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Abstract

A bijection that assigns non-negative integers to vertices and/or edges of a graph
is called a labeling. In a labeled graph, we calculate weights of vertices or edges. In
this thesis we study the edge weights of different graphs under a labeling. If the
edge weights for a graph are constant, that is, all the edge weights are same, then
the labeling is called magic. Similarly, if all weights are different, then the label-
ing is called antimagic. Sedláček used the idea of magic for the first time in graphs
in 1963, since then many variations of magic and antimagic labelings are introduced.

Chen et al. [11] introduced banana trees and conjectured that banana trees are
graceful. Javaid et al. [22, 23] introduced w-graphs, w-trees, extended w-trees and
constructed their super edge magic total labelings. In this thesis, after discussing dif-
ferent types of magic and antimagic labelings, we construct extended umbrella graph
using umbrella graph, and study its super edge magic total labeling. We construct
another family of graphs using w-graphs and banana trees, referred as reflexive w-
trees. We also construct some generalizations of these graphs, and study their super
edge magic total labelings.
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Chapter 1

Fundamentals of Graph Theory

1.1 Introduction

In Euclidean geometry, the objects we use are points, lines and a plane. Consider
the plane as a chessboard, points as chesspieces and lines as the moves of the chess-
pieces. The rules of chess tell us how different pieces can be moved. The opening
arrangement is the positions of the pieces at the start of the game, so this can be
considered as the list of axioms accepted without proofs. So there is an underlying
abstract structure which is infact the essence of ‘chess’. Names, shapes and colors
of squares and pieces doesn’t matter. Even the physical existence of the chessboard
and pieces is irrelevant. The interpretation of chess in such abstract way is anal-
ogous of chess as a battle. Here what is relevant is the set of rules under which a
piece can move, the number of geometric arrangements of different squares and the
number of different pieces and number of pieces of each type.

Euclid’s words “point”, “line”and “plane”suggest that geometry deals with flat
surfaces, tiny points and stretched lines. But studying this geometry in abstract
way redefines these terms. Now the points (also called nodes or vertices) are just
a set of objects, and the lines are connections (also called links or edges) between
these points.

This configuration of points and lines occur in great diversity of applications.
They can represent physical networks, for example electrical circuits, road networks,
organic molecules structures, or structures in operations research. They can also be
used in representing less tangible interactions as might occur in sociological systems
like friends and family relations, office colleges, etc, or the flow of control in computer
programs or the interactions in ecosystems. Formally, we model such configurations
by means of special combinatorial structures called Graphs.
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There are many other situations in which we need such abstract geometrical
structures such as, when we need to find out how many layers does a printed circuit
board (pcb) need so that the conductive paths do not cross, is actually a graph
planarity problem. If we want to color the regions of a map in such a way that
all the countries that share border have different colors, then it is a graph coloring
problem. There are many other practical problems which are solved using various
graph theoretic techniques. In this chapter we give a brief and formal introduction
to this theory.

The origin of graph theory probably goes back to 1763 when the great Leonhard
Euler was proposed a problem to travel all the seven bridges of the city of Königsberg
in a single round trip when every bridge is travelled exactly once. All the graphs
satisfying this property are named Eulerian after Leonhard Euler. He modeled this
problem in the form of a graph and gave the solution that; “a graph is Eulerian if
and only if every vertex has even degree”. The graph-theoretic concepts used here
are elaborated in the upcoming sections.

1.2 What are graphs?

A graph G = (V,E) is a structure consisting of a set V of objects, called vertex
set, and a set E of adjacency relations of these objects, called edge set. Two vertices
are said to be adjacent whenever they are directly joined by an edge. If two vertices
u and v of a graph G are joined by an edge e then we say that e is incident on u
and v. Clearly, each edge has two vertices as its endpoints, so usually we denote an
edge by its end vertices, that is, e will be denoted as uv. If an edge e joins a vertex
v with itself, then the edge e is called a loop. When two edges have same endpoints,
they are called multiple edges. If there is no edge incident on a vertex v, it is called
an isolated vertex. A graph is called simple when it has no loops or multiple edges.

The neighbourhood of a vertex v in G is the set of all vertices of G which are
adjacent to v, denoted as NG(v) or N(v). The number of vertices and edges in a
graph is called the order (denoted as |V (G)| or ν or p) and size (denoted as |E(G)|
or ε or q) of the graph, respectively. When V (G) is empty, the graph is called null
graph. Similarly a graph is said to be finite if its vertex and edge sets are finite.

Consider a non-simple graph G1 in figure 1.1. The vertex set of the graph is
V (G1) = {v1, v2, v3, v4, v5, v6, v7}, and the edge set is E(G1) = {v1v2, v2v3, v1v3, v1v3,
v4v5, v6v6}. There is a multiple edge v1v3 in G1 so it is written twice in the edge set.
The edge v6 is a loop. There is no edge incident on v7, so it is an isolated vertex.
The neighbourhood of v2 in this graph is N(v2) = {v1, v3}.
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1v 3v
2v

6v

7v 4v

5v

Figure 1.1: G1

All the edges in figure 1.1 have certain lengths, different shapes and cross each
other at different points. The vertices are at specific positions with respect to each
other. But according to the abstract definition of a graph, G1 is merely a graph
with vertex set {v1, v2, v3, v4, v5, v6, v7} and edge set {v1v2, v2v3, v1v3, v1v3, v4v5, v6v6}.
These abstract properties of the graph G1 in figure 1.1 are the same as that of an-
other graph G2 in figure 1.2. So we say that the graph in figure 1.1 is the same as
that in figure 1.2 or that G1 and G2 are the redrawings of each other.

1v 3v

2v

6v
7v

4v5v

Figure 1.2: G2

The vertices in a graph can be considered as places and the edges can be con-
sidered as links between these vertices. We travel on these edges to reach different
vertices. Suppose we travel from a vertex u to a vertex v through an edge e, then
if we can travel back to the vertex u through the same edge e then the edge e is
unordered pair of vertices u and v, that is, uv = vu = e, but if we can go through
e in only one direction (say from u to v) then the edge e is an ordered par of ver-
tices, in this case e = uv 6= vu. The edges discussed in the second case are called
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directed edges, and the graphs all of whose edges have directions are called directed
graphs or simply digraphs. To avoid ambiguity, the undirected edge or simple edge
uv is written as {uv} and directed edge uv is written as [uv]. A graph having both
directed and undirected edges is called mixed graph.

A graph G can also be represented by its adjacency matrix, denoted as A(G). The
matrix A(G) is a square matrix whose rows and columns are indexed by identical
ordering of V (G), such that the entry aij is the number of edges from vi to vj. A
loop contributes two to the degree of any vertex. The adjacency matrix of the graph
G1 in figure 1.1 is given below.

A(G1) =



0 1 2 0 0 0 0
1 0 1 0 0 0 0
2 1 0 0 0 0 0
0 0 0 0 1 0 0
0 0 0 1 0 0 0
0 0 0 0 0 2 0
0 0 0 0 0 0 0


The entries on the principal diagonal represent loops on the respective vertices.

If aii is 4, it means that there are two loops on vertex vi. The sum of any row or
column is equal to the degree of that vertex. In case of a directed graph, the en-
try aij of the adjacency matrix is the number of edges having directions from vi to vj.

In a graph G, the degree of a vertex v, denoted as deg(v), is the number of edges
incident on v. The maximum degree of a graph G is the maximum vertex degree
in that graph, denoted as 4(G), and the minimum degree is the minimum vertex
degree in the graph, denoted as δ(G). The degree sequence or graphic sequence is
the non-increasing sequence formed by vertex degrees of the graph. The degree of a
graph is the sum of degrees of all the vertices. A graph is said to be even or odd if
all of its vertex degrees are even or odd, respectively. An isolated vertex is a vertex
of degree 0, and a vertex of degree 1 is called a leaf. A vertex is even (odd) if its
degree is even (odd). In a simple graph of order p, the maximum degree of a vertex
is p− 1, since any vertex can at most be adjacent to all other p− 1 vertices. Hence
for any vertex v in a graph, deg(v) lies between 0 and p − 1. A graph is called
regular or k-regular if all the vertex degrees are same, that is, 4(G) = δ(G) = k.
The 3-regular graphs are known as cubic graphs. All graphs in figure 1.3 are cubic.

Now we state the fundamental theorem of graph theory also known as the Euler
degree-sum theorem.
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Theorem 1.2.1. [19] The sum of degrees of the vertices of a graph is twice the
number of edges. That is, ∑

v∈V (G)

d(v) = 2|E(G)|.

Since each edge contributes ‘one’ to the degree of each of its end-vertex, it con-
tributes ‘two’ to the degree of the graph. Alternatively, summing up all the vertex
degrees includes every edge twice, so degree of the graph equals twice the number
of edges. We can draw some trivial results from this theorem, such as
1) The degree of a graph is always even.
2) In any graph, the number of vertices of odd degree is even.
3) No graph of odd order is regular with odd degree.

Figure 1.3: Some 3-regular graphs

A graph H is subgraph of a graph G if V (H) ⊆ V (G), E(H) ⊆ E(G) and
the edges of H have same endpoints as that in G. The subgraph H is said to
be spanning if V (H) = V (G). If S ⊂ V (G), a subgraph H induced by S, denoted
as H[S], is a graph with V (H) = S and all the edges of G which have both ends in S.

A walk in a graph G is an alternating sequence of vertices and their incident
edges. A trail is a walk in which no edge is repeated. A path is a trail in which
no vertex is repeated. A circuit is a closed trail, that is, a trail in which first and
last vertex coincides. Similarly, a closed path is called a cycle. A cycle of order n
is denoted as Cn. A cycle with a chord is a cycle in which any two non-adjacent
vertices are joined with an edge. The girth of a graph is the length of smallest cycle
in the graph. If there is no cycle in the graph then girth is undefined. In figure
1.4, a circuit {abcdefghdia}, a path {jklm} and a cycle {nopqrn} are highlighted.
We can observe that a circuit is an edge disjoint union of cycles. When vertices are
written in the way {abc}, it means that there is an edge between vertices a and b,
and another edge between b and c.
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Any graph with δ(G) ≥ 2 contains a cycle. This can be proved by a simple algo-
rithm. Suppose there is a maximal path P = {v1, v2, . . . , vn} in the graph. Then the
first and the last vertex of P have at least one neighbour which is not on the path,
say vn+1 is such a vertex. Extend P to P ′ = {v1, v2, . . . , vn, vn+1}, which contradicts
the maximality of P . Hence the graph contains a cycle.

j

k l m n

r
q

p

o

h g

f

e

dc

i

b

a

Figure 1.4: Circuit, path and cycle in a graph

An isomorphism between simple graphs G and H is a bijection f : V (G)→ V (H)
such that uv ∈ E(G) if and only if f(u)f(v) ∈ E(H). If such mapping exist we say
that G is isomorphic to H (G ∼= H). In an isomorphism, the adjacency relations of
one graph are preserved in the other. While discussing a graph G in this theory we
actually are talking about an isomorphism class of graphs containing all the graphs
isomorphic to that particular graph G. Our structural comments and conclusions
will be true for all the graphs isomorphic to G. For the isomorphic graphs G and
H, the image f(v) ∈ V (H) of a vertex v ∈ V (G) preserves all the adjacency prop-
erties of v in H. For example, the degree of v remains same, if v was adjacent to
two vertices of degree 4 and 1 in G then f(v) has the neighbours of same degrees
in H, if v was on a cycle of length 5 in G then its image is on a cycle of length 5 in H.

Isomorphic graphs satisfy many other properties, for example, both graphs must
have the same degree sequence, if the graph G can be drawn in such a way that
no two edges cross each other, then H can also be drawn in this way. We can use
adjacency matrices to check graph isomorphism as well. If we order the vertices
of one graph in such a way that its adjacency matrix becomes identical with the
adjacency matrix of some other graph then both graphs are isomorphic. All graphs
in figure 1.3 are isomorphic to each other.

A clique in a graph G is the set of pairwise adjacent vertices. The number of
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vertices in maximum such set is called clique number, denoted as ω(G). An indepen-
dent set is the set of pairwise non-adjacent vertices in the graph, and the number
of vertices in maximal such set is called independence number, denoted as β(G).

The length of a path or walk is the number of edges in it. The distance between
two vertices u and v in a graph is the length of shortest path between these vertices,
denoted as d(u, v). If no such path exist then d(a, b) =∞. A graph is connected if for
every pair of vertices there is at least one path between them, otherwise graph is dis-
connected. The graph in figure 1.4 is connected but that in figure 1.1 is disconnected.

An Eulerian circuit in a graph G is a circuit (closed trail) which contains all the
edges of G. A graph is Eulerian if it contains an Eulerian circuit. In the following
theorem a characterization of Eulerian graphs is presented.

Theorem 1.2.2. [19] The following statements are equivalent for a connected graph
G.
(1) G is Eulerian.
(2) The degree of every vertex in G is even.
(3) E(G) is the union of edge-disjoint cycles in G.

When a graph is Eulerian then by definition we have a trail passing from every
edge and ending at the point from where we started it. The trail visits a particular
vertex through an edge and leaves through some other edge, so every time the trail
visits the vertex it uses two from the degree of the vertex. Since the trail used all the
edges so it visited all the vertices even number of times, which implies that all vertex
degrees are even. When degree of all vertices are even we can partition the edge set
in cycles. It can be proved with the help of an algorithm. Consider a maximal path
in a graph and extend any of its leaves using the given condition that all vertex
degrees are even. It will result in a cycle (or a contradiction). Now, delete the edges
of the cycle we obtain and apply the algorithm again on the resultant graph.

A cycle is said to be hamiltonian if it passes through every vertex of the graph.
A graph containing a hamiltonian cycle is called a hamiltonian graph. Clearly, a
hamiltonian cycle in a graph is a spanning subgraph of the graph. There is no
characterization known for hamiltonian graph, but we have some results sufficient
for a graph to be hamiltonian. Some of the simplest conditions are stated below.

Theorem 1.2.3. [41] If G is a simple graph with at least three vertices and δ(G) ≥
|G|
2

, then G is hamiltonian.

Theorem 1.2.4. [19] Let G be a simple n-vertex graph, where n ≥ 3, such that
deg(x) + deg(y) ≥ n for each pair of non-adjacent vertices x and y, then G is
hamiltonian.
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A bipartite graph is a graph whose vertex set can be partitioned in two sets,
called partite sets, in such a way such that the vertices in each partite set are
pairwise non-adjacent. The two partite sets are independent of each other and are
called bipartition of the graph. Similarly, a graph is s-partite if its vertex set is the
union of S independent sets. A very useful characterization of bipartite graphs is
given in the following theorem. A partite graph is called balanced if all the partite
sets have equal cardinality.

Theorem 1.2.5. [24] A graph G is bipartite if and only if it contains no odd cycle.

In a bipartite graph with bipartition [X, Y ], let us construct a cycle with initial
vertex in any partite set, say X. To create a cycle we need to visit both partite sets
alternatively, since vertices in one partite set can not be adjacent. So every time we
return to the partite set from where we started, we travel even number of edges.

A graph is complete if all of its vertices are pairwise adjacent. A complete graph
of order n is denoted as Kn. Clearly, a complete graph Kn is a regular graph of
degree n−1. A complete bipartite graph, denoted as Km,n, is a complete graph with
m vertices in one partite set and n vertices in the other. In figure 1.5, we present
the complete graph on 10 vertices (K10) and complete bipartite graph K4,3.

K10K4,3

Figure 1.5: Complete graphs

The maximal connected subgraph of a graph is called a component. A discon-
nected graph obviously has atleast two components. The number of components
of a graph G is denoted as c(G). The graph in figure 1.2 has 4 components. A
separating set (also called vertex-cut) of a connected graph G is a set S ⊂ V (G)
such that G−S is disconnected. Similarly an edge-cut is a set H ⊂ E(G) such that
G−H is disconnected. A {u, v}-separating set in a graph is the set of edges whose
deletion disconnect the vertices u and v.
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A single vertex whose removal from a graph increases its number of components,
is called a cut-vertex. Similarly a single edge whose removal from a connected graph
leaves it disconnected, is called a bridge. We can observe that a bridge can never
be a part of a cycle. It is interesting to know that the deletion of one vertex from a
connected graph G can create many components in G, but deletion of one edge can
increase the number of components by at most 1.

The vertex connectivity κ(G) of a connected graph G is the minimum number of
vertices whose removal can disconnect the graph G. When κ(G) ≥ k, graph is called
k-connected. In the same way, the edge connectivity λ(G) of a connected graph is
minimum number of edges whose removal can disconnect the graph. The graph G is
called k-edge connected when λ(G) ≥ k. When a graph is k-edge connected, every
two vertices are joined by k internally disjoint paths. The converse of this statement
also hold.

The vertex connectivity of a complete graph Kn is not defined since it has no
separating set, so we adopt a convention that a graph with one isolated vertex is
disconnected, then κ(Kn) = n− 1. Similarly, the vertex connectivity of a complete
bipartite graph Km,n is min{m,n}, because vertices in one partite set are only ad-
jacent to the vertices of other partite set, so deleting the vertices of one partite set
leaves the other partite set isolated. The graph (a) in figure 1.6 has no cut-vertex,
the minimal vertex-cut is {x, y} and the minimum {u, v}-separating set consists of
edges {e1, e2, e3, e4}. In graph (b) of the same figure, there is a bridge e, and the
end-vertices of e are both cut-vertices. So, the vertex and edge connectivity of the
graph (b) is 1.

u v
x y

e
a) b)

e1 e3

e2 e4

Figure 1.6: vertex/edge-cut in a graph

The connectivity of a graph can also be regarded as the strength of connec-
tions between its vertices. After removing some vertices or edges, if the graph is
still connected means the connections in the graph are strong. While trying to dis-
connect a graph by removing edges, it is direct observation that if we remove the
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edges incident on the vertex with minimum degree in the graph, the connection of
all other vertices with that vertex will be destroyed, and the graph becomes dis-
connected. So, we can say that for a connected graph, λ(G) ≤ δ(G). The vertex
connectivity and the edge connectivity can be compared with the following theorem.

Theorem 1.2.6. [12] If G is a simple graph then vertex connectivity never exceeds
edge connectivity, i.e., κ(G) ≤ λ(G).

For a k-edge connected graph G, there will be an edge cut say S with k edges
in G. The edges of S partition V (G) in two sets say V1 and V2, each edge of S has
on end in V1 and other end in V2. If we remove at most k vertices from any of V1
or V2, on which the edges in S are incident, we can disconnect the graph G. Hence
the edge connectivity exceeds the vertex connectivity.

A graph G is said to be planar if it can be drawn in a plane in such a way that no
two edges cross each other. Such a drawing, if it exist, is called the planar embedding
of the graph. If a graph is not planar, the minimum number of edges-crossing is
called the crossing number of the graph. A planar embedding of a graph divides
the plane in different regions. Each maximal region which is not partitioned by an
edge or path in further subregions is called a face. The planar embedding of a finite
graph G always has an unbounded face. The boundary of a face is the set of vertices
and edges surrounding the face, and the length of the i-th face (denoted as l(fi)) is
the length of the closed walk around the face in G. In planar embedding of a graph,
a bridge can be included in only one face, and it contributes 2 to the length of that
face. We can observe that the sum of lengths of all the faces of a planar graphs
equals twice the size of the graph. Since every edge can be at most at the boundary
of two neighbouring faces, they are counted twice when adding all face lengths. The
edges which lie in a unique face are counted twice because they are the bridges, so
we get a degree sum and face relationship

∑
i

l(fi) = 2|E(G)|.

Theorem 1.2.7. [10] If a connected graph G has exactly n vertices, e edges and f
faces, then n− e+ f = 2.

The formula in the above theorem is known as Euler’s Formula, and it is satisfied
by every connected planar graph. For a graph with k components, Euler’s formula
becomes n − e + f = k + 1, because we only need to add k − 1 edges to make the
graph connected. We can find an upper bound for the size of a graph using this
theorem. Using the fact that every face should be of length 3 or more, from the
degree sum and face relation we get 3f ≤ 2|E(G)|, where f is the number of faces.
Now using this inequality in Euler’s Formula we get |E(G)| ≤ 3|V (G)| − 6. The
planar graphs are characterized by the Kuratowski’s Theorem stated below.

10



Theorem 1.2.8. [41] A graph is planar if and only if it does not contain a subdivi-
sion of K5 or K3.3.

A subdivision of a graph means the subdivision of its edges by replacing the
edges with paths internally disjoint from each other. The graphs K5 and K3,3 are
the smallest graphs which can not be drawn on a plane without edge-crossing. These
graphs are known as Kuratowski’s graphs.

The eccentricity of a vertex v in a graph G, denoted as ecc(v), is the distance
from v to the farthest vertex in G, that is, max{d(v, x)} for every vertex x in G.
The diameter of a graph, denoted as diam(G), is the maximum distance between
any two vertices of G. So, in terms of eccentricity, diam(G) = max{ecc(v)}, for
every vertex v in G. Similarly, the radius of a graph G is the minimum of all the
eccentricities of the graph, that is, rad(G) = min{ecc(v)}, for every vertex v in
G. All the vertices having minimum eccentricities are called central vertices. The
graph (a) in figure 1.7 has diameter 9 and radius 5, while the graph (b) has constant
eccentricity, so diam(b) = rad(b) = 5.

5
5

5

5

5

5
5

5

5

5

5

55

5

5

5
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65

7
6

7
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7

8 8
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a) b)

Figure 1.7: Two graphs labeled with vertex eccentricities

1.3 Trees and forests

There is a special type of graphs having no cycles, called acyclic graphs. An
acyclic graph is called a forest and a connected forest is called a tree. So it is clear
that every component of a forest is a tree. This family of graphs is important to
the structural understanding of graphs and to the algorithms of the information
processing, and they play central role in design of connected networks. Some special
tree structures are used in information management to store data in space efficient
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ways that allow their retrieval and modification to be time efficient [19].

Now we discuss some properties of trees. A very basic property is that every tree
of size more than one has at least two leaves. No graph can has one vertex of degree
1, since the number of odd vertices must be even, this can be followed from theorem
1.2.1. So if a tree does not has 2 vertices of degree 1, then its minimum degree is at
least two, then there must be a cycle in the graph. Hence a tree contains at least
two leaves. A spanning tree of a graph G is a spanning subgraph of G which is a
tree.

T1 T2 T3
r

Figure 1.8: Trees in a forest

A tree is a minimal connected graph. That is, the removal of one edge leaves
the tree disconnected. A tree of order n has exactly n − 1 edges. We can apply
induction on the number of vertices to prove this statement. If there is one vertex
then the statement is trivial. Let there are k vertices in the tree, then the size of
the tree is k − 1. Now, consider any tree T on k + 1 vertices. Let x is a leaf in T ,
then T − x is also acyclic and connected. So, T − x is a tree on k vertices and k− 1
edges. Since T − x has one vertex less than T , so, T has exactly k edges. Similarly,
a tree on n vertices and k components has exactly n− k edges.

Earlier in this chapter a path was defined as a trail with no repeated vertex. We
can also define a path as a tree in which every i-th vertex is adjacent with (i+ 1)st
vertex. A path of order n is denoted as Pn. A star is a tree in which a single fixed
vertex is adjacent to all other vertices. A star with n+ 1 vertices is denoted as Sn.
The forest of stars is known as a galaxy. A graph in which all edges are incident on
the vertices of a fixed path is called a caterpillar.
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Star
Path

Caterpillar

Figure 1.9: Star, path and caterpillar

A rooted tree is a tree in which a fixed vertex r (say) is designated as the root
of the tree. For every vertex v the unique paths from the root r to that vertex v is
directed away form the root. In a rooted tree if vertex u and v are adjacent and u
lies in the path from the root r to v, then u is called the parent of v, and v is called
the child of u, and all other vertices in the path are called the ancestors of v. Every
tree can be drawn in the form of a rooted tree. The tree T3 in figure 1.8 is a rooted
tree. The next theorem provides some useful characterizations of trees.

Theorem 1.3.1. [19] Let T be a connected graph with n vertices. Then the following
statements are equivalent.
(i) T is a tree.
(ii) T contains no cycles and has n− 1 edges.
(iii) T is connected and has n− 1 edges.
(iv) T is connected, and every edge is a cut-edge.
(v) Any two vertices of T are connected by exactly one path.
(vi) T has no cycles, and for each new edge e, the graph T +e has exactly one cycle.

These statements can be derived easily in the light of previously discussed prop-
erties of trees. Since a tree is a minimal connected graph, so deletion of any edge
leads to disconnection, so every edge is cut-edge. Only a cycle provides alternative
paths between vertices of a graph. Since a tree has no cycle so there is a unique
path between any two vertices. Now, a tree is connected so there is a path between
every pair of vertices say x and y. If we add an edge xy in the tree, it provides an
alternative path to travel between x and y, hence produces a cycle.

13



1.4 Operations on graphs

One very common operation that we perform on graphs is vertex/edge deletion
from the graph. Once a vertex is deleted from a graph, all the edges incident on that
vertex are also removed, and when an edge is deleted from a graph, no difference
occur other than the size of the graph is reduced by 1. For e ∈ E(G), the edge deleted
graph G is denoted as G− e. Another operation that we perform only on edges of
a graph is contraction of an edge. An edge uv is contracted by coinciding both of
its end-vertices into a single vertex x and joining all edges which were incident on
u and v to the new vertex x. The graph we obtain after contracting the edge uv is
denoted as G|uv or G|e. Studying simple graphs, any loops or multiple edges that
occur after edge contraction are removed. The deletion and contraction of an edge
e in P5 is figured in 1.10.

G

G - e
G|e

e

Figure 1.10: Edge contraction in a graph

The disjoint union of graphs H1, H2, . . . , Hn is the graph G = H1, H2, . . . , Hn

with vertex set
n⋃

i=1

V (Gi) and edge set
n⋃

i=1

E(Gi). The disjoint union of k copies of

G is denoted as kG. The join of two graphs G and H, denoted as G + H, is a
graph obtained by adding every edge between the vertices of G and H. That is,
E(G+H) = E(G) + E(H) + {uv : u ∈ V (G), v ∈ V (H)}.

The cartesian product of two graphs G and H, denoted as G�H, is a graph with
vertex set V (G�H) = V (G) × V (H) and edge set E(G�H) = V (G) × E(H) ∪
E(G) × V (H). The join and cartesian product of C4 and P5 are shown in figure
1.11.

14



C4

P5

C4 P5

C4 P5+

Figure 1.11: Join and cartesian product of C4 and P5

1.5 Some special classes of graphs

A wheel is a graph obtained by joining all the vertices of a cycle to a new vertex.
A wheel of n vertices adjacent with one other vertex is denoted as Wn. If we remove
one edge from the outer cycle of a wheel, the resulting graph is called fan, denoted
by fn. If we remove the edges from the outer cycle of the wheel alternatively, we
get a friendship graph, denoted by Fn. The wheel, fan and friendship graphs are
elaborated in figure 1.12.

A fan graph fn can also be obtained by Pn�K1, where K1 represents complete
graph on a single vertex (an isolated vertex). Similarly a wheel graph can be de-
scribed as Cn�K1, and a friendship graph is (2n)P2�K1, where (2n)P2 represents
even number of copies of P2.

A circular ladder is a graph obtained by Cn�P2, denoted as Dn. A circular
ladder is also called a prism. An antiprism (denoted as An) is a graph formed by
combining two n sided polygons by a band of 2n triangles. The graph C4 is known
as 2-hypercube (Q2). The graph C4�P2 is called 3-hypercube (Q3). Similarly, the
n-hypercube (Qn) is obtained by Qn−1�P2.

The petersen graph, commonly known as generalized petersen graph P (n, k), for
n ≥ 3 and k < n

2
is the graph obtained by joining n vertices to corresponding vertices

of an n-cycle and joining each vertex to the k-th vertex in the cyclic order. The
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prism D8, antiprism A8 and the generalized petersen graph P (8, 3) (also known as
Möbius-Cantor graph) are shown in figure 1.12.

Fan

Wheel Friendship

P (8,3)

Prism Antiprism

W 42 

f 11 

F 8

D 8 A 8 

Figure 1.12: Wheel, Fan, Friendship, Prism, Antiprism and Petersen graphs
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Chapter 2

Introduction to Graph Labeling

A magic square of order n is an array of n2 distinct integers in the form of a
square, such that the sum of all n numbers in a row, column, and both diagonals is
equal to a constant (say) k. This constant is called the magic constant. A normal
magic square contains 1 to n2 consecutive integers. A normal magic square of order

n has the magic constant k = n(n2+1)
2

(see [1]). Magic squares are amongst the most
popular mathematical recreations. The first magic square known to be recorded is
known as Lo Shu magic square discovered around 2200 BC. According to the legend
about the Chinese Emperor Yu, from the book Yih King, the diagram was found
on the shell of a divine turtle [27]. The following figure depicts the Lo Shu magic
square and the corresponding normal magic square.

1 68

753

294

Figure 2.1: Lo Shu magic square

In 1963, Sedláček used the concept of magic squares for the first time in graphs
[35]. A labeled graph is a graph in which labels (usually non-negative integers) are
assigned to the elements (vertices, edges, faces or any combination of these) of the
graph. These labels are assigned with respect to some specified conditions. The
graphs having no specific names or labels for their elements are called unlabeled
graphs. The labels are used to identify the elements of a graph. The process of
assigning labels to the elements of a graph is called graph labeling. Sedláček defined
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the notion of a magic graph to be a graph whose edges are labeled with real num-
bers such that the sum of the labels around any vertex is constant. Afterwards, the
concept of super magic was introduced by Stewart in 1966 (see [37]). He defined a
magic labeling to be super magic if all the labels are consecutive integers.

The weight of a vertex x ∈ V (G), denoted as ω(x), under some labeling is the
sum of the labels of the vertex x and all the edges which are incident on it. Similarly,
the weight of an edge is the sum of the labels of the edge and its endpoints. In case
when the edges of the graph are not labeled, the edge weight is just the sum of the
labels of its endpoints.

In 1970, Kotzig and Rosa introduced the term total labeling in such a way that a
magic labeling is total if all the vertices and edges of the graph are labeled, and the
sum of the labels of any edge and its endpoints is constant [25]. In 1996, Ringel and
Llado redefined the terms introduced by Kotzig and called this labeling edge magic
labeling [33]. Again in 1998, Enomoto et al. redefined the term magic, introduced
by Stewart, by adding the property that a labeling is super if the smallest possible
labels are assigned to the vertices of the graphs [13]. In [28], MacDougall, Miller,
Slamin and Wallis introduced the concept of vertex magic total labeling.

The popularity which the subject of graph labeling has gained in the area of
graph theory can be realised by putting a glance on a survey of graph labeling by
Gallian [16]. More than a thousand papers are appeared on different kinds of graph
labelings. This popularity is due to the range of applications of the graph label-
ings in other branches of science. Most of these applications are found in x-ray
crystallography, coding theory, cryptography, astronomy, radar, circuit design and
communication network design [6, 7].

To avoid ambiguities in the definitions of different kind of labelings just discussed,
we define all of them in a sequence. First we list the types of labelings with respect
to the weights calculated for different elements of the graphs.

• Harmonious labeling - The vertices are labeled with distinct integers and the
edge weights are calculated which are distinct.

• Graceful labeling - The vertices are labeled with distinct integers such that
the edge weights form consecutive integers.

• Magic labeling - A labeling in which all the calculated weights of the elements
of the graph are same.

• Antimagic labeling - A labeling in which all the weights of the elements of the
graph are different.
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In the following we present the second listing of graph labelings depending upon the
elements of the graph which are labeled.

• Edge labeling - All the edges of the graph are labeled.

• Vertex labeling - All the vertices of the graph are labeled.

• Face labeling - All the faces of the graph are labeled.

• Super labeling - All the vertices are labeled with smallest possible labels.

• Total labeling - All the vertices and edges of the graph are labeled.

• Supertotal labelings - All the vertices, edges and faces are labeled.

In the light of above mentioned types of a graph labeling, one can guess that
a super edge magic total labeling will be a labeling in which all the vertices and
edges are labeled (because of total), with the smallest labels assigned to the vertices
(because of super), and the edge weights are calculated under the labeling which
are all same (because of edge magicness). All these labelings are discussed with
examples in the next sections of this chapter.

2.1 Graceful labeling

A graceful labeling is a bijection λ : V (G) → {0, 1, 2, . . . , q}, where q is the
number of edges in G, such that each edge xy ∈ E(G) is assigned a unique label
|λ(x)−λ(y)|, where all the vertex labels are distinct as well, and the absolute value
of the difference of λ(x) and λ(y) is called the weight of the edge xy.

At first, Rosa [34] called this labeling β-valuation but afterwards Golomb searched
out the same kind of labeling independently, and called it graceful labeling. A graph
G is called graceful if it admits a graceful labeling. The most popular conjecture on
graceful labelings which is still open was proposed by Ringel and Kotzig, it states
that all trees are graceful [25].

The graceful labeling of a 4-regular graph is shown in the figure 2.2. The labels
in bold-italic shows the edge weights which are the absolute differences of the labels
of the incident vertices.
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Figure 2.2: Graceful Graph

2.2 Harmonious labeling

This labeling was first introduced in 1980 by Graham and Sloane [17]. A
harmonious labeling of a graph G is a vertex labeling defined as a bijection λ :
V (G) → Z|E|, such that the mapping λ′ from the edge set E(G) to Zq defined by
λ′(uv) = λ(u) + λ(v) for every uv ∈ E(G), assigns different labels to the edges of
G. If the graph G admits a harmonious labeling then it is called a harmonious graph.

In Erdöes unpublished results, it is proved that no graph is neither graceful nor
harmonious [17]. A harmonious graph is shown in figure 2.3. The labels in bold-
italic shows the edge weights. Graham and Sloane showed that this is a maximal
sized harmonious graph on 7 vertices [18].
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Figure 2.3: Harmonious Graph

20



2.3 Antimagic labelings

An antimagic square of order n is an arrangement of numbers from 1 to n2 in
the form of a square such that the sum of all the n elements of any row, column
and both diagonals form a sequence of 2n + 2 consecutive integers. The smallest
antimagic square is of order 4. Two antimagic squares of order 4 are shown below
[39].

4 13 12 1
11 6 2 14
5 15 10 8
16 3 7 9

1 13 3 12
15 9 4 10
7 2 16 8
14 6 11 5

In each of these two antimagic squares; the rows, columns and the diagonals sum
up to ten different numbers between 29 and 38. As the order increases, the construc-
tion becomes easier. It is still an open problem to find a method of constructing an
antimagic square of every order.

An (a, d)-antimagic labeling is a labeling in which all calculated weights of the
elements of a graph form an arithmetic progression, starting from a constant a (> 0)
with common difference d (≥ 0). A graph having an antimagic labeling is called an
antimagic graph. The magic labelings are a spacial case of (a, d)-antimagic labelings
when common difference of the arithmetic progression is zero (d = 0).

The concept of antimagic squares was applied in graphs and in the result an-
timagic graphs were introduced. The notion of an antimagic graph was first intro-
duced by Hartsfield and Ringel in 1989, afterwards Nicholas et al. Bodendiek and
Walther [8, 9] in 1996 were the first to introduce the concept of an (a, d)-vertex
antimagic edge labeling. They called that labeling (a, d)-antimagic labeling. Bača
et al. [2] defined the concept of an (a, d)-vertex antimagic total labeling, and (a, d)-
edge antimagic total labeling was introduced by Simanjuntank et al. in [36].

Hartsfield and Ringel [20] pointed out that all paths Pn for n ≥ 3, cycles Cn,
wheels Wn, and complete graphs Kn for n ≥ 3, are antimagic. The Antimagic
labelings are further divided in two cases.

• Edge antimagic - When edge weights form an arithmetic progression.

• Vertex antimagic - When vertex weights form an arithmetic progression.
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2.3.1 Edge antimagic labelings

One thing is clear by the name that in this labeling edge weights are calculated
and they form an arithmetic progression. Since the set of weights W (say) forms an
arithmetic progression, it has an initial term a and a common difference d. So in an
antimagic labeling this set of weights is written as W = {a, a + d, a + 2d, . . . , a +
(q− 1)d}, where q is the number of edges in the graph. There are further two kinds
in which an edge antimagic labeling can fall, depending upon the choice of labeling
the elements of the graph.

• (a, d)-edge antimagic vertex labeling (EAV labeling)

• (a, d)-edge antimagic total labeling (EAT labeling)

Edge antimagic vertex labeling

A bijection λ : V (G)→ {1, 2, 3, . . . , p}, where p is the number of vertices in the
graph G, is called an (a, d)-edge antimagic vertex labeling if all the edge weights
of the graph form an arithmetic progression with some starting term a > 0 and a
common difference d ≥ 0. The edge weight of an edge uv ∈ E(G) under this labeling
is calculated as ω(uv) = λ(u) + λ(v).

Simanjuntak et al. [36], proved that there is no (a, d)-EAV labeling of even
cycles. They also showed that every path Pn has (3,2)-EAV labeling. Bača et
al. [3], showed that for every symmetric complete bipartite graph Kn,n, there is
no (a, d)-EAV labeling. A (6, 1) and a (3, 2)-edge antimagic vertex labeling of two
graphs are showed in figure 2.4. The labels in bold-italic represent the edge weights.

1 6 47325

76 9 11108

9 4 631112

13 2114

5 1078
17

11

525

19
13

97152321

27 3

Figure 2.4: (6, 1) and (3, 2)-EAV labelings (respectively)
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Edge antimagic total labeling

An (a, d)-edge antimagic total labeling of a (p, q) graph G is a bijection λ :
V (G) ∪ E(G) → {1, 2, 3, . . . , p + q} such that the edge weights form an arithmetic
progression with some starting term a > 0 and common difference d ≥ 0. The weight
of an edge uv ∈ E(G) under this labeling is calculated as ω(uv) = λ(u)+λ(v)+λ(uv).

Simanjuntak et al. [36] proved that a graph with all vertices of odd degrees
cannot have an (a, d)-EAT labeling with a and d both even. They also proved that
if f is an (a, d)-EAT labeling of a graph G then f ′ is an (3p+3q+3−a−(q−1)d, d)-
EAT labeling of G. In a (p, q) graph G if the smallest possible labels are assigned
to the vertices then this labeling is called super (a, d)-edge antimagic total labeling.
A super (41, 1)-edge antimagic total labeling of a caterpillar is shown in figure 2.5.
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Figure 2.5: Super (41, 1)-edge antimagic total labeling of a caterpillar
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Figure 2.6: Super (23, 2)-edge antimagic total labeling of (12, 3)-kite
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2.3.2 Vertex antimagic labelings

In vertex antimagic labelings we calculate all the vertex weights of the graph,
which form an arithmetic progression {a, a + 1, a + 2, . . . , a + (p − 1)d}, starting
from a with common difference d. This labeling is called an (a, d)-vertex antimagic
labeling. As before, the vertex antimagic labelings are also of two types depending
upon the choice of labeling different elements of the graph.

• Vertex antimagic edge labeling (VAE labeling)

• Vertex antimagic total labeling (VAT labeling)

Vertex antimagic edge labeling

As it is an edge labeling so we just label the edges of the graph with a bijection
λ : E(G) → {1, 2, 3, . . . , q}, and the vertex weights are calculated which form an
arithmetic progression W = {a, a + d, a + 2d, . . . , a + (p − 1)d}. The weight of a
vertex x ∈ V (G) under this labeling is calculated as ω(x) =

∑
y∈N(x)

λ(xy). Such a

labeling is called (a, d)-vertex antimagic edge labeling.

Hartsfield and Ringel [20] called this labeling antimagic, and they conjectured
that all graphs except K2 are antimagic. Miller et al. [31] proved that every an-
tiprism An has a (6n + 3, 2)-VAE labeling and a (4n + 4, 4)-VAE labeling as well.
They also showed that A3 does not has a (11, 5)-VAE labeling. The (13, 6)-VAE
labeling of the antiprism A4 is shown in Figure 2.7 [4]. The labels in bold-italic
represent vertex weights.
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Figure 2.7: (13, 6)-vertex antimagic edge labeling of A4
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Vertex antimagic total labeling

For a (p, q) graph G, an (a, d)-vertex antimagic total labeling is a bijection λ :
V (G)∪E(G)→ {1, 2, 3, . . . , p+ q} such that all the vertex weights form a sequence
W = {a, a + d, a + 2d, . . . , a + (p − 1)d}, with starting term a > 0 and common
difference d ≥ 0. The weight of a vertex x ∈ V (G) under this labeling is calculated
as

ω(x) = λ(x) +
∑

y∈N(x)

λ(xy).

Bača et al. in [2], introduced this kind of labeling for the first time, they also
established a relationship between the super magic labeling and vertex antimagic
total labeling stated below.

Lemma 2.3.1. [2] Every super magic graph has an (a, 1)-vertex antimagic total
labeling.

They proved another relationship between vertex antimagic edge labeling and
vetex antimagic total labeling of a graph, which is stated below in the form of a
lemma.

Lemma 2.3.2. [2] (i) If d > 1, then every (a, d)-VAE graph has an (a+p+q, d−1)-
VAT labeling.
(ii) Every (a, d)-VAE graph has an (a+ q + 1, d+ 1)-VAT labeling.

If the labels {1, 2, 3, . . . , p} are assigned to the vertices of the graph then this
labeling is called super and the graph possessing such a labeling is called super
(a, d)-VAT.
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Figure 2.8: Super (25, 2)-vertex antimagic total labeling of C9
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2.4 Magic labelings

Same like the antimagic labelings, the concept of magic labelings was adopted
from the magic square which were discovered long ago. The magic labelings form a
subclass of antimagic labelings with d = 0. So, if the labeling is vertex magic then
the weight of every vertex is same, and if the labeling is edge magic then the weight
of every edge is equal to a fixed constant, which is called the magic constant. A
graph possessing a magic labeling is called a magic graph. The same concepts of
super and total labeling in antimagic labelings are followed in magic labelings as
well.

2.4.1 Magic labeling (VME)

As described in the beginning of this chapter, Sedláček [35] in 1963, introduced
the notion of a magic graph, to be a graph with an edge labeling with real numbers
in such a way that the vertex weights are constant. With the passage of time many
more labelings are introduced so, to avoid any ambiguity of notations we call this
labeling a vertex magic edge labeling. Stewart called this labeling super magic if the
edge labels are consecutive integers.

If the edges incident on a vertex of an n-regular graph of order 2n are labeled
with the elements of a row or column of a magic square, the vertex weights would
obviously be constant. This can be understood by examining the magic labeling of
K4,4 using a magic square of order 4, in figure 2.9. The magic constant under this
labeling will be the magic constant of the magic square, which is in this case 34.
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Magic square of order 4
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Figure 2.9: Magic labeling of K4,4

Stewart in [37], proved that Kn is magic for n = 2 and for all n ≥ 5. He also
proved that Kn,n is magic for all n ≥ 3, and all fans fn are magic for n ≥ 3 iff n
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is odd. In [38], Stewart showed that Kn is super magic for n ≥ 5 iff n > 5 and
n 6≡ 0 (mod 4). A magic graph with magic constant 27 is shown in the figure 2.10.
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Figure 2.10: Super magic graph

2.4.2 Vertex magic total labeling

A bijection λ : V (G) ∪ E(G)→ {1, 2, 3, . . . , p+ q} is called a vertex magic total
labeling if the weights of all the vertices of G are same. The weight of a vertex
v ∈ V (G) under this labeling is calculated as ω(v) = λ(v) +

∑
u∈Nv(G)

λ(uv). A graph

possessing such a labeling is called a vertex magic total graph (VMT).

A VMT graph with magic constant 15 is shown in figure 2.11.
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Figure 2.11: Vertex magic total graph

MacDougall et al. in [28], proved that all cycles Cn, paths Pn and balanced com-
plete bipartite graphs Kn,n are VMT. MacDougall, Miller and Wallis [29] proved
that the wheel Wn has no VMT labeling for n > 11, the fan graph fn has no VMT
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labeling for n > 10, and the friendship graph Fn has no VMT labeling for n > 3.
Bača, Miller and Slamin in [5] proved that every generalized petersen graph Pn,k has
a VMT labeling for n > 3 and 1 ≤ k ≤ bn−1

2
c. The vertex magic total labeling of

products of cycles is discussed in [15].

Another VMT graph with magic constant 48 is shown in figure 2.12.
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Figure 2.12: Vertex magic total graph
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Chapter 3

Super Edge Magic Total Labeling

The edge magic total labelings were first discussed by Kotzig and Rosa [25]
in 1970. In this chapter we define edge magic total and super edge magic total
labelings, and a brief introduction to some super edge magic total graphs studied in
[21, 22, 23] is also included.

3.1 Edge magic total labeling

An edge magic total labeling of a graph G can be defined as a bijection

λ : V (G) ∪ E(G)→ {1, 2, 3, . . . , p+ q}.

defined in such a way that the weights of all the edges are equal to a fixed constant
k (say). The weight of an edge uv ∈ E(G) under this labeling function is calculated
as

ω(uv) = λ(u) + λ(v) + λ(uv).

The constant k is called the magic constant of the graph G under the labeling λ. A
graph with an edge magic total labeling is called edge magic total graph or just EMT.

Kotzig and Rosa [25] proved that the complete bipartite graphs Km,n for any
m and n and cycle Cn for all n ≥ 3 are EMT. Ringel and Lladó [33] proved that
a (p, q) graph G is not EMT if all vertices are of odd degree and q is even and
p + q ≡ 2 (mod 4). Enomoto et al. [13] proposed a conjecture that all wheels ex-
cept the ones described in [33] are EMT. Wallis, Baskoro, Miller and Slamin [40]
constructed EMT labelings of the complete graph Kn for n ∈ {1, 2, 3, 4, 5, 6} for
all possible values of magic constant. They also showed that all paths, complete
bipartite graphs and all cycles with a chord admit EMT labeling.
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Kotzig and Rosa [26], conjectured that every tree is EMT. A tree with EMT
labeling is shown in figure 3.1. The magic constant for this graph under given EMT
labeling is 36.
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Figure 3.1: Edge magic total graph

3.2 Super edge magic total labeling

The concept of super edge magic total labeling (SEMT) was introduced by Enomoto,
Lladó, Nakamigawa and Ringel. They defined the SEMT labeling of a graph G to
be a bijection

λ : V (G) ∪ E(G)→ {1, 2, 3, . . . , p+ q}.

such that the weight of every edge is equal to a fixed constant, and being a super
labeling it satisfies another property that all vertices are labeled with the smallest
available labels {1, 2, 3, . . . , p}, and the rest of labels {p+ 1, p+ 2, p+ 3, . . . , p+ q}
are assigned to the edges of the graph. The weight of an edge uv ∈ E(G) under
SEMT labeling is calculated in the same way as was calculated in EMT labeling.

The SEMT labeling of a disconnected graph C12 ∪P2 with magic constant 36, is
shown in the figure 3.2.

Enomoto, Lladó, Nakamigawa and Ringel [13] proved that the cycle Cn is super
edge magic total if and only if n is odd. The complete bipartite graph Km,n is super
edge magic total if and only if m = 1 or n = 1. If the cardinality of any partite set
of a bipartite graph is one, it becomes a star Sn, so it means that every star is super
edge magic total. The complete graph Kn is super edge magic total if and only if
n = 1, 2 or 3. They also gave an upper bound for a graph to be SEMT in terms of
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Figure 3.2: Super edge magic total graph C12 ∪ P2

the size q of a graph which is q ≤ 2p− 3.

Enomoto, Lladó, Nakamigawa and Ringel proposed one of the most popular
conjecture in graph labeling known as the tree conjecture.

Conjecture 3.2.1. [13] Every tree is super edge magic total.

This conjecture has been verified for the trees of up to 17 order with the help of
computer. Kotzig and Rosa [26] proved that all caterpillars are super edge magic
total.

The most useful lemma which provides a necessary and sufficient condition for
a graph to be super edge magic total, is given by Figueroa et al. in [14].

Lemma 3.2.1. [14] A graph G(p, q) is super edge magic total if and only if there
exists a bijective function λ : V (G)→ {1, 2, 3, . . . , p} such that the set of edge weights

S = {λ(u) + λ(v) : uv ∈ E(G)}.

consists of q consecutive integers. In such a case, λ extends to a super edge magic
total labeling of G with magic constant k = p+ q + s, where s = min(S) and

S = {k − (p+ 1), k − (p+ 2), k − (p+ 3), . . . , k − (p+ q)}.

Another super edge magic total graph with magic constant 42 is presented in
figure 3.3.
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Figure 3.3: Super edge magic total graph

3.3 Some classes of SEMT graphs

In [22], Javaid et al. introduced the term w-graphs W (n), and defined it to be a
graph constructed from two stars by coinciding a vertex. They constructed a new
family of graphs by joining one vertex each from k isomorphic copies of W (n) to a
new vertex a, and called this graph a w-tree, denoted as WT (n, k). They studied
the super edge magic total labeling of w-trees and disjoint union of w-trees under
certain conditions. The vertex and edge sets of W (n) are as follows:
V (W (n)) = {c1, c2, b, w, d} ∪ {x1, x2, . . . , xn} ∪ {y1, y2, . . . , yn},
E(W (n)) = {c1xi, c2yi : 1 ≤ i ≤ n} ∪ {c1b, c1w, c2w, c2d}.

b w d

c c

x x x x2 y1 y2 y3 y1 n3 n

1 2

Figure 3.4: W (n)
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The vertex and edge sets of WT (n, k) are as follows:

V (WT (n, k)) = {a} ∪ {bi, wi, di, ci1, ci2 : 1 ≤ i ≤ k} ∪
{xli : 1 ≤ i ≤ k, 1 ≤ l ≤ n} ∪
{yli : 1 ≤ i ≤ k, 1 ≤ l ≤ n},

E(WT (n, k)) = {bici1, wici1, wici2, dici2, adi : 1 ≤ i ≤ k} ∪
{xlici1 : 1 ≤ i ≤ k, 1 ≤ l ≤ n} ∪
{ylici2 : 1 ≤ i ≤ k, 1 ≤ l ≤ n}.

The super edge magic total labeling of a w-tree WT (4, 2) is presented in figure
3.5 with magic constant 77.
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Figure 3.5: WT (4, 2)

Javaid et al. [23] introduced extended w-graphs Ew(n, r) constructed from a
forest of r isomorphic stars K1,n with V (rK1,n) = {cm, xmi : 1 ≤ i ≤ n, 1 ≤ m ≤ r}.
The extended w-graph is obtained by merging the vertices xin with xi+1

1 for 1 ≤
i ≤ r − 1. Similarly, extended w-tree Ewt(n, k, r) is constructed from k isomorphic
copies of Ew(n, r) by taking a new vertex a and joining it with the vertex d in each
copy of Ew(n, r). The vertex and edge sets of Ewt(n, k, r) are as follows:

V (Ewt(n, k, r)) = {a} ∪ {bi, di : 1 ≤ i ≤ k} ∪
{csi : 1 ≤ s ≤ r, 1 ≤ i ≤ k} ∪
{ws

i , y
l
i, x

l
is : 1 ≤ i ≤ k, 1 ≤ l ≤ n, 1 ≤ s ≤ r − 1},

E(Ewt(n, k, r)) = {adi, bic1i , ylicri : 1 ≤ i ≤ k, 1 ≤ l ≤ n} ∪
{xliscsi , ws

i c
s
i , w

s
i c

s+1
i : 1 ≤ i ≤ k, 1 ≤ l ≤ n, 1 ≤ s ≤ r − 1}.
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Chen et al. [11] defined a banana tree BT (n1, n2, . . . , nk), to be a graph obtained
from the disjoint union of stars K1,ni

with V (K1,ni
) = {ci, aini

} for 1 ≤ i ≤ k, by
adding a new vertex a and joining it with one vertex from every star. Hussain et
al. [21] constructed the super edge magic total labeling of banana trees for different
cases, the same labeling for disjoint union of two isomorphic copies of banana trees,
and also for disjoint union of m isomorphic copies of banana trees containing two
stars. The vertex and edge sets of BT (n1, n2, . . . , nk) are as follows:
V (BT (n1, n2, . . . , nk)) = {a} ∪ {ci : 1 ≤ i ≤ k} ∪ {aij : 1 ≤ i ≤ k, 1 ≤ j ≤ ni},
E(BT (n1, n2, . . . , nk)) = {aai1 : 1 ≤ i ≤ k} ∪ {ciaij : 1 ≤ i ≤ k, 1 ≤ j ≤ ni}.

The super edge magic total labeling of banana tree BT (6, 7) with magic constant
46 in presented in the figure 3.6.
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Figure 3.6: BT (6, 7)

Using the w-graph W (n), Malik et al. [30] constructed a new family of graphs
by taking the reflection of a w-graph and joining both with a path of order m,
and called it a reflexive w-graph, denoted as RW (m,n). They also gave different
generalizations of RW (m,n) and constructed their super edge magic total labelings.
The vertex and edge sets of RW (m,n) are as follows:

V (RW (m,n)) = {bi,j : 1 ≤ i ≤ 2, 1 ≤ j ≤ 3} ∪ {ci,j : 1 ≤ i, j ≤ 2} ∪
{xli,t : 1 ≤ i, l ≤ 2, 1 ≤ t ≤ n} ∪ {yi : 1 ≤ i ≤ m− 2},

E(RW (m,n)) = {bi,jci,j, bi,j+1ci,j : 1 ≤ i, j ≤ 2} ∪ {y1c1,1, ym−2c2,1} ∪
{yiyi+1 : 1 ≤ i ≤ m− 3} ∪ {xli,tcl,i : 1 ≤ i, l ≤ 2, 1 ≤ t ≤ n}.
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Figure 3.7: RW (m,n)

In the following we present a very comprehensive list of graphs labeled with
SEMT labeling and some graphs which are not SEMT. The source of this data is a
survey on graph labelings conducted by J.A. Gallian [16].

Graph Types Notes

Cn SEM iff n is odd
caterpillars SEM

Km,n SEM iff m = 1 or n = 1
Kn SEM iff n = 1, 2 or 3

trees SEM?
nK2 SEM iff n odd

K1,m ∪K1,n SEM if m is a multiple of n+ 1
K1,m ∪K1,n SEM? iff m is a multiple of n+ 1
K1,2 ∪K1,n SEM iff n is a multiple of 3
K1,3 ∪K1,n SEM iff n is a multiple of 4
Pm ∪K1,n SEM if m ≥ 4 is even

2Pn SEM iff n is not 2 or 3
2P4n SEM for all n

K1,m ∪ 2nK1,2 SEM for all m and n
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Graph Types Notes

C3 ∪ Cn SEM iff n ≥ 6 even
C4 ∪ Cn SEM iff n ≥ 5 odd
C5 ∪ Cn SEM iff n ≥ 4 even
Cm ∪ Cn SEM if m ≥ 6 even and n odd, n ≥ m/2 + 2
Cm ∪ Cn SEM? iff m+ n ≥ 9 and m+ n odd
C4 ∪ Pn SEM iff n ∈ 3
C5 ∪ Pn SEM if n ∈ 4
Cm ∪ Pn SEM if m ≥ 6 even and n ≥ m/2 + 2
Pm ∪ Pn SEM iff (m,n) ∈ (2, 2) or (3, 3)

corona Cn � K̄m SEM n ≥ 3
G� K̄n SEM if G is SEM 2-regular graph
Cm � K̄n SEM
St(m,n) SEM n ≡ 0mod(m+ 1)
St(1, k, n) SEM k = 1, 2 or n
St(2, k, n) SEM k = 2, 3
St(1, 1, k, n) SEM k = 2, 3
St(k, 2, 2, n) SEM k = 1, 2
St(a1, ..., an) SEM? for n > 1 odd

books Bn SEM if n even
books Bn SEM? if n even or n ≡ 5mod(8)
nP3 SEM if n ≥ 4 even

K2 × C2n+1 SEM
P3 ∪ kP2 SEM for all k
kPn SEM if k is odd

k(P2 ∪ Pn) SEM if k is odd and n = 3, 4
fans Fn SEM iff n ≤ 6

friendship graph
of n triangles SEM iff n = 3, 4, 5, or 7

generalized Petersen
graph P (n, 2) SEM if n ≥ 3 odd
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Graph Types Notes

trees with -labelings SEM
P2m+1 × P2 SEM
C2m+1 × Pm SEM

join of K1 with any
subgraph of a star SEM

if G is k-regular SEM graph then k ≤ 3
G is connected (p, q)-graph SEM G exists iff p− 1 ≤ q ≤ 2p− 3

G is connected 3-regular graph
on p vertices SEM iff p ≡ 2mod(4)

if G is a bipartite or
nG SEM tripartite SEM graph

and n odd
nK2 + nK2 not SEM
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Chapter 4

Some New Classes of Graphs and
Their SEMT Labeling

In this chapter we construct new super edge magic total graphs by using some
old classes of graphs. We construct a new family of graphs which we call reflexive
w-trees (denoted as RT (m,n, k)). It is constructed using k copies of reflexive w-
graph RW (m,n), and joining the vertex b2,3 (or c2,2) of every i-th copy to the vertex
b1,3 of (i+ 1)-st copy. We also construct the super edge magic total labeling of this
graph and its generalizations. We construct another graph by joining the tail of
an umbrella U(m,n) (introduced in [32]) with a star Sk. This graph is referred as
extended umbrella graph U(m,n, k). In the end of this chapter, we study the super
edge magic total labeling of U(m,n, k).

4.1 SEMT labeling of reflexive w-trees

Definition 4.1.1. The reflexive w-tree denoted by RT (m,n, k) is obtained by join-
ing k isomorphic copies of RW (m,n) with new vertices ai (1 ≤ i ≤ k−1) by adding
the edges aib2i,3 (or aic2i,2) and aib2i+1,3 for 1 ≤ i ≤ k − 1. Here
V (kRW (m,n)) = {bi,j : 1 ≤ i ≤ 2k, 1 ≤ j ≤ 3} ∪ {ci,j : 1 ≤ i ≤ 2k, 1 ≤ j ≤ 2} ∪
{xli,t : 1 ≤ l ≤ 2k, 1 ≤ i ≤ 2, 1 ≤ t ≤ n} ∪ {yli : 1 ≤ i ≤ m− 2, 1 ≤ l ≤ k}.

Now, we present the SEMT labeling of different generalizations of reflexive w-
trees in the form of theorems. In the following theorems, we several times encounter

the term
0∑
1

f(n, r), which apparently has no meaning. So we use a convention that

0∑
1

f(n, r) = 0. An unlabeled drawing of two reflexive w-trees is presented in figure

4.1, to explain the structure of these trees. The graph (a) in figure 4.1 is the case
when m is odd and m is even in graph (b).
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(a) (b)

Figure 4.1: Reflexive w-trees

Theorem 4.1.1. The graph G ∼= RT (m,n, k), for any m,n, k ∈ Z+, admits super
edge-magic total labeling.

Proof. The order and size of the graph RT (m,n, k) is k(4n+m+ 9)− 1 and k(4n+
m+ 9)− 2, respectively. The vertex set of RT (m,n, k) is defined as follows:

V (G) = {bi,j : 1 ≤ i ≤ 2k, 1 ≤ j ≤ 3} ∪ {ai : 1 ≤ i ≤ k − 1} ∪
{ci,j : 1 ≤ i ≤ 2k, 1 ≤ j ≤ 2} ∪ {yli : 1 ≤ i ≤ m− 2, 1 ≤ l ≤ k} ∪
{xli,t : 1 ≤ l ≤ 2k, 1 ≤ i ≤ 2, 1 ≤ t ≤ n}.
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The edge set of RT (m,n, k) is defined below as:

E(G) = {bi,jci,j, bi,j+1ci,j : 1 ≤ i ≤ 2k, 1 ≤ j ≤ 2} ∪
{xli,tcl,i : 1 ≤ l ≤ 2k, 1 ≤ i ≤ 2, 1 ≤ t ≤ n} ∪
{aib2i,3, aib2i+1,3, 1 ≤ i ≤ k − 1, m = odd} ∪
{aic2i,2, aib2i+1,3, 1 ≤ i ≤ k − 1, m = even} ∪
{yliyli+1, y

l
1c2l−1,1, y

l
m−2c2l,1 : 1 ≤ i ≤ m− 3, 1 ≤ l ≤ k}.

The labeling of RT (m,n, k) is defined in two cases depending upon m, by the func-
tion

f : V (RT (m,n, k))→
{

1, 2, . . . , k(4n+m+ 9)− 1
}
.

Case 1: When the order m of the path ym in RT (m,n, k), which connect two
copies of W (n), is odd.

The vertices bi,j, which appear on both sides of every star in all copies of W (n), are
labeled by the following formulas:

f(b2i,j) = 2n+ 3 +
⌈m− 2

2

⌉
+
(⌈m− 2

2

⌉
+ 4n+ 6

)
(i− 1)−

n(1− j) + j,

f(b2i−1,j) = 2n+ 4 +
(⌈m− 2

2

⌉
+ 4n+ 6

)
(i− 1) + n(1− j)− j,

1 ≤ i ≤ k, 1 ≤ j ≤ 3.

The vertices ci,j, which lie at the center of each star in all copies of W (n), are labeled
as follows:

f(c2i,j) = 2k(2n+ 3) + k
⌈m− 2

2

⌉
+
(⌊m− 2

2

⌋
+ 5
)
(i− 1) +⌊m− 2

2

⌋
+ j + 2,

f(c2i−1,j) = 2k(2n+ 3) + k
⌈m− 2

2

⌉
+
(⌊m− 2

2

⌋
+ 5
)
(i− 1)− j + 3,

1 ≤ i ≤ k, 1 ≤ j ≤ 2.

The vertices ai, which connect a pair of W (n) lying together in RT (m,n, k), are
labeled as follows:

f(ai) = 2k(2n+ 3) + k
⌈m− 2

2

⌉
+ i
⌊m− 2

2

⌋
+ 5i, 1 ≤ i ≤ k − 1.
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The vertices xlit, lying between the vertices bi,j in every copy of W (n), have labels
according to the following formulas:

f(x2lit ) = 2n+ 4 +
⌈m− 2

2

⌉
+
(⌈m− 2

2

⌉
+ 4n+ 6

)
(l − 1) +

(n+ 1)(i− 1) + t,

f(x2l−1it ) = 2n+ 3 +
(⌈m− 2

2

⌉
+ 4n+ 6

)
(l − 1)− (n+ 1)(i− 1)− t,

1 ≤ i ≤ 2, 1 ≤ l ≤ k, 1 ≤ t ≤ n.

The labeling of the vertices which lie on the path ym, is defined by the following
formulas:

f(yl2i−1) = 2n+ 3 +
(⌈m− 2

2

⌉
+ 4n+ 6

)
(l − 1) + i,

1 ≤ l ≤ k, 1 ≤ i ≤
⌈m− 2

2

⌉
.

f(yl2i) = 2k(2n+ 3) + k
⌈m− 2

2

⌉
+
(⌊m− 2

2

⌋
+ 5
)
(l − 1) + i+ 2,

1 ≤ l ≤ k, 1 ≤ i ≤
⌊m− 2

2

⌋
.

The labeling f defined by the these formulas label all the vertices of RT (m,n, k).
We calculate the weights of all the edges uv ∈ E(RT (m,n, k)) under the labeling
f , by the formula ω(uv) = f(u) + f(v). All the edge weights calculated under this
labeling, form a sequence of |E(G)| consecutive integers:{

2k(2n+ 3) + k
⌈m− 2

2

⌉
+ 2, 2 k(2n+ 3) + k

⌈m− 2

2

⌉
+ 3,

. . . , 8kn+ k
⌈m− 2

2

⌉
+mk + 15k − 1

}
.

We can label the edges of RT (m,n, k), by assigning the minimum possible edge label
to the edge with maximum weight. Similarly, assign the second lowest edge label to
the edge with second highest weight, and so on. Hence the labeling f of this graph
extend to the super edge magic total labeling. By lemma 3.2.1, the magic constant
under this labeling is 12kn+ k

⌈
m−2
2

⌉
+ 2mk + 24k − 1.

Case 2: When the order m of the path connecting two copies of W (n), is even.
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The leaves bi,j, appearing on both sides of every star in all copies of W (n), are
labeled by the following formulas:

f(b2i,j) = k
(m− 2

2
+ 2n+ 5

)
+
m− 2

2
+
(m− 2

2
+ 2n+ 6

)
(i− 1) +

(n+ 1)(j − 1) + 3,

f(b2i−1,j) = 2n+
(m− 2

2
+ 2n+ 5

)
(i− 1) + (n+ 1)(1− j) + 3,

1 ≤ i ≤ k, 1 ≤ j ≤ 3.

The vertices ci,j, which lie at the center of each star in all copies of W (n), are labeled
as follows:

f(c2i,j) = 2n+
m− 2

2
+
(m− 2

2
+ 2n+ 5

)
(i− 1) + j + 3,

f(c2i−1,j) = k
(m− 2

2
+ 2n+ 5

)
+
(m− 2

2
+ 2n+ 6

)
(i− 1)− j + 3,

1 ≤ i ≤ k, 1 ≤ j ≤ 2.

The vertices ai, connecting 2k copies of W (n) in k pairs, are labeled by the following
labeling function:

f(ai) = k
(m− 2

2
+ 2n+ 5

)
+ i
(m− 2

2
+ 2n+ 6

)
, 1 ≤ i ≤ k − 1.

The labeling scheme of the vertices xlit, which lie inside every star in all copies of
W (n), are labeled as follows:

f(x2lit ) = k
(m− 2

2
+ 2n+ 5

)
+
(m− 2

2
+ 2n+ 6

)
(l − 1) +

m− 2

2
+(n+ 1)(i− 1) + t+ 3,

f(x2l−1it ) = 2n+
(m− 2

2
+ 2n+ 5

)
(l − 1)− (n+ 1)(i− 1)− t+ 3,

1 ≤ i ≤ 2, 1 ≤ l ≤ k, 1 ≤ t ≤ n.

The vertices yli, which lie on the path connecting the copies of W (n), are labeled as
follows:

f(yl2i−1) = 2n+ 3 + (
m− 2

2
+ 2n+ 5)(l − 1) + i,

f(yl2i) = k
(m− 2

2
+ 2n+ 5

)
+
(m− 2

2
+ 2n+ 6

)
(l − 1) + i+ 2,

1 ≤ l ≤ k, 1 ≤ i ≤ m− 2

2
.
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The labeling f , defined by a set of formulas in this case, labels all the vertices of
RT (m,n, k). All the edge weights calculated under this labeling function appear in
a sequence of |E(G)| consecutive integers, which are:

{
k
(m− 2

2
+ 2n+ 5

)
+ 2, k

(m− 2

2
+ 2n+ 5

)
+ 3,

. . . , k
(m− 2

2

)
+ 6nk + 14k +mk − 1

}
.

If we extend the labeling f of RT (m,n, k) to a total labeling using lemma 3.2.1, we
get a super edge magic total labeling of RT (m,n, k). The magic constant under this
labeling is k

(
m−2
2

)
+ 10nk + 23k + 2mk − 1.

Definition 4.1.2. The extended reflexive w-tree RTE(m,n, r, k) is a graph in which
all copies of w-graphs are replaced by extended w-graphs. That is, the number of
stars in each copy of W (n) is increased upto any k ≥ 2.

Theorem 4.1.2. The graph G ∼= RTE(m,n, r, k), for any m,n, r, k ∈ Z+, admits
super edge-magic total labeling.

Proof. The order and size of the graph RTE(m,n, r, k) is 2nrk + 4rk +mk + k − 1
and 2nrk + 4rk + mk + k − 2, respectively. The vertex set of RTE(m,n, r, k) is
defined as:

V (G) = {bi,j : 1 ≤ i ≤ 2k, 1 ≤ j ≤ r + 1} ∪ {ci,j : 1 ≤ i ≤ 2k, 1 ≤ j ≤ r} ∪
{yli : 1 ≤ i ≤ m− 2, 1 ≤ l ≤ k} ∪ {ai : 1 ≤ i ≤ k − 1} ∪
{xli,t : 1 ≤ l ≤ 2k, 1 ≤ i ≤ r, 1 ≤ t ≤ n}.

The edge set of RTE(m,n, r, k) is defined below as:

E(G) = {bi,jci,j, bi,j+1ci,j : 1 ≤ i ≤ 2k, 1 ≤ j ≤ r} ∪
{xli,tcl,i : 1 ≤ l ≤ 2k, 1 ≤ i ≤ r, 1 ≤ t ≤ n} ∪
{aib2i+1,r+1, aib2i,r+1, 1 ≤ i ≤ k − 1, for m=odd } ∪
{aib2i+1,r+1, aic2i,r, 1 ≤ i ≤ k − 1, for m=even } ∪
{yliyli+1, y

l
1c2l−1,1, y

l
m−2c2l,1 : 1 ≤ i ≤ m− 3, 1 ≤ l ≤ k}.

The labeling of RTE(m,n, r, k) is defined in two cases depending upon the order m
of the path ym, by the function

f : V (RTE(m,n, r, k))→
{

1, 2, . . . , 2nrk + 4rk +mk + k − 1
}
.

Case 1: When the path ym, which connect the copies of W (n) in RTE(m,n, r, k),
is of odd order.
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The vertices ci,j, which lie at the center of each star in all copies of W (n), are labeled
by the following formulas:

f(c2i,j) = k
(⌈m− 2

2

⌉
+ 2nr + 2r + 2

)
+
(⌊m− 2

2

⌋
+ 2r + 1

)
(i− 1) +⌊m− 2

2

⌋
+ r + j,

f(c2i−1,j) = k
(⌈m− 2

2

⌉
+ 2nr + 2r + 2

)
+
(⌊m− 2

2

⌋
+ 2r + 1

)
(i− 1) +

r − j + 1, 1 ≤ i ≤ k, 1 ≤ j ≤ r.

The vertices bi,j, which are adjacent to the vertices ci,j and lie on both sides of every
star in all copies of W (n), are labeled as follows:

f(b2i,j) = nr + r +
⌈m− 2

2

⌉
+ 2 +

(⌈m− 2

2

⌉
+ 2nr + 2r + 2

)
(i− 1) +

(n+ 1)(j − 1),

f(b2i−1,j) = nr + r +
(⌈m− 2

2

⌉
+ 2nr + 2r + 2

)
(i− 1)− (n+ 1)(j − 1) + 1,

1 ≤ i ≤ k, 1 ≤ j ≤ r + 1.

The vertices ai, connecting a pair of W (n) lying together in RWE(m,n, r), are
labeled as follows:

f(ai) = k
(⌈m− 2

2

⌉
+ 2nr + 2r + 2

)
+
(⌊m− 2

2

⌋
+ 2r + 1

)
(i− 1) +

2r +
⌊m− 2

2

⌋
+ 1, 1 ≤ i ≤ k − 1.

The vertices xlit, which are adjacent to the vertices ci,j and lie between the vertices
bi,j, are labeled as follows:

f(x2lit ) = nr + r +
(⌈m− 2

2

⌉
+ 2nr + 2r + 2

)
(l − 1) +

⌈m− 2

2

⌉
+

(n+ 1)(i− 1) + t+ 2,

f(x2l−1it ) = nr + r +
(⌈m− 2

2

⌉
+ 2nr + 2r + 2

)
(l − 1)− (n+ 1)(i− 1)−

t+ 1, 1 ≤ i ≤ r, 1 ≤ l ≤ k, 1 ≤ t ≤ n.

The vertices on the paths yli receive labels according to the following formulas:

f(yl2i−1) = nr + r +
(⌈m− 2

2

⌉
+ 2nr + 2r + 2

)
(l − 1) + i+ 1,

1 ≤ l ≤ k, 1 ≤ i ≤
⌈m− 2

2

⌉
,

f(yl2i) = k
(⌈m− 2

2

⌉
+ 2nr + 2r + 2

)
+
(⌊m− 2

2

⌋
+ 2r + 1

)
(l − 1) +

r + i, 1 ≤ l ≤ k, 1 ≤ i ≤
⌊m− 2

2

⌋
.
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The formulas, stated above, constitute a vertex labeling of RTE(m,n, r, k) in such a
way that under this labeling scheme, the edge weights of the graph form a sequence
of |E(G)| consecutive integers:{

k
(⌈m− 2

2

⌉
+ 2nr + 2r + 2

)
+ 2, k

(⌈m− 2

2

⌉
+ 2nr + 2r + 2

)
+ 3,

. . . , k
⌈m− 2

2

⌉
+ 4nrk + 6rk + 3k +mk − 1

}
.

We can extend the vertex labeling f of RTE(m,n, r, k) to a total labeling, such that
all the edge weights under that labeling are same, by using lemma 3.2.1. Hence, the
labeling f becomes the super edge magic total labeling of the graph RTE(m,n, r, k).
The magic constant under this labeling is k

⌈
m−2
2

⌉
+ 6nrk + 10rk + 4k + 2mk − 1.

Case 2: When the order m of the path ym, which connect two copies of W (n),
is even.

The vertices ci,j, which lie at the center of every star in all copies of W (n), are
labeled as:

f(c2i,j) = (nr + r + 1) +
m− 2

2
+
(m− 2

2
+ nr + 2r + 1

)
(i− 1) + j,

f(c2i−1,j) = k
(m− 2

2
+ nr + 2r + 1

)
+
(m− 2

2
+ nr + 2r + 2

)
(i− 1) +

r − j + 1, 1 ≤ i ≤ k, 1 ≤ j ≤ r.

The vertices bi,j, which are adjacent to the vertices ci,j and appear on both sides of
each star in all copies of W (n), are labeled as follows:

f(b2i,j) = k
(m− 2

2
+ nr + 2r + 1

)
+
(m− 2

2
+ nr + 2r + 2

)
(i− 1) +

m− 2

2
+ (n+ 1)(j − 1) + r + 1,

f(b2i−1,j) = nr + r + 1 +
(m− 2

2
+ nr + 2r + 1

)
(i− 1)− (n+ 1)(j − 1),

1 ≤ i ≤ k, 1 ≤ j ≤ r + 1.

The labels of the vertices ai, which connect a pair of W (n) lying together, are as
follows:

f(ai) = k
(m− 2

2
+ nr + 2r + 1

)
+
m− 2

2
+
(m− 2

2
+ nr + 2r + 2

)
(i− 1) +

nr + 2r + 2, 1 ≤ i ≤ k − 1.
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The vertices xlit, which are adjacent to the vertices ci,j and lie between the vertices
bi,j, are labeled by the following formulas:

f(x2lit ) =
(m− 2

2
+ nr + 2r + 1

)
(k + l − 1) +

m− 2

2
+ (n+ 1)(i− 1) + l + r + t,

f(x2l−1it ) = (nr + r + 1) +
(m− 2

2
+ nr + 2r + 1

)
(l − 1)− (n+ 1)(i− 1)− t,

1 ≤ i ≤ r, 1 ≤ l ≤ k, 1 ≤ t ≤ n.

The vertices lying on the paths yli, which connect two copies of W (n), are labeled
as follows:

f(yl2i−1) = nr + r + 1 +
(m− 2

2
+ nr + 2r + 1

)
(l − 1) + i,

f(yl2i) = k
(m− 2

2
+ nr + 2r + 1

)
+
(m− 2

2
+ nr + 2r + 2

)
(l − 1) + r + i,

1 ≤ l ≤ k, 1 ≤ i ≤ m− 2

2
.

The edge weights of the graph RTE(m,n, r, k) under this labeling, forms a sequence
of |E(G)| consecutive integers, which are:

{
k
(m− 2

2
+ nr + 2r + 1

)
+ 2 , k

(m− 2

2
+ nr + 2r + 1

)
+ 3,

. . . , k
(m− 2

2

)
+ 3nrk + 6rk +mk + 2k − 1

}
.

Hence the labeling f of the graph RTE(m,n, r, k) can be converted into the super
edge-magic total labeling, by using lemma 3.2.1. The magic constant under this
labeling is k

(
m−2
2

)
+ 5rk(n+ 2) + 2mk + 3k − 1.
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Figure 4.2: SEMT labeling of RTE(6, 5, 3, 3) with magic constant 365

In the next theorem we generalize the graphRT (m,n, k) for k copies ofRW (m,n)
and any number of stars in it, such that every star contains any arbitrary number
of vertices. This graph is referred as generalized reflexive w-tree and is denoted by
RTG(m;ni,j; ri; k).

Theorem 4.1.3. For 1 ≤ i ≤ 2k,1 ≤ j ≤ ri and for any m,ni,j, ri, k ∈ Z+, the
graph G ∼= RTG(m;ni,j; ri; k) admits super edge-magic total labeling.
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Proof. The order of the graph RTG(m;ni,j; ri; k) is

2k∑
i=1

ri∑
j=1

ni,j +
2k∑
i=1

(2ri + 1) + k(m− 1)− 1,

and size of this graph is

2k∑
i=1

ri∑
j=1

ni,j +
2k∑
i=1

(2ri + 1) + k(m− 1)− 2.

The vertex set of RTG(m;ni,j; ri; k) is defined as follows:

V (G) = {bi,j : 1 ≤ i ≤ 2k, 1 ≤ j ≤ ri + 1} ∪ {ci,j : 1 ≤ i ≤ 2k, 1 ≤ j ≤ ri} ∪
{ai : 1 ≤ i ≤ k − 1} ∪ {yli : 1 ≤ i ≤ m− 2, 1 ≤ l ≤ k} ∪
{xli,t : 1 ≤ l ≤ 2k, 1 ≤ i ≤ rl, 1 ≤ t ≤ nli}.

The edge set of RTG(m;ni,j; ri; k) is defined below as:

E(G) = {bi,jci,j, bi,j+1ci,j : 1 ≤ i ≤ 2k, 1 ≤ j ≤ ri} ∪
{xli,tcl,i : 1 ≤ l ≤ 2k, 1 ≤ i ≤ rl, 1 ≤ t ≤ nli} ∪
{yliyli+1, y

l
1c2l−1,1, y

l
m−2c21,1 : 1 ≤ i ≤ m− 3, 1 ≤ l ≤ k} ∪

{aib2i+1,r2i+1+1, aib2i,r2i+1, 1 ≤ i ≤ k − 1, for m=odd } ∪
{aib2i+1,r2i+1+1, aic2i,r2i , 1 ≤ i ≤ k − 1, for m=even }.

The labeling of RTG(m;ni,j; ri; k) is defined in two cases depending upon m, by the
function

f : V
(
RTG(m;ni,j; ri; k)

)
→
{

1, 2, . . . ,
2k∑
i=1

ri∑
j=1

nij +
2k∑
i=1

(2ri + 1) + k(m− 1)− 1
}
.

Case 1: When m is odd.

For 1 ≤ i ≤ k, 1 ≤ j ≤ r2i−1 + 1,

f(b2i−1,j) =

1−j+r2i−1∑
t=1

n2i−1,1−t+r2i−1
+

2i−2∑
s=1

rs∑
t=1

ns,t +
2i−2∑
t=1

(rt + 1)

+r2i−1 +
⌈m− 2

2

⌉
(i− 1)− j + 2.

For 1 ≤ i ≤ k, 1 ≤ j ≤ r2i + 1,

f(b2i,j) =
2i−1∑
s=1

rs∑
t=1

ns,t +
2i−1∑
t=1

(rt + 1) +

j−1∑
t=1

n2i,t + i
⌈m− 2

2

⌉
+ j.
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For 1 ≤ i ≤ k, 1 ≤ j ≤ r2i−1,

f(c2i−1,j) =
2k∑
s=1

rs∑
t=1

ns,t +
2k∑
t=1

(rt + 1) +
2i−2∑
t=1

rt + k
⌈m− 2

2

⌉
+(i− 1)

⌊m− 2

2

⌋
+ r2i−1 − j + i.

For 1 ≤ i ≤ k, 1 ≤ j ≤ r2i,

f(c2i,j) =
2k∑
s=1

rs∑
t=1

ns,t +
2k∑
t=1

(rt + 1) +
2i−1∑
t=1

rt + k
⌈m− 2

2

⌉
+ i
⌊m− 2

2

⌋
+ j + i− 1.

For 1 ≤ l ≤ k, 1 ≤ i ≤ r2l−1, 1 ≤ t ≤ n2l−1,i,

f(x2l−1it ) =
2l−2∑
s=1

rs∑
t=1

ns,t +
2l−2∑
t=1

(rt + 1) +

1−i+r2l−1∑
t=1

n2l−1,1−t+r2l−1

+(l − 1)
⌈m− 2

2

⌉
+ r2l−1 − i− t+ 1.

For 1 ≤ l ≤ k, 1 ≤ i ≤ r2l, 1 ≤ t ≤ n2l,i,

f(x2lit ) =
2l−1∑
s=1

rs∑
t=1

ns,t +
2l−1∑
t=1

(rt + 1) + l
⌈m− 2

2

⌉
+

i−1∑
t=1

n2l,t + i+ t.

For 1 ≤ i ≤ k − 1,

f(ai) =
2k∑
s=1

rs∑
t=1

ns,t + k
⌈m− 2

2

⌉
+

2k∑
t=1

(rt + 1) +
2i∑
t=1

rt + i
⌊m− 2

2

⌋
+ i.

For 1 ≤ l ≤ k, 1 ≤ i ≤
⌈
m−2
2

⌉
,

f(yl2i−1) =
2l−1∑
s=1

rs∑
t=1

ns,t +
2l−1∑
t=1

(rt + 1) + (l − 1)
⌈m− 2

2

⌉
+ i.

For 1 ≤ l ≤ k, 1 ≤ i ≤
⌊
m−2
2

⌋
,

f(yl2i) =
2k∑
s=1

rs∑
t=1

ns,t +
2k∑
t=1

(rt + 1) +
2l−1∑
t=1

rt + k
⌈m− 2

2

⌉
+ (l− 1)

⌊m− 2

2

⌋
+ l+ i− 1.
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The set of edge edge weights under this labeling function forms a sequence of |E(G)|
consecutive integers:{ 2k∑

s=1

rs∑
t=1

ns,t +
2k∑
t=1

(rt + 1) + k
⌈m− 2

2

⌉
+ 2 ,

2k∑
s=1

rs∑
t=1

ns,t +
2k∑
t=1

(rt + 1) + k
⌈m− 2

2

⌉
+ 3 ,

. . . , 2
2k∑
s=1

rs∑
t=1

ns,t + 3
2k∑
t=1

rt + k
⌈m− 2

2

⌉
+ km+ 3k − 1

}
.

Hence the labeling f can be extended to the super edge-magic total labeling of the
graph RTG(m;ni,j; ri; k), by using lemma 3.2.1. The magic constant under this
labeling is

3
2k∑
s=1

rs∑
t=1

ns,t + 5
2k∑
t=1

rt + k
⌈m− 2

2

⌉
+ 2km+ 4k − 1.

Case 2: When m is even.

For 1 ≤ i ≤ k, 1 ≤ j ≤ r2i−1 + 1,

f(b2i−1,j) =

1−j+r2i−1∑
t=1

n2i−1,1−t+r2i−1
+

i−1∑
s=1

rs∑
t=1

n2s−1,t +
i−1∑
t=1

(r2t−1 + 1)

+
i−1∑
t=1

r2t + (i− 1)
(m− 2

2

)
+ r2i−1 + 2− j.

For 1 ≤ i ≤ k, 1 ≤ j ≤ r2i + 1,

f(b2i,j) =
k∑

s=1

rs∑
t=1

n2s,t +
i−1∑
s=1

rs∑
t=1

n2s,t +
k∑

t=1

(r2t−1 + 1) +
k∑

t=1

r2t +
i∑

t=1

r2t−1

+
i−1∑
t=1

(r2t + 1) +

j−1∑
t=1

n2i,t + i
(m− 2

2

)
+ i+ j − 1.

For 1 ≤ i ≤ k, 1 ≤ j ≤ r2i−1,

f(c2i−1,j) =
k∑

s=1

rs∑
t=1

n2s−1,t +
i−1∑
s=1

rs∑
t=1

n2s,t +
k∑

t=1

r2t +
i∑

t=1

r2t−1

+
k∑

t=1

(r2t−1 + 1) +
i−1∑
t=1

(r2t + 1) + (k + i− 1)
(m− 2

2

)
+ i− j.
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For 1 ≤ i ≤ k, 1 ≤ j ≤ r2i,

f(c2i,j) =
i∑

s=1

rs∑
t=1

n2s−1,t +
i∑

t=1

(r2t−1 + 1) + (i− 1)
(m− 2

2

)
+ j.

For 1 ≤ l ≤ k, 1 ≤ i ≤ r2l−1, 1 ≤ t ≤ n2l−1,i,

f(x2l−1it ) =
l−1∑
s=1

rs∑
t=1

n2s−1,t +

1−i+r2l−1∑
t=1

n2l−1,1−k+r2l−1
+

l−1∑
t=1

(r2t−1 + 1)

+
l−1∑
t=1

r2t + (l − 1)
(m− 2

2

)
+ r2l−1 − i− t+ 2.

For 1 ≤ l ≤ k, 1 ≤ i ≤ r2l−1, 1 ≤ t ≤ n2l−1,i,

f(x2lit ) =
k∑

s=1

rs∑
t=1

n2s−1,t +
k∑

t=1

(r2t−1 + 1) +
k∑

t=1

r2t +
l∑

t=1

r2t−1 +
i−1∑
t=1

n2l,t

+(i+ k)
⌈m− 2

2

⌉
+ i+ t+ l − 1.

For 1 ≤ i ≤ k − 1,

f(ai) =
k∑

s=1

rs∑
t=1

n2s−1,t +
i∑

s=1

rs∑
t=1

n2s,t +
k∑

t=1

(r2t−1 + 1) +
i∑

t=1

(r2t + 1)

+
k∑

t=1

r2t +
i∑

t=1

r2t−1 + (i+ k)
(m− 2

2

)
+ i.

For 1 ≤ l ≤ k, 1 ≤ i ≤
(
m−2
2

)
,

f(yl2i−1) =
l∑

s=1

rs∑
t=1

n2s−1,t +
l∑

t=1

(r2t−1 + 1) +
l−1∑
t=1

r2t

+(l − 1)
(m− 2

2

)
+ i.

For 1 ≤ l ≤ k, 1 ≤ i ≤
(
m−2
2

)
,

f(yl2i) =
k∑

s=1

rs∑
t=1

n2s−1,t +
l−1∑
s=1

rs∑
t=1

n2s,t +
k∑

t=1

(r2t−1 + 1) +
l−1∑
t=1

(r2t + 1)

+
k∑

t=1

r2t +
l∑

t=1

r2t−1 + (k + l − 1)
(m− 2

2

)
+ i+ l − 1.
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All the edge weights under this labeling constitute a set of |E(G)| consecutive inte-
gers, which are:{ k∑

s=1

rs∑
t=1

n2s−1,t +
k∑

t=1

(r2t−1 + 1) +
k∑

t=1

r2t + k
(m− 2

2

)
+ 2,

k∑
s=1

rs∑
t=1

n2s−1,t +
k∑

t=1

(r2t−1 + 1) +
k∑

t=1

r2t + k
(m− 2

2

)
+ 3, . . . ,

2k∑
s=1

rs∑
t=1

ns,t +
k∑

s=1

rs∑
t=1

n2s−1,t +
2k∑
t=1

rt +
2k∑
t=1

rt +
km

2
+ km+ k − 1

}
.

Hence by using lemma 3.2.1, the labeling f of the graph RTG(m;ni,j; ri; k) extends
to the super edge magic total labeling. The magic constant under this labeling is

2
2k∑
s=1

rs∑
t=1

ns,t + 3
2k∑
t=1

rt +
k∑

s=1

rs∑
t=1

n2s−1,t +
km

2
+ 2km+ 2k − 1.

Example 4.1.1. For m = 6 and k = 4, the super edge magic total labeling of the
generalized reflexive w-tree RTG(6;ni,j; ri; 4) for 1 ≤ i ≤ 8, 1 ≤ j ≤ ri, is presented
in the figure 4.3.

r1
r2
r3
r4
r5
r6
r7
r8


=



3
4
5
2
4
4
3
6


,



n11, n12, n13

n21, n22, n23, n24

n31, n32, n33, n34, n35

n41, n42

n51, n52, n53, n54

n61, n62, n63, n64

n71, n72, n73

n81, n82, n83, n84, n85, n86


=



5, 4, 2
7, 5, 3, 4

3, 5, 3, 2, 6
6, 4

3, 5, 2, 4
7, 6, 2, 4
3, 5, 4

10, 4, 5, 5, 4, 10


The edge weights form the sequence {101,102,103,. . . ,330} and hence by lemma

3.2.1 this labeling can be extended to the super edge magic total labeling with magic
constant 562.
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Figure 4.3: RTG(6;ni,j; ri; 4) For 1 ≤ i ≤ 8, 1 ≤ j ≤ ri
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4.2 SEMT labeling of extended umbrella graphs

Sin-Min Lee and Nien-Tsu Lee [32] defined an umbrella graph U(m,n) to be a
graph obtained by joining a path Pn with the central vertex of a fan fm. The vertex
and edge sets of U(m,n) are as follows.

V (U(m,n)) = {x1, x2, . . . , xm, y1, y2, . . . , yn},
E(U(m,n)) = {xixi+1 : 1 ≤ i ≤ m− 1} ∪ {yiyi+1 : 1 ≤ i ≤ n− 1} ∪

{xiy1 : 1 ≤ i ≤ m}.

x1

x 4x
3

x2

5x
6x

m-1x

mx

1y

2y

3y

n-1y

ny

Figure 4.4: U(m,n)

Theorem 4.2.1. For any m ∈ Z+ and n =

{
m,m− 1, m ≡ 1(mod 2);
m− 1,m− 2, m ≡ 0(mod 2).

The umbrella graph U(m,n) admits the super edge magic total labeling.

Proof. The order and size of the graph U(m,n) is m+n and 2m+n−2, respectively.
We define the labeling of U(m,n) in two cases depending upon m, by the function

f : V (U(m,n))→ {1, 2, . . . ,m+ n}.

Case 1: When m is odd.

f(x2i−1) = i, i = 1, 2, 3, . . . , bm
2
c+ 1.

f(x2i) = bm
2
c+ i+ 1, i = 1, 2, 3, . . . , bm

2
c.
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f(y2j−1) = m+ bn
2
c+ j,  = 1, 2, 3, . . . , bn

2
c+ 1.

f(y2j) = m+ j, j = 1, 2, 3, . . . , bn
2
c.

All the edge weights of the graph U(m,n) under this labeling function form a se-
quence of |E(G)| consecutive integers:{

dm
2
e+ 2, dm

2
e+ 3, . . . , dm

2
e+ 2m+ n− 1

}
.

Hence this labeling can be extended to the super edge magic total labeling, by us-
ing lemma 3.2.1. The magic constant of the graph U(m,n) under this labeling is
dm

2
e+ 3m+ 2n.

Case 2: When m is even.

f(x2i−1) = i, i = 1, 2, 3, . . . , bm
2
c.

f(x2i) = bm
2
c+ i, i = 1, 2, 3, . . . , bm

2
c.

f(y2j−1) = m+ bn
2
c+ j,  = 1, 2, 3, . . . , bn

2
c.

f(y2j) = m+ j, j = 1, 2, 3, . . . , bn
2
c.

In this case, the edge weights of the graph U(m,n) form a sequence of |E(G)|
consecutive integers, which are:{

m

2
+ 2,

m

2
+ 3, . . . ,

m

2
+ 2m+ n− 1

}
.

Hence by using lemma 3.2.1, the labeling f of this graph can be converted into the
super edge magic total labeling of U(m,n). The magic constant under this labeling
is m

2
+ 3m+ 2n.

Definition 4.2.1. We construct a graph by connecting the tail of an umbrella
U(m,n) with a star Sk, and refer this graph as extended umbrella graph and denote
it as U(m,n, k).

Theorem 4.2.2. The graph G ∼= U(m,n, k) admits super edge magic total labeling.
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Proof. The order and size of the graph G ∼= U(m,n, k) is m+n+k and 2m+n+k−2,
respectively. The vertex set of U(m,n, k) is defined as follows:

V (U(m,n, k)) = {xi : 1 ≤ i ≤ m} ∪ {yi : 1 ≤ i ≤ n} ∪ {zi : 1 ≤ i ≤ k}.

The edge set of U(m,n, k) is defined as:

E(U(m,n, k)) = {xixi+1 : 1 ≤ i ≤ m− 1} ∪ {xiy1 : 1 ≤ i ≤ m} ∪ {yiyi+1 : 1 ≤ i ≤ n− 1}
{ziyn : 1 ≤ i ≤ k, when m is odd and n = m− 1, or when m is even

and n = m− 2} ∪ {ziyn−1 : 1 ≤ i ≤ k, when m is odd and n = m, or

when m is even and n = m− 1}.

The labeling of U(m,n, k) is defined in two cases depending upon m, by the
bijection

f ′ : V (U(m,n, k))→ {1, 2, . . . ,m+ n+ k}.

The labels of the vertices xi and yi of U(m,n, k) under f ′ are the same as the labels
of xi and yi under super edge magic total labeling (f) of U(m,n) in theorem 4.2.1.
The vertices of the star zi are labeled as

f ′(zi) = m+ n+ i, 1 ≤ i ≤ k.

When zi is adjacent to yn, all the edge weights in this labeling function constitute a
sequence of |E(G)| consecutive integers:{

dm
2
e+ 2, dm

2
e+ 3, . . . , dm

2
e+ 2m+ n+ k − 1

}
.

Hence the graph U(m,n, k) is SEMT, by using the lemma 3.2.1. The magic constant
under this labeling is dm

2
e+ 3m+ 2n+ 2k.

When zi is adjacent to yn−1, the edge weights under the labeling function f ′

forms a sequence of |E(G)| consecutive integers, which are:{
m

2
+ 2,

m

2
+ 3, . . . ,

m

2
+ 2m+ n+ k − 1

}
.

And again by using the lemma 3.2.1, the graph U(m,n, k) is SEMT. The magic
constant under this labeling is m

2
+ 3m+ 2n+ 2k.

Example 4.2.1. The super edge magic total labeling of extended umbrella graph
U(10, 9, 8) is presented in figure 4.5. The magic constant of U(10, 9, 8) under this
labeling is 69.
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Figure 4.5: U(10, 9, 8)

4.3 Concluding remarks and open problems

The main objective of the work was an attempt to prove the tree conjecture; that
all trees are super edge magic total. But in this thesis we just constructed a couple
of graph classes and their super edge magic total labelings. We invite the readers
to investigate:

• SEMT labeling of a forest of reflexive w-trees.
• SEMT labeling of disjoint union of umbrella and extended umbrella graphs.
• SEMT labeling of disjoint union of w-trees and umbrella graphs.
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Appendix A – graph-theoretic symbols

E(G) edge set of G

ε size of G

V (G) vertex set of G

n order of G

deg(v) degree of vertex v (in G)

δ(G) minimum degree of G

N(S), NG(S) neighborhood of set S in G

Bn basket

Cn cycle on n vertices

Dn totally disconnected graph on n vertices

Fn friendship graph with n triangles

fn fan with n blades

Gc complement of G

Kn complete graph on n vertices

Km,n complete bipartite graph with parts of cardinalities m and n

Kk[n] regular complete k-partite graph of degree (k − 1)n

Mn Möbius ladder on n vertices

Qn n-dimensional cube

L(G) line graph of G

Pn path on n vertices

P (n, k) generalized Petersen graph

P2n prism

T tree

Wn wheel with n spokes

~G digraph

mG union of m disjoint copies of G

Gi i-th power of G

G×H cartesian product of G and H

G ◦H composition of G and H

G⊕H join of G and H

G ∪H union of G and H

G = F1 ] F2 edge–disjoint factors of G

G+ e addition of e
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