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Abstract

The concept of convex functions has indeed found an important place in modern mathematics
as can be seen in a large number of research articles and books devoted to the field these days.
The Hermite-Hadamard inequality, which, we can say, is the first fundamental result for convex
functions with a natural geometrical interpretation and many applications, has attracted and
continues to attract much interest in elementary mathematics.

In this thesis some new generalization related to the Hermite-Hadamard inequalities for
superquadratic functions has been presented and Hermite-Hadamard inequalities via fractional
integrals is also discussed. Some fundamental results like mean value theorems, Cauchy type
means and exponential convexity have been developed for both cases of Hermite-Hadamard
inequalities.
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Chapter 1

Introduction and Preliminaries

Convex functions are very important in the theory of inequalities and play an important
role in many areas of mathematics. They are especially important in the study of optimization
problems where they are distinguished by a number of convenient properties. For instance, a
(strictly) convex function on an open set has no more than one minimum. Even in infinite-
dimensional spaces, under suitable additional hypotheses, convex functions continue to satisfy
such properties and, as a result, they are the most well-understood functionals in the calculus
of variations.

1.1 Convex Function of One Variable

A set C'is convex if the line segment between any two points in C' lies in C', that is, for any
xz,y € C'and any A with 0 < X\ < 1, we have

A+ (1—NyeC. (1.1.1)

Definition 1.1.1. Let I be an interval in R. Then f : [ — R is said to be convex function if
for all z, y € I and all 0 < X\ < 1, the following inequality holds

fAz+ (1= Ny) <Af(z)+ (1= AN f(y) (1.1.2)

If above inequality is strict for all z # y and 0 < A < 1 then, f is said to be strictly convex.
If the inequality is reversed, then f is said to be concave and for an affine function we have
always equality in (1.1.2).

Definition 1.1.2. A very convenient equivalent definition of a convexr function is in terms of
its epigraph. Given a real-valued function f : R — R, we define its epigraph as the set



epif = {(z,t) € R’|lz € R, f(z) < t}.
A function f is convex if and only if epif is convex.

1.1.1 Continuity and Differentiabillty of Convex Function

A function f : I — R is said to be midpoint convex function if it satisfies the inequality

f(x+y)§f@ﬂ+f@)

5 5 , forallx, yel.

A convex function defined on some open interval is continuous and Lipschitz continuous on any
closed subinterval. A continuous function that is midpoint convex will be convex.

Preposition 1.1.3 [8]. Let a function f : I — R is continuous. Then f is convez if and
only if fis midpoint convex.

Definition 1.1.4. Let I C R be an interval. A function f : I — R is said to be is absolutely
continuous on an interval [ if for every positive number ¢, there exists a positive number §
such that

Z |f<€2 - 772)| <6,
whenever a finite sequence of pairwise disjoint subintervals (&;, ;) of I satisfies
Z(& — 1) <0.

Theorem 1.1.5 [5]. If f: I — R is convex then f satisfies the Lipschitz condition on any closed
interval [a,b] contained in the interior of I, that is there is a constant K so that for any two
points x, y € la,b],

[ f@) = f) IS Klz—yl.

Consequently, f is absolutely continuous on [a, b] and continuous on interior of L.
The derivative of a convex function is best studied in terms of the left and right derivatives
defined as

7w =T ) LD 2T



and these are monotonically non-decreasing.

Theorem 1.1.6 [8]. Let I C R be a convex set. A differentiable function f : I — R is
convex if and only if

f’(y)SM, forall z, y € I.

r—y
A function which is differentiable is convex on an interval if and only if its derivative is mono-
tonically non-decreasing on that interval. If a differentiable function is convex then it is also
continuously differentiable. A twice differentiable function f of one variable defined on the
interval I is convex if its second derivative f ">0forallx el

1.2 Convex Function of Several Variables

In this section, the definition of a convex function of two or more variables are presented. We
can extend the inequality given in the definition of convex function to the convex combination
of finitely many points in a convex set C. This extension is known as discrete Jensen’s inequality.

Definition 1.2.1. Consider a convex function h : M — R, where the domain M C R" is
a convex set in the n-dimensional euclidean space, then

h (Z >\1IZ> S Z /\lh(ﬂfl), for all x; € ]\17
=1 =1

is called Jensens Inequality, where A; > 0 for alli =1,...,nand > A\ = 1.

Definition 1.2.2. The epigraph of a function h over R” is the following set in R™*!
epih = {(z,t) e R"'|z € R" h(z) < t}.

Proposition 1.2.3 [8]. A function h defined on a subset of R™ is convez if and only if its
epigraph is a nonempty convex set in R* 1.

Definition 1.2.4. The gradient of a function h(xy, . . ., x,) for each z € R™ is given
by
Oh  d0h oh
h ey X)) = |y —y o, —
Vi, ) Tn) dxy dxsy oz,

Theorem 1.2.5 [13]. Let M C R" be a convex set. A differentiable function h : M — R is
convex if and only if

h(y) > h(z) + 7h(x)" (y — ), forallx, y € M.



Definition 1.2.6. The Hessian matrix of a function h(zy, . .., z,) is a matrix given by

5%h ]

=<7%h, fori, j=1, ..., n.
6x161‘] v ) OI‘Z,] ) Jn

Hy(xr, ..., ) = [

Theorem 1.2.7 [13]. Let h : R™ — R be twice continuously differentiable and M C R™ convex.
Then h is conver on M if and only if the Hessian matriz Hy(x) is positive semi-definite for all
r e M.

Some examples of convex functions are given below:
e ¢? is convex on R, for any a € R.

e |x|? is convex on R for p > 1.

e Every norm on R" is convex.

1.3 Hermite-Hadamard Inequality

Hermite-Hadamard integral inequality is considered to be one of the most well-known in-
equality in mathematics for convex functions.

f (aH) < bia/abf(t)dt < fa) + 1) (1.3.1)

2 2 ’

provided that for an interval [a,b] C R, f : [a,b] — R is a convex function. If the function
f is concave, then the above inequality holds in the reverse direction. These inequalities for
convex functions play an vital role in nonlinear analysis. In recent years there have been many
extensions, generalizations and similar type results of the inequalities (1.3.1) can be found in
[9].

These classical inequalities have been improved and generalized in many ways and applied
for special means including Stolarsky-type means, logarithmic and p-logarithmic means. Also,
many interesting applications of Hermite-Hadamard inequality can be found in [13].

1.4 Exponential Convexity

A function h : (a,b) — R is exponentially conver if it is continuous and

Z uzu]h(xl + Ij) Z 0,

ij=1



for all n € N and all choices v; € R, i = 1,2,...,n and z; € (a,b), such that z; + z; € (a,b),
1<4,9 <n.

Proposition 1.3.1. [3] Let h : (a,b) — R. The following are equivalent:
(i) h is exponential convex,
(i) h is continuous and

for every u; € R and every x;, x; € (a,b), 1 <1, j <n,
(iii) h is continuous and

det[h(%)] >0, 1<m<n,

1,j=1

for every z; € (a,b),i=1,2,....,n.

Corollary. [3] If h : (a,b) — (0,00) is exponentially convex function, then h is a log-convex
function:

h (“y) < V/A@)h(y) , (1.4.1)

for all z, y € (a,b).

1.5 Cauchy Means

Mean-value theorems are of great importance in mathematical analysis. In particular, the
Lagrange type and the Cauchy type mean-value theorems are most frequently used. The usual
approach is to prove first the Lagrange type mean value theorems and then deduce from them
the Cauchy type mean value theorems. We use Mean value theorem and its other generalized
version to define new Cauchy means [12].

It states if two function f(x) and g(z) are continuous on closed interval [a,b] and differ-
entiable on (a, b) further that ¢'(z) # 0, then there exists at least one ¢ with a < ¢ < b satisfying




If the function § is invertible, then the existence of ¢ is unique and

~(7) () &

This number c is called Cauchy mean value of the numbers a, b.



Chapter 2

Hermite-Hadamard Inequalities for
Superquadratic Functions and Cauchy
Type Means

In this chapter, some new generalizations are considered related to the Hermite-Hadamard
inequality for superquadratic functions. Also defined mean value theorem, Cauchy means,
and positive semi-definiteness, exponential convexity, log-convexity, that are associated with
Hermite-Hadamard inequalities for superquadratic functions.

2.1 Superquadratic Functions

In this section, superquadratic functions are defined. Some results and examples related to
superquadratic functions are also discussed.

Definition 2.1.1. A function ¢ : [0, oo ) — R is superquadratic provided that for all z
> 0 there exists a constant C'(z) € R such that

o(y) — o(z) — ¢(ly — z|) = C(a)(y — ) (2.1.1)

for all y > 0. We says that ¢ is subquadratic if -¢ is a superquadratic function.

Lemma 2.1.2 [7]. Let ¢ be a superquadratic function with C(z) as in above definition. Then
() o(0) <0, |

(i) If $(0) = ¢ (0) = 0 then C(x) = ¢ (x) whenever ¢ is differentiable at x > 0.

(ii) If ¢ > 0, then ¢ is conver and $(0) = ¢ (0) = 0.

Lemma 2.1.3 [7]. Suppose ¢ is differentiable and ¢(0) = ¢'(0) = 0. If ¢ is superquadratic
then ¢(x)/x? is non decreasing on (0, o).



A function ¢ : [0,00) — R is superadditive provided ¢(p + ¢q) > ¢(p) + ¢(q) for all p, ¢ >
0.

Lemma 2.1.4. [1] Suppose ¢ : [0,00) — R is continuously differentiable and ¢(0) < 0. If
¢ is superadditive or ¢ (p)/p is non decreasing then ¢ is superquadratic.

Example 2.1.5. The function ¢(x) = z? is superquadratic for ¢ > 2 and subquadratic for
q € (0, 2].

Proposition 2.1.6 [1] Let u : (0, o0) — R be a continuously differentiable and a non de-
creasing function with

. . . 2 .
tl_l}(%—tu(t) =0 and tl_l)%it u(t) =0, (2.1.2)

such that the function t — tu'(t) is non decreasing.
Then the function f : [0, oo) — R defined by

is a differentiable and superquadratic function with f(0) = f'(0) = 0.

Example 2.1.7. The function u(t) = Int, t € (0,00), is differentiable and non decreasing
function which satisfies (2.1.2). Also tu/(t) = 1 is non decreasing. Therefore

f(t) =t*u(t) =t*Int, t>0,

is a differentiable and superquadratic function with f(0) = f/(0) = 0 but f is not a convex
function.

Proposition 2.1.8 [1]. Let v : (0, co) — R be a continuous and non decreasing function
with lim tv(t) = 0. Then the function h : [0, co) — R defined by

t—0+

t
h(t) :/ zv(z)dz, t>0,
0
is a differentiable and superquadratic function with h(0) = h'(0) = 0.

Proof. We have h/(t) = tv(t) for t > 0, so that th%}i— h'(t) = 0 = h'(0). Hence, h is contin-
—

uously differentiable on [0, 00). By our assumption A/(t)/t = v(t) is non decreasing, so that h
is a superquadratic function by Lemma (2.1.3). O



Example 2.1.9. The function v(t) = (¢t — 2)/vt?*+ 1, ¢ > 0 is non decreasing on (0, c0)
and tli%}r tv(t) = 0. Therefore the function
—>

t
z(r —2) 1 1
h(t :/ —dx:—t\/t2+1—2\/t2+1——ln<t+\/t2+1>+2, t >0,
( ) 0o Vaz+1 2 2 o
is superquadratic function. This function A is not convex function.

Example 2.1.10. The function v(¢) = sinh¢ is non decreasing. Therefore the function
t
h(t) = / xsinhxdx = tcosht —sinht, ¢ >0,
0

is superquadratic function. Moreover it is convex by Lemma 2.1.2.

2.2 Hermite-Hadamard Inequalities for Superquadratic
Functions

In this section, by using some characterizations of superquadratic functions we obtain new in-
equalities and also discuss some special means.

Theorem 2.2.1 [3]. Let ¢ : [0, 00 ) = R be an integrable superqudratic function; then for
0 <a<bone has

90<a;rb)+bia/ab90(x—a;rb’)dx§ﬁ abcp(x)dx, (2.2.1)
b i a /abW)dfc < £la) ; olb) C _1a>2 /ab((b — 2)p(z —a) + (z — a)p(b — z))dz. (2.2.2)

2.2.1 Mean Value Theorems

In this section, mean value theorems are developed and calculate different cases of limit for new
means M, and M, att =2, t=r=2and t =r.

Definition 2.2.2. Let ¢ : [0,00) — R be an integrable function; for 0 < a < b one defines a
linear functional A, as

A@:/abgo(x)dx—(b—a)gp (“'2”7) —/abcp(‘x—a;b‘) da. (2.2.3)




From above inequality (2.2.1) it is clear if ¢ is superquadratic function, then A, > 0.
We stated following Lemma.

Lemma 2.2.3 [3]. Suppose that ¢ : [0,00) — R is continuously differentiable and ¢(0) <
0. If ¢’ is superadditive or ¢'/x is increasing, then ¢ is superquadratic.

Lemma 2.2.4 [4]. Let ¢ € C? ([0,00)), —00 < m < M < oo such that

m < (¢/§§)> = &'0//(5)62_ A <M, forall £€]0,00). (2.2.4)
Consider the function ¢ and @9 defined as
M 3 3
pr(a) = 5= — o), pale) = ple) - S5

Then ¢'1/x and ¢'y/x are increasing functions. Also they are superquadratic functions if
0 (0)=0,7 =1, 2.

Theorem 2.2.5 [3]. If ¢'/x € C'(I) and ¢(0) = 0, then the following equality holds:

A, = %@"(@6; P1E) (b—a) (a*(5a —7b) + B*(3b—a)), £l (2.2.5)

Proof. Suppose that ¢'/x is bounded, where min ¢/ = m and max ¢/x= M. Now by using
@1 in place of ¢ in (2.2.1) we obtain

Yoo (5 - () -5 ([
[
/jw(x)dw—(b—aw(“;b) —/abso(

Similarly, by using (s in place of ¢ in (2.1.2) we obtain

[ 0o (232)- (52

When we combine above inequalities we get that there exists 0 < £ < oo such that (2.2.5)
holds. ]

a

ath . 3 2 o 3
2 (a+b 2:r> dx+/ <2:B a b> daz)
2 atb 2

2

M b b
x—a;—de:Egg/ ."L‘gdiL‘—/ p(r)dx.

T — a—l—b’) dr < %(aQ(Sa—W))—I—bQ(Bb—a)).

2

Ne}
(=}

(a*(5a — 7b) + b*(3b — a)) .

3E

10



Theorem 2.2.6 [3] If ¢'/x, ¢/'/x € CY(I), p(0) = ¥(0) = 0, and a*(5a — 7b) + b*(3b — a)
# 0, then one has

ﬁ "6 —¢'(©) = K(§), (€1, (2.2.6)

Ay &P"(E) —v'(6)

provided the denominators are not equal to zero. If K is invertible then

A
£= K (—*"> Ay £0, (2.2.7)
Ay
1S @ new mean.
We easily checked that the set of functions p(z) = «"/(r(r — 2)), r

satisfies Lemma 2.2.3. Therefore if we substitute ¢(x
in (2.2.3), we get

1 b a+b\" ER a+b—2x 2 (22—a—b\"
A"o_7‘(',“—2)</a$dl‘_(b_a)< B > —/a (2)d$—/a+b<2> dﬂ?

_ <2T(br+1 —a ™) —(b—-a)r+1)(a+b)"— (b— a)’“)
N 2rr(r+ 1)(r — 2) ’

Similarly

A¢_t(t1—2) (/abxtdm—(b—a)<a;b)t—/a

_ (27”(6”1 —a ™) —(b—a)(r+1)(a+b)"— (b— a)”“l)
2rr(r +1)(r — 2) '

a+b

B t 2 Nt
2 <a+b 2x> d:r—/ <2.CE a b) dac)
2 atb 2

2

Now using A, and Ay in (2.2.6) we obtain

Ap _2tt+1)(E—2)(27 (0 —a™) —(b—a)(r+1)(a+b)" — (b—a)™)
Ay 27r(r+1)(r = 2)(24(bH — at* ) — (b—a)(t + 1)(a + b)t — (b — a)tt1)’

and

" (§) — ¥'(§)

e — ()~ °

11



Using this in Equation (2.2.7) then we have a new mean M, , defined as follows, where r, ¢ >
0,r#tand a,b>0, a#b.

22 —a ) = (b—a)(r + D(a+b)" — (b—a) TN
M”_(2”r<r+1><r—2><2t<bt+1—at+1>—<b_a><t+1><a+b>t—<b_a>t+1>> nr
(2.2.8)

To compute M, 5 = M, ,, consider

lim M, ; = lim
t—2 ’ t—2

24(t+ 1)(t — 2)(2" (0" — "t — (b—a)(r + 1)(a + b)" — (b — a)m))” (r=t)
<2’"r(r F1)(r —2)2L T — at ) — (b— a)(t + 1)(a + b)t — (b — a)+) '

Applying L’Hospital rule, we get

lim
t—2

)

2'(In2(t% — 2 — 2t) + 3t — 2t = 2)(2"(0"™ —a" ) — (b—a)(r + 1)(a+b)" — (b— a)’““))l/(r‘“
< 2rr(r+1)(r — 2)A*

where
A* = 2t 1112(be+1 — at“) + 275(1)’”rl Inb — att! Ina) — (b—a)(a+ b1+ (t+1)In(a + b)) —

(b—a)*In(b—a).
Applying limit, we get

2427 (b — a1 — (b—a)(r + 1)(a+b)" — (b — a)r+1))1/<r2>

2 (r + 1)(r — 2)A T2

(2.2.9)

MT,Q = M2,r = (

where
A=42(® —a®) +4(0*Inb —a*Ina) — (b—a)(a+0b)*(1+3In(a+0b)) — (b—a)®*In(b—a).

To compute My o, consider

(24(2T(b7”+1 —a*) —(b—a)(r+1)(a+b)" — (b— a)rﬂ))l/(rz) |

lim M, » =
oy 2 T 2 (r + 1)(r — 2)A

r—2

Applying limit, we get

(2.2.10)

3B—(6ln2+5)A
MQ,QZGXP( ( new ) )7

6A

where P is defined above and
B =2(In2)*(t’ — a®) + 8In2(b’Inb — a®Ina) + 4(63(Inb)? — a*(Ina)?) — (b — a)(a + b)*(In(a +

12



b)(2+3In(a+b))) — (b —a)®*(In(b — a))?.

To compute M, ,, consider

lim M, ; = lim
t—r ’ t—r

<2tt<t F)(E—2) 270 — @) — (b—a)(r + 1) (a+b) — (b— a)””“)) /=)
2rr(r + 1) (r = 2)(2 (0 — att) — (b—a)(t + 1)(a 4+ b)t — (b — a)tt)) '

Taking log of both sides, we get

lim log M, ;

=lim —— (log (2't(t+1)(t =2 (" — ™) = (0= a)(r + D(a+b)" — (b= a)"™))

—log (2" r(r+1)(r — 2)(2'(W" — @) — (b—a)(t + 1)(a +b)" — (b—a)™h))).

Applying L’Hospital rule, we get

/

— lim d© 2'In2(# —* —2t) +2'(3t* — 2t — 2)
B d* 2it(t +1)(t — 2) ’

where
d* =22 — ) = (b—a)(t + 1)(a+b)" — (b—a)*.

Applying limit,we get

B C  2(r*—r?—=2r)+ (3r* — 2r — 2)
My = exp (5_ r(r+ 1)(r—2) ) r#2

where

C =2"mn2(b"" — ™) + 280" Inb — a" ' 1na) — (b —a)(a +b)"(1 + (r + 1)In(a + b)) —
(b—a)n(b— a).
D=2(br"' —a"y — (b—a)(r+1)(a+b)"— (b—a)*"

Definition 2.2.7. Let ¢ : [0,00) — R be an integrable function; for 0 < a < b one defines a
linear functional A, as

i pla)+e®) 1 1 b
A, = 5 T b _a /a o(x)dx — m/@ (b—2)p(r —a) + (z — a)p(b — x))dz.

(2.2.12)

From above inequality (2.2.2) it is clear if ¢ is superquadratic function, then /~\¢ > 0.

13



Theorem 2.2.8 [3]. If ¢'/x € C*(I) and ©(0) = 0, then the following equality holds:

A, = 6—10&0”(5)52_ 7(8) (a%(7a — 11b) + b*(a +3b)), €€ 1. (2.2.13)

Proof. Suppose that ¢'/x is bounded, where min ¢/x = m and maz ¢/x = M. Now by using
@1 in place of ¢ in (2.2.2) we obtain

s [P [t < Y (S50 - (S0

b
s | (- @b ds

b
e ), (O )+ = el )

After that

a b ’
p(a) ;F p(b) _ ; i - /a o(x)dx — (b—la)Q /a (b —2)p(z —a) + (z — a)p(b — z))dx

< 6% (a*(7a — 11b) + b*(a + 3b)) .

Similarly, by using ¢5 in place of ¢ in (2.2.2) we obtain

a b ’
AN [ etade - gt [0 0)eto - @)+ 0 - 0o - )da

(a*(7a — 11b) + b*(a + 3b)) .

>

2

When we combine above inequalities we get that there exists 0 < £ < oo such that (2.2.13)
holds. O

Theorem 2.2.9 [3]. If ¢'/x, ¢/'/z € C*(I), ¢(0) = (0) =0, and (a*(Ta — 11b) + b*(a + 3b))
# 0, then one has

Ry &0 -¢O)
GRS AN (22.14)

provided the denominators are not equal to zero. If T is invertible then

E=T"" (/A\_z) , Ay #0, (2.2.15)

1S G new mean.
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We easily checked that the set of functions p(z)= z"/(r(r — 2)), r > 0
isfies Lemma 2.2.3. Therefore if we substitute ¢(z) = z"/(r(r — 2)) and ¥(x) = 2'/(t(t — 2))
in (2.2.12), we get

A T T 1 ’ r 1
e LA e e ) Al e ey
b
/ (b—z)(z—a)"+ (x—a)(b—2)") dx.
After simplification, it give us

i ((b —a)(r+1)(r+2)(a"+b") —2(r+ 2)(()”‘1 — aT‘H) —4(b— a)”‘l)
v 2r(r —2)(r +1)(r+2)(b—a) '

Similarly

1 (=) + D)+ +8) — 2t + O — 0t — d(b—a)*)
v 26t — 2)(t + 1)(t + 2)(b— a) '

Now using A, and Ay in (2.2.14) we obtain

Rp  tt+1)(E+2)(E—2) ((b—a)(r +1)(r+2)(a" +b7) — 2(r + 2) (" — a™+1) — 4(b— a)™+1)
Ry rr+ Do +2)(r—2) (b —a)(t+ 1)t +2)(af +b) — 2t + 2) (67 — at+1) — 4(b — a)i 1)

using this result in Equation(2.2.15)then we have a new mean M, defined as follows, where
r,t>0,r#tand a,b>0,a#b.

M. — (t(t+1)(t+2)(t—2) ((b—a)(r+1)(r+2)(ar+br) _X)>1/(r—t)
Tt T(T+1)(T'+2)<7"—2) ((b—a)(t+1)(t+2)(at+bt)_Y) )
rt# 2,

where X denotes 2(r+2)(b" ™ —a" ™) +4(b—a)" and Y denotes 2(t+2) (b —att)+4(b—a)t .

(2.2.16)

To compute M, o = M, ,, consider

(KD 2D 6l Dt D+ 1) X))ww
r(r+1)(r+2)(r—2)(b—a)(t+1)(t+2)(a+ ) -Y) ’
r#2

lim M, ; = lim
t—2 ’ t—2

Applying L’Hospital rule, we get

= lim
t—2

)

((4753 +3t2 =8t —4) (b—a)(r+1)(r +2)(a” + V") — X)>1/(r—t)
r(r+1)(r+2)(r —2)E*

where

15



E* = (b—a) (2t +3)(a’ + ") + (t + 1)(t + 2)(a’ Ina + b In b)) —2(b"  +a' 1) —2(¢+1) (b In b+
a™Ina) — 4(b — a)™In(b — a).

24 ((b—a)(r + 1)(r +2)(a” + ") — X))l/(’"_z)

Mo = M,, = ( r(r+1)(r+2)(r—2)F

(2.2.17)
r# 2,

where
E = (b—a)(7(a* 4+ b*) + 12(a*Ina + v*Inb)) —2(0® —a®*+4(b*Inb—a®Ina)) —4(b—a)® In(b—a).

To compute My o, consider

lim M, 5 = lim
r—2 ’ r—2

(24 (b—a)(r+1)(r+2)(a” +b") — X))l/(’“‘Q)
r(r+1)(r+2)(r—2)F :

Applying limit, we get

(2.2.18)

~ 12F — 13F
Ms s = exp (—) )

12F

where F is defined above and

F = (b—a)(a®>+ b+ 7(a*Ina+ b*Inbd) + 6(a*(Ina)? + b*(Inb)?) — 2(b — a)*(In(b — a))*)—2(b* In b—
a*lna) —4(b*(Inb)? — a®*(Ina)?).

To compute M, ,, consider

bt -+ 1)(t +2)(t —2) (b~ a)(r + 1)(r +2)(a + 1) X))wr—w |

hm]\ZfM = lim ('r(r +1)(r+2)(r —2) ((b—a)(t+ 1)(t+2)(at +bt) = Y)

t—r t—r

Taking log of both sides, we get

lim log 1, = lim % (log (H(t+ 1)t +2)(t — 2) (b— a)(r + 1)(r + 2)(a” + b) — X))
—log (r(r+1)(r+2)(r—2)((b—a)t+1)(t+2)(a’ + ") = Y)).

Applying L’Hospital rule, we get

g tt+D(t+2)(t—2)

= lim
t—r

<g*’ 8t3 + 3t2 — 8t — 4 )

where

16



g = (b—a)(t+1)(t+2)(a’ + ) —Y.

Applying limit,we get

~ (G 8 +3r2 —8r — 4

M,, = exp E_T(T+1)(T+2)(r—2))’ r# 2, (2.2.19)

where

G = (b—a) ((2r +3)(a" + ")+ (r+1)(r+2)(a"Ina+ 0" Inb))—2(b" " +a"™ ) —=2(r+1)(b" ! In b+
ana) —4(b—a)" ™ In(b — a),
H=0b-a)(r+1)(r+2)(a" +0")—2(r+2)"" —a" ) —4(b — a)".

2.2.2 Cauchy Means

In this section, Cauchy tyPe means are developed and calculate different cases of limit
for Cauchy means Mist] and Mrst] at t = 2s,t =r = 2s and t = r. If we substitute ¢(z) =
2/°/((r/s)(r)s —2)) and ¥(z) = /5 /((t/s)(t/s — 2)) in (2.2.3), then by substitution, a = a*,
b = b®, we obtain

B 1 " eg,_ b-a at+b\"”" 1
A@‘vmW%wamlx a <w@vw—m( 2) /) )5 —2)

+

aTb . r/s 2 o /s
(/ (a+b 2:6) d:z:+/ (23: a b) dl’) ‘
o 2 ath 2

2

(82(S(br+s _ ar-‘rs) — (r+ ) —a*)((a® + bs)/Q)T/S — 25((b* — as)/Q)(r+s)/s))
r(r+s)(r — 2s) '

Similarly

B 1 " gy b—a a+0\"" 1
Ih_fﬁﬂﬁﬁ—QLAx ! (U@@ﬁ—Q)(2 ) (t/s)(t/s —2)

a+b

ath . t/s 2 o t/s
(/ (cH—b 2:15) dw—l—/ (23: a b> dx) |
a 2 atb 2

2

(gwwﬁ‘ﬂ“ﬂ—u+@wﬁwm«f+wvmW—adw—wﬂﬂWﬂmﬁ
t(t + s)(t — 25) '

Now using A, and Ay in (2.2.6) we obtain

& _ t(t+s)(t—28)(s(b7 — a™) — (r + 5)(b° — a®)((a® + bs)/Q)r/s — 25((b° — as)/2)(7’+s)/s)
Aw T(’r‘ + s)(r — 28)(S(bt+s — at+s) _ (t + 5)(bs _ as)((as + bs)/2)t/s _ 25((()5 _ as)/z)(tJrs)/s) )
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and
£o"(§) — ¢'(§)
§Y"(§) — ¢'(€)

Using these results in Equation (2.2.7) then we have a Cauchy mean MJ,SE defined as follows,
where r; t s € R, r #t and a,b > 0, a # b.

(8= 29) (07 — 0 — (4 )b = a)((a® + 8/ - %)
Mt =\ rr ) = 25) (0T — ) = (4 8) (0 — an) (@ + )20 — R " (2.2.20)

— fr—t'

r,t # 2s.

where R = 25((b* — a*)/2)"*)/*) and R = 25((b° — a®)/2)t+s)/5),

We calculate a limit when t goes to 2s, consider

t—2s t—2s

lim M[st} ~ lim (t(t Fos)(t— 28)(s(bF5 — @) — (r + 8)(b° — a®)((a® + b%)/2)7/5 — 3?> 1/(r—t) |
r(r+5)(r = 28)(s(0F* — ') = (t + 5)(0° — 0*)((@* + %) /)"~ R

Applying L’Hospital rule, we get

= lim
t—2s

(3t2 — 2ts — 252) (s(b"+5 — a™+5) — (1 + 5)(b° — a®)((a® + b%)/2)"/5 — R 1/(r=t)
r(r+s)(r—2s)I* ,

where

I* = s(b**Inb — a™*Ina) — (b° — a®)((a® + b°)/2)/5(1 + ((t + s)/s) In((a® + b%)/2)) — 2s((b* —
a®)/2) ) In((b* — a®)/2).

Applying limit, it give us

a6 — ) — (r 4 s) (0 — a®)((a® 4 5)/2)"7* — 20" —a?)/2) ) 1/(r=29)
s r(r+s)(r—2s)I )
(2.2.21)
where

I =s(b* Inb—a*Ina)—(b*—a®)((a*+b%)/2)* (143 In((a*+b%) /2)) —2((b*—a*) /2) In((b*—a®) /2).

To compute MQ[iQS, consider

1/(r—2s)

lim M[% = lim
r—2s r—2s

652(s(b"* —a™) — (r + 5)(b° — a®)((a® + b°) /2 )r/s —2s((b° — a )/2)(r+s)/s)
r(r+4s)(r—2s)I

18



Applying limit, we get

J 5
My, = —— - — 92.2.22

where

J =45 (b*(Inb)? — a*(Ina)? — 2(b* — a*)(a® + b°)?In (“£2) (2 — 31In (£2))) — 2(b° — a*)?

<1n(b5—a5) > 2
- .

K =45 b — a*Ina) — (b — a*)(@* +1°)° (1 + 310 (£52)) — (0° — a*)*In (2527)

2

To compute MH«, consider

t—r

lim M[St} = lim <t<t +8)( = 28)(s(b7 —a"™) — (r + 5) (b — a®)((@” + )

2yl é)%) Ve
r(r+ s)(r — 2s)(s(bt+s — at+s) — (t + ) (b5 — a®)((a® + b%) '

/
2y —
Taking log of both sides, we have

lim log M,[Sg

t—r ’
(log(t(t 4 5)(t — 2)(s(b"** — a™**) — (r + 5)(b° — a*)((a® + b*) /2)"* = R)

= lim
t=srr —1

log(r(r + 8)(r — 25)(s(6"** — a**) — (t + 5)(5" — a*) (@ + ") /2)"/* — )

Applying L’Hospital rule, we have

N N e
e \ 0t s)(t—2s) )]

where
9 = S(bt+s _ at—i—s) _ (t + 8)(()5 _ CLS)((CLS + bs)/z)t/s o §]A%

Applying limit, it give

L 3r?2—2rs—2s?
M) = — = 2.2.23
re = XD (M r(r+s)(r — 23)) ’ ( )

where
L=sb*Inb—a* Ina) — (b°—a®)((a® +0%)/2)/*(1 + ((r +5)/s)In((a® + b°)/2)) — 2((b* —
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a®)/2)T )5 In((b° — a®)/2).
M = S<br+s o ar+s) o (T + S)(bs o as)((as + bs)/z)r/s o 28((()8 - as)/z)(r—i—s)/s)'

If we substitute ¢(x) = 2™/%/((r/s)(r/s — 2)) and ¥(z) = 2*/5/((t/s)(t/s — 2)) in (2.2.12),
then by substitution, a = a®, b = 0°, we obtain
s 2 2

b
A —_ 2 (/s r/s\y __ S r/s . S
Ay 2r(r — 2s) (a™ +577) (b—a)r(r —2s) /a vde (b—a)?r(r —2s)

/ (b—2)(z—a)”* + (z —a)(b—z)"*) dx.

After simplification, it give us

A (82((7“ +8)(r +2s)(a” +0") (b5 — a®) — 2s(r + 25)(b"* — a" ) — 4s*(b — a)(”s)/s)
v 2(b—a)r(r+s)(r + 2s)(r —2s) '

Similarly

A <s2((t + 8)(t + 2s)(a’ + b)(b* — a®) — 2s(t + 25)(b!T* — a™*) — 4s%(b — a)(t“)/s)
v 2(b— a)t(t + s)(t + 2s)(t — 25) ‘

Now using A, and A, in (2.2.14) we obtain

Ay _ t(t+s)(t+2s)(t —2s)((r+s)(r+2s)(a”" +0")(b° — a®) — w)
Ay r(r+s)(r+2s)(r —2s) ((t + s)(t + 2s)(a’ + b)(b° — a®) — @)’

where w denotes 2s(r + 25) (0" — ") +45%(b — a)"+9/%, & denotes 2s(t + 2s)(b1* — at+*) +
45%(b — a)+9)/s and

" (&) — ¥'(§)

v °

Using these results in (2.2.15)then we have a Cauchy mean Mr[st] defined as follows, where r, ¢
se€R, r#tanda,b>0,a#b.

[s]
r,i

(t(t +8)(t+2s)(t —25) ((r+ 8)(r +2s)(a” +0")(b° — a®) — w) ) 1/(r—t)
r(r+s)(r+2s)(r—2s) ((t+s)(t + 2s)(at + bt) (b — a®) — @) ’
r,t # 2s.

(2.2.24)
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We calculate a limit when t goes to 2s, consider

lim M, F

t—2s ’ t—2s

~

— Lm (t(t + S)(t + 28)(t — 23) ((7“ + S)(T + 28)(6Lr + br)(bs . as) - w) > 1/(r—t)
r(r +s)(r+2s)(r —2s) ((t + s)(t + 2s)(at + ') (b5 — a®) — Q) )

Applying L’Hospital rule, we get

(4t3 + 3t%s — 8ts* — 4s* ((r + s)(r +2s)(a" + b")(b* — a®) — w)) V(=1
r(r+s)(r+2s)(r —2s)N* ’

where

N* = (b5 — a®) (2t + 3s)(a' + b") + (t + s)(t + 2s)(a' Ina + ' Inb)) — 2s(bF5 — a'™*) — 2s(t +
25) (b Inb — a'**Ina) — 4s(b° — a®)+9)/5 In(b* — a*).

Applying limit, it give us

(2483 ((r 4 8)(r + 25)(a” +b7)(b* — a®) —w)\ /T
M5 = < r(r+s)(r+2s)(r—2s)N ) ; (2.2.25)

where

N = (b* — a®)(7(a* + b*%) + 125%*(a** Ina + b* Inb)) — 25(b* — a3*) — 8s*(b** Inb — a** Ina) —
45(b° — a®)3In(b* — a®).

To compute MZ[i’],Qs? consider

243 ((r+s)(r+2s)(a” +b")(b* — a®) — w)>1/(r25) |

s A =
lim M5, = lim ( r(r + s)(r + 2s)(r — 25)N

r—2s T2 T 10
Applying limit, we get

w> 7 (2.2.26)

MZ[Z],QS = €Xp < 19N

where N is defined above and

O = (b*—a*)(2(a* +b** +7s(a** Ina+b* Inb) +65*(a*(Ina)? +b**(In b)?))) — 2(b* — a*)*(In(b* —
a®)?) — 2s(b* Inb — a* Ina) — 4s(b*(Inb)* — a**(Ina)?).
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To compute MT[SJ, consider

tt+s)(t+25)(t —2s) ((r +5)(r +2s)(a” +b")(b° — a®) — w) ) 1/(r=1)
r(r+s)(r+2s)(r—2s) ((t+ s)(t + 2s)(at + ) (b5 — a®) — ©) ’

r,t # 2s.

lim ]\;[7[,8,5 = lim (

t—r ’ t—r

Taking log of both sides, we have

. '“[s}_ .
jptos 15/ =

(log(t(t 4 s)(t + 2s)(t — 2s) ((r + s)(r + 2s)(a”" + ") (b° — a’®) — w))

log(r(r + s)(r + 2s)(r — 2s) ((t + s) (¢ + 2s)(a’ + b")(b° — a®) — @)).

Applying L’Hospital rule, we have

. (ul 43 + 3t?s — 8ts? — 433)
=lim | — — ,

u o t(t+s)(t+2s)(t — 2s)

where
u=(t+s)(t+2s)(a' +b")(0° — a®) — w.

Applying limit, it give

(2.2.27)

M7[’87]* . (P 4r3 4 3r2s — 8rs? — 4s3> |

@ B r(r+s)(r+ 2s)(r — 2s)

where

P=(b—a)((2r+3s)(a" +b0")+ (r+s)(r+2s)(a"Ina+b"1Inb)) — 2s(b"* — a"*°) — 2s(r +
25)(b*Inb — a" ™ Ina) — 4s%(b* — a*)" /5 In(b* — a*),
Q= (r+s)(r+2s)(a” +b)(b° —a®) — 2s(r +2s) (b — ") — 452 (b — a)"+9)/5,

2.3 Positive Semi-Definiteness, Exponential Convexity
and Log-Convexity

In this section, the concept of positive semi-definiteness, exponential convexity and log-Convexity
are introduced for Hermite-Hadamard inequalities.
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Lemma 2.3.1 [2]. Consider the function ¢, for s > 0 defined as

xs Y S 27
(ps(g;) = { i2572) 7é
Slogr, s=2.

Then, with the convention 0 log 0 = 0, p(z) is superquadratic.

Theorem 2.3.2 [3]. For A, defined in (2.2.3) one has following.

(a) The matriz A =[Ny, ., .1, 1 <14, j <n,is a positive semi-definite matriz, that is,
i TP

k
det [AMW} >0, k=1,2,...,n.
2=t
(b) One has
2
A<P(s+t)/2 < AWSA‘P“

that is, A, is log convex in the Jensen sense.
(¢) The function s — A, is exponentially convez.
(d) Ay, is log convez, that is, forr < s <t where r, s, t € R, one has

(Ag,)™" < (Ag,) " (M)

Corollary 2.3.3 [3]. One has the following
(i) For s > 4,

ASZ

@

(b - a)(3b3 _ a,b2 _ 7a2b + 5a3> 3(@2 o b2)2 s—3
96 2(3b% — ab? — 7a?b + 5a3)

(ii) For 1 < s <2,
Ap, < (a =) (Ap,)

(#ii) For 2 < s < 3,

A < (b— a)(3b% — ab® — Ta2b + 5a3)\* > A
Ps — 96A<p2 Ps

(iv) For 3 < s <4,

A < (b—a)(3b* — ab* — Ta*b + 5a?) ( 3(a* — b*)? )5_3
Ys — )

96 2(3b% — ab? — 7a?b + 5a?
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Theorem 2.3.4 [3]. For A, defined in (2.2.12) one has following.
(a) The matriz A = [A

<P<pi+pj)/2]’ 1 <1, 3 <n, is a positive semi-definite matriz, that is,

k
det [A%+p} >0, k=1,2,...n.
5t ij=1
(b) One has
- -
A‘P(s+t)/2 < Ap Ay,

that is, /~\% is log convex in the Jensen sense.
(¢) The function s — A, is exponentially convez.
(d) Ay, is log convez, that is, forr < s <t where r, s, t € R, one has

(Ap)' ™ < (Bp)' (A"

Lemma 2.3.5 [3]. Let g be a log convex function, and if u; < vy, us < v, Uy # Ug, V1 # Vg,
then the following inequality holds,

()™ < (slh) =,
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Chapter 3

Extensions of the Hermite-Hadamard
Inequality for Convex Functions via
Fractional Integrals

In this chapter, the extension and refinement Hermite-Hadamard for convex function via
Riemann-Liouville fractional integrals is presented. How to relax the convexity property of the
function f is also shown. After that, we obtain some results which involve a larger class of
functions.

3.1 L; Space

The space of functions which have integrable their absolute value in Lebesgue sense. A non
negative measurable function f is called Lebesgue integrable if its Lebesgue integral [ fdu is
finite. An arbitrary measurable function is integrable if f* and f~ are each Lebesgue integrable,
where f* and f~ represent the positive and negative parts of f, respectively.

3.2 Fractional Integrals

The main objects of classical calculus are derivatives and integrals of functions. In 1695

L’Hospital inquired of Leibniz what meaning could be ascribed to D" f if n were a fraction.
Since that time the fractional calculus has drawn the attention of many famous mathemati-
cians, such as Euler, Laplace, Fourier, Abel, Liouville, Riemann, and Laurent [11].
Here we introduce the notion of fractional integral as a generalization of the standard, integer-
order integration and differentiation. Fractional integrals and derivatives arise in many engi-
neering and scientific disciplines as the mathematical modeling of systems and processes in the
fields of physics, chemistry, aerodynamics, electrodynamics of a complex medium.
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3.2.1 Left and Right Riemann-Liouville Fractional Integrals

The symbols J2 f and J;* [ represent the left-sided and right-sided Riemann-Liouville
fractional integrals of the order a > 0, where f € Li[a, b], which are defined by

tﬁﬂ@=ﬁ5/%%ﬂ“7®® r>a,

and
b
JiLf(x) = ﬁ/ (t — a:)o‘_lf(t)dt, r <b,

respectively. Where, I'(«) is the Gamma function defined by

INGY! :/ et tdt.
0

The Gamma function is an generalization of the factorial function and satisfies the relation

L(n)=(n—1)L

3.3 Hermite-Hadamard Inequalities with Fractional In-
tegrals

Due to the wide application of fractional integrals and importance of Hermite-Hadamard type
inequalities, many researchers extended their studies to fractional Hermite-Hadamard type in-
equalities according to the Hermite-Hadamard type inequalities for functions of different classes.
For example, see for convex functions [14, 20] and non decreasing functions [18], for m-convex
functions [15, 19] and (s, m) convex functions [17], for functions satisfying s — e-condition [16]
and the references therein.

Theorem 3.3.1 [10]. Let f : [a,b] — R be a positive function with a < b and f € Ly[a,b].
If f is a convex function on [a,b], then the following inequalities for fractional integrals hold.

fla) + f(0)
S

f(mw><£gigwﬁﬂ®+ﬁ¢WH§ (33.1)

2 ~ 2(b—a)

with o > 0.
Proof. Since f is convex function on [a, b], then we have

f(ﬁh) LW TR b 0t and A =12,

2 2 ’
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for g =Xa+ (1 —=N)b, h=(1—Na+ \b, we get

a+b\ _ fa+ (1 =2b)+ f((1—Na+ \b)
(55) = St e

Multiplying both of sides by A*~!, then integrating it with respect to A on [0, 1], we get

; (a;b) /01 Ny < % (/01 A1+ (1— A)b)dH/l A1 = Na + )\b)d/\) .

0

using g = A+ (1 — \)b, & = (1 — N+ Ab, we obtain
HICUES (/ (=) s ao [(220)" s dh) -
() < g ([0 g [0y an).

F("57) < gl f) + I fla), (332)

the left side of inequality is proved. Now to show right side of inequality we know that f is
convex function, then for A € [0, 1], it yields

FOa+ (1= N)b) < Af(a)+ (1 =N f(b) and f((1—Na+Ab) < (1—A)f(a) + AF(b).
By adding both inequalities, we get
FOa+ (1= Nb) + F(1=Na+Ab) < Af(a) + (1= A)F(b)+ (1= A)f(a) + Af(b).

Multiplying both of sides by A>~!, then integrating it with respect to A on [0, 1], we obtain

/1 A1 a + (1— \b)dA + /1 N LE((1 = Na + Ab)dA < (f(a) + £(B)) /1 A1y,

0 0

using g = Aa+ (1 — A)b, h = (1 — A)a + \b, we obtain

/ab <g:3)a_1f(g) dg+/b“ (Z:Z)a_lﬂh) dh < M

al'(@)
2(b—a)~

(3.3.3)



After combining inequality (3.3.2) and (3.3.3), we have the required result

f (a —2|— b) < 5((ba_—|—a§l [Jo f(B) + J& fla)] < M‘

]

If we substitute @ = 1 in inequality (3.3.1) it reduced to Hermite-Hadamard Inequality. The
above inequality is new refinement of Hermite-Hadamard Inequality. Clearly, inequality (3.1.1)

can be rewritten as

/ ( 2 b) 70 2F<(ba_+a§i ) + i (@) - LI
and
. H[J;ﬁf(b) I @] f (a—;b) < f(a);rf(b) _f <a+b

This implies

MNa+1)

fla) + f(b) [(a+1)
2(b—a)™ =0s

[T f(b) + Ji- f(a)] — 5 =T 2b—a)™

I F(8) + T2 (0] — (

a—i—b)

We examine that the inequality (3.3.1) require function f to be convex. Appropriately, it is
natural to consider that f is twice differentiable function. Therefore, f* > 0. The first theorem
concerns the case when f* is bounded in [a,b]. In other words, we do not require f* > 0.

Therefore, we can prove the following result.

Theorem 3.3.2 [10]. Let f : [a,b] — R be a positive, twice differentiable function with a < b

and f € Li[a,b]. If f* is bounded in [a,b]. Then we have

a+b

ﬁ/ <‘L‘2”) - x)2 (2 — @)™+ (b —2)* Vda

= Hwﬁf@ +Jif(@)] = f (“‘gb)
M« GTH) a+b 2 - -
Sm/a ( 2 ”“) (& —a)*" + (b —2)* ]da,
and

Mo aTb a-1 a—1
s [ a6l -0

[a+1) . f(@) + 1)
=30 —a) [T f(0) + Ty f(@)] = =
< s [ e - a6

(3.3.4)

(3.3.5)



with o > 0, where m = mfte[a,b]f” (t), M = Supte[a,b}f" (t).

Proof. We have

o Q b b
5((19 _t;l [Ja+ f(b) + Ty f(a)] = 2 —a) {/ (b— )" f(x)de + /a (x —a)*  f(x)dx

o el LG R R
= m/a fla+b—2)[(b—2)*"+ (v —a)* ']dr.

Therefore

['(a+1)
2(b—a)~

- e [ @)+ lat b= a6 =)+ @ = )

[Ja+ f(0) + Jg- f(a)]

After that

[Na+1)
2(b—a)~

[T f(0) + T fa)] — f (a ; b)

«Q a-+b

:m/ab {f(x)+f(a+b—w)—2f( 5 )}[(b—r)“‘lﬂx—a)a‘l]dw-

a+b

)= ok @

[f<x>+f<a+b—x>—2f(

is symmetric about z = GTH’, we have

«Q a+b

e [ o ras - -2 () |16 -0+ - 0

a a+b a/+b

s | @ ek o0 27 () (0= 0 4 @ - s

this implies that

I'(a+1)
2(b—a)~

(T2 £(b) + J2 f(a)] — f (a ;L b)
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o =R a+b

- / {f(x) + fatb—x)—2f ( . ﬂ (b— 2"+ (¢ — a)* Vde. (3.3.6)

As

flatb—z)—f (a;b) = /ﬁ” £ (t)dt,

and

then we have

a+b
2

f(@)+ fla+b—x)—2f (a;b) :/:b_mf'(t)dt—/m f(t)dt

ot ot
—/ f’(a+b—t)dt—/ f(t)at
a+b

= [T b-n - o

As
!/ ! aerit 1
f(a+b—t)—f(t)=/t 7 (y)dy.

then for t € [a, “TH’], we obtain

m(a+b—2t) < fa+b—1t)— f(t) < M(a+b—2t).

Thus,

a+b

/2m(a+b—2t)dt§f(a+b—t)—f(t)—2f (a;b) §/2M(a—|—b—2t)dt.

That is

(S5 a) < staro-n g0 - () < (i)
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using this in (3.3.6), we obtain required result (3.3.4)

ﬁ / (“ ; b_ $)2 (& — a)°™' + (b— 2)° Ydz

< st + ) - 1 (457
< 2(17]\{—0;)a / (“T“’ _ x) (z — @)™ + (b— 2)°]da.
Similarly we use this
et Dz 0)+ TS )]
_ ﬁ/ F(2) + fla+b—a)[(b—2)°" + (& — a)*da,

to show (3.3.5). Thus

st £ + )] - L)
_ ﬁ/ () + fla+b—2z) — (f(a) + FON][(b— 2)* " + (z — a)*]dz.
As
[f(z)+ fla4+b—x) = (fla)+ fFON][(b—2)* + (z — a)* ]
is symmetric about z = “T“’, we have
ot 1) e g0y + st - 010
s [ W@ St b ) = (@) + SO (=) o= o) e (337
As
fo)—fla+b—2z)= /+b- F(t)dt,

and



then we have

As

then for t € [a, GTH’], we obtain

m(a+b—2t) < fa+b—1t)— f(t) < M(a+b—2t).
Thus,
—/xM(cH—b—Qt)dtSf(x)—f(a+b—x)—(f(a)+f(b)) < —/xm(a+b—2t)dt.

That is

2
~M(e -~ b= 0) < J) - flatb—a) - (@) + JO) < M (50— )
using this in (3.3.7), we obtain our required result (3.3.5). O

Remark 3.3.3. By applying above theorem (3.3.2), with function f such that f* > 0 and
we get refinement of Hermite-Hadamard Inequality (3.3.1).

Also, it is clear that f* > 0 implies that f  is non decreasing. Consequently, in the following
result, we consider that

flatb—z)> f(a),
for all z € [a, “TH’] Obviously, if £ is non decreasing, then above inequality holds but it is easy

to see that the reverse inequality is not true.

Theorem 3.3.4 [10]. Let f : [a,b] — R be a positive, differentiable function with a < b
and f € Ly [a,b]. If f(a+b—z) > f(2) for all x € [a, “L2]. Then the following inequalities
for fractional integrals hold

F("57) < gl 0)+ )] <

fla) + f(0)
S

(3.3.8)
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with a > 0.

Proof. From above theorem (3.3.2), we have

Hwﬁf@) T2 f(a)] — f (a —5 b)

2
N
o

Similarly
Lot . J(a) + f(b)
2(b—a)® [Joe [ (b) + Ty f(a)] — 5

a+b
(6%

_ m/a [f(@)+ fla+b—2z) — (f(a) + FON][(b—2)* " + (z — a)*]dz.

i [ | [0 - F @] (-0t - o <o

This completes the proof.
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Chapter 4

Cauchy Type Means for
Hermite-Hadamard Inequalities via
Fractional Integrals

4.1 Introduction

In this chapter we develop Mean value theorems and Cauchy Means for Hermite-Hadamard
inequalities involving Riemann-Liouville fractional integrals.
The inequality (3.3.1) defined in Chapter 3 can be rewritten as.

Theorem 4.1.1 Let f : [a,b] — R be a positive function with f € Li[a,b] and a < b then
following inequalities hold

H(%57) = e [ 1@l =0 4 0= 2 e 1)
s | @l = a4 -2 < HOLTE, (412)

4.2 Mean Value Theorems

In this section, we develop men value theorem for Hermite-Hadamard inequalities involving
fractional integrals.

Definition 4.2.1. Let ¢ : [a,b] — R be an integrable function with ¢ € Ly and for 0 < a <b
one defines a linear functional 2, as

a v /ab p(@)[(x—a)* 4+ (b—2)* Nde — ¢ (a ; b) : (4.2.1)

Q<P:2(b—a
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From above inequality (4.1.1) it is clear 2, > 0.

Lemma 4.2.2 [6]. Let ¢ : I — R where I C R be a function such that o € C?>(I). " (x) is
bounded and m = inf,e; o' (t), M = sup,c; ¢ (t), then the function @1, @y : I — R defined

by

M m
01 = 7t2 —o(t), 2= p(t) — 5152, (4.2.2)

are convex for x > (.

Theorem 4.2.3. Let p € C?*(I) where I = [a,b], then there exists ¢ € I such that the fol-
lowing equality holds

Q, = St 1§(a n 2)90"(5) (0® —a+2)(b—a), (4.2.3)

a > 0.

Proof. Suppose that ¢” is bounded, where inf ¢"(x) = m and sup ¢"(zr)= M. Now by
using ¢ in place of ¢ in (4.1.1) we obtain

3 (5 b)2 ~("3") < /ab Cle—a) 4 =) da

b

(0%

s | ol - o - o (5
M(a? —a+2)(b—a)?
8(a+1)(a+2)

Similarly, by using ¢, in place of ¢ in (4.1.1) we obtain

«

s | el =+ 6o (45)

m(a? —a+2)(b—a)?
8(a+1)(a+2)

When we combine above inequalities we get that there exists 0 < £ < oo such that (4.2.3)
holds. O
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Theorem 4.2.4 If ¢, ¢ € C?*(I), and (@2 —a42)(b—a)® # 0, then one has

(at1)(at2)
Q _ ¢ (¢
P =T L (), fel, 4.2.4
Q¥ © 424
provided the denominators are not equal to zero. If K is invertible then
Qcp
E=K1 , Qy #0, (4.2.5)
Qy

18 a4 new mean.
Therefore if we substitute p(x) = " /(r(r — 2)) and ¢ (x) = 2'/(t(t — 2)) in (4.2.1), we get

e =30 = a)zr(r —) /abmr[(‘” — )" o (b= @)™ de 7“(7“1— 0 (a ; b)r '
2a [P ar(x — a)* ! + (b— ) Vda — 2(a + b)" (b — a)®
(b —a)e2r(r — 1) |
Similarly
=552 a)it(t ) /ab @ —a)* 4 (b —2)*de — o - 0 (a . b)t'
2a [l atl(@ — @) + (b= 2)Jdw — 2a+ b (b—a)*

2t(b— a)*2t(t — 1)
Now using €2, and €2, in (4.2.4) we obtain
Q, 21— 1) (2 [Pa7[(x — a)* " + (b— 2)* Vdx — 2(a + b)" (b — a)*)

Q  2r(r — 1) [*at](z — a)ot + (b — ) dz — 2(a + ) (b — a)°)
and
©"(€) er—t
e

Using this in Equation (4.2.5) then we have a new mean N, defined as follows, where r, t, >
0,r#tanda, b, « > 0,a #Db.

o <2t (t— 1)@ a [P [(x — a)* " + (b— 2)* Vda — 2(a + by (b — a)a)>”(”) i
2rr(r — 1)(2ta fa 2t(z —a)* 1+ (b—x)* dz — 2(a + b)t(b— a)®)

(4.2.6)
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Definition 4.2.5. Let ¢ : [a,b] — R be an integrable function with ¢ € L; and for 0 < a < b
one defines a linear functional €2, as

6, — £ ; o) 0 - > / o(@)[(x — ) + (b — 2)* V]da. (4.2.7)

From inequality (4.1.1) it is clear Q, > 0.

Theorem 4.2.6. Let ¢ € C?*(I) where I = [a,b], then there exists & € I such that the fol-
lowing equality holds

a(b—a)?
(a+ 1) (a+2)

"

v (£)

(4.2.8)

a > 0.

Proof. Suppose that ¢” is bounded, where inf ¢"(x) = m and sup ¢"(z)= M. Now by
using ; in place of ¢ in (4.1.2) we obtain

aM b a— a— « b a— a—
i [ e o= e gt [ @ =+ )
< ¥(a2 452 p(a) ‘21‘ o(b)
p(a) + o(b) a ’ ai o Ma(b - a)?
2 20b-ar / R A )
Similarly, by using ¢, in place of ¢ in (4.1.2) we obtain
p(a) + o(b) a ’ o a ma(b — a)?
5 — 2(b—a)a/a o(x)[(x —a)* ™ + (b —2)*]dz > ot Datd)

When we combine above inequalities we get that there exists 0 < £ < oo such that (4.2.8)
holds. [

Theorem 4.2.7 If o, ¢ € C*(I), and a(b;a)z) # 0, then one has

(at)(at2

Qs@ v (&)
L =T, €€l 4.2.9
QY s (429)

provided the denominators are not equal to zero. If T is invertible then
-1 Qw 2
E=T =], Qu#0, (4.2.10)
2y
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1S G new mean.

Therefore if we substitute p(x) = 2" /(r(r — 2)) and (x) = 2*/(t(t — 2)) in (4.2.7), we get

9 L "+b) — a bm’" x—a)* — ) Ydx
G, = s (@ + ) %b_@%@_1L[ (2= a)* 4 (b~ )"
(a0 (b—a)® —af —a)* 1+ (b—x)* dx
B (b— a)“?r(r —1) '
Similarly

0 1 t ¢ « b ol -
Q¢:2t(t—1)(a*b)_z(b—a)at(t—n/a5’3[(5”—@) +(b— )" de.

(a' 4+ b")(b— a)~ —ozf —a)* '+ (b—xz)*)dx
(b — a)a2t(t —1) '

Now using €2, and Q,, in (4.2.9) we obtain

Q, _ Ht=D((@ +¥)(b-a) —af}o [ —a)" + (b= )" de

Qu  r(r=1)((at + )b —a)* — a [P at[(x — a)o= + (b — z)o~]dx

a

Y

and

¢"(€)

e =

Using this in Equation (4.2.10) then we have a new mean ]\Afm defined as follows, where r, ¢, >
0,r#tanda, b, « > 0,a #b.

(t(t - ((b —a)?(a” + V) —a [} [(x —a)* "+ (b— x)a_l]dl’) ) -
rr=1) ((b —a)*(at +b") — o [} at|(x — a)* L + (b — :Jc)a’l]d:r> |

rt —

rt# 1.
(4.2.11)
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4.2.1 Different cases of Limit for NV,; and ]/\\7,47t

In this section, we calculate limit for V,; and ]/\7,,«?t att=1,t=r=1and t =r. Let we
have

N (2%@ 1) fla[(x — a)* ! + (b—2)* dr — 2(a +b)
"\ 2 - D@ [ @ — )2t + (b — 2)e]dz — 2(a +b)

~+ =3
—~ |
S S
[
SRS
Q Q
N— ~—
\—/
—
~
—~
3
-
=

To compute N, ; = Nj,, consider

lim N, = lim (2% — D@ a [ e (@ = a)* + (b — a)* de — 2(a+ b)" (b - a)a>>1/<r—t>
rt = 2rr(r —1)(2t« f xt —a)* 1 + (b — z)2dx — 2(a + b)t(b — a)®) .

Applying L’Hospital rule, we get

= lim
t—1

2 (102 ~ 1) + 2t = (o [L o[z — )"+ (b— 2)* Nz —2a+ by 6 - )\
2 - DR ’

where

R* = 2'In2a fabxt[(x —a)* '+ (b — z)* dr + 2tozf 'lnz[(x —a)* ' + (b — x)* dx —
2(a+ b)'In(a + b)(b — a)°.

1/(r—1)
(2@ )@ — ) 4 (b— )2 ]de — 2(a+ b) (b — a)?)
Nr,l—Nl,r— ( QTT(T—l)R ) ) T%lv

(4.2.12)

where
R=2(0b—-a)*In2(a+b)+blnb+alna— (a+b)In(a+b)] —2 f:lnx[(:c —a)® — (b—x)Ydx.

To compute V; 1, consider

(@a " e (e — a)* + (b= 2)* da — 2a+ by (0 —a)) )
lim NV, ; = lim )
r—1 r1 2rr(r— 1R
Applying limit, we get
S
Nl,l = exXp (E — (ln4 =+ 2)> y (4213)
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where R is defined above and

S =2(b—-a)(In2)?(a+b)+2In2(blnb+alna)+ b(Inb)?* + a(lna)? — (a + b)(In(a + b))?] —
2 [(In4lnz +Ina® + (nz)?)[(z — a)* — (b — 2)*]da.

To compute N, ,, consider

lim NV, ; = lim
t—r t—r

<2t T f,w =14 (b — 2)*dz — 2(a + b)" (b — a)?) ) =
2r(r = 2ta ¥ xt - a)&*l (b~ o) dr — 2(a + ) |

o~
—~
S
|
IS
~—
Q
~—

Taking log of both sides, we get

1 b
limlog Ny¢ = lim — (log (2"t(t - 1)(27@/ 2" [(z —a)* ™+ (b —2)*dz — 2(a+b)" (b - a)?))

b
—log (2"r(r — 1)(2ta/ 2z —a)* 4+ (b —2)* dz — 2(a + 1)t (b — a)?))).

Applying L’Hospital rule, we get

. < R* 228 — t) + 2/(2t — 1))
=\ 2 [P at|(x — a)ot + (b — x)2dx — 2(a + b)' (b — a)° 204(t — 1) ’

where R* is defined above.
Applying limit,we get

N,, = exp (% _Z ln2(7”2rr—(:)_—i—1)(27" — 1)) . r#E L (4.2.14)
where
U =22 [Pa"[(x — a)* " + (b — 2)* dz + 27a [*a" nz[(x — a)* " + (b — 2)*dz —
2(a+0b)" ln(a—|— )(b— a)e.
T=2a«q fa —a)* + (b—x)* Ydr — 2(a +b)" (b — a)*

Now we consider second function

1/(r—t)

tt—1) ((b —a)*(a" +b") — « fb 2 [(x—a)* 4+ (b— x)o‘_l]da:>
r(r—1) ((b a)*(at 4 bt) af zt[(z —a)* '+ (b — a:)“*ﬂd;v)

rt —

rt#1
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To compute N, ; = N;,, consider

(t(t -1) ((b —a)*(a" 4+b") — afb 2"[(z — a)* L+ (b— x)o‘_l]dx) ) 1/(r—t)
rr=1) ((b— @)@ +8) = a [a'[(w = a)*~! + (b— )~ )dx ) |

lim NT ;= lim
t—1 t—1

r#1
Applying L’Hospital rule, we get

( 2t —1) (b= a2 (@ +) — o [ o7 [( — ) + (b — )" V) )UM
r(r—1) ((b —a)¥(atlna + bt Ind) — af; stinz(z — a)o=1 + (b— Cﬁ)a_l]dx) .

= lim
t—1

1(r-1)

Ry Fr ((b — )@+ 0) —a L2 — @)+ (b — 2)e ]dm) o
rir—1) <fa In z| (x - a) —(b— x)o‘]dx)

(4.2.15)

To compute V; 1, consider

lim N,, 1 = lim
r—1 r—1

1/r-1)
((b —a)* (@ + ) —a [P ar[(z — ) + (b— w)al]dx) |
r(r—1) (fab Inz[(z —a)* — (b— x)a]da:)

Applying limit, we get

Ry = exp ( 1P lnf + (n)?)[(x —a)* = (b—a")]dz 2) | (4216
[ Inz[(x —a)* — (b— z*)|dx

To compute N, ,, consider

(t<t - ((b —a)*(a" +b) — o [} 2" [(z - a)* "+ (b— x)a_l]dflﬂ) ) .
T(r_1)<(b_a) (a® +b') — O‘f zt[(z —a)* '+ (b—x)~ 1]da:> |

lim N, ; = lim
t—sr ’ t—sr

Taking log of both sides, we get

lim log Ny, — lim —— (log (£(t — 1)((b— a)*(a” + ") — a / 2(z - a)* + (b — )" Vd))

t— r t—r r—1

b
—log (r(r —1)((b—a)*(a" + ") — a/ ' (x —a)*t + (b —2)* Ydx))).
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Applying L’Hospital rule, we get

(b—a)*(a’'Ina+ b 1Ind) — f rinz[(z —a)* ' + (b —2)* Ydz o 2t—1 )
(b —a)*(at + bt) — afa zt(x —a)* t + (b — z)* tde tt—1)

= lim

Applying limit,we get

~ ((b —a)*(a"Ina+b"1Inb) — « fab rInz[(r—a)* '+ (b—-2)Yde 2r—1 >
Nr,'r’ = €xp b -
(b—a)(am +b") —a [ ar[(x — a)o=! + (b — x)o—]dz r(r—1)
r# 1.
(4.2.17)

4.3 Cauchy Type Means

In this section, we define Cauchy type means for Hermite-Hadamard inequalities via
fractional integrals.
If we substitute p(z) = 27/%/((r/s)(r/s — 1)) and ¥(x) = 2/°/((t/s)(t/s — 1)) in (4.2.1), then

by substitution, a = a*, b = b®, we obtain

«

— bsxr/s T —at a—1 s_xafl T — 1 a+b e
% = ST, e @ e <r/s><r/s—1>( 2 ) '

_ Oéf;): IET/SKI _ as)a—l + (bs o l‘)a_l]dl’ _9 (aT_H,)r/s (b _ a)a
20— ) (r/)(rfs — 1) -

Similarly

_ o bs$t/s T —a’ a—1 s_xafl T — 1 a+b v
= e e efs — 1) [l @ ( 2 ) '

_ Oéf:: l‘t/s[<aj‘ _ as)oz—l + (bs _ x)a—l]dx _9 (a_b)’f/S (b B a)a
2(bs — a®)*(t/s)(t/s — 1) '

Now using €, and €2, in (4.2.4) we obtain

& t — S f SL’T/S _ as)a—l + (bs o x>a_1]dl’ . 2(()8 . CLS)O‘ (asgbs)T/S
Bl =)o [Tt [(x = a2)2 7 4 (b = )t — 20— a0)e (242)

and




Using these results in Equation (4.2.5) then we have a Cauchy mean Nig defined as follows

where r, t s € R, r # t and a,b > 0, a # b.
a’+b3 )r/s> 1/(7‘77&)

N ( (t = s)(a [ /¥l = a*)" 4+ (b — 2)*Jdw — 20 — a*)* (2

7, r(r — s) f mt/s —a®)o=l 4 (b5 — x)o1dr — 2(bs — a®)> (asng)t/s
r,t #s.

(4.3.1)

If we substitute p(z) = xr/s/((r/s)(r/s'— 1)) and ¢(z) = 2¥/*/((t/s)(t/s — 1)) in (4.2.7), then

by substitution, a = a*, b = b®, we obtain

@ ) / ¥ [(x — a®)* "+ (b° — 2)* Y d.

e 1 r ry
Y = e ) T A e

After simplification, it give us
Q B (CLT 4 br)(bs — g . af r/s . as)afl + (bs . x)afl]dx
- 2(b - as)a(r/s)(r/s —1) '
Similarly
N (at + bt)(bs . af t/s . as)ozfl + (bs . I’)ail]dl‘
(bs —as)” (t/S)(t/S —1) '

,w:

Now using €2, and Q, in (4.2.9) we obtain
o Jyr 2w —a9)* ! + (b — @) ]da)

& _ t(t —s)((b° —a®)*(a" +b") —

Qo r(r=s)((br = @) (et + 1) = a 2 ato[(@ = @)t + (b* = 2)]da)
D) _ gt
G

Using these results in Equation(4.2.10)then we have a Cauchy mean Nisﬂ defined as follows,
where r;t s € R,r#tand a, b, « > 0,a #b.

:: $r/s[(x _ as)afl + (bs _ .%')ail]dl‘) 1/(r=t)
z—a®)o ! + (b — 2)21]dz) T (4.3.2)

vl
rt T

(t(t — 5)((b° — a®)*(a” + V") — a
r,t # s.

r(r —s)((b% — a®)*(at + bt) — afab: xt/s[(

43



]
rt

In this section, we calculate limit for Nist} and ]/\7[815 att=s,t=r=sandt=r. Let we
have

s (t—s) xr/s
e

7” _ S f xt/s as)a—l + (bs _ x)a—

We calculate a limit when t goes to s, consider

4.3.1 Different cases of Limit for N [s } and N, V!

as)a—l + (bs _ $)o¢—1

]dI — 2([)5 _ as)a (aSerS)r/s

/(r—t)
s )
Nda —2(b* — as) (2£22)"7*)

t _ r/s
hm Nist} = lim ) f ’
—S 7,.(

S)a_ n (bs _ a:)o‘_l]da: _ 2(65 B as)o‘ (as;rbS)r/s)>1/(rt)
s \ (e — s)(a [ xt/s[(x — a)e L 4 (b — z)eVdw — 2(bs — a0)e (£5)"%) '
Applying L’Hospital rule, we get
) ) s 1/(r—t)
hm( @t = 9o Ji " lla = a) 4 (0 =)o = 206 — a0)° (“52)"7) ) |
S\l =) (2 2 @ mal(e - %) 4 (b - 2)2Nda - 200~ at)e (252) " (242))
Applying limit, it give us

NM_<WMﬁﬂH@—fw1+w_wal

=20 - (5N
r(r—s)V ’ o
where
V= (bs_a ) [b°Inb® + a®lna® — (a® + b°) In( &= +bs) — %f; Inz[(z — a®)* — (b° — x)%]dx.
To compute NLL, consider
sopsar/s\ V/(=s)
i N1 — 1im [ 20 Jor a ol — a)* "+ (b — @) — 200 — a) (52)") ,
r—s S r—8 ’I“(T — S)V
Applying limit, we get
w2
Nl = — = 4.3.4
H=on(-2). (4.3.9)
where V is defined above and
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W = E=% e (In )2 + a(Ina®)? — (af + b°)(In(a® + b°)/2)2) — & [7 2z + (Inx)?)[(z —
a®)® — (b* — x)dz,

To compute NT[,ST], consider

t—r ’ t—r

b* r/s sya— s a— s SNo [ aS4bS\T/S 1/(r—t)
lim N, ; = lim - t/s '
r(r—s)(a [, 2t/5[(x —a)*=' + (b— z)*dx — 2(bs — a®)* (<)

Taking log of both sides, we have

b® as s
(log(t(t — s)(a/ 2 = )t (0 — ) e — 200 — ) () b

a’

. 8] 1. 1
im0 ) =

)"*)

b® as s
~log(r(r = s)(a [ ol - a?)" 4 (0 = ) e - 20 - @) (D))

aS

Applying L’Hospital rule, we have

where
g = af;: xt/S[(x — a/>04—1 + (b _ x)a_l]dﬂf . 2(()5 _ CLS)a (as<2|»bs>t/3 .

Applying limit, it give

X 2r —
NE = exp (_ _ _> , (4.3.5)
where

X =« b:xr/slnx T —af a—1+ bs—xa_l dx_g bs — q) a®+b° T/sln a®+b° )
a s 2 2

s

Y = a [l (@ = af)ot 4 (b - 0)rde = 260 — at) (S4)""
Now we consider second case

NY = (t(t — ) ((b° =) (a” +b") —a [} 2w — a®)2 Tt 4 (b — x)a_l]das)) o :
S — a0 —a fT (e — )+ (b — o))
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We calculate a limit when t goes to s, consider

. “5[s .
lim NH = lim
t—s ’ t—s

(t(t — S =) (@ V) —a [l = a) (- @a—l]dx)) e
r(r—s)((b° —a®)*(a" + V') — a fab 2t/s[(x — a®)o=t + (bs — x)o—1]dx)

Applying L’Hospital rule, we get

. 1/(r—t)
y (2t — 8)((b° — a®)*(a" + V") — a [0 a7/*[(x — a®)* " + (b* — 2)*"]dz)
= lim
8\ r(r —s) ((bS —a*)(atlna + bt Ind) — %ffj zt/snz[(z — a®)*t 4 (b5 — x)a—l]dx)>
Applying limit, it give us
S s\a( 7 r b r/s s\a—1 S a—1 1/(r=s)
~ s((0® —a®)*(a" +b") —a [ a"5[(x — a®)* 1 + (b5 — )~ Hdx)
e a . (4.3.6)

’ r(r—s)J
where
J=(b*—a*)*(@*Ina+b*Inb— (b°Inb* +a*lna)/s) + f; Inz[(z — a®)* — (b° — x)%]dx.
To compute ]\Afs[sl, consider

s sya(,T r b* r/s sya—1 s a—1 1/(r=s)

PN (s((b —a®)*(a" + b)) —a [% 25 (x — af)* + (b5 — ) ]dm))

lim N} = lim <

s TS T i r(r—s)J
Applying limit, we get

-~ K 2
Nl — i 4.3.
e e (5 -2). (47)

where J is defined above and

K = (b* — a*)*(a*(Ina)? + b*(Inb)% — (b*(Inb*)% + a*(Ina*)?)/s) + & [ (2Inz + (nz)?)[(z —
a®)® — (b* — x)%]dx.

To compute ]ﬂﬁl, consider

lim N = lim
t—r ? t—r

(t(t —5)((b° —a®)*(a" +b") — afab: xT/S[(x —a%)*" 4 (b — l’)a_l]d:z)> 1/(r—t) o,
r(r — s)((b5 — a®)*(al + bt) — ozf;; xt/s[(x —as)e1 4 (b5 — x)a—1]dx) , .
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Taking log of both sides, we have

"
(log(t(t — s)((b° — a®)*(a”" +b") — a/ xr/s[(ﬂc —a®)* 4 (b° — ) Ydx))

a’

]

lim log ]/\77[8 = lim

t—r ’ t—rr —t
bS

—log(r(r —s)((b° — as)o‘(at + bt) — a/ IL‘t/S[(iL‘ — as)a_1 + (b° — :r:)o‘_l]dzx))).

a’

Applying L’Hospital rule, we have

(b5 — a®)a(at + bt) — a [ at/5[(x — a®)o=1 4 (b* — x)o~]dx) t(t—s)

= lim

((bs —a®)*(a'Ina +b'nb) — & fab e/ Inz[(xr —a®)* '+ (b° — 2)*Vdz) 2%t —s )

Applying limit, it give

(4.3.8)

~ M 2r — s
Nl — _
T exp (N r(r— s))

where

M= (b = o) (@ natbind) = & [Ta nal(e = )"+ (07 = 2)*dr.
N =0 =a)*(a" +b) = a [ o (@ = @)t 4 (0 — @) de
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Conclusion

In the area of inequalities there are many results related to convex functions, but one of
those is the classical Hermite-Hadamard inequality. The Hermite-Hadamard double inequality
defined on a interval of real numbers is the first fundamental result for convex functions. In
many area of analysis applications we have found many useful results, generalizations and
extensions associated with Hermite-Hadamard inequality for different classes of functions.

In this thesis, we have discussed superquadratic functions and fractional integrals. Also
extension of Hermite-Hadamard Inequalities for superquadratic functions and fractional inte-
grals are presented. Using mean value theorem and Cauchy mean value theorem, we derived
mean value theorems and Cauchy type means for Hermite-Hadamard inequalities via fractional
integrals.
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