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Abstract

This dissertation deals with the study of elastic waves in compressible and incompressible

isotropic materials. The propagation of elastic plane waves and the Rayleigh-Lamb dis-

persion relation for the elastic plate is discussed. Dispersion relation for Rayleigh-Lamb

waves in a compressible isotropic plate are reintroduced using Helmholtz representation.

Some earlier work of Ogden and Vinh [20] concerning the existence of a Rayleigh wave in

an incompressible orthotropic half space is discussed. Also work of Hussain et al. [15] is

reviewed in which Lamb modes for an incompressible isotropic plate is studied in which

it is shown that plateau region does not exist in the spectrum and all the modes start

off with negative slope and the slope retains its sign till the end. This fact is explained

analytically.

In this dessertation, work of Ogden and Vinh [20] and Hussain et al. [15] is used and by

using modified method dispersion relation is derived for Lamb modes in an isotropic plate

under incompressibility constraint [15]. Shapes of dispersion curves are also plotted for an

incompressible isotropic plate.
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Chapter 1

Introduction

Waves which are contrived to follow a path, defined by the material walls of a structure,

are known as guided waves and the structure is termed as a wave guide. A hollow metal

pipe is a simple example of a wave guide. A wave whose amplitude decreases exponentially

as we go down a half space is known as Rayleigh wave. For this reason such a wave is

called a surface wave. When these waves are guided in layers they are referred to as Lamb

waves, Rayleigh-Lamb waves, or generalized Rayleigh waves. Lamb waves propagate in

solid plates. They are elastic waves whose particle motion lies in the plane that contains

the direction of wave propagation and the plate normal (the direction perpendicular to the

plate) [2].

Lamb modes in an infinite elastic isotropic plate were treated for the first time by Lord

Rayleigh [10] and Lamb [11]. For an incompressible isotropic plate these waves behave

in a manner different from those for compressible plate. Lamb modes for an isotropic

compressible plate of thickness 2h can be divided into two systems of symmetric and anti-

symmetric modes. Symmetric modes are symmetric with respect to the mid plane of the

plate, whereas, Anti-symmetric modes are anti-symmetric with respect to the mid plane

of the plate [12]. These modes are also known as flexural modes.

Wave propagation in solids is of interest in a number of engineering applications. Prop-

agation of guided Rayleigh-Lamb waves in a plate is of interest in seismology, ultrasonic

material characterization [13] and in electrical devices. Ultrasonic waves can also be used

in medicine. For instance, a wave can propagate through human body, as it can play the

1



role of a cylindrical wave guide, so fracture, thickness and other properties of the bone

can be examined. Lamb waves are guided dispersive waves and these waves have great

applications in Non-destructive testing of materials (NDT). Nondestructive testing (NDT)

of materials is a branch of mechanical engineering, in which materials are being tested

with out any damage, such as to detect cracks and fatigue. Lamb waves can be utilized

for the Non-destructive testing (NDT) of the waveguide having plate like structure, the

whole area of the plate can be examined because the stresses are produced all over the

plate thickness. Thus, it is conceivable to find cracks inside the structure [14] [15].

The symmetry axes of an object are lines about which it can be rotated through some

angle which brings the object to a new orientation which appears identical to its starting

position. The symmetry planes of an object are imaginary mirrors in which it can be

reflected while appearing unchanged. When a mirror is placed on a line of symmetry of a

two dimensional shape and looked at from either side, the shapes look identical. In other

words, each half of the shape is a mirror image of the other half. In a similar way, when

a plane cuts a 3-D shape in two so that each half is a mirror image of the other half, the

plane is called a plane of symmetry.

Elastic materials can be divided into eight classes on the basis of their symmetries. Let a,

b, c denote the sides of a unit cell of a crystal and let α, β, γ denote the angles between

these vectors so that γ is the angle between a and b etc. For an isotropic material every

line is an axis of symmetry and every plane is a plane of symmetry.

The study of wave propagation in a plate has been the subject of great interest for long

time [10] [16–19]. This thesis studies wave propagation in elastic solids, especially in plates.

The thesis consists of five chapters, references, and appendixes.

In chapter 2, we studied basic definitions and concepts including waves in an isotropic

compressible plate in which the dispersion relations for the symmetric and antisymmetric

modes are obtained from the Rayleigh-Lamb frequency equations by using the Helmholtz

displacement decomposition. These relations are illustrated as plots of frequency versus

wave number. In chapter 3, Secular equation, existence and uniqueness of Rayleigh wave

in an incompressible orthotropic elastic material is derived. Speed of Rayleigh wave is also

calculated and it is found that at what point wave speed for orthotropic meet isotropic
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incompressible plate [20]. In chapter 4, we reviewed the work of Hussain et al. [15] in which

the dispersion relation for an incompressible isotropic plate is derived. Zero-group velocity

Lamb modes considered in chapter 4 are similar to the case of compressible materials [3],

i-e,

1. Except the lowest S0 mode, all modes asymptotically approach the line C = CT .

2. The lowest mode asymptotically approaches the the line C = CR.

However their behaviour is not similar in following points.

1. From the spectrum, the plateau region disappears.

2. Shapes of the curves is independent of the material.

3. No ZGV mode exist.

In chapter 5, we modify the work of Hussain et al. [15] i-e we used another method to find

the dispersion relation of Lamb modes for an incompressible isotropic plate by taking a

general solution of fourth order linear homogeneous equation and then draw the dispersion

curves. Chapter 6 contains conclusion.

Most of the work presented in this thesis is a review of the following papers:

1. Ogden R.W. and Vinh P.C., On Rayleigh waves in incompressible orthotropic elastic

solids, J. Acoust. Soc. Am. 115 (2004) 530-533.

2. T. Hussain, M.A. Awan, M. Shams and F. Ahmad, “Lamb modes for an isotropic

incompressible plate”, Mathematical Problems in Engineering, (2013).
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Chapter 2

Preliminaries

This chapter contains some basic definitions and mathematical preliminaries. Waves and

types of waves, Stress-strain relation, Fourth-order tensor, Isotropy and Rayleigh-Lamb

dispersion relation are presented in this chapter. These definitions and concepts will be

used throughout this dissertation.

2.1 Waves

A wave can be described as a disturbance(or oscillation) that passes through space and

time accompanied by the transfer of energy.

2.1.1 Plane Wave

Plane wave is a constant-frequency wave which propagates along the direction of a vector

n and a phase velocity c. Conveniently, Plane harmonic wave is represented as

u = Apeiη, (2.1.1)

where

η = k(x.n− ct). (2.1.2)

Equation (2.1.1) describes a plane wave propagating with phase velocity c in a direction

of the unit propagation vector n. There are two basic types of waves, i-e, longitudinal and

transverse waves. In longitudinal waves, the particle is displaced in a direction parallel
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to the direction of wave propagation. While in transverse waves, the particle is displaced

perpendicular to the direction of wave propagation.

2.1.2 Rayleigh and Lamb Waves

Rayleigh wave is a type of surface wave as it travel across surfaces. Close to the surface

of mediums, Rayleigh waves are made of longitudinal and traverse waves that decreases

exponentially in amplitude as distance from the surface increases. They waves can be used

in non-destructive testing for detecting defects.

2.2 Phase and Group velocity

The velocity of a wave with which the phase of a wave propagate in a medium is called

phase velocity. In general, the phase velocity is given by

vp =
ω

k
,

where, ω and k are angular frequency and wave number given as

ω =
2π

T
, k =

2π

λ
.

While, the velocity of a wave with which the overall structure of wave’s amplitude propa-

gates through medium is called group velocity. In general, it is given by

vg =
∂ω

∂k
.

2.3 Strain and Stress

Strain is a measure of change of shape or deformation of material after applying a force.

In cartesian coordinates, the displacement of material points is denoted by u(xi, t), where

i = 1, 2. The components of strain tensor can be expressed by the following relation

Sij =
1

2
(
∂ui
∂xj

+
∂uj
∂xi

), i, j = 1, 2 (2.3.1)

where, Tij = Tji is a symmetric tensor of order 2. In an orthonormal frame, stress tensor

is

Tij = lim
∆sj→0

(
∆Fi
∆sj

). (2.3.2)
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where, ∆Fi is the i-th component of the force ∆F applied on the surface element ∆sj

(perpendicular to the j-axis) by the medium. For the linearized theory of elasticity the

stress tensor is symmetric, i.e, Tij = Tji [2].

2.4 Generalized Hooke’s Law

If a medium returns to its original state after the stress (e.g external forces) that deforms

it, is removed then it is said to be elastic. The relative amount of deformation is called

the strain. There is a 1-1 correspondence between stress and strain. Let us denote stress

and strain tensors by Tij and Sij , respectively. Suppose that Tij is a function of Sij , i.e,

Tij(Sij).The elastic behaviour of most of the substances is suitably described (for small

deformations) by the Taylor series expansion:

Tij(Skl) = Tij(0) +
∂Tij
∂Skl

|Skl=0Skl +
∂2Tij

∂Skl∂Smn
| Skl=0
Smn=0

SklSmn + ...

or, since Tij(0) = 0, therefore

Tij = cijklSkl, (2.4.1)

where

cijkl =
∂Tij
∂Skl

|Skl=0. (2.4.2)

Equation (2.4.1) is called generalized Hook’s Law, where cijkl is an elasticity tensor. This

relation between stress and strain was first stated by Hooke in the 17th century, for the

case of a stretched elastic string.

2.5 Elasticity tensor

The generalized Hook’s law is given by equation (2.4.1). The elasticity tensor cijkl has

34 = 81 components which are called elastic constants or elastic parameters.

Since Tij and Skl are symmetric, it shows that elasticity tensor cijkl is symmetric with

respect to first and second in two indices

cijkl = cjikl,

cijkl = cijlk.
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In terms of displacement, Hook’s law can be written as

Tij =
1

2
cijkl[

∂uk
∂xl

+
∂ul
∂xk

].

As two indices in cijkl = cijlk are equal so,

Tij = cijkl
∂ul
∂xk

.

Since cijkl has 34 = 81 components but due to above symmetry relations it reduces to

36. The contracted notations are numbered from 1 to 6 which are as follows:

(11)←→ 1 (22)←→ 2 (33)←→ 3

(23) = (32)←→ 4 (13) = (31)←→ 5 (12) = (21)←→ 6
(2.5.1)

The transformation of contracted notations can be written in the following form [1]

α =

 i, i = j

9− i− j, i 6= j

β =

 k, k = l

9− k − l, k 6= l

So the equation (2.4.1) becomes

Tij = cαβSkl. (2.5.2)

By using this notation, the components of cijkl can be represented in the 6 order square

matrix as

cαβ =



c11 c12 c13 c14 c15 c16

c12 c22 c23 c24 c25 c26

c13 c23 c33 c34 c35 c36

c14 c24 c34 c44 c45 c46

c15 c25 c35 c45 c55 c56

c16 c26 c36 c46 c56 c66


. (2.5.3)
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2.6 Isotropy

Isotropic tensor is an elasticity tensor of order 4, i-e cijkl. A tensor which has the same

components under all transformations of the reference frame is called an isotropic tensor.

For instance, λδij is an isotropic tensor of order 2, where λ is scalar and δijδkl, δikδjl

and δilδjk are all isotropic tensors of order 4. The elasticity tensor cijkl must be a linear

combination of the above three forth-order tensors, which can be written as:

cijkl = λδijδkl + µ1δikδjl + µ2δilδjk, (2.6.1)

where, λ and µ are Lamé constants. Interchanging i and j in the above equation and using

δij = δji, we get

cjikl = λδjiδkl + µ1δjkδil + µ2δjlδik,

⇒ µ1 = µ2 = µ,

so,

cijkl = λδijδkl + µ(δikδjl + δilδjk), (2.6.2)

where,

cijkl = cjikl.

The matrix [cαβ] becomes symmetric i.e,

[cαβ] = [cβα].

Putting equations (2.6.2) in (2.4.1), the Hook’s Law takes the form

Tij = λSkk + 2µSij . (2.6.3)

From equation (2.6.2),

c11 = c22 = c33 = λ+ 2µ

c12 = c13 = c23 = λ

c44 = c55 = c66 = µ
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Similarly,

c14 = c15 = c16 = 0

c24 = c25 = c26 = 0

c34 = c35 = c36 = 0

c45 = c46 = c56 = 0

The matrix representation of elastic tensor is as follows

cαβ =



λ+ 2µ λ λ 0 0 0

λ λ+ 2µ λ 0 0 0

λ λ λ+ 2µ 0 0 0

0 0 0 µ 0 0

0 0 0 0 µ 0

0 0 0 0 0 µ


. (2.6.4)

Where, λ and µ are Lame’s constants. All 81 components can be expressed in terms of

these two independent parameters.

2.7 Equation of motion for displacement u

From the fundamental 2nd law of dynamics

F = ma, (2.7.1)

where F is the forces, m is the mass and a is the acceleration. Eq. (2.7.1) can also be

written as ∑
F = ma,

body forces + surface forces = m
∂2ui
∂t2

,

ρbi +
∂Tij
∂xj

= ρ
∂2ui
∂t2

.

where m is the mass density, bi is the body force density.

By ignoring the body forces, above equation can be written as

∂Tij
∂xj

= ρ
∂2ui
∂t2

. (2.7.2)
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By using the generalized Hooke’s law in equation (2.7.2) we get the equation of motion as

Cijkl
∂2ul

∂xj∂xk
= ρ

∂2ui
∂t2

,

This implies

Tij = ρ
∂2ui
∂t2

. (2.7.3)

For isotropic material, Hook’s law is given as

Tij = λSkkδij + 2µSij

= λ(
∂uk
∂xk

)δij + µ(
∂ui
∂xj

+
∂uj
∂xi

)

= λ(
∂2uk
∂xk∂xj

)δij + µ(
∂2ui
∂xj∂xj

+
∂2uj
∂xi∂xj

)

= (λ+ µ)
∂

∂xi
(
∂uk
∂xj

)δij + µ(
∂2ui
∂xj∂xj

)

Tij = (λ+ µ)∇(∇.ū) + µ∇2ū.

Putting value of Tij,j in equation (2.7.3),

(λ+ µ)∇(∇.ū) + µ∇2ū = ρü. (2.7.4)

This is called the equation of motion for displacement u.

Assume a solution of the form

ū = pf(x.n− vt), (2.7.5)

Where, n is a wave vector and p is a polarization vector. Plugging value of ū in equation

(2.7.4) and solving, we get

(λ+ µ(p.n))n + (µ− v2ρ)p = 0.

Case (1) : When p and n are not parallel (p.n = 0)

λ+ µ(p.n) = 0

µ− v2ρ = 0

This implies,

vT =

√
µ

ρ
. (2.7.6)
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The above equation shows the velocity of transverse wave in an isotropic medium.

Case (2) : When p and n are parallel (p.n 6= 0)

(λ+ µ(p.n) + µ− v2ρ)p = 0

(2µ+ λ− v2ρ) = 0

This implies,

vL =

√
λ+ 2µ

ρ
. (2.7.7)

The above equation shows the velocity of longitudinal wave in an isotropic medium.

2.8 Displacement potentials

In the absence of body forces, the general displacement equation for an isotropic homoge-

neous material can be written as

(λ+ µ)∇(∇.ū) + µ∇2ū = ρü,

where u is displacement.

According to Helmholtz theorem [2], a vector function u can be decomposed as the sum

of the gradient of a scalar field and the curl of vector field

u = ∇φ+ ∇×ψ, (2.8.1)

Such that

∇.ψ = 0.

Where, φ is a scalar displacement potential and ψ is a vector displacement potential.

In Cartesian coordinates ψ = ψxex + ψyey + ψzez, and the Helmholtz decomposition will

be of the form

u1 =
∂φ

∂x
+
∂ψz
∂y
− ∂ψy

∂z
,

u2 =
∂φ

∂y
− ∂ψz

∂x
+
∂ψx
∂z

,

u3 =
∂φ

∂z
+
∂ψy
∂x
− ∂ψx

∂y
.
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Now, substituting Eqn. (2.8.1) in Eqn.(2.7.4) and using ∇.∇φ = ∇2φ and ∇.∇× ψ = 0,

we get

(λ+ µ)∇(∇2ϕ) + µ∇2(∇φ+∇× ψ) = ρ
∂2

∂t2
(∇φ+∇× ψ),

∇((λ+ µ+ µ)∇2φ− ρφ̈) +∇× (µ∇2ψ − ρψ̈),

(λ+ 2µ)∇2φ− ρφ̈ = 0, (2.8.2)

µ∇2ψ − ρψ̈ = 0. (2.8.3)

Equations (2.8.2) and (2.8.3) gives

∇2φ =
1

c2
L

∂2φ

∂t2
, (2.8.4)

∇2ψ =
1

c2
T

∂2ψ

∂t2
, (2.8.5)

where,

c2
L =

λ+ 2µ

ρ
,

c2
T =

µ

ρ
.

Equations (2.8.4) and (2.8.5) are the equations for scalar and vector displacement potential.

cL and cT are longitudinal and transverse wave velocities.

In cartesian coordinate system, equation for scalar displacement potential remains the

same, while equation for vector displacement potential can be written as

∇2ψ1 =
1

c2
T

∂2ψx
∂t2

, ∇2ψ2 =
1

c2
T

∂2ψy
∂t2

, ∇2ψ3 =
1

c2
T

∂2ψ3

∂t2
.

2.9 Guided waves in a compressible isotropic plate

A material is said to be in plane strain if there is no strain in z-direction (no change in

thickness) but has stress and strain in xy-direction, i-e

u1 = u1(x1, x2, t),

u2 = u2(x1, x2, t),

u3 = 0.
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The scalar and vector potential relations are then written using equation (2.8.1)

u1 =
∂φ

∂x1
+
∂ψ

∂x2
(2.9.1)

u2 =
∂φ

∂x2
− ∂ψ

∂x1
(2.9.2)

For simplicity ψ3 is taken as ψ in equations (2.9.1) and (2.9.2) provided that φ satisfies

the equation (2.8.4)

∂2φ

∂x2
1

+
∂2φ

∂x2
2

=
1

c2
L

∂2φ

∂t2
. (2.9.3)

Similarly, ψ satisfy the equation (2.8.5)

∂2ψ

∂x2
1

+
∂2ψ

∂x2
2

=
1

c2
T

∂2ψ

∂t2
. (2.9.4)

From Hook’s law, the relevant components of stress tensor are

T21 = µ(
∂u2

∂x1
+
∂u1

∂x2
), (2.9.5)

T22 = λ(
∂u1

∂x1
+
∂u2

∂x2
) + 2µ(

∂u2

∂x2
). (2.9.6)

For the wave motion in elastic layer, we consider solutions of equations (2.9.3) and (2.9.4)

of the form

φ = Φ(x2)ei(kx1−ωt). (2.9.7)

ψ = Ψ(x2)exp[i(kx1 − ωt)]. (2.9.8)

Putting equations (2.9.7) and (2.9.8) in (2.9.3) and (2.9.4), we get

Φ′′ + (
c2

c2
L

− 1)k2Φ = 0 (2.9.9)

Ψ′′ + (
c2

c2
L

− 1)k2Ψ = 0 (2.9.10)

Solving the above differential equations, the resulting solutions are given as

Φ(x1) = A1 sin(px2) +A2 cos(px2) (2.9.11)

Ψ(x2) = B1 sin(qx2) +B2 cos(qx2) (2.9.12)
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Since the exponential appears in all of expressions but it does not play any further role

to determine the frequency equation, so it can be omitted, thus equations. (2.9.7) and

(2.9.8) becomes (2.9.2)

φ = [A1 sin(px2) +A2 cos(px2)]ei(kx1−ωt) (2.9.13)

ψ = [B1 sin(qx2) +B2 cos(qx2)]ei(kx1−ωt) (2.9.14)

Equations (2.9.1), (2.9.5) and (2.9.6) can be written as

u1 = ikΦ +
dΨ

dx2
, (2.9.15)

u2 =
dΦ

dx2
− ikΨ, (2.9.16)

T21 = µ(2ik
dΦ

dx2
+ k2Ψ +

d2Ψ

dx2
2

), (2.9.17)

T22 = λ(k2Φ +
d2Φ

dx2
2

) + 2µ(
d2Φ

dx2
2

− ikd
2Ψ

dx2
2

). (2.9.18)

From equations (2.9.18) and (2.9.19), it can be shown that the displacement components

can be expressed in terms of elementary functions. For the displacement in x1-direction

the motion is symmetric (anti-symmetric) with respect to x2 = 0, if u1 holds cosines

(sines). The displacement in the x2-direction is symmetric (antisymmetric) if u2 holds

sines (cosines).The wave propagation modes in the elastic layer can be separated in two

systems of symmetric and anti-symmetric modes, respectively.

Symmetric modes:

Φ = A2 cos(px2), (2.9.19)

Ψ = B1 sin(qx2), (2.9.20)

u1 = [A2 cos(px2)ik +B1q cos(qx2)], (2.9.21)

u2 = [−A2p sin(px2)−B1ik sin(qx2)], (2.9.22)

T21 = µ[2ikp sin(px2) + (k2 − q2)B1 sin(qx2)], (2.9.23)

T22 = −λ(k2 + p2)A2 cos(px2)− 2µ[p2A2 cos(px2) + ikqB1 cos(qx2)]. (2.9.24)
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Anti-Symmetric modes:

Φ = A1 sin(px2), (2.9.25)

Ψ = B2 cos(qx2), (2.9.26)

u1 = [A1 sin(px2)ik +B2q sin(qx2)], (2.9.27)

u2 = [A1p cos(px2)−B2ik cos(qx2)], (2.9.28)

T21 = µ[2ikpA1 cos(px2) + (k2 − q2)B2 cos(qx2)], (2.9.29)

T22 = −λ(k2 + p2)A1 sin(px2)− 2µ[p2A1 sin(px2) + ikqB2 sin(qx2)]. (2.9.30)

Now assume free boundaries at x2 = ±h, i.e.,

T21 = T22 = 0. (2.9.31)

For the symmetric modes the boundary conditions gives a system of two homogeneous

equations for the constants A2 and B1. Similarly, the two homogeneous equations for

the constants A1 and B2. are obtained for anti-symmetric modes.Since, the systems are

homogeneous, the determinant of the coefficient matrix must disappear, which gives the

frequency equation. Therefore, for the symmetric modes, we have

−2µikp sin(ph)

−λ(k2 − (λ+ 2µ)p2) cos(ph)
=

(k2 − q2)B1 sin(qh)

−2µikp cos(qh)
,

Above equation can be written as

tan(qh)

tan(ph)
=

4µk2pq

[λk2 + (λ+ 2µ)p2]
, (2.9.32)

using

µ

ρ
= c2

T ,
λ+ 2µ

ρ
= c2

L

we get,

tan(qh)

tan(ph)
=

4µk2pq

(k2 − q2)[c2
Lk

2 − 2k2c2
T + c2

Lp
2]
, (2.9.33)

Equation (2.9.33) simplifies to

tan(qh)

tan(ph)
=
−4k2pq

(q2 − k2)2
, (2.9.34)
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For the anti-symmetric modes the boundary conditions yield

(k2 − q2) cos(qh)

−2ikp cos(qh)
=

−2µikq sin(qh)

(λk2 + λp2 + 2µp2) sin(ph)
,

or

tan(qh)

tan(ph)
=
−(q2 − k2)2

4k2pq
. (2.9.35)

where,

p =

√
ω2

c2
L

− k2

q =

√
ω2

c2
T

− k2

Equations (2.9.34) and (2.9.35) are well known Rayleigh-Lamb frequency equations for free

compressible isotropic plate. cT and cL, respectively denote the phase speed of transverse

and longitudinal waves.

Equation for Symmetric modes explains the behaviour of all modes, anomalous or other-

wise. By plotting the dispersion curves for phase velocity as a function of wave number or

frequency,the normalized phase velocity with phase speed of transverse wave cT is usually

normalized. Some salient features of the spectrum are as follows [3].

1. No mode exist with c < cR.

2. There is only one mode whose speed asymptotically approaches cR.

3. A horizontal line above c = cT (including the line c = cL) cannot be an asymptote

to any of the modes.

4. Phase speed of all modes, except the lowest mode, approaches cT as the wave number

becomes very large.

In Fig 2.1, below, the spectrum of an isotropic steel plate has been plotted.
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Figure 2.1: Symmetric Lamb modes on a steel plate (k = 1.83) showing phase velocity as

a function of normalized frequency.

2.10 Anomalous Lamb mode Spectrum in an isotropic plate

A Lamb mode in the spectrum of a thin plate is said to be anomalous, in w − c plane, if

slope of the mode changes its sign. To study the anomalous behaviour of Lamb modes,

we plot phase velocity, c, of a mode as a function of frequency, w, In the narrow range of

frequency, in which change of slope occurs, phase velocity is double valued function and the

point where the slope is undefined corresponds to zero-group velocity (ZGV) point of the

Lamb mode. Due to the presence of ZGV point, there is a bulge in the mode of spectrum.

Lamb modes with single ZGV point exist in the spectrum of an isotropic plate. Tolstoy

and Usdin [5] were the first who predicted this anomalous behavior of modes in 1957. They

studied this peculiar property of modes in an infinite plate having Poissons ratio, v, 1
4 . If

the slopes at two points differ in sign, it will indicate that a zero group velocity point

occurs there. And it is well known fact that the spectrum of the dispersion curves have

zero-group velocity points (ZGV) corresponding to compressible isotropic plate.
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Chapter 3

Rayleigh waves for an

incompressible orthotropic plate

In this chapter, we reviewed [20] to describe Rayleigh waves for an incompressible isotropic

and orthotropic elastic solids. The derivation of secular equation, existence, uniqueness

and an explicit formula for the Rayleigh wave speed are discussed for orthotropic plate and

hence specialized for an isotropic plate. Graph is plotted among wave speed (ρc2/γ) and

∆(> 0). It shows the dependence of the wave speed on the ratio of material constants i-e

the wave speed is very small for small ∆ and increases rapidly as ∆ increases, reaching its

isotropic value for ∆ = 4.

3.1 Orthotropic materials

Assume that we have three material axes of symmetry for an orthotropic incompressible

medium, denoted by x1, x2 and x3. Thus for an orthotropic material we have

∆cαβ =



c11 c12 c13 0 0 0

c12 c22 c23 0 0 0

c13 c23 c33 0 0 0

0 0 0 c44 0 0

0 0 0 0 c55 0

0 0 0 0 0 c66


. (3.1.1)
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Also the linear stress-strain relations for the material are

T11 = −p+ c11S11 + c12S22 + c13S33,

T22 = −p+ c12S11 + c22S12 + c23S33,

T33 = −p+ c13S11 + c23S12 + c33S33, (3.1.2)

T23 = 2c44S23,

T13 = 2c55S13,

T12 = 2c66S12.

where T ′s, S′s and c′s denote the stress, strain and elasticity constant components respec-

tively and p is the hydrostatic pressure.

Assume a plane wave motion in (x1, x2) plane and incompressibility which implies,

S13 = S23 = S33 = 0, (3.1.3)

and

S11 + S22 = 0. (3.1.4)

Orthotropic stress-strain relations (3.1.2) reduces due to above (3.1.4) conditions to

T11 = −p+ (c11 − c12)S11,

T22 = −p+ (c12 − c22)S11, (3.1.5)

T12 = 2c66S12.

To get the positive strain energy function the following inequalities must be true

c66 ≥ 0, c11 + c22 − 2c12 ≥ 0 (3.1.6)

where c11, c22, c12 and c66 are material constants. From equation (3.1.4) we have

u1,1 + u2,2 = 0, (3.1.7)

which is satisfied by introducing a scalar function ψ(x1, x2, t) , such that

u1 = ψ,2, u2 = −ψ,1. (3.1.8)
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The equation of motion by neglecting body forces is given as

Tij,j = ρüi, i = 1, 2 (3.1.9)

This implies,

T11,1 + T12,2 = ρü1, (3.1.10)

T12,1 + T22,2 = ρü2 (3.1.11)

using equations (3.1.5) and (3.1.8) in (3.1.10) yields

−p,1 + (c11 − c12 − c66) + c66ψ,222 = ρψ,2, (3.1.12)

similarly, equation (3.1.11) gives

p,2 + (c22 − c12 − c66) + c66ψ,111 = ρψ,1, (3.1.13)

In order to eliminate p, take partial derivative of (3.1.12) and (3.1.13) w.r.t x1 and x2 and

then adding, we have

(c11 − 2c12 + c22)ψ,1122 − 2c66ψ,1122 + c66(ψ,1111 + ψ,2222) = ρ∆ψ, (3.1.14)

From equation (3.1.14), we have

γψ,1111 + 2βψ,1122 + γψ,2222 = ρ(ψ̈,11 + ψ̈,22). (3.1.15)

where

2β = δ − 2γ. (3.1.16)

The traction free boundary conditions in terms of the stress components are written as

T21 = T22 = 0 at at x2 = 0.

γ(ψ,22 − ψ,11) = 0

γ(ψ,222 − ψ,112) + δψ,112 − ρψ,2 = 0 at x2 = 0 (3.1.17)

Now consider propagation of harmonic waves in the x1 direction. We write ψ in the form

ψ = φ(y)eik(ct−x1) (3.1.18)
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Where c and is the velocity of a wave, k is a wave number, y = kx2 and the function φ is

to be determined.

Using ψ in equation (3.1.15) yields

k4γφ− 2k4βφ′′ + k4γφ′′′′ = c2ρ
[
φk4 − k4φ′′

]
(3.1.19)

Hence we get

γφiv − (2β − ρc2)φ′′ + (γ − ρc2)φ = 0 (3.1.20)

and the boundary conditions given in (3.1.17) yields

φ′′(0) + φ(0) = 0 since γ 6= 0, (3.1.21)

γφ′′(0) + (γ − δ + ρc2)φ′(0) = 0. (3.1.22)

First we have to omit the factor γ on the assumption that γ = 0. Thus we have to solve

equation (3.1.20) with the boundary conditions given in (3.1.21). Assume that the general

solution for φ(y) that satisfies these boundary conditions is

φ(y) = Pe(s1y) +Qe(s2y), (3.1.23)

where P and Q are constants, while s1 and s2 are the solutions of the equation

γs4 − (2β − ρc2)s2 + (γ − ρc2) = 0, (3.1.24)

From equation (3.1.24) it follows that

s2
1 + s2

2 = (2β − ρc2)/γ, s2
1s

2
2 = (γ − ρc2)/γ. (3.1.25)

If the roots s2
1 and s2

2 are real of the quadratic equation (3.1.24), then they must be positive

to guarantee that s1 and s2 can have a positive real part. If they are complex then they

are conjugate. In that case the product s2
1s

2
2 must be positive and hence a real wave speed

c which satisfies the inequalities

0 < ρc2 < γ.

Also ρc2 = γ is a speed of shear body wave, not a surface wave.

Substituting equation (3.1.23) into the boundary conditions (3.1.21) and (3.1.22). we get

the equations

(s2
1 + 1)P + (s2

2 + 1)Q = 0,
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γ[(s2
1 + 1) + ρc2 − δ]s1P + γ[(s2

2 + 1) + ρc2 − δ]s2Q = 0, (3.1.26)

for P and Q. For non-trivial solution, the determinant of coefficients of the system (3.1.26)

must be zero

1 + s2
1

γ[(s2
1 + 1) + ρc2 − δ]s1

=
1 + s2

2

γ[(s2
2 + 1) + ρc2 − δ]s2

,

After removing factor (s1 − s2), this yields

γ(s2
1 + s2

2 + s2
1s

2
1) + (δ − ρc2)s1s2 + γ − δ + ρc2 = 0, (3.1.27)

Use of equation (3.1.25) in equation (3.1.27) then leads to

(δ − ρc2)
√

1− ρc2/γ − ρc2 = 0, (3.1.28)

Equation (3.1.28) is the required secular equation for wave speed through ρc2.

3.2 Existence and uniqueness of Rayleigh wave

Now we show that both inequalities γ > 0 and δ > 0 guarantees the existence and unique-

ness of a Rayleigh wave. For this purpose it is better to introduce the new variable

η =
√

1− ρc2/γ so that the secular equation (3.1.28) may be rewritten as

g(η) =
(δ − ρc2)η

γ
− ρc2

γ
,

= (
δ

γ
− 1 + η2)η − (1− η2),

=
δη

γ
− η + η3 − 1 + η2,

g(η) = η3 + η2 + (δ/γ − 1)η − 1 = 0, 0 < η < 1. (3.2.1)

Then

g(0) = −1 < 0, g(1) = δ/γ > 0, (3.2.2)

which shows that equation (3.2.1) has at least one solution (by intermediate value theorem)

in the interval (0,1).

Also

g′(η) = 3η2 + 2η + δ/γ − 1, g′′(η) > 0 (η > 0). (3.2.3)

• If δ ≥ γ then it follows that for η > 0, g′(η) > 0 and hence g is a monotonic increasing.

In this case solution for η is unique.

22



• If 0 < δ < γ then g′(0) < 0. Thus, g has a maximum for η < 0 and a minimum for

η > 0.

By the inequality in equation (3.2.3) g therefore decreases to a minimum as η increases

from 0, and therefore increases monotonically. So in this case the solution is also unique.

Hence it is concluded that there exists a unique Rayleigh wave in an incompressible or-

thotropic elastic half-space in which the material constants satisfy the conditions (3.1.6),

which guarantee positive definiteness of the strain-energy function for the considered plane

strain restriction. Also it is noted that if δ ≤ 0 then the equation (3.1.28) has no real

non-zero solution for c any sign of γ, although it is not physically meaningful to consider

non positive values of these constants.

3.3 Wave speed formula

An explicit formula for wave speed is derived in this section, given that γ > 0 and δ > 0,

by finding the unique root, η0 say, of equation (3.2.1) in the interval (0, 1). The wave speed

c is given by

ρc2 = γ(1− η2
0). (3.3.1)

Now we show that the cubic equation (3.2.1) has only one real root, η0, the other two are

complex.

According to the theory of cubic equation, the nature of the three roots of the cubic i-e [21]

η3 + b2η
2 + b1η + b0 = 0, (3.3.2)

is determined by the sign of the discriminant D defined by

D = R2 +Q3, (3.3.3)

where R and Q are given in terms of the coefficients b0, b1, b2 by

R = − 1

54
(9b1b2 − 27b0 − 2b32), Q =

1

9
(3b1 − b22), (3.3.4)

Real Coefficients

1. If D > 0, one root of equation (3.3.2) real and two are complex conjugates.
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2. If D = 0, the equation has three real roots , at least two of which are equal.

3. If D < 0, equation (3.3.2) has three distinct real roots.

In the first case, (D > 0) the single root η0 is given by Cardano’s formula [21] in the form

η0 = −1

3
b2 + (R+

√
D)1/3 + (R−

√
D)1/3. (3.3.5)

By comparing equations (3.2.1) and (3.3.2), we have

b0 = −1, b1 = ∆− 1, b2 = 1, (3.3.6)

and hence

R =
∆

6
+

8

27
, Q =

∆

3
− 4

9
, (3.3.7)

where ∆ = δ/γ. Using equation (3.3.6) in (3.3.3) ,

D =

(
∆

6
+

8

27

)2

+

(
∆

3
− 4

9

)3

,

=
∆2

36
+

64

729
+

∆

3
.

8

27
+

(
∆3

27
− 64

729
− ∆2

3
.
4

9
+

16∆

81

)
,

=
∆2

36
+

8∆

81
+

16∆

81
+

∆3

27
− 4∆2

27
,

it gives

D =
1

108
∆(4∆2 − 13∆ + 32), (3.3.8)

Since ∆ > 0, so it is clear from equation (3.3.8) that D > 0. So, equation (3.3.2) has only

one real root, necessarily with in the range of values required.

Use of equations (3.3.6), (3.3.7) and (3.3.8) in (3.3.5) leads to

η0 =
1

3
[−1 +

3

√
[9∆ + 16 + 3

√
3
√

∆(4∆2 − 13∆ + 32)]/2

+
3

√
[9∆ + 16− 3

√
3
√

∆(4∆2 − 13∆ + 32)]/2], (3.3.9)

From equations (3.3.1) and (3.3.8) the speed c of Rayleigh wave is

ρc2/γ = 1− 1

9
[−1 +

3

√
[9∆ + 16 + 3

√
3
√

∆(4∆2 − 13∆ + 32)]/2

+
3

√
[9∆ + 16− 3

√
3
√

∆(4∆2 − 13∆ + 32)]/2]. (3.3.10)

From equation (3.3.10), plot of ρc2/γ against ∆(> 0) is shown in Fig. 3.1
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Figure 3.1: Plot of ρc2/γ against ∆(> 0)

Isotropic value for ∆

For an (incompressible) isotropic material c11 = c22, c11 − c12 = 2µ, and c66 = µ, where µ

is the classical shear modulus, and hence, by equation (3.1.6), ∆ = 4. Substituting value

of ∆(> 0) in equation (3.3.10) yields

ρc2/γ = 1− 1

9

[
3

√
6
√

33 + 26− 3

√
6
√

33 + 26− 1

]2

. (3.3.11)

This is approximately 0.9126, which is the classical value for an incompressible elastic

solid [22].

In order to illustrate the dependence of the wave speed on the ratio of material constants,

a plot of ρc2/γ against ∆(> 0) based on equation (3.3.11) is shown in Fig. 3.1. For a small

∆ wave speed is very small and as ∆ increases it increases rapidly and reaches its isotropic

value for ∆ = 4 and then approaching an asymptotic value for ρc2/γ → 1 as ∆ becomes

very large. It is noted that ∆ may be interpreted as a shear modulus of the material;

indeed, in the isotropic case ∆ = 2µ, where µ is the Lame’ shear modulus. Thus, the limit

∆→ 0, (that is not applicable for isotropic materials) corresponds to a material with one

very small shear modulus. In a similar manner, γ is a shear modulus and, if δ 6= 0 in the

limit γ → 0 we have ∆→∞. Thus, we have interpretations for the two extreme values of

∆ [20].
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Chapter 4

Lamb Modes for an incompressible

isotropic plate

This chapter is concerned with the behaviour of Lamb modes for an isotropic plate using

incompressibility condition.

We review [15] in which Hussain et al. discussed Lamb modes for an isotropic incompress-

ible plate. Here we have considered the dispersion relation for an isotropic plate under the

constraint of incompressibility. As a result, a single parameter cT , phase speed of trans-

verse wave is needed to plot the dispersion curves, hence the plateau region disappears in

the spectrum. Then the dispersion curves, corresponding to the given dispersion relation,

are plotted.

4.1 Symmetric dispersion relation for an incompressible isotropic

plate

If the volume of a material does not change, it is said to be incompressible, thus, it can

hold only isochoric deformation.

Consider an isotropic plate having thickness 2h. In a cartesian coordinate system, x1 x2

x3, the propagation of wave is along x1-direction, where, x2-axis is normal to the plate

surface. Consider (x1, x2) as plane of motion, the displacement components (u1, u2, u3)

are such that
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ui = ui(x1, x2, t), i = 1, 2 u3 = 0 (4.1.1)

The linearized incompressibility condition using u3 = 0, is given as

u1,1 + u2,2 = 0, (4.1.2)

From equation (4.1.2) we can have a scalar function ψ(x1, x2, t) , such that

u1 = ψ,2, u2 = −ψ,1. (4.1.3)

Constitutive relation for an isotropic elastic material is given by

Tij = −pδij + 2µSij . (4.1.4)

where, Tij is stress tensor and Sij is a strain tensor. p is the arbitrary hydrostatic pressure

associated with the incompressibility constraint.

Relevant components of stress tensor are given by

T11 = −p+ 2µu1,1,

T22 = −p+ 2µu2,2,

T12 = µ(u1,2 + u2,1). (4.1.5)

Now, As we know that force at a point due to stresses in the continuum is given by

∂Tij
∂xj

+ ρFi

The above equation must be equal to acceleration

∂Tij
∂xj

+ ρFi = ρ
∂2ui
∂t2

so, the equation of motion in the absence of body force is given as

∂Tij
∂xj

= ρ
∂2ui
∂t2

, i = 1, 2

or

Tij,j = ρüi, i = 1, 2 (4.1.6)
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This implies,

T11,1 + T12,2 = ρü1 (4.1.7)

T12,1 + T22,2 = ρü2 (4.1.8)

Putting equations (4.1.3) and (4.1.5) in (3.1.7), it gives

µ(ψ,211 + ψ,222)− p,1 = ρψ̈,2 (4.1.9)

Similarly, equation (3.1.8) gives

−µ(ψ,122 + ψ,111)− p,2 = −ρψ̈,1 (4.1.10)

In order to eliminate p, differentiate equation (4.1.9) w.r.t x2 and equation (4.1.10) w.r.t

x1 and then subtracting, we get

µ(ψ,1111 + ψ,2222) + 2µψ,1122 = ρ(ψ̈,11 + ψ̈,22) (4.1.11)

We consider the propagation of harmonic waves in x1 direction, so we can write ψ in the

form

ψ = φ(y)eik(ct−x1) (4.1.12)

Where c is the velocity of a wave, k is a wave number, y = kx2 and the φ function is to be

determined.

Using ψ in equation (4.1.11) yields

µ[φ(y)(ik)4 + φ(iv)(y)k4] + 2µ[−φ′′(y)k4] = ρ[φ(y)k4c2 − φ′′(y)k4c2],

µφ(y)(k)4 + µφ(iv)(y)k4 − 2µφ′′(y)k4 = ρφ(y)k4c2 − ρφ′′(y)k4c2,

µφ(y)− ρc2φ(y) + µφ(iv)(y)− 2µφ′′(y) + ρc2φ′′(y) = 0,

and hence,

µφ(iv)(y)− (2µ− ρc2)φ′′(y) + (µ− ρc2)φ(y) = 0. (4.1.13)

Boundary conditions are given by

T12 = T22 = 0 on x2 = ±h (4.1.14)
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These conditions, in terms of ψ are

µ(ψ,22 − ψ,11) = 0 (4.1.15)

(3µ− ρc2)k2ψ,2 − µψ,222 = 0 (4.1.16)

We assume general solution for φ that satisfies boundary conditions are as follows

φ(y) = P sin(s1y) +Q sin(s2y) (4.1.17)

where P and Q are constants, while s2
1 and s2

2 are roots of the following quadratic equation

s4 + (2− ρc2

µ
)s2 + (1− ρc2

µ
) = 0, (4.1.18)

where,

s2
1 = −1, s2

2 =
ρc2

µ
− 1 (4.1.19)

Using ψ and equation (4.1.5) in equations (4.1.15) and (4.1.16), which gives

A sin(s1kh)(1− s2
1) +B sin(s2kh)(1− s2

2) = 0, (4.1.20)

s1P (3µ− ρc2 + µs2
1) cos(s1kh) + s2Q(3µ− ρc2 + µs2

2) cos(s2kh) = 0, (4.1.21)

For a non trivial solution the determinant of the above system of equations must be zero.

So we have

sin(s1kh)(1− s2
1)

cos(s1kh)s1(3µ− ρc2 + µs2
1)

=
sin(s2kh)(1− s2

2)

cos(s2kh)s2(3µ− ρc2 + µs2
2)
,

By simplifying, we get

tan(s1kh)

tan(s2kh)
=
s1(1− s2

2)2

s2(1− s2
1)2

. (4.1.22)

This is a symmetric dispersion relation for an isotropic incompressible plate.

Using equation (4.1.19) in (4.1.22) yields

tan(
√
−1kh)

tan(
√

ρc2

µ − 1kh)
=

√
−1(2− ρc2

µ )2

22(
√

ρc2

µ − 1)

tan(
√
−1x)

tan(
√
y2 − 1x)

=

√
−1(2− y2)2

4
√
y2 − 1
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tan(ix)

tan(
√
y2 − 1x)

=
i(2− y2)2

4
√
y2 − 1

and hence,

tanh(x)

tan(
√
y2 − 1x)

=
(2− y2)2

4
√
y2 − 1

or

tan(
√
y2 − 1x)

tanh(x)
=

4
√
y2 − 1

(2− y2)2
(4.1.23)

Where the dimensionless wave number hk is defined by x and normalized velocity c
cT

(cT =
√

µ
ρ ) by y.

Equation (4.1.23) depends only on one parameter which is independent of cL, hence any

analytic expression for slope at c = cL can not be obtained. This indication shows the

absence of plateau region from the spectrum.

4.2 Dispersion curves

The dispersion curves for an isotropic plate under incompressibility, in the k− c plane, are

shown in Fig. 4.1 [24].

Figure 4.1: Symmetric Lamb modes for an isotropic plate, under incompressibility, in k-c

plane.
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Except the lowest S0 mode, all curves approach the line y = 1 corresponding c = cT .

It can be concluded that Fig. 4.1 represent dispersion curves for all isotropic incompress-

ible materials, it means that the shape of dispersion curves does not depend on material

properties.

When 0 < c < cT , s2
2 become negative, hence equation (4.1.23) can be written as follows

tan(
√

1− y2x)

tanh(x)
=

4
√

1− y2

(2− y2)2
,

Since |tanh(x)| ≤ 1, thus for large wave number, we can write

4
√

1− y2

(2− y2)2
= 1,

4
√

1− y2 − (2− y2)2 = 0,

This last expression is the same as equation (3.2.8) of Dowaikh [23], it has only one root

in interval (0, 1), which is 0.9553125, hence the phase speed of S0 mode approaches the

speed, cR = 0.9553125cT , which is the speed of the Rayleigh wave.

4.3 Anomalous dispersion curves in case of Incompressibil-

ity

It is well known [4–8] that the Lamb modes for an isotropic plate under compressibility in

w − c plane exhibit a phenomenon known as “anomalous dispersion.”

A question naturally arises whether the anomaly persists even when the incompressibility

constraint is enforced. To verify this define

u =
ωh

cT
=
c.kh

cT
= yx

Putting this value in equation (4.1.23), the equation, in terms of u and y becomes

tan(
√
y2 − 1u/y)

tanh(u/y)
=

4
√
y2 − 1

(2− y2)2
(4.3.1)

Where u is the normalized frequency and y is the normalized phase speed. Dispersion

curve corresponds to equation (4.3.1) is shown in Fig. 4.2 [24].
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Figure 4.2: Symmetric Lamb modes for an isotropic plate, under incompressibility, in u-y

plane.

From Figure 4.2, it becomes clear that anomalous behaviour of S1 mode has disappeared

from the spectrum. Analytically this phenomenon can be explained by examining the slopes

of all modes, first for large phase velocity, y >> 1, secondly when y → 1+ . We rewrite

equation (4.3.1) in the form

h(u, y) = tan(
√
y2 − 1u/y)(2− y2)2 − 4 tanh(u/y)

√
y2 − 1 = 0 (4.3.2)

For y >> 1, we have √
y2 − 1 ' y,

(2− y2)2 ' (y2)2,

y4 tan(u)− 4y tanh(u/y) ' 0,

4 tanh(u/y) ' y3 tan(u),

tan(u) =
4 tanh(u/y)

y3
,

Since for large y

tanh(u/y) ' u/y,
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hence

tan(u) ' 4u

y4
, (4.3.3)

or

tan(u) ' 0,

un = nπ + ε, n = 0, 1, 2, 3, .....,

where ε is an infinitesimally small positive number. To find the slope, dy
du , of all modes,

following formula is used

dy

du
= −∂h/∂u

∂h/∂y
(4.3.4)

For large value of y, the partial derivatives ∂h/∂u and ∂h/∂y can be as follows,

∂h

∂u
' −iy4 cos(u)− iy2u sin(u)

∂h

∂y
' −iuy cos(u)− 4iy3u sin(u)

Plugging the above relations in equation (4.3.4)

dy

du
' − iy4 cos(u) + iy2u sin(u)

iuy cos(u) + 4iy3u sin(u)

' −y
3 + yu tan(u)

u+ 4y2 tan(u)
(4.3.5)

using value of tan(u), from equation (4.3.3), in above equation (4.3.5) we get,

dy

du
|u=un ' −

y3

un
, (4.3.6)

It shows that

dy

du
< 0, (4.3.7)

for all modes.

Now we have to find the approximation when phase velocity, y, is small and we will show

that dy
du < 0 for small y.

Let

y2 = 1 + ε2,

Plugging the above value in equation (4.3.1)

tan(εu)

tanh(u)
' 4ε

(1− ε2)2
,
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tan(εu) ' 4ε tanh(u)

(1− ε2)2
, (4.3.8)

By taking partial derivatives of ∂h
∂u and ∂h

∂y , for y2 = 1 + ε2, it becomes

∂h

∂u
' 3ε cos(uε) cosh(u)− sin(uε) sinh(u), (4.3.9)

∂h

∂y
' u

ε
cos(uε) cosh(u) + 4 sin(uε) cosh(u)− 3u sin(uε) sinh(u)− 3uε cos(uε) cosh(u),

(4.3.10)

By inserting above three Equations and using tanh(u)→ 1 in equation (4.3.4), it becomes

dy

du
' ε2

−un + 4
, (4.3.11)

It clearly shows that

dy

du
< 0, (4.3.12)

for all modes when un > 4, n = 1, 2, 3, 4, .... an assumption which can be made.

Hence from equation (4.3.6) and (4.3.11), we can infer that there is no anomalous dispersion

in the spectrum of an incompressible isotropic plate.
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Chapter 5

Modified method for Lamb modes

in an incompressible isotropic

plate

In this chapter we reviewed the work of Hussain et al. [15] and used another method to

derive the dispersion relation of Lamb modes for an isotropic plate under incompress-

ibility. In this method the general solution of fourth order homogeneous linear ordinary

differential equation (4.1.13) is obtained and then used its particular cases (solutions) in

the derivation of Symmetric and anti-symmetric dispersion relations. Dispersion curves

for both symmetric and anti-symmetric cases are also plotted among normalized frequency

and phase velocity.

5.1 Frequency equations and Boundary conditions

We consider the fourth order homogeneous linear ordinary differential equation (4.1.13)

µφ(iv)(y)− (2µ− ρc2)φ′′(y) + (µ− ρc2)φ(y) = 0. (5.1.1)

It is well known that the solution of of above equation can be written in the form

φ(y) = emy. (5.1.2)
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Now by taking derivatives of equation (5.1.2)

φ′(y) = memy, φ′′(y) = m2emy,

φ′′′(y) = m3emy φ(iv)(y) = m4emy.

So equation (5.1.1) becomes

µm4emy − (2µ− ρc2)m2emy + (µ− ρc2)emy = 0,

[µm4 − (2µ− ρc2)m2 + (µ− ρc2)m]emy = 0,

since emy 6= 0 so,

µm4 − (2µ− ρc2)m2 + (µ− ρc2) = 0,

µ[m4 + (
ρc2

µ
− 2)m2 + (1− ρc2

µ
)] = 0

m4 + (
ρc2

µ
− 2)m2 + (1− ρc2

µ
) = 0.

(m+ 1)(m− 1)(m2 +
ρc2

µ
− 1) = 0, (5.1.3)

Therefore the four roots of the auxiliary equation (5.1.3) are

m = ±1,±

√
1− ρc2

µ
.

or

m = ±1,±q, where q =

√
1− ρc2

µ
.

Now we are able to write the general solution which satisfy the boundary conditions

(4.1.15) and (4.1.16). Due to the nature of the last two roots of the auxiliary equation

(5.1.3), the general solution can be written in three different ways and we will discuss each

one separately.

CASE 1: 1− ρc2

µ > 0 ⇒ µ > ρc2

In this case the last two roots of the auxiliary equation (5.1.3) become real and distinct

and hence the general solution φ(y) of the equation (5.1.1) or (4.1.13) can be written in

the form

φ(y) = C1e
y + C2e

−y + C3e
qy + C4e

−qy. (5.1.4)
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Now by using hyperbolic functions we can write the following relations

ey = cosh(y) + sinh(y),

e−y = cosh(y)− sinh(y),

eqy = cosh(qy) + sinh(qy),

e−qy = cosh(qy)− sinh(qy).

Hence the solution (5.1.4) becomes

φ(y) = A sinh(y) +B cosh(y) + C sinh(qy) +D cosh(qy), (5.1.5)

where

(C1 − C2) = A, (C1 + C2) = B, (C3 − C4) = C and (C3 + C4) = D.

The general solution (5.1.5) of the linear homogeneous ordinary differential equation

(5.1.1) or (4.1.13) is the the linear combination of four linearly independent functions

cosh(y), sinh(y), cosh(qy) and sinh(qy)) where A,B,C and D are arbitrary real numbers

(constants).

In order to derive symmetric and anti-symmetric dispersion relations we split the general

solution in two forms:

(a) Symmetric dispersion relation:

If we assume that B = D = 0, then the solution (5.1.5) reduces to the following only

φ(y) = A sinh(y) + C sinh(qy). (5.1.6)

With the aid of equations (4.1.12) and (5.1.6) the boundary condition given in equation

(4.1.15), that is

µ(ψ,22 − ψ, 11) = 0,

becomes as follows

[A sinh(y)eik(ct−x1) + C sinh(qy)eik(ct−x1)],22−[A sinh(y)eik(ct−x1) + C sinh(qy)eik(ct−x1)],11 = 0,

[A sinh(y)k2 + C sinh(qy)(qk)2]− [A sinh(y)(ik)2 + C sinh(qy)(ik)2] = 0,

A sinh(y) + C sinh(qy)q2 +A sinh(y) + C sinh(qy) = 0,
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2A sinh(y) + C(q2 + 1) sinh(qy) = 0. (5.1.7)

Similarly, using equations (4.1.12) and (5.1.6) in the second boundary condition given by

the equation (4.1.16)

(3µ− ρc2)k2ψ,2 − µψ,222 = 0,

we have

(3µ− ρc2)k2[A sinh(y) + C sinh(qy)],2 − µ[A sinh(y) + C sinh(qy)],222 = 0,

(3µ− ρc2)k2[A cosh(y).k + C cosh(qy)(qk)],2 − µ[A cosh(y)k3 + C cosh(qy)(qk)3] = 0,

A cosh(y)(3µ− ρc2 − µ) + C cosh(qy)(3µq − ρc2q − µ3q) = 0. (5.1.8)

The equations (5.1.7) and (5.1.8) form a system of two homogeneous linear equations in

unknowns A and C. The non-trivial solution of above mentioned system exists only if the

determinant of its coefficient matrix is zero. This condition gives us

2 sinh(y)

cosh(y)(3µ− ρc2 − µ)
=

sinh(qy)(q2 + 1)

cosh(qy)(3µq − ρc2q − µq3)
,

tanh(y)

tanh(qy)
=

(1 + q2)(2µ− ρc2)

2µq(3− ρc2

µ − q2)
,

tanh(y)

tanh(qy)
=

(1 + q2)2

4q
. (5.1.9)

This is the symmetric dispersion relation for an isotropic plate under incompressibility.

Spectrum of the dispersion curves appears as in Figure 5.1 [24] corresponds to (5.1.6).
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Figure 5.1: Symmetric Lamb modes for an isotropic plate, under incompressibility, in u-y

plane

(b) Anti-symmetric dispersion relation:

If we assume thatA = C = 0, then the solution (5.1.5) reduces to the following only

φ(y) = B cosh y +D cosh(qy) (5.1.10)

With the aid of equations (4.1.12) and (5.1.10) the boundary condition given in equation

(4.1.15), that is

µ(ψ,22 − ψ, 11) = 0,

becomes

[B cosh(y)eik(ct−x1) +D cosh(qy)eik(ct−x1)],22−[B cosh(y)eik(ct−x1) +D cosh(qy)eik(ct−x1)],11 = 0,

[B cosh(y)k2 +D cosh(qy)(qk)2]− [B cosh(y)(−ik)2 +D cosh(qy)(−ik)2] = 0,

[B cosh(y) +D cosh(qy)q2]− [−B cosh(y)−D cosh(qy)] = 0,

B cosh(y) +D cosh(qy)q2 +B cosh(y) +D cosh(qy) = 0,

2B cosh(y) +D(q2 + 1) cosh(qy) = 0, (5.1.11)
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Similarly, using equations (4.1.12) and (5.1.10) in the second boundary condition given by

the equation (4.1.16)

(3µ− ρc2)k2ψ,2 − µψ,222 = 0,

we have

(3µ− ρc2)k2[B cosh(y)eik(ct−x1) +D cosh(qy)eik(ct−x1)],2−µ[B cosh(y)eik(ct−x1)

+D cosh(qy)eik(ct−x1)],222 = 0,

(3µ− ρc2)k2[B sinh(y)keik(ct−x1) +D sinh(qy)(qk)eik(ct−x1)]− µ[B sinh(y)k3eik(ct−x1)

+D sinh(qy)(qk)3eik(ct−x1)] = 0,

(3µ− ρc2)k2[B sinh(y)k +D sinh(qy)(qk)]− µ[B sinh(y)k3 +D sinh(qy)(qk)3] = 0,

3µB sinh(y)k3 + 3µD sinh(qy)(qk)k2 − ρc2B sinh(y)k3 − ρc2D sinh(qy)(qk)k2

−µB sinh(y)k3 − µD sinh(qy)(qk)3 = 0,

B sinh(y)[3µ− ρc2 − µ] +D sinh(qy)[3µq − ρc2q − µq3] = 0. (5.1.12)

The equations (5.1.11) and (5.1.12) form a system of two homogeneous linear equations in

unknowns B and D. The non-trivial solution of above mentioned system exists only if the

determinant of its coefficient matrix is zero. This condition implies that

2 cosh(y)

sinh(y)(3µ− ρc2 − µ)
=

(q2 + 1) cosh(qy)

sinh(qy)(3µq − ρc2q − µq3)
,

sinh(qy)(3µq − ρc2q − µq3)

(q2 + 1) cosh(qy)
=

sinh(y)(3µ− ρc2 − µ)

2 cosh(y)
,

tanh(qy)

tanh(y)
=

(1 + q2)(3µ− ρc2 − µ)

2qµ(3− ρc2

µ − q2)
,

tanh(qy)

tanh(y)
=

(1 + q2)µ(2− ρc2

µ )

2qµ(3− ρc2

µ − q2)
,

tanh(qy)

tanh(y)
=

(1 + q2)2

4q
. (5.1.13)

Equation (5.1.13) gives anti-symmetric dispersion relation and spectrum of the dispersion

curves appears as in Figure 5.2 [24] corresponds to (5.1.10).
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Figure 5.2: Symmetric Lamb modes for an isotropic plate, under incompressibility, in u-y

plane

By inspecting Figure 5.1 and 5.2, it becomes clear that anomalous behaviour of all

Lamb modes has disappeared from the spectrum. Hence there is no anomalous dispersion

in the spectrum of an incompressible isotropic plate.

CASE 2: 1− ρc2

µ < 0 ⇒ µ < ρc2

In this case the last two roots of the auxiliary equation (5.1.3) become pure imaginary,

that is the roots are now written as

m = ±1,±iq, where q =

√
1− ρc2

µ
.

Hence the general solution φ(y) of the equation (5.1.1) or (4.1.13) can be written as

φ(y) = C1e
y + C2e

−y + C3e
iqy + C4e

−iqy.

or

φ(y) = A sinh(y) +B cosh(y) + C sin(qy) +D cos(qy). (5.1.14)

(a) Symmetric dispersion relation:

If we assume that B = D = 0, then the solution (5.1.14) reduces to the following only

φ(y) = A sinh(y) + C sin(qy). (5.1.15)
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With the aid of equations (4.1.12) and (5.1.15) the boundary condition given in equation

(4.1.15), that is

µ(ψ,22 − ψ, 11) = 0,

becomes

A sinh(y)− C sin(qy)q2 +A sinh(y) + C sin(qy) = 0,

2A sinh(y) + C(1− q2) sin(qy) = 0. (5.1.16)

Similarly, using equations (4.1.12) and (5.1.15) in the second boundary condition given by

the equation (4.1.16)

(3µ− ρc2)k2ψ,2 − µψ,222 = 0,

we have

(3µ− ρc2)k2[A sinh(y) + C sin(qy)],2 − µ[A sinh(y) + C sin(qy)],222 = 0,

A cosh(y)(2µ− ρc2) + C cos(py)(3µq − ρc2q + µq2)q = 0. (5.1.17)

For the existence of non-trivial solution of the system of equations (5.1.16) and (5.1.17)

the determinant of the coefficient matrix must be zero, which implies

2 sinh(y)

cosh(y)(2µ− ρc2)
=

(1− q2) sin(qy)

cos(qy)(3µq − ρc2 + µq2)q
,

tanh(y)

tan(qy)
=

(1− q2)2

4q
. (5.1.18)

This is the symmetric dispersion relation for an isotropic plate under incompressibility.

(b)Anti-symmetric dispersion relation: If we assume thatA = C = 0, then the

solution (5.1.14) reduces to the following only

φ(y) = B cosh(y) +D cos(qy) (5.1.19)

With the aid of equations (4.1.12) and (5.1.19) the boundary condition given in equation

(4.1.15), that is

µ(ψ,22 − ψ, 11) = 0,

becomes

[B cosh(y) +D cos(py)q2] + [B cosh(y)−D cos(qy)] = 0,

42



2B cosh(y) +D(1− q2) cos(qy) = 0. (5.1.20)

Similarly, using equations (4.1.12) and (5.1.19) in equation (4.1.16)

(3µ− ρc2)k2ψ,2 − µψ,222 = 0,

we have

(3µ− ρc2)k2[B sinh(y) +D sin(qy)q]− µ[B sinh(y)k3 +D sin(qy)(qk)3] = 0,

B sinh(y)[2µ− ρc2]−D sin(qy)[3µ− ρc2q + µq2]q = 0. (5.1.21)

For the existence of non-trivial solution of the system of equations (5.1.20) and (5.1.21)

the determinant of the coefficient matrix must be zero, which implies

2 cosh(y)

sinh(y)(2µ− ρc2)
=

(1− q2) cos(qy)

− sin(qy)(3µq − ρc2q + µq3)
,

tan(qy)

tanh(y)
=

(1− q2)2

4q
. (5.1.22)

This is an anti-symmetric dispersion relation for an isotropic plate under incompress-

ibility.

CASE 3: 1− ρc2

µ = 0 ⇒ µ = ρc2

In this case the last two roots of the auxiliary equation (5.1.3) become zero, that is the

roots are now written as

m = ±1, 0, 0.

Hence the general solution φ(y) of the equation (5.1.1) or (4.1.13) can be written as

φ(y) = A+By + C cosh(y) +D sinh(y). (5.1.23)

But if we use the solution (5.1.23) of this case (similar to previous cases), we cannot derive

any dispersion relation.

5.2 Analytical behaviour of Lamb modes

Since symmetric dispersion relation for an isotropic incompressible plate is given by equa-

tion (5.1.9), i-e

tanh(y)

tanh(qy)
=

(1 + q2)2

4q
.
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If we insert y = kx2 = kh, where k is the wave number and 2h is the length of isotropic

plate, whereas x2 = ±h on the boundaries. Hence equation (5.1.9) can also be written as

tanh(qkh)

tanh(kh)
=

4q

(1 + q2)2
. (5.2.1)

If define the dimensionless wave number kh by x and normalized velocity c
cT

(cT =
√

µ
ρ )

by y, then equation (5.2.1) becomes

tanh(
√

1− y2x)

tanh(y)
=

4
√

1− y2

(1 + (1− y2)2
,

i tanh(
√

1− y2x)

tanh(y)
=

4i
√

1− y2

(1 + (1− y2)2
,

tan i(
√

1− y2x)

tanh(y)
=

4i
√

1− y2

(2− y2)2
,

tan(
√
y2 − 1x)

tanh(y)
=

4
√
y2 − 1

(2− y2)2
. (5.2.2)

Equation (5.2.2) is the same as equation (4.1.23) that depends only on one parameter and

independent of cL. In terms of u and y equation (5.2.2) becomes

tan(
√
y2 − 1u/y)

tanh(u/y)
=

4
√
y2 − 1

(2− y2)2
(5.2.3)

where u = xy, u denotes the normalized frequency and y is the normalized phase speed.

Analytically the behaviour of modes in Figure 4.1 can be explained by examining the slopes

of all modes, first for large phase velocity, y >> 1, secondly for small phase velocity y .

We rewrite equation (5.2.2) in the form

h(u, y) = tan(
√
y2 − 1u/y)(2− y2)2 − 4 tanh(u/y)

√
y2 − 1 = 0

By approximation, it is clear from equations (4.3.6) and (4.3.11) [15] that all modes end up

with negative slope and there is no anomalous dispersion in the spectrum of an isotropic

incompressible plate.
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Chapter 6

Conclusion

Elastic waves in compressible and incompressible isotropic materials has been studied.

In [20] Ogden and Vinh have studied Rayleigh wave in a compressible orthotropic material

in which an explicit formula is derived which shows speed of Rayleigh waves for orthotropic

reaches its isotropic value for specific ratio of material constant. Then behaviour of Lamb

modes for an isotropic incompressible plate are discussed. Also modified method is used

to derive dispersion relation for Lamb modes for an isotropic incompressible plate. Shapes

of dispersion curves are also plotted which agrees Hussain et al. [15] work.

From this dissertation it is concluded that Lamb modes in case of incompressibility is

similar to the case of compressible materials [3], i-e,

1. Except the lowest S0 mode, all modes asymptotically approach the line C = CT .

2. The lowest mode asymptotically approaches the the line C = CR.

However their behaviour is not similar in following points.

1. From the spectrum, the plateau region disappears.

2. Shapes of the curves is independent of the material.

3. No ZGV mode exist.
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By using mathematica we have computed partial derivatives of g(u, y) with respect to

u and y and these expressions are given as follows

∂g

∂u
=

4i
√
y2 − 1 cos(

u
√
y2−1
y ) cosh(u/y)

y
−
ı̇(2− y2)2

√
y2 − 1 cos(

u
√
y2−1
y ) cosh(u/y)

y

−
ı̇(2− y2)2 sin(

u
√
y2−1
y ) sinh(u/y)

y
−

4ı̇(y2 − 1) sin(
u
√
y2−1
y ) sinh(u/y)

y
, (A.1)

∂g

∂y
=
−4u

√
y2 − 1 cos(

u
√
y2−1
y ) cosh(u/y)

y2

− i(2− y2)2(
u√
y2 − 1

− u
√
y2 − 1

y2
) cos(

u
√
y2 − 1

y
) cosh(u/y)

+ 4iy(2− y2) cosh(u/y) sin(
u
√
y2 − 1

y
) +

4iy sinh(u/y) cos(
u
√
y2−1
y )√

y2 − 1

+
iu(2− y2)2 sinh(u/y) sin(

u
√
y2−1
y )

y2

− i
√
y2 − 1(

u√
y2 − 1

− u
√
y2 − 1

y2
) sinh(u/y) sin(

u
√
y2 − 1

y
). (A.2)

The partial derivative, ∂g
∂y , can be approximated as following

4i
√
y2 − 1 cos(

u
√
y2−1
y ) cosh(u/y)

y
' 4i cos(u) cosh(u/y),

i(2− y2)2
√
y2 − 1 cos(

u
√
y2−1
y ) cosh(u/y)

y
' iy3 cosu cosh(u/y),

i(2− y2)2 sin(
u
√
y2−1
y ) sinh(u/y)

y
' iy3 sinu sinh(u/y),

4i(y2 − 1) sin(
u
√
y2−1
y ) sinh(u/y)

y
' 4iy sinu sinh(u/y).

For large y, we can have

cosh(u/y) ' 1,

sinh(u/y) ' u/y,

hence

4i
√
y2 − 1 cos(

u
√
y2−1
y ) cosh(u/y)

y
' 4i cos(u),
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i(2− y2)2
√
y2 − 1 cos(

u
√
y2−1
y ) cosh(u/y)

y
' iy4 cos(u),

i(2− y2)2 sin(
u
√
y2−1
y ) sinh(u/y)

y
' iuy2 sin(u),

4i(y2 − 1) sin(
u
√
y2−1
y ) sinh(u/y)

y
' 4iu sin(u).

Then Eq. (A.1) becomes

∂g

∂u
' 4i cos(u)− iy4 cos(u)− iuy2 sin(u)− 4iu sin(u),

∂g

∂u
' (4− y4)i cos(u)− (y2 + 1)u sin(u),

∂g

∂u
' −iy4 cos(u)− iy2u sin(u). (A.3)

Now, for ∂g
∂y we shall proceed as follows

4iu
√
y2 − 1 cos(

u
√
y2−1
y ) cosh(u/y)

y2
' 4iu cos(u) cosh(u/y)

y
,

i(2− y2)2(
u√
y2 − 1

− u
√
y2 − 1

y2
) cos(

u
√
y2 − 1

y
) cosh(u/y) ' iuy cos(u) cosh(u/y),

4iy(2− y2) cosh(u/y) sin(
u
√
y2 − 1

y
) ' −4iy3 cosh(u/y) sin(u),

4iy sinh(u/y) cos(
u
√
y2−1
y )√

y2 − 1
' 4i sinh(u/y) cos(u),

iu(2− y2)2 sinh(u/y) sin(
u
√
y2−1
y )

y2
' iuy2 sin(u) sinh(u/y),

i
√
y2 − 1(

u√
y2 − 1

− u
√
y2 − 1

y2
) sinh(u/y) sin(

u
√
y2 − 1

y
) ' −4iu sin(u) sinh(u/y)

y2
.

Using approximations

cosh(u/y) ' 1,

sinh(u/y) ' u/y,

for large y, we can write above expressions as follows

4iu
√
y2 − 1 cos(

u
√
y2−1
y ) cosh(u/y)

y2
' 4iu cos(u)

y
,
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i(2− y2)2(
u√
y2 − 1

− u
√
y2 − 1

y2
) cos(

u
√
y2 − 1

y
) cosh(u/y) ' iuy cos(u),

4iy(2− y2) cosh(u/y) sin(
u
√
y2 − 1

y
) ' −4iy3 sin(u),

4iy sinh(u/y) cos(
u
√
y2−1
y )√

y2 − 1
' 4iu cos(u)

y
,

iu(2− y2)2 sinh(u/y) sin(
u
√
y2−1
y )

y2
' iu2y sin(u),

i
√
y2 − 1(

u√
y2 − 1

− u
√
y2 − 1

y2
) sinh(u/y) sin(

u
√
y2 − 1

y
) ' −4iu2 sin(u)

y3
.

Then Eq. (A.2) becomes

∂g

∂y
' −4iu cos(u)

y
− iuy cos(u)− 4iy3 sin(u) +

4iu cos(u)

y
+ iu2y sin(u)− 4iu2 sin(u)

y3
,

∂g

∂y
' −iuy cos(u)− 4iy3 sin(u) + iu2y sin(u)− 4iu2 sin(u)

y3
,

ignoring last term as it involves 1
y3

, we have

∂g

∂y
' −iuy cos(u)− 4iy3 sin(u). (A.4)
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