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Abstract

The theory of fractional calculus gained considerable attention due to its various practical uses in past
three decades. Which provides the natural generalization of ordinary integrals and derivatives to arbitrary
ones. This thesis is particularly devoted to right fractional calculus. We review basic definitions and
important results for the right fractional integral and differential operators. Some new properties for right
Riemann-Liouville fractional integral and differential operators and right fractional Caputo operator are
discussed.

We discuss the generalized Taylor’s formula for right fractional calculus with integral remainder. We also
consider Mean Value theorem for right fractional order differential equations.

Some adequate conditions are developed for the existence and uniqueness of results for terminal value
problems of non-linear right fractional order differential equations on bounded domain using Riemann-
Liouville fractional integral and differential operators. Furthermore we generalized these results for a
coupled system and establish existence and uniqueness results by employing Banach fixed point theorem
and Schauder’s fixed point theorem.

Finally, we develop some new conditions for terminal value problem of non-linear right fractional order
differential equations on unbounded domain using right fractional Caputo derivative. We construct Green’s
function and develop some of its useful properties. We investigate existence and uniqueness of the solutions

using Banach fixed point theorem and Schauder’s fixed point theorem.
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Chapter 1

Basic definitions and preliminaries

1.1 Introduction

Fractional calculus is now days a standout amongst the mathematical analysis. Fractional calculus is as
old as integral order calculus established autonomously by Newton and Leibniz. First time Leibniz used
the notation ZZ—,{ in his publications for the nth-derivative of the function f(x). However it has grown
particularly seriously since 1974 when first international conference in the field took place. Fractional
calculus deals with the integrals and derivatives of arbitrary order. We can say that it deals with the
natural generalization of ordinary integrals and derivatives to arbitrary ones. The role of this kind of
calculus is to solve problems of complex systems that appears in various fields of science and technology.
However many people remain unaware of fractional calculus because it is not being taught in schools and
colleges. The mathematics involved appeared very different from that of integer order calculus. One of
the significant preferences of fractional calculus is that it can be considered as a superset of integer order
calculus. During the last decades fractional calculus has been applied to almost every field of science,
engineering and mathematics [9,12,16,22,24, 28, 29|

Fourier, Euler, Laplace and many other mathematicians used their own notations, methodology and defi-
nitions that justify the concept of integral and derivatives of arbitrary order. The most famous definitions
that have been used in fractional calculus are the Riemann-Liouville and Caputo definitions.

This chapter is review of [7]. In 2nd Section, we explain Gamma function and its properties. In 3rd Sec-
tion, we discuss right Riemann-Liouville fractional integrals and derivatives, properties of right fractional
integrals and derivatives. Taylor’s formula with right fractional integral remainder is also discussed. In 4th
Section, we discuss the right Caputo fractional derivative, properties of right Caputo fractional derivative

and relation between Caputo and Riemann-Liouville fractional derivative. At the end some important

results from analysis are briefly discussed.

1.2 Gamma function

The Euler’s Gamma function I'(p) is one of the basic and most important functions for fractional calculus,

which is generalization of factorial function n!. Factorial function is defined for integers, whereas gamma



function also takes non integral values. Therefore we can say gamma function is continuous extension of

factorial function to real number arguments.

Definition 1.2.1. [12] The Euler’s Gamma function I'(p) : (0,00) — R defined by Euler’s integral of
the second kind is given by

o
I(p) = / P te8de. (1.2.1)
0
Since the integral on right side is uniformly convergent for all p € R, so the I' is a continuous function
for all p € RT.
1.2.1 Properties of gamma function

The gamma function satisfies the recurrence relation

L(p)=@-I'(p-1), p>0 (1.2.2)
which can be proved by integrating by parts equation (1.2.1)
M= [ etea
0
[T - [ et
=(@-Dl(p-1).

From equation (1.2.2) we can write for p > —1

F'p+1)

F(p): ’ p#o

Similarly

B T'(p+n)
F(p)_p(p—l-l)(P-l-?)...(p—i-n—l)’ neN.

Thus T'(p) is defined for all p € R except p =0, —-1,—2,...

Obviously, I'(1) = 1, similarly using equation (1.2.2) for p = 2,3,4...

In general for any n € N
I'(n)=(n-1).
1.3 Right Riemann-Liouville fractional integrals and derivatives

In this section we establish fundamental properties of right Riemann-Liouville fractional integral and

differential operators on finite interval in suitable space of functions.
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1.3.1 Right Riemann-Liouville fractional integrals
Definition and important properties of right Riemann-Liouville fractional integral are given here.

Definition 1.3.1. Suppose f € Li[a,b] and p € RT, then right Riemann-Liouville fractional integral of

order p is given by
1

b
1) = o5 [ €—arree, (131)

for each = € [a, b] [7].

Lemma 1.3.2. Let p € R" and f € Ly[a,b]. Then

b
15w = 5 [ €= e (132)

for each x € [a, b].
Proof. We could write ,

@ = [ fede.
The second iterate will then be ’

b b
1@ = [ [ rtenanae
x 2
Interchanging the order of integration using Fubinis theorem, we have
9 b r&

Brw = [ [ rededs.

Since f is independent of £, so we can move it outside the integral
, b & b
B = [ @) [ dede = [ e - o,

or

b
12f(x) = / F(E)(E — x)de.

Similarly third iterate will be of form

b 51(52—@]‘)(51)&2 déy = be(&)d&
(/ . 2

b (¢ _ p)3-1
= [ e

13 f(x) = I (I2f(x)) = /

Similarly,

b(¢_ p)A-1
i) = [T e

So in general for nth order integral we have

b — n—1
s = €S0 e

Since I'(n) = (n — 1)!, and replacing n with p > 0, we get

D o b (f B x)pil
1) = [ E e



Theorem 1.3.3. Suppose p € RY and f € Li[a,b]. Then

lim I} f(z) = f(x). (1.3.3)

p—0

Proof. Here arises two cases. If f(x) has continuous derivative for > 0, then using definition (1.3.1) and

integrating by parts we get

) = - [(5 - ‘”)pf(s)]b -5/ TEZ peyae

Tip)[ » . () p
1 » b oy
_ W[(b—x) - [e-2) f(g)df},

so we obtain by taking limit

b
lim 727 (2) = f0) ~ [ £'(©d¢ = ) = [£(0) - [(0)) = f (o).

p—0

Now we consider the case if f(x) has continuous derivative for x < b. Here we can write right fractional

integral operator in the form

b b
17 f(x) = F(lp) / (€ — 2P [ (E) —f(:v)]derF(lm / (€ — oy fla)de (1.3.4)
1 xz—i—é ‘
- 75 [ € aris© - sla (1.35)
1 xb
+ 5 / (= ~ fa) (1.3.6)
+ F({o(f—)l) (b— x)P. (1.3.7)

Let us say integral (1.3.5) is I;. Since f(z) is continuous for every § > 0 there exist € > 0 such that

[£(§) = fz)| <e

Then we can estimate integral (1.3.5) as follow

€ x+9 i _ﬁ
W< | E-orae= 1o

for an arbitrary € > 0, choose § > 0 such that
|I] <€, forall p>0.
Now let us take e —> 0 as 6 — 0 for all p > 0
6li_n>10 |I;| = 0. (1.3.8)

Let for a fixed § > 0, M = max |f(£) — f(x)|. Then we can estimate the integral (1.3.6) as

M ’ p—1 _ﬂ — )P —§P
B< g [ (€ opde= b - np -,



obviously for § > 0 we have

lim |Ip| =0 (1.3.9)
p—0
Now consider
P (b —=x)P
| f(x) — f(x)] < L] + [L2] + | f ()] T+

and using limits (1.3.8) and (1.3.9) we can write

lim |7 f(x) ~ f(2)] <.

p—0

Thus expression (1.3.3) holds for x < b. O

Theorem 1.3.4. [7] Suppose p € RT and g € Li[a,b]. Then, the right Riemann-Liouville fractional
integral Ifg(a:) exists almost everywhere on the interval [a,b]. Moreover, the function Ifg itself is also an

element of Li[a,b].
Proof. Let ¢ := [a,b] X [a,b], consider a function x : ( — R defined as x(7,2) = (7 — 2)P~!, that is

(1 —x)P~ if a<x<t<bh,
X(1, 1) = ,
0, if a<t<z<hbh.

Then x is measureable. We have to prove that f; X(7,x)g(T)dT is integrable, i.e

b
/ X(7,z)|g(T)|dT < 0.

We can define Lesbesgue integral for measureable function as
b T b T _ 2\P
/ X(7,x)dx = / X(7,z)dx +/ x(7,2)dx = / (r —2)P~\dz = (7 px)
Now

/ K / () de)dr = / el / () = / " o) E= 2 g

p

b—ap [ (b—a)?

< lg(7)ldT = 19T L1 fap) < 00
p a p

Therefore x(7,x)g(7) is integrable on ¢ by Tonelli’s theorem. By Fubini’s theorem fabX(T, x)g(T)d§ is

integrable on [a,b]. So
1 b
IPg(x :/ T — )P g(r)dr

exist on [a,b]. O

Theorem 1.3.5. Suppose g € Lila,b], then right Riemann-Liouville fractional integral operator Il’;g 18

continuous for p > 1.



Proof. Let ¢ := [a,b] x [a,b], and x(7,2) = (T — 2)P~! be continuous on ¢. Then define

We have to show that |I} g(x)| < M| g(z)]|| for all g € Cla,b].
Let there exist A > 0, then

b b
(e 1)~ o)l = s | [ x(ra+ mg(ryir — [ x(rjg(rir

b a+h b

N F(lp) /+h x(1, 2+ h)g(r)dr — / X(7,x)g(T)dr — /+h x(7,x)g(7)dr
b z+h

< F(lp) [/+h Ix(1, @+ h) — x(7,2)|[g(T)] dT +/ x(7, 2) |g(7)] dT]

1 o )
< @ [/HL Ix(7,2 + h) — x(7,2)| |g(T)| dT + hleg(T)HLl[a,b]] .

As h — 0 we get x(7,2 + h) — x(7,z), thus
’X(T7x + h) - X(T7x)‘ — 07
also
IX(m,2 +h) = x(7,2)] < [2][|x]].

Thus
IX(T, 2+ h) = x(7,2)[lg(T)] < 12[lIx[[llg(T)|| € L1[a, b],

and also |x(7,z + h) — x(7,x)||g(T)] — 0 as h — 0, almost for all 7 € [a, b].
We conclude that as h — 0, then

b
/ (T2 + h) — X(r, )| [g(r)d€ — O,

by Dominated Convergence Theorem. So, |I} g(x+h)—1I} g(x)| — 0as h — 0, also [IJ g(z)| < ||x||[|lg(z)]]-

Therefor I} g is a continuous function. O
Now we have semigroup property of right fractional integral operator.
Theorem 1.3.6. (7] Suppose f € Li[a,b] and p,q € RT. Then for interval J = [a, b]
Prif=0%f=L1I, (1.3.10)

valid almost everywhere on J. Moreover the identity (1.3.10) is true everywhere on J if f € Cla,b] or

p+q>1.

Proof. If p,q = 0, then statement is trivial. Consider the case p,q > 0.
We have

RIf(x) = F(p)lr(q) / (e = apt ( / - T)q‘lf(ﬁ)d£> ar.



The integral exists from Theorem 1.3.4, and we may interchange order of integration by Fubini’s theorem

to obtain
Ritie = o [ ([ -opte-m o) a
=m0 ([t ) e
Substitute 7 = s + z to get
Rt = o [ 10 ([ 60 - otas) e

I'(p)I'(q)

1 b

=@ L 79t g
1 b

= W/ FOE —m)Pralde = I£+qf($)-

(€ —apratag

So

Il f(z) = T f (), (1.3.11)
almost everywhere on [a,b]. Moreover if f is continuous, then If f is also continuous and we have that
Iy tif e [a, b]. Since the functions on either side of equation (1.3.11) are continuous almost everywhere,
they must be equal everywhere.

As we have assumed f € Li[a, b], now if additionally p + ¢ > 1, then from equation (1.3.11) we have
-1
IPIlf(z) = IPYIf(x) = T

Since I} is a continuous function, therefore IP™f(z) = IPT* "I} is also continuous. And once again
we may conclude that either side of equality coincides almost everywhere, hence they must be identical

everywhere. O

Theorem 1.3.7. [12]| The operators {I} : Li[a,b] — Li[a,bl;p > 0} form a commutative semigroup

with respect to concatenation. The identity operator IZ? 1s the neutral element of this semigroup.
Example 1.3.8. Consider f(z) = (b—z)” and v > —1. Then for p € RT we have

Ly +1)
I’ f(x) =
b f( ) F(’y +p+ 1)
From the definition of right fractional integral we have

b
15w = g5 [ €=y

(b — x)v-&-p'

Substitute £ = b — s(b — x)
1

1
I f(z) = ) /0 (b= 2)(1 =) (s(b—2))7(b—x)ds

—gtp 1
= 707 F(p)) /0 (1-— s)p_l(s)Vds
(b —a)r*? Py +1)
L'(p) L(y+p+1)
L(y+1)
L(y+p+1)

(b— z)7P.



Which is required result.

1.3.2 Right Riemann-Liouville fractional derivative

After giving a brief introduction of right Riemann-Liouville fractional integral operator we establish
integro-differential operator known as fractional derivative. Here definition and important properties

of right Riemann-Liouville fractional derivative are given.

Definition 1.3.9. Let p € Rt and m = [p|. Then the right Riemann-Liouville fractional differential
operator Dy of order p is defined by

DPf(z) = (~1)™D™I" P f(x), (1.3.12)

for m — 1 < p < m. It can also be written as

_ (_1)m ﬁ b — m—p—1
DL (@) = poms e | (€= )" (e (1313)

For p = 0, Dg = [,is the identity operator.
Lemma 1.3.10. Suppose f € Li[a,b] and n € N. Then

DI f(w) = (—1)" (), (1.3.14)
for each x € [a,b].

Proof. Assume Riemann-Liouville integral

b
I f(z) = F(ln) [ e-arseas
Apply D™ on both sides, ,
non B 1 dr e
DI (@) = o e [ (€= 0" (€0

Applying Lebniz rule we get

DI f(a) - j)j oo [ e

nld/f

=(=1D)"f(z
Hence proved. O

Lemma 1.3.11. Let p € R and m € N such that m > p. Then

DP = (—=1)"D" " P



Proof. Since m > [p| from our assumption. Thus from Theorem 1.3.6
DI = pmpl=Tpl Ign—p+ [pI=Ipl _ plp] D;ﬂ—hﬂ m—[p] Ibhﬂ -p
From Lemma 1.3.10 we can write D;)n_m =Pl = (—1)ym=[P1] . Thus
DmIMP = (—1)m- [P plP] [bm P = (—1ym=IpplP] [bfﬂ L?
Again we have Dmfbm = (=1)[P11, and also I? =Dy, so
D P = (—1)mIPl(—1)IPIpP = (—1)mDP.
Which is required result.

Definition 1.3.12. Let us consider an interval A C R such that b € A, x < b for all x € A. Then for

p € R following sets of functions are defined
pIp :={f € C(A); I} exists and is finite in A},
»Dp := {f € C(A); D} exists and is finite in A}.
O

Proposition 1.3.13. [10] Suppose p, ¢ € Rt and f € y1,([a, b]) such that I} f € ,Dg([a,b]) and f € Cla, b].
Then for all z € [a, ]

(a) if p>gq
Dy f(z) = Dy f(x),

(b) ifp<gq
DYIlf(z) = I7P f(x).
Proof.  (a) Let m = [p], then from the Definition 1.3.9
DVIlf(z) = (—1)"D™I" "I} f(x)
— (—1)mDmIl:n_(p_q)f(ZL')
= Dy f(2).
(b) Let m = [p]. then from the Definition 1.3.9 and Lemma 1.3.10
DYI f(z) = (—1)"D™1" "I} f(x)
= (=1)"D" I I f(x)
= Iy "f(=).



Remark 1.3.14. If p = ¢, then from proposition 1.3.13 we can write

DI f(x) = f(2).
Example 1.3.15. Consider f(z) = (b—z)” and v > —1. Then for p € RT we have

L(y+1)

Dif() = L(y—p+1)

(b— x)7P.

From the definition of right fractional integral we have
1) d\™ [
DP _ o m—p—1 d

Sy
<

o (8 o
fn (&) Ty ®

3

 I'(m dx y+m—p+1)
L(y+1) _
N VA A b
F(v—p+1)( )

Which is the required result.
Next we explain Taylor’s expansion with Riemann-Liouville integral remainder.
Theorem 1.3.16. Let g € AC™[a,b]. Then for every x € [a,b]

m—1

) 0)

k=0

Proof. From given conditions we can write

b
/ ¢(€)de = g(b) — g(x),

b
o(x) = g(b) - / g (€)de.

Now integrating by parts and using equation (1.3.16) we have

b , , b
/ (€ - 0)g" (©)de = [(€ - 0)g' ()] — / J(€)de
= (b—xz)g'(b) — g(b) + g(x),

"

b
9(z) = g(b) — (b— 2)g'(b) + / (€ — 2)g" (€)de.

Repeat this process of integration by parts to get

/ (e - " g = L2
2

— - m b
-0+ T e om g

(1.3.15)

(1.3.16)

(1.3.17)

(1.3.18)



2 2
Similarly
b—ﬂj‘z// b—l'?)/// bb—.'li'gz'v
o) = 90) - 6= 00+ P50 ) - Oy + [T eae
Reapeating this process for m-times we get required result. O

To present next theorem, we define the space I (Lz) for p € Rt and 1 < p < oo [16]

ID(Lp) := {g(x)|g(x) = I} $(x), ¢ € Ly(a,b)}.

Theorem 1.3.17. [16] Consider a function g(x) such that g(x) € AC™[a,b]. Let p € RT and m = [p].
Then for every x € |a,b]:

(a) if g(x) € I (Lp), then we have

1 Dgg(x) = (), (1.3.19)
(b) if I," Pg(x) € AC™[a,b], then we have
m— 1 ym— k=1(p _ p)p—k—1
I} Dyg(x) ( 1)@ hIIll)_ DRI g(2). (1.3.20)
k=0 z—
Specificaly, for 0 < p <1 we can write
(b—a) !

lim I1 Pg(2).

Iy DPg(x) = g(x) — Ty Lm

Proof. (a) From our assumption if g(x) € I} (L,) then we have g(x) = I} ¢(x). Using Definition (1.3.9)
and Remark (1.3.14) we can write

Iy Dyg(x) = Iy Dy I} 6 (=)
= I, ¢(x)

= g().

(b) Consider the function g(x) € AC™[a,b], from Theorem 1.3.16 we have

m— 1 m b
k (_1) / m—1_(m)
— — . 1.3.21
,}ZO F k—|—1 x)" + ) /. (t —x)™ g™ (t)dt (1.3.21)
Which gives
m— 1 b) N
(—1)™I"D - k§_0 Pk+1 (b— a). (1.3.22)

Since I," Pg € AC™[a, b], by definition we can write

D(m_l)lém—p)g(x) _ D(m—l)Iém—P)g(b) — I}o(x) = I} (), (1.3.23)

11



where ¢ € Ly space, and ¢(x) = ¢"(z).

Apply (—1)mIISm_1) on both sides of equation (1.3.23), we get
(15" D IL g (a) = —(—1)" (),

and using (1.3.22) we have

TTRED) - DRI Pg(2) + (1) I ¢ (). (1.3.24)

Applying differential operator D;"~” on both sides of equation (1.3.24) we get

m— 1 kDm P(ph— k
(b= z) lim DkIm Pg(z) + (=1)"D," PI"¢(x).
Pt k —+ 1) z—b—

Where D," P (b — z)k = F(klj_(llc)_&__filfgim. Using semigroup property D," PI]"¢(x) = (—1)"I} ¢(x)

we will get
m— 1 )k+p7m

lim DFpm™ IPp(2).
2 I‘k+p mt1) e 9(2) + 1o ()

Which can be written as

m— 1 )k‘+p7m N
P/ lim DFI™Pg(z).
@ I‘k—i—p mt1) - 9(2)

k=0

Now consider left side of equation (1.3.20), using equation (1.3.24) and definition of differential

operator D}, we get

Ifog(:c) = (—l)mIlfDmIgn_pg(az)

m—1 _1\k . k
R SR A CRN G AT

k=0
m—1
_ (_1)k(_1)mIl€)Dm(b—x)k k ym— 2m mrm
> S lim DV (z) + (<1 DM ()
= Ibqb(x)

Which gives

3

—1

(=1 (b — x)ktp—m m—
Iy Dyg(x) = g(x) — Tt Ty DFI" Py (2).
0

il

Replacing kK by m — k — 1, we get

m— 1 m k— 1(b_x)pfk71

I’DYg(x) lim D™ 1" Pg(2).

0 1) z—b~

Which is required result.

12



1.4 Right Caputo fractional derivative

Riemann-Liouville fractional derivative played significant role in fractional calculus, however it has certain
disadvantages while dealing with real-world situations. The Riemann-Liouville derivative of a constant
function is not zero. Moreover, if a function is constant at the origin, its Riemann-Liouville fractional
derivation has a singularity at the origin. Therefore the field of application of the Riemann-Liouville
fractional derivative has reduced to some extent. Caputo’s fractional derivative demands stronger condi-
tions to compute the fractional derivative of a function. It is defined only for differentiable functions. On
contrary to Riemann-Liouville fractional derivative for Caputo’s fractional derivative, we must calculate
its derivative first. Therefore we can say Caputo fractional derivative is most important modified form of

a fractional derivative.
Definition 1.4.1. Suppose f(™) () € Li[a,b], p € RT and m = [p]. Then
Dy f(x) = (1)1 T (@), (1.4.1)

is right Caputo fractional derivative “Dy.

It can also be written as

_1\ym b
“Dy = Fﬁmlip) / (& —a)m Pt (g)de. (1.4.2)

Example 1.4.2. Consider f(z) = (b— )7 and v € RT. Then,

0, v€{0,1,2,...,m—1},
Dpf(w) =1 iy —a), yeNyzm,

or v¢N and v>m—1.

Proposition 1.4.3. Let p € RT , m = [p] and f(x) is such that D} f(x) exists. Then

lim DY f(x) = (~1)" ) ().

p—m

Proof. Considering equation (1.4.2) and performing the integration by parts, we get

_ p)ym—p (m)(£)]° b
cD;gf(x) _ (_1)m< [(5 F(Tzl _pf+ 1)(6)]95 . F(m _1p - 1) /x (€ _ $)m_pf(m+1)(§)d§>
(=Hm™

b
__ED™ (g ayme gy — (e — wymp D (g ).
- (6o - [ o gas)

Now, by taking limit p — m, we get

—_1\ym b
Jim DY f(x) = Tim F(m(_l];l) ((b =) (b) - / (= x)mpf(’"“)(f)d£>

= (-1)" <f(m)(b) — [f(m)(g)]i>
= (—1)™ ™) (z).

13



Theorem 1.4.4. [7| Letp € RT and m = [p]. Then the following relation between right Riemann-Liouville
and right Caputo derivative holds

‘Dif(x)=Dif(z)— Y ————L(b—

Proof. Let us consider Taylor series expansion given in Theorem 1.3.16

m— 1 i (4) _1ym b

> CHLO oy CI2 [ - ap=t e
where 1y b

- 7l,m—1 (m) :7mm(m)x

o [ (€= € = ()" @)

Now, applying right Riemann-Liouville fractional derivative on both sides and using example (1.3.15)

(1)t f@) ‘
Dfa) = Df (32 G - ) ) )
=0

st (b= ) P ()DL U (@)
st (b= ) P (1) ()

(b — )P +° D} f(x).

After rearranging we get

O

Remark 1.4.5. If f(i)(b) =0,k=0,1,2,...m—1, then right Riemann-Liouville and right Caputo fractional

derivatives are equivalent. i.e

DY f(x) = DYf(x).
Proposition 1.4.6. [7]| Let f € Cla,b], then for every x € [a,b]:
(a) if p,q € RT such that [p] < q, then
Dy f(x) = I P f(x),
(b) if f € AC™ "[a,b],p € RT and n € N such thatn <m —1<p < m, then

Dyl f(x) = Dy " f(z).

14



Proof. (a) Let m = [p]|. Then from definition of Caputo fractional derivative and Theorem 1.3.6, we

have
DVl f(z) = (1)L "D I} f ()
— (P ()
=1 P f(2).
(b) Let m = [p]. Then from definition of Caputo fractional derivative and Lemma 1.3.10, we have

1

Dyl f(x) I "D I f(x)
1 m+nIm pIm nf( )

(1™
(-1)
e VS A (O
(-1)

L (=) cDyT (@) = <Dy f ().

O
Remark 1.4.7. Let f € Cla,b] and p = ¢, then from Proposition 1.4.6-(a) we have
DY} f(x) = f(x).
Theorem 1.4.8. Suppose p € Rt and f(y) € AC™|a,b]. Then for m = [p|
m— 1 i (1) .
IY Dy f(y F (b) (b—y)" (1.4.3)
=0
Particularly, for 0 < p <1 we have
IV “Dyf(y) = f(y) — f(b).
Proof. From definition of Caputo fractional derivative and semigroup property
I Dy f(y) = (=" 1" F (y)
= (=)L (y)
= (=11 ) (y).
Now, from Theorem 1.3.16 we have
m—1 i (i
_ ( 1)Zf(z)(b) i mym g(m
So
m—1
—1)¢ @ (b)
1P <Dy —1)*" 3! b—y)’
) = v (5 > i ey
m—1 i (i
(—=1)'f9(b) ;
= — b—y).
f(y) 2 T(i+1) (b—y)
O
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Corollary 1.4.9. Under the assumptions of Theorem 1.4.8 we can write

m=L qyip(i) .
fy)=>_ W(b—y)z + Iy “Dy f(y),
1=0

which is Taylor expansion for the right Caputo fractional derivative.

1.5 Results from analysis

Some important results and definitions are given in this section. Which are used to construct further

results.

Theorem 1.5.1. (Fubini’s theorem for integrable functions)

Let X and 'Y are complete measure spaces and R = X x Y. If f(x,y) is measureable and

/ (@ y)ld(z,y) < oo,
R

/x (/y f(x’y)dy> = /y (/x f(x’y)dx> dy = /Rf(x,y)d(:v,y)-

The two iterated integrals may actually have different values when the absolute value of function does not

then

have finite integral.

Theorem 1.5.2. (Tonelli’s theorem for non-negative functions)

Suppose f(z,y) is Lebesgue measurable on a rectangle R = X x Y. If f >0, then

Je ([ twnan) o= [ ([ stoinae) ar= [ st

Outcome of Tonelli’s theorem is identic to Fubini’s theorem, but the assumption that | f| has a finite integral

1s replaced by the assumption that f is non-negative.

Theorem 1.5.3. (Dominated convergence theorem)
[15] Suppose f,, : R — R are Lebesgue measurable functions and f,, — f pointwise almost everywhere

as n — oo. If g > 0 is integrable function such that |f,| < g for all n € RT. Then f is integrable and

fdp= lim / Fudy.

Theorem 1.5.4. (Leibniz integral rule)
Suppose the function f(x,§) and % are continuous in some region of the (x,&)-plane, for all u(x) <

& <w(x). Also u(z), v(z) and their derivatives are continuous for xo < x < x1. Then

d [*@ @ of(x,€)

d
ar o) f(z,8)ds = o) T%*’f@a“(ﬂ”))%

Definition 1.5.5. A function f : [a,b] — R is absolutely continuous iff

b
S0y = fD ) 4 / £ (1)t

for f e Li[a,b]. The collection of all absolutely continuous functions on given interval is denoted by

AC™[a,b].
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Definition 1.5.6. Let p,q > 0. The function E), ; defined by the following convergent series

Epq(z) = Z L

— L(ip+q)
depending upon two parameters p and ¢ is called the two-parameter Mittag-Leffler function.

Definition 1.5.7. [15] Suppose X is measure space and f : X — R be a measurable function. Then

the L;(X) space consists of equivalence classes of measurable functions such that for 1 < p < oo

/!f!ﬁdu < o0.

The Lz norm of f € L;(X) is defined by

_ 1/p
1l = ( / !f\pdu> .

Definition 1.5.8. [18] An element x € X is a fixed point of map T': X — X, which is kept fixed by T,
such that

Tr = x.
The image T'x coincides with x.
Example 1.5.9. The fixed points of mapping 7 : R — RT defined by Tz = 22 are z = 0 and z = 1.

Definition 1.5.10. Suppose B is Banach space and X C B is closed. Then Q : X — X is a contraction
mapping on X if there exist 0 < £ < 1 such that

1Qy1 — Quall < kllyr —wall, 1,92 € X.
Example 1.5.11. Define the mapping g : R — R by
g(ac)zf—i—b, for all a > 1 and b € R.
a

Then
1
lg(z) —g(y)| = alﬂﬂ -yl

Since 0 < % < 1, thus g is contraction mapping.

Proposition 1.5.12. Let J CR and f: J — J be a differentiable function such that
\f (2)| <k forall zeJ,
for k < 1. Then f is contraction.

Definition 1.5.13. The family of functions S C Cfa, ] is equicontinuous iff for every ¢ > 0 there exist
d > 0 such that for all y1,y2 € [a,b]

|f(y1) — f(y2)| < e whenever |y — ya| <4,
for all f € S.
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Theorem 1.5.14. (Banach-Contraction principal)

[18] Consider a Banach space B. Let X C B is closed, then there is a unique fixed point for each contraction

mapping 7' : X — X in X

Theorem 1.5.15. (Arzela-Ascoli)
[15] Let B be a Banach space and S C B is bounded. Then @ C C(S) is relatively compact iff @ is

equicontinuous and bounded.

Theorem 1.5.16. (Schauder’s fized point theorem)
[15] Consider a Banach space B. Let Q C B, that is non-empty closed bounded convex, and suppose the
mapping T : ) — @ is compact in B. Then T has at least one fixed point.
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Chapter 2

Generalized Taylor’s formula for right

fractional calculus

2.1 Introduction

Now days the power series expansion has got extensive importance in mathematics to obtain an uncom-
plicated approximation of complicated functions. No one can deny the importance of Taylor series in the
history of all sciences. Taylor series also linearized the complex problems which secure the easy analysis
and allowed the scientist to approximate many complexed systems, neglecting higher order terms around
the equilibrium point.

Many mathematicians has discussed generalized Taylor’s formula for left fractional calculus. G. Hardy [14]
wrote a formal version of the generalized Taylor’s formula using Riemann-Liouville fractional derivative

and integral:
hm+r

flx+h)= ; m(jy+Tf)($)>

where 77" is Riemann-Liouville fractional integral of order m + r.
Trujillo, Rivero and Bonilla [35] also gave the generalized Taylor’s formula using Riemann-Liouville frac-

tional derivative:
" ci(x — a)tDp-1

flz) = Z (G + 1)p) + Ry (z,a),

=0

with
(l‘ _ a)(n+1)p

NCESVES

Ru(w,a) = DR (€)
and for each i € N,0 < i <n,
¢i = T(p) [(z — a)1P D £(2)] (a*).
D. Usero [36] and Z.M. Odibat, N.T. Shawagfeh [23] provided generalized version of Taylor’s formula using

Caputo fractional derivative.

In this chapter we established generalized Taylor’s formula for right fractional calculus

B n ak(b_$)(k+1)p_l o (s
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with
(b _ $) (n+1)p

and
ap, = I, "DP f(b).

where z < € < b, k € N and D} is right Riemann-Liouville fractional derivative.

2.2 Preliminaries

Here we establish necessary results which are used in our main results. First we state and prove fractional

version of Mean Value Theorem for right Riemann-Liouville fractional derivative.

Proposition 2.2.1. Let f(z) € D, and 0 < p < 1. Then for all x € [a,b)

Dy f(x) = fz) — f(b).
This can be explain from Theorem 1.5.17.

Proposition 2.2.2. Let f(z) € D, and 0 < p < 1. Then

(b— )

f(z) = f(b) - fo(ﬁ)m,

where x < & < b for all x € [a,b).

Proof. From Proposition 2.2.1 we can write

fx) = f(b) + Dy f(x)

Using definition of right integral operator and integral mean value theorem we can write

1 b
DL (@) = o [ (= 0P Dpre)ar
(p) Ja R (2.2.1)
= —DPf(&)—— .
Thus required result is obtained. O

Next proposition would be initiative of higher order approximations.

Proposition 2.2.3. [36] Let f be an analytic function, 0 < p < 1 and m € N such that
1. DI f, D™ P £ € Cla, b),
2. D™ Pf e yL[a, b,

Then

(b _ $)(m-‘rl)p—l
L((m+1)p)

"Dy f(x) — I TPD P () = IPDIP £ (b).
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Proof. The proof is obvious for m = 0. Now for the case m > 0, using Theorems 1.3.6 and 1.3.17 we have
1Dy () = 1D () = 17 [ D () — DY ()]
= 1" [Dy* f(x) = (I; D) Dy f ()]

[(b—z)P~t | _
L
(b _-x)(m—i-l)p—l

_ 1—p ymp
EE(CEE DRI

— ymp
_[b

p( (b—ax)P—1 ) _ (b—z)(m+Dp-1

where Ign T'(p) L((m+1)p) - =

Proposition 2.2.4. [36] Assume the conditions of Proposition 2.2.3 hold and m,! € N. Then

(b— )"

YD) f(@) = =Dy &) s 1y

where x < ¢ < b for all z € [a,b).

2.3 Generalized Taylor’s formula

Now we are on the stage to establish our main focused result generalized Taylor’s formula with right

Riemann-Liouville fractional derivative.

Theorem 2.3.1. Let 0 < p <1 and n € N satisfying the following conditions:
1. forallk=1,...,n, Dfpf € Cla,b) and Dfpf € plpla,b],
2. D,Snﬂ)pf is continuous in [a, b].

Then for all x € [a,b),

b= ) 2.3.1
=3 My e 2:3.1)
i (n+1)p (b—a)mtip
R ) = DY RO s et (232
and for each k € NU {0},
ar, = I, 7P D} f(b). (2.3.3)

Proof. The given below results can be achieved by induction method using Proposition 2.2.3.

For m =10
-1
D81 - D) = C L1 Db )
-1
o) = CTE RS0 + D).
Form=1 (b— )2p71
DS ()~ P DY () = ST DL
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b—x)%1

I’DY f(z) = ( I PDYf(b) + IPDP f ().

I'(2p)
rorm =2 20 2 3p 13 (b—a) 1 1, o
1D} (@) = 1D @) = S D )
2D 2p _ (b_x)?)p—l 1-p 2p 3p 13p
LD f(x) = o) I, "D, f(b) + 1,"D;" f(x).

In general we can write

(b _ l,)(m—l—l)p—l
I((m +1)p)

LDy f(x) =

Summing all up to n term we obtain the series

nooo N (k+l)p—1
s =30 O oty 1D ),
k=0

Where last term is remainder term, using equation (2.2.1) we can write

n n " b — ) tbp
R ) = 1D a) = DO e

from expression (2.3.3) we have

)(k+1)
((k+ 1)p)

M3
S
??‘

+ RP(z,b).
k=0

Corollary 2.3.2. Set 0 <p <1, n €N and g is a continuous function, such that

fla) = (b— )P g(x)
satisfies the conditions of the above theorem. Then, for all x € [a,b),

" ay(b— x)kP

C((ktDp) (D)

with
— (Db — 2)P g ()] (€)
T((n+ L)p+1)

Rf (,0) = (b—a),  a<e<b

and for each k € NU {0},
ar = [I, " DyP (@ = )P g(@)](b).

Proof. It follows from the above theorem.

22
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2.4 Application

Example 2.4.1. Consider the problem:
DPu(z) = wu(z), (DI 'u)(d) =c, (c€R). (2.4.1)

where 0 <p<1,we€Rand z > 0.
Since u(x) is b-singular of order p. Using the generalized Taylor’s formula, solution of u(z) can be written

as

s (k+1)
ak
RP(b,x).
=0
Since
lim RP(b,z)=0.
n——ao0
S
o () ak(b _ $)(k+1)p—1 549
u(x)—kzo (G (2.4.2)
Using Example 1.3.15, we obtain
2 ap(b— x)kP1
k=0 P
Substituting (2.4.2) and (2.4.3) into (2.4.1) yields
i At (b — z)Frbp—1 . i ap (b — z)E+p—1 . 2.44)
2"k + Dp) 2 "Ik + Dp)
Equating the coefficient of (b — 2)*+1P—1 we get
a1 = Wag.
ar, = wrag. (2.4.5)
Now substituting (2.4.5) in (2.4.2)
) (k+1)p
= 2.4.
GOZ k + 1 ) K ( 6)
from initial condition we get
— g)kptp-1
_ CZ z)
kp +p) (2.4.7)

=c(b—2)P 1 E, ,(w(b — x)P),
where E,, ,(x) is the Mittag-Leffler function.
In particular, the solution of problem (2.4.1) for p = 3/2:
D} u(z) =wu(z),  (D,*u)(b) =c, (c€R),

is given by
u(x) = c(b—x)* By a5(w(b — x)*/?).
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Example 2.4.2. Let us consider problem
DPu(z) + DPu(x) — u(z) =0, (2.4.8)

with 0 <p <1, z > 0 and D3” = D?.DY.
Since u(x) is 1-singular of order p. Using the generalized Taylor’s formula, solution of u(x) can be written

as

= a1 — )l
u(x) _kzo S CEST (2.4.9)

Applying right Riemann-Liouville fractional derivative, we obtain

> 1-— :E)kp_l
Drua) = S %l . 2.4.10
ia’“ (1)t D (2.4.11)
= 1)p)
Substituting (2.4.9), (2.4.10) and (2.4.11) into (2.4.8) yields
©° _ 2\(k+1)p—1 > _ ) (k+1)p—1 ° _ 2\(k+1)p—1
3 Gkl — ) +y ari1(1 — ) -3 a1~ ) = 0. (2.4.12)
—  D((k+1)p) = T(k+1)p) = T(k+1)p)
Equating the coefficient of (1 — z)* 1P~ in (2.4.12), we obtain recursive relation
Q1o = Q) — Qft1- (2.4.13)
This gives
az = ap — ay,
as = —ag + 2aq,
a4 = 2ag — 3aq,
as = —3ag + Sarq,
ag — 5@0 - 8@1.
We obtain following solution:
1 1 1 2
uy () :ao((l —a)P (1) - ——— (1 —2)? 4 —(1 — )Pt
3 5 o
- 1 6p71+7 x?pfl_i_ >’
GF(p)( ) 7F(p)( )
1 1 2 3
ug(x) =aq <(1 )21 (1—z)P (1) — (1 —2)P!
I'(2p) '(3p) ['(4p) 5L(p) (2.4.15)
5) 8 o
+ (-2 e (1 —2)?P 1 4 )
o Tt
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Chapter 3

Terminal value problems for fractional
order nonlinear differential equations on

bounded domain

3.1 Introduction

There is a great work particularly dealing with the solvability of nonlinear fractional differential equations
including initial and boundary value problems. Lots of the papers and books are dedicated for this purpose.
Although, terminal value problem for nonlinear fractional differential equations is open to discussion until
now and many aspect of terminal value problem may take into account in detail. Recently it has received
quit attention. Here we develop the existence and uniqueness results for fractional terminal value prob-
lems on bounded domain. Indeed, terminal value problems have numerous applications such as chemical
engineering, thermo elasticity, underground water flow, viscoelasticity, cellular systems, electromagnetic
heat transmission and so fourth. Several researchers investigated boundary value problems in fractional
calculus, R.P. Agarwal, M. Benchohra, S. Hamani [3|, Kilbas [16], K. Karthikeyan, J.J. Trujillo [17], Pod-
lubny [24], M. Rehman, R. Khan [26], G.Wanga, A. Cabadab, L. Zhanga [37|, Zhang [41], Samko [30]
and many more. The theory of terminal value problems has been considered by various research workers,
A.R. Aftabizadeh, V. Lakshmikantham [2|, K. Diethelm [13], M. Rehman, S. A. Hussain [25|and W. E.
Shreve [32]. The fixed point theorems have been applied by some authors to investigate the existence of
solutions.

K. Diethelm [13] determined the existence and stability results for the unique solution of terminal value
problems for fractional order with Caputo derivative taking finite interval.

X. Su and S. Zhang [33] discussed the nonlinear boundary value problem on half-line

Dby(t) — f(t,y(t), D "y(t)) =0, 1<p<2, te(0,00),
y(0) =0, Df 'y(00) = Yoo, Yoo € R,

where f is a continuous function, Dg_ly(oo) = limy_ o0 Dg_ly(t). D} is standard Riemann-Liouville

fractional derivative.
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Here we develop new conditions to establish existence and uniqueness results. We consider the problem

Dyy(t) = f(ty(t), 1<p<2, (3.1.1)
y(b) =0, DY 'y(b) = &y(r), (3.1.2)

for all ¢ € [a, b]. Furthermore, we generalized the problem (3.1.1)

Dyy(t) = f(t,y(t), D{y(t)), 1<p<2 (3.1.3)
y(b) =0, Dy~ 'y(b) = &y(r). (3.1.4)

(o . . . _1
for all ¢ € [a,b]. Where f is a continuous function, p—¢ > 1, £ >0, 7 € (a,b) and I'(p) > {(b—7)P~. DY
is right Riemann-Liouville fractional derivative.

Examples are also comprised to present the application of our results.

Lemma 3.1.1. Let p > 0 and if y € C(0,1) N L(0,1). Then the unique solution of fractional differential
equation
DYy(t) =0

s given by
yt) =c1(b—t)P Tt ca(b—t)P 2+ eg(b— )P + (b — )P,

for some c; €R, i=1,2,...,n.
Lemma 3.1.2. Ify(t) € C(0,1) N L(0,1) and DYy(t) € C(0,1) N L(0,1). Then forp >0
IPDy(t) = y(t) —c1(b— )Pt —ca(b—t)P 2 —c3(b— )P — ... —en(D— )P,

where ¢; € R, 1 =1,2,...,n.

3.2 Terminal value problem-I

Here we develop the existence and uniqueness results for (3.1.1) and (3.1.2).

For the convenience of our results, we have following hypothesis for all real valued functions x and y on
[a,0] :

(H1) f:]a,b] x R — R is continuous.
(Ha) |f(t,y)| < o(t) +¢ly[?, 0 <y <1, ¥ >0, where ¢ € Li[a, b] is non-negative function.
(Hs3) |f(t,z)— f(t,y)| < p(t)|z — y|, where p € C([a,b]) is non-negative function.
We use following notations for convenience:
2=T(p) - &b -7,

b _
M = e (s J7 (5 = )7~ 6(s)ds).
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Ao = max (SGo= [2(s — )P (s)ds),

_ (b—a)P &(b—a)P—1
1= 1y + S 0 - )

(= k. 4 fl-art

T(p) T(pn

Lemma 3.2.1. Suppose that k is continuous at [a,b]. Then y is solution of terminal value problem
Dyy(t) = k(t), 1<p<2, (3.2.1)
y(b) =0, Dy 'y(b) = Ey(), (3.2.2)

for allt € [a,b]. iff y satisfies

L - b —tpt o
y(t :/ s—1t)P IKSdSJr/ s — 1) Kk(s)ds.
0= 7 [ =0 nteds+ G [ = iue)
Proof. Suppose y is solution of (3.2.1) and (3.2.2), using Lemma 3.1.1 we have
1 b
y(t) = =— / (s — )P k(s)ds 4+ c1 (b — t)P7 + co(b — t)P72, (3.2.3)
L(p) Ji
with ¢1, co € R. Using condition y(b) = 0 we get co = 0.
Now X
Dyt = [ (s)ds + ar(p),
t
Dé)_ly(b) = Clr(p)7
and
€ [y n(o)ds + entlh -
T)= —— S—T Kk(s)as +c - T .

Using condition foly(b) = &y(7), we get

5 /b p—1
= — ds.
c1 T2 ). (s —7)P""k(s)ds
Thus b ( 1 b
1 _ E(b—t)P~ 1
y(t :/ s—1t)? lnsds—l—/ s — 1) Kk(s)ds.
0= 7 [ =0 neds+ G [ =)
O
3.2.1 Existence and uniqueness of solution
Now, we establish our main result for terminal value problem (3.1.1) and (3.1.2).
Let us define the space X := {z € Cla,0) : ||z|| < oco}. The space X with norm ||z| = sup |z(¢)] is a
t€la,b]
Banach space.
Define the operator T, by
1 b 3 §(b o t)p—l b 3
Ty(t :/ s—t)P (s, y(s ds—i—/ s — )P L f(s,y(s))ds.
0 =557 [ =07 Fsteds + QB [ 5= s (s)

Solutions of problem (3.1.1) and (3.1.2) are fixed points of T.
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Theorem 3.2.2. Suppose (Hi) and (Hz) hold. Then at least one solution of (3.1.1) and (3.1.2) ewists.

Proof. Choose R > max{(Sm/;)ﬁ,S)\l,B)\g}. Define the set Q := {y € X : |ly|| < R}. The set Q C X,

that is closed and convex. Since (b —t)P? < (b — a)? and y be an arbitrary element in Q, then

‘E(b P
I'(p)s2

O [ rprGoutonias

1 b . (b — t)P- b .
SI’(p)/t (s — )P 1((s) + ¥|R[")ds + 0 )Q i (s — )P (o(s) + ¥|R[")ds

R S LN U 1 LAY SO SR k) LY AP
‘r<p>/t( g (b()d*r(p)/t( CE R T A

_ #\p—1 b
¢(s)ds+€(b thp)QWRV/T (s —7)P~lds

b b
Ty(t)| s\r(lp) / (s — P~V f(s,y(s))ds| + / (s — 7P f (s, y(s))ds

= 1 ' — P £ (s y(s s
—P(p)/t@ H771 (s, y(s))lds +

1 bs_ p—1 s £(b—t)p! bs_Tp—l $)ds
-G / (=t totns + G [ s =y oo

ylyP €(b— 1y WIRD
(it e o)

1 bs— p—1 s §b—ap™ bs—Tpfl s)ds
<7 | om0 o0+ i [ — ot

ply|” o E(b—a)P IR »
+<F(p+1>(b_a) T TR+ <b_T)>

From Hs we have |Ty(t)| < M + X+ 9Y|R["u < % + % + % = R. Thus ||Ty| < R.
leta<t<t< oo, then we have

§b— )"~
[(p)s2
o b — o 0 bs— =L £(s,y(s))|ds
— s [ =D Gsatoias — O [ - s (sl

n 1 ’ p— ’ p—
\Ty(t)—Ty(t)KF(p)/t (s = P f(s,y(s))lds + /T(S_T) Y (s,y(s))lds

_L ?3— =L ris uls S L ’ s 1Pl _ (g 71 s uls <
_F(P)/t( P f (s y(s)ld +F(p)/{ (s — ) (s — P Y (s,y(s))|d

T R O

Sf(lp) /f(s — 1) (¢(s) + Y| R|")ds + F(lp) /;b[(s =P = (s = )P (d(s) + YIR[")ds
W EUEEE ] / (s — 7PN (6(s) + IRds

s | (s~ tp 1 o(s)ds + | s — 0P = (s — D7 o(s)ds
OO0 [yt + A [ - -7
Loyt T>p] |
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It can be easily observe that ff(s — )P~ Lp(s)ds — 0, as t — .

Let f(t) = (s — t)?~! is a differentiable function. Then using Mean Value theorem for 1 € (£,1), we can

write
F&) = f@&) = f ()t =1,
(s =t~ = (s —1) ~(p—(s =2t — 1)
Thus
b B b
A[@—ﬂ%ﬂ—@—ww*wme:—@—nxt—wéks—mﬂﬂm@w.
So we have f — )P~ — (s — )P Ye(s)ds — 0, as t — L.
More over S[t= t)pr(lp)g’f%v)p_l] fTb(s — )P 1p(s)ds — 0, as t —» t, and Fw(ﬁz) [(b —t)P — (b—t)P +

£[(b—t)p—1 (b 0P ](b_T)P] —0,ast —> .

Thus |7'y(t)—7'y(t)\ — 0ast — t. Thus || Ty(t)—Tyt)|| — 0ast — t. Hence Ty(t) is equicontinuous
and compact operator by Arzela-Ascoli theorem. Thus by Schauder’s fixed point theorem, there is at least

one fixed point of 7T, that is the solution of the problem (3.1.1) and (3.1.2). O

Theorem 3.2.3. Assume (Hy), (Hs) hold and ¢ < 1. Then fractional order terminal value problem (3.1.1)

and (3.1.2) has unique solution.

Proof. From Theorem 3.2.2 it follows that 7 has a fixed point. Now we only show that operator 7 is

contraction. Since (b —t)P~! < (b — a)P~!, then from our assumption ¢ < 1 we have for z,y € X

b _ \p—1 b
Talt) = T =5 [ (5= 07 17 (s,0(6) = s ptods + 48

75 2() — F(s,(s))lds
b bs_ P=1 () z(s) — v(s)lds M bS_Tpfl
<7 | =0 olets) —ytlds + i [ =

(s —7)P %
.

p(s)[(s) — y(s)|ds
g(b—tyrt b pe1

_@|r—yw/ oleds + St =l [ (= p(s)as
< jon w+13—9—in H
~I'(p) Y L'(p)2 Y

1 b —ap!
_WHfU yll + W”x -yl
—Cllz —

Hence 7T is contraction. Thus by Banach contraction theorem, unique solution of the problem (3.1.1) and
(3.1.2) exists. O

Example 3.2.4. Let us consider the problem on I = [a, 00):

DPy(t) = l(ltiyt V@), 1<p<2, telab], (3.2.4)
y(b) =0, Dy~ 'y(b) = y(7). (3.2.5)
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Here f(t,y(t)) = In(Lty(®) 4 V|y(t)]. First we verify the conditions of Theorem 3.2.2.

et+t
ey = [V e '

et+t

S ]
: t+t\ Vi
where ¢(t) = é’t(fr)t, 1 =1 and v = 1/2. Now, we verify the condition of Theorem 3.2.3.
ttato) = o) = [Py - UMD
ot) (0

<| 2 + Vi - 22, - v

< —lalt) — y(0)

< s Ol

where ((t) = t +;- Hence, all conditions are satisfied. Thus by Theorem 3.2.2 and Theorem 3.2.3 unique

solution exists.

3.3 Termina value problem-II

Here we establish existence and uniqueness results for problem (3.1.3) and (3.1.4).

For the convenience of our results, we have following hypothesis for all real valued functions z,z,y and ¥y

on [a,b] :
(H1) f:a,b] x R x R — R is continuous.

(Ha): [f(t,z,y)] < o(t) + dlz/™ + oly]?, 0 < 1,72 < 1, ¥,0 > 0, where ¢ € Li[a,b] is non-negative

function.
(H3): |f(t,x,y) — f(t,z,y)| < o(t)|x — | + <(t)|y — y|, where o, € C([a,b] are non-negative functions.

We use following notations for convenience:

— - 1
G; = max (FIP) ﬁb(s—t)P—1¢(t)ds+§(?(;;; fb(s TP Lo(t )ds+F(p ) ft s—t)P~9 (s )ds+% Tb(s_

Gy = max ( o + 4 b — 1P + 2 + f“‘“””"””)

t€la,b] I'(p+1) L(p+1)02 I'(p—q+1 pLp—q) 2
_ &(b—a)P—1
Fa F(lp) T %’
E(b—a)p—a-t
ky = F(P q) + T'(p—q)0?
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3.3.1 Existence and uniqueness of solution

Let us define the Banach space Y = {y € Cla,b] : Dy € Cla,b]}, with norm |[jy| = m[a%]|y(t)\ +
tcla,

Dily(t)|.
trél[gfg]l py(t)]
Define the operator K, by

1

b _ #\p—1 b
Ky(t) = = /t (s — 15)”71]"(8,y(5)7 Dgy(s))ds + M

e J:

Solution of terminal value problem (3.1.3) and (3.1.4) are fixed points of .
1 1

Choose R > {(3¢G2) ™1, (30G2) 12 ,3G; }.

(s = 7P f(s,y(s), Diy(s))ds.

Theorem 3.3.1. Assume (Hy) and (Hz2) hold. Then at least one solution of (3.1.3) and (3.1.4) exists.

Proof. Let E C Y, that is closed and convex, defined as E := {y € YV : ||y|| < R}. Let y be an arbitrary
element in F, then we have

+ ‘g(b b /b(s — 7P x

1 b
) <\ [ 07 swe). Dweenas| + [T

L'(p)
f(s,y(s), Diy(s))ds

’ _ +\p—1 b
=57 /| (6= 075 9(). Diy(s) s + f“;(p?g [ =i

£ (s,y(s), Dyy(s))lds

1 ’ p—1 7 V2 £(b— t)pil ’ g — 7)1
<7 [, (6= 000 + A + ol RPds + Gt [T -y

(6(t) + ¢|R[" + o|R|")ds
b o 2 oo
:F(lp) /t (s —t)PLp(t)ds + WIRP +o|R[™) /t (s —t)P~ds

L'(p)

_ \p—1 b _ p\p—1 o 9 b
P g O )
L tgids . SO et s
i | =i+ B [ = o

(VIR +olR™) . €b— P GIRD +olRP)
(e fia 0=

and

q o —1
ngf(T,y(T),DZy(T))

E0(p)(b—t)p—a!
IL(p—q)2

| Dy Ky () =Dy Iy f(t,y(t), Dyy(t) +

IP79f (¢, y(t), Diy(t)) + I f(1,y(1), Diy(T))
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b
SF(pl—Q)/t (s — )P~ (p(s) + Y| R + 0| R|?)ds
_ fp—g—1 b
+£(Fb(pi)q)_(2/ (s — 7)P~ Y@ (s) + Y|R|"* + o|R|"?)ds
o0 bi T 0(s)ds M bs—q-—lss
= )[(5 t)p q d)( )d + F(p—q)_(z /7_( )P ¢( )d

T'(p —
Y E(b — )P~ (| R + o| R|™2)
- T b - T)p).

(V|R|" + a|R|™)
+( L(p—q+1) pl'(p — q)f?

(b—t)P~9 +

Thus
[Ky()|| = max [Ky(t)| + max |[DICy(t)|
t€[a,b] te(a,b]

R
<G1+ (YR +o|R[?)G2 < 3 +

wl =
wl =

+~ =R

Now we have to show that Ky(t) is a completely continuous. Let a <t < t < oo, then

b ap—1 b
eyt - Ko@) < g | (5 = 071700, Dlyo)lds + 5P [ (s =t

I'(p) L(p)s2
65060, (6Dl — 5 [ 6= D11 Gs,006), Do
SO [ o= s, Dt s
w7/ (s = 001751 0(5), D))l + AR
oot (e fas-+ LD 0D oy, Dl s

' b
Sl/t (s — )P 1 (¢(s) + ¢|R[™ —G—U|R|72)ds—|—1/? (s — 1)P~1 — (s — P-1]

I'(p) L'(p)
_ f\p—1 _ _ \p—-1 b
(000) + iy + ofrpsyas + O ZRZIL i i oe) 4wl
+ | R[2)ds.
Thus
t b
Ky(t) - Ky(@)| _P(lp) / (s — P o(s)ds + F(lm / (s — )71 — (s — D (s)ds
_f\p—=1 _ (p _ F\p—1 b 14 g 2
A S [ s rtoots + WL - p - -7y
do—vrt - -,
7 (b—1) ]
(3.3.1)
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And

a(p _ p\p—1
DIIP f(t,y(t), Diy(t)) + Wli’f(ﬂ y(7), Dyy(7))

a0 _ Fyp—1
_ Wlff(f,y(T),Dgy(T))‘

_ \p—q—1
gr(];)((}f— 8(2 I f(m,y(1), Diy(T))
€0 (p) (b — P91

_ I'(p—q)02
<F<pl—q> /t (s = P71 (@(s) + IR + o|RI™)ds

L . -

" F(P—Q)/? [(s =P~ = (s = )P ](¢(s) + ¥|R[™ + o|R[7*)ds
E[(b— )P~ — (b —t)pa1]
I'(p—q)f2

|DIKy(t) — DiKy(t)| =

— DIIP f(t,y(t), Diy(t))

TP £t y(t). Dy(t)) +

— I}ty (D), Dy (b)) — B f .yl Dgy(T))’

b
+ / (s = )P H(9(s) + Y|R|™ + o|R|"™)ds.

Thus

b

1 : — P11 4(5)ds b s — W1l _ (g _fp—a-1
R O e AU (RN B

I'(p—q
Ellb— ey = B
H(s)ds + T [ 5= oten

(Y|R|" 4 o|R|7?) _ N\P—9 _ (h _ F\P—q
(Ui - - o=

EWR +olRD)
LT “"”)'

|DIKy(t) — DiKy ()] <

(3.3.2)

Note that all terms in equations (3.3.1) and (3.3.2) are uniformly continuous and bounded, we conclude
that Ky(t) and D{Ky(t) are equicontinuous for all real valued functions y. Thus Schauder fixed point

theorem applies that there exist at least one solution of fractional terminal value problem (3.1.3) and
(3.1.4). O

Theorem 3.3.2. Assume (Hi), (Hs) hold and k = max(ky + ka2) < 1. Then there the fractional terminal
value problem (3.1.3) and (3.1.4) has unique solution.

Proof. We have proved in Theorem 3.2.3 the existence of fractional terminal value problem (3.1.3) and

(3.1.4). Now we establish the contraction of IC. Let x,y be arbitrary elements of the Banach space Y.
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Also we know that (b —t)P~1 < (b— a)P~!, then we have

b
Ka(t) — Ky(t) sr(lp) / (s — DY £(5,(s), Dix(s)) — f(s,y(s), Diy(s))\ds

— -1 b
S0 [ £ o.0(6), Dfr(s)) — s (s), Do)

<1/b(8—t)p1(@(t)!w(8)— ()| +<(t)|Djz(s) — Dyy(s)|)ds
“T(p) Ji Y b oY

+5(’;(‘p%—1 [ 6= e0ia(s) ~ v + <OIDEa(s) ~ Do)

o 2}§]]x—y]/ (s — )7 Lo ds+mtg1[3>§]|m Dyt \/ (s — )71 (
+§(_tp1t€[ab y\/ (s — )P Lol

+%%1txgﬁ>§|fjx — Dly(t |/ (s — )P~ 1g(

<L max | —y|+ —— ! max |Dfxz(t) — Diy(t)| + s~ t)p_l max |z — y|
~T(p) telab] ['(p) telab] b L(p)2  tefab)
E(b—t)p!
Dq DY
+ F(p)Q trél[(;a)gH ( ) by(t)’
< 1 (bfa)p 1 | )
max |z —
F(p F(p)Q tela,b] 4
ma;
F (p) te(a)li oY |
k:1< max |z —y| + max \Dq (t) — Dgy(t)|>,

and

IDRKa() = DY(O] =|DEIE [(.2(0). Dia(t)) — (o). D)) + 220 o

[f(r, (), Djx(r)) — f(7,y(7), Dyy(r))]

| 00), DEete)) — £ (o), Dy 0] + LR

I(p—q)2
[f(r,2(r), Dya(r)) — f(1,y(7), Dyy(7))]
1 b
S / (5 — P11 (o(1) 2(s) — y(s)| + (1) | Dia(s) — Diy(s)])ds

b -1
+ L(p—q)f2 /T (8 =7 (ald)fate) ~ ute)

+s(t)|Dix(s) — Diy(s)|)ds
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a Dq Diy(t
trg[aagg]\w yl fé‘[aif]‘ (t) — Dyy(t)]

b
—_ s — )P~ 1o(s)ds s —t)PmI71x
=T q) /t( el I'(p—aq) /t( g

&b — =1~  max|a — g

t€(a,b] )
§(s)ds + T a2 /T(S_T)p o(s)ds
§(b — P~0 max | Dfa(t) - Diy(®)]
t€la,b] |
' I'(p—q)f2 /T(ST)p o(s)ds
ST =) iyl T g ey Do) = Dow)
£(b—a)pat -
Tp—a9) [ab]|x i
— —q—1
L DY) — Dy(h)

L(p—q)2 tefab]

:k2< ma%] |z — y| + max |Dlxz(t) — Dgy(t)|>.

tela, te(a,b)]

Thus

IKCat) — Ky(t)| < pmasx |Ca(t) = Ky(0)] + max [DiC(t) — DKy
€ €la,

)

—k - DYx(t) — Diy(t)| ) + & -
(s o= o1+ g 1D2(0) = DIy(0)] ) + s =

+ max \Dq (t) — Dgy(t)o
tela,b]

(i + ) (o~ o] + max [DFo(t) ~ Du(0)])

gk(llw ~yll + ID(t) Dzymn).

Hence K is contraction. Thus by Banach contraction theorem, fractional terminal value problem (3.1.3)

and (3.1.4) has unique solution. O

Example 3.3.3. Consider the problem on I = [a, o).

D¥25(t) = in(1 + D a(t) + /e (t)] sin®(2(t)), t € [a,0], (3.3.3)
2(b) =0, D}*x(b) = Ex(7). (3.3.4)
Here f(t,z,y) = In(1 4+ y) + \/|=|sin?(x). We attempt to verify the conditions of Theorem 3.3.1
f(t,2,9)| = |In(L +y) + [z sin®(2)]
< |y + V/lz[sin®(z)|
< |yl + V/lz[| sin*(z)
< [yl + V/lxl,
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where ¢(t) = 0,v = |z|,0 = |y|,71 = 1/2 and 2 = 0.. Now, we will verify the condition of Theorem 3.3.2.

|f(tz,y) = F(LE,9)] = |In(1 +y) + /|| sin®(z) — In(1 + §) — /|Z|sin®(Z)]
<|in(1+y) —in(1 + )| + |/|z|sin®(z) — \/|Z| sin®(Z)|
<l|z—z|+ |y — 9,

where o(t) = ¢(t) = 1. Hence, all conditions are satisfied. Thus unique solution of (3.3.3) exists.
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Chapter 4

A coupled system of terminal value
problems for fractional order nonlinear

differential equations on bounded domain

4.1 Introduction

Recently the debate on coupled systems of differential equations in fractional calculus has gained very
significant importance. Z.Z.E. Abidine [1], Y. Li, Y. Sang, H. Zhang [19], K. Zhang, J. Xu, D. O’'Regan [43],
Y. Liu, B. Ahmad, R.P. Agrawal [20], Y. Chen, D. Chen, Z. Lv [11] and L. Zhang, B. Ahmad, G. Wang [38|
investigated the existence of coupled systems involving fractional differential equations.

X. Su [34] discussed a coupled system for two-point boundary value problem
DPx(t) = f(t,y(t), D"y(t)), 1<p<2
Diy(t) = g(t,z(t), D’x(t)), 1<p<2
2(0) = 2(1) = y(0) = y(1) = 0,
for all ¢t € [0, 1], where DP is right Riemann-Liouville derivative.
B. Ahmad, J.J. Nieto [5] discussed existence of three-point boundary conditions for a coupled system
DPx(t) = f(t,y(t), D"y(t)), 1<p<2,
Diy(t) = g(t, z(t), D'z(t)), 1<q<2,
2(0) =0, z(1) =~z(n), y(0)=0, y(1)=y(n),
for all t € [0,1] and p, q € (1,2), where p, q,u,v,,n satisfy certain conditions.
Motivated by work coted above, here we generalized the results of previous chapter to a coupled system
Dyx(t) = f(t,y(t), Dyy(t)), 1<p<2,
Diy(t) = glt, x(t), Dya(t)), 1<q<2, (4.1.1)

z(b) =0, DY 'a(b) = €x(r), y(b) =0, Df 'y(b) = ¢ey(r),
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for all t € [a, b], with right Riemann-Liouville fractional derivative Df . Where u,v > 0,p—v>1,q—u>
1,£>0,7 € (a,b),T(p) > &b —7)P~ and T'(q) > &£(b—7)97 L.
For the convenience of our results, we have following hypothesis for all real valued functions z,z,y and ¥y

on [a,b] :
(H1) f,9:]a,b] x R x R — R are continuous functions

(Ha) |f(t,z,y)| < o(t) + o1]z|" + o2ly[2, 0 < 71,72 < 1, 01,02 > 0, where ¢ € Li[a,b] is non-negative

function.

(H3): |g(t,z,y)] < (t) + o1zl + 02|yl 0 < p1,p2 <1, 01,00 > 0, where ¢ € Lya, b] is non-negative

function.
(Hy): |f(t,x,y) — f(t,2,9)| < 6(t)|x — x|+ <(t)|y — y|, where d,¢ € C([a,b]) are non-negative functions.
(Hs): |g(t,x,y) — g(t,z,7)| < ((t)|z —Z| + k(t)|y — Y|, where ¢,k € C([a,b]) are non-negative functions.
We use following notations for convenience:
2 =T(p) - &b —7)P,

2, =T(q) = &0 — 7)1,

_4\p—1 b p—v—1 b
A1—t1él[2>§]<r1f s—t)P~Lo(t ds+£(rb(p§)gl f (s—7)P~Lop(t )d8+Fp ) ft s—t)PvLlg(s )ds+7§(b(pt)v)91 fT(s—

p1¢ >

(b=t | E(b—t)~! (b=t | _g(br)
Q= fél[;”zf]( tory T e (0~ T+ 1 e v)nl)

Ay = max (F(q ft s — )9 (t)ds + g(b( g) e fb(s — 1)l (t)ds + No=n] j; s — 1)1 Lg(s)ds +

tela,b)

_ u—1
Gty s = 771 0(s)ds ).

_ b—t)e | E(b—t)e ! b—t)a £(b—7)9
Q2 = trg[%] <F((q+)l) + F((q+l))92 (b—7)7+ F((quwl) + qF((qU§Q2>

_ 1 13
2= T Tovm

1 £(b—a)?!

kL=t e
1 Eba)i
k2 = + Twe
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4.2 Main results

Lemma 4.2.1. Let h € Cla,b] be a function. Then x is the solution of terminal value problem

DVYx(t) =h(t), 1<p<2, tea,b],
(b)) =0, Dy~ 'x(b) = &a(7),

if and only if © satisfies

1 b B f(b _ t)pfl b 3
z(t) = = S—tp1h8d8+/ s —7)P" h(s)ds.
0 =5 | =07 hisas+ e [T —rp i)
Proof. Proof is same as that of Lemma (3.2.1), so we omit it. O

Similarly, y is the solution of terminal value problem
Diy(t) =h(t), 1<q<2, tela,b]
y(9) =0, DI 'y(b) = &y(r),
if and only if y satisfies
1 Eb—t)r!

b b
= — s — 1) h(s)ds + >——— s — 1) h(s)ds.
1) = o | (=0 s + SR [ = (e

Let us define the Banach space
X = {z|z € Cla,b] : Dz € Cla, b]}

with norm

= D
el = e (1) -+ o | D} ()

and Banach space
Y ={yly € Cla,b] : D"y € Cla, b]}
with norm

= t)| + Dy(t)].
1yl tgl[gf;]!y()l fé}?if}’ by (t)]

Clearly X x Y is a Banach space with norm

Gz, )l = maxglz]], [y},

for all (z,y) € X x ).

Now let us have the system of integral equations:

o) = ri Ji o 5.9(s), Dyy(s)ds + SEEHG [1(s = 771 f(5,9(s). Diy(s)ds,

y(t) = g (s x<8>»Dé’$<s>>ds + S [ s — )0 g5, 2(5), Dya(s))ds.
Lemma 4.2.2. Let Hy holds. Then (z,y) € X x Y satisfy (4.1.1) if and only if (z,y) € X x Y satisfy the
integral equations (4.2.1).

(4.2.1)

Proof. Proof is obvious from Lemma (4.2.1). O
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4.2.1 Existence and uniqueness of solutions

Let us define operator £ : X x Y — X x ) as

K(z,y)(t) = (Kiy(t), Kaz(t)).

Solutions of coupled system (4.1.1) are fixed points of operator K. Where

b
Kay(t) = - / (s — P~V f(s,y(s), Dity(s))ds

L'(p)
# SO [ o= 0= 6.0, Do),
and
Cart) =g [ (6= 07 g(s,0(5). Do)
4 W /Tb(s — )91 g(s, 2(s), D (s))ds.
Define

S = {(z(t),y(®)[(=(t),yt)) € X x Y, [[(z(t),y(1))]| < R},
where R > trél[%{(galgl)l—?l, (30901) 77, (3010) 777, (300Q5) 777, 341, 345 ).

Note that S is the ball in the Banach space X x ). Now we establish existence and uniqueness results.

Theorem 4.2.3. Suppose that (Hy), (H2) and (Hs) hold. Then coupled system (4.1.1) has at least one

solution.

Proof. Let x be an arbitrary element in S, then we have

b
Kay(t) s\r(lp) [ =077 5.005). Do

L L u
i ’F(p)rzl/ (s = )P~ f(s,4(s), Dy (s))ds

_L ’ _ 1 s s u
_F(p)/t (s =P "1 f(s,y(s), Dyy(s))|ds
U B )
*w/T (s = 7)" £ (s,y(s). Dyy(s))ds
<1/b( _t)p—1(¢(t)+ |R|™ + o3| R|"?)d
T J, o1 o2 s
Eb—typ=t P . 1 2
-I-W/T (s—1) 1(¢(t)+01|R]7 + o3| R|?)ds
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I e (o1|R[™ + 02| R[?) [ .
_F(p)/t(s—t) Lo(t)ds + /t (s — t)Pds

I'(p)
§o—tyt o §(b— )" (o |[R[" + oaf B?) [* =
+ e s+ T2 [ =rras
b _ \p—1 b
o [ 6=t ttnas+ S [ tons
R + sl BP) o €6 = P @Bt oolR?)
+< APESYRE T(p+ 1) =7 >
and
v(h _ +#\p—1
DpRaw0)] =|Dp 20,0, Do) + P, o), D)
_ +\p—v—1
|7 st yte). D) + (o). D)
1 ' p—v—1 ! Y2
St | 6= + R+ oalR)s
_ 4+\p—v—1 b
% / (s =777 (6(s) + 1[R[ + 02| B]"*)ds
b _ 4\p—v—1 b
o [ ot + LS [ ot
R + 0ol B?) ey &R + 0l RI)
+( fo—orn O o ; (b_T)p)'
Thus

[K1y(t)]| = max |Kyy(t)| + max [D"iy(t)]|
t€la,b] te(a,b]

R
§A1+(0'1|R|71+02|R’72)Q1 < §+ + = R.

w| =
Wl

Similarly, ||[Koz(t)|| < A2 + (01|R|”* + 02|R|P?)Q2 < % + % —|—§ = R. Thus |[K(z,y)|| < R. Since
Kiy(t), Kaz(t), D'K1y(t) and D“Kax(t) are continuous on [a, b], thus £ : S — S.

Now we have to show that K is equicontinuous. Let a <t < t < b, then we can write

b pp—1 b
rmmw—mMMS:‘Zky%wﬂﬂamamemw+“bt”/X&ww*x

I'(p) L'(p)fA
b
|f(s,y(s), Diy(s))|ds — F(lp)/; (s — D71 £(5,5(s), Dly(s)|ds
_A\p—1 b
- [ ) s lds
_ 1 tNS_ =1 (s, y(s), Diy(s))|ds 1 bs— =l _ (g —¢)P1L
—ii | =07 ). Dy las + s [ =077 = (- D
E[(b— )P~ — (b— )P

|£(s,y(s), Diy(s))|ds +

' -1
L'(p)f /T (s =7)P [ f(s,y(s), Dyy(s))|ds
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L ts- P=lih(s o N4 g 72)ds L bs_ p—1_ (g _Fp-1
< 0O T s g [ = (=B

-ty — -t
L(p)f2

b
(6(s) + 0a R + 0o RP®)ds + / (s — 7P ((s)

+ 0'1‘R|'Y1 + 02‘R|72)d8.

Thus

(B <1 tNS_ Ly avds o [ l0s - 0P-1 _ (s — FP-Vd(s)ds
Kn(t) = K@ <5 [ (=P oleds + g [l =177 = (s =D ols)a
U e (et Y L
+ () /T(S—T) o(s)ds +
-y — -1,
+ o (b—T)].

(01| R|" + 02| R|"?)
L'(p+1)

(4.2.2)

And

DY(b — t)P—
DYKy(t) — DiKry(D)] = /A Gl

1
L1 (r,y(7). Dyy(r)

v(p _ f\p—1
- DUy ®, @) ~ Py, D)

E0(p)(b— )Pt
+ T(p—wv)f

@, D) - SO

DyIy f (¢, y(t), Dyy(t))

I f(ty(t), Dyy(t))

I f(7,y(7), Dyy(r))

p—v—1

1D f(r,y(7), Diy(r))

<1 /E(s — )P (p(s) + 01| R[™ + 02| R|"?)ds
“L(p—v) /i

b /b[(s — )P — (s = )P ((s) + o1 | R + 03| R[7?)ds
L(p—v) J7
b — )Pt — (b— )P~
I'(p—v)

b
/ (s = 7171 (6(s) + o1 |[R" + 2| R[?)ds.

Thus

t b
D) = DY) < g [ (5= ot + s [l =07 = (s = B ol

[(b—typ—v=t — (b —t)pv=1] b o1 (01| R + 09| R?)
y =0 [t =mrtotns + (R

_ p\p—v _ _ 7\p—v 5(01|R|71+02|R|72) Y
(69 = o= ) 4 SO LI ),

(4.2.3)
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On similar steps it can be prove that

£ b
Ko (t) — Kaa(D)] < / (5 — 1)1 1 (s)ds + —— / (s — )71 — (s — D7 o(s)ds

I'(q) L(p)
_ a1 _fa-1 b 1 2 -
+ g[(b t) F(q)g(j t) ] / (S _ T)qildJ(S)dS + (Ql’RI|fJ(q':—912)|R|p ) (b _ t)q _ (b _ t)q
_A\p=1 _ (p _ Fp-1
L Ee- . (-0, T)q],
(4.2.4)
and
u u D 1 ' q—u— 1 ’ g—u— Fya—u—
DKo (t) = Dikar()] < [ (5= 0 N (e)s 4 s [l = 07 = (s = D ()

-t = 0= Pt ads o (QUBI A 0o BIP2)
N a— [ =t + (T

q—u _ (} _ F)q—u f(Q1|R‘p1 + QQ‘R|p2) —7)?
(6=t = - g 4 ST LI o)

(4.2.5)

Since all terms in equations (4.2.2), (4.2.3), (4.2.4) and (4.2.5) are uniformly continuous and bounded,
we conclude that ICS is equicontinuous for all real valued functions z and y. Thus Schauder fixed point

theorem applies that there exists a solution of (4.1.1). O
Example 4.2.4. Consider the problem

D¥2(t) = (e + 1) + (In(1 + D/ Sy(£))/3) + sin®(y(t)), t € [a,b],
DYPy(t) = (12 + 1) + (In(1 + D, °2(t)))V3 + sin?(x(t)), t € [a,b], (4.2.6)
w(b) =0, D*x(b) = ¢x(r), y(b)=0, D;*y(b)=ey(r).

Here p =3/2 and ¢ = 5/3.

flt,zy) = (et +1) + (In(1 +y)/3 + sin?(z(1)),

and
g(t,z,y) = (t*+1) + (In(1 + :L'))l/3 + sin?(y(t)).
So
[f(t 2, y) < [(ef + D]+ [(In(1 + )3 + | sin®(x(t))
< (e 1) + [y + |,
and

lg(t, z,y)] < [(£ +1)] + [(In(1 + 2))*3] + | sin® (y (1))
< (1) + ]2V + |y,

where (b(t) = ¢ +1 € Ll[%b]ﬂ/’(t) = (tz + 1) S Ll[a7b]771 = 1/3772 =1p = 1/37[72 = 1 and
01 = 09 = 91 = 92 = 1. Thus Theorem 4.2.3 verified. Hence there exist a solution of (4.2.6).
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Theorem 4.2.5. Suppose that (Hy), (Ha) and (Hs) hold. Letl = max(l1+12) < 1 and k = max(k1+k2) <
1. Then there exists unique solution for coupled system of the fractional order terminal value problem

(4.1.1).

Proof. From Theorem 4.2.3 it follows that (4.1.1) has at least one solution. Now we establish the contrac-

tion of K. Since (b —t)P~! < (b— a)P~1, then for all z,7,y, 7y

b
Kiy(t) — Kagi(t)] sr(lp) / (5 — P11 (5,5(s), Dy(s)) — F(57(s), D¥(s))\ds

# SO [ o= (), DY) = 0, T05), DTSl
< [ 6= 0710 760+ <OIDEy(s) ~ gD
# SO [ o= 600luts) ~ 706
+ (0| Di(s) — DF(o)])ds
< s / H715(s ds+r(1mtxgaxmby<> DY) x
/tb<s_t>p s+ S0 w1 o - oo
+§(;(;)?th 2>§]|Dby — Dyt |/ (s — )P~ L¢(s)ds
< Iy 71+ g ma b}\Dyy@)—Dm)HwX
gy b=+ S g b0~ Piv0)
(i + "o e )
+ (50 + S5 s 10yt - Do)

=l -y + Dyy(t) — Dyy(t)] |,
1<g[3;;]|y 31+ max [ Dj(t) by<>|)

and

vl _ +\p—1
IDEKp(0) ~ DY =| D3 110,900 Dia(0) — 10,700, )] + 20

[F(r,y(7), Dy(r)) — £ (7). DYG(r))] \

=y [t y(t), Dyy(t)) — f(,5(t), Dy5(t)] +

[F(ryy(r), DYy(r)) — F(r, (), D)) \
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b
Sr(pl_v) /t (s = P71 (8(t)y(s) — 4(s)] + <(8)[Dify(s) — Dyy(s)|)ds
ot .
o [ =0l ~ ()
+<(®)[Dyy(s) — Dyy(s)|)ds
max |y = 9| max |Diy(t) = Dpy(t)l-
< /t(s—t)p_”_ld(s)ds—l— T /t(s—t)p_”_lx
Eb -t max|y -yl ,
tela,b] p—1 $)ds
¢(s)ds + Ty — o) /T (s —7)P7 0(s)d
&(b— )P~ max |Dyy(t) — Diy(t)|
tela,b] P=1c()ds
i T(p—v) 2 /T (s =7y s()d
Sﬁte[ X X ly —y|+ ﬁte[ b]|Db?/() Dyy(t)]
£(b—ap—! ~
" [(p —v)fh telat) Iy =3
£(b —ap—!

D Dyy(t
RO oy s D) — DY)

1o o Iy = 71+ max [ DB () ~ D) ).

t€la,b]
Thus
IKu(®) ~ Kag(0)] < mas [Cuu(e) — Ka(®)] + s [DEKay(c) — Do)
i1 w71+ o 1050~ DO ) +1a (v by~
te(a,b] te[a,b] €lab
T max |DEy(t) D;:@(t))
t€(a,b]
1+ 1) 71+ mox [DE(0) - D70 )
§l<lly G+ D) D;:@(t)ﬂ)
Similarly
o (t) — KaZ(t)| < k1 ( m[ax |z — 2| + m[ax |Dyx(t) — Dgi(t)\),
te
and

| Dy Koz (t) — Dy ICaz(t)| < k‘2< max |z — Z| + max |Dyxz(t) — D};%(t)|>
t€la,b] t€la,b]
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Thus

Ko (t) = Ko (D) < max [Kor(t) — KoF(8) + max | DyKaa(t) — DYCo(t)

:k -7 DU t_Dv~t k -
Q(tgl[zfz]'x 7+ max [ Dyz(1) bl’“’)* 2(%2?5]'“’6 7

+ max [DVa(t) - D;ji(t)\)
t€[a,b]

(k1 + ko) (gg[g;;] o~ 7]+ g D) — ;;%(m)

<k (Jlo - 3l + 1D3a() - D30 ).
Hence K is contraction. Thus by Banach contraction theorem, unique solution of (4.1.1) exists. O

Example 4.2.6. Consider the problem

DY2a(t) = (et + ) + \/In(1 + DY°y(t)) + cos2(y(1)), t € [a,b)],
DYy(t) = (t+1)2 + \/ln(l + DY52(t) + cos?(x(t)), t € [a,b], (4.2.7)
2(b) =0, Dy*w(b) = &x(r), y(b) =0, D} y(b) = &y(r).

Here p =3/2 and ¢ = 5/3.
f(t,z,y) = (e +t) + /In(1 + y) + cos?(x(t)),

and

g(t,z,y) = (t+1)% + /In(1 + x) + cos®(y(t)).
Now
(8 2,y) — F(6Z,5)] = |(ef + 1) + /In(1 + y) + cos*(x(t) — (¢ + 1) — /In(1 + ) — cos”(Z(t))|

< [VIn(l +y) — VIn(L+§)| + | cos?(x(t)) — cos*(@(1)))|

§|y—§|+|$—5|,

where ¢(t) = §(t) = 1. Similarly we can prove it for g(¢,z,y). Thus Theorem 4.2.5 verified. Hence (4.2.7)

has unique solution.

46



Chapter 5

Terminal value problem for fractional order
nonlinear differential equations on an

unbounded domain

5.1 Introduction

In chapter 3 we have discussed existence and uniqueness results on bounded domain. We have also
discussed coupled system of fractional terminal value problem in chapter 4. In this chapter we discuss
fractional terminal value problem on unbounded domain. However many authors established existence
results for boundary value problems on infinite intervals. B. Ahmad, J.J. Nieto, D. Garout and A.
Alsaedi [6], A. Arara, M. Benchohra, N. Hamidi, [8], S. Liang, J. Zhang [21], X. Su, S. Zhang [33], G.
Wang [39], B. Ahmad, R. P. Agarwal, L. Zhang, G.Wang [40], X. Zhao, W. Ge [42], G.Wanga, A. Cabadab,
L. Zhanga [37] and Zhang [41] studied existence results for boundary value problem with fractional order
on infinite interval.

M. Rehman, S.A. Hussain [25] developed adequate conditions for fractional order terminal value problem

to establish existence and uniqueness results on infinite interval with right Caputo fractional derivative

°DP x(t) = f(t,z(t),2'(t)), 1<p<2, te[a,o00),

where 2’ is derivative of z and f is continuous. G. Wanga, A. Cabadab and L. Zhanga [37] discussed the

existence of the solutions for boundary conditions on an unbounded domain

Dbz(t) + f(t,z(t),2'(t)) =0, 1<p<2, te]0,00),

= “1r(c0) = Tx
2(0) = 0. Dy a(oe) = A [ (o).

where f is continuous, A\, 7 € [0, 00) and D} is Riemann-Liouville derivative.

Here we establish the existence and uniqueness results for a class of terminal value problem of nonlinear
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fractional differential equations [27]

°DP x(t) = f(t,z(t)), 1/< p<2, te€la,00), (5.1.1)
x(00) = Az (1), x (00) =0, for X#1,

where 0 < A < 1 and 7 € [a,00). We discuss terminal vale problem instead of initial boundary value
problem on semi-infinite domain with right Caputo fractional differential operator ¢DX..
We establish Green’s function and its properties for terminal value problem (5.1.1) on infinite interval.

For convenience of our results we have following hypothesis for all real valued functions = and y on [a,b] :
(H1) f:a,00) x R — R is continuous.

(Ha): |f(t,x)| < p(t) +o(t)|z]*, 0< p <1 where p,o € C([a,00) are non-negative functions such that

fa (s —a)P~tp(s)ds = G < o0, f —a)P"lo(s)ds = Go < c0.
(Hs): Assume there exists non-negative function n € C([a, 00)) such that [ (s — a)?"'n(s)ds = G3 < oo
and

[f(t,2) = f(t9)] < n(t)]z —yl.

5.2 Main results

First, we determine an expression for the Green’s function of fractional differential terminal value problem.

Lemma 5.2.1. Assume that x(t)x'(t) < 0 and ¢ is continuous on [a,00). Then x is solution of terminal

value problem

‘DPa(t) =((t), 1<p<2, te][0,00),

/ (5.2.1)
z(00) = Ax(7), x (00) =0, for X# 1.

iff x satisfies

2(t) = - (5.2.2)
f:o Ga(s,t)C(s)ds, if T <t,

where
A(s—T1)P~1 (s—t)p—1
+ , t<7<s,
Gi(s,t) = ((j__gii(lp) I (5.2.3)
F(p) 9 t S S S T7
and
A(s—T1)P~1 <<t
Ga(s,t) = S:T))Fp(fi — (5.2.4)
e T T 0 TSESS
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Proof. Applying right fractional integral operator [ f on both sides of equation (5.2.1) and using Theorem

1.4.8, we get ,
s —t)p1
x(t) = z(b) + (t — b)z (b) + /t ( F(Q) C(s)ds.

From our assumption z(t)z’(t) < 0, we can write lim;_, o, t2'(t) = 0 (see [32]). Taking limit b — oo, and

using z(t)z’(t) < 0 and from our assumed conditions we can write

z(t) = lim z(b) + lim (¢ —b)z' (b) + lim /tb (st ((s)ds

b—s00 b—s o0 b—s 00 P(p)

= Xz(7) + lim tz' (b) — lim bz (b) + b (S_t)pflg(s)ds
b—00 b—00 ¢ F(p)

(s —t)P~t
L'(p)

:)\93(7)—1—0—0—}—/:0 C(s)ds.

Consequently

G(s)ds. (5.2.5)

Now, replacing ¢ with 7 on both sides of equation (5.2.5)

s— 1)1
x(7) = Mx(T) +/ ( F(p))

—A) = (s s)ds
o)1= 0) = [
B 1 ® (5 —7)p~1
x(T) a0 /7- ) ((s)ds (5.2.6)
Substituting equation (5.2.6) in equation (5.2.5), we get
A © (s —T)Pt Sds (5 —t)p1 S)ds
() = (1_»/7 o +/t o C(s)ds. (5.2.7)

Here arises two cases, t < 7 and 7 < t.

For ¢t < 7, equation (5.2.7) gives

00 S_Tpfl T (s — p—1 © (g — p—1
o(t) = —2 / (s=7) C(s)ds—l—/t( t) C(s)ds—l—/ (s =" - (6)ds

(1-N) (p) ) 0
N o i
/r (5550 + gy )<+ || gy
Gi(s,t)((s)ds
t
where
Grls.t) — 4 TG T TG EST <8, (5.28)
T t<s<r

Now, for 7 < ¢, we get from equation (5.2.7)

A t(s—r)pt S\ds £ © (s —7)p1 S\ds (5 —t)p1 $\ds
O e T el iCLd ) e e SR ()

A N /Tt (S;T)p_1C(S)dS+/too (A(S—T)p_l n (S_t)p_1>§(s)ds

(1- () (1—=MI(p) ['(p)
= / Ga(s,t)((s)ds
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where

A(s—1)P~ 1 (s—t)p—1!

A(s—1)P~ 1
Ga(s, ) = (1-MT(p)’
—NTG) T T

Combining both cases, we can write

5.2.1 Properties of The Green’s function

Here we discuss important properties of Green’s function.
(a) Gl(svt) > 07 G2(37t) > 0.

142\ (s—a)P~1
(b) Gi(s,t) < Ll

A(s—T1)P~1 14\ (s—7)P~ 1
(©) Tty < Gals, 1) < CR2—.

Proof.  (a) The conclusion is obvious.

IN

(b) If a <t, then for t <7 <'s, we have (s = 7)P7" < (s —a
B A(s — ’T)p_l (s — t)/p_1
G =0 o)
AMs—a)P~t  (s—a)P!
= T

(s —a)P~t < (14N (s —a)P!

as % > 1. Thus for all s,t and 7, G1(s,t) < :

= (1-XN)I'(p)
for 7 <t < s, we have

(1-=MT(p)

142\ (s—a)P~ !
(1-MT(p)

B A(s—T)P 1 (s — t)p_l
CED =T T o)
A(s — T)p_l (s — T)p_l
S0y T T
(1

50

(5.2.9)

(c) Obviously Gao(s,t) > A=D1 for all s and 7. For 7 < s < ¢, we have Ga(s,t) < (L) ot L

(1=M)I'(p)

. Now



5.3 Existence and uniqueness of solutions

Let us define the space
X = {a(t) € C(0,00) : o] < oo},

with norm

[z = sup |z(t)].
te[0,00)

Let 7T is operator define by

et - {f;’o Gi(s,6) (s, 2(s))ds, if t<T, 5o
[ Ga(s,t) f(s,a(s))ds, if <t
Solutions of problem (5.1.1) are fixed points of T.
Theorem 5.3.1. Assume (Hy) and (Hz) hold. Then at least one solution of (5.1.1) exists.
Proof. Choose R > %, where @ := %. Define the set A := {z € B : ||z|| < R}, where B is a

banach space and A C B, that is closed and convex. Let u € A be an arbitrary element, then we have
following estimate for 7Tz :

For ¢ < 7, using property (b) of G

IﬂWMSAMQWQU@M$WS

® (1+A)(s—a)P?
< [ S s (s

< E/Oo(s —a)P Y (p(s) + o(s)|z| ds.

From hypothesis (H) we have |Tz(t)| < a(G1 + GoR*) < R.
For t > 7, the property (c) of G2 and the inequality (s — 7)P~! < (s — a)?~! lead us to the estimate
Tot)] < [ Galt, o) f(s.als)lds
U

(14 A)(s—7)P1
S[ =0

< [ 5= a0l +u(o)lalds,

(s, 2(s))lds

From hypothesis (Hz) we have |Tz(t)| < a(Gy + GoR*) < R. Thus ||Tz(t)|| < R for all x € A. Hence
T(A) C A
Now we show that 7 (A) is equicontinuous. Let a <t < t < oo, then for t < 7

| Ta(t) - Ta(t)| =

[mauwﬂaamw—ém@@@ﬂ&umw

S/t G1(t78)\f(87x(8))!d8+émIGl(taS)—Gl(f,S)lf(S,ﬂﬂ(S))ldS-
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We observe that |Gy (t,s)—Gy(t,s)| = |ﬁ((sft)p_1f(sf?)p_1)] < ﬁ(sft)p_l. |G1(t,5)—G1(t,s)] — 0
as t — t. From hypothesis (Hs), we have

r&w@—&@$wwammraﬁ—w*wuwm
2 .
< For(s = 0P olt) + o(@)lel)
< For (s = 0P plt) + R0 (1)) € Lo, o),

Also |Gy (t,s) — G1(t,8)]|f(t,z(t))| = 0 as t — ¢ for all s € [0, 00). Thus by Lebesgue Dominated Conver-
gence Theorem we have [£°|G1(t,s) — Gi(L, s)||f(t,t(t))|ds — 0 as t — L.

Furthermore

t (14+A)(s—a)Pt

[Gwmvwmmms[ (s, 2(5))ds

(1=NT(p)
< aj/t(g —a)P"lds
1o+ ~ P_(f—q)?P
= ];aA((t —a)’ = (t —a)?)
Py ) orsome o< ()

where A < maﬁc|f(s,a:(s))|. Therefore ijl(t, s)|f(s,x(s))|ds — 0 as t — t. Consequently, for the case,
Te
s€lt,1]

t < 7, we conclude || Tz(t) — Tx(t)|| — 0 as t — t.
When t > 7,

[ Ta(t) - Ta®)] < /OO (Ga(t,s) — Galt, 5)|f (s, 2(s)) ds.

Repeating the same arguments as for the case ¢t < 7, we have
2
I'(p)

Again, by Lebesgue Dominated Convergence Theorem we have fnoo |G (t,8) —G1(t, s)||f(t, 2(t))|ds — 0 as
t — t. Thus we conclude | Tz(t) — Tz(t)|| — 0 as t — ¢ for all t € [0, 00). Hence T(A) is equicontinuous.

|Ga(t, 5) — Ga(t, 5)||f (¢, 2(1))] < (s — a)’ " (p(t) + RMo(t)) € Lia, o).

Furthermore 7 : A — A is compact operator by Arzela-Ascoli theorem. Thus there exists a fixed point of
T, by Schauder’s fixed point theorem, which is the solution of (5.1.1). O

Theorem 5.3.2. Assume (Hy), (Hs) hold and Q := (glj\))‘)rg(;) < 1. Then (5.1.1) has unique solution.

Proof. From Theorem 5.3.1, it follows that 7 maps closed bounded subset of Banach space into itself.
Here we shall only show that under the hypothesis in the statement the operator 7 defined in (5.3.1) is

contraction. For this, let z, y be arbitrary elements of the Banach space B.

52



For ¢t < 7, assumption (H3) and property of G gives

ITa(t) - Ty(t)| < / Gt 9)) fls.x(s)) — f(s.y(s))ds

14+ ) > _
<<1—A>r<m/ (5 — )P 1x(8)|x(s) — y(s)|ds
< T ol [ x(eds
< Qlla —

Similar computations for the case ¢ > 7 lead to inequality

Ta(t) = Ty)] < Qllz -yl

Therefore, T is contraction. Hence by Banach fixed point theorem (5.1.1) has unique solution.

Example 5.3.3. Consider the following problem on I = [0, c0):

42
et

z(1) =A\z(00), 2'(00) =0, 7€l

°DP_x(t) = sin?(\/z(t)), foralltel, 1<p<2,

)
Where [(t,2(1)) = gépy=r sin®(v/z(1)).
First, we will verify the conditions of Theorem 5.3.1

£t 2(0)] = M( x(t»‘
AR
<] e o)
G jlt;p—l e +1t)zp—1 =

= p(t) + a(t)](t)["/?,

t2

where p(t) = o(t) = (t+1)P 41 and pu=1/2.

So,

2

G1=02= /08 Gropi®

o0 2
g/ e % ds=*— < o0
0 2

3
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Now, we will verify the conditions of Theorem 5.3.2. For z,y € R we observe that

£(t,2(0) = F(t.y(2)| = ij;aﬁ<aw»—@jﬁ;4mﬁ<yu»
_aji;lmﬂ £(0) — sin?(/y(0)
< el = <Ol
where ((t) = j{fj_l

2

o —S
— p—1 € — ﬁ <
Gs /0 s 1D 5 < o0

Hence Theorem 5.3.2 verified. Therefore there is a unique solution of (5.3.2).

Example 5.3.4. Consider the following problem on I = [1, 00):

2+ 1)

2(1) =Ax(00), 2'(0)=0, 7€l

Where f(t,z(t)) = (t2+1) In(1 + |z(t)]).

First, we will verify the conditions of Theorem 5.3.1

°DP x(t) In(1+ |z(t)]), foralltel, 1<p<2,

=g 1+ )
<l
_(ﬁ+nw<m
= o(®)]z(1)],
where p(t) =0, o(t) = ﬁ and p = 1.
So,
gl - 07
and

— = _ 1)1 e’
Qz—/l (s —1) 3(32+1)Pd8

o0 1
S/ e %ds = - < o0.
1 e

Now, to verify the conditions of Theorem 5.3.2. let for xz,y € R we have

00) = 1000 = |15 0 — 3 o0
= 1y M)~ ()
< gl v =l —y

(5.3.3)



o0 1 e—s
Gs /1 (s—=1) s(s2+1)p
> 1
< / e %ds = - < 0.
1 €

Hence, all conditions are satisfied. Therefore, Theorem 5.3.1 and Theorem 5.3.2 implies that (5.3.3) has a

unique solution.
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Chapter 6

Conclusion

We discussed basic definitions and some essential properties for the right fractional calculus and established
some new properties and results. Particularly we discussed Riemann-Liouville and Caputo operators. We
developed a generalized Taylor’s formula for right fractional calculus.

We established sufficient conditions for existence and uniqueness results for terminal value problems on
bounded domain. Also we developed the existence and uniqueness results of coupled system for non-linear
right fractional differential equations on bounded domain. Right Riemann-Liouville fractional derivative
has been used in these results.

Finally, we set up three point terminal value conditions for the existence and uniqueness results on un-
bounded domain with right fractional Caputo derivative.

We constructed all existence and uniqueness results by employing Banach contraction theorem and Schauder’s

fixed point theorem.
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