
A Novel Approach to calculate Dominance Based Rough 

Sets Approximations for dynamic datasets 
 

 

 

 

 

 

Author 

Uzma Nawaz 

00000328425 

 

Supervisor 

Dr. Usman Qamar 

 

DEPARTMENT OF COMPUTER AND SOFTWARE ENGINEERING 

COLLEGE OF ELECTRICAL & MECHANICAL ENGINEERING 

NATIONAL UNIVERSITY OF SCIENCES AND TECHNOLOGY 

ISLAMABAD 

February, 2024 



 



 

A Novel Approach to calculate Dominance Based Rough Sets 

Approximations for dynamic datasets 
 

 

Author 

Uzma Nawaz 

00000328425 

 

A thesis submitted in partial fulfillment of the requirements for the degree of 

MS Computer Engineering 

 

Thesis Supervisor 

Dr. Usman Qamar 

Thesis Supervisor Signature:   _ ___________ 

 

DEPARTMENT OF COMPUTER AND SOFTWARE ENGINEERING 

COLLEGE OF ELECTRICAL & MECHANICAL ENGINEERING 

NATIONAL UNIVERSITY OF SCIENCES AND TECHNOLOGY 

ISLAMABAD 

February, 2024



i 

 

 

 

Dedicated to my exceptional parents, sister, brother and friends whose 

tremendous support and cooperation led me to this wonderful 

accomplishment 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



ii 

 

Acknowledgement 

 

First of all, we are grateful to ALLAH Almighty who is beneficent and most merciful. Who made 

the universe with the possibility of glory, balance and amicability, with normality and gave the 

capacities to human to develop. ALLAH Almighty has blessed us with beloved parents and helpful 

friends who consistently contributed towards our studies.  

I am incredibly grateful to my wonderful parents who reared me when I was unable to walk and 

who have supported me throughout my life in every aspect. 

I’m really thankful to my honorable Supervisor Dr. Usman Qamar for his help and assistance. It is 

a matter of great pleasure to express our regards to worthy Supervisor, for his masterly advice, 

encouragement and guidance. With his help we are able to complete our monotonous work. 

Additionally, I would like to express my gratitude to Dr. Summair Raza for his outstanding 

assistance and cooperation. He always had an answer when I was stuck on something. I wouldn't 

have been able to finish my thesis without his assistance. I am grateful for his assistance and 

patience throughout the entire thesis. 

For their assistance and cooperation, I also want to thank Drs. Wasi Haider and AP Jahan Zeb from 

my GEC committee. 

Finally, I would want to offer my gratitude to everyone who has helped my research in any way. 

 

 

 

 

 

 



iii 

 

Abstract 

 

Effective data analysis of big datasets is a challenge and when data changes over time, 

new feature values are added, as a result, its complexity increases. An advanced approach of 

rough sets theory known as the Dominance-based Rough Set Approach (DRSA) is a powerful 

mathematical tool for identifying meaningful information in preference-ordered datasets. Data 

analysis using DRSA is primarily based on the lower and upper approximations calculation, 

which are very expensive to compute. It mainly used resources i.e., time execution and memory 

consumption. When the data changes over time, approximation sets must be recalculated. As a 

result, calculations that are repeating, increase the cost of approximation’s computation in the 

real-time domain. The proposed approach computes approximations for increasing object values 

with time. Results were compared with the conventional approach using UCI publicly available 

datasets. When compared to the usual method, our suggested approach updated approximations 

in less time, with an average reduction of 99.2%. 

 

Index Terms- Rough Set Theory, Dominance Based Rough Sets Approximation, Dynamic Dataset, 

KD Tree, Dynamic Update, Dynamic System 

 

 

 

 

 

 

 



iv 

 

 

Table of Contents 
CHAPTER 1 :     INTRODUCTION......................................................................................... 1 

1.1 Feature selection ............................................................................................................... 2 

1.1.1 Advantages of Feature Selection .............................................................................. 2 

1.2 Methods of Feature selection ........................................................................................... 3 

1.2.1 Supervised ................................................................................................................. 3 

1.2.2 Unsupervised............................................................................................................. 4 

1.3 Rough Set Theory ............................................................................................................. 4 

1.4 Dominance Based Rough Set Approach (DRSA) ............................................................ 5 

1.5 Motivation ........................................................................................................................ 6 

1.6 Problem description.......................................................................................................... 6 

1.7 Aims and Objectives ........................................................................................................ 7 

1.8 Scope ................................................................................................................................ 7 

1.9 Research Contributions .................................................................................................... 8 

1.10 National Needs ................................................................................................................. 8 

1.11 Applications ..................................................................................................................... 8 

1.12 Thesis Structure ................................................................................................................ 9 

CHAPTER 2 :  DOMINANCE BASED ROUGH SET APPROACH .................................. 10 

2.1 Concepts ......................................................................................................................... 10 

2.2 Related terms ...................................................................................................................11 

2.3 Approximations .............................................................................................................. 14 

2.3.1 Lower Approximations ........................................................................................... 14 

2.3.2 Upper Approximations ............................................................................................ 18 

2.4 Quality of Approximation and reducts ........................................................................... 24 



v 

 

CHAPTER 3 :     LITERATURE REVIEW ........................................................................... 25 

3.1 Research order ................................................................................................................ 25 

3.1.1 Research inquiries ................................................................................................... 25 

3.1.2 Purpose of doing Literature Review ....................................................................... 25 

3.1.3 Keywords ................................................................................................................ 26 

3.1.4 Literature Review’s criteria ..................................................................................... 26 

3.1.5 Prisma 2009 Categorization .................................................................................... 27 

3.2 Related Work .................................................................................................................. 28 

3.2.1 Conventional Approach .......................................................................................... 28 

3.2.2 Incremental Approach ............................................................................................. 28 

3.2.3 Parallel Approach .................................................................................................... 31 

3.3 Analysis .......................................................................................................................... 34 

3.4 Gap Analysis .................................................................................................................. 34 

CHAPTER 4 :    CHALLENGES IN COMPUTATION ....................................................... 35 

4.1 Algorithm ....................................................................................................................... 35 

4.1.1 Lower Approximation ............................................................................................. 35 

4.1.2 Upper Approximation ............................................................................................. 39 

4.2 Example .......................................................................................................................... 42 

4.2.1 Application of algorithm ......................................................................................... 42 

4.3 Causes of the rise in computational expenses ................................................................ 50 

CHAPTER 5 :       PROPOSED METHODOLOGY ............................................................. 52 

5.1 An algorithm to update Approximation Upon Insertion of new Object ......................... 52 

5.2 Flow Chart of proposed methodology ............................................................................ 58 

5.3 Illustrative Example ....................................................................................................... 59 

CHAPTER 6 : RESULTS AND ANALYSIS ........................................................................... 62 



vi 

 

6.1 Dataset ............................................................................................................................ 62 

6.2 Characteristics of dataset ................................................................................................ 64 

6.3 Experimental measure .................................................................................................... 65 

6.3.1 KD Tree ................................................................................................................... 65 

6.3.2 Execution Time ....................................................................................................... 66 

6.4 Evaluation design ........................................................................................................... 66 

6.4.1 Execution environment ........................................................................................... 67 

6.4.2 Algorithmic Parameters .......................................................................................... 67 

6.5 Results and discussion .................................................................................................... 67 

6.5.1 Computational Time................................................................................................ 77 

6.5.2 Memory Consumption ............................................................................................ 80 

6.6 Case Study ...................................................................................................................... 83 

CHAPTER 7 :          CONCLUSION AND FUTURE WORK ............................................. 84 

7.1 Conclusion ...................................................................................................................... 84 

7.2 Future work .................................................................................................................... 86 

7.3 Limitation ....................................................................................................................... 86 

References .................................................................................................................................... 87 

 

 

 

 

 

 

 

 



vii 

 

 

List of Figures 

 

Figure 1 : Generic Process of feature selection .............................................................................. 2 

Figure 2: Subset property for lower approximation 𝑃𝐶𝑙𝑡 ≤ ........................................................ 16 

Figure 3: Subset property for lower approximation 𝑃𝐶𝑙𝑡 ≤ ........................................................ 18 

Figure 4: Intersection property for upper approximation 𝑃𝐶𝑙𝑡 ≤ ................................................ 21 

Figure 5: Intersection property of upper approximation 𝑃𝐶𝑙𝑡 ≤ ................................................. 23 

Figure 6: Prisma 2009 Categorization ......................................................................................... 27 

Figure 7: Subset property check for 𝑃𝐶𝑙𝑡 ≥ ................................................................................ 44 

Figure 8: Subset property check for 𝑃𝐶𝑙𝑡 ≤ ................................................................................ 46 

Figure 9: Intersection property check for 𝑃𝐶𝑙𝑡 ≥ ........................................................................ 48 

Figure 10: Intersection property check for 𝑃𝐶𝑙𝑡 ≤ ...................................................................... 50 

Figure 11: Flow chart of proposed methodology .......................................................................... 58 

Figure 12: Percentage decrease in execution time for 𝐶𝑙𝑡 ≥ ....................................................... 73 

Figure 13: Percentage decrease in execution time for 𝐶𝑙𝑡 ≤ ....................................................... 75 

Figure 14: Time comparison using recent techniques .................................................................. 77 

Figure 15:  Comparison of Conventional, Parallel and Proposed Approach with respect to 

execution time ............................................................................................................................... 78 

Figure 16: Comparing execution times to calculate downward union of class approximations .. 79 

Figure 17: Comparing the amount of time needed to compute upward class union 

approximations .............................................................................................................................. 81 

Figure 18: Comparing computing Time required to calculate the proposed and conventional 

approaches for data collections with additional instances ............................................................ 82 

 

 

 

 

 



viii 

 

List of Tables 

Table 1: Decision Table ................................................................................................................ 11 

Table 2: Incremental approach related work ................................................................................ 30 

Table 3: Parallel approach related work ....................................................................................... 32 

Table 4: Evaluation of high school ............................................................................................... 42 

Table 5: Details of symbols .......................................................................................................... 53 

Table 6: Pseudocode to set union of classed using preference order ........................................... 53 

Table 7: Pseudocode of KD tree ................................................................................................... 54 

Table 8: Details of KD tree symbols ............................................................................................ 56 

Table 9: Sample decision system .................................................................................................. 59 

Table 10: Characteristics of UCI dataset ...................................................................................... 65 

Table 11: Hardware specifications ............................................................................................... 66 

Table 12: Calculation time for the standard, parallel, and suggested approaches after adding new 

objects ........................................................................................................................................... 68 

Table 13: Execution time for conventional approach (upward and downward union class) ....... 69 

Table 14: Execution time for proposed approach (upward and downward union class) ............. 70 

Table 15: Execution time comparison to calculate approximation sets for suggested and 

traditional 𝐶𝑙𝑡 ≥ ............................................................................................................................ 72 

Table 16: Execution time comparison to calculate approximation sets for suggested and 

traditional 𝐶𝑙𝑡 ≤ ............................................................................................................................ 74 

Table 17: Time comparison using recent techniques .................................................................... 76 

Table 18: Comparison of memory consumption .......................................................................... 80 

 

 

 

 

 

 

 



1 

 

 

CHAPTER 1 :     INTRODUCTION 
 

The concept of data is constantly changing and evolving in our daily lives. Data complexity 

refers to the level of difficulty in examining and handling data [1]. Due to the rapid expansion of 

digital information, data complexity become a serious challenge. Factors that affect complexity of 

data are its expansion, growth, velocity and variety. When large amount of data generated from its 

source, it’s way more difficult to handle, analyze, preprocess and computation analysis [2]. An 

algorithm can become affected by irrelevant, redundant, and noisy features, which will have a 

negative impact on efficiency, accuracy and computational cost.  

Dealing with large data requires advance techniques, tools and expertise to find meaningful 

information for decision making process [3]. So, there is a need to select relevant features that can 

help algorithm to work more effectively and efficiently. 

Relevant features lead to data processing more accurately. But as the quantity and variety of 

datasets increase with time, it contains irrelevant and redundant features most likely noisy data. As 

the quantity of data increases, the size also increases. It will affect the model’s accuracy and 

efficiency very badly. With the help of the feature selection techniques, we can eliminate irrelevant 

and redundant features.  

It also helps in improving the model’s efficiency, and performance and lowers its 

computational expense. It reduces overfitting and improves accessibility. To assess the relevance 

and value of features, various techniques such as statistical testing, correlation analysis, and 

regularization procedures are used.  

Effective feature selection can result in more efficient and accurate models which allow for 

better decision-making and data insights [4]. With the feature selection method, we can remove 

irrelevant features and make the algorithm easier to understand and debug. Also, we can increase 

the model’s performance and enable the model to train fast. 

 

 



2 

 

1.1 Feature selection 

The process of selecting the most reliable, non-redundant, and relevant characteristics to add in a 

model is known as feature selection [5]. As the number and diversity of datasets expand over time, 

it is critical to gradually minimize their size. The basic goals of feature selection are to improve 

the performance of a predictive model while also lowering its computing cost. 

The act of selecting the most important features to input into algorithmic methods for machine 

learning is known as feature selection, and it is one of the primary elements of feature design [6]. 

By deleting redundant or unneeded features and reducing the number of features that are most 

critical to the predictive model. 

1.1.1 Advantages of Feature Selection 

There are many advantages of feature selection. Some of them are listed below: 

1. It removes irrelevant features 

2. It makes algorithm easier to understand and debug 

3. It increases the performance of model 

4. It makes training fast 

 

Figure 1 : Generic Process of feature selection 

 

 



3 

 

1.2 Methods of Feature selection 

There are two types of feature selection algorithms: 

1.2.1 Supervised 

This strategy may be used on labeled data to identify relevant features [7] and improve the 

efficacy of supervised models [6] such as regression and classification. This includes SVM, 

decision trees, and linear regression. Supervised techniques also include filter methods, wrapper 

methods, and embedded methods. 

1.2.1.1 Filter Methods 

In contrast to cross-validation performance, filter algorithms pick features based on 

statistics [9], [10]. A predetermined measure is used to identify superfluous properties and perform 

recursive feature selection. Multivariate filter approaches assess the overall relevance of the 

features while identifying redundant and unnecessary features [11], in contrast to univariate filter 

methods, which create a specific ordering list of features to help with the final pick of feature 

subsets. 

1.2.1.2 Wrapper Methods 

Wrapper feature selection techniques treat feature selection as a search issue by preparing, 

evaluating, and comparing a particular feature combination to another [12], [13]. This method 

makes it easier to identify possible interactions between variables. Wrapper techniques focus on 

feature subsets to enable the selection algorithm provide higher-quality outcomes [14]. Boruta and 

Forward feature selection are two popular examples. 

1.2.1.3 Embedded Methods 

In this methods, classification and selection of features are carried out concurrently as part 

of the learning algorithm by integrating the feature selection machine learning algorithm [15]. 

During every iteration of the model training process, the most important characteristics are 

carefully extracted [16]. Embedded techniques include random forest feature selection, decision 

tree feature selection, and LASSO feature selection. 

 



4 

 

1.2.2 Unsupervised 

This method can be applied to unlabeled data that can be used [17] with these methods. 

Because there are no clearly defined data labels in unsupervised, it is difficult to evaluate the 

effectiveness of an algorithm [18] The algorithm divides a dataset into various categories after 

discovering a deep structure in the data on its own. The algorithm is frequently selected in 

accordance with business objectives. Examples include Principal Component Analysis, 

Hierarchical Clustering, and K-Means Clustering. 

1.2.2.1 Data Dimensions Criteria 

The machine learning (ML) technique known as dimensionality reduction is used to identify 

patterns in data and solve complex computational problems [19]. This approach uses a collection 

of algorithms transform complex input data to a space of low dimensions., thereby reducing the 

number of input variables in a dataset [20]. When working with visual and audio data involving 

speech, video, images, or text, as well as when condensing datasets to better fit a predictive model, 

dimension reduction is useful. 

1.3 Rough Set Theory 

Rough set theory [21] is a mathematical approach developed by Zdzislaw Pawlak in 1982 

that is used to manage [22] unclear, irrelevant, incomplete, imprecise, and noisy data for decision 

making and data analysis. RST provides a number of data structures to represent real-world data, 

including Information Systems, Decision Systems, and Approximations [23].  

Based on the indiscernibility connection, rough set theory splits data into two different and 

equivalent types. By indiscernibility, we imply that a data collection cannot be recognized by a 

certain set of characteristics. Rough set theory allows for the identification of relevant traits while 

deleting those that are redundant or unnecessary [26]. RST offers a variety of data types to 

represent data from real-world situations such as Information Systems, Reasoning Systems, and 

Approximate values. It offers a structured framework for knowledge discovery, feature selection, 

and rule induction, making it particularly useful in data mining, machine learning, and expert 

systems. Rough set theory has applications in a wide range of domains, including finance, 

medicine, and pattern recognition. Because of its ability to deal with ambiguity and missing or 

inaccurate data, it is beneficial in circumstances where traditional approaches may fail.  



5 

 

The theory provides a solid foundation for analyzing and interpreting big data, enabling the 

extraction of important data and relevant qualities. Its adaptability and agility make it a vital tool 

in artificial intelligence, aiding with the creation of statistical analysis and support systems for 

decision-making. 

Rough set theory, like probability, statistics, entropy, and Dempster-Shafer theory, is one of 

several methodologies that may be used to analyze uncertain systems. However, this method does 

not work for preferred ordering. 

1.4 Dominance Based Rough Set Approach (DRSA) 

To address this issue, Greco, Matarazzo, and Sowiski [24] suggested dominance-based rough 

set theory, a modified version of rough set theory. DRSA [25] uses the dominance connection to 

replace the indiscernibility connection. Theory of rough set is a strong paradigm for coping with 

unclear data and inadequate expertise in data analysis and decision-making strategies based on 

dominance. It incorporates object dominance relations into the usual rough set theory.  

Objects are compared based on their preference order in this theory, and dominance 

connections are built to assess the relative value of items. Rough set theory based on dominance 

provides for a deep understanding of the interactions between items and features based on 

preference order. It provides a versatile and effective method for feature selection, classification, 

and decision-making tasks, particularly when data is few or imprecise.  

The fundamental benefit of utilizing rough set theory based on dominance is that it can 

handle complicated and unpredictable material without requiring precise numerical values. The 

theory can represent the inherent complexity and incomplete data in real-world by studying 

preference order. This makes it especially effective in sectors where data is likely to be inadequate, 

noisy, or open to human interpretation. DRSA has found applications in a variety of disciplines, 

that includes finance, healthcare, and engineering, where decision-making under uncertainty is 

important.  

DRSA calculates lower and upper approximations based on preference order between 

objects. To achieve this, objects are compared according to their order of preference. The 

computational complexity develops because dominance-based rough set theory considers various 

qualities and their combinations. As dataset increases its attribute set also increases, as a result the 



6 

 

number of dominance comparison also grows. This cause consumption of resources such as time 

and memory. 

 Approximation sets must be recalculated when the data evolve over time. Therefore, 

Repeated computations raise the computational price of approaches in the current time realm. To 

avoid this problem, we devised a solution in which the method computes approximations for object 

values that increase over time.  

The conventional definition of DRSA approximations is finding objects that fit into the 

greatest and least value ordered choice classes are required. The stage is computationally costly 

for bigger datasets. Rough approximation computations are complex and time-consuming, which 

contributes to DRSA's slow performance. Our research methodology lowers the quantity of RAM 

required and the processing time.  

For a single approximation, the traditional DRSA model repeatedly compares each instance 

and its attributes with the complete dataset. In this research paper, we provide an optimized method 

to improve efficiency in updating approximation sets and to decrease time complexity. All 

estimates were correctly updated using the proposed approach, which also avoided unnecessary 

iterations across the whole dataset. 

1.5 Motivation 

DRSA is a modified version of rough set theory. It easily handles difficult data. It is used by 

many applications for a variety of data mining tasks. It is advance concept but reduction in 

computational difficulty is still required. A lot of researchers work to minimize the computational 

complexity and cost. 

1.6 Problem description 

DRSA calculates greatest and least value ordered choice classes based on ranking of 

preferences between objects. This is done by comparing objects based on their ranking of 

preferences. The computational difficulty develops because dominance-based rough set theory 

considers various qualities and their combinations. As dataset increases, its attribute set also 

increases, as a result the number of dominance comparison also grows. This cause consumption of 

resources such as time and memory.  



7 

 

Approximation sets must be recalculated when the data evolve over time. Therefore, the 

computational cost of approximations in the real-time domain is increased by repetitive 

calculations. To avoid this problem, we devised a solution in which the method computes 

approximations for object value that increase over time.  

 

1.7 Aims and Objectives 

The primary goals are: 

• To reduce the computational burden of modelling and improve the performance of a predictive 

model.  

• To determine the upper and lower bounds of approximations for dynamic datasets in which 

object values vary over time. 

• To reduce execution time and memory consumption.  

 

1.8 Scope 

The standard description of DRSA approximations is that finding items that fit into both the 

greatest and least prefer ordered decision classes is required. This stage is computationally 

intensive for bigger datasets. Rough approximation computations are laborious and time-

consuming, which contributes to DRSA's sluggish performance. Our methodology lowers the 

amount of RAM used and the observed execution time.  

The old DRSA model [27] compares every instance and its attributes with the entire dataset 

numerous times for a single approximation. In this paper we come with optimized approach to 

reduce time complexity and to update approximation sets more efficiently. The proposed approach 

effectively updated every approximation without going through the whole dataset in needless 

rounds. 

Our proposed model reduces cost of DSRA algorithm, it focuses on improving less memory 

consumption, improves time complexity and sticks to the absolute accuracy. We have tested our 

proposed method's effectiveness using ten UCI datasets and compared its performance to that of 

traditional algorithm as well as parallel and incremented approaches.  



8 

 

The results demonstrated that our suggested strategy decreased execution time by almost 

99.2%. The main objective of our study is to show how the proposed method can be used in real-

world problems such as medical diagnostics, using less processing and storage space to perform 

behavior analysis, prediction, categorization, and making choices on huge datasets. 

1.9 Research Contributions 

We contributed following things in our research: 

• Reduce computational cost of DRSA algorithm 

• Focus on improving less memory consumption 

• Improve time complexity 

• Stick to absolute set accuracy 

 

1.10  National Needs 

The primary goal of research is to gain knowledge in order to better build our nation. We 

must link research with national development in order to build a society, polity, and economy that 

eliminates poverty, unemployment, and inequality, along with other things. The main objective of 

our study is to show how the proposed method can be used in real-world problems such as medical 

diagnostics, using less processing and storage space to perform behavior analysis, prediction, 

categorization, and making choices on huge datasets with prefer choice attributes. 

1.11  Applications 

Pawlak proposed the revolutionary RST in 1982, which was a milestone in the history of 

non-statistical data mining approaches [21]. Building on this basis, the DRSA evolved as a 

modified version which demonstrate amazing ability to handle complex data structures [24]. Its 

adaptability has resulted in extensive usage in a variety of disciplines, including financial 

forecasting, image segmentation, classification tasks, and fault identification. Furthermore, DRSA 

is used in data exploration to facilitate the extraction of useful insights from difficult datasets. 

Furthermore, it is an effective tool for developing exact decision rules, which improves decision-

making processes in a variety of scenarios. Notably, DRSA plays an important part in multi-criteria 

decision aid systems which allow it for the selection of optimal investment projects among 



9 

 

competing options. DRSA remains the foundation of modern data mining procedures, because to 

its broad applicability and excellent performance. 

 

1.12  Thesis Structure 

Following is the overall thesis structure: 

• Chapter 2: Dominance Based Rough Set Approach (DRSA):  

Rough Set Theory's foundational concepts are covered in Chapter 2. Additionally, it 

analyses rough-set theory and gives examples of both its strengths and weaknesses. 

• Chapter 3: Literature Review 

In this chapter we have discussed some preliminary concepts regarding DRSA  

• Chapter 4: Challenges in computation: 

In this chapter we discussed the challenges in computation of DRSA and its algorithm. 

• Chapter 5: Proposed methodology: 

In this chapter, we have put forth a computationally efficient algorithm to replace the 

traditional upper and lower approximation algorithms used in DRSA. 

• Chapter 6: Results and analysis: 

Results are produced in this chapter after our suggested solution has been tested on various 

datasets. Following that, an analysis and conclusion are drawn based on the findings of the 

experiment. 

• Chapter 7: Conclusion and future work: 

In this chapter we concluded our work and additional future work is provided. 

 

 

 

 

 

 

 



10 

 

CHAPTER 2 :  DOMINANCE BASED ROUGH SET APPROACH 
 

In this chapter, we will discuss major concepts regarding DRSA. In 2.1 main concept is 

elaborated. After that in 2.2, related terms are explained. Further in 2.3, dominance relation is 

discussed. In 2.4, class concept is described. In 2.5, approximation calculation steps are shown and 

in last section 2.6, how to find reducts and core using upper and lower approximation is elaborated. 

2.1 Concepts 

Data mining is done by classification, which is a process of extracting and discover the 

vital knowledge from large datasets. With the help of classification method [5],[6], data points are 

separated into different classes.  

It is used to organize data and improve quality of datasets. But there is a need to improve 

classification process. In machine learning, feature selection algorithms are applied on them to 

select relevant features which then further use in classification. There are many algorithms used 

for feature selection. RST is one of them. 

Dataset attributes are of many types. Rough sets work on discrete-valued attributes having 

independent values and produces good results [21]. But some attributes have ordered values called 

preference value. These attributes are known as criteria and usually, they have to do with economic 

matters, like financial or marketing data. [24]. These attributes are different from independent 

attributes, where rough set couldn’t apply on it.  

There is a need to make a decision or to do classification with certain criteria. There are 

objects set that are examined by a certain criterion. When multiple attributes are used to describe 

an object, multi-criteria decision analysis is used [27]. 

These attributes have assigned criterion values that belongs to specific class. For example, 

home appliance has its specific model number and company name. It’s country and color have no 

use. Rough sets can’t apply on such attributes. The relationship between attributes known as a 

monotonic relation occurs when one attribute depends on another. In monotonic relationships, the 

type of dependence can either be directly proportional or inversely proportional. In a monotonic 

relation, four types of relationships are taken into account. 



11 

 

• Increase in one attribute increases the other attribute.  

• Increase in one attribute decreases the other attribute.  

• Decrease in one attribute increases the other attribute.  

• Decrease in one attribute decreases the other attribute. 

Some examples of monotonic relation are as follows: 

• If a person is paid for working at a regular rate, the money that he earned is directly 

proportional to the time. 

• The number of construction workers increases, less time will require to finish the project. 

• As the diameter of the circle increases its circumference increases. 

Greco, Sowiski, and Matarazzo introduce DRSA to handle properties that are ordered by 

preference, multi criteria decision analysis, and monotonic relationships [24]. In DRSA, the 

dominance relation takes place of the indiscernibility relation. Important features are chosen and 

classification rules are generated with the aid of DRSA. 

2.2 Related terms 

The dataset is regarded as a decision table in traditional RST.  Decision table consist of finite 

number of elements called universe denoted by U. Having two kinds of attributes i.e., conditional 

attribute (C) and decision attribute (D). A decision system is described as: 

Table 1: Decision Table 

Universe English Mathematics Grades 

X1 B B Good 

X2 C B Good 

X3 B C Good 

X4 A B Very Good 

X5 A A Excellent 

X6 A B Very Good 



12 

 

For simplicity, we considered numbers as Excellent = 1, Very Good =2, Good =3 for decision 

attribute. And for conditional attribute we considered A=1, B=2 and C=3. 

𝐼𝑆 = (𝑈, 𝑄, 𝑉, 𝑓)                            (1) 

U in this case denotes a limited collection of objects (universe), Q represents limited set of criteria 

𝑄 = (𝐶 ∪ 𝐷), that contains conditional and decision attributes, V = 𝑈𝑞∈𝑄𝑉𝑞 where 𝑉𝑞 is the 

collection of criterion q values. f represents function of 𝑓(𝑥, 𝑞) which designates a specific value 

𝑉𝑞 to an object x for attribute q. 

DRSA analyses the dominance relation to take into account the objects' preference order. The 

following is a definition of an object's dominance relationship: 

DRSA makes advantage of the prioritized attributes dominance connection to locate reductions 

and the core. Because P is a valid subset of C, it is employed in this procedure and is subject to a 

dominance relation. two different kinds of dominance relationships are. 

• Dominance positive relation:  

               𝐷𝑝−(𝑥) = {𝑦 ∈  ∪: 𝑥𝐷𝑝𝑦}                         (2) 

• Dominance negative relation:  

             𝐷𝑝+(𝑥) = {𝑥 ∈  ∪: 𝑦𝐷𝑝𝑥}                                                          (3) 

DRSA decision union classes further classified into two types. 

• Upward Union of classes 𝐶𝑙𝑡
≥:  it includes objects greater than preference order t. 

𝐶𝑙𝑡
≥ = 𝑈𝑠≥𝑡𝐶𝑙𝑠                                                                                                                    (4) 

• Downward Union of classes s 𝐶𝑙𝑡
≤:   

• it includes objects less than preference order t. 

𝐶𝑙𝑡
≤ = 𝑈𝑠≤𝑡𝐶𝑙𝑠                                                                                                                     (5) 

Whenever a new object is inserted, the approximations are updated. 



13 

 

We assumed that a new set of objects would be used to further clarify the implementation of our 

suggested strategy 𝑈+ = {𝑿𝟕, 𝑿𝟖, 𝑿𝟗} details of the conditional and decision attribute are 

provided in the decision system as {Universe, English, Mathematics, Grade}:  

• (𝐗𝟕, 𝐂, 𝐁, 𝐆𝐨𝐨𝐝) 

• (X8, B, A, Very Good) 

• (X9, A, A, Excellent) 

Take new objects X7, X8, X9 into consideration. In order to update the approximation sets, we 

first update the decision classes and the corresponding groups arranged by greater or lower 

preference. Consider Table 1, we set object X3 as origin and P = {English}. Then, using equation 2 and 3 

we have, 

𝐷𝑝−(𝑥) = {𝑋1, 𝑋2, 𝑋3, 𝑋7}  

And 

𝐷𝑝+(𝑥) = {𝑋1, 𝑋3, 𝑋4, 𝑋5, 𝑋6, 𝑋8, 𝑋9}   

We have taken preference order t = 2. The set of class union greater and equal to 𝐶𝑙𝑡
≥(𝑥) have a 

value set: 

 𝐶𝑙𝑡
≥(𝑥) = {𝑋4, 𝑋5, 𝑋6, 𝑋8, 𝑋9} 

That is these objects either belonging to class ‘Very Good’ or class ‘Excellent’. 

Similarly, 𝐶𝑙𝑡
≤(𝑥) = {𝑋1, 𝑋2, 𝑋3, 𝑋4, 𝑋6. 𝑋7, 𝑋8} 

This means these objects either belonging to class ‘Very Good’ or less preferred class ‘Good’. 

Now, if we change preference order t=1: 



14 

 

𝐶𝑙𝑡
≥(𝑥) = {𝑋5, 𝑋9}  

𝐶𝑙𝑡
≤(𝑥) = {𝑋1, 𝑋2, 𝑋3, 𝑋4, 𝑋5, 𝑋6, 𝑋7, 𝑋8, 𝑋9}  

2.3 Approximations 

The essential idea in finding reducts and core is approximation. Approximations are 

computed to determine whether or not an item belongs to a class of decision attribute. Two 

different categories of approximations exist. In dominance based rough set theory we have two 

kinds of approximations; one is Lower approximation and other is Upper approximation. 

2.3.1 Lower Approximations 

Lower approximation in RST defines the set of objects that must belong to a decision class 

based on the given attributes. Given in DSRA, all the objects that will unquestionably belong to 

𝐶𝑙𝑡
≥(𝑥) are specified by the P⊆C P-lower approximation. Similarly, all the objects that 

unquestionably belong to 𝐶𝑙𝑡
≤(𝑥) will be included in the P-lower approximation of 𝐶𝑙𝑡

≤(𝑥). A 

subset is required to compute lower approximation. If every element of one set (A) is present in 

the other set (B), then set A is a proper subset of set B. For example, consider two sets 

A = {9, 10, 20, 30} 

B = {2, 3, 9, 10, 20, 30} 

A is a proper subset of set B because it has all the elements present in set B. Lower Approximation 

is calculated by these expressions. Mathematically it can be written as: 

𝐹𝑜𝑟 𝐶𝑙𝑡
≥(𝑥) : 

𝑃(𝐶𝑙𝑡
≥) = {𝑥 ∈ 𝑈: 𝐷𝑝+(𝑥) ⊆  𝐶𝑙𝑡

≥}                                                                                            (6) 



15 

 

For  𝐶𝑙𝑡
≤(𝑥): 

𝑃(𝐶𝑙𝑡
≤) = {𝑥 ∈ 𝑈: 𝐷𝑝−(𝑥) ⊆  𝐶𝑙𝑡

≤}                                                                                                    (7) 

Calculation of Lower approximation is determined by three steps, taking example of above table 

1 for 𝑃(𝐶𝑙𝑡
≥) i.e., 

Step 1:   

In this step, we calculated the objects belongs to (𝐶𝑙𝑡
≥) union class. In our example we have 

calculated  𝑃(𝐶𝑙𝑡
≥)  𝑓𝑜𝑟 𝑡 = 2  which is class ‘Very Good’. 

 𝐶𝑙𝑡
≥(𝑥) = {𝑋4, 𝑋5, 𝑋6, 𝑋8, 𝑋9} 

Step 2:  

In this step, we have found 𝐷𝑝+ for each object identified by  𝐶𝑙𝑡
≥(𝑥). 

𝐹𝑜𝑟 𝑋4 ∶  𝐷𝑝+(𝑋4) = {𝑋4, 𝑋5, 𝑋6, 𝑋9}    

𝐹𝑜𝑟 𝑋5 ∶  𝐷𝑝+(𝑋5) = {𝑋5, 𝑋9}    

𝐹𝑜𝑟 𝑋6 ∶  𝐷𝑝+(𝑋6) = {𝑋4, 𝑋5, 𝑋6, 𝑋9}    

𝐹𝑜𝑟 𝑋8 ∶  𝐷𝑝+(𝑋8) = {𝑋5, 𝑋8, 𝑋9}    

𝐹𝑜𝑟 𝑋9 ∶  𝐷𝑝+(𝑋9) = {𝑋5, 𝑋9}    

The above-mentioned example shows that we must calculate 𝐷𝑝+ for each object, which 

is time consuming and computationally very expensive. If we talk about large dataset or the dataset 

that changes with time, calculation 𝐷𝑝+ of each object by iterating for the whole dataset consumes 

a lot of time and memory consumption. That will increase computational cost significantly.  

 



16 

 

Step 3:  

In this step which is actually last step of lower approximation calculation, we need to find subset. 

Lower approximation will include step 2's recognized sets, which are subsets of step 1's identified 

sets. 

𝑃(𝐶𝑙𝑡
≥) = {𝑋5, 𝑋9}      

 

Figure 2: Subset property for lower approximation 𝑃(𝐶𝑙𝑡
≤) 



17 

 

 

Repeat above mentioned three steps to get  𝑷(𝑪𝒍𝒕
≤) 

Step 1:  

In this step, we calculated the objects belongs to (𝐶𝑙𝑡
≤) union class. In our example we have 

calculated  𝑃(𝐶𝑙𝑡
≤)  𝑓𝑜𝑟 𝑡 = 2  which is class ‘Very Good’. 𝐶𝑙𝑡

≤(𝑥) = {𝑋1, 𝑋2, 𝑋3, 𝑋4, 𝑋6, 𝑋7, 𝑋8} 

Step 2:  

Calculate  𝐷𝑝− for each individual object found in step 1 

𝐹𝑜𝑟 𝑋1 ∶  𝐷𝑝−(𝑋1) = {𝑋1, 𝑋4, 𝑋5, 𝑋8, 𝑋9}    

𝐹𝑜𝑟 𝑋2 ∶  𝐷𝑝−(𝑋2) = {𝑋1, 𝑋2, 𝑋4, 𝑋5, 𝑋6, 𝑋7, 𝑋8, 𝑋9}    

𝐹𝑜𝑟 𝑋3 ∶  𝐷𝑝−(𝑋3) = {𝑋3, 𝑋4, 𝑋5, 𝑋6, 𝑋8, 𝑋9}   

𝐹𝑜𝑟 𝑋4 ∶  𝐷𝑝−(𝑋4) = {𝑋4, 𝑋5, 𝑋6, 𝑋9}    

𝐹𝑜𝑟 𝑋6 ∶  𝐷𝑝−(𝑋6) = {𝑋4, 𝑋5, 𝑋6, 𝑋9}    

𝐹𝑜𝑟 𝑋7 ∶  𝐷𝑝−(𝑋7) = {𝑋1, 𝑋2, 𝑋4, 𝑋5, 𝑋6, 𝑋7, 𝑋8, 𝑋9}    

𝐹𝑜𝑟 𝑋8 ∶  𝐷𝑝−(𝑋8) = {𝑋5, 𝑋8, 𝑋9}    

Step 3:  

This step gave us lower approximation subset as shown in figure below. 



18 

 

  

Figure 3: Subset property for lower approximation 𝑃(𝐶𝑙𝑡
≤) 

2.3.2 Upper Approximations 

In the conventional RST-based method, the upper approximation determines the set of 

items that could possibly correspond to the notion X. The set of objects in DSRA that might may 

be a part of the union of classes 𝐶𝑙𝑡
≥(𝑥) is defined by the P-upper approximation of 𝐶𝑙𝑡

≥(𝑥) for 

P⊆C. Similar to this, the set of objects that relate to the union of classes 𝐶𝑙𝑡
≤(𝑥) is defined by the 

P-upper approximation of 𝐶𝑙𝑡
≤(𝑥). An intersection is required to compute upper approximation. 

The group of elements that are part of both sets A and B can be found at their intersection. It is 

denoted as A∩B.  For example, consider two sets 



19 

 

A = {9, 10, 20, 30} 

B = {2, 3, 9, 10, 20, 30} 

A∩B = {9, 10, 20, 30} 

Upper Approximation is calculated by these expressions. Mathematically it can be written as: 

𝐹𝑜𝑟 𝐶𝑙𝑡
≥(𝑥) : 

𝑃̅(𝐶𝑙𝑡
≥) = {𝑥 ∈ 𝑈: 𝐷𝑝−(𝑥) ∩ 𝐶𝑙𝑡 ≥ ≠ ∅}                                                                                                           (8)        

For  𝐶𝑙𝑡 ≤ (𝑥): 

𝑃̅(𝐶𝑙𝑡
≤) = {𝑥 ∈ 𝑈: 𝐷𝑝+(𝑥) ∩ 𝐶𝑙𝑡 ≠ ∅}                                                                                                                 (9) 

Calculation of Upper approximation is also determined by three steps, taking above table 1 as an 

example for 𝑃̅(𝐶𝑙𝑡
≥) i.e., 

We calculated upper approximation with preference order t=2. 

Step 1:  

In this step, just like step 1 of lower approximation, we again identify the class union. The column 

of decision attribute is traversed. Items are stored in an array for further processing if their decision 

label matches the class. We again calculated the objects belongs to (𝐶𝑙𝑡
≥) union class. In our 

example we have calculated 𝐶𝑙𝑡
≥(𝑥) = {𝑋4, 𝑋5, 𝑋6, 𝑋8, 𝑋9} 

Step 2:  

We calculated 𝐷𝑝+  of each individual object of  𝐶𝑙𝑡
≥(𝑥) found in step 1. 

𝐹𝑜𝑟 𝑋4 ∶  𝐷𝑝−(𝑋4) = {𝑋1, 𝑋2, 𝑋3, 𝑋4, 𝑋6, 𝑋7}    



20 

 

𝐹𝑜𝑟 𝑋5 ∶  𝐷𝑝−(𝑋5) = {𝑋1, 𝑋2, 𝑋3, 𝑋4, 𝑋5, 𝑋6, 𝑋7, 𝑋8, 𝑋9}    

𝐹𝑜𝑟 𝑋6 ∶  𝐷𝑝−(𝑋6) = {𝑋1, 𝑋2, 𝑋3, 𝑋4, 𝑋6, 𝑋7}    

𝐹𝑜𝑟 𝑋8 ∶  𝐷𝑝−(𝑋8) = {𝑋1, 𝑋2, 𝑋3, 𝑋7, 𝑋8}    

𝐹𝑜𝑟 𝑋9 ∶  𝐷𝑝−(𝑋9) = {𝑋1, 𝑋2, 𝑋3, 𝑋4, 𝑋5, 𝑋6, 𝑋7, 𝑋8, 𝑋9}    

Step 2 has significantly worsen performance because we must locate objects that dominate each 

object. To accomplish this, the dataset must be traversed entirely for each object. 

Step 3:  

In this step, we need to find intersection set. Upper approximation will include the sets identified 

in step 2 that are intersection of the sets identified in step 1. 

𝑃̅(𝐶𝑙𝑡
≥) = {𝑋1, 𝑋2, 𝑋3, 𝑋4, 𝑋5, 𝑋6, 𝑋7, 𝑋8, 𝑋9}  



21 

 

 

Figure 4: Intersection property for upper approximation 𝑃̅(𝐶𝑙𝑡
≤) 

 

Repeat above mentioned three steps for 𝑷̅(𝑪𝒍𝒕
≤) 

Step 1:  

In this step, we’ve calculated the objects belongs to (𝐶𝑙𝑡
≤) union class. 𝐶𝑙𝑡

≤ (𝑥) =

{𝑋1, 𝑋2, 𝑋3, 𝑋4, 𝑋6, 𝑋7, 𝑋8} 

Step 2:  



22 

 

Calculate  𝐷𝑝− for each individual object found in step 1 

𝐹𝑜𝑟 𝑋1 ∶  𝐷𝑝+(𝑋1) = {𝑋1, 𝑋4, 𝑋5, 𝑋6, 𝑋8, 𝑋9}    

𝐹𝑜𝑟 𝑋2 ∶  𝐷𝑝+(𝑋2) = {𝑋1, 𝑋2, 𝑋4, 𝑋5, 𝑋6, 𝑋7, 𝑋8, 𝑋9}    

𝐹𝑜𝑟 𝑋3 ∶  𝐷𝑝+(𝑋3) = {𝑋1, 𝑋4, 𝑋5, 𝑋6, 𝑋8, 𝑋9}    

𝐹𝑜𝑟 𝑋4 ∶  𝐷𝑝+(𝑋4) = {𝑋4, 𝑋5, 𝑋6, 𝑋9}    

𝐹𝑜𝑟 𝑋6 ∶  𝐷𝑝+(𝑋6) = {𝑋4, 𝑋5, 𝑋6, 𝑋9}    

𝐹𝑜𝑟 𝑋7 ∶  𝐷𝑝−(𝑋7) = {𝑋1, 𝑋2, 𝑋4, 𝑋5, 𝑋6, 𝑋7, 𝑋8, 𝑋9}  

𝐹𝑜𝑟 𝑋8 ∶  𝐷𝑝+(𝑋8) = {𝑋5, 𝑋8, 𝑋9}  

Step 3:  

With this step we have got our upper approximation set 

𝑃̅(𝐶𝑙𝑡
≤) = {𝑋1, 𝑋2, 𝑋3, 𝑋4, 𝑋5, 𝑋6, 𝑋7, 𝑋8, 𝑋9}   

 



23 

 

 

Figure 5: Intersection property of upper approximation 𝑃̅(𝐶𝑙𝑡
≤) 

 

Conventional DRSA approach’s steps to calculate lower and upper approximations. 

Conventional method is expensive and time consuming. These steps can apply on a smaller dataset 

but for large dataset or the dataset that changes with time this traditional approach is not suitable.  

 

 



24 

 

2.4 Quality of Approximation and reducts 

The following criteria should be met following the discovery of lower and upper approximations. 

𝑃(𝐶𝑙𝑡
≤)  ⊆  𝐶𝑙𝑡

≤ ≤ ⊆  𝑃̅(𝐶𝑙𝑡
≤)                                                                                                                                 (10) 

𝑃(𝐶𝑙𝑡
≥)  ⊆  𝐶𝑙𝑡

≤ ≥ ⊆  𝑃̅(𝐶𝑙𝑡
≥)                                                                                                                                 (11) 

Doubtful regions, also known as P-boundaries, are established using upper and lower 

approximation. Boundaries are useful for locating reductions. 

𝐵𝑛𝑝(𝐶𝑙𝑡
≤) = 𝑃̅(𝐶𝑙𝑡

≤) − 𝑃(𝐶𝑙𝑡
≤)                                                                                                                          (12) 

𝐵𝑛𝑝(𝐶𝑙𝑡
≥) = 𝑃̅(𝐶𝑙𝑡

≥) − 𝑃(𝐶𝑙𝑡
≥)                                                                                                                          (13) 

The degree of approximation quality is expressed as a ratio 𝑟𝑝(𝐶𝑙). It is denoted mathematically 

as: 

𝑟𝑝(𝐶𝑙) = |𝑈 − (((𝑈𝑡∈𝑇 𝐵𝑛𝑝(𝐶𝑙𝑡
≥)) ∪ ((𝑈𝑡∈𝑇 𝐵𝑛𝑝(𝐶𝑙𝑡

≥)))|/|𝑈|                                                  (14) 

The reduct of C is known as 𝑃 ⊆  𝐶 for each subset where 𝑟𝑐(𝐶𝑙) = 𝑟𝑝(𝐶𝑙)  and is denoted as 

𝑅𝐸𝐷𝐶𝑙(𝑃). A single decision table may have many reducts that exit. Core is the intersection point 

of all reductions. 

 

 

 

 

 

 

 

 



25 

 

CHAPTER 3 :     LITERATURE REVIEW 

 

Within this chapter we’ve done literature review to develop an understanding of existing 

research and to do critical analysis on a particular topic. It helps to gain our knowledge and 

present our study in organized manner. In section 3.1 we have discussed research order. That 

includes research inquiries, purpose of doing literature work, keywords, literature review’s 

criteria and PRISMA 2009 categorization. In section 3.2 we have done related work. And in 

section 3.3 we analyze the gaps after doing literature review. 

 

3.1 Research order 

Following are the steps to do literature review: 

3.1.1 Research inquiries 

Following are some research inquiries: 

• How are lower and upper approximations calculated in DRSA? 

• What are the methods for lowering the computational cost of DRSA? 

• What is the value of conventional lower and upper approximation? 

• How parallel computation affect calculation of DRSA approximation? 

• How incremental approach affect DRSA approximation calculation? 

3.1.2 Purpose of doing Literature Review 

The aims of our literature review are as follows: 

• To understand knowledge presented in existing research. 

• To place our study in an historical perspective. 

• To find out the gaps in the work that has already done. 

• To provide the intellectual context for our own work. 



26 

 

• To gain knowledge and do critical analysis. 

• To determine areas for future research. 

• To effectively present our research and study. 

 

3.1.3 Keywords 

Keywords are listed down below: 

• Dominance Based Rough Set Theory 

• Rough Set Theory 

• Lower approximation 

• Upper approximation 

• Computational complexity 

• Execution time 

• Memory consumption 

• Complex structure 

• Feature selection 

• Classification 

3.1.4 Literature Review’s criteria 

Literature review's selection and exclusion criteria is as follows: 

• Popular databases like Science Direct, IEEE Xplore, etc. are targeted. 

• Studies that are not relevant are omitted. 

• Properly chosen paper related to keywords. 

• Reputable and reliable researches are included. 



27 

 

3.1.5 Prisma 2009 Categorization 

An explained breakdown of the search process is shown in figure 4.1-1. [48] 

Figure 6: Prisma 2009 Categorization 

 



28 

 

3.2 Related Work 

Dominance-Based Rough Set Approach (RST) and Rough Set Approach (DRSA) uses 

lower and upper approximations to explain data. The standard method of recalculating the upper 

and lower approximations of DRSA is not applicable in a dynamic environment where data is 

subject to constant changes. This increases structural complexity, execution time and memory 

consumption.    

3.2.1 Conventional Approach 

The first method is conventional method for calculating dominance related 

approximations. It is time consuming and expensive approach [28], [29], [30]. When dealing 

with a dynamic environment where data is always changing, DRSA estimates must be updated 

simultaneously. The computing time of the conventional DRSA approach increases with the 

quantity of the data since approximations have to be recalculated from beginning to finish for 

every modification. 

3.2.2 Incremental Approach 

The second method is to change the algorithm so that nothing needs to be recalculated as 

new data instances are added. We refer to this as an incremental approach. 

Chen, Hongmei, et al. [31] focused on iterative methodology for updating VPRS approximations 

where dataset changes with time. It concentrated on information granulation and approximation 

for dynamic dataset where objects change over time. Significant decrease in calculation time in 

contrast to old method of calculation.  

Cheng, Yi. et al. [32] offered two incremental ways to quickly construct crude fuzzy 

approximations where one depends on The additional ones on the dividing sets and the boundary 

set. They have compared this algorithm with non-incremental algorithm. Their proposed approach 

is time efficient.  

Li, Shaoyong, Tianrui Li, and Dun Liu. et al. [33] In situations where data items change 

dynamically, an incremental technique for updating DRSA approximations was proposed. In 

dataset, when any object is added or removed, authors looked at the method that causes dynamic 

variation of DRSA approximations. It progressively updated the DRSA approximations in 

response to changes in the P-dominant sets and those items' P-dominated sets. 



29 

 

Luo, Chuan, Tianrui Li, and Hongmei Chen. [34] The authors state that dynamically maintaining 

approximations in set-valued structured decision systems is the main focus of the attribute 

generalization. Considering the main and dominated matrices in terms of dominance relation led 

to the development of a matrix-based method for calculating upward and downward 

approximations of decision classes. They came up with a step-by-step plan to enhance 

approximation computation that entails changing significant metrics without being aware of 

training datasets. 

Luo, Chuan, et al. [35] presented two incremental algorithms for updating dynamic approximation 

maintenance of set-valued data, where values are related with an individual and change with time. 

Authors showed better results by using their proposed method on UCI datasets and artificial 

datasets.  

Wang, Shu, et al. [36] focused on updating approximations for dynamic datasets where object 

values change over time. Author presented incremental approach to optimize DRSA 

approximations efficiently. They designed an algorithm that neglected unnecessary parameters to 

avoid redundant calculation. Author compares results with traditional method of DRSA. 

Computation time decreases for two-dimensional variation of objects and attributes.  

Chen, Hongmei, Tianrui Li, and Da Ruan et al. [37] In the IODS, dynamically updated 

approximations of upward and downward unions were used to coarsen or refine attribute values. 

They have used incremental approach to reduce time taken by calculation of DRSA 

approximations. Proposed method is efficient and effective when compare with conventional 

method using UCI and empirical findings.  

Liu, D., Li, T., Ruan, D. and Zou, W et al [38] suggested incremental paradigm, methodology, and 

algorithm for generating fascinating knowledge as the object collection changed over time.  

Bouzayane, Sarra, and Ines Saad et al [39] suggested Incremental Periodic Prediction Multicriteria 

Approach (MAI2P). They developed a preference model that produces a set of choice rules by 

updating DRSA approximations incrementally. The results of experiments indicate that the most 

successful preference model is generated using a pessimistic cumulative technique, with accuracy 

and F-measure values of 0.89 and 0.66, respectively. 



30 

 

Table 2: Incremental approach related work 

Paper Method and Technology Improvement Limitations 

[31] DRSA based dynamic 

incremental approach 

Improve complex 

computation 

Hard to maintain 

scalability 

[32] DRSA based dynamic 

incremental approach 

Significant decrease in 

computation time 

Complex algorithm 

architecture 

[33] DRSA based dynamic 

incremental approach (matrix- 

based) 

Upgrade approximation 

time 

Proposed model is 

complicated 

[34] DRSA based dynamic 

incremental approach 

Improve computation, 

efficient with execution 

time 

Difficulty in 

algorithmic structure 

[35] DRSA based dynamic 

incremental approach 

Provide better execution 

time to calculate 

approximations 

Complex 

methodology 

[36] DRSA based dynamic 

incremental approach 

Reduction in 

computation and 

execution time 

Complicated 

architecture for 

algorithms 

[37] DRSA based dynamic 

incremental approach 

For two-dimensional 

variations of objects and 

attributes, computation 

time reduces. 

The construction of 

algorithm is 

complex 

[38] DRSA based dynamic 

incremental approach 

Improve efficiency and 

effectiveness when 

compare with UCI and 

empirical findings 

Difficult structure of 

proposed algorithm 

[39] DRSA based dynamic 

Multicriteria Approach for the 

Incremental Periodic 

Prediction (MAI2P) 

Improved accuracy, 

advance applications 

Structure of 

proposed model is 

complicated 

 



31 

 

3.2.3 Parallel Approach 

The third approach involves partitioning the traditional algorithm and executing it in 

parallel across many hardware processors. This will expedite the process of calculations. It is 

also an excellent approach to speed up calculation, but the hardware becomes more expensive. 

In [40] The authors suggested using a parallel technique to calculate estimates for a number of 

granule composition and breakdown procedures. Trials in a multi-core setting demonstrated a 

decrease in the amount of time needed to make DRSA-based judgements. 

In [41] authors introduced parallel and incremental approximation calculation (PIAC) for 

lowering the cost of computing lower and upper approximations. Where they traversed the 

dataset parallelly and calculated approximations. Calculated approximations more efficiently 

when compare with traditional method. 

In [42] authors computed dominance based rough set approach approximations in parallel. 

whereby all pointless computations from the traditional method are omitted, and parallel threads 

are used to speed up computing. The dominance relation calculation and comparison object 

repetition are ignored in the suggested method. When compared to prior methodologies, the 

study demonstrates improved performance in terms of time, cost, and memory. 

In [43] for computing approximations in DRSA, the authors suggested a matrix-based method; 

they developed the relevant parallel methods on the graphics processing unit (GPU). A numerical 

example is provided to illustrate the practicality of the matrix-based method. Experimental 

investigations show that the parallel method performs much better than the old technique in 

terms of storage space and time consumption. 



32 

 

In [44] authors presented parallel approach to optimize effective computation of approximations 

that are vital in improving performance of data mining and related tasks. Proposed parallel 

approach is based on MapReduce Technique to deal with massive data. Results compared with 

the conventional approach. MapReduce parallel technique shows effective results for data 

mining. 

In [45] authors have used parallel approach to compute approximations effectively and 

efficiently, that will help in reducing the time of decision making. Compared Parallel approach 

with traditional one made multiple process elements run at a time to save time and computational 

cost.  

In [46] authors suggested a hierarchical attribute reduction technique. Hadoop MapReduce is 

used to make the algorithm work in parallel. 

Table 3: Parallel approach related work 

Paper Method and technology Improvements  Limitations 

[40] DRSA based dynamic 

parallel approach 

(Multicore environment) 

Reduce execution time 

under multicore 

environment 

Multicore environment, use 

more hardware components 

[41] DRSA based Parallel 

Incremental 

Approximation 

Calculation (PIAC) 

Calculate 

approximations more 

efficiently 

Multiprocessor, use more 

hardware components, 

expensive 



33 

 

[42] DRSA based dynamic 

parallel approach 

Show better 

performance with 

respect to time, cost 

and memory as 

compare to older 

methodology. 

Use more hardware 

components, cost 

nonefficient  

[43] GPU-based matrix-based 

parallel methodology 

Reduced intricacy of 

calculation. 

Employ additional 

hardware parts 

[44] (MapReduce) Parallel 

approach 

reduced computational 

complexity, more 

effective, and able to 

handle large amounts 

of data in cloud 

computing 

Multiprocessor, use more 

hardware components, 

expensive 

[45] DRSA based dynamic 

parallel approach 

Show effective results 

for data mining 

Use multiprocessor, 

Expensive 

[46] Hadoop (MapReduce) 

method of Parallel 

hierarchical 

Less computational 

complexity 

Employ additional 

hardware parts 

(multiprocessor) 

 

 

 



34 

 

3.3 Analysis 

After critically analyze the literature review, we have found gaps discussed below: 

• Complex architecture design 

• Use of more hardware 

We have addressed both of the aforementioned gaps in our proposed strategy, which is covered 

in chapter 5. Our suggested method uses a straightforward algorithm that doesn't require any 

additional hardware to operate. 

 

3.4 Gap Analysis 

In one way or another, the aforementioned methods are all based on the conventional method for 

determining DRSA approximations. As we covered in Section III, some writers have proposed 

parallel processing, while other scholars have concentrated on an incremental approach that 

integrates the idea of dominance relation to carry out their study.  

As was shown in Section II, there is a significant loss in algorithm performance when 

approximation sets are calculated using the conventional way. This is because computing rough 

approximations requires three computationally demanding procedures. To address the 

aforementioned problems, we have suggested a method based on the KD tree [49] in this study. 

Our suggested method is producing lower resource usage, including memory and time. 

 

 

 

 

 

 

 



35 

 

 

 

 

CHAPTER 4 :    CHALLENGES IN COMPUTATION 
 

In this chapter, we will first talk about the DRSA algorithm pseudo code. We then run an 

example of that algorithm in section 4.2. The final section goes into more detail about some 

elements that raise the computational cost. 

4.1 Algorithm 

Here, we'll go over the algorithm used to determine lower and upper approximations. This 

algorithm basically consists of four (4) parts. The following are these four (4) parts: 

• Lower Approximation for 𝐶𝑙𝑡
≤  (𝑃(𝐶𝑙𝑡

≤)) 

• Upper Approximation for  𝐶𝑙𝑡
≤ (𝑃̅(𝐶𝑙𝑡

≤)) 

• Lower Approximation for  𝐶𝑙𝑡
≥ (𝑃(𝐶𝑙𝑡

≥)) 

• Upper Approximation for   𝐶𝑙𝑡
≥ (𝑃̅(𝐶𝑙𝑡

≥)) 

The lower approximation algorithm will first be explained. Next, we'll go over the upper 

approximation algorithm. 

4.1.1 Lower Approximation 

In order to calculate a lower approximation, there are three steps. 

Step 1: 

Class unions are discovered in the first step. The decision attribute in the dataset is traversed 

using a loop starting at 1 and ending at |U|. The specific class label is compared to each class 

label. The following pseudo-code represents step 1 for 𝐶𝑙𝑡
≥. 



36 

 

For x=1 to |U| 

  If 𝐶𝑙𝑥 ≥ 𝐶𝑙𝑡 

    𝐶𝑙𝑡
≥= 𝐶𝑙𝑡

≥  ∪ 𝐶𝑙𝑥 

  End If 

End For 

 

For 𝐶𝑙𝑡
≤ pseudo-code is as shown below. 

For x=1 to |U| 

  If 𝐶𝑙𝑥 ≤ 𝐶𝑙𝑡 

   𝐶𝑙𝑡
≤= 𝐶𝑙𝑡

≤  ∪ 𝐶𝑙𝑥 

  End If 

End For 

 

Step 2: 

Two loops are needed for the 𝐶𝑙𝑡
≥ in the second step. Since we need to compute 𝐷𝑝+ for each 

class union, the first loop goes from 1 to 𝐶𝑙𝑡
≥. To compare each object in the class union with 

every other record in the dataset, a second loop is run from 1 to |U|. The following pseudo-code 

for step 2 is for 𝐶𝑙𝑡
≥. 

For x=1 to |𝐶𝑙𝑡
≥| 

  For y=1 to |U| 

     If 𝑋𝑦 ≥ 𝑋𝑥𝑡 

        𝐷𝑝+(𝑋𝑥) =  𝐷𝑝+(𝑋𝑥) ∪  𝑋𝑦 

     End if 



37 

 

  End For 

End For 

 

Two loops are needed for the 𝐶𝑙𝑡
≤ in the second step. Since we need to compute 𝐷𝑝− for each 

class union, the first loop goes from 1 to 𝐶𝑙𝑡
≤. To compare each object in the class union with 

every other record in the dataset, a second loop is run from 1 to |U|. The following pseudo-code 

for step 2 is for 𝐶𝑙𝑡
≤. 

For x=1 to |𝐶𝑙𝑡
≤| 

  For y=1 to |U| 

     If 𝑋𝑦 ≤ 𝑋𝑥𝑡 

        𝐷𝑝−(𝑋𝑥) =  𝐷𝑝−(𝑋𝑥) ∪  𝑋𝑦 

     End if 

  End For 

End For 

 

Step 3: 

In the third step, lower approximation is calculated using the conventional approach after 𝐷𝑝+ 

has been determined. We analyze how well the subset property holds between arrays. Three 

loops are required for this step. First and second loops are from 1 to 𝐶𝑙𝑡
≥ and 𝐷𝑝+, respectively. 

To access the indexes of 𝐷𝑝+'s two-dimensional arrays, use these two loops. Then, in order to 

determine whether the proper subset property is still valid, we must compare these indexes with 

the class unions. The third loop from 1 to the cardinality of the class union is used for this. The 

following pseudo-code for step 3 is for 𝐶𝑙𝑡
≥. 



38 

 

For x=1 to |𝐶𝑙𝑡
≥| 

 For y=1 to |𝐷𝑝+(𝑋𝑥)| 

  For z=1 to |𝐶𝑙𝑡
≥| 

     Calculate 𝐷𝑝+(𝑋𝑥𝑗)  ⊆  𝐶𝑙𝑧𝑡
≥  

   End For 

 End For 

End For 

 

In the third step, lower approximation is calculated using the conventional approach after 

𝐷𝑝− has been determined. We analyze how well the subset property holds between arrays. Three 

loops are required for this step. First and second loops are from 1 to 𝐶𝑙𝑡
≤ and 𝐷𝑝−, respectively. 

To access the indexes of 𝐷𝑝−'s two-dimensional arrays, use these two loops. Then, in order to 

determine whether the proper subset property is still valid, we must compare these indexes with 

the class unions. The third loop from 1 to the cardinality of the class union is used for this. The 

following pseudo-code for step 3 is for 𝐶𝑙𝑡
≤. 

For x=1 to |𝐶𝑙𝑡
≤| 

 For y=1 to |𝐷𝑝−(𝑋𝑥)| 

  For z=1 to |𝐶𝑙𝑡
≤| 

     Calculate 𝐷𝑝−(𝑋𝑥𝑗)  ⊆  𝐶𝑙𝑧𝑡
≤  

   End For 

 End For 

End For 

 

 



39 

 

4.1.2 Upper Approximation 

In order to calculate an upper approximation, there are three steps. 

Step 1: 

Class unions are discovered in the first step. The decision attribute in the dataset is traversed 

using a loop starting at 1 and ending at |U|. The specific class label is compared to each class 

label. The following pseudo-code represents step 1 for 𝐶𝑙𝑡
≥. 

For x=1 to |U| 

If 𝐶𝑙𝑥 ≥ 𝐶𝑙𝑡 

𝐶𝑙𝑡
≥= 𝐶𝑙𝑡

≥  ∪ 𝐶𝑙𝑥 

End If 

End For 

 

Step 2: 

Two loops are needed for the 𝐶𝑙𝑡
≥ in the second step. Since we need to compute 𝐷𝑝− against each 

class union, the first loop goes from 1 to 𝐶𝑙𝑡
≥. To compare each object in the class union with 

every other record in the dataset, a second loop is run from 1 to |U|. The following pseudo-code 

for step 2 is for 𝐶𝑙𝑡
≥. 

For x=1 to |𝐶𝑙𝑡
≥| 

  For y=1 to |U| 

     If 𝑋𝑦 ≥ 𝑋𝑥𝑡 

        𝐷𝑝−(𝑋𝑥) =  𝐷𝑝−(𝑋𝑥) ∪  𝑋𝑦 

     End if 

  End For 

End For 

 



40 

 

Two loops are needed for the 𝐶𝑙𝑡
≤ in the second step. Since we need to calculate 𝐷𝑝+ against 

each class union, the first loop goes from 1 to 𝐶𝑙𝑡
≤. To compare each instance in the class union 

with every other record in the dataset, a second loop is run from 1 to |U|. The following pseudo-

code for step 2 is for 𝐶𝑙𝑡
≤. 

 

For x=1 to |𝐶𝑙𝑡
≤| 

  For y=1 to |U| 

     If 𝑋𝑦 ≤ 𝑋𝑥𝑡 

        𝐷𝑝+(𝑋𝑥) =  𝐷𝑝+(𝑋𝑥) ∪  𝑋𝑦 

     End if 

  End For 

End For 

 

Step 3: 

In the third step, lower approximation is calculated using the conventional approach after 𝐷𝑝− 

has been determined. We analyze how well the subset property holds between arrays. Three 

loops are required for this step. First and second loops are from 1 to 𝐶𝑙𝑡
≥ and 𝐷𝑝−, respectively. 

To access the indexes of 𝐷𝑝−'s two-dimensional arrays, use these two loops. Then, in order to 

determine whether the proper subset property is still valid, we must compare these indexes with 

the class unions. The third loop from 1 to the cardinality of the class union is used for this. The 

following pseudo-code for step 3 is for 𝐶𝑙𝑡
≥. 

 

 



41 

 

For x=1 to |𝐶𝑙𝑡
≥| 

 For y=1 to |𝐷𝑝−(𝑋𝑥)| 

  For z=1 to |𝐶𝑙𝑡
≥| 

     Calculate 𝐷𝑝−(𝑋𝑥𝑗)  ⊆  𝐶𝑙𝑧𝑡
≥  

   End For 

 End For 

End For 

 

In the third step, lower approximation is calculated using the conventional approach after 

𝐷𝑝+ has been determined. We analyze how well the subset property holds between arrays. Three 

loops are required for this step. First and second loops are from 1 to 𝐶𝑙𝑡
≤ and 𝐷𝑝+, respectively. 

To access the indexes of 𝐷𝑝+'s two-dimensional arrays, use these two loops. Then, in order to 

determine whether the proper subset property is still valid, we must compare these indexes with 

the class unions. For this, the final loop from 1 to the class union's relationship is employed. The 

following pseudo-code for step 3 is for 𝐶𝑙𝑡
≤. 

For x=1 to |𝐶𝑙𝑡
≤| 

 For y=1 to |𝐷𝑝+(𝑋𝑥)| 

  For z=1 to |𝐶𝑙𝑡
≤| 

     Calculate 𝐷𝑝+(𝑋𝑥𝑗)  ⊆  𝐶𝑙𝑧𝑡
≤  

   End For 

 End For 

End For 

 



42 

 

4.2 Example 

To check the applicability of algorithm, we worked with an example ‘Evaluation for high school’ 

given in table 4 below. 

Table 4: Evaluation of high school 

Students Mathematics English Computer Score 

X1 1 2 2 2 

X2 3 3 1 3 

X3 3 2 2 2 

X4 2 2 3 3 

X5 3 2 3 3 

X6 2 2 1 1 

X7 3 2 1 2 

X8 2 3 1 2 

X9 1 2 3 1 

X10 1 1 2 1 

 

In table 4 Students are objects called universe (U) represented by (X). There is total 10 objects. 

There are three conditional attributes (C) i.e., Mathematics, English and Computer. And one 

decision attribute (D) is represented by called score. In this example we choose preference order 

t=2. 

4.2.1 Application of algorithm 

In this section we applied our DRSA algorithm on this example given in table 4. We 

calculated lower and upper approximation sets. 



43 

 

For that we found class unions. i.e. upper-class union and downward-class union. 

𝐶𝑙𝑡
≥ = {𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥7, 𝑥8} 

𝐶𝑙𝑡
≤ = {𝑥1, 𝑥3, 𝑥6, 𝑥7, 𝑥8, 𝑥9, 𝑥10} 

 

4.2.1.1 Lower Approximation 

To calculate lower approximation, we followed 3 steps. 

Step 1:  

In this step, we calculated the objects belongs to (𝐶𝑙𝑡
≥) union class. In our example we have 

calculated  𝑃(𝐶𝑙𝑡
≥)  𝑓𝑜𝑟 𝑡 = 2. 

 𝐶𝑙𝑡
≥(𝑥) = {𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥7, 𝑥8} 

Step 2:  

In this step, we have found 𝐷𝑝+ for each object identified by  𝐶𝑙𝑡
≥(𝑥). 

𝐹𝑜𝑟 𝑋1 ∶  𝐷𝑝+(𝑋1) = {𝑋1, 𝑋3, 𝑋4, 𝑋5, 𝑋9, 𝑋10}    

𝐹𝑜𝑟 𝑋2 ∶  𝐷𝑝+(𝑋2) = {𝑋2, 𝑋3}    

𝐹𝑜𝑟 𝑋3 ∶  𝐷𝑝+(𝑋3) = {𝑋3, 𝑋5}    

𝐹𝑜𝑟 𝑋4 ∶  𝐷𝑝+(𝑋4) = {𝑋4, 𝑋5}    

𝐹𝑜𝑟 𝑋5 ∶  𝐷𝑝+(𝑋5) = {𝑋5}    

𝐹𝑜𝑟 𝑋7 ∶  𝐷𝑝+(𝑋7) = {𝑋3, 𝑋5, 𝑋7}    

𝐹𝑜𝑟 𝑋8 ∶  𝐷𝑝+(𝑋8) = {𝑋2, 𝑋8}    



44 

 

Step 3:  

In this stage, we must compute the lower approximation result using the correct subset property. 

Each 𝐷𝑝+ is matched with a 𝑃(𝐶𝑙𝑡
≥), and the appropriate subset attribute is determined. The 

graphic below depicts the appropriate subsets. 

 

Figure 7: Subset property check for 𝑃(𝐶𝑙𝑡
≥) 



45 

 

Repeat above mentioned three steps to get  𝑷(𝑪𝒍𝒕
≤) 

Step 1:  

In this step, we calculated the objects belongs to (𝐶𝑙𝑡
≤) union class. In our example we have 

calculated  𝑃(𝐶𝑙𝑡
≤)  𝑓𝑜𝑟 𝑡 = 2. 

 𝐶𝑙𝑡
≤(𝑥) = {𝑥1, 𝑥3, 𝑥6, 𝑥7, 𝑥8, 𝑥9, 𝑥10} 

Step 2:  

Calculate  𝐷𝑝− for each individual object found in step 1 

𝐹𝑜𝑟 𝑋1 ∶  𝐷𝑝−(𝑋1) = {𝑋1, 𝑋10}    

𝐹𝑜𝑟 𝑋3 ∶  𝐷𝑝−(𝑋2) = {𝑋1, 𝑋3, 𝑋6, 𝑋7, 𝑋10}    

𝐹𝑜𝑟 𝑋6 ∶  𝐷𝑝−(𝑋6) = {𝑋6}   

𝐹𝑜𝑟 𝑋7 ∶  𝐷𝑝−(𝑋7) = {𝑋6, 𝑋7}    

𝐹𝑜𝑟 𝑋8 ∶  𝐷𝑝−(𝑋8) = {𝑋6, 𝑋8}    

𝐹𝑜𝑟 𝑋9 ∶  𝐷𝑝−(𝑋9) = {𝑋1, 𝑋9}    

𝐹𝑜𝑟 𝑋10 ∶  𝐷𝑝−(𝑋10) = {𝑋10}    

Step 3: This step gave us lower approximation subset. Shown in figure below. 



46 

 

 

Figure 8: Subset property check for 𝑃(𝐶𝑙𝑡
≤) 

4.2.1.2 Upper Approximation 

Just like lower approximation, in upper approximation we followed 3 steps. 

Step 1: We identify the class union in this step, exactly as we did in step 1 of the lower 

approximation. We estimated that the objects belong to the 𝐶𝑙𝑡
≥ union class once more. In our 

case, we computed 



47 

 

 𝐶𝑙𝑡
≥ = {𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥7, 𝑥8} 

Step 2: we found 𝐷𝑝
− 𝑓𝑜𝑟 𝐶𝑙𝑡

≥ 

𝐹𝑜𝑟 𝑋1 ∶  𝐷𝑝−(𝑋1) = {𝑋1, 𝑋10}    

𝐹𝑜𝑟 𝑋2 ∶  𝐷𝑝−(𝑋2) = {𝑋2, 𝑋6, 𝑋7, 𝑋8}    

𝐹𝑜𝑟 𝑋3 ∶  𝐷𝑝−(𝑋3) = {𝑋1, 𝑋3, 𝑋6, 𝑋7, 𝑋10}   

𝐹𝑜𝑟 𝑋4 ∶  𝐷𝑝−(𝑋4) = {𝑋1, 𝑋4, 𝑋6, 𝑋9, 𝑋10}    

𝐹𝑜𝑟 𝑋5 ∶  𝐷𝑝−(𝑋5) = {𝑋1, 𝑋3, 𝑋4, 𝑋5, 𝑋6, 𝑋7, 𝑋9, 𝑋10}    

𝐹𝑜𝑟 𝑋7 ∶  𝐷𝑝−(𝑋7) = {𝑋6, 𝑋7}    

𝐹𝑜𝑟 𝑋8 ∶  𝐷𝑝−(𝑋8) = {𝑋6, 𝑋8}    

Step 3:  

In this step intersection property was find using figure given below. 



48 

 

 

Figure 9: Intersection property check for 𝑃̅(𝐶𝑙𝑡
≥) 

 

Repeat above mentioned three steps to get 𝑷̅(𝑪𝒍𝒕
≤) 

Step 1: 

 𝐶𝑙𝑡
≤ = {𝑥1, 𝑥3, 𝑥6, 𝑥7, 𝑥8, 𝑥9, 𝑥10} 

Step 2: 



49 

 

𝐹𝑜𝑟 𝑋1 ∶  𝐷𝑝+(𝑋1) = {𝑋1, 𝑋3, 𝑋4, 𝑋5, 𝑋9, 𝑋10}    

𝐹𝑜𝑟 𝑋3 ∶  𝐷𝑝+(𝑋3) = {𝑋2, 𝑋5}    

𝐹𝑜𝑟 𝑋6 ∶  𝐷𝑝+(𝑋6) = {𝑋2, 𝑋3, 𝑋4, 𝑋5, 𝑋6, 𝑋7, 𝑋8}    

𝐹𝑜𝑟 𝑋7 ∶  𝐷𝑝+(𝑋7) = {𝑋3, 𝑋5, 𝑋7}    

𝐹𝑜𝑟 𝑋8 ∶  𝐷𝑝+(𝑋8) = {𝑋2, 𝑋8}    

𝐹𝑜𝑟 𝑋9 ∶  𝐷𝑝+(𝑋9) = {𝑋1, 𝑋4, 𝑋5, 𝑋9}    

𝐹𝑜𝑟 𝑋10 ∶  𝐷𝑝+(𝑋10) = {𝑋1, 𝑋3, 𝑋4, 𝑋5, 𝑋9, 𝑋10}    

Step 3: 

 In this step intersection property was find using figure given below. 



50 

 

 

Figure 10: Intersection property check for 𝑃̅(𝐶𝑙𝑡
≤) 

4.3 Causes of the rise in computational expenses 

Calculating lower and upper approximations, as mentioned in section 4.1, needs three stages. 

Class unions are discovered in the first stage. To explore the decision attribute in the dataset, a 

loop from 1 to |U| is employed. Because there are three labels in the section 4.2 example, we must 

repeat this procedure eight (8) times. We need to compute 𝐶𝑙𝑡
≥ and 𝐶𝑙𝑡

≤ which are the merger of 

classes, both above and downward.  

The example given above demonstrates that we must calculate 𝐷𝑝+ and 𝐷𝑝−for each object, 

which is time consuming and computationally very expensive. If we talk about large dataset or the 



51 

 

dataset that changes with time, calculation 𝐷𝑝+ and 𝐷𝑝− of each object by iterating for the whole 

dataset consumes a lot of time and memory consumption. That will increase computational cost 

significantly.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



52 

 

CHAPTER 5 :       PROPOSED METHODOLOGY 

 

We have solved the problems with complicated algorithm structure and time-consuming 

complexity in our technique. The previously described issues were resolved by our suggested 

methods. We eschew every pointless step in the traditional DRSA method. and use our suggested 

approach to shorten the processing time.  

Based on preference order, we have created two types of class unions. This categorization is 

based on a preferred order, which helps in data organization. Splitting the dataset into these two 

types makes it easier to analyze and handle the data depending on its unique properties as 

mentioned below in Table 5. 

In this section, we'll talk about how to keep DRSA approximation sets up to date as an object 

set changes over time. We suppose that the previous approximation values are known. When 

new data is entered into the system, it is validated. This stage involves determining whether or 

not the data already exists in the old dataset. If the data exists, it will not be updated, and vice 

versa. This validation procedure guarantees that no duplicate data is handled, therefore 

conserving computing resources and avoiding unnecessary redundancy. 

5.1 An algorithm to update Approximation Upon Insertion of new Object 

In this section we considered an algorithm to update approximation upon insertion of new 

object. Table 5 gives the representation of symbols when new data enter into the system with 

time t+1. In which we considered two columns named as notions of DRSA at time ‘t’. and the 

second column represents notion of DRSA at time ‘t+1’, inserting of new object dynamically. 

Characterization of DRSA notions different symbols of decision table, upper approximation, 

downward approximation at time t and t+1. 

 

 

 

 



53 

 

Table 5: Details of symbols 

Characterization  Concepts of DRSA at 

time t 

Concepts of DRSA at 

time t+1 

Decision-making system 𝑈 𝑈+ 

Decision-making class t 𝐶𝑙𝑡 𝐶𝑙𝑡
∗ 

More preferable decision class than ‘t’ 𝐶𝑙𝑡
≥ 𝐶𝑙𝑡

≥∗
 

Less preferable decision class than ‘t’ 𝐶𝑙𝑡
≤ 𝐶𝑙𝑡

≤∗
 

Lower Approximation for 𝑪𝒍𝒕
≤ 𝑃(𝐶𝑙𝑡

≤) 𝑃∗(𝐶𝑙𝑡
≤) 

Upper Approximation for  𝑪𝒍𝒕
≤ 𝑃̅(𝐶𝑙𝑡

≤) 𝑃̅∗(𝐶𝑙𝑡
≤) 

Lower Approximation for  𝑪𝒍𝒕
≥ 𝑃(𝐶𝑙𝑡

≥) 𝑃∗(𝐶𝑙𝑡
≥) 

Upper Approximation for  𝑪𝒍𝒕
≥ 𝑃̅(𝐶𝑙𝑡

≥) 𝑃̅∗(𝐶𝑙𝑡
≥) 

 

  Table 6: Pseudocode to set union of classed using preference order      

• Input: U′ = U+ = U ∪ U′ 

▪ t= Total Number of Classes 

• Output: 𝐶𝑙𝑡
∗  , 𝐶𝑙𝑡

≥∗
, 𝐶𝑙𝑡

≤∗
 

• For y=1 to t 

o For i=1 to |U+| 

▪ IF (𝑥𝑖 . t) ∈  Class y 

▪ 𝐶𝑙𝑡
∗ = 𝐶𝑙𝑡

∗ ∪ {𝑥𝑖} 

▪ Else IF (𝑥𝑖 . t) ∈ more preference class than class y 

▪ 𝐶𝑙𝑡
≥∗

= 𝐶𝑙𝑡
≥∗

 ∪ {𝑥𝑖} 

▪ Else IF (𝑥𝑖 . t) ∈  less preference class than class y 

𝐶𝑙𝑡
≤∗

= 𝐶𝑙𝑡
≤∗

∪ {𝑥𝑖} 

▪ End IF 

o End For 

End For 

     



54 

 

The following next step is to implement a KD (K-Dimensional) tree approach. This method 

is used to determine lower and upper approximations. A KD tree is a data structure that 

organizes points in a multidimensional space, making search and retrieval operations more 

efficient. The methodology uses the KD tree approach to optimize the overall computing 

efficiency of the operation and reduce execution time. The KD tree technique was used to 

minimize the complexity and execution time of the DRSA (Dominance-based Rough Set 

technique) algorithm. The approach attempts to increase the efficiency of the data analysis 

process by utilizing the KD tree, making it more effective and time-saving.  

Table 7: Pseudocode of KD tree 

• Input:     start-node,   //initial point 

• Output:  kd,     //representation of kd tree  

• Pre:        None   

• Post:       start-node= node-rep(kd)^ |s-legal-kdtree(kd)| 

i. IF start-node is empty THEN return the empty kd-tree 

ii. Call pivot choosing procedure, which returns two values, 

n: = a member of node 

split: = the splitting dimensions 

iii. d: = domain vector of n 

iv. Node’: = node with n removed 

v. r: = range vector of n 

vi. nodeleft: ={(d’,r’) ∈ node’ | d’split ≤ dsplit}  

vii. noderight: ={(d’,r’) ∈ node’ | d’split ≥ dsplit}  

viii. kdleft: =recursively construct kd tree from nodeleft 

ix. kdright: =recursively construct kd tree from noderight 

x. kd: = <d, r, split, kdleft, kdright> 

Proof: By inducing on the length of start-node and the definitions of node-rep and s-

legal-kdtree 

 



55 

 

Table 7 represents the algorithm of KD tree working. A KD tree, also known as a data 

structure called a "k-dimensional tree" is used to arrange points in a k-dimensional space. It is very 

handy for performing effective closest neighbor searches. Here's a more in-depth description of 

how a KD tree works:  

Construction  

The first step in constructing a KD tree is to choose a splitting axis [50]. This axis is chosen 

depending on a variety of factors, such the dimension with the largest variance or the one that 

splits the points evenly. After selecting an axis, the points are split into two categories according 

on where they are on that axis. 

Recursive Subdivision 

For each subset, the dividing procedure is continued recursively until a termination condition is 

fulfilled. This constraint might be a maximum depth limit, a minimum number of points in a leaf 

node, or any other requirement that the implementation defines. Balancing: It is critical to balance 

the tree in order to provide efficient search operations. This can be accomplished by choosing a 

suitable splitting axis at each level of the tree, or by employing approaches such as median splitting 

or randomness. When executing a closest neighbor search in a KD tree [51], the algorithm starts 

at the root node and traverses the tree recursively depending on the splitting criteria. It chooses 

which child node to visit at each level depending on the query point's position relative to the 

splitting plane. This procedure is repeated until a leaf node is reached. 

Backtracking 

When the algorithm reaches a leaf node, it goes back to the parent nodes to see if there are any 

closer locations in the other subtree. The distance between the question points and the dividing 

plane is calculated. If the distance is less than the current best distance, the algorithm moves on 

to the next subtree. Pruning: The method may encounter nodes that can be pruned throughout the 

backtracking phase if their bounding box or distance to the query location is greater than the 

current best distance. This aids in reducing needless computations and increasing search 

efficiency. Termination: The search ends when all viable nodes have been visited or when a 



56 

 

specified condition, such as identifying the precise nearest neighbor or exceeding a 

predetermined distance threshold, is fulfilled.      

In the next step, we need to update lower and upper approximations by using above mentioned 

KD tree rules. We carried out our computation task using the KD tree algorithm. The idea behind 

the algorithm is to use a binary tree structure to divide the data points into smaller regions. we 

were able to efficiently find nearest neighbors using this algorithm [52] as well as complete other 

calculations. For simplicity and usability, we implemented the algorithm, which has ten rules, in 

a single line of code named as kd_tree mentioned in above Table 7.  

Table 8: Details of KD tree symbols 

Input           kd_tree, t=2 

Output        𝐶𝑙≤
∗  , 𝐶𝑙≥

∗  , 𝐶𝑙𝑡
∗  , 𝐶𝑙𝑡

≥∗
, 𝐶𝑙𝑡

≤∗
 

𝑃∗(𝐶𝑙𝑡
≤), 𝑃̅∗(𝐶𝑙𝑡

≤), 𝑃∗(𝐶𝑙𝑡
≥), 𝑃̅∗(𝐶𝑙𝑡

≥)                       

▪ Calculate 𝐶𝑙∗
𝑡
≤
 and 𝐶𝑙∗

𝑡
≥
 

• Pass the kd_tree object, the value of t, and the count_only parameter set to True 

to the query_radius function of the kd_tree object 

• Store the result of the query_radius function in a variable named 𝐶𝑙≤
∗  & 𝐶𝑙∗

𝑡
≥
 

▪ Calculate 𝑃∗(𝐶𝑙𝑡
≤), 𝑃̅∗(𝐶𝑙𝑡

≤), 𝑃∗(𝐶𝑙𝑡
≥), 𝑃̅∗(𝐶𝑙𝑡

≥)                     

1) Create Empty lists of 𝑃′(𝐶𝑙𝑡
≤), 𝑃̅′(𝐶𝑙𝑡

≤), 𝑃∗(𝐶𝑙𝑡
≥), 𝑃̅∗(𝐶𝑙𝑡

≥)                     

2) For i, row in iterrows for  𝐶𝑙∗
𝑡
≤
  

• Set i = current point in the kd_tree 

• Reshape the current point into a 1D array and pass it to the query_radius 

function of the kd_tree 

• Set the radius= 0 and return_distance= False 



57 

 

• Sort the results of the query_radius function in ascending order and store them 

in 𝐷𝑝≤
+ 

• Repeat above two steps for 𝐷𝑝≤
− 

• Now set radius=t, and return_distance=False 

• Sort the results of the query_radius function in ascending order and store them 

in 𝐷𝑝≤
− 

3) 𝑃′(𝐶𝑙𝑡
≤) = Flatten the 𝐷𝑝≤

+ array and add 1 to each element 

4) 𝑃̅′(𝐶𝑙𝑡
≤) = Flatten the 𝐷𝑝≤

− array and add 1 to each element 

5) Append 𝑃′(𝐶𝑙𝑡
≤), 𝑃̅′(𝐶𝑙𝑡

≤) into 𝑃∗(𝐶𝑙𝑡
≤), 𝑃̅∗(𝐶𝑙𝑡

≤) lists. 

6) Repeat whole process to calculate 𝑃∗(𝐶𝑙𝑡
≥), 𝑃̅∗(𝐶𝑙𝑡

≥) as well 

7) End For Loop 

 



58 

 

5.2 Flow Chart of proposed methodology 

 

Figure 11: Flow chart of proposed methodology 

 



59 

 

5.3 Illustrative Example 

We take into consideration the following sample information system: 

Table 9: Sample decision system 

Universe English Mathematics Grades 

X1 B B Good 

X2 C B Good 

X3 B C Good 

X4 A B Very Good 

X5 A A Excellent 

X6 A B Very Good 

 

Consider that we already know about the decision classes and approximations. 

Whenever a new object is inserted, the approximations are updated. 

We assumed that a new set of objects would be used to further clarify the implementation of our 

suggested strategy 𝑈+ = {𝑿𝟕, 𝑿𝟖, 𝑿𝟗} details of the conditional and decision attribute are 

provided in the decision system as  

{Universe, English, Mathematics, Grade}:  

• (𝐗𝟕, 𝐂, 𝐁, 𝐆𝐨𝐨𝐝) 

• (X8, B, A, Very Good) 

• (X9, A, A, Excellent) 

Take new objects X7, X8, X9 into consideration. In order to update the approximation sets, we 

first update the decision classes and the corresponding higher/lower preference ordered classes. 

After adding two new objects to the same decision system: 



60 

 

i. X7 belongs to les preference class and X8 and X9 belongs to preference class as per 

preference order t=2. 

ii. More preference ordered class: 

 𝐶𝑙∗
𝑡 ≥ = {𝑋4, 𝑋5, 𝑋6, 𝑋8, 𝑋9} 

iii. Less preference ordered class: 

 𝐶𝑙∗
𝑡 ≤= {𝑋1, 𝑋2, 𝑋3, 𝑋4, 𝑋6, 𝑋7, 𝑋8} 

iv. Updated Lower Approximation for  

𝐶𝑙∗
𝑡 ≥  is: 

• 𝐹𝑜𝑟 𝑋4 ∶  𝐷𝑝+(𝑋4) = {𝑋4, 𝑋5, 𝑋6, 𝑋9}    

• 𝐹𝑜𝑟 𝑋5 ∶  𝐷𝑝+(𝑋5) = {𝑋5, 𝑋9}    

• 𝐹𝑜𝑟 𝑋6 ∶  𝐷𝑝+(𝑋6) = {𝑋4, 𝑋5, 𝑋6, 𝑋9}    

• 𝐹𝑜𝑟 𝑋8 ∶  𝐷𝑝+(𝑋8) = {𝑋5, 𝑋8, 𝑋9}    

• 𝐹𝑜𝑟 𝑋9 ∶  𝐷𝑝+(𝑋9) = {𝑋5, 𝑋9}    

v. Updated Lower Approximation for  

𝐶𝑙∗
𝑡 ≤  is: 

• 𝐹𝑜𝑟 𝑋1 ∶  𝐷𝑝−(𝑋1) = {𝑋1, 𝑋4, 𝑋5, 𝑋8, 𝑋9}    

• 𝐹𝑜𝑟 𝑋2 ∶  𝐷𝑝−(𝑋2) = {𝑋1, 𝑋2, 𝑋4, 𝑋5, 𝑋6, 𝑋7, 𝑋8, 𝑋9}    

• 𝐹𝑜𝑟 𝑋3 ∶  𝐷𝑝−(𝑋3) = {𝑋3, 𝑋4, 𝑋5, 𝑋6, 𝑋8, 𝑋9}   

• 𝐹𝑜𝑟 𝑋4 ∶  𝐷𝑝−(𝑋4) = {𝑋4, 𝑋5, 𝑋6, 𝑋9}    

• 𝐹𝑜𝑟 𝑋6 ∶  𝐷𝑝−(𝑋6) = {𝑋4, 𝑋5, 𝑋6, 𝑋9}    

• 𝐹𝑜𝑟 𝑋7 ∶  𝐷𝑝−(𝑋7) = {𝑋1, 𝑋2, 𝑋4, 𝑋5, 𝑋6, 𝑋7, 𝑋8, 𝑋9}    

• 𝐹𝑜𝑟 𝑋8 ∶  𝐷𝑝−(𝑋8) = {𝑋5, 𝑋8, 𝑋9}    



61 

 

vi. Updated Upper Approximation for  

𝐶𝑙∗
𝑡 ≥  is: 

• 𝐹𝑜𝑟 𝑋4 ∶  𝐷𝑝+(𝑋4) = {𝑋1, 𝑋2, 𝑋3, 𝑋4, 𝑋6, 𝑋7}    

• 𝐹𝑜𝑟 𝑋5 ∶  𝐷𝑝+(𝑋5) = {𝑋1, 𝑋2, 𝑋3, 𝑋4, 𝑋5, 𝑋6, 𝑋7, 𝑋8, 𝑋9}    

• 𝐹𝑜𝑟 𝑋6 ∶  𝐷𝑝+(𝑋6) = {𝑋1, 𝑋2, 𝑋3, 𝑋4, 𝑋6, 𝑋7}    

• 𝐹𝑜𝑟 𝑋8 ∶  𝐷𝑝+(𝑋8) = {𝑋1, 𝑋2, 𝑋3, 𝑋7, 𝑋8}    

• 𝐹𝑜𝑟 𝑋9 ∶  𝐷𝑝+(𝑋9) = {𝑋1, 𝑋2, 𝑋3, 𝑋4, 𝑋5, 𝑋6, 𝑋7, 𝑋8, 𝑋9}    

vii. Updated Upper Approximation for  

𝐶𝑙∗
𝑡 ≤  is: 

• 𝐹𝑜𝑟 𝑋1 ∶  𝐷𝑝−(𝑋1) = {𝑋1, 𝑋2, 𝑋3, 𝑋7}    

• 𝐹𝑜𝑟 𝑋2 ∶  𝐷𝑝−(𝑋2) = {𝑋2, 𝑋7}    

• 𝐹𝑜𝑟 𝑋3 ∶  𝐷𝑝−(𝑋3) = {𝑋3}    

• 𝐹𝑜𝑟 𝑋6 ∶  𝐷𝑝−(𝑋6) = {𝑋1, 𝑋2, 𝑋3, 𝑋4, 𝑋6, 𝑋7}    

• 𝐹𝑜𝑟 𝑋8 ∶  𝐷𝑝−(𝑋8) = {𝑋1, 𝑋2, 𝑋3, 𝑋7, 𝑋8}    

• 𝐹𝑜𝑟 𝑋9 ∶  𝐷𝑝−(𝑋9) = {𝑋1, 𝑋2, 𝑋3, 𝑋4, 𝑋5, 𝑋6, 𝑋7, 𝑋8, 𝑋9}  

 

 

 

 

 

 

 

 

 



62 

 

CHAPTER 6 : RESULTS AND ANALYSIS 

 

In this section, we examine the effectiveness of the suggested method for updating 

approximations as objects migrate and emigrate. In section 6.1 we have explained datasets. Section 

6.2 includes characteristics of datasets. In section 6.3, we have done our experimental measures. 

Section 6.4 shows evaluation design. Section 6.5 includes results and discussions. 

6.1 Dataset 

We used ten publicly available datasets from the UCI library to evaluate the effectiveness of 

our proposed method [47]. 

• 1st dataset that we have used was breast cancer Coimbra. There are ten statistical 

variables and a binary dependent variable with a binary dependence that indicates 

whether breast cancer is present or not are present. Anthropometric data and factors 

collected during normal blood analysis serve as predictors. If these predictors are true, 

models of prediction based on them might be utilized as a biomarker for breast cancer. 

There are no missing values. There are 116 instances and having 10 features. Dataset 

is multivariant/integer type. 

• The second dataset that we have chosen was caesarian section classification. This 

dataset provides information about the caesarian section results of 80 pregnant women 

who had the most common delivery difficulties in the medical industry. It has 80 

instances and 5 features, having univariant/integer type. 

• 3rd dataset was lung cancer. The information provided outlined three forms of 

problematic lung cancers. Having 32 instances and 56 features. The type of dataset is 

multivariant/integer. 

• 4th dataset was glass. Criminological research served as the impetus for the study of 

glass classification since glass left at the scene of crime might be used as evidence. It 

has 214 instances and 9 features. Having no missing values. The type of dataset is 

multivariant/real. 



63 

 

• Fifth dataset chosen was Haberman. Having 306 instances and 3 features. The dataset 

comprises instances from research on the survival of breast cancer patients who had 

surgery.  The type of dataset is multivariant/integer. 

• 6th dataset that we have used was Iris. This is one of the oldest datasets used in the 

classification literature, and it is frequently used in statistics and machine learning.  The 

data set is divided into three classes, each with 50 instances, and each class represents 

a different species of iris plant.  One class may be separated linearly from the other 

two; the latter cannot be separated linearly from each other. It has 4 attributes. The type 

of iris dataset is real. 

• 7th dataset was concrete compressive strength. The most significant material in civil 

engineering is concrete. The compressive strength of concrete is a highly nonlinear 

function of age and constituents. The dataset has 1.03k instances and 9 features. Dataset 

is of real type. 

• Eighth dataset was Iranian churn dataset. This information was gathered at random 

from an Iranian telecom company's database during a 12-month period. A total of 3150 

rows of data, one for each client, contain information for 13 columns. The 

characteristics included in this dataset. Call failures, SMS frequency, number of 

complaints, number of separate calls, subscription term, age group, fee amount, kind 

of service, seconds of usage, position, the amount of use, and Customer Value are all 

factors to consider. Except for attribute churn, all of the attributes are based on 

aggregated data from the first 9 months. The churn labels represent the customers' 

status at the end of a year. The minimum planning gap is three months. It has 3.15k 

instances and 13 features, having integer type. 

• 9th dataset was waveform dataset generator version 1. The characteristic of dataset is 

multivariant/data generator. It has 5k instances and 21 features. The subject area of 

dataset physics and chemistry. Feature type is real. 

• 10th dataset was letter recognition. The objective is to recognize each of the many black-

and-white rectangular pixel representations as one of the 26 capital letters in the English 



64 

 

alphabet. The character representations were created using 20 distinct typefaces, and 

each letter within these fonts was randomly deformed to create a file containing 20,000 

unique stimuli.  Each stimulus was transformed into 16 primitive numerical properties 

and scaled to fit within a range of integer values ranging from 0 to 15.  In most cases, 

we train on the first 16000 items and then use the resultant model to predict the letter 

category for the other 4000.  More information may be found in the aforementioned 

article. It has 20k instances and 64 features. 

 To thoroughly examine the effectiveness of our suggested algorithms, we compare them to 

the standard DRSA algorithm that operated in a dynamic environment. With 5% of the original 

dataset size as the variation ratio, we compared the suggested and standard techniques. With the 

understanding that the value set would remain the same, we chose random values for the 

conditional and decision characteristics of new objects. Using the new approach and the traditional 

DRSA algorithm, we updated the DRSA approximations for outdated approximation sets. By 

computing the percentage of execution time that was saved, we were able to compare the 

computational time of the two algorithms. When compared to the usual method, our suggested 

approach updated approximations in less time, with an average reduction of 99.2%. 

6.2 Characteristics of dataset 

We have tested our proposed algorithm on UCI ten datasets. Table 10 shows the 

characteristics of datasets including their instance (number of rows or objects) and attributes 

(number of columns or features) and type. Despite of their type, some datasets have more 

instance like concrete compressive strength, Iranian churn dataset, Waveform database generator 

version1 and Letter recognition. And rest of the datasets have a smaller number of instances. UCI 

datasets of different types like multivariant and univariant as well as integer and real numbers. 

 

 

 

 

 

 



65 

 

Table 10: Characteristics of UCI dataset 

Dataset Instance Attributes Type 

Breast cancer Coimbra 116 10 Multivariate/Integer 

Caesarian section classification 80 5 Univariate/Integer 

Lung cancer 32 56 Multivariate/Integer 

Glass 214 9 Multivariate/Real 

Haberman 306 3 Multivariate/Integer 

Iris 150 4 Real 

Concrete compressive strength 1.03k 9 Real 

Iranian churn dataset 3.15k 13 Integer 

Waveform database generator 

version 1 

5k 21 Multivariate, Data-Generator 

Letter recognition 20k 64 Integer 

 

6.3 Experimental measure 

Below is a brief description of the experimental settings that were used to evaluate and 

execute the recommended and standard techniques. 

6.3.1 KD Tree 

A data structure called a KD tree, often referred to as a k-dimensional tree, is used to arrange 

points in a k-dimensional space. It is very handy for performing effective closest neighbor 

searches. The KD tree technique was used to minimize the complexity and execution time of the 

DRSA (Dominance-based Rough Set technique) algorithm. The approach attempts to increase the 

efficiency of the data analysis process by utilizing the KD tree, making it more effective and time-

saving. 



66 

 

6.3.2 Execution Time 

"Execution time" refers to the amount of time an algorithm must analyses data before generating 

an output. We evaluated the algorithm execution time using a system timer in order to evaluate the 

performance of the suggested technique to the conventional approach and other relevant 

contemporary techniques. We tested our method on ten UCI datasets and determined the average 

execution time. Equation 10 was utilized to calculate the percentage reduction in the duration of 

the suggested method. 

𝑷𝒆𝒓𝒄𝒆𝒏𝒕𝒂𝒈𝒆 𝒅𝒆𝒄𝒓𝒆𝒂𝒔𝒆 = (
𝑻𝟏−𝑻𝟐

𝑻𝟏
) × 𝟏𝟎𝟎            (10) 

where ‘T1’ denotes the traditional algorithm's execution time and ‘T2’ denotes the suggested 

algorithm's execution time. 

 

Table 11: Hardware specifications 

Hardware Specifications 

Processor AMD Ryzen 5 3.60 GHz 

RAM 32 GB 

Generation AMD Ryzen 6 

Cache 512 Bytes 

 

Table 11 shows hardware specifications. Processor that we have used for our research work was 

AMD Ryzen5 3.60 GHz, generation of AMD Ryzen 6. Our hardware has 32 GB RAM. Cache 

was about 512 bytes. 

6.4 Evaluation design 

We examined both methods (conventional approach and proposed approach) using the 

parameters listed below: 

• Execution environment 

• Algorithmic parameters 



67 

 

6.4.1 Execution environment  

Table 11 lists the hardware and its specifications that was used to implement the proposed 

and conventional algorithms. AMD Ryzen (AMD Ryzen 5 3.60 GHz, RAM 32 GB) is used to 

execute both scripts on the ten datasets specified at the beginning of section 6. When comparing 

both methods, the execution environment is same. When the algorithms are executing, no further 

processes are active. During implementation, great effort is taken to ensure that the processor 

state remains consistent. 

6.4.2 Algorithmic Parameters 

Conventional and proposed algorithm takes following parameters for information system: 

• IS represents information system 

• ‘U’ represents universe or finite number of objects 

• ‘Q’ is (𝐶 ∪ 𝐷) represents a finite number of conditional and decision attributes 

• V = 𝑈𝑞∈𝑄𝑉𝑞 where 𝑉𝑞 is the set of values of criteria q 

• f represents function of 𝑓(𝑥, 𝑞) which assigns a particular value 𝑉𝑞 to an object x 

for attribute q. 

6.5 Results and discussion 

We updated the DRSA approximations for out-of-date approximation sets using the novel 

strategy and the conventional DRSA technique. We were able to compare the computational 

times of the two techniques by determining the percentage of time required for execution that 

was saved. With an average drop of 99.2%, our suggested process updated estimates faster than 

the traditional approach. 

 

 

 

 

  



68 

 

Table 12: Calculation time for the standard, parallel, and suggested approaches after adding new 

objects 

Dataset Time Taken(s) Percentage decrease 

in time (%) 
Conventional 

Algorithm  

Parallel 

Algorithm  

Suggested 

Algorithm 

Breast Cancer Coimbra 6.75 2.37 0.59 91.2% 

Caesarian Section 

Classification 

3.71 29.88 0.56 84.9% 

Glass 18.7 6.75 0.71 96.2% 

Haberman 49.9 16.7 1.67 97% 

Iris 11.4 3.98 0.5 95% 

Concrete Compressive 

strength 

309.2 108.2 2.1 99.3% 

Iranian Churn Data 450.9 157.8 2.9 99.3% 

Waveform database 

generator version1 

489.1 171.8 3.1 99.3% 

Letter Recognition 1545.2 541.8 11.2 99.3% 

Lung Cancer 1.04 0.36 0.54 92.6%  

 

Dominance based rough set theory (DRSA) takes more time to calculate lower and upper 

approximation because comparing dominance relations among data points can be complex. We 

have addressed the problems associated with complicated algorithmic structure and lengthy 

execution times in our methods. We do not do any traditional DRSA approach measures that are 

not essential. We have used KD tree algorithm to decrease computational time of DRSA 

approaches for calculating lower and upper approximations.  

The KD tree, in the first place, arranges the data points in a hierarchical structure to 

facilitate effective search operations. The algorithm can quickly find important areas of the data 

space, which lowers the number of comparisons required. As a result, compared to linear search 



69 

 

algorithms, search operations have a much lower complexity. Additionally, during the search 

process, the KD tree method reduces irrelevant sections. In Table 12, we have compared 

conventional, parallel and proposed algorithmic results applied on UCI ten datasets.  

Our proposed algorithm shows reduce execution time on comparison. In conclusion, the 

hierarchical structure, effective search operations, and reducing mechanism of the KD tree 

algorithm give strong evidence for its ability to shorten the computing time of DRSA techniques 

when calculating lower and higher approximations. It is a useful tool for increasing the 

effectiveness of DRSA calculations since it can handle high-dimensional spaces and lowers 

number of comparisons. 

Table 13: Execution time for conventional approach (upward and downward union class) 

Dataset Traditional methodology time duration (s) 

Set of approximation for 𝑪𝒍𝒕
≤ Set of approximation for 𝑪𝒍𝒕

≥ 

Breast Cancer Coimbra 1.06 1.5 

Caesarian Section 

Classification 

20.01 19.8 

Glass 4.1 3.8 

Haberman 11.02 10.25 

Iris 2.6 2.6 

Concrete Compressive 

strength 

68.57 70.6 

Iranian Churn Data 102.5 110.1 

Waveform database 

generator version 1 

121.1 123.3 



70 

 

Letter Recognition 330.15 324.4 

Lung Cancer 0.17 0.2 

 

Table 13 shows Execution time for conventional approach (upward and downward union class) 

of 10 UCI datasets that are available online. For Breast Cancer Coimbra, execution time for 𝐶𝑙𝑡
≤ 

= 1.06 s and for 𝐶𝑙𝑡
≥ = 1.5𝑠.  

For Caesarian Section Classification, execution time for 𝐶𝑙𝑡
≤ = 20.01 s and for 𝐶𝑙𝑡

≥ = 19.8𝑠. For 

Glass dataset, 𝐶𝑙𝑡
≤ = 4.1 s and for 𝐶𝑙𝑡

≥ = 3.8𝑠. Haberman has 𝐶𝑙𝑡
≤ = 11.02 s and for 𝐶𝑙𝑡

≥ = 10.25𝑠 

For iris, execution for conventional approach is 𝐶𝑙𝑡
≤ = 2.6 s and for 𝐶𝑙𝑡

≥ = 2.6𝑠. Concrete 

compressive strength has 𝐶𝑙𝑡
≤ = 68.57 s and for 𝐶𝑙𝑡

≥ = 70.6𝑠. Iranian churn data has 𝐶𝑙𝑡
≤ = 102.5s 

and for 𝐶𝑙𝑡
≥ = 110.1𝑠. For waveform database generator version 1, 𝐶𝑙𝑡

≤ = 121.1 s and for 𝐶𝑙𝑡
≥ =

123.3𝑠 . Letter recognition has 𝐶𝑙𝑡
≤ = 330.15s and for 𝐶𝑙𝑡

≥ = 324.4𝑠. For lung cancer 𝐶𝑙𝑡
≤ = 0.17s 

and for 𝐶𝑙𝑡
≥ = 0.2𝑠. 

Table 14: Execution time for proposed approach (upward and downward union class) 

Dataset Proposed methodology time duration (s) 

Set of approximation for 𝑪𝒍𝒕
≤ Set of approximation for 𝑪𝒍𝒕

≥ 

Breast Cancer Coimbra 0.025 0.025 

Caesarian Section 

Classification 

0.03 0.031 

Glass 0.029 0.029 

Haberman 0.168 0.16 

Iris 0.02 0.023 



71 

 

Concrete Compressive 

strength 

0.2 0.21 

Iranian Churn Data 0.31 0.31 

Waveform database 

generator version1 

0.29 0.3 

Letter Recognition 2.39 2.4 

Lung Cancer 0.02 0.023 

 

Table 14 shows Execution time for proposed approach (upward and downward union class) of 10 

UCI datasets that are available online. For Breast Cancer Coimbra, execution time for 𝐶𝑙𝑡
≤ = 

0.025 s and for 𝐶𝑙𝑡
≥ = 0.025𝑠.  

For Caesarian Section Classification, execution time for 𝐶𝑙𝑡
≤ = 0.03s and for 𝐶𝑙𝑡

≥ = 0.031𝑠. For 

Glass dataset, 𝐶𝑙𝑡
≤ = 0.029s and for 𝐶𝑙𝑡

≥ = 0.029𝑠. Haberman has 𝐶𝑙𝑡
≤ = 0.168s and for 𝐶𝑙𝑡

≥ =

0.16𝑠 

For iris, execution for conventional approach is 𝐶𝑙𝑡
≤ = 0.02s and for 𝐶𝑙𝑡

≥ = 0.023𝑠. Concrete 

compressive strength has 𝐶𝑙𝑡
≤ = 0.2s and for 𝐶𝑙𝑡

≥ = 0.21𝑠. Iranian churn data has 𝐶𝑙𝑡
≤ = 0.31s and 

for 𝐶𝑙𝑡
≥ = 0.31𝑠. For waveform database generator version 1, 𝐶𝑙𝑡

≤ = 0.29s and for 𝐶𝑙𝑡
≥ = 0.3𝑠 . 

Letter recognition has 𝐶𝑙𝑡
≤ = 2.39s and for 𝐶𝑙𝑡

≥ = 2.4𝑠. For lung cancer 𝐶𝑙𝑡
≤ = 0.02s and for 

𝐶𝑙𝑡
≥ = 0.023𝑠. 

 

 

 

 

 

 



72 

 

Table 15: Execution time comparison to calculate approximation sets for suggested and 

traditional 𝐶𝑙𝑡
≥ 

Dataset Time Taken(s) Percentage 

reduction in 

execution time  
Conventional 

Approximation sets 

for 𝑪𝒍𝒕
≥ 

 Proposed 

Approximation 

sets for 𝑪𝒍𝒕
≥ 

Breast Cancer Coimbra 1.06  0.024 97.6% 

Caesarian Section 

Classification 

20.01  0.03 99.8% 

Glass 4.1  0.029 99.2% 

Haberman 11.02  0.168 98.5% 

Iris 2.6  0.02 99.2% 

Concrete Compressive 

strength 

68.57  0.2 99.7% 

Iranian Churn Data 102.5  0.31 99.6% 

Waveform database 

generator version 1 

121.1  0.29 99.7% 

Letter Recognition 330.15  2.39 99.2% 

Lung Cancer 0.17  0.02 88.2% 

 

In table 15, we have compared execution time to compute approximation sets for conventional 

and proposed  𝐶𝑙𝑡
≥. For that we have used 10 UCI datasets. We applied conventional approach 

and proposed approach to computer approximation for more preferred class. And we have got 



73 

 

remarkable results that showed us that proposed approach take lesser time as compare to 

conventional approach. The graphical representation of percentage decrease in execution time to 

compute  𝐶𝑙𝑡
≥ shown below in figure 11. 

 

 

Figure 12: Percentage decrease in execution time for 𝐶𝑙𝑡
≥ 

 

 

 

 

 

 

 

 

0.75 0.8 0.85 0.9 0.95 1 1.05

Breast Cancer Coimbra

Caesarian Section Classification

Glass

Haberman

Iris

Concrete Compressive strength

Iranian Churn Data

Waveform database generator version1

Letter Recognition

Lung Cancer

Percentage decrease in execution time  



74 

 

Table 16: Execution time comparison to calculate approximation sets for suggested and 

traditional 𝐶𝑙𝑡
≤ 

Dataset Time duration (s) Percentage decrease 

in execution time  
Conventional sets of 

Approximation for 

𝑪𝒍𝒕
≤ (s) 

 Proposed sets of 

Approximation 

for 𝑪𝒍𝒕
≤ (s) 

Breast Cancer 

Coimbra 

1.91  0.026 98.6% 

Caesarian Section 

Classification 

20.8  0.03 99.8% 

Glass 3.9  0.029 99.2% 

Haberman 10.33  0.17 98.3% 

Iris 2.4  0.021 99.1% 

Concrete 

Compressive strength 

70.8  0.22 99.6% 

Iranian Churn Data 111.25  0.32 99.7% 

Waveform database 

generator version1 

124.44  0.29 99.7% 

Letter Recognition 324.86  2.66 99.2% 

Lung Cancer 0.17  0.023 86.4% 

 

 



75 

 

In table 16, we have shown comparison of execution time for both conventional and 

proposed algorithm to compute 𝐶𝑙𝑡
≥. We have used 10 UCI datasets. We applied conventional 

approach and proposed approach to computer approximation for less preferred class. Results 

shows remarkable decrease in computational time. We have seen that execution time of proposed 

approach is far lesser than that of conventional approach. Average percentage reduction in 

execution time is shown in figure 13 below: 

 

Figure 13: Percentage decrease in execution time for 𝐶𝑙𝑡
≤ 

 

 

 

 

 

 

 

 

 

0.75 0.8 0.85 0.9 0.95 1 1.05

Breast Cancer Coimbra

Caesarian Section Classification

Glass

Haberman

Iris

Concrete Compressive strength

Iranian Churn Data

Waveform database generator version1

Letter Recognition

Lung Cancer

Percentage decrease in execution time



76 

 

 

 

Table 17: Time comparison using recent techniques 

Dataset Time duration taken(s) 

An improved technique 

for estimating DRSA 

approximations (Ahmad 

et al, 2022)  

A revised method for 

estimating DRSA 

approximations (Nosheen et 

al, 2022b) 

Proposed 

Methodology 

Gisette 28.7 20.01 11.82 

EEG Eye State 12.1 9.5 6.1 

URL Reputation 77.6 51.2 32.6 

P53 Mutants 19.3 15.1 7.75 

Average decrease in 

comparison to the 

Traditional DRSA 

70% 83% 99.2% 

 

Table 17 compares the time required by the suggested method with more modern approaches. We 

have used the "redefined method for computing approximations of DRSA" and the "improved 

technique to compute approximations of DRSA," two current methodologies. Four datasets have 

been taken into consideration: P53 mutants, URL reputation, EEG eye state, and Gisette. Table 17 

provides the average decrease when compared to the traditional DRSA, and Figure 13 displays a 

graphical depiction of that reduction. The suggested approach has the longest decrease time when 

compared to alternative methods, according to the results. 



77 

 

 

Figure 14: Time comparison using recent techniques 

 

6.5.1 Computational Time 

Using the aforementioned hardware and software requirements, we have executed the 

proposed, current parallel, and traditional algorithms on 10 UCI datasets and compared their 

execution times. (See table 12 for a mention). We measured the amount of time needed to 

compute approximations for the upper union of classes and the lower union of classes separately 

using the standard approach. (Mentioned in Table 13).  

In the suggested technique to compute approximations with minimum computation, we 

developed KD tree rules to compute lower and higher approximations for the upward and 

downward union of classes. Thus, by using the suggested method, we saw a notable decrease in 

the execution time, as seen in table 14. To evaluate the effectiveness of both strategies, we 

computed the percentage savings in time taken to execute using the procedure provided in Eq. 

(10). he two techniques are compared in Tables 15–16. For downward union of classes 𝐶𝑙𝑡
≤ and 

upward union of classes 𝐶𝑙𝑡
≥ percentage reduction in execution time is almost 98%. 

70%

83%

99.2%

Time comparison using recent techniques

Optimized method to calculate approximations of DRSA (Ahmad et al, 2022)

Redefined approach to calculate approximations of DRSA (Nosheen et al, 2022b)

Proposed approach



78 

 

 

Figure 15:  Comparison of Conventional, Parallel and Proposed Approach with respect to 

execution time 

 

 

 

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Comparison of Conventional , Parallel and Proposed Approach 

with respect to execution time

Conventional Approach Parallel Approach Proposed Approach



79 

 

 

Figure 16: Comparing execution times to calculate downward union of class approximations 

 

In our research, we have conducted a thorough analysis of the proposed approach and the 

conventional approach of dominance-based rough set theory on ten UCI datasets. Through 

meticulous calculations and comparisons, it has become evident that our proposed algorithm offers 

a significant advantage in terms of reduced execution time when compared to the conventional 

approach.  

Furthermore, to visually demonstrate the superiority of my approach, we have created a 

graphical representation that clearly illustrates the performance difference between the two 

methods. The graph showcases a noticeable decrease in execution time when utilizing my 

proposed algorithm, further solidifying its superiority. 

These results underscore the importance of adopting my approach in the field of 

dominance-based rough set theory. The reduced execution time not only enhances computational 

efficiency but also opens up possibilities for real-time applications and large-scale data 

processing. By leveraging the power of our algorithm, researchers and practitioners can achieve 

more efficient and effective outcomes in their respective domains. 

82%
84%
86%
88%
90%
92%
94%
96%
98%

100%

Comparing execution times to calculate downward union of 

class approximations

Conventional Proposed



80 

 

Table 18: Comparison of memory consumption 

Dataset Conventional Approach (bytes) Proposed Approach 

(bytes) 

Breast Cancer Coimbra 9600000 8900000 

Caesarian Section 

Classification 

15250000 9780000 

Glass 13680000 9250000 

Haberman 70800000 10980000 

Iris 20880000 9030000 

Concrete Compressive 

strength 

210000000 11190000 

Iranian Churn Data 300000000 11950000 

Waveform database generator 

version 1 

303900000 12010000 

Letter Recognition 691500000 18150000 

Lung Cancer 8900000 8820000 

 

Table 18 that shows the memory consumption of conventional DRSA technique and 

proposed approach. Memory consumption was calculated in bytes which is a memory unit. 

Proposed approach took less memory as compare to conventional approach. We have used 10 UCI 

datasets for this. The average reduction percentage for memory consumption is 93.3% using 

equation 10.  

 

6.5.2 Memory Consumption 

The dominance-based rough set technique has drawn a lot of interest in the field of data 

analysis and decision-making because of its ability to handle imprecise and uncertain data. The 

effective management of memory is one of the main obstacles to putting this strategy into 

practice, especially when working with enormous datasets. But compared to the traditional 

method, a considerable memory reduction has been made by adding the KD-tree data structure. 



81 

 

The binary search tree known as the KD-tree, divides data points in a multidimensional 

space. It creates a hierarchical data structure that makes it possible to conduct effective search 

and retrieval operations. The KD-tree optimizes the storing and retrieval of data points when 

used with the dominance-based rough set technique, resulting in less memory use. 

The memory saving advantages of the dominance-based rough set technique are revealed 

by using the KD-tree. The KD-tree's hierarchical structure makes search operations quicker and 

more effective, allowing the method to handle bigger datasets without suffering performance 

penalties. The technique is made more effective overall thanks to the decrease in memory 

utilization, which also makes it possible to analyses larger and more complicated information, 

producing more accurate and trustworthy findings. 

 

 

Figure 17: Comparing the amount of time needed to compute upward class union 

approximations 

82%

84%

86%

88%

90%

92%

94%

96%

98%

100%

Comparing the amount of time needed to compute upward 

class union approximations  

Conventional Proposed



82 

 

 

Figure 18: Comparing computing Time required to calculate the proposed and conventional 

approaches for data collections with additional instances 

 

In our research, we have conducted a thorough analysis of the proposed approach and the 

conventional approach of dominance-based rough set theory on ten UCI datasets. Through 

meticulous calculations and comparisons, it has become evident that my proposed algorithm 

offers a significant advantage in terms of reduced execution time when compared to the 

conventional approach. This finding highlights the efficiency and time-saving potential of my 

approach. 

Furthermore, to visually demonstrate the superiority of my approach, we have created a 

graphical representation that clearly illustrates the performance difference between the two 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Gisette EEG Eye State URL Reputation P53 Mutants

Comparing computing time required to calculate the 

proposed and conventional approaches for data collections 

with additional instances

Conventional Proposed



83 

 

methods. The graph showcases a noticeable decrease in execution time when utilizing my 

proposed algorithm, further solidifying its superiority. As shown in figure 16 and 17. 

These results underscore the importance of adopting my approach in the field of 

dominance-based rough set theory. The reduced execution time not only enhances computational 

efficiency but also opens up possibilities for real-time applications and large-scale data 

processing. By leveraging the power of my algorithm, researchers and practitioners can achieve 

more efficient and effective outcomes in their respective domains. 

6.6 Case Study 

The shift in the modern period towards technology and the requirement for efficient data 

processing of large datasets provide considerable obstacles. In order to overcome these 

difficulties, the Dominance-based Rough Set Approach (DRSA), an improved method within the 

rough set theory, finds significant data in preference-ordered datasets. However, it can be 

expensive to compute lower and higher approximations in DRSA, particularly if the data varies 

over time. In order to solve this problem, the proposed approach efficiently computes estimates 

for increasing object values. Results show that this strategy is efficient and effective, with 

significant decreases in execution time, memory usage, and structural complexity when 

compared to traditional approaches using publicly accessible datasets from UCI. 

 Our suggested methodology performs better than current methods in terms of accuracy and 

efficiency, in addition to significantly lowering execution time for the DRSA issue. Our 

technique exhibits excellent performance through thorough comparison analysis, offering a 

considerable improvement in addressing the issues of DRSA. It is an excellent option for 

researchers and practitioners looking for the best answers in this subject because of its unique 

methodology and strong outcomes. 



84 

 

 

 

CHAPTER 7 :          CONCLUSION AND FUTURE WORK  
 

This chapter will wrap up our efforts and provide some future advice. Section 7.1 presents the 

findings of our study endeavor, and Section 7.2 outlines our plans for the future. Additionally, 

section 7.3 mentions limitations. 

7.1 Conclusion 

The shift in the modern period towards technology and the requirement for efficient data 

processing of large datasets provide considerable obstacles. In order to overcome these 

difficulties, the Dominance-based Rough Set Approach (DRSA), an improved method within the 

rough set theory, finds significant data in preference-ordered datasets. However, it can be 

expensive to compute lower and higher approximations in DRSA, particularly if the data varies 

over time. In order to solve this problem, the proposed approach efficiently computes estimates 

for increasing object values.  

Results show that this strategy is efficient and effective, with significant decreases in 

execution time, memory usage, and structural complexity when compared to traditional 

approaches using publicly accessible datasets from UCI.  

Our suggested methodology performs better than current methods in terms of accuracy and 

efficiency, in addition to significantly lowering execution time for the DRSA issue. Our 

technique exhibits excellent performance through thorough comparison analysis, offering a 

considerable improvement in addressing the issues of DRSA. It is an excellent option for 



85 

 

researchers and practitioners looking for the best answers in this subject because of its unique 

methodology and strong outcomes.  

The modern era's reliance on technology, as well as the need for fast processing of large 

datasets, provide considerable obstacles. To address these challenges, the Dominance-based 

Rough Set Approach (DRSA), an advanced approach in rough set theory, emerges as a solution 

for discovering critical data in preference-ordered datasets. However, the computational cost of 

calculating lower and higher approximations in DRSA, particularly when working with dynamic 

data, might be prohibitively expensive. To solve this issue, we present an efficient method for 

predicting growing object values. The results reveal that this technique is successful, with 

significant savings in execution time, memory use, and structural complexity compared to 

standard approaches, as proven by testing on publicly accessible UCI datasets. 

Our technique not only surpasses previous methods in terms of accuracy and efficiency, but it 

also drastically decreases the execution time required for the DRSA issue. Through detailed 

comparison research, our method displays remarkable performance, indicating a significant 

improvement in tackling DRSA issues. With its novel methodology and appealing results, our 

approach is a potential alternative for academics and practitioners looking for the best solutions 

in this field. 

 

 

 

 

 

 



86 

 

7.2 Future work 

Theory stands out as a far more efficient and time-saving solution compared to the 

conventional approach. The evidence from the calculations, as well as the graphical 

representation, supports the claim that my approach offers significant advantages in terms of 

execution time reduction. Its potential impact on various applications and domains cannot be 

overlooked, making it a promising avenue for future research and implementation. 

7.3 Limitation 

The limitation of our proposed work is we have used KD tree approach which has the 

disadvantage of becoming less efficient as the complexity of the data rises. This is referred to as 

the "curse of dimensionality." The splitting procedure gets less efficient as the number of 

dimensions increases, producing a less balanced tree and perhaps affecting the algorithm's 

performance. 



 
 

References 
[1] Bhattarai, B. P., Paudyal, S., Luo, Y., Mohanpurkar, M., Cheung, K., Tonkoski, R., ... & 

Zhang, X. (2019). Big data analytics in smart grids: state‐of‐the‐art, challenges, opportunities, 

and future directions. IET Smart Grid, 2(2), 141-154. 

[2] Himanen, L., Geurts, A., Foster, A. S., & Rinke, P. (2019). Data‐driven materials science: 

status, challenges, and perspectives. Advanced Science, 6(21), 1900808. 

[3] Wang, X., Wu, J., Chen, J., Li, L., Wang, Y. F., & Wang, W. Y. (2019). Vatex: A large-scale, 

high-quality multilingual dataset for video-and-language research. In Proceedings of the 

IEEE/CVF International Conference on Computer Vision (pp. 4581-4591). 
[4] Venkatesh, B., & Anuradha, J. (2019). A review of feature selection and its methods. 

Cybernetics and information technologies, 19(1), 3-26. 
[5] Brownlee, J. (2020). Data preparation for machine learning: data cleaning, feature selection, 

and data transforms in Python. Machine Learning Mastery. 

[6] Bolón-Canedo, V., & Alonso-Betanzos, A. (2019). Ensembles for feature selection: A review 

and future trends. Information Fusion, 52, 1-12. 

[7] Di Mauro, M., Galatro, G., Fortino, G., & Liotta, A. (2021). Supervised feature selection 

techniques in network intrusion detection: A critical review. Engineering Applications of 

Artificial Intelligence, 101, 104216. 
[8] Jiang, T., Gradus, J. L., & Rosellini, A. J. (2020). Supervised machine learning: a brief primer. 

Behavior Therapy, 51(5), 675-687. 

[9] Roffo, G., Melzi, S., Castellani, U., Vinciarelli, A., & Cristani, M. (2020). Infinite feature 

selection: a graph-based feature filtering approach. IEEE Transactions on Pattern Analysis 

and Machine Intelligence, 43(12), 4396-4410. 

[10] Bommert, A., Sun, X., Bischl, B., Rahnenführer, J., & Lang, M. (2020). Benchmark for 

filter methods for feature selection in high-dimensional classification data. Computational 

Statistics & Data Analysis, 143, 106839. 

[11] Venkatesh, B., & Anuradha, J. (2019). A review of feature selection and its methods. 

Cybernetics and information technologies, 19(1), 3-26. 

[12] Alzaqebah, M., Alrefai, N., Ahmed, E. A., Jawarneh, S., & Alsmadi, M. K. (2020). 

Neighborhood search methods with moth optimization algorithm as a wrapper method for 



 
 

feature selection problems. International Journal of Electrical & Computer Engineering 

(2088-8708), 10(4). 

[13] González, J., Ortega, J., Damas, M., Martín-Smith, P., & Gan, J. Q. (2019). A new multi-

objective wrapper method for feature selection–Accuracy and stability analysis for BCI. 

Neurocomputing, 333, 407-418. 

[14] Zhang, J., Xiong, Y., & Min, S. (2019). A new hybrid filter/wrapper algorithm for feature 

selection in classification. Analytica chimica acta, 1080, 43-54. 

[15] Liu, H., Zhou, M., & Liu, Q. (2019). An embedded feature selection method for imbalanced 

data classification. IEEE/CAA Journal of Automatica Sinica, 6(3), 703-715. 

[16] Venkatesh, B., & Anuradha, J. (2019). A review of feature selection and its methods. 

Cybernetics and information technologies, 19(1), 3-26. 

[17] Solorio-Fernández, S., Carrasco-Ochoa, J. A., & Martínez-Trinidad, J. F. (2020). A review 

of unsupervised feature selection methods. Artificial Intelligence Review, 53(2), 907-948. 

[18] Brownlee, J. (2019). How to choose a feature selection method for machine learning. 

Machine Learning Mastery, 10. 

[19] Tang, M., & Liao, H. (2021). From conventional group decision making to large-scale 

group decision making: What are the challenges and how to meet them in big data era? A 

state-of-the-art survey. Omega, 100, 102141. 

[20] Meng, T., Jing, X., Yan, Z., & Pedrycz, W. (2020). A survey on machine learning for data 

fusion. Information Fusion, 57, 115-129. 

[21] Pawlak, Zdzisław. "Rough sets." International journal of computer & information sciences 

11 (1982): 341-356. 

[22] Pawlak, Zdzislaw, et al. "Rough sets." Communications of the ACM 38.11 (1995): 88-95. 

[23] Pawlak, Zdzisław, and Andrzej Skowron. "Rudiments of rough sets." Information sciences 

177.1 (2007): 3-27. 

[24] Greco, S., Matarazzo, B., Słowiński, R.: Rough sets theory for multi-criteria decision 

analysis. European Journal of Operational Research, 129, 1 (2001) 1–47 

[25] Greco, S., Matarazzo, B., Słowiński, R.: Multicriteria classification by dominance-based 

rough set approach. In: W.Kloesgen and J.Zytkow (eds.), Handbook of Data Mining and 

Knowledge Discovery, Oxford University Press, New York, 2002 



 
 

[26] Słowiński, R., Greco, S., Matarazzo, B.: Rough set based decision support. Chapter 16 [in]: 

E.K. Burke and G. Kendall (eds.), Search Methodologies: Introductory Tutorials in 

Optimization and Decision Support Techniques, Springer-Verlag , New York (2005) 475–

527 

[27] Liou, James JH, and Gwo-Hshiung Tzeng. "A dominance-based rough set approach to 

customer behavior in the airline market." Information Sciences 180.11 (2010): 2230-2238. 

[28] Yang, Xibei, et al. "Dominance-based rough set approach and knowledge reductions in 

incomplete ordered information system." Information Sciences 178.4 (2008): 1219-1234. 

[29] Chakhar, Salem, et al. "Dominance-based rough set approach for group decisions." 

European Journal of Operational Research 251.1 (2016): 206-224. 

[30] Greco, Salvatore, Benedetto Matarazzo, and Roman Słowiński. "Dominance-based rough 

set approach as a proper way of handling graduality in rough set theory." Transactions on 

Rough Sets VII: Commemorating the Life and Work of Zdzisław Pawlak, Part II (2007): 36-

52 

[31] Li, Shaoyong, Tianrui Li, and Dun Liu. "Dynamic Maintenance of Approximations in 

Dominance‐Based Rough Set Approach under the Variation of the Object Set." International 

Journal of Intelligent Systems 28, no. 8 (2013): 729-751. 

[32] Chen, Hongmei, et al. "A rough-set-based incremental approach for updating 

approximations under dynamic maintenance environments." IEEE Transactions on 

Knowledge and Data Engineering 25.2 (2011): 274-284. 

[33] Cheng, Yi. "The incremental method for fast computing the rough fuzzy approximations." 

Data & Knowledge Engineering 70.1 (2011): 84-100. 

[34] Li, Shaoyong, Tianrui Li, and Dun Liu. "Dynamic Maintenance of Approximations in 

Dominance‐Based Rough Set Approach under the Variation of the Object Set." International 

Journal of Intelligent Systems 28.8 (2013): 729-751. 

[35] Luo, Chuan, Tianrui Li, and Hongmei Chen. "Dynamic maintenance of approximations in 

set-valued ordered decision systems under the attribute generalization." Information Sciences 

257 (2014): 210-228. 

[36] Luo, Chuan, et al. "Fast algorithms for computing rough approximations in set-valued 

decision systems while updating criteria values." Information Sciences 299 (2015): 221-242. 



 
 

[37] Wang, Shu, et al. "Efficient updating rough approximations with multi-dimensional 

variation of ordered data." Information Sciences 372 (2016): 690-708. 

[38] Chen, Hongmei, Tianrui Li, and Da Ruan. "Maintenance of approximations in incomplete 

ordered decision systems while attribute values coarsening or refining." Knowledge-Based 

Systems 31 (2012): 140-161. 

[39] Liu, D., Li, T., Ruan, D. and Zou, W., 2009. An incremental approach for inducing knowledge 

from dynamic information systems. Fundamenta Informaticae, 94(2), pp.245-260. 

[40] Li, Shaoyong, et al. "Parallel computing of approximations in dominance-based rough sets 

approach." Knowledge-Based Systems 87 (2015): 102-111. 

[41] Raza, Muhammad Summair, and Usman Qamar. "A parallel approach to calculate lower 

and upper approximations in dominance based rough set theory." Applied Soft Computing 84 

(2019): 105699. 

[42] Nosheen, Faryal, Usman Qamar, and Muhammad Summair Raza. "A parallel rule-based 

approach to compute rough approximations of dominance based rough set theory." 

Engineering Applications of Artificial Intelligence 115 (2022): 105285. 

[43] Li, Shaoyong, and Tianrui Li. "A parallel matrix-based approach for computing 

approximations in dominance-based rough sets approach." Rough Sets and Knowledge 

Technology: 9th International Conference, RSKT 2014, Shanghai, China, October 24-26, 

2014, Proceedings 9. Springer International Publishing, 2014. 

[44] Zhang, Junbo, et al. "A parallel method for computing rough set approximations." 

Information Sciences 194 (2012): 209-223. 

[45] Li, Shaoyong, et al. "Parallel computing of approximations in dominance-based rough sets 

approach." Knowledge-Based Systems 87 (2015): 102-111. 

[46] Qian, Jin, Ping Lv, Xiaodong Yue, Caihui Liu, and Zhengjun Jing. "Hierarchical attribute 

reduction algorithms for big data using MapReduce." Knowledge-Based Systems 73 (2015): 

18-31. 

[47] UCI Machine Learning Repository [http://archive.ics.uci.edu/ml]. 

[48] Citation of prisma 2009 flowchart: Rethlefsen, M. L., & Page, M. J. (2022). PRISMA 

2020 and PRISMA-S: common questions on tracking records and the flow diagram. Journal 

of the Medical Library Association: JMLA, 110(2), 253. 



 
 

[49] Guo, Z., Liu, H., Shi, H., Li, F., Guo, X., & Cheng, B. (2023). KD-Tree-Based Euclidean 

Clustering for Tomographic SAR Point Cloud Extraction and Segmentation. IEEE 

Geoscience and Remote Sensing Letters, 20, 1-5. 

[50] Şenol, A. (2023). MCMSTClustering: defining non-spherical clusters by using minimum 

spanning tree over KD-tree-based micro-clusters. Neural Computing and Applications, 

35(18), 13239-13259. 

[51] Tiwari, V. R. Developments in KD Tree and KNN Searches. International Journal of 

Computer Applications, 975, 8887. 

[52] Ponnusamy, P. P., Shabariram, C. P., Umayal, V. R., & Susmeta, A. (2023, January). 

Closest Celestial Body Search Using KD Trees. In 2023 International Conference on 

Computer Communication and Informatics (ICCCI) (pp. 1-7). IEEE. 

[53] Zhang, H., Xu, Y., Liu, Q., Wang, X., & Li, Y. (2022). Solving Fokker–Planck equations 

using deep KD-tree with a small amount of data. Nonlinear Dynamics, 108(4), 4029-4043. 

[54] Shan, Y., Li, S., Li, F., Cui, Y., Li, S., Zhou, M., & Li, X. (2022). A density peaks clustering 

algorithm with sparse search and Kd tree. IEEE Access, 10, 74883-74901. 

[55] Dinh, N. T., Le, T. M., & Van, T. T. (2022, April). An Improvement Method of Kd-Tree 

Using k-Means and k-NN for Semantic-Based Image Retrieval System. In World Conference 

on Information Systems and Technologies (pp. 177-187). Cham: Springer International 

Publishing. 

[56] Mousa, M. H., & Hussein, M. K. (2022). Toward high-performance computation of surface 

approximation using a GPU. Computers and Electrical Engineering, 99, 107761. 

[57] Zheng, Z., Zha, B., Zhou, Y., Huang, J., Xuchen, Y., & Zhang, H. (2022). Single-stage 

adaptive multi-scale point cloud noise filtering algorithm based on feature information. 

Remote sensing, 14(2), 367. 

[58] Mir, M., Yaghoobi, M., & Khairabadi, M. (2023). A new approach to energy-aware routing 

in the Internet of Things using improved Grasshopper Metaheuristic Algorithm with Chaos 

theory and Fuzzy Logic. Multimedia Tools and Applications, 82(4), 5133-5159. 

 

 


