′′ =

1

2
[
µρ

µ0ρ0
f ′′]′ + λ2 +

σB2
0L

ρae
x
L

(λ− f ′(η)) (3.1.18)

2f ′2 − ff ′′ = [
µρ

µ0ρ0
f ′′]′ + 2λ2 +

2σB2
0L

ρae
x
L

(λ− f ′(η)) (3.1.19)

2f ′2 − ff ′′ = [
µρ

µ0ρ0
f ′′]′ + 2λ2 +M(λ− f ′(η)) = 0 (3.1.20)

M is a magnetic parameter equal to
2σB2

0L

ρae
x
L

and λ a velocity ratio parameter b
a

,

Now differentiating T with respect to x and y, As

T = T0 + θ(TW − T0) (3.1.21)

From boundary condition we have,

T = Tw(x) = T0 + T∞e
cx
2L (3.1.22)

so,

Tw(x)− T0 = T∞e
cx
2L (3.1.23)
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so eq 1.1.21 will become

T = T0 + θ(T∞e
cx
2L ) (3.1.24)

Now differentiating T with respect to x and y ,

∂T

∂x
= θ′T∞e

cx
2L

√
a

2ν0L

e
x
2L

2L

∫
ρ

ρ0
dy + θT∞e

cx
2L

c

2L
(3.1.25)

∂T

∂y
= θ′T∞e

cx
2L

√
a

2ν0L
e

x
2L
ρ

ρ0
(3.1.26)

∂

∂y
(κ
∂T

∂y
) =

aρe
x
L

2µ0L
(Tw − T0)(κθ′

ρ

ρ0
)
′

(3.1.27)

Putting all these above in energy equation leads to,

Pr0
Cp
Cp0

(cf ′θ − fθ′) =

(
k

k0
θ′
ρ

ρ0

)′
, (3.1.28)

where Pr0 is a Prandtl number equal to µ0Cp0/k0 and ν0 = µ0
ρ0

The boundary conditions are transformed in to the following form :

f ′(0) = 1, θ(0) = 1, , f(0) = 0

f ′(η) = λ, θ(η) = 0 as η →∞, (3.1.29)

the prime is a differentiation with respect to η where f ′ and θ denote velocity and

temperature and both are dimensionless.
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3.2 Special Cases

3.2.1 Case A: Constant Fluid Properties

Considering all fluid properties constant in this case will transform Eq 1.1.20 and

1.1.28 to

f ′′′ + 2λ2 +M(λ− f ′)− 2f ′2 + ff ′′ = 0 (3.2.1)

θ′′ + Pr0(cf
′θ − fθ′) = 0. (3.2.2)

Above two equations are subject to same boundary conditions (1.1.29) Eq. (10)

Ishak et al.

3.2.2 Case B: Variable Fluid Properties

Viscosity and thermal conductivity both are taken variable in this case.

Consider momentum boundary layer equation in this case,

(
µρ

µ0ρ0
f ′′)′ + 2λ2 +M(λ− f ′(η))− 2f ′2 + ff ′′ = 0. (3.2.3)

For a viscous fluid, Bachok et al.[21] followed Ling and Dybbs [22] and assumed

that the viscosity varies inversely with temperature. Lai and Kulacki [20] suggested

µ(T ) [4], [20],[22] given by the following relation

µ(T ) =
µref

[1 + γ(T − Tref )]
(3.2.4)

Here γ dependent on a reference temperature Tref , is a fluid property. Writing Tref

≈ To, then formula (14) is rewritten as [4]
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µ =
µ0

1− T−T0
θref (Tw−T0)

=
µ0

1− θ(η)
θref

, (3.2.5)

Putting value of the µ
µ0

from the above relation in momentum boundary layer equa-

tion,

[
1

1− θ(η)
θref

f ′′]′ + 2λ2 +M(λ− f ′(η))− 2f ′2 + ff ′′ = 0 (3.2.6)

[

θ′(η)
θref

f ′′

(
θref−θ(η)
θref

)2
+

1
θref−θ(η)
θref

f ′′′] + 2λ2 +M(λ− f ′(η))− 2f ′2 + ff ′′ = 0 (3.2.7)

After simplification we get,

f ′′′ = − θ′(η)

(θref − θ(η))
f ′′+

(θref − θ(η))

θref
(−2λ2−M(λ−f ′(η))+2f ′2−ff ′′) (3.2.8)

Now consider energy equation,

Pr0
Cp
Cp0

(cf ′θ − fθ′) =

(
k

k0
θ′
ρ

ρ0

)′
, (3.2.9)

As κ is a variable so,

κ = κ0(1 + λθ) (3.2.10)

κ

κ0
= (1 + λ

T − T0
Tw − T0

) (3.2.11)
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κ

κ0
= (1 + λθ) (3.2.12)

Considering all other fluid properties to be constant energy equation will become,

Pr0(cf
′θ − fθ′) =

(
k

k0
θ′
)′
, (3.2.13)

Pr0(cf
′θ − fθ′) = ((1 + λθ)θ′)′, (3.2.14)

Pr0(cf
′θ − fθ′) = (1 + λθ)θ′′ + λθ′2, (3.2.15)

where θref ≡ −1
(Tw−To)γ and operating temperature difference is denoted by (Tw − T0)

= ∆T [4].

3.2.3 Case C: Exponential Temperature Dependency

Viscosity and thermal conductivity are again considered variable in this case,due to

which energy equation remain the same but the relation for temperature dependent

viscosity takes another form [4]

loge(
µ

µreference
) = c1 + c2

Treference
T

+ c3(
Treference

T
)2, (3.2.16)

here c1 = −2.10, c2 = −4.45 , c3 = 6.55, µreference = 0.00179 kg/ms

and Treference = 273 K.

3.3 Results and Discussions

In the current section, numerical results are presented in tabular and graphical forms.

Shooting method is employed to solve the system of non-linear ODEs numerically.

Numerical results obtained from this method are then compared with bvp4c. Com-

putations are carried out to investigate the effect of variation of Prandtl number
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Pr, magnetic parameter M, ε denoting velocity ratio parameter, temperature index

parameter c.

Variation of different parameters shows variation in velocity gradient −f ′′(0) and

temperature gradient −θ′(0) and given in tables (3.1-3.3). Increasing prandtl num-

ber shows an increase in temperature gradient whereas skin coefficient is decreas-

ing. When magnetic parameter is increased, an increasing effect on skin friction

coefficient is observed while temperature gradient decreases for the case A and B.

Comparison of three different cases have been showed below.
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Table 3.1: Numerical output of -∂
2f
∂η2

(0) and − ∂θ
∂η

(0) for Case A.

bvp4c Shooting Method

Pr M ε c −∂2f
∂η2

(0) − ∂θ
∂η

(0) −∂2f
∂η2

(0) − ∂θ
∂η

(0)

0.7 0.1 0.1 1 1.285658 0.7755519 1.285651 0.7755509

1 - - - 1.285684 0.9713938 1.285651 0.9713867

3 - - - 1.285666 1.874469 1.285651 1.874469

7 - - - 1.285653 3.015463 1.285651 3.015476

10 - - - 1.285652 3.661816 1.285652 3.661843

0.7 0.2 - - 1.316948 0.7698457 1.316924 0.7698421

- 0.3 - - 1.347466 0.7643757 1.347458 0.7643752

- 0.4 - - 1.377331 0.7591334 1.377304 0.7593398

- 0.5 - - 1.406535 0.7540962 1.406506 0.7540921

10 0.5 0.5 -0.5 0.9479515 1.379364 0.9479514 1.379354

- - - 0 0.9479518 2.347711 0.9479518 2.347687

- - - 1 0.9479533 3.758663 0.9479514 3.758704

- - - 2 0.9479518 4.831548 0.9479514 4.831617

- - - -1.5 0.9479516 2.569593 0.9479514 2.569553

10 0.1 0.1 1 1.285651 3.661843 1.285651 3.661843

- - 0.2 - 1.221606 3.681157 1.221604 3.681183

- - 0.3 - 1.133234 3.706352 1.133233 3.706377

- - 0.4 - 1.023311 3.735983 1.023461 3.7735959

- - 0.5 - 0.8938668 3.768995 0.8938667 3.769038
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Table 3.2: Numerical output of −∂2f
∂η2

(0) and − ∂θ
∂η

(0) for Case B.

bvp4c shooting method

M Pr ε c −∂2f
∂η2

(0) − ∂θ
∂η

(0) −∂2f
∂η2

(0) − ∂θ
∂η

(0)

0.1 1 0.1 1 2.9848125 0.71666998 2.984761 0.7166663

0.2 - - - 3.0544435 0.70954247 3.054388 0.7095464

0.3 - - - 3.1223643 0.70288331 3.122316 0.7028884

0.4 - - - 3.1887519 0.6966408 3.188675 0.6966449

0.5 - - - 3.2536403 0.69076563 3.0545405 0.70954847

Table 3.3: Numerical output of −∂2f
∂η2

(0) and − ∂θ
∂η

(0) for Case C.

bvp4c shooting method

ε c M Pr −∂2f
∂η2

(0) − ∂θ
∂η

(0) −∂2f
∂η2

(0) − ∂θ
∂η

(0)

0.1 1 5 1 3.7524107 0.64851597 3.757235 0.6628378

0.2 - - - 3.480537 0.6994253 3.480876 0.7007433

0.3 - - - 3.162261 0.729269 3.162306 0.7295696

0.4 - - - 2.8049452 0.74943324 2.804935 0.7495075

0.5 - - - 2.4125211 0.76416864 2.412513 0.7641879
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Table 3.4: Numerical output of −∂2f
∂η2

(0) and − ∂θ
∂η

(0) (M= ε=1/10 and c=1)

bvp4c shooting method

Cases ε Pr −∂2f
∂η2

(0) − ∂θ
∂η

(0) −∂2f
∂η2

(0) − ∂θ
∂η

(0)

0.1 0.7

A 1.285658 0.7755519 1.285651 0.7755509

B 2.9599614 0.56290812 2.9599228 0.56290653

C 2.8069739 0.57720581 2.8069414 0.57720408

0.1 1

A 1.285684 0.9713938 1.285651 0.9713867

B 2.9848125 0.71666998 2.984761 0.7166663

C 2.8382754 0.73472495 2.8382053 0.73474384

0.1 10

A 1.285652 3.661816 1.285652 3.661843

B 3.4370474 3.0775832 3.4371001 3.0774977

C 3.3590037 3.1109399 3.3590036 3.110923

Table 3.5: Comparison of values of wall temperature gradient [− ∂θ
∂η

(0)] with-

values of Magyari and Keller[10] for different values of prandtl numbers in case with

c=0.
Pr Magyari and Keller [10] Present Results

0.5 -0.594338 0.5943396

1 -0.954782 0.9547853

3 -1.869075 1.869071

5 -2.500135 2.500116

8 -3.242129 3.242075

10 -3.660379 3.660302
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Three different cases are represented together to demonstrate the influence of

temperature dependent viscosity. Tw is the surface temperature taken as 358K. T0

=278K is the temperature of the ambient fluid. Figures 3.1 and 3.2 are produced to

show velocity and temperature results for various cases (A,B,C). In case C, reduction

in temperature profile can easily be seen in comparison with the remaining two

cases, i.e. A and B. Figs. 3.3-3.7 shows the velocity and temperature profiles when

magnetic parameter is varied. The effect of variation of magnetic parameter can

be clearly observed. The presence of a magnetic field to an electrically conducting

fluid give rise to a resistive force called the Lorentz force. The motion of the fluid

become slow because of this force. Lorentz force enhances when magnetic parameter

is enhanced, due to which fluid motion decreases and momentum boundary layer

thickness decrease. Thickness of thermal boundary layer increases with an increase

of magnetic parameter. While in all other cases thickness of thermal boundary layer

decreases. Owing to an increase in c the width of thermal boundary layer reduces

which is depicted in curves 3.8-3.10.

Width of thermal boundary layer decreases because of an increase in the prandtl

number whereas momentum boundary layer remains unchanged Temperature Profile

reduces with the decrease in Prandtl number which is shown in Fig. 3.12 while

variation of Prandtl number causes no change in velocity profile. Infuence of change

of parameter ε is shown in Figs. 3.15-3.18, for the two cases i.e. A and C.
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Figure 3.1: Depiction of velocity curve for

distinct cases (Pr= 0.7, c = 1 and m= ε =

0.1).
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Figure 3.2: Depiction of temperature

curve for distinct cases (Pr= 0.7, c = 1 and

m= ε = 0.1).
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Figure 3.3: Depiction of velocity curve

for distinct values of Magnetic parameter m

(m=0.5,5.5,10.5,15.5) with c= 1, ε= 0.1 and

Pr=0.7.
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and Pr=0.7.
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Figure 3.5: Depiction of velocity curve

for distinct values of Magnetic parameter m

with c = 1, ε = 0.1 and Pr=0.7.
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Figure 3.6: Depiction of temperature

curve for distinct values of m ( ε =0.1 with

c = 1and Pr=o.7).
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Figure 3.7: Depiction of velocity curve for

distinct values of m (c = 1, ε = 0.5 and

Pr=10).
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Figure 3.8: Depiction of temperature

curve for distinct values of temperature in-

dex parameter c (c=3,5,10,15) and ε =0.1

and Pr=10.
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Figure 3.9: Depiction of velocity curve for

distinct values of n (c = 1, m=5, Pr=1 and

ε = 0.1).
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Figure 3.10: Depiction of temperature

curve for distinct values of n with m=5, c

= 1, ε = 0.1 and Pr=1.
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Figure 3.11: Depiction of velocity curve

for distinct values of Prandtl with m=0.5.
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Figure 3.12: Depiction of temperature

curve for distinct values of Prandtl with

m=0.5.
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Figure 3.13: Effect on velocity curve by

varying Prandtl number with m=5.
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Figure 3.14: Effect on temperature curve

by varying Prandtl number with m=5.
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Figure 3.15: Difference in velocity curve

depicting Case C for distinct values of ε with

m=0.1, Pr=0.7
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Figure 3.16: Difference in temperature

curve depicting Case C for distinct values

of ε (m=0.1, Pr=0.7)
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Chapter 4

Conclusion

In this chapter, all the results of previous chapters are concluded concisely. In this

dissertation, we have studied MHD flow with variable fluid properties over an ex-

ponentially stretching sheet. Variable viscosity and variable thermal conductivity

are mainly focused in this research while taking other fluid properties as constant.

Non-linear PDEs are converted into non-linear ODEs by employing similarity trans-

formations. We have examined different cases while taking variable thermal con-

ductivity along with the exponential case of temperature dependency of the fluid in

order to observe the MHD flow and investigation of heat transfer over a stretching

sheet. The effects of various paramters such as magnetic parameter M, Prandtl

number Pr, velocity ratio paramter ε and temperture index parameter c on MHD

flow and heat transfer are studied. Numerical results for skin friction and local Nus-

selt number are calcultaed and presented in tables. Velocity and temperature curves

are presented graphically and comparison of numerical calculations with previous

literature has also been done.
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