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ABSTRACT 
 

The widespread use of the internet has brought immense convenience, but it has also led to a 

rise in cyber crimes. Attackers are using various tactics and techniques to compromise the 

security of information systems. One of the major threats in this landscape is web attacks, 

which pose a serious threat to web applications. Extensive work has been done for web security 

through multiple detection and prevention tools at each layer of security. Tools like IDS, IPS, 

and SIEM solutions have been proposed to detect and prevent these attacks. These security 

solutions mainly rely on network traffic stats (flows), signatures, cyber threat intelligence 

(CTI), and static threat detection rules. These methods have protected web security, but there 

are some limitations observed toward advanced attack payloads that use sophisticated 

techniques, a limited number of attempts, and zero-day exploits. This research aims to identify 

malicious web traffic using an innovative approach that combines deep learning with spatial 

pyramid pooling (SPP) to detect attacks on the base of payloads in network traffic. Deep 

learning is a powerful tool for recognizing patterns and extracting features from images. The 

proposed method involves using image classification techniques to dynamically spot different 

types of web attacks on the fly. By converting both malicious and clean payloads into image 

formats, the model has been trained to classify these data into either malicious or clean 

categories. Additionally, SPP techniques have been used to adapt the model to varying sizes of 

images. This method will help to improve the efficiency of the model by avoiding information 

loss due to resizing and cropping images to a fixed size. This work automates the process of 

extracting meaningful features, eliminating the need for manual feature selection commonly 

used in traditional machine learning approaches. The proposed approach aims to provide a 

more effective defense against evolving web attacks. 
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CHAPTER 1 

 INTRODUCTION 

1.0 Background 

Web application plays a vital role in every aspect of life. Each day, many new web 

applications come into existence. According to the research in [1] the average person spends 6 

hours and 58 minutes on the internet. Businesses, educational organizations, financial 

institutions, and health care organizations, in short, every government and private entity heavily 

relies on web applications to serve their customers. Therefore, this is the top priority to provide 

a secure cyber space to all users and to ensure their privacy. 

OWASP TOP 10 [2] is a well-known and widely accepted report, which lists the most 

critical web application vulnerabilities. The OWASP Top 10 guides developers, security 

professionals, and organizations to help them prioritize and address common security 

vulnerabilities and risks in web applications. These vulnerabilities can lead to several types of 

attacks, including data breaches, unauthorized access, and more. 

To ensure the security of web applications, several efforts have been made to be safe from 

these types of attacks on the application level. Techniques like checking and cleaning up the 

information users enter, secure coding, making sure that only trusted sources can access the 

apps, and even disabling certain features like JavaScript in browser that can be exploited by 
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attackers. These steps are essential, but the best defense is to prevent these attacks before they 

hit web applications. 

1.1 Problem Statement 

There are multiple solutions available like IDS, IPS, WAF, and SIEM to detect attacks 

against web applications. Sometimes new and advanced web attacks evade these solutions. The 

issue with these solutions is their static detection capabilities as these are mostly based on 

signature, strings, or pattern match and some static rules in SIEM solutions that correlate 

multiple events, but they are prone to new and more advanced techniques. Researchers 

addressed this issue using machine learning based on network flows. In computer networks, a 

"flow" is a group of data packets that are similar in some ways and treated as one unit. These 

packets have certain characteristics in common like source, destination, protocols, port number, 

etc. that help to see how much data is moving through the network and spot any unusual activity 

or security risks. Tools like NetFlow, sFlow, and IPFIX are used in networks to collect 

information about these flows [3]. However flow based detection methods, face challenges in 

identifying advanced web attacks like SQLI, XSS, SSRF, XEE, LFI, etc. These attacks often 

involve a small number of network flows but carry harmful content in the packet payload. 

Machine learning techniques require manual feature extraction for training which is time 

consuming for such a diverse range of payloads. Flow based detection is also susceptible to 

evasion techniques, like splitting the attack into smaller packets or spreading it across multiple 

hosts or IP addresses. The proposed solution involves a deep learning method utilizing 

Convolutional Neural Networks (CNNs) to thoroughly examine web request payloads and 

identify sophisticated web attacks. 
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1.2 Research Motivation 

The internet serves as a fundamental pillar of the global infrastructure. An increasing 

number of online services are now available but keeping them secure from cyber threats is a 

constant challenge. 

Attackers are using several ways to break into web applications, trying to get access to 

important data that they should not have. As organizations focus more on using technology to 

make things better and easier, the attackers are also working hard to find ways to enter online 

systems and steal important information. 

The Akamai Threat Report 2022 [4] shows a significant increase in these malicious 

activities targeting web applications as shown in Fig 1.1. This increase shows for local file 

inclusion, SQL injection and remote file inclusion and other sophisticated attacks, where the 

adversaries intent on disruption and data theft shown in Fig 1.1 from 2021 to April 2022. These 

stats show the need for an adaptable and intelligent solution to detect and prevent these attacks. 

It pushes experts to find new and better ways to protect against these kinds of cyber attacks. 

 

Figure 1.1 Number of Attacks by Attack Vectors [4] 
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The MITRE ATT&CK framework covers most of these tactics techniques and procedures 

(TTPs) in a logical order. The most common types of web attacks are cross sides scripting 

(XSS), services side request forgery (SSRF), SQL injection (SQLI), command Injection, 

remote code execution (RCE), local file inclusion (LFI), directory traversal, open redirection 

etc. 

1.3 Web Attacks 

Understanding web attack techniques is important for developing robust defense 

mechanisms and implementation of security measures that mitigate the risk of exploitation and 

protect against the potential. The following attacks have been addressed in this research work: 

 Cross-Site Scripting (XSS) - this attack involves injecting malicious scripts into web 

pages viewed by other users. Cyber criminals exploit vulnerabilities in a legit website's 

code to execute scripts in the victim's browsers. These scripts can steal sensitive data, 

manipulate website content, or redirect users to malicious sites as shown in Fig 1.2. 

 

Figure 1.2 XSS Attack [5] 
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 Server-Side Request Forgery (SSRF) - SSRF occurs when attackers trick a logged-

on user to click on manipulated link sent by the attacker into making requests on their 

behalf. By exploiting this vulnerability, attackers can steel private information and 

access internal systems, or perform actions on the server. Fig 1.3 shown the common 

attack vector for SSRF attack. 

 

Figure 1.3 SSRF Attack [6] 

 

 SQL Injection (SQLI) – this class of attack targets databases by injecting malicious 

SQL code through the input fields of a website. It can allow attackers to view, modify, 

or delete data from the database, potentially causing severe damage to the system's 

integrity [7]. In Fig 1.4 the attacker injecting an always true (1=1) string with an OR 

operator, will retrieve all rows from the teachers table in database. 
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Figure 1.4 SQLI Attack [7] 

 Command Injection - attackers exploit vulnerable applications by inserting malicious 

commands that enable them to execute arbitrary commands on the server, potentially 

gaining unauthorized access or manipulating system configuration [8]. 

 Remote Code Execution (RCE) - RCE attacks allow attackers to execute arbitrary 

code on a targeted system or server. This access can lead to taking control of the system, 

installing malware, modifying data, or performing other malicious activities [9]. 

 Local File Inclusion (LFI) - LFI attacks exploit code vulnerabilities to include files 

from the server into web pages. Attackers can use this to read sensitive files or execute 

arbitrary code, potentially compromising the entire system's security [10]. 

 Local File Disclosure (LFD) - LFD is a security vulnerability where an attacker gains 

unauthorized access to read sensitive files stored on a system or server. Instead of 

executing files, the focus is on accessing and viewing files that should be restricted 

from general access [11]. This vulnerability could expose critical information such as 

configuration details, user credentials, or other confidential data. 
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 Directory Traversal - this attack exploits insufficient input validation, allowing 

attackers to access files and directories outside the intended scope. It permits 

unauthorized access to critical files or resources on the server [12]. 

 Open Redirection - attackers manipulate URLs in vulnerable web applications to 

redirect users to malicious websites. They exploit these flaws to direct users to phishing 

sites or malware-infested pages, potentially compromising user security [13]. It is 

recommended to request users to submit a concise identifier, such as a brief name, ID, 

or token. This identifier should be linked on the server side to the complete target URL. 

This approach minimizes the risk of manipulation by ensuring that the mapping to the 

full URL is securely handled by the server, rather than relying on user-provided [14]. 

 XML External Entity (XEE) – this is a security loophole in web applications. This 

vulnerability enables an attacker to manipulate how the application deals with XML 

data. By exploiting this weakness, the attacker can access files stored on the 

application's server and potentially interact with other systems that the application [15]. 

 Insecure Deserialization - insecure deserialization occurs when a website processes 

user-controlled data that undergoes deserialization. This allows potential manipulation 

of serialized objects, allowing attackers to introduce harmful data into the application's 

code [16]. 

1.4 Convolutional Neural Networks (CNNs) in Deep Learning 

1.4.1   Introduction to CNNs 

Convolutional Neural Networks (CNNs) are the heart of deep learning, particularly within 

the domain of image recognition. These networks are specifically designed to process data in 

a grid-like topology, such as images, which makes them perfect for tasks involving visual 

inputs. 
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1.4.2   Architectural Overview 

A typical CNN architecture is composed of several layers, each designed to perform specific 

operations on the input data. The key layers include convolutional layers, pooling layers, and 

fully connected layers [17]. Convolutional layers apply a series of filters to the input to create 

feature maps, capturing spatial hierarchies and patterns. Pooling layers, often following 

convolutional layers, reduce the spatial size of the representation, thus decreasing the 

computational load and mitigating overfitting. Fully connected layers, resembling traditional 

neural network layers, are used toward the end of the network for classification or regression 

tasks. 

1.4.3   Functionality and Application 

The strength of CNNs lies in their ability to automatically and adaptively learn spatial 

information from input images. This feature is crucial in tasks such as object detection, face 

recognition, and medical image analysis etc. Furthermore, CNNs are instrumental in other areas 

beyond image processing, including natural language processing and time series analysis, 

where the underlying principles of spatial feature learning can be applied. Recent 

advancements in CNNs involve the development of deeper and more complex architectures, 

such as ResNet, etc. which have significantly improved performance in various tasks [18]. The 

operation of a typical CNN layer include the convolution operation of input image and fixed 

size filers, which swap across all the pixels of the input image. Following the CNN layer there 

are max pooling layers that perform the subsampling operation (max pooling or average 

pooling) on the feature maps to reduce the number of features. In a traditional CNN model Fig 

1.5 there are several CNN and max pooling layers in a sequence. The last layer contains the 

fully connected layer that preform the classification operation on the features extracted via 

CNN layers. 
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Figure 1.5 Convolution Neural Network [18] 

1.5 Spatial Pyramid Pooling 

Spatial Pyramid Pooling (SPP) is an innovative mechanism in deep learning, particularly 

within the architecture of convolutional neural networks (CNNs). The utility of SPP originated 

from its capability to maintain the structural integrity of input data by accommodating feature 

maps of variable sizes input images. 

The operational principle of SPP lies in its hierarchical partitioning of the input feature map 

into segments, each pooling features independently. SPP ensures that features at various scales 

are encapsulated, offering a comprehensive representation of the input data. This is important 

because it preserves spatial relationships and contextual information, which are important for 

the accurate interpretation of complex data patterns. 

Another advantage of SPP is its versatility. It can be integrated into existing CNN 

architectures, enhancing their ability to process non-uniform inputs without the need for 

distortion or resizing. This is different from traditional methods that often require a pre-

processing step to achieve a uniform input size, potentially leading to loss of information and 

a reduction in model performance. 
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Figure 1.6 Spatial Pyramid Pooling Layer Operation [19] 

1.5.1   Input Image 

The input image is processed through various convolutional layers that are designed to 

extract features. These layers apply a set of filters to the input image to create feature maps. 

Each filter detects unique features at separate locations in the image in Fig 1.6. 

1.5.2   Feature Maps of conv5 (Arbitrary Size) 

This layer represents the output feature maps from the last convolutional layer (often 

referred to as "conv5" in Fig 1.6). The "arbitrary size" notation indicates that these feature maps 

can have any size, which is a property that the SPP layer can handle [19]. 

1.5.3  Spatial Pyramid Pooling Layer 

The SPP layer takes the feature maps of varying sizes and applies the pyramid pooling 

operation. It pools the features in a way that generates fixed-size outputs regardless of the input 

feature map size. This is done by dividing the feature map into bins of different sizes (e.g., 

16x256-d, 4x256-d, and 256-d) and then pooling the features in each bin [19] as shown in Fig 

1.6. 
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After pooling, the SPP layer produces a fixed-length output, which is required for the next 

step in the network. Regardless of the original image or feature map size, the output is a 

flattened vector of a fixed length, which allows it to be fed into the fully connected layer. 

1.5.4 Fully Connected Layers (fc6, fc7) 

These layers further process the fixed-length vector from the SPP layer. They are standard 

layers in a neural network where every input is connected to every neuron, typically used for 

classification purposes. In Fig 1.6 the notation (fc6, fc7) corresponds to the naming convention 

of these layers in the network [19]. 

Figure 1.6 communicates the process by which an input image is transformed into a 

classifiable representation by the CNN, with the SPP layer ensuring that inputs of any size can 

be accommodated without loss of spatial information or need for input resizing. This feature 

makes the network more flexible and capable of handling a wide range of input dimensions. 

1.6 Research Objectives 

The main objective of this study is to build a model that effectively detects known and 

unknown malicious attempts against web applications. The proposed model is focused on the 

analysis of actual payload instead of header information in a packet, using deep learning 

technique. Considering the progress in image recognition technology, that have been leveraged 

to enhance the detection of malicious web traffic. By incorporating these techniques into this 

approach, anticipate notable enhancements in the detection capabilities, paralleling the 

advancements observed in image recognition technology. The payload data or URI queries 

have been converted into images format for model training. 
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1.7 Thesis Organization 

The research thesis is organized in different chapters to provide the best possible 

understanding to the reader. Thus the following chapters have been constituted. 

 Chapter 1 explores the background, problem statement, research motivation, web 

attacks, basic concepts, and objectives of the study. 

 Chapter 2 studies the related research work. 

 Chapter 3 covers the research methodology, dataset creation, and experimentation. 

 Chapter 4 throws light on the examination, analysis, and evaluation. 

 Chapter 5 summarises the research by covering the conclusion and future 

recommendations. 

1.8 Thesis Contributions 

This thesis contributes to the security of web applications by introducing an innovative deep 

learning-based framework for the detection of malicious web traffic. A comprehensive dataset 

has been created that contains a diverse array of real web attacks that belong to multiple 

categories. The main contributions of this research are as follows: 

1.8.1   Development of Deep Learning Model 

An advanced deep learning model has been designed, leveraging convolutional neural 

networks integrated with SPP. This model classifies web traffic into malicious and benign, 

showing remarkable accuracy in detecting various forms of web attacks. The utilization of SPP 

enables the model to maintain the spatial hierarchy of features in images created from web 

requests, thereby ensuring the retention of critical information during the classification process. 

1.8.2   Curated Dataset of Web Attack Types 

To bridge the gap in existing research, a richly annotated dataset has been created, which 

captures a wide spectrum of web attack vectors. This dataset is structured to reflect real-world 
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scenarios, encompassing clean traffic as well as malicious payloads, categorized into distinct 

classes of web attacks such as XSS, RCE, SQL injection, directory traversal, SSRF, and open-

redirection. 

1.8.3   Empirical Model Evaluation 

Empirical evaluation methods have been used to assess the model's performance. The 

evaluation is done through confusion matrices, classification reports, and learning curves, 

which collectively provide a transparent view of the model’s efficacy in differentiating between 

benign and malicious web traffic. 

1.9 Summary 

This chapter introduced the background of the study and some main research topics, which 

provides a comprehensive understanding of common web attacks and their associated risks. 

The motivation of the research has been discussed, to detect attacks on the fly and ensure the 

best possible security for web applications. The study's main aim is to develop a model that 

can detect known and new malicious web attacks against web applications using a proactive 

approach. The model utilizes deep learning techniques to analyze payload data, inspired by the 

progress in image recognition technology. The next chapter will give a detailed overview of 

the relevant studies that focused on the malicious traffic detection.
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CHAPTER – 2 

 LITERATURE REVIEW 

This chapter expands upon the concepts introduced earlier, focusing on current techniques 

and strategies in the domain of web application security. This literature review brings together 

a wide array of academic research, covering the development of online threats, the efficiency 

of present-day security solutions, and the latest patterns in cyber attacks, as highlighted in 

prominent industry reports such as the OWASP Top-10 [2] and the MITRE ATT&CK 

framework [20]. Various security approaches are discussed, ranging from conventional 

protocols to innovative deep learning technologies, and their roles in addressing the dynamic 

challenges of internet security vulnerabilities. The goal of this review is to provide an in-depth 

insight into the present landscape of web application security and to explore forward-thinking 

approaches. 

2.0 Threat Landscape 

In recent years, the landscape of web security has shown a rise in threats, as evidenced by 

the data from Radware's cloud WAF service [21]. Between 2021 & 2022, there was a 

remarkable 128% increase in the number of web application transactions blocked, a rate that 

significantly outpaces the 88% growth observed from 2020 to 2022. This trend was particularly 

notable during the first three quarters of 2021 when the number of blocked transactions steadily 

increased. Although there was a slight decrease in the fourth quarter, the count remained higher 
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than any quarter in 2020. The year 2022 marked a further acceleration in this upward trend, 

underscoring an exponential growth in web applications and online API attacks. It is important 

to note that these transactions were blocked either by custom rules set or through automated 

detection based on signature rules and behavioral algorithms. In 2022, half of these blocked 

transactions were identified based on known malicious behaviors, highlighting the increasing 

sophistication of web attacks and the need for advanced cybersecurity measures. Figure 2.1 

illustrates the trend in web application attacks from 2020 to 2022 [21]. 

 

Figure 2.1 Trend in Web Application Attacks from 2020 to 2022 [21] 

2.0.1 Industries Targeted by Cyber Attacks 

In 2022, the industries that faced the highest number of cyber attacks included retail and 

wholesale trade, which comprised 25.3% of the incidents shown in Fig 2.2. This was closely 

followed by the high-tech industry at 19.5%, and telecommunications at 15.2% of these attacks. 

Collectively, these three sectors represented a massive portion, approximately 60%, of the web 

application attacks that were successfully thwarted [21]. 
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Figure 2.2 Top Attacked Industries [21] 

 

2.0.2 Top Attacking Countries 

A notable observation from 2022 is that a considerable proportion of web security incidents, 

48.4%, were traced back to the United States [21]. Other countries including India, Italy, 

Russia, Netherlands, Canada, Germany, the United Kingdom, France, and Japan closely 

followed these nations in terms of number of attacks as shown in Fig 2.3. 

However, the apparent source of a cyber attack does not always reveal the identity of the 

perpetrator. Cyber criminals frequently employ tactics such as VPNs, dark net routing, and the 

use of compromised systems in other countries to mask their activities. The choice of a country 

from which to launch an attack is often strategic and depends on factors like the location of the 

intended target or the desire to mislead investigations, which are known as false flag operations. 

This complexity adds another layer of challenge in accurately combating cyber threats. 
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Figure 2.3 Top Attacking Countries [21] 

 

2.0.3 Top Violation Types 

Predictable resource location attacks stood out in all other violations in 2022 which 

constituted nearly half of all recorded attacks during the year as shown in Fig 2.4. Attackers 

engage in educated guessing of directory or file names, potentially gaining access to private 

resources. These resources could range from backup files and improperly secured configuration 

files to elements of a web application that are outdated, unpublished, or forgotten. 

Followed by code injection 14.4% and SQL injection 10.9% attacks emerged as the most 

frequently employed techniques by cybercriminals targeting web applications and APIs.  
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Figure 2.4 Top Violation Types [21] 

2.1 Existing Approaches in Web Security 

For web application security multiple approaches were used to efficiently mitigate a range 

of advanced attacks. This section of the literature review explores various techniques and best 

practices identified as effective in preventing common web application attacks. 

2.1.1   Application Level Mitigations 

 Input Validation and Sanitization - a fundamental defense mechanism against attacks 

like XSS, SQL injection (SQLI), and command injection is careful input validation and 

sanitization. This involves scrutinizing user input to ensure it does not contain malicious 

scripts or commands. By treating all user input as untrusted, applications can prevent 

the execution of harmful scripts or database commands [22]. 

 Content Security Policy (CSP) - implementing CSP is particularly effective against 

XSS attacks. It allows web applications to specify which sources are trusted, thereby 

preventing browsers from executing scripts from unauthorized sources [23]. 
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 Use of Parameterized Queries - to combat SQLI, the use of parameterized queries is 

recommended. This technique ensures that the database interprets the input as data 

rather than executable code, thereby neutralizing the threat of malicious SQL code 

injection [24]. 

 Least Privilege Access Controls - implementing least privilege access controls is 

crucial in mitigating risks associated with SQLI, command injection, and remote code 

execution (RCE). Restricting the access rights of users and applications to the bare 

minimum necessary will reduce the potential damage from an attack [25]. 

 Regular Software Updates and Patching - keeping all software components up to 

date is critical in protecting against RCE and LFI attacks. Regular updates ensure that 

known vulnerabilities are patched, reducing the attack surface [26]. 

 Network Segmentation and Firewalls - in the context of SSRF and RCE and malware 

attacks, network segmentation and the use of firewalls can limit the scope of an attack. 

By segregating various parts of the network, attackers can be prevented from moving 

laterally [27]. 

 File Access Restrictions - to prevent directory traversal and local file disclosure (LFD) 

attacks, it is essential to enforce strict file access restrictions. This includes setting 

appropriate file permissions and ensuring that web applications do not expose sensitive 

file paths [28] & [29]. 

 Whitelisting and Secure File Handling - employing whitelisting for file inclusion and 

redirects can effectively mitigate LFI and open redirection attacks. This ensures that the 

application only allows access to or redirects to known, safe locations [30] & [31]. 

 Disabling Unnecessary Features - in the case of XML external entity (XEE) attack, 

disabling unnecessary features in XML processors, such as external entity processing, 

can close off this attack vector [32]. 
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 Secure Deserialization Practices - to guard against insecure deserialization, it is 

recommended to avoid de-serializing data from untrusted sources. Where 

deserialization is necessary, implementing integrity checks like digital signatures can 

ensure the authenticity and integrity of the serialized data [33]. 

A security plan that includes these methods is required for a strong defense against various 

kinds of attacks. Regularly checking the security of the system, keeping an eye on it 

continuously, and following good security practices enhance these technical steps. Together, 

they form a key part of an active approach to keeping web applications secure. 

2.1.2 Machine Learning Methods 

A recent research [1] presents a groundbreaking machine learning-based framework for the 

detection and classification of such threats. The key aspect of the framework is the extraction 

and analysis of payloads from HTTP requests. The framework contains feature engineering 

and term weighting methods, with a focus on n-gram-based character level extraction. This 

approach enhances the model's ability to detect anomalies in web traffic. The study evaluates 

the efficacy of three classification algorithms, including support vector machine (SVM), 

random forest (RF), and stochastic gradient descent (SGD) against the dataset to determine 

their effectiveness in classifying various web attack types. The finding highlights the potential 

of SVM in cybersecurity applications, particularly for detecting and classifying web-based 

threats. The limitation of this work is the manual feature extraction for a diverse range of 

attacks, which is time-consuming and requires high pre-processing to train the model. 

In [34] a new method, common attack pattern enumeration and classification (CAPEC) 

suggested by the authors that introduced a novel approach to web attack detection and 

classification. The innovative method of feature extraction was introduced based on ASCII 

values. It translates complex web requests into a numerically encoded format for machine 
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learning models. The author also developed the SR-BH 2020 multi-label dataset. Multiple 

algorithms, LightGBM and CatBoost were used against the new dataset. The whole web 

requests are converted to ASCII values which contain the URL and host part as well. These 

parts of the request don’t add value to the detection and classification. This leads to a reduced 

accuracy of 88.44%. 

M. Shah in [35] proposed a comprehensive framework for mitigating distributed denial of 

service (DDoS) attacks. This research focused on a dual approach, combining proactive and 

reactive strategies. The proactive approach is the adoption of a secure software development 

life cycle (SDLC) to ensure that security assurance activities, including penetration testing, 

code review, architecture analysis, etc. For reactive measures, a multi-layered defense strategy 

is employed including a DDoS dedicated solution, endpoint security firewall, perimeter 

firewall, load balancer, monitoring IPS/IDS, etc. This approach is not focused on zero-day 

attack that needs an adaptable solution. 

2.1.3 Deep Learning Methods 

A comprehensive study [36] addressed the critical challenge of network traffic 

classification, a task gaining popularity due to the exponential growth in network applications 

and the resultant surge in network traffic. This classification is essential for network operators 

to ensure quality of service (QoS) for various applications. The research used the deep learning 

method, specifically convolutional neural network (CNN) and residual network (ResNet), to 

classify network traffic, marking a significant advancement in the field. A novel approach to 

dataset preprocessing is introduced, converting packet payloads into image data for deep 

learning model training. This method is applied to a substantial dataset provided by the 

broadband communications research group. CNN is renowned for its data extraction 

capabilities, while ResNet introduces the innovative concept of shortcut connections, 

enhancing performance and optimization. 
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A novel approach to malware traffic classification, by using a representation learning 

approach using convolutional neural networks (CNN) has been proposed in [37]. This method 

makes a distinction from traditional traffic classification techniques, focusing on the direct use 

of raw traffic data as input for the classifier, thereby eliminating the need for manual features. 

The key aspect of the study is the selection of traffic granularity and packet layers for analysis. 

The paper discussed the use of different traffic split granularities, such as TCP connection, 

flow, session, service, and host, and opted for flow and session, which are commonly used in 

research. This representation learning technique, allows the classifier to learn features 

automatically from the raw data. The method involves using only the first n bytes of each flow 

or session, which may not be an effective approach if the later packets contain malicious 

content. 

The research presented in [19] introduced an innovative methodology that combines deep 

convolutional layers with spatial pyramid pooling to address the challenge of handling images 

with varying sizes and aspect ratios. They replace conventional pooling layers with spatial 

pyramid pooling, which is a multi-level grid partitioning method, that allows to capture of 

features at different scales and aspect ratios. This adaptability enhances the network's precision 

and versatility in tasks such as object recognition and image analysis. 

D-PACK, an unsupervised deep learning-based anomaly detection system for network 

traffic, was introduced in [38] to address security threats against the Internet of Things (IoT). 

With CNN and auto-encoders, D-PACK efficiently classified network flows into benign or 

malicious categories while using a threshold mechanism based on mean squared error (MSE 

Loss) distributions. This approach can be effective in many cases but it may not be suitable for 

handling highly dynamic or evolving network environments where the characteristics of benign 

traffic can change over time. 
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In [39] payload embeddings, a model was developed for intrusion detection, which was 

inspired from word2vec models used in natural language processing. Word2vec is made up of 

continuous bag of words (CBOW) and skip-gram models that help computers understand the 

meaning of words. Payload embeddings aims to understand network traffic data by creating 

special "embedding" for bytes and payloads in network packets. These embeddings are 

compact summaries that capture important information. The skip-gram model is used to create 

embeddings for individual bytes in the network packets and then feature vectors are created for 

the entire network packet payload. These vectors are used to classify and detect intrusions or 

unusual behavior in the network. Although this technique improved the accuracy of the existing 

solution, this approach is susceptible to attacks that primarily manipulate or exploit packet 

header information, such as scanning or probing attacks. 

The authors in [40] propose an innovative solution through the implementation of spatial 

pyramid pooling in deep residual networks for the classification of malicious code. Codes are 

represented in images. This approach allows the processing of images of varying sizes without 

resizing to a fixed size to avoid information loss. The findings of this study indicate a notable 

improvement in classification accuracy and recall compared to conventional methods, marking 

a significant improvement in the field of network security and malware detection. 

Kumar and Ponsam [41] propose an approach for the detection of Cross-Site Scripting 

(XSS) vulnerabilities. They proposed deep learning algorithms, Long Short Term Memory 

(LSTM), and Convolutional Neural Networks (CNN), along with boosting algorithms such as 

AdaBoost and Gradient Boosting. This comprehensive methodology enhanced the detection 

accuracy of XSS attacks. The scope of this work is limited to XSS only. 

In [42] Vartouni introduced an innovative anomaly detection method using deep learning in 

stacked autoencoders (SAE), specifically designed for web attacks. Their approach combines 
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deep neural networks with isolation forests. By focusing on feature extraction and anomaly 

detection, this study contributes to the development of more accurate and efficient systems for 

identifying web-based threats. The paper discusses the generalization performance of the 

model but does not provide insights into how well the model can adapt to different types of 

web applications and traffic patterns. 

Vyas et al. in [43] address the burgeoning field of IoT network security. They propose an 

improved Intrusion Detection System (IDS) utilizing deep learning for anomaly detection. By 

integrating a Convolutional auto-encoder for deep feature extraction, their model enhances the 

capability of IDS in IoT environment. 

Dr. E. Amoroso presents Cyberlytic in [35], a tool designed to enhance web application 

security. It addresses the limitations of conventional web application firewalls (WAFs) by 

employing machine learning systems for dynamic threat identification. This tool is adopted to 

detect zero-day attacks and polymorphic variants, which traditional WAFs often miss due to 

their reliance on static signature and regular expression matching. 

A new approach was proposed in [44] using deep learning technique that focuses on specific 

parameters within HTTP requests, including URL, user-agent, accept-language, connection, 

content length, and payload. HTTP anomaly detection is categorized into two principal 

domains, stream-based and payload-based. Stream-based anomaly detection leverages 

statistics derived from HTTP header and traffic data, primarily suited for identifying traffic-

related attacks. Payload-based anomaly detection focuses on the content of HTTP packets. This 

study highlights the significance of URL and payload parameters due to their susceptibility to 

manipulation by both internal and external threats. 
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2.2 Summary 

This chapter has examined various security approaches, from conventional protocols to 

innovative deep learning technologies. It aims to provide comprehensive insights into the 

current landscape of web application security and explores future progressive approaches. Key 

aspects include the escalation in web security threats, targeted industries, top attacking 

countries, violation types, and existing mitigation strategies across application-level defenses, 

machine learning, and deep learning level defenses. The following chapter will presents the 

research methodology and experimentation setup used in this thesis work.  
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CHAPTER – 3 

 RESEARCH METHODOLOGY 

This chapter covers the research step-by-step process. A mix of deep learning and spatial 

pyramid pooling technique was proposed to mitigate web application attacks. Some web 

applications were deployed in a way that would attract these attacks, just like how a honeypot 

attracts bees. Then logs collected from these applications especially the parts that could provide 

indication of potential attacks. The collected data changed into a form that the deep learning 

program could understand. The goal is to make a CNN model mature enough to catch attacks 

against web applications. 

3.0 Research Methodology Workflow 

The following workflow provides an overview of the procedures, techniques, and processes 

employed in this thesis. The procedure begins with the deployment of web applications that 

serve as honeypots. Next, at load balancers web requests (logs) will be collected, which are 

subsequently ingested into Azure sentinel to extract crucial data. Following extraction, the 

payloads will be converted into image format in order to train the CNN model that will help 

categorize the payloads as clean or malicious. 
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3.1 Experimental Design and Procedures 

The experimental design and procedures are discusses in this section, that gives the practical 

explanation of the steps followed for implementation of the proposed methodology.  

3.1.1 Deployment of Web Applications in AWS Cloud 

As a foundational component of the research methodology, web applications were deployed 

within the AWS cloud environment to serve as sophisticated interactive honeypots, mimicking 

real-world systems while being designed to attract and log cyber-attack attempts [45]. 

3.1.2 Planning and Architectural Design 

The deployment process starts with planning to ensure the architecture will not only 

simulate a typical web environment but also enable detailed logging and analysis of cyber 

Step 1
• Deployment of web applications in AWS that would be the 

target for the attackers 

Step 2
• Ingestion of logs from elastic Load balancer to azure sentinel 

(SIEM)

Step 3
• Collection of URI query (payload) from logs using KQL script

Step 4
• Conversion of payload data into image format (conversion to 

Asscii and then represet in pixels on grey scale)

Step 5
• Input images to CNN layer for training 

Step 6
• Input the last CNN layer output into spatial pyramid pooling 

layer to for constant size data requirements to dense layer
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threats. The system was designed with scalability and high availability in mind to manage and 

analyze a significant volume of data. 

3.1.2.1   AWS Account and Security Configuration 

An AWS account was created, followed by the careful configuration of IAM roles and 

policies. This measure was crucial to secure access to AWS resources and to define the 

permissions necessary for deployment and monitoring activities [46]. 

3.1.2.2   Service Selection 

AWS elastic beanstalk was used for its ease of deployment and scaling web applications 

and services. This choice was selected to make an automated environment that could handle 

the provisioning, load balancing, and application health monitoring without extensive manual 

intervention [46]. 

3.1.2.3   Application Code Deployment 

The application code was deployed through Elastic Beanstalk, with proper configurations 

required for simulating the real-world application behaviors [47]. 

3.1.2.4   Database and Storage 

Amazon RDS [48] has been used due to its robust management capabilities of relational 

databases, and amazon S3 was employed to handle the storage of logs and other static assets 

with scalability and data durability as key factors [49]. 

3.1.2.5   Load Balancing and Auto-scaling 

An elastic load balancer was configured to distribute incoming traffic across multiple 

instances of the applications, ensuring reliability and resilience. The auto-scaling feature was 

used to maintain application availability and automatically adjust capacity in response to 

incoming application traffic [50]. 
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3.1.2.6   Compliance with AWS Best Practices 

The deployment process adhered to the AWS well architected framework to align with cloud 

best practices and ensure the integrity and reliability of the research environment [51]. This is 

guide designed to assist users in constructing and implementing a highly optimized cloud 

environment. The objective of the framework is to reduce/manage the risks. Following are the 

key points in this framework: 

 Operational Excellence - this point emphasizes on the importance of managing and 

monitoring system operations to deliver significant business value. It guides for the 

continuous enhancement of processes and procedures. Core elements include the 

management and automation of changes, efficient response to system events, and the 

establishment of standards for routine operational tasks. 

 Security - this part is dedicated to security of information and infrastructures. It covers 

essential areas such as the confidentiality and integrity of data, management of user 

privileges, protection of system networks, and the implementation of controls for the 

timely detection of security incidents. 

 Reliability - focusing on system dependability, this point cover enabling the system to 

prevent and swiftly recover from disruptions. It encompasses fundamental aspects like 

initial setup, requirements that span across various projects, planning for effective 

recovery, and managing changes without compromising system stability. 

 Performance Efficiency - this part covers the use of IT and computing resources to 

achieve optimal performance. It involves choosing the most suitable types and sizes of 

resources based on specific workload requirements, continuously monitoring 

performance, and adapting to maintain high efficiency. 
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 Cost Optimization - key considerations include gaining a thorough understanding of 

expenditure, selecting the right resource types, financial analysis and scaling resources 

in a manner that aligns with requirements without leading to fiscal waste. 

3.1.3 Data Ingestion 

In the data ingestion phase, the primary focus is to capture comprehensive logs from the 

web applications deployed on AWS. These logs are important as they contains the details of 

web requests, including potential attack vectors that the ELB encounters. 

Logs Collection at ELB - the ELB is configured to log every web request it processes. These 

logs offering insights into regular traffic as well as cyber-attacks. The ELB captures various 

attributes of each request, such as the requester's IP, requested paths and query parameters that 

are crucial for the subsequent analysis [52]. 

Logs Ingestion to Azure Sentinel - once collected, the logs are systematically transmitted to 

sentinel, Microsoft cloud native SIEM. Sentinel provides a centralized platform for logs, 

enabling advanced analysis and threat detection. Logs can be ingested via data connecter 

amazon web service [53]. 
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Figure 3.1 Logs Ingestion Connector 

Filtering and Preprocessing of Logs - by default logs are not properly formatted in sentinel. 

To enhance efficiency and focus, filtering process were used, involves running multiple queries 

to scan through the vast data streams and extract only the payload part of the web requests [54] 

& [55]. Payloads, being the active content of web requests, often contain the most revealing 

signs of attempted or successful cyber-attacks. In Fig 3.2 sentinel's query were used to isolate 

these payloads based on string search using regex expression. This filtering significantly 

reducing the volume of information and enhancing the visibility of potential threats. This 

selective ingestion ensures that the datasets fed into the later stages are of high fidelity and 

relevance. 
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Figure 3.2 Kusto Query Language in Azure Sentinel for Malicious Request Collection 

 

3.1.4 Data Labeling 

Labeling Process - after filtering the logs for payloads, these were extracted into a CSV file 

for ease of use and accessibility. The labeling process was carried out manually, which 

involved a detailed review of the payload content to classify it to the specific category of 

malicious or benign. 

Utilization of String Search in KQL - to enhance the precision of data collection, string 

searches were used within KQL. This helps to target specific patterns like SQLI (WHERE, 

FROM etc), XSS (Script, onload, onclick, onerror, alert etc) as shown in Fig 3.3. Then exported 

these filtered requests into CSV file and labeled them in chunks. By doing so, it also ensured 

that the collected data was not only relevant but also enriched with instances that are 

representative of real world cyber attack [56]. By thoroughly labeling the data, this established 

a groundwork for a model that is not only accurate but also capable of generalizing its detection 

capabilities to new, unseen cyber threats. 
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Figure 3.3 String Search in KQL 

 

Dataset Insights - the result of this process was a curated dataset, encapsulated within a CSV 

file shown in Fig 3.4 ready for the next step. The file contains two columns, one column 

containing the payload and the second column is the corresponding label. This dataset was used 

for training the deep learning model to distinguish between malicious categories and benign 

web traffic with high accuracy. 
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Figure 3.4 Collected Payloads in CSV File 

 

Dataset Count - the dataset contains clean and malicious requests. Malicious requests are 

further categorized based on the tactics and techniques used. Some categories are combined 

into one because these were closely related under common tactics. Table 3.1 shows the 

categories and counts of the dataset. 

 Category Testing Validation Training Total 

1 Clean 3025 3025 25552 31602 

2 

Directory 

Traversal+LFI-

LFD 

3180 3180 24585 30945 

3 XSS 2065 2065 16239 20369 

4 Injection 2785 2785 21994 27564 

5 Open-redirection 248 248 1885 2381 
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6 RCE 313 313 2689 3315 

7 SSRF 24 24 176 224 

8 Total 11640 11640 93120 116400 

 

Table 3.1 Dataset Composition 

3.1.5 Data Conversion 

Following the collection and labeling of payload data, the next crucial step is the data 

conversion process. This stage was designed to translate the textual payload data into a format 

that could be effectively processed by a CNN for pattern recognition and classification. 

Conversion to ASCII - the process begins with the conversion of payload strings into their 

American Standard Code for Information Interchange (ASCII) numerical equivalents. Each 

character in the payload string was mapped to its corresponding ASCII value, thus transforming 

the textual data into a sequence of integers [57]. 

Pixel Representation - subsequently, the ASCII values are utilized to create a greyscale image 

representation of the data. Each ASCII value is translated into a pixel with a specific intensity 

on a greyscale. Intensity levels in a greyscale image can vary from 0 to 255, representing the 

spectrum from black to white, respectively as shown in Fig 3.5. Hence, the range of ASCII 

characters fit well within this spectrum, enabling a direct correlation between the character's 

ASCII value and the pixel's grayscale intensity [36]. All the process from text to image 

conversion was done with python automation as shown in Fig 3.6. 
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Figure 3.5 Greyscale Images 

 

Figure 2.6 Python Code for Text to Image Conversion 
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Greyscale Conversion - the choice to use greyscale images, as opposed to colored ones, was 

driven by the objective to reduce computational complexity without compromising the 

integrity of the information. Greyscale image contains 1 channel which reduce the computation 

of the model training [58]. Since the salient features in the payload data are not color-

dependent, a greyscale format provides a sufficient level of detail. This simplification results 

in lower dimensionality, which in turn facilitates faster processing and analysis by CNN. 

3.1.6 CNN Training 

The training of the CNN model is the main step in proposed methodology, leveraging the 

transformed greyscale images as inputs to classify web traffic payloads effectively. The CNN 

model is structured to process variable input sizes and is constructed using Keras with 

TensorFlow as the backend. 

3.1.6.1   Model Architecture 

The CNN model is designed using the sequential model API in Keras [59], which allows 

for the linear stacking of layers as shown in Fig 3.7. Following is the model's architecture: 

 The first layer is a Conv2D layer with 64 filters, and a kernel size (3x3). This layer uses 

the 'relu' activation function and is designed to take an input shape that allows for 

variable dimensions. Filter or kernel is a matrix with less number of rows and columns 

from the input image. The filter slides across the image with dot product operation to 

calculate the features [61]. 

 Following the initial convolutional layer, another Conv2D layer with 128 filters, 

utilizing the same kernel size and stride, again with 'relu' activation. This layer serves 

to further extract features from the input data. The rectified linear activation function, 

commonly known as “relu”, is a non-linear function. It outputs the input directly when 

it is positive; otherwise, it returns zero [62]. 
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 The next layer in the sequence is also a Conv2D layer, this time with 256 filters, which 

continues the pattern of feature extraction at a higher level. 

 A dropout layer has been used to avoid overfitting of the model. The Dropout layer 

functions like a filter, suppressing the impact of specific neurons on the next layer while 

allowing the unaffected neurons to maintain their usual functionality [63]. 

 To handle the variable input sizes and to avoid information loss, a spatial pyramid 

pooling (SPP) layer is integrated. The SPP layer pools the features at different regions 

and scales them, represented by [1, 2, 4], effectively allowing the model to maintain 

spatial hierarchies and adapt to various input dimensions. 

 The final layer is a dense layer (Also called spatial fully connected layer) [64] with 7 

units, corresponding to the number of classes used to predict. It uses a 'softmax' 

activation function [65] to output a probability distribution over the 7 classes. 

 After evaluating the model for different epochs, the model has been trained for 25 

epochs. 

 

Figure 3.7 CNN Model Architecture  
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3.1.6.2   Optimization and Compilation 

For optimization, Adam optimizer [66] has been used with a learning rate of 0.001 [67]. 

Adam is an optimization algorithm designed specifically for training deep neural networks. 

The loss function used is categorical cross-entropy which is appropriate for classification 

problems [68]. The model is compiled with the selected optimizer, and loss function, and 

includes 'accuracy' as the metric for performance evaluation.  

3.1.6.3   Training Process 

The training process involves feeding the prepared dataset of greyscale images into the 

CNN. The images, now in a standardized format, pass through the network's layers, where 

convolutional filters extract features and the SPP layer ensures that the feature maps are pooled 

to a fixed length. The training is conducted on a split of the dataset, with 10% testing, 10% 

validation, and 80% training. 

The CNN's training phase is crucial for the model to learn the distinguishing features of 

malicious and benign payloads. This learning is reflected in the model's ability to generalize 

from the training data to accurately classify new, unseen data, which is the ultimate test of its 

efficacy.  

3.2 Experimental Network Diagram 

This experimental network diagram shown in Fig 3.8 illustrates the infrastructure utilized 

for dataset generation, encapsulating the entire flow of research methodology from beginning 

to end. 

Initially, a user regular/attacker will navigate to the URL of the web application from their 

computer to access the service. The request is routed through the public internet to the web 

application hosted on AWS. Upon reaching AWS, the request first encounters the ELB, which 

acts as a distribution hub [69], directing the user's request based on the availability of the web 
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servers. These servers may exist across different availability zones for higher availability and 

fault tolerance. 

For dataset generation, all user requests are collected at the load balancer by enabling 

logging functionality on the ELB. These logs are stored in an Amazon S3 bucket [70], which 

serves as a repository and is subsequently forwarded to Azure sentinel for enhanced monitoring 

and visibility. In Azure sentinel KQL is used for log analytics to extract specifically the URI 

query part from the requests, as this portion contains the actual request/query that a user sends 

to the application. 

Once these URI queries exported into a CSV file a python script is used to convert these 

requests into images. This conversion process involves translating the text-based requests into 

ASCII format and subsequently into greyscale pixel values. The resulting collection of images 

forms the dataset that is used to train the CNN model, with the ultimate goal of identifying and 

categorizing web application attacks. 

 

Figure 3.8 Experimental Network Diagram 
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3.3 Proposed Network Design 

The proposed network diagram is the enhanced security infrastructure following the training 

of the CNN model as shown in Fig 3.9. Mirroring the experimental setup in its core design, 

this proposed system introduces a web application firewall into the network. This WAF serves 

as a gatekeeper, utilizing the intelligence derived from the trained CNN model. 

WAF is positioned to evaluate incoming requests in real time. It applies the detection 

patterns learned by the CNN model to classify whether a request is benign or malicious. If a 

request is classified as malicious, the WAF will block that IP address immediately, thus 

preventing it from reaching the web servers. 

The legitimate requests that pass through the WAF are then processed by the web servers, 

for the requested content. 

The addition of the WAF in this proposed design is a significant progress towards an 

intelligent web application protection mechanism, which use the integration of an advanced AI 

model into a traditional network security framework. 

 

Figure 3.9 Proposed Network Diagram 

 



 

 42 

3.4 Device Specifications 

The specification of the computing device and tools that are used in this thesis are listed in 

Table 3.2. 

Property Description 

Architecture X64 

Processor NVIDIA Tesla P100 GPUs 

Core Count 3584 Cuda Cores 

RAM 16 GB 

Cloud AWS 

Python Python3.0 

AI Library TensorFlow 2.13.0, Keras 3 

SIEM Azure Sentinel 

 

Table 3.2 Specification of the Computing Device 

3.5 Summary 

This chapter covered a detailed description of the research methodology used to identify 

and prevent cyber threats in a cloud computing environment. It covers the development and 

deployment of web applications on AWS, the collection and storage of web traffic logs via 

ELB, and the utilization of Azure Sentinel for log analysis. Key to the methodology is the 

transformation of web traffic data into a format suitable for deep learning analysis, where a 

CNN model is trained to detect malicious activities. The trained CNN model is integrated into 

WAF to proactively block potential cyber-attacks, improving the security of web applications. 

The subsequent chapter will explains the examination and evaluation of the proposed model.  
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CHAPTER – 4 

 EXAMINATION AND ANALYSIS 

After developing a deep learning model designed to detect malicious web traffic, it is crucial 

to understand how well it performs. This chapter explains the data gathered from the 

experiments, using metrics like accuracy, precision, and recall to evaluating the performance 

of the model. 

4.0 Evaluation Metrics and Results Presentation 

The effectiveness of the proposed deep learning model is measured using several 

performance metrics. Each metric offers unique insights into the model's predictive capabilities 

and shows how well the model can identify several types of web attacks. 

4.0.1 Accuracy 

This metric represents the ratio of correctly predicted instances to the total number of 

instances. Accuracy gives a quick indication of performance. A higher accuracy percentage 

signifies a greater reliability of the model in making correct predictions across the categories 

[71]. Overall, in Table 4.1 the model has an accuracy of 0.99, meaning it correctly predicted 

99% of all classifications. 

4.0.2 Precision 

It is defined as the ratio of true positives (instances where the model correctly identifies 

malicious traffic) to the total number of instances labeled as positive by the model 
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(encompassing both true positives and false positives) [72]. The precision metric is particularly 

essential in this study as it gauges the model's proficiency in correctly pinpointing actual 

threats. A high precision score shows that the model flags traffic as malicious, there is a high 

likelihood of it being a true threat, thereby minimizing the risk of false alarms which can be 

crucial in real-world applications. 

For example, in Table 4.1 the 'clean' traffic classification has a precision of 1.00, signifying 

that every instance predicted as 'clean' by the model was indeed clean. 

4.0.3 Recall 

Recall, alternatively known as sensitivity, measures the model's ability to identify all 

relevant instances. It is calculated as the ratio of true positives to the sum of true positives and 

false negatives (instances where the model fails to identify malicious traffic) [73]. In the 

domain of web security, recall assumes a critical role. It reflects the model's capacity to capture 

all potential threats, ensuring that malicious activities are not overlooked. A high recall score 

indicates that the model is effective in identifying the majority of actual threats, reducing the 

risk of dangerous oversights. 

In Table 4.1, the recall of 1.00 for 'directory traversal' means that the model identified all 

instances of this attack in the dataset. 

4.0.4 F1 Score 

The F1 score as a critical metric in the model evaluation of the model, correlates the balance 

between precision and recall. It is the harmonic mean of these two metrics, offering a singular 

score that encapsulates both the model's accuracy in its positive predictions (precision) and its 

ability to comprehensively identify all relevant instances (recall) [74]. 

It serves as a more reliable metric of the model's performance, particularly in scenarios 

where an equilibrium between precision and recall is crucial. This balance is where overlooking 
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an attack (low recall) and misidentifying benign activities as threats (low precision) both carry 

significant consequences. 

For example, in Table 4.1 F1-score of 1.00 for 'clean' traffic classification indicates perfect 

precision and recall. 

4.0.5 Support 

This number refers to the occurrence of the true responses in the dataset. For instance, there 

were 3,025 instances of 'clean' traffic in the test dataset. 

4.0.6 Macro Average 

The macro average calculates metrics for each label and finds their unweighted mean, by 

treating all classes equally. A macro average of 0.95 for recall suggests that the model performs 

uniformly across all labels, with some variance as indicated by less than 1 in Table 4.1. 

4.0.7 Weighted Average 

The weighted average considers each label's support. It is the average of the precision and 

recall of the model, weighted by the number of instances for each label. A weighted average of 

0.99 for both precision and recall demonstrates the model's overall. 

Category Precision Recall F1-Score Support/Sample 

Count 

Clean 1.00 1.00 1.00 3025 

Directory 

Traversal+LFI+LFD 

0.99 1.00 1.00 3180 

Injection 0.99 0.99 0.99 2785 

Openredirection 1.00 0.99 0.99 248 

RCE 0.94 0.93 0.93 313 

SSRF 1.00 0.79 0.88 24 

XSS 0.99 0.99 0.99 2065 

Macro Average - - 0.99 11640 

Weighted Average 0.99 0.95 0.97 11640 

Accuracy 0.99 0.99 0.99 11640 
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Table 4.1 Performance Indicators 

 

4.1 Confusion Matrix Analysis 

The Confusion Matrix in Fig 4.1 is a measure of predictive analytics, offering a detailed 

breakdown of the model's predictions. Typically, a confusion matrix consists of four 

components, true positives (TP), true negatives (TN), false positives (FP), and false negatives 

(FN). 

True Positives (TP) - true positives occur when the model correctly predicts the positive class. 

In a web attack detection scenario, a TP would be an instance where the model correctly 

identifies a web request as malicious when it is actually malicious. 

True Negatives (TN) - true negatives are cases where the model correctly predicts the negative 

class. In this work, a TN would be an instance where the model correctly identifies a web 

request as benign when it indeed is benign. 

False Positives (FP) - false positives occur when the model incorrectly predicts the positive 

class. This would be a situation where the model identifies a web request as malicious when it 

is benign.  

False Negatives (FN) - false negatives are cases where the model incorrectly predicts the 

negative class. This would be an instance where the model fails to identify a web request as 

malicious when it actually is malicious.  

 



 

 47 

 

Figure 4.1 Confusion Matrix on Test Dataset 

Within the matrix, the horizontal axis represents the predicted classifications made by the 

model, while the vertical axis corresponds to the true labels of the test data. The primary 

diagonal of the matrix, where the predicted label matches the true label, reveals the number of 

true positives for each attack category. For instance, the model has precisely identified 3,019 

instances of 'clean' traffic, indicative of a robust ability to recognize benign interactions. 

Similarly, the classification of 'directory traversal' attacks is evidenced by 3,177 correct 

predictions in Fig 4.1. 

Conversely, the off-diagonal elements illustrate instances where the model's predictions are 

incorrect, thus providing a measure of false positives and false negatives. These elements are 
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critical in identifying the types of errors the model is prone to, such as the 8 'injection' attacks 

incorrectly classified as 'clean', or the 7 instances where 'remote code execution' (RCE) attacks 

were misclassified as 'injection' attacks. Such misclassifications are indicative of areas where 

the model may require further refinement to enhance its predictive precision. 

The intensity of color within the matrix visually represents the frequency of predictions, 

with darker shades corresponding to a higher number of occurrences for a given predictive 

outcome, and lighter shades showing a lower count.  

4.1.1 Metrics Calculation Formulae 

All these performance indicators will be calculated from the confusion matrix. Using Fig 

4.2 as an example which shows the correct classification in green and incorrect classification 

in red. Performance metrics for the model is derived using the given formulas [75].  

 

Figure 4.2 Metrics Calculation [61] 
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𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁
 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

4.1.2 Accuracy and Loss Metrics across Epochs 

Fig 4.3 presents a visual comparison of the proposed model's accuracy and loss during the 

training process. The 'model accuracy' graph on the left shows the classification accuracy of 

the model, with the training accuracy depicted in blue and the validation accuracy in orange. 

The 'model loss' graph on the right, illustrates the model's loss in predictions. 

The training accuracy starts at an approximate value of 0.96 and increases within the initial 

epochs, stabilizing around 0.99. The validation accuracy closely trails the training accuracy, 

indicating that the model generalizes well to new data. 

In the 'model loss' graph, a sharp decline in loss is evident for both training and validation 

during the early epochs. The training loss decreases rapidly and levels off, indicating that the 

model is effectively learning from the training data. The validation loss demonstrates a similar 

trend, with slight fluctuations, which is characteristic of the validation process as the model 

encounters previously unseen data. However, the model does not show an increasing trend in 

loss, which means that it is not under-fitting the data. 

The graphs collectively demonstrate that the model's performance is consistent and reliable, 

with the validation metrics closely following the training metrics throughout the training 

process. This is indicative of a well-tuned model that is neither over fit nor under fit, but rather, 

is capable of accurately generalizing from the training data to predict unseen data. 
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Figure 4.3 Model Accuracy and Loss Curves 

4.2 Comparative Analysis 

The proposed convolutional neural network with spatial pyramid pooling model, evaluated 

on the dataset of 116,400 instances, shows superior performance with accuracy, F1 score, 

recall, and precision all at an impressive 0.99. This outperforms the existing models in the 

literature such as LightGBM, CatBoost, SVM, Random Forest, SGD, and k-Nearest Neighbors 

[34]. The high precision and recall rates in Table 4.2 underscore the proposed model’s 

proficiency in classifying benign and malicious traffic, marking a significant advancement in 

the application of deep learning techniques in web application security. 

Research 

work 

Dataset 

Size 
Algorithm Accuracy F1 Score Recall Precision 

Tomás Sureda 

Riera [34] 
907,814 LightGBM 0.88 0.88 0.88 0.90 

Tomás Sureda 

Riera [34] 
907,814 CatBoost 0.88 0.88 0.88 0.90 

Shahin 

Ramezany [1] 
111,721 SVM 0.98 0.85 0.80 0.92 

Shahin 

Ramezany [1] 
111,721 

Random 

Forest’s 
0.98 0.86 0.83 0.92 

Shahin 

Ramezany[4] 
111,721 SGD 0.97 0.84 0.80 0.92 



 

 51 

Mehmet Engin 

Tozal [39] 
95078 

k-Nearest 

Neighbours 
0.98 0.98 0.98 0.98 

This research 116400 CNN-SPP 0.99 0.99 0.99 0.99 

 

Table 4.2 Comparative Analysis 

 

4.2.1 Categories-Based Accuracy 

The dataset used in this thesis work contains seven categories. These categories are broadly 

classified in two classes clean and malicious. The malicious category further classified into 

specific web attack categories. The accuracy of the model for correctly classifying these 

categories show in Table 4.3 for each category. 

Category Accuracy % 

Clean 99.80 

Directory Traversal+LFI-LFD 99.91 

XSS 98.56 

Injection 98.79 

Open-redirection 92.97 

RCE 79.17 

SSRF 99.08 

 

Table 4.3 Categories-Based Accuracy 
 

4.3 Summary 

In this chapter, examination and analysis of the results obtained from the deep learning 

model, designed to detect malicious web traffic have been examined. A detailed evaluation of 

the model's performance, utilizing key metrics such as accuracy, precision, recall, F1 score, 

and a comprehensive analysis through the confusion matrix have been discussed in this chapter. 

The proposed model performed well among the existing machine learning and deep learning 

techniques with high accuracy, precision, and recall of 99% as compare 98% accuracy in 

achieved in [1] as shown in comparative analysis in Table 4.2. The model accuracy and loss 

curves shown in Fig 4.3 is indicative of a well-tuned model that is neither over fit nor under 

fit, but rather, is capable of accurately generalizing from the training data to predict unseen 
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data. The upcoming chapter will concludes the thesis with discussion on future work and 

recommendation.  
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CHAPTER – 5 

 CONCLUSION AND FUTURE HORIZONS 

5.0 Conclusion 

This chapter brings together the main points and the many outcomes of this research. Here 

a clear summarization of what has been learnt along with a discussion on possible future 

research. Also, the direction for future improvements have been identified. 

5.0.1 Overview 

This research presents a groundbreaking study focusing on the detection of malicious web 

traffic using a deep learning framework. By integrating convolutional neural networks with 

spatial pyramid pooling, this research proposed a novel approach to identifying and classifying 

web application attacks with high accuracy. 

5.0.2 Key Findings 

The developed model highlights remarkable performance metrics. Notably, the model 

achieved an accuracy of 99%, a precision of 99%, and a recall rate of 99%, as evidenced in the 

comparative analysis against established models. These metrics highlight the model’s 

adeptness in identifying a range of web attack types, from XSS to SQL injection, with a low 

false positive rate. This efficiency shows the model potential as a robust tool for web security. 



 

 54 

5.0.3 Significance 

The integration of SPP within the CNN architecture enables the model to effectively handle 

variable payload sizes in the form of images, a common challenge in web traffic analysis. This 

capability is important to ensure the model's adaptability to different attack vectors. 

5.0.4 Implications for Cyber Security 

The success of this model in detecting malicious web traffic with high precision and recall 

opens new horizons in cybersecurity defense mechanisms against web applications. It provides 

a more accurate and effective approach compared to traditional methods, which often rely on 

signature-based detection.  

5.1 Future Research Directions 

While the current research has made significant strides in utilizing deep learning techniques, 

particularly in analyzing payload and URI queries for detecting web attacks, it is important to 

acknowledge its limitations in the context of certain types of cyber threats. Specifically, 

distributed denial of service (DDoS) and denial of service (DoS) attacks present unique 

challenges that are not fully addressed by a purely payload-based analysis approach. 

Additionally, the exploration of the integration of this model with real-time monitoring 

systems for proactive threat detection and the inclusion of more diverse datasets could also be 

beneficial in improving the model’s generalization capabilities. 

To reduce the processing overhead, a formal method needs to be introduce that prevents the 

complete processing for same requests or duplicates.  



 

 55 

REFERENCES 

[1] S. Ramezany, R. Setthawong and T. Tanprasert, "A Machine Learning-based Malicious 

Payload Detection and Classification Framework for New Web Attacks," 2022 19th 

International Conference on Electrical Engineering/Electronics, Computer, 

Telecommunications, and Information Technology (ECTI-CON), Prachuap Khiri Khan, 

Thailand, 2022, pp. 1-4, doi: 10.1109/ECTI-CON54298.2022.9795455. 

[2] “OWASP Top Ten" [Online]. Available: https://owasp.org/www-project-top-ten/    

[Accessed APril 2023]. 

[3] “Network Flow Monitoring Explained: NetFlow vs sFlow vs IPFIX” [Online]. Available: 

https://www.varonis.com/blog/flow-monitoring [Accessed Aprial 2023]. 

[4] “Akamai Web Application and API Threat Report" [Online]. Available: 

https://www.akamai.com/resources/research-paper/akamai-web-application-and-api-threat-

report  [Accessed April 2023]. 

[5] “Cross Site Scripting (XSS): What Is It & What’s an Example?” [Online]. Available: 

https://blog.hubspot.com/website/cross-site-scripting  [Accessed April 2023]. 

[6] “Server-Side Request Forgery-SSRF" [Online]. Available: 

https://www.briskinfosec.com/blogs/blogsdetail/Server-Side-Request-Forgery-SSRF   

[Accessed May 2023]. 

[7] “Structured Query Language Injection (SQLi)" [Online]. Available: 

https://www.wallarm.com/what/structured-query-language-injection-sqli-part-1    [Accessed 

May 2023]. 

[8] “Command Injection"  [Online]. Available: https://www.imperva.com/learn/application-

security/command-injection [Accessed May 2023]. 

[9] “REMOTE CODE EXECUTION (RCE):PRINCIPLES AND FUNCTION "  [Online]. 

Available: https://www.crowdstrike.com/cybersecurity-101/remote-code-execution-rce/ 

[Accessed Aug 2023]. 

[10] “Local file inclusion (LFI)” [Online]. Available: https://www.invicti.com/learn/local-

file-inclusion-lfi/  [Accessed Aug 2023]. 

[11] “Local File Disclosure Vulnerability: A Case Study of Public-Sector Web Applications” 

[Online]. Available: https://iopscience.iop.org/article/10.1088/1742-6596/933/1/012011 

[Accessed Aug 2023]. 

[12] “2017-XML External Entities (XXE)"  [Online]. Available: https://owasp.org/www-

project-top-ten/2017/A4_2017-XML_External_Entities_(XXE) [Accessed Aug 2023]. 

[13] “What Is an Open Redirection Vulnerability and How to Prevent it?"  [Online]. 

Available: https://dzone.com/articles/what-is-an-open-redirection-vulnerability-and-how 

[Accessed Aug 2023]. 



 

 56 

[14] “Unvalidated Redirects and Forwards Cheat Sheet"  [Online]. Available: 

https://cheatsheetseries.owasp.org/cheatsheets/Unvalidated_Redirects_and_Forwards_Cheat_

Sheet.html  [Accessed Aug 2023]. 

[15] “XML external entity (XXE) injection"  [Online]. Available: 

https://portswigger.net/web-security/xxe [Accessed Aug 2023]. 

[16] “INSECURE DESERIALIZATION"  [Online]. Available: 

https://www.contrastsecurity.com/glossary/insecure-deserialization [Accessed Aug 2023]. 

[17] He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image 

recognition. In Proceedings of the IEEE conference on computer vision and pattern 

recognition (pp. 770-778). 

[18] “https://towardsdatascience.com/introducing-convolutional-neural-networks-in-deep-

learning-400f9c3ad5e9” [Online]. Available: https://towardsdatascience.com/introducing-

convolutional-neural-networks-in-deep-learning-400f9c3ad5e9   [Accessed Sep 2023]. 

[19] He, K., Zhang, X., Ren, S., Sun, J. (2014). Spatial Pyramid Pooling in Deep 

Convolutional Networks for Visual Recognition. In: Fleet, D., Pajdla, T., Schiele, B., 

Tuytelaars, T. (eds) Computer Vision – ECCV 2014. ECCV 2014. Lecture Notes in 

Computer Science, vol 8691. Springer, Cham. https://doi.org/10.1007/978-3-319-10578-9_23 

[20] “ATT&CK Matrix for Enterprise" [Online]. Available: https://attack.mitre.org/    

[Accessed Sep 2023]. 

[21] “2022 Global Threat Analysis Report" [Online]. Available: 

https://www.radware.com/getattachment/b775fe9c-326f-4f97-b6c7-8545b5b68e42/Radware-

2022-Global-Threat-Analysis-Report.pdf.aspx  [Accessed Sep 2023]. 

[22] “Input Validation and Data Sanitization [Online]. Available: 

https://wiki.sei.cmu.edu/confluence/display/java/Input+Validation+and+Data+Sanitization 

[Accessed Sep 2023]. 

[23] I. Yusof and A. -S. K. Pathan, "Mitigating Cross-Site Scripting Attacks with a Content 

Security Policy," in Computer, vol. 49, no. 3, pp. 56-63, Mar. 2016, doi: 

10.1109/MC.2016.76. 

[24] H.Fadlallah "Using parameterized queries to avoid SQL injection" [Online]. Available: 

https://www.sqlshack.com/using-parameterized-queries-to-avoid-sql-

injection/#:~:text=Parameterized%20queries%20is%20a%20technique,for%20the%20type%

20and%20length.  [Accessed Sep 2023]. 

[25] “principle of least privilege (POLP)” [Online]. Available: 

https://www.techtarget.com/searchsecurity/definition/principle-of-least-privilege-POLP 

[Accessed Sep 2023]. 

[26] A. Hetler " 5 reasons software updates are important" [Online]. Available: 

https://www.techtarget.com/whatis/feature/5-reasons-software-updates-are-important 

[Accessed Sep 2023]. 



 

 57 

[27] “Using parameterized queries to avoid SQL injection" [Online]. Available: 

https://www.checkpoint.com/cyber-hub/network-security/what-is-network-segmentation/ 

[Accessed Oct 2023]. 

[28] S. Mehnaz and E. Bertino, “A Fine-Grained Approach for Anomaly Detection in File 

System Accesses With Enhanced Temporal User Profiles," in IEEE Transactions on 

Dependable and Secure Computing, vol. 18, no. 6, pp. 2535-2550, 1 Nov.-Dec. 2021, doi: 

10.1109/TDSC.2019.2954507. 

[29] “File access control" [Online]. Available: https://www.manageengine.com/device-

control/file-access-control.html [Accessed Oct 2023]. 

[30] “Local File Inclusion (LFI): Understanding and Preventing LFI Attacks" [Online]. 

Available: https://brightsec.com/blog/local-file-inclusion-lfi/ [Accessed Oct 2023]. 

[31] “What is Local File Inclusion (LFI)?"  [Online]. Available: 

https://www.acunetix.com/blog/articles/local-file-inclusion-lfi/  [Accessed Oct 2023]. 

[32] “How to Identify and Mitigate XXE Vulnerabilities?” [Online]. Available: 

https://cybertrends-indusface.medium.com/how-to-identify-and-mitigate-xxe-vulnerabilities-

a0ff56acaa07    [Accessed Oct 2023]. 

[33] “Insecure deserialization” [Online]. Available: https://learn.snyk.io/lesson/insecure-

deserialization/  [Accessed Oct 2023]. 

[34] Tomás Sureda Riera, Juan-Ramón Bermejo Higuera, Javier Bermejo Higuera, José-

Javier Martínez Herraiz, and Juan-Antonio Sicilia Montalvo. 2022. A new multi-label dataset 

for Web attacks CAPEC classification using machine learning techniques. Comput. Secur. 

120, C (Sep 2022). https://doi.org/10.1016/j.cose.2022.102788 

[35] M.Shah, "A SECURED AND ENHANCED MITIGATION FRAMEWORK FOR 

DDOS ATTACKS," 2019 https://doi.org/10.26782/jmcms.2019.12.00075  

[36] H. -K. Lim, J. -B. Kim, J. -S. Heo, K. Kim, Y. -G. Hong and Y. -H. Han, "Packet-based 

Network Traffic Classification Using Deep Learning," 2019 International Conference on 

Artificial Intelligence in Information and Communication (ICAIIC), Okinawa, Japan, 2019, 

pp. 046-051, doi: 10.1109/ICAIIC.2019.8669045. 

[37] Wei Wang, Ming Zhu, Xuewen Zeng, Xiaozhou Ye and Yiqiang Sheng, "Malware 

traffic classification using convolutional neural network for representation learning," 2017 

International Conference on Information Networking (ICOIN), Da Nang, Vietnam, 2017, pp. 

712-717, doi: 10.1109/ICOIN.2017.7899588 

[38] R. -H. Hwang, M. -C. Peng, C. -W. Huang, P. -C. Lin and V. -L. Nguyen, "An 

Unsupervised Deep Learning Model for Early Network Traffic Anomaly Detection," in IEEE 

Access, vol. 8, pp. 30387-30399, 2020, doi: 10.1109/ACCESS.2020.2973023. 

[39] M. Hassan, M. E. Haque, M. E. Tozal, V. Raghavan and R. Agrawal, "Intrusion 

Detection Using Payload Embeddings," in IEEE Access, vol. 10, pp. 4015-4030, 2022, doi: 

10.1109/ACCESS.2021.3139835. 



 

 58 

[40] J. Liu, Y. Qu, J. Li, Y. Wang, J. Zhang and H. Yin, "Malicious Code Family 

Classification Method Based on Spatial Pyramid Pooling and Deep Residual Network," 2021 

IEEE 7th International Conference on Cloud Computing and Intelligent Systems (CCIS), 

Xi'an, China, 2021, pp. 260-264, doi: 10.1109/CCIS53392.2021.9754597. 

[41] J. Harish Kumar and J. J Godwin Ponsam, "Cross Site Scripting (XSS) vulnerability 

detection using Machine Learning and Statistical Analysis," 2023 International Conference 

on Computer Communication and Informatics (ICCCI), Coimbatore, India, 2023, pp. 1-9, 

doi: 10.1109/ICCCI56745.2023.10128470. 

[42] A. M. Vartouni, S. S. Kashi and M. Teshnehlab, "An anomaly detection method to 

detect web attacks using Stacked Auto-Encoder," 2018 6th Iranian Joint Congress on Fuzzy 

and Intelligent Systems (CFIS), Kerman, Iran, 2018, pp. 131-134, doi: 

10.1109/CFIS.2018.8336654. 

[43] M. Vyas, R. Vijayaganth, J. Chandhok, A. Srivastava, S. Arumugam and M. Tiwari, 

"Revolutionizing IoT Network Security with Deep Learning-Anomaly Detection Model," 

2023 4th International Conference on Electronics and Sustainable Communication Systems 

(ICESC), Coimbatore, India, 2023, pp. 1533-1538, doi: 

10.1109/ICESC57686.2023.10193493. 

[44] Tekerek, A. (2021). A novel architecture for web-based attack detection using 

convolutional neural network. Computers & Security, 100, 102096. 

[45] “What is Honeypot?” [Online]. Available: https://www.geeksforgeeks.org/what-is-

honeypot/ [Accessed Nov 2023]. 

[46] “Identity and Access Management for AWS Account Management” [Online]. Available: 

https://docs.aws.amazon.com/accounts/latest/reference/security-iam.html [Accessed Oct 

2023]. 

[47] “Deploy and scale web applications” [Online]. Available: 

https://aws.amazon.com/elasticbeanstalk/?gclid=CjwKCAiA1fqrBhA1EiwAMU5m_2tdHnQ

hM577JDh9bfnTn1kBKg_5DZcr81dRP5Uc9VY6P_cD5Z8GjxoCsogQAvD_BwE&trk=295

14334-a45b-4894-96c1-

cd1eff3a5e50&sc_channel=ps&ef_id=CjwKCAiA1fqrBhA1EiwAMU5m_2tdHnQhM577JD

h9bfnTn1kBKg_5DZcr81dRP5Uc9VY6P_cD5Z8GjxoCsogQAvD_BwE:G:s&s_kwcid=AL!

4422!3!651510255291!e!!g!!elastic%20beanstalk!19836376744!146491721185  [Accessed 

Nov 2023]. 

[48] “Create an Amazon RDS DB instance” [Online]. Available: 

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_Tutorials.WebServerDB

.CreateDBInstance.html [Accessed Nov 2023]. 

[49] “What is Amazon Relational Database Service (Amazon RDS)?” [Online]. Available: 

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Welcome.html  [Accessed Oct 

2023]. 

[50] “EC2 Auto Scaling & Elastic Load Balancer | AWS in Action” [Online]. Available: 

https://www.youtube.com/watch?v=cf9jQc4xzpo  [Accessed Oct 2023]. 



 

 59 

[51] “Essential AWS Security Best Practices - YouTube” [Online]. Available: 

https://www.youtube.com/watch?v=mPU43QvPAHE  [Accessed Oct 2023]. 

[52] “Access logs for your Application Load Balancer” [Online]. Available: 

https://docs.aws.amazon.com/elasticloadbalancing/latest/application/load-balancer-access-

logs.html [Accessed Nov 2023]. 

[53] “Collect data in custom log formats to Microsoft Sentinel with the Log Analytics agent” 

[Online]. Available: https://learn.microsoft.com/en-us/azure/sentinel/connect-custom-

logs?tabs=DCG [Accessed Oct 2023]. 

[54]  D. Vannoy “Querying Azure Log Analytics (with KQL)” [Online]. Available: 

https://www.youtube.com/watch?v=92oJ20XeQso&ab_channel=DustinVannoy   [Accessed 

Nov 2023]. 

[55] “Filter & Split Firewall/CEF logs into multiple Sentinel tables (analytics/basic tier) to 

save in ingestion costs” [Online]. Available: https://www.linkedin.com/pulse/filter-split-

firewallcef-logs-multiple-sentinel-tables-marko-lauren [Accessed Nov 2023]. 

[56] “Kusto Query Language (KQL) overview” [Online]. Available: 

https://learn.microsoft.com/en-us/azure/data-explorer/kusto/query/inoperator  [Accessed Oct 

2023]. 

[57] “Convert String to ASCII” [Online]. Available: https://mkyong.com/java/how-to-

convert-character-to-ascii-in-

java/#:~:text=Convert%20String%20to%20ASCII,to%20get%20the%20ASCII%20value. 

[Accessed Nov 2023]. 

[58] “GRAY SCALE IN CNN” [Online]. Available: https://www.linkedin.com/pulse/gray-

scale-cnn-kamalakkannan-r-a9bgc [Accessed Nov 2023]. 

[59] Gulli, A., Kapoor, A., Pal, S. (2019). Deep Learning with TensorFlow 2 and Keras: 

Regression, ConvNets, GANs, RNNs, NLP, and More with TensorFlow 2 and the Keras API, 

2nd Edition. United Kingdom: Packt Publishing. 

[60] “Keras Model Sequential API VS Functional API” [Online]. Available: 

https://medium.com/analytics-vidhya/keras-model-sequential-api-vs-functional-api-

fc1439a6fb10#:~:text=Sequential%20API%20allows%20you%20to,have%20multiple%20in

puts%20or%20outputs.&text=And%20now%20lets%20plot%20your%20model%20using%2

0keras%20utils. [Accessed Nov 2023]. 

[61] “Beginners Guide to Convolutional Neural Networks” [Online]. Available: 

https://towardsdatascience.com/beginners-guide-to-understanding-convolutional-neural-

networks-

ae9ed58bb17d#:~:text=Convolution%20of%20RGB%20image%20using,function%20in%20

a%20convolution%20layer. [Accessed Nov 2023]. 

[62] “What is ReLU ?” [Online]. Available: https://iq.opengenus.org/relu-activation/  

[Accessed Nov 2023]. 

[63] “How ReLU and Dropout Layers Work in CNNs” [Online]. Available: 

https://www.baeldung.com/cs/ml-relu-dropout-layers [Accessed Nov 2023]. 



 

 60 

[64] “Keras Dense Layer: How to Use It Correctly” [Online]. Available: 

https://wandb.ai/ayush-thakur/keras-dense/reports/Keras-Dense-Layer-How-to-Use-It-

Correctly--Vmlldzo0MjAzNDY1 [Accessed Nov 2023]. 

[65] “Softmax Activation Function — How It Actually Works” [Online]. Available: 

https://towardsdatascience.com/softmax-activation-function-how-it-actually-works-

d292d335bd78 [Accessed Nov 2023]. 

[66] “Gentle Introduction to the Adam Optimization Algorithm for Deep Learning” [Online]. 

Available: https://machinelearningmastery.com/adam-optimization-algorithm-for-deep-

learning/   [Accessed Oct 2023]. 

[67] “What is the learning rate in Machine Learning?” [Online]. Available: 

https://deepchecks.com/glossary/learning-rate-in-machine-learning/ [Accessed Nov 2023]. 

[68] “Cross-Entropy Loss Function” File Disclosure Vulnerability: A Case Study of Public-

Sector Web Applications” [Online]. Available: https://towardsdatascience.com/cross-

entropy-loss-function-f38c4ec8643e  [Accessed Nov 2023]. 

[69] “Getting started with Elastic Load Balancing” [Online]. Available: 

https://aws.amazon.com/elasticloadbalancing/getting-started/ [Accessed Nov 2023]. 

[70] “Enabling Amazon S3 server access logging” [Online]. Available: 

https://docs.aws.amazon.com/AmazonS3/latest/userguide/enable-server-access-logging.html 

[Accessed Nov 2023]. 

[71] “Accuracy (error rate)” [Online]. Available: https://deepai.org/machine-learning-

glossary-and-terms/accuracy-error-rate  [Accessed Nove 2023]. 

[72] “Precision and Recall | Essential Metrics for Machine Learning (2023 Update)” [Online]. 

Available: https://www.analyticsvidhya.com/blog/2020/09/precision-recall-machine-learning/  

[Accessed Nov 2023]. 

[73] “What is a Confusion Matrix in Machine Learning?” [Online]. Available: 

ttps://www.simplilearn.com/tutorials/machine-learning-tutorial/confusion-matrix-machine-

learning  [Accessed Nov 2023]. 

[74] “Confusion Matrix for Your Multi-Class Machine Learning Model” [Online]. Available: 

https://towardsdatascience.com/confusion-matrix-for-your-multi-class-machine-learning-

model-ff9aa3bf7826 [Accessed Nov 2023]. 

[75] “Accuracy vs. precision vs. recall in machine learning: what's the difference?” [Online]. 

Available: https://www.evidentlyai.com/classification-metrics/accuracy-precision-

recall#:~:text=Accuracy%20shows%20how%20often%20a,objects%20of%20the%20target%

20class. [Accessed Nov 2023]. 

 

 

 

 



 

 61 

 

 

 

 

 

 

 

 

 

 

 

 

 


