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Abstract 

 

The steady state laminar flow induced over a disk rotating with uniform angular velocity about 

the vertical axis is a well-known fluid dynamics problem that has practical importance. Such 

problem is apparent in a number of technical applications dealing with electrochemical systems, 

deposition of coatings on surfaces, rotor- stator system, viscometers and many others. Despite 

the fact that almost all industrial fluids are non-Newtonian, von-Kármán’s analysis for non-

Newtonian fluids has been scarcely attempted.  

We have formulated and analyzed the slip flow of Reiner-Rivlin fluid by a rotating disk with 

heat transfer. The generalized von-Kármán relations are invoked to convert the constitutive 

equations into similar forms. The problem is solved numerically by shooting method based on 

fifth-order Runge-Kutta integration scheme. The main interest here is to detect the consequences 

of viscoelasticity and wall roughness on the rotating disk induced flow problem. This work has 

been published in Int. J. Heat & Mass Transf. 123 (2018) 979-987. 

Swirling flow of visco-plastic fluid bounded by a permeable rotating disk is also addressed in 

this thesis. Problem formulation is made through constitutive relations of Bingham fluid model. 

Entropy production analysis is made which is yet to be explored for the von-Kármán flow of non-

Newtonian fluids. 
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Chapter 1 

 

Introduction 

This chapter contains a few important concepts related to fluid flow and heat transfer. A 

thorough literature survey for problems addressed in subsequent chapters is presented. Detailed 

explanation of the employed numerical approaches is also included. 

 

1.1 Fundamental concepts and definitions 

 

1.1.1 Newtonian fluids 

Fluids for which shear stress is directly as well as linearly proportional to the strain rate are 

termed Newtonian fluids. For laminar flow between parallel plates one has: 

𝜏𝑦𝑥 = 𝜇
𝑑𝑢

𝑑𝑦
, 

(1.1) 

where 𝜇 represents the coefficient of dynamic viscosity, 𝜏𝑦𝑥  denotes the shear stress and 𝑑𝑢/𝑑𝑦 

represents the strain rate. The most common Newtonian fluids are water and air etc. 

 

1.1.2 Non-Newtonian fluids 

Non-Newtonian flows are prevalent in diverse chemical and allied processing engineering 

applications. Many industrial fluids including foams, slurries, emulsions and polymer melts etc. 
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exhibit non-Newtonian behavior meaning that their flow curve (stress vs shear rate) is non-linear 

and does not contain origin in general. 

Non-Newtonian fluids are classified as time-independent, time-dependent and viscoelastic fluids. 

Time-independent fluids include pseudo-plastic fluids, dilatant fluids and visco-plastic fluids. In 

pseudoplastic fluids, the apparent viscosity is a decreasing function of shear rate. Whereas, the 

fluids for which apparent viscosity grows upon increasing shear rate are dilatant fluids. 

Viscoplastic materials have their ability to deform only if the shear stress reaches a minimum 

value called yield stress. Time dependent fluids include the thixotropic and rheopectic fluids. 

Viscoelastic fluids include the both viscous and elastic properties, depending upon the time scale 

over which an external stress is applied. A graphical representation of the non-Newtonian 

behavior can be clearly observed from Fig. 1.1. 

 

Fig. 1.1: Stress vs strain rate in non-Newtonian fluids 

 

Two kinds of non-Newtonian fluids namely (i) viscoelastic fluids and (ii) viscoplastic fluids have 

been considered in this thesis. 

 

a) Reiner-Revlin fluid model 

It is viscoelastic model proposed by Reiner [23] and Revlin [24]. For this model, the shear stress 

𝜏𝑖𝑗  is expressed as follows: 
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𝜏𝑖𝑗 = −𝑝𝛿𝑖𝑗 + 𝜇𝑒𝑖𝑗 + 𝜇𝑐𝑒𝑖𝑘𝑒𝑘𝑗 ; 𝑒𝑗𝑗 = 0,         𝑖, 𝑗 = 1,2,3 (1.2) 

here 𝑝 represents pressure, 𝜇 the co-efficient of dynamic viscosity, 𝜇c represents the cross-

viscosity coefficient, 𝛿𝑖𝑗 shows the Kronecker delta symbol and 𝑒𝑖𝑗 = ( 𝜕𝑢𝑖/𝜕𝑥𝑗 + 𝜕𝑢𝑗/𝜕𝑥𝑖)  is 

the strain rate tensor.  

b) Bingham fluid model 

It is viscoplastic model, named after Professor Bingham. Its constitutive equation is given as; 

𝜏𝑖𝑗 = {
(

𝜏𝑦

𝛾̇
+ 𝜇𝑝) 𝑒𝑖𝑗 = 𝜂(𝛾̇)𝑒𝑖𝑗  for 𝜏 ≥ 𝜏𝑦 ,

      0                                      for 𝜏 < 𝜏𝑦 ,
 

 

(1.3) 

where  𝛾̇ = (1/2 𝑒𝑖𝑗𝑒𝑗𝑖)
1/2  is the second invariant of the strain tensor in which  𝑒𝑖𝑗 =

( 𝜕𝑢𝑖/𝜕𝑥𝑗 + 𝜕𝑢𝑗/𝜕𝑥𝑖) are components of the strain rate tensor, 𝜏𝑦 denotes the yield stress, 

𝜇𝑝 defines the plastic viscosity and 𝜂(𝛾̇) shows the apparent viscosity. 

 

1.1.3 Steady and unsteady flows 

In steady flow, all the fluid properties (velocity, temperature, pressure etc) at any point in the 

flow field are independent of time. Mathematically, 

𝜕𝜙

𝜕𝑡
= 0, 

(1.4) 

where 𝜙 is any fluid property. In case of unsteady flow, all the fluid properties at any point in the 

flow field are time dependent. Mathematically, 

𝜕𝜙

𝜕𝑡
≠ 0. 

(1.5) 

 

1.1.4 Incompressible and compressible flows 

Flows in which density remains constant throughout the flow field are termed as incompressible 

flows. For incompressible flows, the Mach number is less than 0.3. However, if the fluid density 



4 
 

is a function of spatial coordinates then the flow is referred as compressible flow. For such flow, 

Mach number is greater than 0.3. 

 

 

1.1.5 Laminar and turbulent flows 

Laminar flow is the state of flow in which there is a smooth motion of fluid particles in parallel 

layers. The laminar flow occurs with the high liquid’s viscosity and low Reynolds number. 

The type of flow in which there is a random fluctuation and rapid mixing of fluid particles and 

not in parallel layers is called turbulent flow. This type of flow usually occurs with low liquid’s 

viscosity and high Reynolds number. 

 

1.1.6 Reynold’s number 

The ratio of inertial forces to the viscous forces defines the Reynold’s number. Mathematically, 

𝑅𝑒 =
Inertial forces

Viscous forces
=

𝜌𝑣𝐿

𝜇
=

𝑣𝐿

𝜈
, 

(1.6) 

where 𝜈 = 𝜇/𝜌 shows the kinematic viscosity, 𝜇 represents the dynamic viscosity, 𝑣 is the 

average velocity and 𝐿 denotes the characteristic length. 

 

1.1.7 Prandtl number 

Prandtl number is basically the ratio of kinematic viscosity to the thermal diffusivity. 

Mathematically, 

𝑃𝑟 =
Kinematic viscosity

Thermal diffusivity
=

𝜈

𝛼
=

𝜇/𝜌

𝑘/𝜌𝑐𝑝

=
𝜇𝑐𝑝

𝑘
, 

(1.7) 

where 𝑐𝑝 represents the specific heat capacity and 𝑘 denotes the thermal conductivity. 
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1.1.8 Eckert number 

A dimensionless number which shows the relationship between kinetic energy and enthalpy is 

the Eckert number. Mathematically, 

𝐸𝑐 =
Kinetic energy

Enthalpy
=

𝑣2

𝑐𝑝∆𝑇
, 

(1.8) 

where 𝑣 denotes the average velocity of the fluid and ∆𝑇 shows the temperature difference. 

 

1.1.9 Boundary layer 

A boundary layer is the fluid layer in contact with the boundary where viscous forces alter the 

flow field. Fig. 1.2 shows boundary layer formulation above a flat plate at zero incidence. The 

fluid velocity varies from zero to the free stream velocity at the surface and boundary 

respectively.  

 

Fig. 1.2: Boundary Layer flow 

 

 

1.2 von –Kármán flow -formulation and results 

von-Kármán [1] considered fluid flow resulting above a disk of large radius rotating with  
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constant angular velocity in a calm fluid. Near the disk, due to the lack of centrifugal effect, fluid 

is swept away in the radial direction. Fluid above the disk replaces this fluid through a downward 

spiraling motion referred as “disk free pumping effect”. In cylindrical coordinate system, the 

continuity and Navier-strokes equations describing such fluid motion are, 

(𝑟𝑢)𝑟 + (𝑟𝑤)𝑧 = 0, (1.9) 

𝑢𝑢𝑟 + 𝑤𝑢𝑧 −
𝑣2

𝑟
= −

1

𝜌
𝑝𝑟 + 𝜈 {𝑢𝑟𝑟 +

1

𝑟
𝑢𝑟 + 𝑢𝑧𝑧 −

𝑢

𝑟2
},  

(1.10) 

𝑢𝑣𝑟 + 𝑤𝑣𝑧 +
𝑢𝑣

𝑟
= 𝜈 {𝑣𝑟𝑟 +

1

𝑟
𝑣𝑟 + 𝑣𝑧𝑧 −

𝑣

𝑟2
},  

(1.11) 

𝑢𝑤𝑟 + 𝑤𝑤𝑧 = −
1

𝜌
𝑝𝑧 + 𝜈 {𝑤𝑟𝑟 +

1

𝑟
𝑤𝑟 + 𝑤𝑧𝑧},  

(1.12) 

where 𝑢, 𝑣 and 𝑤 are the velocity components in the direction of increasing (𝑟, 𝜑, 𝑧) 

respectively. The boundary conditions are: 

𝑢 = 0, 𝑣 = 𝑟ω, 𝑤 = 0   at 𝑧 = 0, 

𝑢 → 0,𝑣 → 0   as 𝑧 → ∞.            

(1.13) 

Let’s make use of von-Kármán transformations: 

𝜂 = √
ω

𝜈
𝑧 

𝑢 = 𝑟ω𝐹(𝜂), 𝑣 = 𝑟ω𝐺(𝜂),𝑤 = √𝜈ω𝐻(𝜂). 

(1.14) 

Eqs. (1.9)- (1.13) thus converted to the following ordinary differential equations. 

𝐻 ′ = −2𝐹, (1.15) 

𝐹 ′′ = 𝐹2 − 𝐺2 + 𝐻𝐹′, (1.16) 

𝐺′′ = 2𝐹𝐺 + 𝐻𝐺′, (1.17) 

𝐹 = 0,𝐺 = 1, 𝐻 = 0 at 𝜂 = 0, (1.18) 

𝐹 → 0, 𝐺 → 0 as 𝜂 → ∞.  

 

Velocity profiles can be computed by solving Eqs. (1.15)- (1.17). Plots of the functions F, G and 

H are given in Fig. 1.3. 
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Fig. 1.3: Velocity profiles in the von-Kármán flow 

 

1.3 Energy equation in cylindrical coordinates 

Heat transfer takes place due to the temperature difference at the disk surface and that of the 

ambient fluid. In presence of viscous dissipation, the energy equation can be expressed in the 

form: 

𝜌𝑐𝑝 (𝑢
𝜕𝑇

𝜕𝑟
+ 𝑤

𝜕𝑇

𝜕𝑧
) = 𝑘∇2𝑇 + Φ, 

(1.19) 

where 𝑘 stands for thermal conductivity, 𝑐𝑝 for the specific heat capacity and Φ represents the 

viscous dissipation term given below:  

Φ = 𝜏𝑟𝑟 (
𝜕𝑢

𝜕𝑟
) + 𝜏𝜃𝜃 (

𝑢

𝑟
) + 𝜏𝑧𝑧 (

𝜕𝑤

𝜕𝑧
) + 𝜏𝑟𝜃 [𝑟

𝜕

𝜕𝑟
(

𝑣

𝑟
)] + 𝜏𝑟𝑧 (

𝜕𝑢

𝜕𝑧
+

𝜕𝑤

𝜕𝑟
) + 𝜏𝜃𝑧 (

𝜕𝑣

𝜕𝑧
). 

(1.20) 

 

 

1.4 Literature review 

Fluid flow induced by a rotating disk has been a compelling research topic since it is relevant in 

a number of technical applications involving electrochemical systems, deposition of coatings on 

surfaces, rotor-stator system, atmospheric and oceanic circulations, viscometer and various 
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others. The seminal contribution in this area was made by von-Kármán [1]. He assumed that a 

large disk rotates with constant angular velocity in a still fluid. Near the disk, the lack of pressure 

gradient to overcome centrifugal effect drives the fluid radially outward. Fluid above the disk 

replaces this fluid through a downward spiraling motion often referred as disk free pumping 

effect. von-Kármán’s work has led to many subsequent research activities concerning rotating 

disk flows. For example, an accurate asymptotic solution to the von- Kármán’s problem was 

presented by Cochran [2]. Heat transfer analysis for von-Kármán problem was made by 

Pohlhausen [3] for different values of Prandtl numbers. Suction phenomenon for fluid flow due 

to permeable rotating disk was investigated by Ackroyd [4]. Bachelor [5] explained that von-

Kármán’s problem is actually a special case of the flows resulting when disk and ambient fluid 

moves with separate angular velocities about the same axis. Another special case in which fluid 

present at infinity is in rotation while the disk is stationary was first addressed by Bödewadt [6]. 

A comprehensive review of literature concerning rotating disk induced flows was presented by 

Zandbergen and Dijkstra [7]. Miclavcic and Wang [8] modeled slip flow through a rough 

rotating disk and provided accurate numerical computations for broad range of slip coefficients. 

von- Kármán’s problem was extended by Chawla et al. [9] for the case in which fluid at infinity 

also rotates with a different angular velocity. Turkyilmazoglu [10] explored stagnation-point 

flow due to stretchable rotating disk in the existence of transverse magnetic field. Recent work in 

this area can be seen by [11-15] and refs. there in. 

Despite the fact that almost all industrial fluids are non-Newtonian, von- Kármán’s analysis for 

non-Newtonian fluids has been scarcely attempted. Andersson et al. [16] modeled the power-law 

fluid flow caused by a rotating disk. They proposed a reliable numerical approach that yielded 

accurate numerical calculations even for highly shear-thickening fluids. Attia [17] addressed ion-

slip effects on swirling flow of Reiner-Rivlin fluid caused by a rotating disk. Griffiths [18] 

considered the rotating flow of generalized Newtonian fluid obeying Carreau viscosity model 

which is practically applicable for vanishing small and very large shear rates. A mathematical 

model for flow of power-law fluid induced by a rotating disk having variable thickness was 

developed by Xun et al. [19]. Very recently, Muthtamilselvan [20] described thermophoretic 

diffusion in steady micropolar fluid flow due to rotating disk. However modest attention is paid 

towards the treatment of von-Kármán flow problem involving non-Newtonian fluids.Heat 
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transfer to von Kármán flow of power-law fluid was considered by Ming et al. [21] through a 

generalized Fourier model based on temperature dependent thermal conductivity. 

Fluids such as large molecular weight polymers that do not follow the Newtonian constitutive 

relation are frequently encountered in chemical and plastic industries. Paints, clay, nylon, 

slurries, detergents, blood, lubricants, colloids, melted chocolate, egg whites, mayonnaise, 

gelatin etc. exhibit non-Newtonian behavior. The stress inside viscoelastic fluids does not vanish 

instantly upon the removal of stress due to sustained stress by intermolecular structure. This 

unique characteristic is termed as memory effect. The non-Newtonian fluid model given by 

Reiner [22] and Rivlin [23] can adequately predict flow behaviors of many geological and 

biological materials as well as many food products and polymers. A few recent examples can be 

found through [24-30]. 

Among various classes of non-Newtonian materials are those exhibiting viscoplastic properties 

due to their ability to deform only if the shear stress reaches a certain minimum value called 

yield stress. Waxy crude oils, paints, jellies, emulsions, pastes and foams are common 

viscoplastic materials. Bingham fluid model is perhaps the simplest possible representation of 

the viscoplastic behavior. On the other hand, heat transfer phenomenon is associated with fluid 

flows in wide spectrum of engineering and geophysical applications. Heat transfer plays 

enormous role in many industrial sectors such as in energy production, in automotive industry, in 

chemical and food processing industries, in home appliances and in aerospace engineering. 

Ahmadpour and Sadeghy [31] explored the von-Kármán problem for Bingham fluids. Their 

analysis revealed that yield stress in Bingham fluid contributes to a growth in minimum torque 

needed to maintain steady disk rotation. Similar problem was re-investigated in a later paper by 

Guha and Sengupta [34] with a focus on different computational approaches. Very recently, 

Tabassum and Mustafa [35] examined the von-Kármán flow of Reiner-Rivlin fluid subject to 

partial slip using shooting method.  
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1.5 Numerical methods 

 

1.5.1 Shooting method 

Shooting method is a numerical technique which is utilized to solve the non-linear boundary 

value problem. At first, the boundary value problem (BVP) is changed into the initial value 

problem (IVP). 

Let us consider the second order ordinary differential equation; 

𝑝′′ = 𝑓(𝑥, 𝑝, 𝑝′),                 𝑎 ≤ 𝑥 ≤ 𝑏  (1.21) 

 

subject to the boundary conditions: 

𝑝(𝑎) = 𝐶1,   𝑝(𝑏) = 𝐶2 (1.22) 

 

where 𝑎, 𝑏, 𝐶1 and 𝐶2 are constants. 

To reduce the second order ODE into first order, we substitute; 

𝑥1 = 𝑝,   𝑥1
′ = 𝑥2 = 𝑝′ (1.23) 

 

Thus the Eq. (1.22) and (1.23) takes the form; 

𝑥1(𝑎) = 𝐶1,    𝑥1
′ (𝑎) = 𝜆(unknown) (1.24) 

 

Here 𝜆 is the unknown parameter whose value has to be determined. 

lim
𝑘→∞

𝑝(𝑏, 𝜆𝑘) = 𝑝(𝑏) = 𝐶2 (1.25) 

A sequence of 𝜆1, 𝜆2,𝜆3, … is produced through 𝜆𝑜 as an initial guess. The iteration must stop 

when; 

𝑝(𝑏,𝜆) − 𝐶2 = 0 = Φ(𝜆) (1.26) 
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We get the solution for (1.23) and (1.24) through RK-5 by taking 𝜆𝑜 as initial value. After 

implementing RK-5, we take into account the Newton’s method. Newton’s Raphson formula is 

employed to generate the sequence. It is defined as; 

 

𝜆𝑛+1 = 𝜆𝑛 −
Φ(𝜆𝑛)
𝑑Φ(𝜆𝑛 )

𝑑𝜆

 
(1.27) 

 

1.5.2 bvp4c 

A programming in MATLAB requires a guess to solve the boundary value problem (BVP). 

bvp4c solver of commercial software MATLAB is very effective to solve the BVP. As shooting 

technique is not as vigorous as collocation or finite difference method, we have used bvp4c. This 

technique is based on the collocation method which gives solution on the mesh  𝑥𝑖  (𝑖 =

1,2, ⋯ 𝑁). For the sake of accuracy a different step size can also be used. In contrast to shooting 

method the solution in bvp4c is estimated over the entire interval and the boundary conditions 

are also taken into account all the time.  [39]. 
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Chapter 2 

 

 

Numerical solutions for von-Kármán flow of 

Reiner-Rivlin fluid with slip conditions 

 

2.1 Introduction 

This chapter deals with the partial slip flow of Reiner-Rivlin fluid induced by a rough rotating 

disk. Heat transfer is also inspected by assuming more general temperature jump condition. The 

constitutive relations in Reiner-Rivlin fluid lead to a coupled and strongly non-linear differential 

system. A convenient numerical treatment is invoked to solve the resulting similarity equations 

for broad ranges of non-Newtonian fluid parameter and slip coefficients. Our main interest is to 

predict the behaviors of fluid elasticity and wall slip coefficients on the von-Kármán flow 

problem. Expressions of wall skin friction and surface heat transfer are calculated and 

deliberated for broad parameter values. Different from radial and axial velocities, tangential 

velocity appears to increase as Reiner-Rivlin fluid parameter (𝐾) increases. Reduction in surface 

drag coefficient, which is vital in some applications, can be accomplished by increasing the 

parameter 𝐾. Volumetric flow rate is also inversely proportional to the parameter 𝐾. However, 

heat transfer rate diminishes when parameter 𝐾 enlarges. We also conclude that larger torque 

would be required to keep steady rotation of the disk for higher values of wall slip coefficients. 

 

2.2 Problem formulation 

Consider an incompressible Reiner-Rivlin fluid occupying semi-infinite region above a disk  
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(with large radius 𝑅) residing in the plane 𝑧 = 0. The disk is in a state of rigid body rotation 

about the axis 𝑟 = 0 with uniform angular velocity 𝜔 that sets up a swirling flow in the 

neighboring fluid layers. Let (𝑢, 𝑣, 𝑤) be the velocities along (𝑟,𝜑,𝑧) directions respectively. 

Because of the axial symmetry, the velocity components are assumed to be 𝜑-independent. 

Partial slip conditions are treated. According to Reiner [23] and Rivlin [24], the stress tensor has 

the following form: 

𝜏𝑖𝑗 = −𝑝𝛿𝑖𝑗 + 𝜇𝑒𝑖𝑗 + 𝜇𝑐𝑒𝑖𝑘𝑒𝑘𝑗 ;  𝑒𝑗𝑗 = 0, (2.1) 

in which 𝑝 represents pressure, 𝜇 is the co-efficient of dynamic viscosity, 𝜇c represents the cross-

viscosity coefficient, 𝛿𝑖𝑗 is the Kronecker symbol and 𝑒𝑖𝑗 = ( 𝜕𝑢𝑖/𝜕𝑥𝑗 + 𝜕𝑢𝑗/𝜕𝑥𝑖) denotes the 

strain rate tensor. Relevant equations describing fluid motion and heat transfer over a rotating 

disk are given below: 

𝜕𝑢

𝜕𝑟
+

𝑢

𝑟
+

𝜕𝑤

𝜕𝑧
= 0, 

(2.2) 

𝜌 (𝑢
𝜕𝑢

𝜕𝑟
+ 𝑤

𝜕𝑢

𝜕𝑧
−

𝑣2

𝑟
) =

𝜕𝜏𝑟𝑟

𝜕𝑟
+

𝜕𝜏𝑟𝑧

𝜕𝑧
+

𝜏𝑟𝑟 − 𝜏𝜑𝜑

𝑟
,  

(2.3) 

𝜌 (𝑢
𝜕𝑣

𝜕𝑟
+ 𝑤

𝜕𝑣

𝜕𝑧
+

𝑢𝑣

𝑟
) =

1

𝑟2

𝜕

𝜕𝑟
(𝑟2 𝜏𝑟𝜑) +

𝜕𝜏𝑧𝜑

𝜕𝑧
+

𝜏𝑟𝜙 − 𝜏𝜙𝑟

𝑟
, 

(2.4) 

𝜌 (𝑢
𝜕𝑤

𝜕𝑟
+ 𝑤

𝜕𝑤

𝜕𝑧
) =

1

𝑟

𝜕(𝑟𝜏𝑟𝑧)

𝜕𝑟
+

𝜕𝜏𝑧𝑧

𝜕𝑧
 , 

(2.5) 

𝜌𝑐𝑝 (𝑢
𝜕𝑇

𝜕𝑟
+ 𝑤

𝜕𝑇

𝜕𝑧
) = 𝑘

𝜕2 𝑇

𝜕𝑧2
, 

(2.6) 

where 𝜌 stands for fluid density, 𝑘 for thermal conductivity and 𝑐𝑝 for the specific heat capacity. 

The last term in Eq. (2.4) can be omitted by employing symmetry for the stress tensor 

components. For the present flow i.e. axi-symmetric, the strain rate components are given below 

[31]: 

𝑒𝑟𝑟 = 2
𝜕𝑢

𝜕𝑟
, 𝑒𝜃𝜃 = 2

𝑢

𝑟
, 𝑒𝑧𝑧 = 2

𝜕𝑤

𝜕𝑧
, 𝑒𝑟𝜃 = 𝑒𝜃𝑟 = 𝑟

𝜕

𝜕𝑟
(

𝑣

𝑟
), 

(2.7) 

𝑒𝑧𝜃 = 𝑒𝜃𝑧 =
𝜕𝑣

𝜕𝑧
, 𝑒𝑟𝑧 = 𝑒𝑧𝑟 =

𝜕𝑢

𝜕𝑧
+

𝜕𝑤

𝜕𝑟
. 

Through definition (2.1), the stress tensor components are obtained as follows: 
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𝜏𝑟𝑟 = −𝑝 + 𝜇 (2
𝜕𝑢

𝜕𝑟
) + 𝜇𝑐 {4 (

𝜕𝑢

𝜕𝑟
)

2

+ (
𝜕𝑣

𝜕𝑟
−

𝑣

𝑟
)

2

+ (
𝜕𝑢

𝜕𝑧
+

𝜕𝑤

𝜕𝑟
)

2

}, 
(2.8) 

𝜏𝑧𝑟 = 𝜇 (
𝜕𝑢

𝜕𝑧
+

𝜕𝑤

𝜕𝑟
)

+ 𝜇𝑐 {(2
𝜕𝑢

𝜕𝑟
) (

𝜕𝑢

𝜕𝑧
+

𝜕𝑤

𝜕𝑟
) + (

𝜕𝑣

𝜕𝑟
−

𝑣

𝑟
) (

𝜕𝑣

𝜕𝑧
) + (

𝜕𝑢

𝜕𝑧
+

𝜕𝑤

𝜕𝑟
) (2

𝜕𝑤

𝜕𝑧
)}, 

 

(2.9) 

𝜏𝜑𝜑 = −𝑝 + 𝜇 (
2𝑢

𝑟
) + 𝜇𝑐 {

4𝑢2

𝑟2
+ (

𝜕𝑣

𝜕𝑟
−

𝑣

𝑟
)

2

+ (
𝜕𝑣

𝜕𝑧
)

2

}, 
(2.10) 

𝜏𝑟𝜑 = 𝜇 (
𝜕𝑣

𝜕𝑟
−

𝑣

𝑟
) + 𝜇𝑐 {(2

𝜕𝑢

𝜕𝑟
) (

𝜕𝑣

𝜕𝑟
−

𝑣

𝑟
) + (

𝜕𝑣

𝜕𝑟
−

𝑣

𝑟
) (

2𝑢

𝑟
) + (

𝜕𝑢

𝜕𝑧
+

𝜕𝑤

𝜕𝑟
) (

𝜕𝑣

𝜕𝑧
)}, 

(2.11) 

𝜏𝑧𝜑 = 𝜇
𝜕𝑣

𝜕𝑧
+ 𝜇𝑐 {(

𝜕𝑣

𝜕𝑟
−

𝑣

𝑟
) (

𝜕𝑢

𝜕𝑧
+

𝜕𝑤

𝜕𝑟
) + 2 (

𝑢

𝑟
) (

𝜕𝑣

𝜕𝑧
) + 2 (

𝜕𝑣

𝜕𝑧
) (

𝜕𝑤

𝜕𝑧
)}, 

(2.12) 

𝜏𝑧𝑧 = −𝑝 + 𝜇 (2
𝜕𝑤

𝜕𝑧
) + 𝜇𝑐 {(

𝜕𝑢

𝜕𝑧
+

𝜕𝑤

𝜕𝑟
)

2

+ (
𝜕𝑣

𝜕𝑧
)

2

+ 4 (
𝜕𝑤

𝜕𝑧
)

2

}. 
(2.13) 

Assuming no penetration at the disk, partial slip conditions for present flow can be expressed as 

follows: 

𝑢(𝑟,0) = 𝛽1𝜏𝑟𝑧(𝑟,0) ,𝑣(𝑟, 0) = 𝛽2𝜏𝑧𝜑 (𝑟,0) + 𝑟𝜔 ,𝑤 = 0 ,  

𝑇(𝑟, 0) = 𝑇𝑤 + 𝛽3𝑇𝑧(𝑟, 0).  
(2.14a) 

in which 𝛽1 denotes the radial slip coefficient, 𝛽2 is the azimuthal slip coefficient and 𝛾 

represents the thermal slip coefficient. Since lateral velocities and temperature difference are 

zero far from the disk so we have  

𝑢(𝑟, 𝑧) → 0 , 𝑣(𝑟, 𝑧) → 0, 𝑇(𝑟, 𝑧) → 𝑇∞as 𝑧 → ∞. (2.14b) 

Let us introduce the following self-similar transformations in terms of dimensionless distance 

𝜁 = (𝜔/𝜈)1/2𝑧: 

(𝑢,𝑣, 𝑤) = (𝑟𝜔𝐹′(𝜁),𝑟𝜔𝐺(𝜁),−2√𝜈𝜔 𝐹(𝜁)),   

(𝑝, 𝑇) = (𝑝∞ − ω𝜇𝑃(𝜁),𝑇∞ + (𝑇𝑤 − 𝑇∞)𝜃(𝜁)), 
(2.15) 

where prime indicates differentiation with respect to 𝜁. Note that Eq. (2.1) is identically satisfied 

by transformations (2.15) and Eqs. (2.2)-(2.4) convert into the following ordinary differential 

equations: 



15 
 

𝐹 ′′′ − 𝐹 ′2 + 2𝐹𝐹 ′′ + 𝐺2 + 𝐾(𝐹 ′′2 − 2𝐹 ′𝐹′′′ − 𝐺′2) = 0, (2.16) 

𝐺′′ − 2𝐹 ′𝐺 + 2𝐹𝐺′ + 2𝐾(𝐹 ′′𝐺′ − 𝐹 ′𝐺′′) = 0, (2.17) 

𝜃′′ + 2𝑃𝑟𝐹𝜃′ = 0. (2.18) 

In the above equations, 𝑃𝑟 = 𝜇𝑐𝑝/𝑘 denotes the Prandtl number and 𝐾 = 𝜇𝐶 𝜔/𝜇 is material 

parameter of Reiner-Rivlin fluid. Let us define: 

𝜆1 = 𝜌(𝜔𝜈)1/2𝛽1,𝜆2 = 𝜌(𝜔𝜈)1/2𝛽2, 𝛾 = (𝜔/𝜈)1/2 𝛽3. (2.19) 

Using (2.15), the boundary conditions (2.14a) and (2.14b) are converted into the following 

forms: 

𝐹 ′(0) = 𝜆1[𝐹′′(0) − 2𝐾𝐹 ′(0)𝐹′′(0)] ,𝐺(0) = 𝜆2[𝐺′(0) − 2𝐾𝐺′(0)𝐹′(0)] + 1, 

  𝜃(0) = 1 + 𝛾𝜃′(0), 

(2.20a) 

𝐹 ′ → 0,   𝐺 → 0 ,𝜃 → 0    𝑎𝑠   𝜁 → ∞. (2.20b) 

The presence of viscosity near the disk produces tangential stress at the disk which resists its 

rotation. Torque 𝑇0 needed to maintain steady rotation of disk with radius 𝑅 is measured through 

the definite integral: 

𝑇0 = − ∫ 𝜏𝑧𝜑|
𝑧=0

(2𝜋𝑟2 )𝑑𝑟 =  −
𝜋𝜌𝜔

2
√𝜈𝜔𝑅4𝐺′(0)

𝑅

0

 . (2.21) 

Quantity of prime interest in this work is the skin friction coefficient 𝐶𝑓 defined as under: 

𝐶𝑓 =  

√𝜏𝑟
2 + 𝜏𝜑

2

𝜌(𝑟Ω)2
, 

(2.22) 

where 𝜏𝑟  and 𝜏𝜙  denote the radial and azimuthal wall stresses. Through variables (2.15), Eq. 

(2.22) assumes the following form: 

𝐶𝑓 = (
𝜔𝑟2

𝜈
)

−1/2 

√(𝐹 ′′(0))2 + (𝐺′(0))
2
. (2.23) 

Local Nusselt number 𝑁𝑢 can be obtained from the Fourier law as follows: 

𝑁𝑢 =
𝐿𝑞𝑤

𝑘(𝑇𝑤 − 𝑇∞)
= −𝜃′(0). 

(2.24) 

 

 where 𝑞𝑤 denotes the wall heat flux and  𝐿 =√𝜈/𝜔  is the length scale. 
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Additionally, the total amount of fluid drawn in the axial direction can be measured through 

𝐹(∞). Thus numerical computations for 𝐹 ′′(0),𝐺′(0),𝜃′(0) and 𝐻(∞) will be made to 

understand physical aspects of the problem.  

 

2.3 Numerical approach 

The governing equations posed by (2.16)-(2.18) together with the conditions (2.20a) and (2.20b) 

is a boundary value problem having no exact solution near to sight. Thus we take into account 

the conventional shooting approach to seek a numerical solution of the problem. Let us convert 

Eqs. (2.16)-(2.18) into a system of first-order equations by substituting 𝑧1 = 𝐹, 𝑧2 =  𝐹 ′ , 𝑧3 =

𝐹 ′′ , 𝑧4 = 𝐺, 𝑧5 = 𝐺′ , 𝑧6 =  𝜃, 𝑧7 = 𝜃′. We obtain the following: 

𝑧1
′ = 𝑧2; 𝑧1(0) = 0, 

(2.25) 

𝑧2
′ = 𝑧3;  𝑧2(0) = 𝜆1[𝑧3(0) − 2𝐾𝑧2(0)𝑧3(0)] , 

𝑧3
′ =

𝑧2
2 − 2𝑧1𝑧3 − 𝑧4

2 − 𝐾𝑧3
2 + 𝐾𝑧5

2

1 − 2𝐾𝑧2

 ; 
𝑧3(0) = 𝑢(1), 

𝑧4
′ = 𝑧5; 𝑧4(0) = 𝜆2[𝑧5(0) − 2𝐾𝑧5(0)𝑧2(0)] + 1, 

𝑧5
′ =

2𝑧2𝑧4 − 2𝑧1𝑧5 − 2𝐾𝑧3𝑧5

1 − 2𝐾𝑧2

; 
𝑧5(0) = 𝑢(2), 

𝑧6
′ = 𝑧7;   𝑧6(0) = 1 + 𝛾𝑧7(0), 

𝑧7
′ = −2𝑃𝑟𝑧1𝑧7; 𝑧7(0) = 𝑢(3). 

To solve the above system numerically, we implement Runge-Kutta method of fifth order 

considering suitable guesses for the unknown slopes 𝑢(1),𝑢(2) and 𝑢(3). The exact values of 

these slopes are iteratively computed through Newton’s method. In the course of computations, 

the step size ℎ = 0.01 is chosen while residual of boundary conditions at infinity is assumed to 

be 10−5. 

 

2.4 Results and discussion 

Slip flow of Reiner-Rivlin fluid caused by an infinite rotating disk is modeled here. Additionally, 

general temperature jump conditions are treated for analyzing the thermal field. Numerical 
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calculations are successfully carried out for wide ranges of wall roughness parameters 𝜆1 and 

𝜆2and Reiner-Rivlin fluid parameter 𝐾. Validation of the numerical scheme is made by 

comparing the computational results of 𝐹 ′′(0),𝐺′(0) and 𝐹(∞) with available study [11] in the 

Newtonian fluid case. Table 2.1 demonstrates that our numerical findings are virtually similar to 

those found by [11] for all values of wall roughness parameters.  

Table 2.2 computes the radial wall stress 𝐹 ′′(0)azimuthal wall stress 𝐺′(0)and entrainment 

velocity 𝐹(∞)for various parameter values. As described in [31], the entrainment velocity 𝐹(∞) 

measures the volumetric flow rate of the von-Kármán problem. Also tangential stress at the wall 

measures the driving torque on the disk of radius 𝑅. The results predict that driving torque in 

von-Kármán’s problem can be reduced by considering viscoelastic effects. However, an 

increment in either radial or azimuthal slip coefficient substantially elevates the resisting torque 

as well as the skin friction factor. This implies that one requires larger torque at the shaft of the 

disk if the azimuthal wall coefficient is higher. 

Table 2.3 includes the local Nusselt number data obtained at different values of Reiner-Rivlin 

fluid parameter 𝐾 and thermal slip parameter 𝛾. It can be realized that by increasing elasticity 

parameter 𝐾 heat transfer rate should elevate. However, the influence of thermal slip coefficient 

appears to be qualitatively opposite to that of parameter 𝐾. Thus we conclude that heat 

penetration depth shortens when thermal slip coefficient enlarges. As Prandtl number 𝑃𝑟 

enlarges, heat transfer rate grows further as anticipated. 

In Figs. 2.1a-2.1d, velocity and temperature distributions are obtained for various wall roughness 

parameters in Newtonian fluid case (𝐾 = 0). In these Figures, it is assumed that radial and 

azimuthal slip coefficients are equal. In absence of slip, the radial velocity profile 𝐹′ starts from 

zero at the disk and reaches a maximum value and then asymptotically vanishes outside the 

boundary layer. It can be noticed that, that location of maximum velocity moves near the wall as 

slip effect gets strengthened. Cross-over in the curves of 𝐹′ is also apparent near 𝜁 = 4 depicting 

that radial velocity decreases near the disk and increases away from it with an increment in wall 

roughness parameters. Wall slip also tends to reduce the induced axial motion far from the disk 

but not near the wall regions. The azimuthal velocity component 𝑣 is also reduced when wall 

roughness parameters are simultaneously increased. This is because the rotational effect of the 

disk is partially transferred in the neighboring fluid layers because of which azimuthal velocity 
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component decreases. Dissimilar to the velocity profiles, temperature profiles appear to increase 

for increasing values of wall roughness parameters. Figs. 2.2a-2.2d include the corresponding 

results in case of Reiner-Rivlin fluid with 𝐾 = 1. It is intriguing to witness that the variation in 

velocity and temperature profiles with 𝜆1 and 𝜆2 appears to be of similar magnitude in 

Newtonian and Reiner-Rivlin fluids. 

Figs. 2.3a-2.3d reveal the velocity and temperature curves for different values of Reiner-Rivlin 

fluid parameter 𝐾 in uniform roughness case (𝜆1 = 𝜆2 = 1). Radial velocity profile, represented 

by function 𝐹′, decreases near to the disk and increases away from it when 𝐾 is incremented. The 

location of absolute maximum also occurs at a lower vertical distance when larger 𝐾 is 

considered. Axial flow decelerates as parameter 𝐾 enlarges. Physically, less amount of fluid is 

drawn axially and pushed away in the radial direction as viscoelastic effects are enhanced. It can 

be concluded that centrifugal fan like behavior in classical von-Kármán problem is also 

preserved in the non-Newtonian case. Dissimilar to the radial and axial velocity distributions, the 

azimuthal velocity profile 𝐺 grows for increasing values of Reiner-Rivlin fluid parameter 𝐾. 

Like azimuthal velocity component 𝐺, temperature 𝜃 is also seen to increase as parameter 𝐾 is 

increased. The results corresponding to the no-slip case are displayed in Figs. 2.4a-2.4d. The 

parameter range for Reiner-Rivlin fluid parameter 𝐾 is similar to that of Figs. 2.3a-2.3d. 

Although the effects of 𝐾 on profiles are similar to those encountered in the slip case, but the 

effects appear to be prominent in the no-slip case.  

Figs. 2.5a and 2.5b display the evolution of temperature profiles for different values of thermal 

slip parameter 𝛾. In absence of temperature jump, the profile begins from unity at the disk and 

approaches to zero value in asymptotic fashion. It is pertinent to mention that viscous dissipation 

effect, which is expected in high speed flows, is ignored here. Consideration of temperature jump 

allows the heat to be partially transferred in the fluid layers which in turn reduces fluid 

temperature. Increasing Prandtl number also leads to a reduction in heat penetration depth which 

yields thinner temperature profiles.  

Table 2.1: Comparison of present findings with those of Turkyilmazoglu and Senel [11] in 

uniform roughness case (𝜆1 = 𝜆2)with 𝐾 = 0. 
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𝜆1 𝜆2 𝐹 ′′(0)a 𝐺′(0)a 𝐹(∞)a 𝐹 ′′(0)b 𝐺′(0)𝑏 𝐹(∞)𝑏 

0 0 0.5102326 -0.6159220 0.442237 0.5102332 -0.6159219 0.442228 

1 1 0.1279236 -0.3949276 0.394738 0.1279241 -0.3949280 0.394713 

5 5 0.0185885 -0.1433882 0.291882 0.0185883 -0.1433879 0.291842 

10 10 0.0068125 -0.0810300 0.243792 0.0068125 -0.0810301 0.243797 

20 20 0.0023615 -0.0437884 0.199987 0.0023615 -0.0437883 0.199904 

40 40 0.0007901 -0.0229953 0.162113 0.0007899 -0.0229951 0.160963 

a Denotes results obtained by Turkyilmazoglu and Senel [11]. 

b Denotes results obtained by present authors. 

Table 2.2: Computational results of 𝐹 ′′(0),𝐺′(0),𝐹(∞) and √(𝐹′′(0))2 + (𝐺′(0))2 for various 

values of 𝜆1, 𝜆2 and 𝐾. 

𝜆1 𝜆2 𝐾 𝐹(∞) 𝐹′′(0) 𝐺′(0) √(𝐹′′(0))2 + (𝐺′(0))2 

0 1 1 0.311709 0.207331 -0.358186 0.413859 

1 1 1 0.344454 0.115547 -0.434954 0.450038 

5 1 1 0.370581 0.046260 -0.495405 0.497560 

10 1 1 0.377733 0.0269286 -0.512596 0.513302 

20 1 1 0.382165 0.014736 -0.523517 0.523724 

40 1 1 0.384371 0.007747 -0.529797 0.529853 

1 0 1 0.391597 0.164954 -0.815806 0.832315 

1 1 1 0.344454 0.115547 -0.434952 0.450038 

1 5 1 0.259799 0.053222 -0.149826 0.158998 

1 10 1 0.217807 0.033271 -0.083031 0.089448 

1 20 1 0.164482 0.019748 -0.044254 0.048460 

1 40 1 0.130641 0.011342 -0.023059 0.025689 

1 1 0 0.394633 0.127922 -0.394925 0.419473 

1 1 2 0.292088 0.077918 -0.424422 0.431515 

1 1 4 0.224873 0.033996 -0.351571 0.353210 

1 1 6 0.187214 0.020212 -0.304642 0.305309 

1 1 8 0.166741 0.014231 -0.272431 0.272802 
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Table 2.3: Results of 𝜃′(0) for changing values of 𝐾, 𝛾 and 𝑃𝑟 when 𝜆1 =  𝜆2 = 1. 

𝐾 𝛾 𝑃𝑟 𝜃′(0) 

0 1 7 -0.533151 

2 1 7 -0.453112 

4 1 7 -0.370251 

6 1 7 -0.322063 

8 1 7 -0.289552 

1 0 7 -1.003961 

1 1 7 -0.500988 

1 5 7 -0.166776 

1 10 7 -0.090941 

1 20 7 -0.047628 

1 40 7 -0.024392 

1 1 2 -0.343431 

1 1 3 -0.394310 

1 1 7 -0.500988 

1 1 10 -0.544940 
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Fig. 2.1: Velocity profiles and temperature profiles for various values of wall roughness 

parameters 𝜆1 and 𝜆2 in Newtonian fluid case (𝐾 = 0) with 𝑃𝑟 = 7and 𝛾 = 1. 
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Fig. 2.2: Results of velocities and temperature for various values of wall roughness parameters 

𝜆1 and 𝜆2 in non-Newtonian fluid case (𝐾 = 1) with 𝑃𝑟 = 7and 𝛾 = 1. 
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Fig. 2.3: Profiles of velocity and temperature for various values of Reiner-Rivlin fluid parameter 

𝐾 when 𝜆1 = 𝜆2 = 𝛾 = 1and 𝑃𝑟 = 7. 
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Fig. 2.4: Profiles of velocity and temperature for various values of Reiner-Rivlin fluid parameter 

𝐾 in no-slip case when 𝛾 = 1and 𝑃𝑟 = 7. 

  
Fig. 2.5: Profiles of temperature 𝜃 for different values of (a) Prandtl number 𝑃𝑟 and (b) thermal 

slip parameter 𝛾. 
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2.5 Conclusions 

Partial slip flow along with heat transfer of Reiner-Rivlin fluid induced by a rough rotating disk 

is explored. With the aid of von-Kármán self-similar transformations, similarity solutions are 

found for full range of slip coefficients. The numerical solution enabled us to examine the role of 

main physical attributes of the problem namely viscoelasticity and wall roughness effects. 

Following observations are made on the basis of present analysis: 

1. Radially outward flow near the disk developed by disk centrifugal effect decelerates as 

the Reiner-Rivlin fluid parameter 𝐾is incremented. 

2. Reductions in driving torque and skin friction factor are anticipated for increasing 

viscoelastic effects. 

3. For increasing wall roughness parameters𝜆1and 𝜆2, increasing trends in resisting torque 

and skin friction factor are found. Entrainment velocity appears to reduce as the slip 

effect becomes stronger. 

4. A decrease in the radial velocity profile near the disk  and increase by moving away from 

it  is observed as the wall roughness parameters increase. 

5. Temperature profile is inversely proportional to the wall roughness parameters. Thermal 

boundary layer expands when Reiner-Rivlin fluid parameter 𝐾 increases. 

6. Thermal boundary layer shrinks and heat transfer rate enhances as the thermal slip 

parameter is incremented. 

7. Viscoelastic effect enhances temperature profile but reduces the magnitude of local 

Nusselt number. 
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Chapter 3 

 

 

Heat transfer effects on laminar flow of Bingham 

fluid by a rotating disk with suction: Entropy 

generation analysis 

 

3.1 Introduction 

In this chapter we discuss heat transfer to swirling flow of viscoplastic fluid bounded by a 

permeable rotating disk. Problem formulation is made through constitutive relations of Bingham 

fluid model. Viscous dissipation effects are also factored in the analysis. Entropy production 

analysis is made which is yet to be explored for the von-Kármán flow of non-Newtonian fluids. 

Having found the similarity equations, these have been dealt numerically for broad parameter 

values. The solutions are remarkably influenced by wall suction parameter (𝐴) and Bingham 

number (𝐵𝑛) proportional to the fluid yield stress. Akin to earlier numerical results, thermal 

boundary layer appears to suppress upon increasing the strength of wall suction. Thermal 

penetration depth is much enhanced when fluid yield stress becomes large. Higher heat transfer 

rate can be accomplished by employing higher suction at the disk. However, a deterioration in 

heat transfer is anticipated by increasing fluid yield stress. Current numerical results are in 

perfect line with those of an existing article in limiting sense. 

 

3.2 Problem formulation 

Suppose a permeable disk of large radius 𝑅 lying in the plane 𝑧 = 0 rotates with constant angular  
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velocity in an otherwise stationary viscoplastic fluid obeying Bingham fluid model. All three 

velocities 𝑢, 𝑣 and 𝑤 will be non-zero and, owing to the rotational symmetry, these will not 

change with respect to azimuthal coordinate 𝜃. The disk temperature is considered as constant at 

 𝑇𝑤 while 𝑇∞ denotes the temperature outside the thermal boundary layer. Heat generation due to 

fluid friction will be factored in the analysis. Relevant equations describing fluid motion and heat 

transfer above a rotating disk can be cast into the following forms: 

𝜕𝑢

𝜕𝑟
+

𝑢

𝑟
+

𝜕𝑤

𝜕𝑧
= 0, 

(3.1) 

𝜌 (𝑢
𝜕𝑢

𝜕𝑟
+ 𝑤

𝜕𝑢

𝜕𝑧
−

𝑣2

𝑟
) = −

𝜕𝑝

𝜕𝑟
+

𝜕𝜏𝑟𝑟

𝜕𝑟
+

𝜕𝜏𝑟𝑧

𝜕𝑧
+

𝜏𝑟𝑟 − 𝜏𝜃𝜃

𝑟
, 

(3.2) 

𝜌 (𝑢
𝜕𝑣

𝜕𝑟
+ 𝑤

𝜕𝑣

𝜕𝑧
+

𝑢𝑣

𝑟
) =

1

𝑟2

𝜕

𝜕𝑟
(𝑟2𝜏𝑟𝜃) +

𝜕𝜏𝑧𝜃

𝜕𝑧
+

𝜏𝑟𝜃 − 𝜏𝜃𝑟

𝑟
, 

(3.3) 

𝜌 (𝑢
𝜕𝑤

𝜕𝑟
+ 𝑤

𝜕𝑤

𝜕𝑧
) = −

𝜕𝑝

𝜕𝑧
+

1

𝑟

𝜕

𝜕𝑟
(𝑟𝜏𝑟𝑧) +

𝜕𝜏𝑧𝑧

𝜕𝑧
 , 

(3.4) 

Considering no-slip at the disk, one has: 

𝑢 = 0, 𝑣 = 𝑟ω,𝑤 = −𝑤𝑜   𝑎𝑡 𝑧 → 0, (3.5) 

And fluid velocities vanish outside the boundary layer, so we have: 

𝑢 → 0, 𝑣 → 0  𝑎𝑠 𝑧 → ∞. (3.6) 

Now Cauchy stress tensor for Bingham fluid is given by [31]: 

𝜏𝑖𝑗 = {
(

𝜏𝑦

𝛾̇
+ 𝜇𝑝) 𝑒𝑖𝑗 = 𝜂(𝛾̇)𝑒𝑖𝑗  for 𝜏 ≥ 𝜏𝑦 ,

      0                                      for 𝜏 < 𝜏𝑦 ,
 

(3.7) 

where  𝛾̇ = (1/2 𝑒𝑖𝑗𝑒𝑗𝑖)
1/2  is the second invariant of the deformation rate tensor in which the 

terms 𝑒𝑖𝑗 = ( 𝜕𝑢𝑖/𝜕𝑥𝑗 + 𝜕𝑢𝑗/𝜕𝑥𝑖)  are components of the strain rate tensor. 

Through Eq. (3.7), the components of stress tensor 𝜏 are expressed below: 

𝜏𝑟𝑟 = 𝜂 (2
𝜕𝑢

𝜕𝑟
)  ;  𝜏𝜃𝜃 = 𝜂 (2

𝑢

𝑟
) ;  𝜏𝑧𝑧 = 𝜂 (2

𝜕𝑤

𝜕𝑧
) ; 

 

(3.8) 

𝜏𝑟𝜃 = 𝜂 {𝑟
𝜕

𝜕𝑟
(

𝑣

𝑟
)} ;  𝜏𝜃𝑧 = 𝜂 (

𝜕𝑣

𝜕𝑧
) ; 𝜏𝑟𝑧 = 𝜂 (

𝜕𝑢

𝜕𝑧
+

𝜕𝑤

𝜕𝑟
), 

 

And apparent viscosity 𝜂(𝛾̇)  has the form: 
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𝜂(𝑟, 𝑧) = 𝜇𝑝 +
𝜏𝑦

√2 (
𝜕𝑢

𝜕𝑟
)

2

+ 2 (
𝑢

𝑟
)

2

+ 2 (
𝜕𝑤

𝜕𝑧
)

2

+ [𝑟
𝜕

𝜕𝑟
(

𝑣

𝑟
)]

2

+ (
𝜕𝑣

𝜕𝑧
)

2

+ (
𝜕𝑢

𝜕𝑧
+

𝜕𝑤

𝜕𝑟
)

2
, (3.9) 

By making use of von-Kármán transformations 

𝜁 =
𝑧

√𝜈𝑝/ω
, (3.10) 

(𝑢, 𝑣,𝑤) = (𝑟ω𝐹(𝜁),𝑟ω𝐺(𝜁),𝐻(𝜁)√𝜈𝑝ω, ), 

(𝑝, 𝑇) = (𝑝∞ − ω𝜇𝑃(𝜁),𝑇∞ + (𝑇𝑤 − 𝑇∞)𝜃(𝜁)), 

(3.11) 

where 𝜁 is the dimensionless distance that is measured along the rotation axis, the respective 

equations transform into the following locally similar equations: 

2𝐹 + 𝐻 ′ = 0, (3.12) 

𝐹2 − 𝐺2 + 𝐻𝐹 ′

= (1 +
𝐵𝑛

∧
) 𝐹 ′′ −

2𝐵𝑛

∧3
𝐹(𝐺′2 + 𝐹 ′2)

−
𝐵𝑛

2 ∧3
𝐹 ′[8𝐹𝐹 ′ + 4𝐻 ′𝐻′′ + 2𝑟∗ 2𝑅𝑒(𝐺′𝐺′′ + 𝐹 ′𝐹 ′′)], 

 

(3.13) 

2𝐹𝐺 + 𝐻𝐺′ = (1 +
𝐵𝑛

∧
) 𝐺′′ −

𝐵𝑛

2 ∧3
𝐺′[8𝐹𝐹 ′ + 4𝐻 ′𝐻′′ + 2𝑟∗ 2𝑅𝑒(𝐺′𝐺′′ + 𝐹 ′𝐹 ′′)], 

(3.14) 

where ∧≡ √4𝐹2 + 2𝐻 ′2 + 𝑅𝑒[𝑟∗ 2(𝐺′2 + 𝐹 ′2)] . 

And the boundary conditions transform into the following forms: 

𝐹(0) = 0, 𝐺(0) = 1, 𝐻(0) = −𝐴  as 𝜁 → 0, (3.15) 

𝐹 → 0  ,𝐺 → 0  as 𝜁 → ∞.  (3.16) 

In Eqs. (3.13)- (3.16), 𝐴 = 𝑤𝑜/√𝑟𝑤 is the wall suction parameter, 𝐵𝑛 = 𝜏𝑦 /𝜇𝑝𝜔 denotes the 

Bingham number and 𝑅𝑒 = 𝑅2𝜔/νp represents the Reynolds number for disk of radius  𝑅. 

 

3.2.1 Heat transfer analysis 

Heat transfer takes place as a result of difference in temperature at the disk surface and that of 

the fluid at infinity. In presence of viscous dissipation, the energy equation can be expressed in 

the form: 
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𝜌𝑐𝑝 (𝑢
𝜕𝑇

𝜕𝑟
+ 𝑤

𝜕𝑇

𝜕𝑧
) = 𝑘∇2𝑇 + Φ, 

(3.17) 

where 𝑘 stands for thermal conductivity, 𝑐𝑝 for the specific heat capacity and Φrepresents the 

viscous dissipation term given below:  

Φ = 𝜏𝑟𝑟 (
𝜕𝑢

𝜕𝑟
) + 𝜏𝜃𝜃 (

𝑢

𝑟
) + 𝜏𝑧𝑧 (

𝜕𝑤

𝜕𝑧
) + 𝜏𝑟𝜃 [𝑟

𝜕

𝜕𝑟
(

𝑣

𝑟
)] + 𝜏𝑟𝑧 (

𝜕𝑢

𝜕𝑧
+

𝜕𝑤

𝜕𝑟
) + 𝜏𝜃𝑧 (

𝜕𝑣

𝜕𝑧
). 

(3.18) 

By using 𝜃(𝜁) = (𝑇 − 𝑇∞)/(𝑇𝑤 − 𝑇∞) together with the von-Kármán transformations, equation 

(3.17) becomes, 

1

𝑃𝑟
𝜃′′ − 𝐻𝜃′ +

𝐸𝑐

𝑅𝑒
(∧ +𝐵𝑛) ∧= 0. 

(3.19) 

Here 𝑃𝑟 = 𝜇𝑐𝑝/𝑘 denotes the Prandtl number and 𝐸𝑐 = 𝑅2ω2 /𝐶𝑝∆𝑇 is the Eckert number. Eq. 

(3.19) is to be solved by the conditions: 

𝜃(0) = 1   and  𝜃(∞) = 0.   (3.20) 

 

  

3.2.2 Skin friction coefficient, Nusselt number and volumetric flow 

rate 

Quantities of engineering interest are the skin friction coefficient 𝐶𝑓: 

𝐶𝑓 =  

√𝜏𝑟
2 + 𝜏𝜑

2

𝜌(𝑟𝜔)2
, 

 

(3.21) 

where 𝜏𝑟  and 𝜏𝜙  denote the radial and azimuthal wall stresses respectively which can be 

evaluated from Eq. (3.8). Eq. (3.21) in view of transformations [31] becomes: 

𝑟∗𝐶𝑓 =
𝐵𝑛

𝑅𝑒
+ {

(𝐹′(0))2 + (𝐺′(0))
2

𝑅𝑒
}

1/2

. 

(3.22) 

Nusselt number 𝑁𝑢 measuring the importance of convective heat transfer relative to conductive 

heat transfer is defined as follows: 

𝑁𝑢 =
𝐿𝑞𝑤

𝑘(𝑇𝑤 − 𝑇∞)
, 

(3.23) 
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where 𝑞𝑤 denotes the wall heat flux. Using the length scale 𝐿 as √𝜈𝑝/𝜔, Eq. (3.23) reduces to: 

𝑁𝑢 = −𝜃′(0). (3.24) 

The pumping efficiency of the finite disk can be computed using the following definite integral 

[16]; 

𝑄 = ∫ −𝑤(∞)2𝜋𝑟𝑑𝑟 = −𝐻(∞)𝜋√𝜈𝜔
𝑟𝑜

0

𝑟𝑜
2 . 

(3.25) 

 

 

3.2.3 Entropy generation equation 

The entropy generation rate is defined as follows (see Lopez et al. [36], Hayat et al. [37], Rashidi 

et al. [38], etc.): 

𝑆̇𝑔𝑒𝑛
′′′ =

𝑘

𝑇∞
2

[(
𝜕𝑇

𝜕𝑟
)

2

+ (
1

𝑟

𝜕𝑇

𝜕𝜃
)

2

+ (
𝜕𝑇

𝜕𝑧
)

2

] +
Φ

𝑇∞

,
̇

 
(3.26) 

First part of Eq. (3.26) signifies the entropy production due to thermal irreversibility and second 

part corresponds to the fluid friction irreversibility. 

The dimensionless form of the entropy generation rate is the entropy generation number 𝑁𝐺 

which is the ratio of the actual entropy generation rate 𝑆̇′′′ to the characteristic entropy 

generation rate 𝑆̇0. It is evaluated as follows: 

𝑁𝐺 = 𝑆̇𝑔𝑒𝑛
′′′ /(𝑘ω∆𝑇/𝜈𝑇∞) = 𝛼𝜃′2 +

𝑃𝑟. 𝐸𝑐

𝑅𝑒
(∧ +𝐵𝑛) ∧, 

(3.27) 

where 𝛼 = ∆𝑇/𝑇∞ measures the wall and ambient temperature difference 
 

 
 
 

 

 

 

3.3 Numerical Method 

The normalized velocity and temperature profiles are computed from the equations (3.13)-(3.16), 

(3.19) and (3.20) by means of MATLAB routine bvp4c based on collocation formula. First we 

convert the equations (3.13)-(3.16), (3.19) and (3.20) into first order by substituting: 
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𝑌1 = 𝐹; 𝑌2 = 𝐹 ′; 𝑌3 = 𝐺; 𝑌4 = 𝐺′; 𝑌5 = 𝐻; 𝑌6 = 𝜃; 𝑌7 = 𝜃′ , (3.28) 

We obtain the following system (see Sadeghy et al. [31]): 

𝑌1
′ = 𝑌2; (3.29) 

𝑌2
′ =

1

𝐾1[𝐾2𝐾3(𝑌4
2 + 𝑌2

2) − 𝐾1]
 [2𝐾2(𝐾2𝑌4

2𝐾3 − 𝐾1)𝑌1(𝑌4
2 + 𝑌2

2) 

+𝐾2𝐾3(𝑌1
2 − 𝑌3

2)𝑌4
2 − 2𝐾2𝐾3𝑌1𝑌2𝑌3 𝑌4 + 4𝐾1(−3𝐾2𝑌2

2𝑌1 +
𝑌3

2 − 𝑌1
2

4
  −

1

4
𝑌5 𝑌2)];  

(3.30) 

𝑌3
′ = 𝑌4; (3.31) 

𝑌4
′ =

1

𝐾1[𝐾2𝐾3(𝑌4
2 + 𝑌2

2) − 𝐾1]
[−2𝐾3𝑌4𝑌2𝑌1(𝑌4

2 + 𝑌2
2)𝐾2

2 + 𝑌4 {−8𝐾2𝐾1𝑌1𝑌2 

−𝐾2(−𝑌3
2𝐾3 + 𝑌1(𝐾3𝑌1 + 4𝐾1))𝑌2 − 𝑌5𝐾1} + 2𝑌1𝑌3(𝐾2𝐾3𝑌2

2 − 𝐾1)]; 

 

(3.32) 

𝑌5
′ = −2𝑌1; (3.33) 

𝑌6
′ = 𝑌7; (3.34) 

𝑌7
′ = Pr [𝑌5 𝑌7 −

𝐸𝑐

𝑅𝑒
(∧ +𝐵𝑛) ∧] ; 

(3.35) 

where𝐾1, 𝐾2 and 𝐾3stands for: 

𝐾1 = (1 +
𝐵𝑛

∧
) , 𝐾2 =

𝐵𝑛

∧3
 , 𝐾3 = 𝑟∗ 2𝑅𝑒, 

(3.36) 

It should be remarked here that the above system with the exception of energy equation were 

presented by Sadeghy et al. [31]. 

 

3.4 Results and discussion 

Heat transfer to swirling flow of Bingham fluids along a rotating disk is modeled here. Following 

Sadeghy et al. [31], numerical integrations are carried out at  𝑟⋆ = 1, that is, at the rim of the 

disk for certain range of embedded parameters which include Eckert number 𝐸𝑐, Prandtl number 

𝑃𝑟, Bingham number 𝐵𝑛 and wall suction parameter 𝐴. Table 3.1 displays the numerical results 

of wall skin friction 𝑟⋆𝐶𝑓 at different values of Bingham number 𝐵𝑛. Since apparent viscosity in 

the present problem is given by the factor (1 + 𝐵𝑛/∧) so we predict that skin friction coefficient 

should elevate as parameter 𝐵𝑛 enlarges. Physically a growth in 𝐵𝑛 implies an elevation in fluid 
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yield stress (𝜏𝑦) which in turn results in higher resisting torque at the disk surface. In Table 3.2, 

local Nusselt number data is presented by varying the parameters 𝐵𝑛, Pr and 𝐸𝑐. Note that by 

increasing fluid yield stress (𝜏𝑦), heat transfer through the disk deteriorates significantly. As 

Prandtl number enlarges, the relative importance of momentum diffusion increases due to which 

local Nusselt number enlarges. Furthermore, it is predicted that by increasing the intensity of 

viscous dissipation the rate of heat transfer from the solid surface should decrease. 

The behavior of Bingham number 𝐵𝑛 on all three velocities (𝑢, 𝑣, 𝑤) and temperature profile 𝜃 

is portrayed through Figs. 3.1a-3.1d at a specific parameter value 𝐴 = 1. Fig. 3.1a depicts that 

radially outward flow caused by centrifugal force decelerates throughout the boundary layer by 

increasing fluid yield stress. Maximum radial velocity is attained at a higher axial distance as 

parameter 𝐵𝑛 enlarges. Fig. 3.1b displays the azimuthal velocity curves, represented by 𝐺(𝜁), for 

various values of 𝐵𝑛. It is clear that circumferential velocity grows and boundary layer expands 

where fluid yield stress is enhanced. The reduction in radial fluid motion upon increasing 𝐵𝑛 (as 

clarified in Fig. 3.1a) must be compensated by a decrease in downward axial velocity (see Fig. 

3.1c). In other words, the pumping efficiency of the disk, that depends on absolute value of 

𝐻(∞), is much reduced in the presence of yield stress. Physically the amount of fluid sucked 

from a region of lower temperature to a region of higher temperature decreases with increasing 

𝐵𝑛. As a consequence, thermal boundary layer appears to expand upon increasing fluid yield 

stress (see Fig. 3.1d). Temperature curves become thick as 𝐵𝑛 becomes large signaling a 

reduction in wall temperature gradient.  

In Figs. 3.2a-3.2d, velocity and temperature curves as functions of dimensionless axial 

coordinate 𝜁 are plotted for a variety of wall suction parameters. In existence of wall suction, 

radial velocity is decreasing compared with the case of no suction velocity (see Fig. 3.2a). The 

permeable nature of the disk also gives opposition to the induced azimuthal flow near the disk as 

clear from Fig. 3.2b. Dissimilar to the effect of Bingham number 𝐵𝑛, the amount of fluid drawn 

in the axial direction grows as wall suction becomes strong. It was shown by Turkyilmazoglu 

and Senel [11], via asymptotic expressions, that the axial velocity component becomes constant 

when sufficiently large suction velocity is imposed. The same tendency appears here since 

profile of 𝐻 transforms into a straight line as parameter 𝐴 increases. Consequently, thermal 
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boundary layer suppresses with increasing 𝐴 and magnitude of this decrease in 𝜃 becomes zero 

for sufficiently large values of 𝐴.  

Figs. 3.3a and 3.3b demonstrate the behaviors of Prandtl number𝑃𝑟 and Eckert number  𝐸𝑐 on 

temperature profile respectively. In Fig. 3.3a, the thermal boundary layer suppress by 

increasing  𝑃𝑟. This is because the importance of thermal diffusion compared to momentum 

diffusion reduces with increasing 𝑃𝑟. Also, temperature profile becomes steeper when higher 𝑃𝑟 

is considered. This signals a growth in the value of local Nusselt number. Furthermore, by 

increasing Eckert number 𝐸𝑐, heat generation due to fluid friction enhances at a given 

temperature gradient. This in turn leads to thicker temperature profiles as anticipated. 

Figs. 3.4a-3.4c display the wall skin friction 𝑟⋆𝐶𝑓, local Nusselt number 𝑁𝑢 and dimensionless 

volumetric flow rate −𝐻(∞) as functions of Bingham number 𝐵𝑛. Computations are made at 

several values of wall suction parameter 𝐴. Eq. (3.22) shows that 𝑟⋆𝐶𝑓 has a direct relation with 

Bingham number 𝐵𝑛. It is further clarified via Figs. 3.1a and 3.1b that wall velocity gradients 

𝐹 ′(0) and 𝐺′(0) are decreasing functions of 𝐵𝑛. Due to these reasons, a decreasing trend in skin 

friction coefficient becomes apparent when 𝐵𝑛 is incremented. Although, local Nusselt number 

is marginally influenced by Bingham number but it is significantly enhanced as wall suction gets 

strong. Fig. 3.4c shows that far field axial flow accelerates upon increasing wall suction 

parameter 𝐴. It should be noted that variation in 𝐻(∞) with 𝐵𝑛 becomes smaller as parameter 𝐴 

gradually increases. Eventually, the graph of 𝐻(∞) versus 𝐵𝑛 becomes a straight line in case of 

strong wall suction.  

Entropy generation number 𝑁𝐺 is a useful tool to predict spatial variation in entropy production 

across the boundary layer. Figs. 3.5a-3.5d plot the behaviors of different parameters on 𝑁𝐺. It 

appears that entropy production rate is maximum at the disk and it gradually decreases with 

increasing axial distance. A cross-over in 𝑁𝐺 profiles is apparent in Fig. 3.5a illustrating that 

entropy generation decreases near the disk and increases near the edge of boundary layer when 

fluid’s yield stress is enhanced. Fig. 3.5b elucidates that the impact of Prandtl number is to 

enhance the entropy production throughout the boundary layer. According to Fig. 3.5c, the 

entropy generation rate is much enhanced when viscous dissipation effect is present. Fig. 3.5d 

depicts that higher the fluid yield stress, greater is the entropy production within the von-

Kármán’s boundary layer. 
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Table 3.1: Effect of Bingham number 𝐵𝑛, on skin friction coefficient 𝑟⋆𝐶𝑓 when 𝑟∗ = 1, 𝑅𝑒 =

2950 and 𝐴 = 1. 

𝐵𝑛 𝐹′(0) 𝐺′(0) 𝑟⋆𝐶𝑓 

0 0.38956 -1.17522 0.02279 

10 0.32344 -1.13896 0.02519 

20 0.27708 -1.11538 0.02794 

30 0.24208 -1.09859 0.03088 

50 0.19274 -1.07631 0.03708 

 

Table 3.2: Effect of Bingham number  𝐵𝑛, Prandtl number 𝑃𝑟 and Eckert number 𝐸𝑐 on 𝜃′(0) 

when 𝑟∗ = 1, 𝑅𝑒 = 2950 and 𝐴 = 1. 

𝐵𝑛 𝑃𝑟 𝐸𝑐 𝜃′(0) 

0 5 0.2 -4.47919 

10 5 0.2 -4.31126 

20 5 0.2 -4.13891 

30 5 0.2 -3.96382 

50 5 0.2 -3.60851 

10 2 0.2 -1.77831 

10 3 0.2 -2.62405 

10 5 0.2 -4.31126 

10 7 0.2 -5.99953 

10 5 0 -5.06572 

10 5 0.2 -4.31126 

10 5 0.4 -3.55681 

10 5 0.6 -2.80235 
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Fig. 3.1: Variation in normalized velocity components (𝐹,𝐺, 𝐻) and temperature (𝜃) with 𝜁 at 

different values of Bingham number 𝐵𝑛. 
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Fig. 3.2: Variation in normalized velocity components (𝐹,𝐺, 𝐻) and temperature (𝜃) with 𝜁 for 

various values of wall suction parameter 𝐴. 
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Fig. 3.3: Temperature (𝜃) profiles with 𝜁 for various values of (a) Prandtl number 𝑃𝑟 and (b) 

Eckert number (𝐸𝑐). 
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Fig. 3.4: Effect of Bingham number  𝐵𝑛 and suction parameter  𝐴 on (a) skin friction coefficient 

𝐶𝑓, (b) local Nusselt number 𝑅𝑒−1/2𝑁𝑢 and (c) dimensionless volumetric flow rate  −𝐻(∞). 
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Fig. 3.5: Results of entropy generation number 𝑁𝐺 with 𝜁 for different values of embedded 

parameters when 𝛼 = 0.5. 

3.5  Concluding remarks 

An analysis is carried out for heat transfer in von-Kármán flow of Bingham fluid subject to wall 

suction. A similarity solution is achieved that enabled us to discover the role of yield stress on 

heat transfer and entropy generation rate. On the basis of present analysis, following 

observations are made:  

i. The retarding effect of fluid suction on the radial and azimuthal velocities is apparent 

from the numerical results. 

ii. Axial velocity profile becomes constant as the wall suction effect enlarges. Furthermore, 

there is no variation in entrainment velocity 𝐻(∞) with Bingham number 𝐵𝑛 for strong 

wall suction. 

iii. Inclusion of wall suction phenomenon leads to an enhancement in the amount of cold 

fluid that is drawn towards the disk. This results in the thinning of thermal boundary layer 

and growth in wall heat transfer rate. 

iv. The variation in solution profiles with increasing Bingham number reduces in magnitude 

when fluid is sucked at a higher velocity. 
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v. Heat penetration depth grows upon increasing fluid yield stress. This effect accompanies 

with lower heat transfer rate from solid surface. 

vi. Entropy generation rate decreases monotonically with increasing vertical distance and 

asymptotes to zero value. 

vii. The presence of yield stress has led to a growth in entropy generation rate within the 

boundary layer. 
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