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Abstract

In this thesis the trajectories of the timelike and null geodesics for radial and circular motion

of Schwarzschild black hole with string cloud background are investigated and compared

with Schwarzschild case without string clouds. It is found that in the presence of string

cloud parameter the horizon is larger than the Schwarzschild horizon. Effective potential

is calculated, it is observed that the effective potential decreases for the increasing value of

string cloud parameter. It is also found that for larger value of string cloud parameter the

circular orbit of photon has larger radius and vice versa. Hence, as the value of string cloud

parameter increases the particle can more easily escape to infinity. Stability of circular orbits

is also discussed.
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Chapter 1

Introduction

The inconsistency of Newtonian mechanics with Maxwell’s equation of electromagnetism

led to the development of Special Relativity (SR). Theory of SR was introduced in 1905, by

Albert Einstein, in his paper “On the Electrodynamics of Moving Bodies”. He made major

changes to mechanics to handle situations involving motions nearing speed of light. SR is

based on two postulates. First, the laws of physics are invariant for all non-accelerating

observer in all inertial frames. Second, the speed of light is constant in vacuum (not relative

to the movement of the observer). The theory is special in a way that it only applies in the

special case where the curvature of spacetime due to gravity is negligible. SR is restricted to

the flat spacetime known as Minkowski spacetime [1]. Einstein introduced a theory of time,

distance, mass and energy that was consistent with electromagnetism, but their was no force

of gravity. In order to include gravity, Einstein introduced General Relativity (GR) in 1915.

GR is Einstein’s theory of space, time and gravity. It was presented as a conceptual

revolution in our views of space and time. He gave an idea that the three dimensions of space
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and one dimension of time has bound together in single fabric of spacetime. The geometry

of four dimensional spacetime can explain the motion of particles moving along surfaces of

spacetime. This unified fabric is curved and stretched by heavy objects like planets and

stars, and this curving of spacetime that creats what we feel as gravity. All bodies fall with

the same acceleration in a gravitational field led Einstein to understand gravity in terms of

curvature of spacetime. A planet like the Earth is kept in orbit because it follows a curve in

a spacetime fabric caused by the Sun’s presence.

GR generalizes special theory of relativity and Isaac Newton’s theory of gravity or Newto-

nian mechanics. GR gives the understanding of astrophysical phenomena such as black hole,

quasars, pulsars and Big Bang. It explains the motion of macroscopic objects and related

phenomena such as bending of light due to gravity, gravitational redshift, peri-helion shift of

Mercury, gravitational waves and gravitational time dilation.

Einstein gave a set of second order partial differential equations (discussed in Section 1.6)

Rµν −
1

2
Rgµν − Λgµν = κTµν , (µ, ν = 0, 1, 2, 3) (1.1)

where

κ =
8πG

c4
,

known as the Einstein Field Equations (EFEs) with the cosmological constant Λ. These

equations relate the curvature of the spacetime with the presence of mass, energy and mo-

mentum, collectively called stress-energy-momentum tensor Tµν . In (1.1) Rµν is the Ricci

tensor, R is its trace called the Ricci scalar and gµν is the metric tensor (all these tensors will

be discussed in subsequent Sections).

Initially Einstein derived his equation without Λ. In 1917 Einstein added cosmological

constant to his field equations to balance the gravitational pull of static universe. In 1920
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Hubble made the discovery that the universe is expanding. He measured the distances and

motion of galaxies. After this discovery, Einstein dropped cosmological constant from the

EFEs. Later the cosmological constant came back in EFEs as a “dark energy”; a mysterious

type of energy causing accelerated expansion of the universe [2].

The first exact solution to EFEs was found by Karl Schwarzschild in 1916. Schwarzschild

solution [3] represents the spacetime geometry outside a static spherical symmetric matter

distribution in the empty space. Vacuum solutions, electrovacuum solutions, null dust solu-

tions, scalar field solution [4] are some of the exact solutions of EFEs. Reissner-Nordström

(RN) metric [5, 6] was discovered soon after Schwarzschild metric. It was discovered by Mans

Reissner and Gunnar Nordström. The RN is a static solution of the Einstein-Maxwell field

equations which corresponds to the gravitational field of charged, spherically symmetric body

of mass M . The exact solution for an uncharged, rotating black hole remained unsolved till

1963. Kerr metric describes the geometry of empty spacetime around a rotating uncharged

axially symmetric black hole with ellipsoidal event horizon [7]. In 1965, Ezra Newmann found

Kerr-Newmann (KN) metric [8]. The KN metric is a solution of the Einstein Maxwell field

equations that describe the spacetime geometry in the region surrounding a charged, rotating

mass [9].

The motion of a particle around black hole is one of the most important topics of black

holes physics. The motion of a particle in the vicinity of black hole helps in understanding the

geometry of spacetime near black hole. Due to the presence of gravitational field it is difficult

for the particles to move on stable orbits which results in particle collisions, and different

kinds of astrophysical phenomena [10, 11]. In this regard particle dynamics in different black

hole spacetimes have been discussed by different authors. Israel studied the radial motion of

the particle in the Schwarzschild spacetime and discussed the issue of gravitational collapse
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[12]. In Schwarzschild spacetime, the relativistic motion of a test particle, released from

rest at infinity appears to slow down as it fall towards the Schwarzschild black hole. It is

known that the circular orbits in the Schwarzschild spacetime whose radii are less than three

times the Schwarzschild radius are unstable, the stability of precessing elliptical orbits in the

Schwarzschild field was discussed by Hansen in [13]. In [14] authors studied massive particles

in a modified Schwarzschild geometry. Behaviour of spacelike geodesics in the extended

Schwarzschild manifold was analyzed by Honig and Lake [15]. Ruffini and Denardo pointed

out the existence of a generalized ergosphere in the Reissner-Nordström geometry and gives

an explicit formula to determine its range. These results are compared with the case of the

Kerr solutions [16]. Timelike and null geodesics in the RN spacetime were investigated by

Dadhich and Kale in [17]. It was found that the incoming geodesics always encounter a

turning point at a finite radial distance. The limits for escape, bound and stable orbits are

obtained and shown to be closer to the source as compared with Schwarzschild spacetime

[17]. Armenti studied the existence and stability criteria for circular geodesics in the vicinity

of RN black hole [18]. Equatorial geodesic motions in the gravitational field of a rotating

source was investigated by Felic [19]. He found orbital and vortical motion for Kerr black hole

in [20]. Circular orbits in the Kerr metric were analyzed by Kurmakaer [21]. The behaviour

of null geodesics, for extended Kerr manifolds was studied in [22]. Dadhich also calculated

equatorial circular geodesics in the Kerr-Newmann (KN) spacetime [23]. The radial motion

of the photons in the KN metric was given by Stuchlik in [24]. He found that the qualitative

differences between the KN metric and Kerr metric occur only below the inner horizons and

around naked singularities. In [25] Stuchlik and Hledik studied the equatorial photon motion

in the KN spacetime with non-zero cosmological constant.

The first chapter consists of basic definitions, the derivation of EFEs by using the varia-

tional principle and an introduction to black holes. Throughout this thesis the signature of
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the metric is (−,+,+,+), G = 1 and c = 1.

Our main focus in this thesis is to investigate how particles behave in string cloud back-

ground during motion around Schwarzschild black hole. In chapter 2, an article entitled

Rindler modified Schwarzschild geodesic [26] is reviewed, where the effect of the Rindler pa-

rameter on the motion of the particle is investigated and compared with the Schwarzschild

geodesics.

In Chapter 3 we investigate the trajectories of the timelike and null geodesics for radial

and circular motion of the Schwarzschild black hole in string cloud background. The effects

of the string cloud parameter on the motion of the particle around Schwarzschild black hole

is studied and is compared with the Schwarzschild geodesics. A conclusion is presented in

chapter 4.

1.1 Metric Tensor

Metric tensor is defined as a bilinear map of two vectors into the real numbers (<) i.e we

have set an equivalent expression for the inner product of two vectors V and W [27]

V ·W = (V µ~eµ) · (W ν~eν),

= V µW ν(~eµ · ~eν),

= V µW νgµν .

Metric tensor is the dot product of basis vectors. It is symmetric by definition and its

covariant and contravariant components are respectively

gµν = g(eµ, eν) = eµ · eν .
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gµν = g(eµ, eν) = eµ · eν .

The metric tensor also defines the infinitesimal distance between two points on a curve xµ(λ)

and xµ(λ+ ∆λ). If V µ is the tangent vector field to the curve r then,

ds2 = g(V, V )dλ2 = gµνV
µV νdλ2 = gµνdx

µdxν . (1.2)

Here V µ = dxµ

dλ
and ds2 is the line element of metric tensor gµν . It is usually non degenerate,

the determinant g = |gµν | 6= 0 . So, inverse of metric gµν exists and is unique, which yields

gσλg
λµ = gµνgνσ = δµ σ; µ, ν, σ, λ = 0, 1, 2, 3. (1.3)

Metric tensor gµν is a covariant symmetric tensor of rank two. A tensor is defined to be a

scalar multi-linear function that maps vectors and one-forms into set of real numbers. A

function is multi-linear if it is linear in all its arguments.

1.2 Geodesics

A geodesic is the curved space generalization of the notion of a straight line in Euclidean

space. Geodesic is a curve along which the tangent vector is parallel transported. Let xµ(λ)

be the path and dxµ

dλ
is the tangent vector field to xµ(λ). The condition that it be to parallel

transported is thus [27]
d2xµ

dλ2
+ Γµρσ

dxρ

dλ

dxσ

dλ
= 0. (1.4)

Here Γ denotes Christoffel symbol, defined as

Γµνλ =
1

2
gµσ
(
gσλ,ν + gνσ,λ − gνλ,σ

)
. (1.5)

We can consider the motion of freely falling particles. In flat space such particles move in

straight lines, this is expressed as the vanishing of the second derivative of the parameterized
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path xµ(λ)

aµ ≡ d2xµ

dλ2
= 0. (1.6)

This is not a tensorial equation. Its tensorial form would be,

d2xµ

dλ2
= V ν∂νV

µ = 0. (1.7)

Now we can replace partial derivative by a covariant derivative to generalize this to curved

space

V νV µ
;ν = 0. (1.8)

Hence the general relativistic version of the Newtonian relation is simply the geodesic equa-

tions given by (1.4). Therefore, in GR free particles move along geodesics.

1.3 Riemann Tensor and Other Related Tensors

The Riemann tensor is also called curvature tensor because it describes the curvature of a

spacetime in an invariant way. Riemann tensor is defined as [9]

Rρ
σµν = Γρ νσ,µ − Γρ µσ,ν + Γρ µλΓ

λ
νσ − Γρ νλΓ

λ
µσ, (1.9)

the covariant form of Riemann tensor would be,

Rρσµν = gρλR
λ
σµν . (1.10)

Let consider this tensor in locally inertial coordinates, at an arbitrary point ‘p’ in which the

Christoffel symbol vanishes Γa bc |p= 0, but their derivatives will not. Therefore we may

write

Rρσµν(p) =
1

2

(
gρν,σµ − gνσ,µρ − gρµ,νσ + gµσ,νρ

)
. (1.11)
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Riemann tensor is antisymmetric in its first and second pair of indices, i.e,

Rρσµν = −Rσρµν , (1.12)

Rρσµν = −Rρσνµ. (1.13)

It is invariant under interchange of the second pair of indices with the first

Rρσµν = Rµνρσ. (1.14)

Following two Bianchi identities are satisfied by the Riemann tensor [9],

Rρ
σµν +Rρ

µνσ +Rρ
νσµ = 0. (1.15)

Rρσµν;λ +Rρσνλ;µ +Rρσλµ;ν = 0. (1.16)

The Riemann tensor with four indices has n4 independent components in an n dimensional

space. Totally antisymmetric 4 index Riemann tensor has 1
12
n2(n2 − 1) independent compo-

nents [27, 28]. If the Riemann tensor vanishes; that is,

Rρ
σµν = 0, (1.17)

than we can always construct a coordinate system in which the metric components are con-

stant. Conversely, if a coordinate system exists in which the components of the metric are

constant, the Riemann tensor will vanish.

Ricci tensor Rσν is the trace of the Riemann tensor

Rσν ≡ Rρ
σρν , (1.18)

is the only independent contraction; all others are either related to this, or vanishes. Ricci

tensor is defined as;

Rσν = Γρ σν,ρ − Γρ σρ,ν + Γρ λρΓ
λ
σν − Γρ λνΓ

λ
σρ. (1.19)

It is a symmetric tensor and its contraction gives the Ricci scalar, that is,

R = Rν
ν = gνσRσν . (1.20)
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1.4 Einstein Tensor

Einstein tensor is a unique combination of Ricci tensor and Ricci scalar which describes the

curvature of spacetime in EFEs of GR. It is divergence free and symmetric tensor. Ein-

stein tensor could be derived from second Bianchi identity [9], raising the first index ρ and

contracting it with ν. Using (1.12) for the second term

Rσµ;λ −Rσλ;µ +Rρ
σλµ;ρ = 0.

Raising σ, contracting it with λ,

Rσ
µ;σ −R;µ +Rρσ

σµ;ρ = 0.

Using symmetric property we have Rρσ
σµ;ρ = Rρ

µ;ρ which implies

2Rρ
µ;ρ −R;µ = 0,(

2Rρ
µ − δρ µR

)
;ρ

= 0,(
Rρµ − 1

2
gρµR

)
;ρ

= 0.

The expression on the right hand side in the brackets is the Einstein tensor and is denoted

by

ερµ ≡ Rρµ − 1

2
gρµR. (1.21)

1.5 Stress-Energy-Momentum Tensor

The stress-energy-momentum tensor describes the energy density and flux of energy and

momentum in the spacetime. It is the source term in gravitational field equations. Stress-

energy-momentum tensor is a second rank symmetric tensor, T µν = T νµ. It describes the
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matter and energy distribution at each point of the spacetime [27, 29]. Consider a local

Cartesian inertial frame at P in which the set of components of the four-velocity of the fluid

is Uµ = γµ(c, ~u). The physical meaning of the components of T µν in this frame are [9].

• T 00 is the energy density of the matter.

• T 0i is the energy flux in the i-direction.

• T i0 is the momentum density in the i-direction.

• T ij is the rate of flow of the i−component of momentum per unit area in the j−direction.

For the derivation of stress-energy-momentum tensor, the Lagrangian for matter and energy

is used. The stress-energy-momentum tensor is defined in section 1.7.

Example: In perfect fluid there are no forces between the particles, and has no heat conduc-

tion or viscosity in the instantaneous rest frame this implies T 0i = T i0 = 0 and T ij = 0 if

i 6= j, respectively. Thus, in IRF the components of T µν for the perfect fluid is defined as

[9, 10]

T µν = (ρ+
P

c2
)UµUν − Pgµν ,

here ρ, P, Uµ are the energy density, pressure and four-velocity of the fluid respectively.

1.6 Derivation of Einstein Field Equations for Vacuum

EFEs are the set of second order partial differential equations for the metric tensor. EFEs

describes the relation between the curvature of a spacetime and the energy and momentum of

that spacetime. Action integral IG, for the gravitational field and variation principal δIG = 0,

16



would be used to drive EFEs. IG is defined as [28, 30],

IG =
1

2κ

∫
V
L(gµν , gµν,λ)

√
−gd4x. (1.22)

Here κ = 8π is a constant and calculated by the required condition that the EFEs reduce to

Newton’s law in the weak field limit. For the integral to be invariant under any transformation

the function L(gµν) should be scalar. So, the gravitational field Lagrangian is

L(gµν , gµν,λ) = R− 2Λ. (1.23)

Use of (1.23) in (1.22) gives

IG =
1

2κ

∫
V

(
R− 2Λ

)√
−gd4x,

=
1

2κ

∫
V

(
gµνRµν − 2Λ

)√
−gd4x,

=
1

2κ

∫
V

(
gµνRµν

√
−g − 2Λ

√
−g
)
d4x.

Now we will vary the action inside a infinitesimal region V and assuming that the variation of

the metric and its differentiation on the boundary of the region will vanish. Then we reduce

the EFEs by the requirement that δIG = 0, for any variation in the metric. From above

equation we have,

δIG =
1

2κ

∫
V

(
gµν
√
−gδRµν +Rµνδ

[
gµν
√
−g
]
− 2Λδ

√
−g
)
d4x. (1.24)

Then in a local inertial frame the Ricci tensor will become

Rµν = Γλ µν,λ − Γλ µλ,ν ,

δRµν = δΓλ µν,λ − δΓλ µλ,ν .

The partial derivative commute with the variation, i.e.

δRµν = (δΓλ µν);λ − (δΓλ µλ);ν .
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Partial derivative of the metric tensor will vanish at boundary of V . Then the last equation

may be written as

gµνδRµν = (gµνδΓλ µν − gµλδΓν µν);λ

Introducing a vector Aλ,

Aλ = gµνδΓλ µν − gµλδΓν µν ,

then the above equation can be written as

gµνδRµν = Aλ ;λ,

which is the total divergence. As the metric tensor and its derivative vanishes at the boundary

then according to the Stokes theorem first term will vanish and contribute nothing to δIG∫
V

(
gµν
√
−gδRµν

)
d4x = 0. (1.25)

Substituting (1.25) in (1.24), we obtain

δIG =
1

2κ

∫
V

(
Rµνδ

[
gµν
√
−g
]
− 2Λδ

√
−g
)
d4x. (1.26)

Further

δ
√
−g =

[∂√−g
∂gαβ

]
δgαβ = − 1

2
√
−g

( ∂g

∂gαβ

)
δgαβ,

δ
√
−g =

1

2

√
−ggαβδgαβ. (1.27)

Now

δ
[
gµν
√
−g
]

=
√
−gδgµν + gµνδ

√
−g,

we know gµβgαβ = δµβ which gives

δ(gµαgαβ) = 0.

Hence we can write

δgαβ = −gαµgβνδgµν .
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This implies

δ
(
gµν
√
−g
)

=
√
−g
(
δgµν +

1

2
gµνgαβδgαβ

)
=
√
−g
(
δgµν − 1

2
gµνgαβδg

αβ
)
. (1.28)

Substituting (1.27) and (1.28) in (1.26), gives the variation in the action that is

δSG =
1

2κ

∫
V

√
−g
(
Rαβ −

1

2
Rgαβ − Λgαβ

)
δgαβd4x, (1.29)

δSG must be zero for the vacuum field equations of general theory of relativity. This implies

Rαβ −
1

2
Rgαβ − Λgαβ = 0; α, β = 0, 1, 2, 3. (1.30)

Since Rαβ and gαβ are symmetric, therefore (1.30) is a set of 10 partial differential equations.

1.7 The Einstein Field Equations in the Presence of

Matter

We would derive the Einstein field equations in the presence of matter. Using the variational

principle [9, 28]

δ
(
SG + SM

)
= 0, (1.31)

here SM is the action integral for matter and energy. We drive the EFEs with energy-

momentum tensor

SM =

∫
V
LM
(
gµν , gµν,λ

)√
−gd4x, (1.32)

here LM is the Lagrange density for matter

δ
[√
−gLM

]
=
∂[
√
−gLM ]

∂gµν
δgµν +

∂[
√
−gLM ]

∂gµν ,λ
δgµν ,λ . (1.33)

We define a vector Bλ as

Bλ ≡ ∂[
√
−gLM ]

∂gµν ,λ
δgµν . (1.34)
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The divergence is Bλ,λ

Bλ,λ =
[∂[
√
−gLM ]

∂gµν ,λ

]
,λ δg

µν +
∂[
√
−gLM ]

∂gµν ,λ
δgµν ,λ . (1.35)

Using (1.35) in (1.33), we get

δ
[√
−gLM

]
=
∂[
√
−gLM ]

∂gµν
δgµν −

[∂[
√
−gLM

∂gµν ,λ

]
,λ
δgµν +Bλ,λ . (1.36)

In our situation variation vanishes at the boundary so, by Gauss divergence theorem which

implies
∫
Bλ
,λd

4x = 0, hence we have

δSM =

∫
V

(∂[
√
−gLM ]

∂gµν
+
[∂[
√
−gLM ]

∂gµν ,λ

]
,λ

)
δgµνd4x. (1.37)

The energy-momentum tensor with Lagrange density is defined as

Tµν = − 2√
−g

(∂[
√
−gLM ]

∂gµν
+
[∂[
√
−gLM ]

∂gµν ,λ

]
,λ

)
, (1.38)

δSM = −1

2

∫
V
Tµν
√
−gδgµνd4x. (1.39)

From (1.29) and (1.39) we get

Rµν −
1

2
gµνR− Λgµν = κTµν . (1.40)

These are the EFEs with stress-energy-momentum tensors. The L.H.S of the (1.40) gives

the information about the curvature of the spacetime and the R.H.S describes the behaviour

and location of matter.

1.8 Black Holes

Black hole is one of the most interesting objects in the sky. It arises from a stellar collapse

or appear as the remnant of a supernova. Supernova explosion occurs when even larger
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and hotter stars reach the end of their life. These stars are hot enough to burn Hydrogen,

Helium, Carbon, Oxygen and Silicon as fuel. Eventually, the fusion in these stars forms the

element iron, which effectively ends the nuclear fusion process with in the star. Lacking fuel

for fusion, the temperature decreases and the rate of collapse due to gravity increases, until

it collapse completely [10]. If the mass of the compressed remnant of the star exceeds about

three, four solar masses, then even the degeneracy pressure of neutron is insufficient to halt

the collapse and the core collapses completely into a gravitational singularity. The gravity of

a single point containing all the mass of the entire original star become so strong that even

light can not escape from it. The region of spacetime having strong gravitational effects that

nothing can escape from inside it, neither particles nor light, is known as black hole.

After the creation of the black hole, the heat and the hugely amplified magnetic field of

the collapsing star combine to focus a pair of tight beams or jets of radiation, perpendicular

to the spinning plane of the accretion disk. The shock waves of this massive energetic beam

cause gamma rays to be emitted in a phenomena known as gamma ray burst [10].

Black holes are invisible because the light can not escape through it, so different behaviour

of the stars that are very close to the black holes indicates their presence.

Mathematically black holes are the singular solutions of the EFEs. The first exact black

hole solution of EFEs is the Schwarzschild solution. The line element is [9]

ds2 = −
(

1− 2M

r

)
dt2 +

1(
1− 2M

r

)dr2 + r2(dθ2 + sin2 θdφ2). (1.41)

The metric coefficients gtt and grr become infinite at r = 0 and r = 2M (M is the mass

of the black hole), respectively. The metric coefficients are coordinate dependent quantities
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and one should not take too much of their values, it is certainly possible to have a coordi-

nate singularity that results from a breakdown of a specific coordinate system rather than

underlying manifold [27].

The curvature is measured by Riemann tensor and it is difficult to know where tensor

becomes infinite, since its components are coordinate dependent. But we can construct

various scalar quantities from curvature i.e, R = gµνRµν or higher order scalars such as

RµνρσRµνρσ, RµνρσR
ρσλτRλτR

µν , and so on. Since scalars are coordinate independent so it is

easy to say that they become infinite. If any of these scalars goes to infinity as we approach

some point, that point is regarded as a singularity of the curvature. In the case of the

Schwarzschild solution direct calculations reveals that

RµνρσRµνρσ =
48M2

r6
.

This shows that r = 0, is a curvature singularity representing the discontinuity in the fabric

of spacetime [27]. The coordinate singularity is at r = 2M , the Schwarzschild radius. One

could check that none of the curvature invariants blows up there. Therefore, one could think

that it is actually not singular, but simply bad coordinate system is chosen. To remove this

singularity one should transform to more appropriate coordinates if possible (see for detail

e.g [27]).

1.9 Singularity

Singularities are those regions of spacetime where the paths of light and falling particles comes

to an abrupt end, quantities that are used to measure gravitational field become infinite and

geometry becomes undefined [9, 10]. Curvature singularity and coordinate singularity are
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two types of singularities. Singularities can also be divided according to whether they are

covered by event horizon or not (naked singularity).

Coordinate singularity occurs when an apparent singularity or discontinuity occurs in one

coordinate system, and can be removed by choosing a different coordinate system. But the

curvature singularity cannot be removed because it represents discontinuity in spacetime

fabric. As explained in the previous section if Ricci scalar goes to infinity as we approach

some point than that point is known as curvature singularity. For example in Schwarzschild

black hole r = 0 is the curvature singularity and r = 2M is the coordinate singularity

(discussed in section 1.8).

1.10 Event Horizon

The black hole is surrounded by a well defined surface or edge known as event horizon. Inside

the event horizon nothing can be seen and nothing can escape. The event horizon of a black

hole is the point of no return. In other words, space itself is falling into the black hole at

a speed greater than the speed of light [9]. For example if we consider the Schwarzschild

black hole than, mathematically, the event horizon of the Schwarzschild black hole could be

obtained by putting the coefficient of time coordinate of Schwarzschild metric (1.41) equal

to zero, that is;

gtt = 1− 2M

rh
= 0,

or

rh = 2M.
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Chapter 2

Rindler Modified Schwarzschild

Geodesics

This chapter is devoted to a review of the “Rindler modified Schwarzschild geodesics” [26].

The effect of the Rindler parameter on the trajectories of timelike and null geodesics is

investigated and compared with the Schwarzschild geodesics.

Rindler acceleration affects all massive and massless particles. As Rindler force is constant

so one can also take it as a perturbation due to other forces. The non-isotropic role of Rindler

parameter a makes it different from cosmological constant as we follow from the paper [26].

Since, Rindler acceleration refers to large distances so it is not necessary for the central object

to be a black hole.

In [26] trajectories of the timelike and null geodesics in the presence of Rindler acceleration

were investigated. It was noticed that if Rindler acceleration vanishes the result reduces to
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Schwarzschild case. The physical effects of the model proposed by Grumiller were investigated

in [31]. In that study, prehelion shift, light bending and gravitational redshift were calculated

for solar system planets in the presence of Rindler parameter. Although, it remains to

investigate the physical source that gives raise to such a term.

This chapter is organised as follows. In Section 2.1, the derivation of the particle trajecto-

ries and effective potential in Grumiller spacetime is done. In Section 2.2, the derivations of

the trajectories of the timelike and null geodesics for radial motion in Grumiller spacetime is

done, and the plots are also presented. In Section 2.3, the derivations of the trajectories of

the timelike and null geodesics for circular motion in Grumiller spacetime along with their

plots are presented.

Structure of Grumiller spacetime

Grumiller has proposed a model for gravity at large distances of a central object by assuming

static and spherically symmetric system. The corresponding line element in the absence of

cosmological constant is [26]

ds2 = −f(r)dt2 +
1

f(r)
dr2 + r2(dθ2 + sin2 θdφ2), (2.1)

where

f(r) = 1− 2M

r
+ 2ar. (2.2)

Here M is the mass of the central object and a is the Rindler acceleration parameter which

is a real number. The horizons of (2.1) are obtained by

f(r) = 1− 2M

rh
+ 2arh = 0,

which yields

rh± =
−1±

√
1 + 16Ma

4a
, (2.3)
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considering the positive value of rh

rh =
−1 + 1 + 8Ma− 32M2a2 + ...

4a
,

neglecting higher order terms we have

rh = 2M − 8M2a.

In the presence of Rindler acceleration the radius of the horizon is smaller than the Schwarzschild

horizon without Rindler parameter. Now if a→ 0, we get rh = 2M , which is the Schwarzschild

black hole horizon.

2.1 Particle Trajectories

For the spacetime given by (2.1) the geodesic Lagrangian for particle is given by

L =
m

2
gµν ẋ

µẋν = m
(
− 1

2
f(r)ṫ2 +

ṙ2

2f(r)
+

1

2
r2(θ̇2 + sin2 θφ̇2)

)
. (2.4)

Throughout this dissertation dot denotes derivative with respect to the geodetic parameter

τ .

The Euler-Lagrange equations are

d

dλ

( ∂L
∂ẋµ

)
− ∂L
∂xµ

= 0, (µ = 0, 1, 2, 3) (2.5)

For µ = 0, (2.5) gives,

∂L
∂t

= 0⇒ d

dλ

(∂L
∂ṫ

)
= 0,

d

dλ

(∂L
∂ṫ

)
=

d

dλ

(
− f(r)ṫ

)
.

Integrating with respect to λ, we obtain

−f(r)ṫ = constant =
ε

m
= E,
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where E is constant of integration. We are considering static spherically symmetric spacetime

and invariance under time translation leads to conservation of energy, so here the conserved

quantity is the the energy per unit mass of the particle. The last equation can be arranged

as

ṫ =
−ε

f(r)m
=
−E
f(r)

. (2.6)

For µ = 3, (2.5) becomes

d

dλ

(∂L
∂φ̇

)
− ∂L
∂φ

= 0,

since

∂L
∂φ

= 0⇒ d

dλ

(∂L
∂φ̇

)
= 0,

d

dλ

(
2φ̇r2 sin2 θ

)
= 0,

2φ̇r2 sin2 θ = constant,

φ̇r2 sin2 θ = constant =
l

m
= L, (2.7)

where L is constant of integration. We have static spherical symmetric spacetime and invari-

ance under spatial rotation leads to the conservation of the angular momentum, so here the

conserved quantity is the magnitude of the angular momentum. Conservation of the direction

of the angular momentum means that the particle is moving in a plane. We can choose this

to be the equatorial plane of our coordinate system. In the equatorial plane, θ = π
2
, we get

L = r2φ̇.

We know the normalization condition for four-velocity as

gµν
dxµ

dλ

dxν

dλ
= −ε. (2.8)

In the equatorial plane, θ = π
2
, (2.8) implies

− f(r)ṫ2 +
ṙ2

f(r)
+ r2φ̇2 = −ε,
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Using (2.6) and (2.7) we get (dr
dλ

)2

= E2 − f(r)
(
ε+

L2

r2

)
, (2.9)

1

2

(dr
dλ

)2

+ Veff (r) =
1

2
E2, (2.10)

here Veff (r) = 1
2
f(r)

(
ε+ L2

r2

)
, is the effective potential and the corresponding effective energy

is

Eeff =
1

2
E2.

The effective potential can be written as

Veff (r) =
1

2

(
1− 2M

r
+ 2ar

)(
ε+

L2

r2

)
. (2.11)

Veff (r) =
ε

2
− Mε

r
+
L2

r2
− ML2

r3
+ ar

(
ε+

L2

r2

)
.

The first term in effective potential is constant, the second term corresponds to the New-

tonian gravitational potential, the third term the centrifugal barrier, the fourth term the

GR correction, and the last term proportional to the Rindler acceleration a. If a → 0, the

behaviour of geodesics remain identical to Schwarzschild case. But as a increases its affect is

added to the potential.

2.2 Radial Motion

For radial motion φ = constant, this implies L = 0. By substituting L = 0 in (2.9) we have(dr
dλ

)2

= E2 − εf(r). (2.12)

Equation (2.12) is the general equation for radial motion. Now we will find null and timelike

geodesics for radial motion.
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2.2.1 Null Geodesics

The trajectory of a photon is a null geodesic. For massless particles, which move along null

trajectories, we always have ε = 0 in (2.8). Taking an arbitrary affine parameter, the equation

(2.12) for null geodesics becomes (dr
dλ

)2

= E2. (2.13)

Using (2.6) in (2.13) we arrive at(dr
dλ

)2

=
(
− f(r)

dt

dλ

)2

,

dr

dt
= f(r) = ±

(
1− 2M

r
+ 2ar

)
,

By integrating, we get

±(t− t0) =
ln( r−2M+2ar2

r0−2M+2ar20
)

4a
+

[
tanh−1( 1+4ar√

16Ma+1
)− tanh−1( 1+4ar0√

16Ma+1
)
]

2a
√

16Ma+ 1
. (2.14)

Here t0 and r0 is the initial time and initial position of the massless particle respectively

while t is the time measured by a distant observer. If we take a = 0, the photon worldlines

will have slopes ±1 as if r → ∞, and their slopes approache to ±∞ as r approache to the

Schwarzschild black hole horizon.

2.2.2 Timelike Geodesics

In the case of timelike geodesics (i.e ε = 1) which refers to the motion of a massive particles.

We can choose affine parameter to be the proper time τ . For timelike geodesics (2.12)

becomes (dr
dτ

)2

= E2 − 1 +
2M

r
− 2ar. (2.15)
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Now first we find the radial equation of motion by using Euler-Lagrange equation

d

dτ

(∂L
∂ṙ

)
− ∂L
∂r

= 0, (2.16)

Consider (2.4) in equatorial plane.

∂L
∂r

=
(−M
r2
− a
)
ṫ2 − 1

f(r)2

(M
r2

+ a
)
ṙ2. (2.17)

∂L
∂ṙ

=
ṙ

f(r)
,

d

dτ

(∂L
∂ṙ

)
=
f(r)r̈ − ṙ2(2M

r2
+ 2a)

[f(r)]2
. (2.18)

Now using (2.17) and (2.18) in (2.16), we get

r̈

f(r)
−
ṙ2(M

r2
+ a)

[f(r)]2
+
(M
r2

+ a
)
ṫ2 − rφ̇2 = 0. (2.19)

In this case of radial motion φ̇ = 0, thus (2.19) becomes

r̈

f(r)
−
ṙ2(M

r2
+ a)

[f(r)]2
+
(M
r2

+ a
)
ṫ2 = 0. (2.20)

Inserting (2.15) and (2.6) in (2.20) we have

r̈

f(r)
−

(E2 − f(r))(M
r2

+ a)

[f(r)]2
+
(M
r2

+ a
)(−E

f(r)

)2

= 0,

we obtain
d2r

dτ 2
= −M

r2
− a. (2.21)

Now let us consider the particle initially at rest and, upon the gravitational attraction, starts

moving from its radial location r = r0, using(dr0

dτ

)2

= E2 − 1 +
2M

r0

− 2ar0,

as r0 is the initial radial position,

0 = E2 − 1 +
2M

r0

− 2ar0,
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E2 = 1− 2M

r0

+ 2ar0, (2.22)

Substituting (2.22) in (2.15)(dr
dτ

)2

=
(

1− 2M

r0

+ 2ar0

)
−
(

1− 2M

r
+ 2ar

)
,

(dr
dτ

)2

=
(

1− 2M

r0

+ 2ar0 − 1 +
2M

r
− 2ar

)
,(dr

dτ

)2

= 2M
(1

r
− 1

r0

)
+ 2a(r0 − r). (2.23)

From (2.11) the effective potential in radial motion for massive particles reads

Veff (r) =
1

2

(
1− 2M

r
+ 2ar

)
. (2.24)

In figure 2.1 Veff (r̃) = 1
2
(1 − 2

r̃
+ 2ãr̃) is plotted by introducing r

M
= r̃, Ma = ã against r̃.

Here the intersection of Veff (r̃) with r̃ shows the horizon r̃h. There is an upper bound for

the motion of the particle in the presence of the Rindler parameter. The effective potential

increases with the increasing value of Rindler acceleration parameter.

Substituting (2.6) in (2.15)(dr
dτ

)2

= f(r)2
( dt
dτ

)2

− 1 +
2M

r
− 2ar,

( dr
dτ

)2

( dt
dτ

)2
=
f(r)2( dt

dτ
)2

( dt
dτ

)2
+
−1 + 2M

r
− 2ar

( dt
dσ

)2
,

(dr
dt

)2

= f(r)2 +
(
− 1 +

2M

r
− 2ar

)(dτ
dt

)2

,(dr
dt

)2

=
1

E2

(
E2 − 1 +

2M

r
− 2ar

)(
1− 2M

r
+ 2ar

)2

. (2.25)

Differentiating (2.25) with respect to t, and simplifying, we get the acceleration of the particle

with respect to coordinate time t

d2r

dt2
= − 12

E2r4

(
M + ar2

)(
M − ar2 − r

2

)(
M +

(E2

3
− 1

2

)
r − ar2

)
.

Here t is the time measured by the distant observer.
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Figure 2.1: The effective potential Veff (r̃) rises with the increasing ã. This behaviour serves

to confine geodesics nearer to the gravitating center.

2.3 Circular Motion

In this section circular motion of a photon and massive particles is studied. For circular

motion in the equatorial plane we have r = constant, and hence ṙ = r̈ = 0. For convenience,

r = 1
u

is introduced. By considering du
dφ

at u = uc is zero in which rc = 1
uc

is the circular orbit

of the particle.

Using chain rule,

ṙ =
dr

dσ
=
dr

dφ

dφ

dσ
=
dr

dφ

L

r2
,

(2.9) becomes, (du
dφ

)2

=
E2

L2
−
(

1− 2Mu+
2a

u

)( ε

L2
+ u2

)
, (2.26)(du

dφ

)2

=
E2

L2
− ε

L2
− u2 +

2Mεu

L2
+ 2Mu3 − 2aε

uL2
− 2au,
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taking derivative of both sides with respect to φ,

d2u

dφ2
= −u+

Mε

L2
+ 3Mu2 +

aε

u2L2
− a.

At u = uc,
E2

L2
−
(

1− 2Muc +
2a

uc

)( ε

L2
+ u2

c

)
= 0. (2.27)

In the circular motion we have d2u
dφ2

= 0, therefore, from (2.27) we have,

d

du

[E2

L2
−
(

1− 2Mu+
2a

u

)( ε

L2
+ u2

)]
u=uc

= 0. (2.28)

These conditions give the expression for the angular momentum.

−uc +
Mε

L2
+ 3Mu2

c +
aε

u2
cL

2
− a = 0,

solving for L2 gives,

L2 =
ε(Mu2

c + a)

u2
c(uc − 3Mu2

c + a)
. (2.29)

Energy of the particle: Substitution of the above expression in (2.27) implies

0 =
E2

L2
− ε
(u2

c(uc − 3Mu2
c + a)

ε(Mu2
c + a)

)
− u2

c + 2Mεuc

(u2
c(uc − 3Mu2

c + a)

ε(Mu2
c + a)

)
+ 2Mu3

c

− 2aε
(uc(uc − 3Mu2

c + a)

ε(Mu2
c + a)

)
− 2auc,

solving for E2, we get

E2 =
4ε(a+ uc

2
−Mu2

c)
2

uc(a+ uc − 3Mu2
c)
. (2.30)

Here the value of circular geodesic is bounded. For physically acceptable motion the con-

straint a+ uc − 3Mu2
c > 0 arises from (2.29) this implies

r2
ca+ rc − 3M > 0,
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which yields

rc >
−1 +

√
1 + 12Ma

2a
= rcmin.

here rcmin is larger than the horizon

rh =
−1 +

√
1 + 16Ma

4a
.

Hence,

rcmin − rh =
−1 +

√
1 + 12Ma

2a
− −1 +

√
1 + 16Ma

4a
,

2
√

1 + 12Ma−
√

1 + 16Ma− 1

4a
> 0,

The geodesic equation r2φ̇ = L can not be satisfied for circular orbits with r < −1+
√

1+12Ma
2a

.

Since they do not satisfy geodesic equations hence these orbits are not geodesics and cannot

followed by freely falling particles. It is concluded that circular orbit cannot be maintained

by a free massive particle with r < −1+
√

1+12Ma
2a

around spherical massive body. In figure 2.2

we plot rcmin−rh
M

versus Ma, which implies that with larger value of Rindler parameter, rcmin

approaches to rh. The gap between rcmin and rh gets smaller, but it always remains positive.

2.3.1 Null Geodesics

From (2.29) it is clear that only possible radius for circular photon orbit is

1

rc
− 3M

rc2
+ a = 0,

which gives,

rc =
−1±

√
1 + 12Ma

2a
. (2.31)

In this case from (2.27)
E2

L2
=
(

1− 2Muc +
2a

uc

)(
u2
c

)
,
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Figure 2.2: The difference between circular geodesics radii and horizon radii is shown as a

function of aM . For increasing aM , the circular geodesics approache to the horizon.
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versus aM for a massless particle.
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E2

L2
=

1

r2
c

− 2M

r3
c

+
2a

rc
.

Substituting the value of rc = −1±
√

1+12Ma
2a

in above equation gives,

E2

L2
=

(1 +
√

1 + 12Ma+ 24Ma)(1 +
√

1 + 12Ma)

108M2
. (2.32)

In figure 2.3 we plot rc
M

versus aM (for unit mass M). This shows that for larger value of

Rindler parameter a the circular orbit of photon has smaller radius. In figure 2.4, E2

L2M2 is

plotted against aM (for unit mass M). It is clear that for larger value of a the circular orbit

of photon has larger value of E2

L2 .
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Figure 2.4: Plot of
(
E2

L2

)
M2 versus aM for a massless particle (M = 1).

Stability: Replace τ = τ̃
L

in (2.10) gives(dr
dτ̃

)2

+ Veff (r) = Eeff (r),
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here

Veff (r) =
f(r)

r2
=

1− 2M
r

+ 2ar

r2
,

Veff (r) =
r − 2M + 2ar2

r3
,

and

Eeff (r) =
E2

L2
.

For stable circular orbit we must have V
′

eff = 0 and V
′′

eff > 0 at rc

V
′′

eff =
6

r4
c

− 24M

r5
c

+
4a

r3
c

,

V
′′

eff = 6
( 2a

−1 +
√

1 + 12Ma

)4

− 24M
( 2a

−1 +
√

1 + 12Ma

)5

+ 4a
( 2a

−1 +
√

1 + 12Ma

)3

.

(2.33)

Considering unit mass M , and for a = 0.1, (2.33) becomes

V
′′

eff = −0.08724,

for a = 0.5, (2.33) becomes

V
′′

eff = −0.715848,

for a = 0.9, (2.33) becomes

V
′′

eff = −2.0473.

Hence, V
′′

eff gives negative value so there is no stable circular orbit for photons. The local

maxima in the potential curves are the locations of unstable circular orbits. As shown in figure

2.5 there is no stable circular orbit for photons for different values of Rindler acceleration

parameter.

37



From top to bottom

a = 0.30
Α = 0.20
Α = 0.10
Α = 0.06
Α = 0.01

Α = 0

0 5 10 15 20
-0.1

0.0

0.1

0.2

0.3

r

M

M
2

V
ef

f

Figure 2.5: Plot of M2Veff versus r
M

for photon shows the unstable circular orbits for photons.

In this range of aM no stable photon orbit exist.

2.3.2 Timelike Geodesics

Similarly for timelike geodesics (2.29) gives the angular momentum of the massive particle.

L2 =
(Mu2

c + a)

u2
c(uc − 3Mu2

c + a)
. (2.34)

In figure 2.6 the behaviour of angular momentum of a massive particle for different values of

a against rc is shown. It is noticed that once rc approaches to rcmin the value of the angular

momentum goes to infinity. rc
M

= 4 (per unit mass M) is the only orbit in which the value of

Rindler parameter does not matter and L2

M2 = 10.

Substituting ε = 1 in (2.30), gives energy of the massive particle

E2 =
4(a+ uc

2
−Mu2

c)
2

uc(a+ uc − 3Mu2
c)
. (2.35)

Figures 2.7, 2.8 and 2.9 show effective potential for massive particles for changing values of L

with a = 0, a = 0.01 and a = 2. In figure 2.7, the graph to the right of the minimum points
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is concave down while in figure 2.8 the graph to the right of the minimum points is steeply

rising and concave up. In figure 2.7 for the given energy larger than the asymptotic value of

effective potential, the particle would escape to infinity while with a = 0.01 and a = 2 the

particle would fall into the singularity even if energy is bigger than the local maxima to the

left of the minimum points.

Hence, massive particles have stable as well as unstable circular orbits. In figure 2.8 for

a = 0.01 massive particles in the presence of Rindler acceleration have stable circular orbits

at r = 5.4, r = 6.8, r = 7.7 and r = 8.4 with changing values of L2 such as 14, 16, 18 and

20 respectively. Massive particles have unstable orbits at r = 4.7, r = 4, r = 3.7 and r = 3.6

with L2 = 14, L2 = 16, L2 = 18 and L2 = 20, respectively.
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Figure 2.6: Angular momentum behaviour of a massive particle versus distance for changing

a. It is observed that all curves coincide at rc
M

= 4.
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Figure 2.7: Effective potential for massive particle for changing L with a = 0.
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Figure 2.8: Effective potential for massive particle for changing L with a = 0.01.
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Figure 2.9: Effective potential for massive particle for changing L with a = 2.
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Chapter 3

Motion of a Particle in the Spacetime

Field of the Schwarzschild Black Hole

with String Cloud Background

3.1 Introduction

The physical situation at the early stages of the formation of the universe was very com-

plicated. During the initial stages of the development of the universe, phase transitions

occurred that might have left traces that are still visible today. Phase transition led to sym-

metry breaking and thus the formation of topological defects. Topological defects can occur

when the field symmetries are broken. Symmetry breaking happens when the universe cools

down below some critical temperature and field is forced to choose a vacuum state [32].
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Due to symmetry breaking, energy can get trapped in specific regions of space. The

topological structure of this trapped energy determines the nature of the defect. A line-like

defect is called Cosmic String. Besides cosmic strings, other defects can occur, such as domain

walls and monopoles. With every broken symmetry there is a possibility for a topological

defect, which could lead to the formation of cosmic strings.

Cosmic strings have some properties. There are many ways to detect the strings. Cosmic

string creates a wedge in spacetime when it is formed during the one of the phase transitions.

When light passes a string, light deformed due to the gravity exerted by the string. Hence,

they may act as gravitational lenses. The lensing causes two exact similar objects to appear

in the sky.

The second way of detecting a string is by measuring gravitational waves. Oscillating

loops of strings generates gravitational wave background. They are capable of emitting

gravitational radiations by forming cusps and kinks. This happens when strings intersects

with themselves or each other. Both types of gravitational waves can be detected, but that

depends on the tension of the string [32].

Cosmic string can cause density perturbations that eventually cause galaxy formation.

A string moving through a region of dust will leave an over dense-accretion region behind

it. Because there is an area cut out spacetime caused by the string the dust particles will

eventually collide, resulting in an accretion disk in the string wake. This may give rise to the

density fluctuations [33].
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If string couple to other forces, cusps and kinks can emit beam of variety of forms of

radiation which can potentially be detected on earth as cosmic rays. The gravitational

coupling between photons and cosmic strings leads to emission of light from string.

The association of strings with black holes is suggested by the relationship between entropy

of black hole horizon and string states [41]. A string cloud is a collection of strings that during

the expansion of our universe have been intersecting with each other. So far no detection of a

cosmic string has been reported but, strings are an interesting topic to study from theoretical

point of view.

In this chapter, we will investigate the trajectories of the timelike and null geodesics for

radial and circular motion in the Schwarzschild black hole with string cloud background.

Here we consider a particle moving around a black hole in equatorial plane. We assume

spherically symmetric metric on a non rotating black hole of mass M at rest. To achieve

this, we first review the theory of a string cloud [34].

The action of the string evolving in the spacetime is

Is =

∫
Ldλ0dλ1, (3.1)

where

L = M
√
−γ, (3.2)

and M is a positive constant that characterizes each string.

γ = detγAB, (3.3)

γAB = gµν
∂xµ

∂λA
∂xν

∂λB
; A,B = 0, 1. (3.4)
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Since string moves in two dimensions, it creates a world sheet in spacetime, equation (3.4)

represents two dimensional world sheet metric. xµ = xµ(λA) expresses the world sheet with

parameter λ0 for timelike and λ1 for spacelike.

A bivector is an antisymmetric tensor of second rank. It is defined as [34]

Σµν = εAB
∂xµ

∂λA
∂xν

∂λB
, (3.5)

here εAB is the two dimensional Levi Civita symbol normalized as: ε01 = −ε10 = 1. So, the

Lagrangian density can be written as

L =
(
− 1

2
ΣαβΣαβ

) 1
2
. (3.6)

The energy momentum tensor for a cloud of strings is

Tµν = ρ0

(
ΣµβΣβ

ν
)

(−γ)−
1
2 , (3.7)

In mixed form we would find the general solution to EFEs for a cloud of strings in spherically

symmetry. General static spherically symmetric metric is,

ds2 = −eν(r)dt2 + eλ(r)dr2 + r2dθ2 + r2 sin2 θdφ2, (3.8)

here ν and λ are functions of r. The nonzero Christoffel symbols are as follow,

Γ0
10 =

ν
′

2
, Γ1

00 =
1

2

eν

eλ
ν

′
, Γ1

22 = − r

eλ
,

Γ1
11 =

λ
′

2
λ

′
, Γ2

12 =
1

r
, Γ1

33 = −r sin2 θ

eλ
,

Γ3
23 =

cos θ

sin θ
, Γ3

13 =
1

r
, Γ2

33 = − sin θ cos θ.

The surviving components of the Ricci tensors are

R00 = 2ν
′′

+ ν
′2 − ν ′

λ
′
+

4ν
′

r
. (3.9)

R11 = 2ν
′′

+ ν
′2 − ν ′

λ
′ − 4λ

′

r
. (3.10)
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R22 = e−λ
(

1 +
1

2
r(ν

′ − λ′
)
)
− 1, (3.11)

As from [34]

Σ01 =
α

ρr2
e−(λ+ν)/2,

is the only non-zero component due to the spacetime symmetries so, only following compo-

nents of energy-momentum tensor survive,

T 00 = ρΣ01Σ1
0(−γ)−

1
2 ,

T 00 = e−ν
α

r2
,

Similarly,

T00 =
α

r2
eν ,

T 0
0 = T 1

1 =
α

r2
,

Using the value of Ricci tensor, Ricci scalar and stress-energy-momentum tensor, in the EFEs

for the clouds

R00 =
1

2
g00R− T00,

R00 =
1

2
eν
(2α

r2

)
− α

r2
eν ,

i.e

R00 = 0. (3.12)

R11 =
1

2
g11R− T11

R11 = −1

2
eλ
(2α

r2

)
+
α

r2
eλ,

R11 = 0. (3.13)

R22 =
1

2
g22R− T22

R22 = −1

2
r2
(2α

r2

)
,
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R22 = −α. (3.14)

from equations (3.9),(3.10),(3.11),(3.12),(3.13) and (3.14),

2ν
′′

+ ν
′2 − ν ′

λ
′
+

4ν
′

r
= 0, (3.15)

2ν
′′

+ ν
′2 − ν ′

λ
′ − 4λ

′

r
= 0, (3.16)

e−λ
(

1 +
1

2
r(ν

′ − λ′
)
)
− 1 = −α, (3.17)

Subtracting (3.15) from (3.16),
4ν

′

r
+

4λ
′

r
= 0,

ν
′
+ λ

′
= 0,

ν = −λ, (3.18)

Using (3.18) in (3.17),

e−λ
(

1 +
1

2
r(−λ′ − λ′

)
)
− 1 = −α,

e−λ
(

1 +
2rλ

′

2

)
− 1 = −α,

(e−λr)
′
= 1− α,

(e−λr) = r − αr + β,

where β is the constant of integration

e−λ = 1− α +
β

r
,

Considering the weak field limit we can identify β as follows. If the gravitational source is

spherically symmetric having mass M than in the weak field limit we have g00 = 1 + 2Φ
c2

,

where Φ = −GM
r

is Newtonian potential. So, [9]

β = −2M
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Substituting the value of β, (3.8) implies

ds2 = −
(

1− 2M

r
− α

)
dt2 +

(
1− 2M

r
− α

)−1

dr2 + r2dθ2 + r2 sin2 θdφ2. (3.19)

This solution was first obtained by Letelier [34] and the metric (3.19) represents the black

hole spacetime associated with a spherical mass M centered at the origin of the system of

coordinates, surrounded by a spherical cloud of strings. Here M is the mass of the black hole

and α is string cloud parameter, M is not a function of α. For the realistic model string

cloud parameter is restricted to 0 < α < 1 [35]. The cloud of strings with no central mass

have no horizons, it has naked singularity at r = 0. It is recovered that with α = 0 (3.19)

reduces to Schwarzschild case. The horizon of (3.19) is given by

1− 2M

r
− α = 0,

rh =
2M

1− α
, α ∈ (0, 1). (3.20)

If α < 1 than the radius is larger then the Schwarzschild radius by the amount (1 − α)−1.

In the limit α → 0 in (3.20) we have Schwarzschild radius, and α → 1 implies radius of

the event horizon tends to infinity. We will investigate trajectories of the timelike and null

geodesics for radial and circular motion in the above spacetime given by metric (3.19).

3.2 Particle Trajectories

For the spacetime given by (3.19) the geodesic Lagrangian for particle is given by

L =
m

2
gµν ẋ

µẋν = m
(
− 1

2

(
1− 2M

r
− α

)
ṫ2 +

ṙ2

2
(

1− 2M
r
− α

) +
1

2
r2(θ̇2 + sin2 θφ̇2)

)
. (3.21)

Using the Euler-Lagrange equations we get

−
(

1− 2M

r
− α

)
ṫ = constant =

ε

m
= E
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ṫ =
−ε(

1− 2M
r
− α

)
m

=
−E(

1− 2M
r
− α

) . (3.22)

And

2φ̇r2 sin2 θ = constant,

φ̇r2 sin2 θ = constant =
l

m
= L. (3.23)

For massless particles, E is the conserved energy and L is an angular momentum, while for

massive particles they are the conserved energy and angular momentum per unit mass of the

particle. In the equatorial plane, we get L = r2φ̇

In the equatorial plane (2.8) implies

−
(

1− 2M

r
− α

)
ṫ2 +

ṙ2(
1− 2M

r
− α

) + r2φ̇2 = −ε.

Using (3.22) and (3.23) in above equation we get

−

(
1− 2M

r
− α

)
E2(

1− 2M
r
− α

)2 +
ṙ2(

1− 2M
r
− α

) + r2L
2

r4
= −ε,

(dr
dλ

)2

= E2 −
(

1− 2M

r
− α

)(
ε+

L2

r2

)
, (3.24)

1

2

(dr
dλ

)2

+ Veff (r) =
1

2
E2. (3.25)

Here Veff (r) = 1
2

(
1 − 2M

r
− α

)(
ε + L2

r2

)
is the effective potential and the corresponding

effective energy is

Eeff =
1

2
E2.

The potential of a particle in Schwarzschild spacetime with string cloud background is de-

creasing with the increasing value of string cloud parameter when compared with Schwarzschild

case.
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3.3 Radial Motion

In the case of radial motion φ is constant and L = 0. Hence, (3.24) implies(dr
dλ

)2

= E2 − ε
(

1− 2M

r
− α

)
. (3.26)

3.3.1 Null Geodesics

In null geodesics, which refers to the motion of massless particles. For massless particles we

can choose any affine parameter along the null geodesic. So, (3.26) becomes(dr
dλ

)2

= E2. (3.27)

Using (3.22) in (3.27) (dr
dλ

)2

=
(
−
(

1− 2M

r
− α

) dt
dλ

)2

,

dr

dt
= ±

(
1− 2M

r
− α

)
,

On integrating we have

t =
r − rα + 2M ln

[
2M
r

+ (α− 1)
]

(α− 1)2
, (Outgoing photon)

t =
−r + rα− 2M ln

[
2M
r

+ (α− 1)
]

(α− 1)2
, (Ingoing photon)

The photons worldlines will have slopes ±(1−α) as r →∞, but their slopes approaches ±∞

as r → 2M
1−α . This means the lightcone expands if r →∞ as compared to Schwarzschild case

and the lightcone become more vertical, it closes up, as r → 2M
1−α . Thus, the particle reaches

r = 2M
1−α when t → ∞. For an external observer the particle take an infinite time to reach

the horizon.
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3.3.2 Timelike Geodesics

We are considering timelike geodesics we can choose our affine parameter to be the proper

time τ along the trajectory. With unit mass (3.26) becomes(dr
dτ

)2

= E2 −
(

1− 2M

r
− α

)
, (3.28)

Now first we find the equation of motion by using Euler-Lagrange equation (2.16). Consider

(3.21) in equatorial plane and differentiate with respect to r and ṙ,

∂L
∂r

=
(−M
r2

)
ṫ2 − 1(

1− 2M
r
− α

)2

(M
r2

)
ṙ2, (3.29)

∂L
∂ṙ

=
ṙ(

1− 2M
r
− α

) ,
d

dτ

(∂L
∂ṙ

)
=

(
1− 2M

r
− α

)
r̈ − ṙ2(2M

r2
)(

1− 2M
r
− α

)2 , (3.30)

Now using (3.29) and (3.30) in Euler Lagrange equation, we get

r̈(
1− 2M

r
− α

) − ṙ2(2M
r2

)(
1− 2M

r
− α

)2 +
(M
r2

)
ṫ2 − rφ̇2 = 0. (3.31)

Here for the radial motion (3.31) becomes

r̈(
1− 2M

r
− α

) − ṙ2(M
r2

)(
1− 2M

r
− α

)2 +
(M
r2

)
ṫ2 = 0. (3.32)

Inserting (3.28) and (3.22) in (3.32), we obtain

r̈(
1− 2M

r
− α

) −
(
E2 −

(
1− 2M

r
− α

))
(M
r2

)(
1− 2M

r
− α

)2 +
(M
r2

)(
1− 2M

r
− α

)2E
2 = 0,

r̈ =
d2r

dτ 2
= −M

r2
. (3.33)

51



In above equation there is no contribution of string cloud parameter, this is same as cor-

responding equation of motion in Schwarzschild case. But this does not implies that in

both theories particle predicts the same physical behaviour. Here, r coordinate is the radial

distance, the dot indicates derivative with respect to proper time rather than coordinate

time. As a specific example consider the particle initially at rest and, upon the gravitational

attraction, starts moving from its radial location r = r0 using(dr0

dτ

)2

= E2 − 1 +
2M

r0

+ α.

0 = E2 − 1 +
2M

r0

+ α,

E2 = 1− 2M

r0

− α. (3.34)(dr
dτ

)2

= E2 − 1 +
2M

r
+ α,

Substituting (3.34) in the above equation, we obtain(dr
dτ

)2

= 2M
(1

r
− 1

r0

)
. (3.35)

Above equation has the same form as the Schwarzschild case equating the gain in kinetic

energy to the loss in gravitational potential energy for a particle falling from rest at r = r0.

Consider a particle dropped from rest at infinity. In this case setting E = 1 in the geodesic

equation (3.22) and in (3.28) we obtain

dt

dτ
=

1

−(1− 2M
r
− α)

, (3.36)

dr

dτ
=

√
2M

r
+ α,

From these equations the components of the four-velocity of the particle in its radial motion

in equatorial plane are

dxµ

dτ
=
( 1

−(1− 2M
r
− α)

,

√
2M

r
+ α, 0, 0

)
.
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Equation (3.36) determines the trajectory of r(τ), integrating (3.36) gives

τ =
r
√

2M
r

+ α + r0

√
2M
r0

+ α

α
−

[
M ln

(
M
r

+ α +
√
α
√

2M
r

+ α
)(

M
r0

+ α +
√
α
√

2M
r0

+ α
)]

α
2
3

where τ = 0 at r = r0. Here τ is the proper time of the particle falling from r = r0 to a

coordinate radius r. For any value of string cloud parameter particle takes a finite proper

time to reach r = 0. From (3.25) effective potential for massive particles in radial motion is

Veff (r) =
1

2

(
1− 2M

r
− α

)
. (3.37)

In figure 3.1 effective potential Veff for different values of α against r
M

(for unit mass M)

is plotted. This shows that the effective potential decreases with the increasing value of

string cloud parameter α. Here the horizon rh is the intersection of Veff with r
M

axis. Event

horizons are 2.2, 3.3, 4, 5, 20 for α = 0.1, 0.4, 0.5, 0.6, 0.9 respectively.

Substituting (3.22) in ( 3.28), we have
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Figure 3.1: Plot of Veff in terms of r
M

. The effective potential decreases with the increasing

α. Eq.( 3.37) r
M

(for unit mass M) ranges from 0 to 20.
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(dr
dτ

)2

=
(

1− 2M

r
− α

)2( dt
dτ

)2

− 1 +
2M

r
+ α,

( dr
dτ

)2

( dt
dτ

)2
=

(
1− 2M

r
− α

)2

( dt
dτ

)2

( dt
dτ

)2
+
−1 + 2M

r
+ α

( dt
dτ

)2
.

This yields (dr
dt

)2

=
1

E2

(
E2 − 1 +

2M

r
+ α

)(
1− 2M

r
− α

)2

,

On integrating, we get

±(t− t0) =−

√
−1 + α + E2 + 2M

r

[
(α−1) r

M

√
−1+α+E2+ 2M

r

α−1+E2

(α− 1)2

√
−1+α+E2+ 2M

r

E2

+

2 ln[2+(α−1) r
M

]

E
− 2 ln[2+(α−1+2E2−2E

√
−1+α+E2+ 2M

r
) r
M

]

E

]
(α− 1)2

√
−1+α+E2+ 2M

r

E2

.

Here t is the coordinate time experienced by stationary distant observer. We can conclude

that to such an observer, it takes an infinite time for the particle to reach r = 2M
1−α , we

note that t→∞ as r → 2M
1−α . From figure 3.2 it is observed that the string cloud parameter

accelerates the particles following the timelike geodesics so that the particles reach the horizon

faster than the Schwarzschild case (α = 0). It is clear from figure 3.2 that as the value of α

increases, the particles take less time to reach the horizon. In figure 3.3 and 3.4 singularity

versus coordinate time in string cloud background is compared with Schwarzschild case.
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Figure 3.2: Plot of singularity versus proper time. The fall delays in Schwarzschild case

compared to string cloud background case.
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Figure 3.3: Plot of singularity versus coordinate time in Schwarzschild case and in string

cloud background.



Schwarzschild coordinate time

E2
= 1.39

Coordinate time in

String cloud background

Α = 0.09

2 3 4 5 6
0

5

10

15

20

25

30

35

r

t

Figure 3.4: Plot of singularity versus coordinate time in schwarzschild case and in string

cloud background.

3.4 Circular Motion

In this section we would study the circular motion of a photon and a massive particle. For

circular motion in equatorial plane we have r =constant, which implies ṙ = r̈ = 0. As before,

we introduce r = 1
u
. By considering du

dφ
at u = uc is zero in which rc = 1

uc
is the circular orbit

of the particle.

Using chain rule

ṙ =
dr

dσ
=
dr

dφ

dφ

dσ
=
dr

dφ

L

r2
,

(3.24) becomes (du
dφ

)2

=
E2

L2
−
(

1− 2Mu− α
)( ε

L2
+ u2

)
. (3.38)(du

dφ

)2

=
E2

L2
− ε

L2
− u2 +

2Mεu

L2
+ 2Mu3 +

αε

L2
+ αu2.

Taking derivative of both sides with respect to φ

d2u

dφ2
= −u+

Mε

L2
+ 3Mu2 + αu.
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At u = uc
E2

L2
−
(

1− 2Muc − α
)( ε

L2
+ u2

c

)
= 0. (3.39)

In the circular motion we have d2u
dφ2

= 0, therefore for (3.39)

d

du

[(E2

L2
−
(

1− 2Mu+
2α

u

(( ε

L2
+ u2

))]
u=uc

= 0. (3.40)

These conditions give the expression for the angular momentum.

−uc +
Mε

L2
+ 3Mu2

c + αuc = 0,

solving for L2 gives

L2 =
Mε

uc(1− α− 3Muc)
. (3.41)

Energy of the particle: Substituting (3.41) in (3.39)

E2

L2
− ε
(uc(1− α− 3Muc)

Mε

)
− u2

c + 2Mεuc

(uc(1− α− 3Muc)

Mε

)
solving for E2 gives,

E2 =
ε(α + 2Muc − 1)2

(1− α− 3Muc)
. (3.42)

For physically acceptable motion of the particle 1 − α − 3Muc must be greater than zero,

this constraint arises from (3.41) and

rc − αrc − 3M > 0,

rc >
3M

1− α
= rcmin.

Here rcmin is larger than the horizon

rh =
2M

1− α
, αε(0, 1)

Hence, the geodesic equation r2φ̇ = L cannot be satisfied for circular orbits with r < 3M
1−α .

Since they do not satisfy the geodesics equation so these orbits are not geodesics and cannot

followed by freely falling particles. Thus, the circular orbit cannot be maintained by a free

massive particle with r < 3M
1−α around spherical massive body.
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3.4.1 Null Geodesics

For massless particle geodesics (3.41) shows that only possible radius for circular photon orbit

is

αrc − rc + 3M = 0,

which gives

rc =
3M

1− α
. (3.43)

In figure 3.5 we plot rc
M

versus αM from (3.43) (for unit mass M). This shows that for larger

value of string cloud parameter α, the circular orbit of photon has larger radius. In this case
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5

10

15

20

25

30

35

ΑM

r c M

Figure 3.5: Plot of rc
M

in terms of αM for a massless particle. For larger value of α the

circular orbit of photon has larger radius.

from (3.39)
E2

L2
= (1− 2Muc − α)(u2

c),

E2

L2
=
(1− α

3M

)2

− 2M
(1− α

3M

)3

− α
(1− α

3M

)2

,

after simplification
E2

L2
=

(1− α)3

27M2
. (3.44)
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Having rc known, an exact value for the specific value of M and α means that for photon
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Figure 3.6: Plot of E2

L2 (M2) in terms of αM for a massless particle. For larger value of α the

circular orbit of photon has smaller value of E2

L2 (3.44).

there exist only one equilibrium circular orbit with the ratio E2

L2 . From (3.44) the plot of

(E
2

L2 )M2 against αM (for unit mass M) for a massless particle is shown in figure 3.6. For

larger value of α the circular orbit of photon has smaller value of (E
2

L2 )M2.

Stability: Consider the geodesic equation of the photon in ( 3.24) and the replacement of

τ = τ̃
L

gives (dr
dτ̃

)2

+ Veff (r) = Eeff (r),

where

Veff (r) =

(
1− 2M

r
− α

)
r2

=
1− 2M

r
− α

r2
. (3.45)

Eeff (r) =
E2

L2
.

For stable circular orbit we must have V
′

eff = 0 at rc and V
′′

eff > 0 at rc

V
′′

eff =
6

r4
c

− 24M

r5
c

− 6α

r4
c

,
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V
′′

eff = 6
(1− α

3M

)4

− 24M
(1− α

3M

)5

− 6α
(1− α

3M

)4

. (3.46)

Considering unit mass M, and for α = 0.1, (3.46) becomes,

V
′′

eff = −0.01458.

For α = 0.5, (3.46) becomes,

V
′′

eff = −0.0007716.

For α = 0.9, (3.46) becomes,

V
′′

eff = −0.00000025.

Hence, V
′′

eff is negative for α = 0.1 to 0.9 so there is no stable circular orbit for photons.
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Figure 3.7: The plot M2Veff versus r
M

for photons shows the unstable circular orbits for

photons.

Circular orbits will be stable if they corresponds to a minimum of the potential and, unstable

if they corresponds to a maximum. We have plotted Veff in figure 3.7 showing for different

values of string cloud parameter there is no stable circular orbit for photons. This means

that photon can orbit forever in this radius where Veff is maximum, but any perturbation

can cause it to fly away either to infinity or drop in singularity.
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3.4.2 Timelike Geodesics

For timelike geodesics we set ε = 1 in (3.41) to get the angular momentum

L2 =
M

uc(1− α− 3Muc)
. (3.47)

and from (3.42) we have the energy of the particle

E2 =
(α + 2Muc − 1)2

(1− α− 3Muc)
. (3.48)

As this is mentioned before here rc = 1
uc

, from (3.47) figure 3.8 and 3.9 shows the variation of
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Α = 0.06
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Α = 0

From left to rightt
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Figure 3.8: Behaviour of the angular momentum of massive particle versus distance for

changing α. Here r ranges from 0 to 8.

L2 against rc. If the radius of circular orbit becomes smaller the angular momentum increases

but when the value of radius of circular orbit approaches to rcmin, the angular momentum

goes to infinity.

For physical acceptable motion the constraints (1−α− 3Muc) > 0 arises from (3.47) which
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Figure 3.9: Behaviour of the angular momentum of massive particle versus distance for

changing α. Here r ranges from 2 to 8.

implies rc >
3M
1−α = rcmin. Hence, rcmin − rc = 1

1−α . In figure 3.10 and 3.11 the difference

between circular geodesic radii and horizon radii is shown, this shows that with larger value

of string cloud parameter, the gap between rcmin and rh increases. Hence, when the value of

string cloud parameter approaches to unity, the circular geodesic radii becomes unbounded

and particle can escape to infinity.

Stability: Consider the geodesic equation (3.24), putting ε = 1 in (3.24)(dr
dτ

)2

= E2 −
(

1− 2M

r
− α

)(
ε+

L2

r2

)
,

1

L2

(dr
dτ

)2

=
E2

L2
−
(

1− 2M

r
− α

)( ε

L2
+

1

r2

)
,

replacement of τ = τ̃
L

gives (dr
dτ̃

)2

+ Veff (r) = Eeff (r),
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Figure 3.10: The difference between circular geodesic radii and horizon radii shown as αM
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Figure 3.11: The difference between circular geodesic radii and horizon radii shown as αM

here

Veff (r) =
(

1− 2M

r
− α

)( ε

L2
+

1

r2

)
.

Eeff (r) =
E2

L2
.
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As mentioned before for stable circular orbit we must have V
′

eff = 0 and V
′′

eff > 0 at rc

Veff =
(

1− 2M

r
− α

)( 1

L2
+

1

r2

)
,

Veff =
1

L2
+

1

r2
− 2M

r3
− α

r2
− α

L2
− 2M

L2r
,

V
′

eff = − 2

r3
+

6M

r4
+

2α

r3
+

2M

L2r2
,

V
′′

eff =
6

r4
c

− 24M

r5
c

− 6α

r4
c

− 4M

L2r4
c

,

putting V
′

eff = 0, gives

rc 1 =
(α− 1)L2 +

√
(α− 1)2L4 − 12M2L2

2M
,

rc 2 =
(α− 1)L2 −

√
(α− 1)2L4 − 12M2L2

2M
.

Substituting the value of rc in V
′′

eff

V
′′

eff = 6
((α− 1)L2 ±

√
(α− 1)2L4 − 12M2L2

2M

)4

− 24M
((α− 1)L2 ±

√
(α− 1)2L4 − 12M2L2

2M

)5

− 6α
((α− 1)L2 ±

√
(α− 1)2L4 − 12M2L2

2M

)4

−4Mε

L2

((α− 1)L2 ±
√

(α− 1)2L4 − 12M2L2

2M

)4

.

Effective potential has maxima and minima for different values of rc. Effective potential for

α = 0.01 , α = 0.1, and α = 0.25 is shown in figures 3.12, 3.13, and 3.14 respectively. There

are five different curves depending on the angular momentum. In figure 3.12 graph of effective

potential for α = 0.01 gives the maximum value at r = 4.4, r = 4.0, r = 3.8 and r = 3.7

,minimum value at r = 9.3, r = 11.7, r = 13.9 and r = 16 for L2 = 14, L2 = 16, L2 = 18 and

L2 = 20, respectively. As we know stable circular orbits corresponds to the minimum of the
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effective potential while unstable orbits corresponds to the maximum of effective potential.

We have stable circular orbits at r = 9.1, r = 11.5, r = 13.5 and unstable orbits at r = 5.2,

r = 4.6, r = 4.4 for L2 = 16, L2 = 18 and L2 = 20, respectively in figure 3.13 where α = 0.1.

In figure 3.14 and 3.15 there is no unstable circular orbits for the values of angular momentum

used in figure 3.12 and graph becomes asymptotically constant. Hence, there are stable and

unstable circular orbit for massive particles in the presence of string cloud parameter but

there would be different situations for different values of string cloud parameter and angular

momentum. It is concluded that the unstable circular orbits for massive particles exists for

lager values of angular momentum L and smaller values of string cloud parameter α.
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Figure 3.12: Effective potential for massive particles when α = 0.01
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Figure 3.13: Effective potential for massive particles when α = 0.1
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Figure 3.14: Effective potential for massive particles when α = 0.25
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From top to bottom
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Figure 3.15: Effective potential for massive particles when α = 0.5



Chapter 4

Summary and Discussion

In this dissertation we have studied trajectories of the timelike and null geodesics for ra-

dial and circular motion in the vicinity of the Schwarzschild black hole with string cloud

background.

In the first chapter, basics of general relativity are studied. The derivation of EFEs in the

presence of matter is given in the same chapter. Riemann tensor, stress-energy tensor and

few features of black holes are also discussed there.

Second chapter is a review to the study of the discovery of constant radial force acted on

pioneer spacecraft launched in 1972/73 [26]. Although the physical source of this force is

still not known. There we reviewed the geodesics in the Grumiller spacetime. Where the

effect of Rindler acceleration parameter on the trajectories of the timelike and null geodesics

in Grumiller spacetime is compared with the Schwarzschild case. It was found that with

the increasing value of Rindler parameter the effective potential also increases and particle
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moves quickly towards the horizon, compared to the Schwarzschild case. It was seen that

radial motion in the presence of Rindler parameter is bounded and there is no stable circular

orbit for photons but, for the massive particle the stable circular orbits exist. It is noticed

that radius of circular orbit of photons become smaller as Rindler parameter increases. Hence,

Rindler parameter confine the geodesics. Rindler parameter does not allow the particle to

escape to infinity.

In third chapter we have considered static spherically symmetric non vacuum solution

in the presence of string cloud where α was the string cloud parameter. Therefore the

particle was under the influence of both gravitational and string cloud parameter forces.

We have obtained equations of motion by using Lagrangian formalism. It was found that

in the presence of string cloud parameter the horizon was larger than the Schwarzschild

horizon, as α approaches to unity radius of the horizon approaches to infinity. Effective

potential was calculated and, it was observed that the effective potential decreases with

the increase in string cloud parameter. It was observed that when string cloud parameter

approaches to zero this leads to Schwarzschild case. Behavior of the particle with respect to

time (proper/coordinate) in the presence of string cloud parameter was also investigated.

It was observed that for larger value of the string cloud parameter the circular orbit of

photon has larger radius. Hence, as α increases the particle can more easily escape to infinity

compared to the Schwarzschild case. We have also discussed the stability of circular orbits for

photon and massive particles. It was found that there is no stable circular orbit for photons

but for massive particles there are stable orbits as well as unstable circular orbits, depending

on the values of angular momentum and string cloud parameter.
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