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Abstract

N. H. Abel introduced the theory of Integral Equations in 1812. Since then, it has

gained prominence and many other great mathematicians have contributed to the

development of Integral Equations. Integral inequality that gives an explicit bound

to the unknown function provides a handy tool to investigate qualitative properties

of solutions of differential and integral equations. One of the best known and widely

used inequalities in the study of non-linear differential equations is Gronwall-Bellman

inequality.

Gronwall-Bellman inequality play an important role in the area of Integral and

Differential Equations, and is used as a technical tool to prove existence, uniqueness

and stability of a solution and to obtain various estimates for the solutions.

In this thesis we deals with the Gronwall-Bellman type inequalities involving

functions of two independent variables. We study how to obtain optimal bounds

of the unknown functions that satisfy a certain differential or integral inequality.

Also how to generalizes the result of Gronwall-Bellman inequalities to a new type of

retarded inequalities which includes both a nonconstant term outside the integrals

and more than one distinct non-linear integrals. Finally, we extended the work by

choosing suitable function for w, as w(s) = sr in Chapter 3.
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Chapter 1

Introduction to Integral

Inequalities of Gronwall Type

1.1 Introduction

An equation in which an unknown function appears under an integral sign is called

an integral equation, and an inequality which involves integrals is called integral

inequality.

The pioneer of the theory of Integral Equations was N. H. Abel. In 1812, he

formulated the first integral equation, while studing a problem in mechanics. Since

then, several mathematicians have contributed to the development of Integral Equa-

tions. The major work was done in the late eighteenth and early nineteenth century

by J. Liouville, J. Hadamard, V. Volterra, I. Fredholm, E. Goursat, D. Hilbert,

E. Picard, and H. Poincaré. In the year 1911, the first dissertation on Integral

Equations was written by T. Lalescu (see [11]). The integral equations have played

an important role in Pure and Applied Mathematics, with applications in differen-

tial equations, integral equations, partial differential equations, functional analysis,

numerical computations and others (see for example [17] and [19]).

Gronwall inequality plays a fundamental role in the area of Differential and In-

tegral Equations. It is used as a handy tool to prove existence, stability, uniqueness

and other estimates of a solution. In the past few years, due to the importance of
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such inequalities in the theory of differential and integral equations various inves-

tigators have discovered many useful inequalities in order to reach the diversity of

desired goal. For example, the bounds given by Gronwall-Bellman inequality [3, 5]

and its nonlinear generalization due to Bihari [4] are used to a noticeable extent in

the literature, (see for instance [1, 2, 3, 4, 5, 8, 14, 15, 16] and the references cited

therein).

1.2 The Inequalities of Gronwall and Bellman

Some integral inequalities play an important role in the study of the qualitative

behaviour of solutions of differential and integral equations. This section presents the

basic inequality due to Gronwall (1919) and Bellman (1943) which gives numerous

applications in the study of different classes of differential and integral equations.

1.2.1 Gronwall Inequality

Gronwall’s Lemma has two main classes: one is the integral inequalities and second

is the differential inequalities. Both allow one to bound a function on R+ that

satisfies an integral or differential inequality. Thomas Hakon Gronwall (1877−1932)

introduced the Gronwall Lemma in 1919 [5]. It is stated as follows:

Lemma 1.2.1. [5] Let z : [a, a + h] −→ R be a continuous function that satisfies

the inequalities

0 ≤ z(t) ≤
∫ x

a

A+Mz(s)ds, (1.2.1)

for all a ≤ x ≤ a+ h, where A,M ≥ 0 are constants. Then

0 ≤ z(t) ≤ AheMh, (1.2.2)

for all a ≤ t ≤ a+ h. In particular, one has the estimate

z(t) ≤ A(x− a)eM(t−a), (1.2.3)

for all a ≤ t ≤ a+ h.

In terms of differential inequality, it is stated as:
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Lemma 1.2.2. [5] Let I denote an interval of the real line of the form [a,∞) or

[a, b] or [a, b) with a < b. Let g and u be real-valued continuous functions defined on

I. If u is differentiable in the interior Io of I and satisfies the differential inequality

u′(t) ≤ g(t)u(t), t ∈ Io, (1.2.4)

then u is bounded by the solution:

u(t) ≤ u(a) exp

(∫ t

a

g(s)ds

)
, (1.2.5)

for all t ∈ I.

1.2.2 Bellman Inequality

Later, in 1943, Richard Bellman proved the integral form of the Gronwall inequality

[3]. But before that, we quote another form of Gronwall-Bellman inequality which

is widely used in the study of nonlinear differential equations:

Lemma 1.2.3. [1] Let u(t) and g(t) be non-negative continuous functions on an

interval I = [0,∞) satisfying

u(t) ≤ c+

∫ t

a

g(s)u(s)ds, t ∈ I, (1.2.6)

for some constant c ≥ 0, then

u(t) ≤ c exp

(∫ t

a

g(s)ds

)
, t ∈ I. (1.2.7)

Now, the Bellman’s inequality is stated as follows:

Theorem 1.2.4. [3] Let I denote an interval of the real line of the form [a,∞)

or [a, b] or [a, b) with a < b. Let f , g and u be real-valued functions defined on I.

Assume that g and u are continuous and that f is integrable on every closed and

bounded subinterval of I.

(a) If g is non-negative and if u satisfies the integral inequality

u(t) ≤ f(t) +

∫ t

a

g(s)u(s)ds, ∀t ∈ I, (1.2.8)
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then

u(t) ≤ f(t) +

∫ t

a

f(s)g(s) exp

(∫ t

s

g(r)dr

)
ds, t ∈ I. (1.2.9)

(b) If, in addition, the function f is non-decreasing, then

u(t) ≤ f(t) exp

(∫ t

a

g(s)ds

)
, t ∈ I. (1.2.10)

Remark 1.2.1. The above theorem concludes that in Lemma 1.2.3, we may omit

the requirements u(t) and c to be non-negative.

Gronwall inequality also known as Gronwall’s lemma or Gronwall-Bellman in-

equality, provides an explicit bound to the unknown functions and is an important

tool to obtain various estimates in the theory of ordinary and partial differential

equations. The above results are the most influential results in the theory of in-

equalities and a great number of monographs were written on the generalizations

and analogous results of these inequalities (see [1, 6, 8, 14]). The applications of the

Gronwall-Bellman inequality were developed in a remarkable way in the discussion

of the existence, the uniqueness, the stability, boundedness and continuation and

other qualitative properties of the solutions of differential and integral equations.

1.3 The Integral Inequalities of Gronwall’s Type

Gronwall-Bellman inequality has many generalizations, one of them is the Bihari’s

inequality (see [4]), which is the non-linear generalization of Gronwall inequality.

Bihari’s inequality is proved in the year 1956 by Hungarian mathematician Imre

Bihari (1915− 1998). The inequality is stated as:

Theorem 1.3.1. [4] Let u(t) and g(t) be non-negative continuous functions defined

on [0,∞) and let w(t) be a continuous non-decreasing function defined on [0,∞)

and w(u) > 0 on [0,∞). If u satisfies the following integral inequality

u(t) ≤ c+

∫ t

0

g(s)w (u(s)) ds, t ∈ [0,∞), (1.3.1)

5



for some non-negative constant c, then

u(t) ≤ G−1
(
G(c) +

∫ t

0

g(s)ds

)
, t ∈ [0, T ]. (1.3.2)

Where the function G is defined by

G(x) =

∫ x

x0

1

w(y)
dy, x ≥ 0, x0 > 0, (1.3.3)

and G−1 is the inverse function of G and T is chosen so that

G(c) +

∫ t

0

g(s)ds ∈ Dom(G−1), ∀ t ∈ [0, T ]. (1.3.4)

In 1930, a mathematician Reid established the following result:

Theorem 1.3.2. [1] Let u(t) and g(t) be non-negative continuous functions on an

interval [a, b] and suppose

u(t) ≤ c+

∫ t

t0

g(s)u(s)|ds|, t ∈ [a, b], (1.3.5)

for some constant c and t0 ∈ [a, b], then

u(t) ≤ c exp

(∫ t

t0

g(s)|ds|
)
, t ∈ [a, b]. (1.3.6)

Chandirov, a mathematician in 1958 established a corollary and then in 1970, he

proved a theorem which gives the best possible estimate for a function u(t) satisfying

equation (1.3.7). Both of them are given below:

Corollary 1.3.3. [1] Let u(t) and f(t), g(t) and h(t) be continuous functions on

an interval [a, b] and let g(t) and h(t) be non-negative in [a, b], and suppose

u(t) ≤ f(t) +

∫ t

a

[g(s)u(s) + h(s)] ds, t ∈ [a, b], (1.3.7)

then

u(t) ≤

[
sup
s∈[a,t]

f(s) +

∫ t

a

h(s)ds

]
exp

(∫ t

a

g(s)ds

)
, t ∈ [a, b]. (1.3.8)
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Theorem 1.3.4. [1] Let u(t) and f(t), g(t) and h(t) be continuous functions on an

interval [a, b] and let g(t) be non-negative in [a, b], and suppose

u(t) ≤ f(t) +

∫ t

a

[g(s)u(s) + h(s)] ds, t ∈ [a, b],

then

u(t) ≤ f(t) +

∫ t

a

[f(s)g(s) + h(s)] exp

(∫ t

s

g(r)dr

)
ds, t ∈ [a, b]. (1.3.9)

A useful general version of the Lemma 1.2.3 stated in Section 1.2 was given by

B.G. Pachpatte in 1973:

Theorem 1.3.5. [15] Let u(t), f(t) and g(t) be real valued non-negative continuous

functions in a real interval I = [0,∞), for which the inequality

u(t) ≤ c+

∫ t

0

f(s)u(s)ds+

∫ t

0

f(s)

(∫ s

0

g(τ)u(τ)dτ

)
ds, t ∈ I, (1.3.10)

holds, where c is a non-negative constant, then

u(t) ≤ c

[
1 +

∫ t

0

f(s) exp

(∫ s

0

(f(τ) + g(τ)) dτ

)
ds

]
, t ∈ I. (1.3.11)

J. A. Oguntuase obtained a bound on the following integral inequality:

Theorem 1.3.6. [13] Let u(t), g(t) be non-negative continuous functions in a real

interval I = [a, b]. Suppose that k(t, s) and its partial derivatives kt(t, s) exist and

are non-negative continuous functions for almost every t, s ∈ I. If the inequality

u(t) ≤ c+

∫ t

a

g(s)u(s)ds+

∫ t

a

g(s)

(∫ s

a

k(s, τ)u(τ)dτ

)
ds, a ≤ τ ≤ s ≤ t ≤ b,

(1.3.12)

holds, where c is a non-negative constant, then

u(t) ≤ c

[
1 +

∫ t

a

g(s) exp

(∫ s

a

(g(τ) + k(τ, τ)) dτ

)
ds

]
. (1.3.13)

Many new inequalities have been established so far. The author motivated by

the work of Zareen A. Khan and B. G. Pachpatte establishes some new retarded

integral inequalities involving functions of two independent variables. He generalizes

their work, the details of which are given in Chapter 3.
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Chapter 2

On Certain New

Gronwall-Bellman Type Integral

Inequalities of Two Independent

Variables

Due to various motivations, many generalizations and applications of the Lemma

1.2.3, have been established and used extensively. In this chapter, the detailed proofs

of integral inequalities involving functions of two independent variables have been

given. These results can be used as tools in the qualitative theory of certain partial

differential equations.

2.1 Integral Inequalities for Non-decreasing Con-

tinuous Functions

In this section, we proved some lemma’s for non-decreasing continuous functions,

that are useful in our main results (see [6]).

Lemma 2.1.1. Let z(x, y), A(x, y) and B(x, y) be real valued non-negative, non-

8



decreasing continuous functions defined for x, y ∈ R+ and suppose

z(x, y) ≤ 1 +

∫ x

0

A(s, y)z(s, y)ds+

∫ y

0

B(x, t)z(x, t)dt, (2.1.1)

for x, y ∈ R+. Then

z(x, y) ≤ Q(x, y)E(x, y),

where

Q(x, y) = exp

[∫ y

0

B(x, t)E(x, t)dt

]
, (2.1.2)

and

E(x, y) = exp

[∫ x

0

A(s, y)ds

]
. (2.1.3)

Proof. Define

b(x, y) = 1 +

∫ y

0

B(x, t)z(x, t)dt, (2.1.4)

b(x, 0) = 1. (2.1.5)

By substituting (2.1.4) in (2.1.1), we get

z(x, y) ≤ b(x, y) +

∫ x

0

A(s, y)z(s, y)ds. (2.1.6)

Since b(x, y) is positive, monotonic non-decreasing continuous function, therefore

z(x, y)

b(x, y)
≤ 1 +

∫ x

0

A(s, y)
z(s, y)

b(s, y)
ds. (2.1.7)

Let

v(x, y) = 1 +

∫ x

0

A(s, y)
z(s, y)

b(s, y)
ds, (2.1.8)

v(0, y) = 1. (2.1.9)

From (2.1.7) and (2.1.8), we have

z(x, y)

b(x, y)
≤ v(x, y). (2.1.10)

Differentiating (2.1.8) w.r.t. x implies

vx(x, y) = A(x, y)
z(x, y)

b(x, y)
.
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Now using (2.1.10), we have

vx(x, y) ≤ A(x, y)v(x, y).

This implies
vx(x, y)

v(x, y)
≤ A(x, y). (2.1.11)

Keeping y fixed, set x = s and integrate from 0 to x, we get

ln v(x, y) ≤
∫ x

0

A(s, y)ds.

This implies

v(x, y) ≤ exp

[∫ x

0

A(s, y)ds

]
= E(x, y). (2.1.12)

From (2.1.10) and (2.1.12) we have

z(x, y) ≤ b(x, y)E(x, y). (2.1.13)

Differentiating (2.1.4) w.r.t. y implies

by(x, y) = B(x, y)z(x, y). (2.1.14)

Now substituting (2.1.13) in (2.1.14)

by(x, y) ≤ B(x, y)b(x, y)E(x, y).

This implies
by(x, y)

b(x, y)
≤ B(x, y)E(x, y).

Now keeping x fixed, set y = t and integrate from 0 to y, we get

ln b(x, y) ≤
∫ y

0

B(x, t)E(x, t)dt,

b(x, y) ≤ exp

[∫ y

0

B(x, t)E(x, t)dt

]
= Q(x, y). (2.1.15)

From (2.1.13) and (2.1.15), we have

z(x, y) ≤ E(x, y)Q(x, y). (2.1.16)
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Lemma 2.1.2. Let z(x, y), A(x, y), B(x, y) and m(x, y) be real valued non-negative,

non-decreasing continuous functions defined for x, y ∈ R+, 0 < p < 1 and suppose

z(x, y) ≤ 1 +

∫ x

0

A(s, y)z(s, y)ds+

∫ y

0

B(x, t)mp−1(x, t)zp(x, t)dt, (2.1.17)

for x, y ∈ R+. Then

z(x, y) ≤ Q1(x, y)E(x, y),

where

Q1(x, y) =

[
1 + (1− p)

∫ y

0

B(x, t)mp−1(x, t)Ep(x, t)dt

] 1
1−p

, (2.1.18)

and E(x, y) is defined as (2.1.3).

Proof. Define

b(x, y) = 1 +

∫ y

0

B(x, t)mp−1(x, t)zp(x, t)dt, (2.1.19)

b(x, 0) = 1. (2.1.20)

By substituting (2.1.19) in (2.1.17), we get

z(x, y) ≤ b(x, y) +

∫ x

0

A(s, y)z(s, y)ds. (2.1.21)

Now following the same steps from (2.1.6) to (2.1.13) as in Lemma 2.1.1, we have

z(x, y) ≤ b(x, y)E(x, y). (2.1.22)

Differentiating (2.1.19) w.r.t. y implies

by(x, y) = B(x, y)mp−1(x, y)zp(x, y). (2.1.23)

Now substituting (2.1.22) in (2.1.23)

by(x, y) ≤ B(x, y)mp−1(x, y)bp(x, y)Ep(x, y). (2.1.24)

This implies
by(x, y)

bp(x, y)
≤ B(x, y)mp−1(x, y)Ep(x, y).
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Now by keeping x fixed, set y = t and integrate from 0 to y, and using (2.1.20), we

get
1

1− p
[
b1−p(x, y)− 1

]
≤
∫ y

0

B(x, t)mp−1(x, t)Ep(x, t)dt,

b(x, y) ≤
[
1 + (1− p)

∫ y

0

B(x, t)mp−1(x, t)Ep(x, t)dt

] 1
1−p

= Q1(x, y). (2.1.25)

From (2.1.22) and (2.1.25), we get

z(x, y) ≤ E(x, y)Q1(x, y). (2.1.26)

Lemma 2.1.3. Let z(x, y), A(x, y), B(x, y) and m(x, y) be real valued non-negative,

non-decreasing continuous functions defined for x, y ∈ R+, 0 < p < 1 and suppose

z(x, y) ≤ 1 +

∫ x

0

A(s, y)mp−1(s, y)zp(s, y)ds+

∫ y

0

B(x, t)mp−1(x, t)zp(x, t)dt,

(2.1.27)

for x, y ∈ R+. Then

z(x, y) ≤ Q3(x, y)E2(x, y),

where

E2(x, y) =

[
1 + (1− p)

∫ x

0

A(s, y)mp−1(s, y)Qp
3(s, y)ds

] 1
1−p

, (2.1.28)

and

Q3(x, y) =

[
1 + (1− p)

∫ y

0

B(x, t)mp−1(x, t)bp−1(x, t)dt

] 1
1−p

. (2.1.29)

Proof. Define

b(x, y) = 1 +

∫ x

0

A(s, y)mp−1(s, y)zp(s, y)ds, (2.1.30)

b(0, y) = 1. (2.1.31)

By substituting (2.1.30) in (2.1.27), we get

z(x, y) ≤ b(x, y) +

∫ y

0

B(x, t)mp−1(x, t)zp(x, t)dt. (2.1.32)
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Since b(x, y) is positive, monotonic non-decreasing continuous function, therefore

z(x, y)

b(x, y)
≤ 1 +

∫ y

0

B(x, t)mp−1(x, t)
zp(x, t)

b(x, t)
dt. (2.1.33)

Let

v(x, y) = 1 +

∫ y

0

B(x, t)mp−1(x, t)
zp(x, t)

b(x, t)
dt, (2.1.34)

v(x, 0) = 1. (2.1.35)

From (2.1.33) and (2.1.34), we have

z(x, y)

b(x, y)
≤ v(x, y). (2.1.36)

Differentiating (2.1.34) w.r.t. y implies

vy(x, y) = B(x, y)mp−1(x, y)
zp(x, y)

b(x, y)
. (2.1.37)

Now using (2.1.36), we have

vy(x, y) ≤ B(x, y)mp−1(x, y)bp−1(x, y)vp(x, y).

This implies
vy(x, y)

vp(x, y)
≤ B(x, y)mp−1(x, y)bp−1(x, y). (2.1.38)

Keeping x fixed, set y = t and integrate from 0 to y, we get

1

1− p
[
v1−p(x, y)− 1

]
≤
∫ y

0

B(x, t)mp−1(x, t)bp−1(x, t)dt,

v(x, y) ≤
[
1 + (1− p)

∫ y

0

B(x, t)mp−1(x, t)bp−1(x, t)dt

] 1
1−p

= Q3(x, y). (2.1.39)

From (2.1.36) and (2.1.39), we have

z(x, y) ≤ b(x, y)Q3(x, y). (2.1.40)

Differentiating (2.1.30) w.r.t. x implies

bx(x, y) = A(x, y)mp−1(x, y)zp(x, y). (2.1.41)
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Now substituting (2.1.40) in (2.1.41)

bx(x, y) ≤ A(x, y)mp−1(x, y)bp(x, y)Q3
p(x, y).

This implies
by(x, y)

bp(x, y)
≤ A(x, y)mp−1(x, y)Q3

p(x, y).

Now by keeping y fixed, set x = s and integrate from 0 to x, and using (2.1.31), we

get
1

1− p
[
b1−p(x, y)− 1

]
≤
∫ x

0

A(s, y)mp−1(s, y)Q3
p(s, y)ds,

b(x, y) ≤
[
1 + (1− p)

∫ x

0

A(s, y)mp−1(s, y)Q3
p(s, y)ds

] 1
1−p

= E2(x, y). (2.1.42)

From (2.1.40) and (2.1.42), we have

z(x, y) ≤ E2(x, y)Q3(x, y). (2.1.43)

2.2 Gronwall-Bellman Type Integral Inequalities

of Two Independent Variables

Theorem 2.2.1. Let Φ(x, y), A(x, y), B(x, y) and H(x, y) be real valued non-

negative, non-decreasing continuous functions defined for x, y ∈ R+, c > 0 and

suppose

Φ(x, y) ≤ c+

∫ x

0

A(s, y)Φ(s, y)ds+

∫ y

0

B(x, t)Φ(x, t)dt+

∫ x

0

∫ y

0

H(s, t)Φ(s, t)ds dt,

(2.2.1)

for x, y ∈ R+. Then

Φ(x, y) ≤ cQ(x, y)E(x, y) exp

[∫ x

0

∫ y

0

H(s, t)Q(s, t)E(s, t)ds dt

]
.

Where Q(x, y) and E(x, y) are defined as in (2.1.2) and (2.1.3) respectively.
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Proof. Define

m(x, y) = c+

∫ x

0

∫ y

0

H(s, t)Φ(s, t)ds dt, (2.2.2)

m(x, 0) = m(0, y) = c, mx(x, 0) = my(0, y) = 0. (2.2.3)

By substituting (2.2.2) in (2.2.1), we get

Φ(x, y) ≤ m(x, y) +

∫ x

0

A(s, y)Φ(s, y)ds+

∫ y

0

B(x, t)Φ(x, t)dt. (2.2.4)

Since m(x, y) is positive, non-decreasing continuous function, therefore

Φ(x, y)

m(x, y)
≤ 1 +

∫ x

0

A(s, y)
Φ(s, y)

m(s, y)
ds+

∫ y

0

B(x, t)
Φ(x, t)

m(x, t)
dt. (2.2.5)

Let

z(x, y) = 1 +

∫ x

0

A(s, y)
Φ(s, y)

m(s, y)
ds+

∫ y

0

B(x, t)
Φ(x, t)

m(x, t)
dt, (2.2.6)

then,

z(0, 0) = 1. (2.2.7)

Substituting (2.2.6) in (2.2.5), implies

Φ(x, y)

m(x, y)
≤ z(x, y). (2.2.8)

Also from (2.2.6) and (2.2.8), we have

z(x, y) ≤ 1 +

∫ x

0

A(s, y)z(s, y)ds+

∫ y

0

B(x, t)z(x, t)dt. (2.2.9)

Using Lemma 2.1.1, we have

z(x, y) ≤ E(x, y)Q(x, y). (2.2.10)

Substituting (2.2.10) in (2.2.8), we get

Φ(x, y)

m(x, y)
≤ E(x, y)Q(x, y),

Φ(x, y) ≤ E(x, y)Q(x, y)m(x, y). (2.2.11)

Differentiating (2.2.2) w.r.t x and y, we have

mxy(x, y) = H(x, y)Φ(x, y),
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using (2.2.11), we have

mxy(x, y) ≤ H(x, y)E(x, y)Q(x, y)m(x, y).

This implies
mxy(x, y)

m(x, y)
≤ H(x, y)E(x, y)Q(x, y),

mxy(x, y)m(x, y)

m2(x, y)
− mx(x, y)my(x, y)

m2(x, y)
≤ H(x, y)E(x, y)Q(x, y),

∂

∂y

[
mx(x, y)

m(x, y)

]
≤ H(x, y)E(x, y)Q(x, y). (2.2.12)

By keeping y fixed, set x = s, in (2.2.12) and integrate from 0 to x, using

d

dy

∫ b

a

f(x, y)dx =

∫ b

a

∂

∂y
f(x, y)dx, (2.2.13)

and (2.2.3), we have

d

dy
[lnm(x, y)] ≤

∫ x

0

H(s, y)E(s, y)Q(s, y)ds.

Again keeping x fixed, set y = t, in the above inequality and integrate from 0 to y,

using (2.2.3), we obtain

ln

[
m(x, y)

c

]
≤
∫ x

0

∫ y

0

H(s, t)E(s, t)Q(s, t)ds dt.

This implies

m(x, y) ≤ c exp

[∫ x

0

∫ y

0

H(s, t)E(s, t)Q(s, t)ds dt

]
.

Substituting the above bound in (2.2.11), we have

Φ(x, y) ≤ cE(x, y)Q(x, y) exp

[∫ x

0

∫ y

0

H(s, t)E(s, t)Q(s, t)ds dt

]
.

Theorem 2.2.2. Let Φ(x, y), A(x, y), B(x, y) and H(x, y) be real valued non-

negative, non-decreasing continuous functions defined for x, y ∈ R+, c > 0 and

0 < p < 1 are constants and suppose

Φ(x, y) ≤ c+

∫ x

0

A(s, y)Φ(s, y)ds+

∫ y

0

B(x, t)Φ(x, t)dt+

∫ x

0

∫ y

0

H(s, t)Φp(s, t)ds dt,

(2.2.14)
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for x, y ∈ R+. Then

Φ(x, y) ≤ Q(x, y)E(x, y)

[
c1−p + (1− p)

∫ x

0

∫ y

0

H(s, t)Qp(s, t)Ep(s, t)ds dt

] 1
1−p

.

(2.2.15)

Where Q(x, y) and E(x, y) are defined in (2.1.2) and (2.1.3).

Proof. Define

m(x, y) = c+

∫ x

0

∫ y

0

H(s, t)Φp(s, t)ds dt, (2.2.16)

m(x, 0) = m(0, y) = c, mx(x, 0) = my(0, y) = 0. (2.2.17)

By substituting (2.2.16) in (2.2.14), we get

Φ(x, y) ≤ m(x, y) +

∫ x

0

A(s, y)Φ(s, y)ds+

∫ y

0

B(x, t)Φ(x, t)dt.

Now following the same steps from (2.2.4) to (2.2.11) as in Theorem 2.2.1, we have

Φ(x, y) ≤ E(x, y)Q(x, y)m(x, y). (2.2.18)

Differentiating (2.2.16) w.r.t x and y, we have

mxy(x, y) = H(x, y)Φp(x, y).

Using (2.2.18), we have

mxy(x, y) ≤ H(x, y)Ep(x, y)Qp(x, y)mp(x, y).

This implies
mxy(x, y)

mp(x, y)
≤ H(x, y)Ep(x, y)Qp(x, y),

mxy(x, y)m(x, y)

mp+1(x, y)
− mx(x, y)my(x, y)

mp+1(x, y)
≤ H(x, y)Ep(x, y)Qp(x, y),

∂

∂y

[
mx(x, y)

mp(x, y)

]
≤ H(x, y)Ep(x, y)Qp(x, y). (2.2.19)

By keeping y fixed, set x = s, in (2.2.19) and integrate from 0 to x, using (2.2.13)

and (2.2.17), we have

d

dy

[[
m1−p(x, y)− cm−p(x, y)

]
+ p

∫ x

0

m−p(s, y)− cm−1−p(s, y)ds

]
≤ C,
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d

dy

[
m1−p(x, y) +

p

1− p
m1−p(x, y)− p

1− p
c1−p − c1−p

]
≤ C,

d

dy

[
1

1− p
[
m1−p(x, y)− c1−p

]]
≤ C.

Where

C =

∫ x

0

H(s, y)Ep(s, y)Qp(s, y)ds.

Again keeping x fixed, set y = t, in the last inequality and integrate from 0 to

y, using (2.2.17), we obtain

1

1− p
[
m1−p(x, y)− c1−p

]
≤
∫ x

0

∫ y

0

H(s, t)Ep(s, t)Qp(s, t)ds dt,

this implies

m(x, y) ≤
[
c1−p + (1− p)

∫ x

0

∫ y

0

H(s, t)Ep(s, t)Qp(s, t)ds dt

] 1
1−p

,

substituting the above bound in (2.2.18), we have

Φ(x, y) ≤ E(x, y)Q(x, y)

[
c1−p + (1− p)

∫ x

0

∫ y

0

H(s, t)Ep(s, t)Qp(s, t)ds dt

]
.

2.3 Generalization of Gronwall-Bellman Type In-

tegral Inequalities of Two Independent Vari-

ables

Theorem 2.3.1. Let Φ(x, y), A(x, y), B(x, y) and H(x, y) be real valued non-

negative, non-decreasing continuous functions defined for x, y ∈ R+, c > 0 and

0 < p < 1 are constants and suppose

Φ(x, y) ≤ c+

∫ x

0

A(s, y)Φ(s, y)ds+

∫ y

0

B(x, t)Φp(x, t)dt+

∫ x

0

∫ y

0

H(s, t)Φp(s, t)ds dt,

(2.3.1)
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for x, y ∈ R+. Then

Φ(x, y) ≤ Q1(x, y)E(x, y)

[
c1−p + (1− p)

∫ x

0

∫ y

0

H(s, t)Q1
p(s, t)Ep(s, t)ds dt

] 1
1−p

.

(2.3.2)

Where E(x, y) is defined as in (2.1.3) of Lemma 2.1.1 and Q1(x, y) is defined as in

(2.1.18) of Lemma 2.1.2.

Proof. Define

m(x, y) = c+

∫ x

0

∫ y

0

H(s, t)Φp(s, t)ds dt, (2.3.3)

m(x, 0) = m(0, y) = c, mx(x, 0) = my(0, y) = 0. (2.3.4)

By substituting (2.3.3) in (2.3.1), we get

Φ(x, y) ≤ m(x, y) +

∫ x

0

A(s, y)Φ(s, y)ds+

∫ y

0

B(x, t)Φp(x, t)dt. (2.3.5)

Since m(x, y) is positive, non-decreasing continuous function, therefore

Φ(x, y)

m(x, y)
≤ 1 +

∫ x

0

A(s, y)
Φ(s, y)

m(s, y)
ds+

∫ y

0

B(x, t)
Φp(x, t)

m(x, t)
dt. (2.3.6)

Let

z(x, y) = 1 +

∫ x

0

A(s, y)
Φ(s, y)

m(s, y)
ds+

∫ y

0

B(x, t)
Φp(x, t)

m(x, t)
dt, (2.3.7)

then,

z(0, 0) = 1. (2.3.8)

Substituting (2.3.7) in (2.3.6), implies

Φ(x, y)

m(x, y)
≤ z(x, y). (2.3.9)

Also from (2.3.7) and (2.3.9), we have

z(x, y) ≤ 1 +

∫ x

0

A(s, y)z(s, y)ds+

∫ y

0

B(x, t)mp−1(x, t)zp(x, t)dt, (2.3.10)

where
Φp(x, y)

m(x, y)
≤ mp−1(x, y)zp(x, y). (2.3.11)
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Using Lemma 2.1.2, implies

z(x, y) ≤ E(x, y)Q1(x, y). (2.3.12)

By substituting from (2.3.12) in (2.3.9), we get

Φ(x, y)

m(x, y)
≤ E(x, y)Q1(x, y), (2.3.13)

this implies

Φ(x, y) ≤ E(x, y)Q1(x, y)m(x, y). (2.3.14)

Differentiating (2.3.3) w.r.t x and y, we have

mxy(x, y) = H(x, y)Φp(x, y),

using (2.3.14), we have

mxy(x, y) ≤ H(x, y)Ep(x, y)Q1
p(x, y)mp(x, y).

This implies
mxy(x, y)

mp(x, y)
≤ H(x, y)Ep(x, y)Q1

p(x, y),

mxy(x, y)m(x, y)

mp+1(x, y)
− mx(x, y)my(x, y)

mp+1(x, y)
≤ H(x, y)Ep(x, y)Q1

p(x, y),

∂

∂y

[
mx(x, y)

mp(x, y)

]
≤ H(x, y)Ep(x, y)Q1

p(x, y). (2.3.15)

By keeping y fixed, set x = s, in (2.3.15) and integrate from 0 to x, using (2.2.13)

and (2.3.4), we have

d

dy

[[
m1−p(x, y)− cm−p(x, y)

]
+ p

∫ x

0

m−p(s, y)− cm−1−p(s, y)ds

]
≤ D,

d

dy

[
m1−p(x, y) +

p

1− p
m1−p(x, y)− p

1− p
c1−p − c1−p

]
≤ D,

d

dy

[
1

1− p
[
m1−p(x, y)− c1−p

]]
≤ D.

Where

D =

∫ x

0

H(s, y)Ep(s, y)Q1
p(s, y)ds.
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Again keeping x fixed, set y = t, in the last inequality and integrate from 0 to y,

using (2.3.4), we obtain

1

1− p
[
m1−p(x, y)− c1−p

]
≤
∫ x

0

∫ y

0

H(s, t)Ep(s, t)Q1
p(s, t)ds dt,

this implies

m(x, y) ≤
[
c1−p + (1− p)

∫ x

0

∫ y

0

H(s, t)Ep(s, t)Q1
p(s, t)ds dt

] 1
1−p

,

substituting the above bound in (2.3.14), we have

Φ(x, y) ≤ E(x, y)Q1(x, y)

[
c1−p + (1− p)

∫ x

0

∫ y

0

H(s, t)Ep(s, t)Q1
p(s, t)ds dt

] 1
1−p

.

Theorem 2.3.2. Let Φ(x, y), A(x, y), B(x, y) and H(x, y) be real valued non-

negative, non-decreasing continuous functions defined for x, y ∈ R+, c > 0 and

0 < p < 1 are constants and suppose

Φ(x, y) ≤ c+

∫ x

0

A(s, y)Φp(s, y)ds+

∫ y

0

B(x, t)Φ(x, t)dt+

∫ x

0

∫ y

0

H(s, t)Φp(s, t)ds dt,

(2.3.16)

for x, y ∈ R+. Then

Φ(x, y) ≤ Q2(x, y)E1(x, y)

[
c1−p + (1− p)

∫ x

0

∫ y

0

H(s, t)Q2
p(s, t)E1

p(s, t)ds dt

] 1
1−p

,

where

Q2(x, y) = exp

[∫ y

0

B(x, t)dt

]
, (2.3.17)

E1(x, y) =

[
1 + (1− p)

∫ x

0

A(s, y)Q2
p(s, y)mp−1(s, y)ds

] 1
1−p

. (2.3.18)

Proof. Define

m(x, y) = c+

∫ x

0

∫ y

0

H(s, t)Φp(s, t)ds dt, (2.3.19)

m(x, 0) = m(0, y) = c, mx(x, 0) = my(0, y) = 0. (2.3.20)
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By substituting (2.3.19) in (2.3.16), we get

Φ(x, y) ≤ m(x, y) +

∫ x

0

A(s, y)Φp(s, y)ds+

∫ y

0

B(x, t)Φ(x, t)dt. (2.3.21)

Since m(x, y) is positive, non-decreasing continuous function, therefore

Φ(x, y)

m(x, y)
≤ 1 +

∫ x

0

A(s, y)
Φp(s, y)

m(s, y)
ds+

∫ y

0

B(x, t)
Φ(x, t)

m(x, t)
dt. (2.3.22)

Let

z(x, y) = 1 +

∫ x

0

A(s, y)
Φp(s, y)

m(s, y)
ds+

∫ y

0

B(x, t)
Φ(x, t)

m(x, t)
dt, (2.3.23)

then,

z(0, 0) = 1. (2.3.24)

Substituting (2.3.23) in (2.3.22), implies

Φ(x, y)

m(x, y)
≤ z(x, y). (2.3.25)

Also from (2.3.23) and (2.3.25), we have

z(x, y) ≤ 1 +

∫ x

0

A(s, y)mp−1(s, y)zp(s, y)ds+

∫ y

0

B(x, t)z(x, t)dt. (2.3.26)

Where we have used equation (2.3.11). Now by interchanging A(x, y) by B(x, y)

and the limits of integration in Lemma 2.1.2, and following the same steps as before

we get the result:

z(x, y) ≤ E1(x, y)Q2(x, y). (2.3.27)

Where E1(x, y) and Q2(x, y) are defined as (2.3.18) and (2.3.17) respectively. Now

by substituting (2.3.27) in (2.3.25), we get

Φ(x, y)

m(x, y)
≤ E1(x, y)Q2(x, y),

this implies

Φ(x, y) ≤ E1(x, y)Q2(x, y)m(x, y). (2.3.28)

Differentiating (2.3.19) w.r.t x and y, we have

mxy(x, y) = H(x, y)Φp(x, y),
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using (2.3.28), we have

mxy(x, y) ≤ H(x, y)E1
p(x, y)Q2

p(x, y)mp(x, y).

This implies
mxy(x, y)

mp(x, y)
≤ H(x, y)E1

p(x, y)Q2
p(x, y),

mxy(x, y)m(x, y)

mp+1(x, y)
− mx(x, y)my(x, y)

mp+1(x, y)
≤ H(x, y)E1

p(x, y)Q2
p(x, y),

∂

∂y

[
mx(x, y)

mp(x, y)

]
≤ H(x, y)E1

p(x, y)Q2
p(x, y). (2.3.29)

By keeping y fixed, set x = s, in (2.3.29) and integrate from 0 to x, using (2.2.13)

and (2.3.20), we have

d

dy

[
1

1− p
[
m1−p(x, y)− c1−p

]]
≤
∫ x

0

H(s, y)E1
p(s, y)Q2

p(s, y)ds.

Again keeping x fixed, set y = t, in the above inequality and integrate from 0 to y,

using (2.3.20), we obtain

1

1− p
[
m1−p(x, y)− c1−p

]
≤
∫ x

0

∫ y

0

H(s, t)E1
p(s, t)Q2

p(s, t)ds dt.

This implies

m(x, y) ≤
[
c1−p + (1− p)

∫ x

0

∫ y

0

H(s, t)E1
p(s, t)Q2

p(s, t)ds dt

] 1
1−p

,

substituting the above bound in (2.3.28), we have

Φ(x, y) ≤ E1(x, y)Q2(x, y)

[
c1−p + (1− p)

∫ x

0

∫ y

0

H(s, t)E1
p(s, t)Q2

p(s, t)ds dt

] 1
1−p

.

Theorem 2.3.3. Let Φ(x, y), A(x, y), B(x, y) and H(x, y) be real valued non-

negative, non-decreasing continuous functions defined for x, y ∈ R+, c > 0 and

0 < p < 1 are constants and suppose

Φ(x, y) ≤ c+

∫ x

0

A(s, y)Φp(s, y)ds+

∫ y

0

B(x, t)Φp(x, t)dt+

∫ x

0

∫ y

0

H(s, t)Φp(s, t)ds dt,

(2.3.30)
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for x, y ∈ R+. Then

Φ(x, y) ≤ Q3(x, y)E2(x, y)

[
c1−p + (1− p)

∫ x

0

∫ y

0

H(s, t)Q3
p(s, t)E2

p(s, t)ds dt

] 1
1−p

.

(2.3.31)

Where Q3(x, y), E2(x, y) are defined as in (2.1.29) and (2.1.28) respectively.

Proof. Define

m(x, y) = c+

∫ x

0

∫ y

0

H(s, t)Φp(s, t)ds dt, (2.3.32)

m(x, 0) = m(0, y) = c, mx(x, 0) = my(0, y) = 0. (2.3.33)

By substituting (2.3.32) in (2.3.30), we get

Φ(x, y) ≤ m(x, y) +

∫ x

0

A(s, y)Φp(s, y)ds+

∫ y

0

B(x, t)Φp(x, t)dt. (2.3.34)

Since m(x, y) is positive, non-decreasing continuous function, therefore

Φ(x, y)

m(x, y)
≤ 1 +

∫ x

0

A(s, y)
Φp(s, y)

m(s, y)
ds+

∫ y

0

B(x, t)
Φp(x, t)

m(x, t)
dt. (2.3.35)

Let

z(x, y) = 1 +

∫ x

0

A(s, y)
Φp(s, y)

m(s, y)
ds+

∫ y

0

B(x, t)
Φp(x, t)

m(x, t)
dt, (2.3.36)

then,

z(0, 0) = 1. (2.3.37)

Substituting (2.3.36) in (2.3.35), implies

Φ(x, y)

m(x, y)
≤ z(x, y). (2.3.38)

Also from (2.3.36) and (2.3.38), we have

z(x, y) ≤ 1 +

∫ x

0

A(s, y)mp−1(s, y)zp(s, y)ds+

∫ y

0

B(x, t)mp−1(x, t)zp(x, t)dt.

(2.3.39)

Where we have used the equation (2.3.11). Now by using Lemma 2.1.3, we get

z(x, y) ≤ E2(x, y)Q3(x, y). (2.3.40)
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Substituting (2.3.40) in (2.3.38), we get

Φ(x, y)

m(x, y)
≤ E2(x, y)Q3(x, y).

This implies

Φ(x, y) ≤ E2(x, y)Q3(x, y)m(x, y). (2.3.41)

Differentiating (2.3.32) w.r.t x and y, we have

mxy(x, y) = H(x, y)Φp(x, y),

using (2.3.41), we have

mxy(x, y) ≤ H(x, y)E2
p(x, y)Q3

p(x, y)mp(x, y),

this implies
mxy(x, y)

mp(x, y)
≤ H(x, y)E2

p(x, y)Q3
p(x, y),

mxy(x, y)m(x, y)

mp+1(x, y)
− mx(x, y)my(x, y)

mp+1(x, y)
≤ H(x, y)E2

p(x, y)Q3
p(x, y),

∂

∂y

[
mx(x, y)

mp(x, y)

]
≤ H(x, y)E2

p(x, y)Q3
p(x, y). (2.3.42)

By keeping y fixed, set x = s, in (2.3.42) and integrate from 0 to x, using (2.2.13)

and (2.3.33), we have

d

dy

[
1

1− p
[
m1−p(x, y)− c1−p

]]
≤
∫ x

0

H(s, y)E2
p(s, y)Q3

p(s, y)ds.

Again keeping x fixed, set y = t, in the above inequality and integrate from 0 to y,

using (2.3.33), we obtain

1

1− p
[
m1−p(x, y)− c1−p

]
≤
∫ x

0

∫ y

0

H(s, t)E2
p(s, t)Q3

p(s, t)ds dt,

which implies

m(x, y) ≤
[
c1−p + (1− p)

∫ x

0

∫ y

0

H(s, t)E2
p(s, t)Q3

p(s, t)ds dt

] 1
1−p

,

substituting the above bound in (2.3.41), we have

Φ(x, y) ≤ E2(x, y)Q3(x, y)

[
c1−p + (1− p)

∫ x

0

∫ y

0

H(s, t)E2
p(s, t)Q3

p(s, t)ds dt

] 1
1−p

.
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Chapter 3

On Some New Retarded Integral

Inequalities of Gronwall-Bihari

Type in Two Independent

Variables

Various linear and non-linear generalizations of Gronwall inequality have been estab-

lished, and vast numbers of monographs have been dedicated on these inequalities

and their applications (see for instance [1, 7, 10, 12, 15] and many more). In the

past few years, some new inequalities have been discovered and many authors have

generalized these inequalities to more than one variable such as [8, 9, 18, 20, 21].

This chapter is concerned with some new generalized retarded non-linear integral in-

equalities arising from well-known Gronwall-Bellman inequality and Bihari integral

inequality. The established integral inequalities involve functions of two independent

variables and are a generalized version of [6] and [16].
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3.1 Retarded Integral Inequalities of Gronwall-

Bihari Type in Two Independent Variables

The Lemma 3.1.1 proved below, is a generalized form of Gronwall-Bellman type

inequality with retardation and is useful in our main results. Before stating the

lemma, we will define some notations as follows: X and Y are any two subsets of

R+. Intervals I, J of R+ are defined as: I = [x0, X), J = [y0, Y ) and I = I × J .

Lemma 3.1.1. Let c, Φ and a ∈ C(I,R+) be non-negative continuous functions

with c(x) is non-decreasing function for x ∈ I and assume that α ∈ C1(I, I) be

non-decreasing with α(x) ≤ x on I. Suppose that q ≥ p > 0 are constants. If Φ(x)

satisfies the inequality:

Φq(x) ≤ c(x) +

∫ α(x)

α(x0)

a(s)Φp(s)ds, (3.1.1)

for x0 ≤ s ≤ x, then the following inequalities are true

(1) If p = q

Φ(x) ≤ c1/p(x) exp

(
1

p

∫ α(x)

α(x0)

a(s)ds

)
. (3.1.2)

(2) If p < q

Φ(x) ≤ c1/q(x)

[
1 +

q − p
q

∫ α(x)

α(x0)

c
(p−q)

q (s)a(s)ds

] 1
q−p

, (3.1.3)

for x ∈ I.

Proof. For c(x) > 0

(1) If p = q holds, letting

z(x) =

[
φ(x)

c1/p(x)

]p
. (3.1.4)

Substituting (3.1.4) in (3.1.1), gives

z(x) ≤ 1 +

∫ α(x)

α(x0)

a(s)z(s)ds, (3.1.5)
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for x ∈ I. Let

v(x) = 1 +

∫ α(x)

α(x0)

a(s)z(s)ds. (3.1.6)

Where v(x) is a positive, continuous and non-decreasing function and also

v(x0) = 1. (3.1.7)

Putting (3.1.6) in (3.1.5), we get

z(x) ≤ v(x). (3.1.8)

Now differentiating (3.1.6) w.r.t. x, using fundamental theorem of calculus,

we obtain

v′(x) = α′(x)a(α(x))z(α(x)), (3.1.9)

since α(x) ≤ x on I, from (3.1.8), we have

v′(x) ≤ α′(x)a(α(x))z(x),

≤ α′(x)a(α(x))v(x).

This implies
v′(x)

v(x)
≤ α′(x)a(α(x)), x ∈ I. (3.1.10)

By integration of (3.1.10) from x0 to x, then we have

ln v(x) ≤
∫ α(x)

α(x0)

a(s)ds.

Using (3.1.8), we get

ln z(x) ≤
∫ α(x)

α(x0)

a(s)ds.

This implies

ln

[
φ(x)

c1/p(x)

]p
= ln z(x) ≤

∫ α(x)

α(x0)

a(s)ds.

Hence, we obtain

p ln

[
φ(x)

c1/p(x)

]
≤
∫ α(x)

α(x0)

a(s)ds.

This inequality implies the desired inequality (3.1.2).

Φ(x) ≤ c1/p(x) exp

(
1/p

∫ α(x)

α(x0)

a(s)ds

)
.
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(2) If p < q, letting

y(x) =
φ(x)

c1/q(x)
. (3.1.11)

Substituting (3.1.11) in (3.1.1), gives

yq(x) ≤ 1 +

∫ α(x)

α(x0)

a(s)yp(s)c
(p−q)

q (s)ds. (3.1.12)

Let

h(x) = 1 +

∫ α(x)

α(x0)

a(s)yp(s)c
(p−q)

q (s)ds. (3.1.13)

Where h(x) is a positive, continuous and non-decreasing function and also

h(x0) = 1. (3.1.14)

Putting (3.1.13) in (3.1.12), we get

yq(x) ≤ h(x),

y(x) ≤ h1/q(x). (3.1.15)

Now differentiating (3.1.13) w.r.t. x, using fundamental theorem of calculus,

α(x) ≤ x on I and (3.1.15), we have obtain

h′(x) = α′(x)a(α(x))c
(p−q)

q (α(x))yp(α(x)),

≤ α′(x)a(α(x))c
(p−q)

q (α(x))yp(x),

≤ α′(x)a(α(x))c
(p−q)

q (α(x))hp/q(x). (3.1.16)

This implies

h′(x)

hp/q(x)
≤ α′(x)a(α(x))c

(p−q)
q (α(x)), x ∈ I. (3.1.17)

By integration of (3.1.17) from x0 to x, we have

q

q − p

[
h

(q−p)
q (x)− 1

]
≤
∫ α(x)

α(x0)

a(s)c
(p−q)

q (α(x))ds,

h
(q−p)

q (x) ≤ 1 +
q − p
q

∫ α(x)

α(x0)

a(s)c
(p−q)

q (α(x))ds.
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Using (3.1.15), we get

y(q−p)(x) ≤ 1 +
q − p
q

∫ α(x)

α(x0)

a(s)c
(p−q)

q (α(x))ds.

This implies [
φ(x)

c1/q(x)

](q−p)
≤ 1 +

q − p
q

∫ α(x)

α(x0)

a(s)c
(p−q)

q (α(x))ds.

Hence we obtain

Φ(x) ≤ c1/q(x)

[
1 +

q − p
q

∫ α(x)

α(x0)

a(s)c
(p−q)

q (α(x))ds

] 1
q−p

.

For c(x) ≥ 0, we take c(x) + ε instead of c(x), in the above proof, where ε > 0 is an

arbitrary small constant, and ε → 0 to obtain (3.1.2) and (3.1.3). This completes

the proof.

Theorem 3.1.2. Let c, Φ, A and B ∈ C(I,R+) be non-decreasing, continuous

functions in each variables and assume that α ∈ C1(I, I), β ∈ C1(J, J) be non-

decreasing with α(x) ≤ x on I, β(y) ≤ y on J . Suppose that 1 > p > 0 is constant.

(A1) If Φ(x, y) satisfies

Φ(x, y) ≤ c(x, y) +

∫ α(x)

α(x0)

A(s, y)Φ(s, y)ds+

∫ β(y)

β(y0)

B(x, t)Φp(x, t)dt, (3.1.18)

for all (x, y) ∈ I, then

Φ(x, y) ≤ c(x, y)E1(x, y)Q1(x, y), (3.1.19)

for all (x, y) ∈ I. Where

E1(x, y) = exp

(∫ α(x)

α(x0)

A(s, y)ds

)
, (3.1.20)

Q1(x, y) =

[
1 + (1− p)

∫ β(y)

β(y0)

B(x, t)c(p−1)(x, t)Ep
1(x, t)dt

] 1
1−p

. (3.1.21)
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(A2) If Φ(x, y) satisfies

Φ(x, y) ≤ c(x, y) +

∫ α(x)

α(x0)

A(s, y)Φp(s, y)ds+

∫ β(y)

β(y0)

B(x, t)Φ(x, t)dt, (3.1.22)

for all (x, y) ∈ I, then

Φ(x, y) ≤ c(x, y)E2(x, y)Q2(x, y), (3.1.23)

for all (x, y) ∈ I. Where

E2(x, y) = exp

(∫ β(y)

β(y0)

B(x, t)dt

)
, (3.1.24)

Q2(x, y) =

[
1 + (1− p)

∫ α(x)

α(x0)

A(s, y)c(p−1)(s, y)Ep
2(s, y)ds

] 1
1−p

. (3.1.25)

Proof. (A1) We define a function z(x, y) by

z(x, y) = c(x, y) +

∫ β(y)

β(y0)

B(x, t)Φp(x, t)dt, (3.1.26)

by substituting (3.1.26) in (3.1.18), we get

Φ(x, y) ≤ z(x, y) +

∫ α(x)

α(x0)

A(s, y)Φ(s, y)ds, (x, y) ∈ I. (3.1.27)

Clearly z(x, y) is a non-negative, continuous and non-decreasing function in

x. Keeping y ∈ J fixed in (3.1.27), a suitable application of Lemma 3.1.1 to

(3.1.27) implies

φ(x, y) ≤ z(x, y) exp

(∫ α(x)

α(x0)

A(s, y)ds

)
,

for (x, y) ∈ I, where

exp

(∫ α(x)

α(x0)

A(s, y)ds

)
= E1(x, y),

as defined in (3.1.20). Thus

φ(x, y) ≤ z(x, y)E1(x, y). (3.1.28)
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By (3.1.26) and (3.1.28), we obtain

z(x, y) ≤ c(x, y) +

∫ β(y)

β(y0)

B(x, t)E1
p(x, t)zp(x, t)dt. (3.1.29)

Keeping x fixed in (3.1.29), an estimation of z(x, y) can be obtained by a

suitable application of Lemma 3.1.1 to (3.1.29), after that, we obtained

z(x, y) ≤ c(x, y)

[
1 + (1− p)

∫ β(y)

β(y0)

c(p−1)(x, t)B(x, t)E1
p(x, t)dt

] 1
1−p

,

for (x, y) ∈ I, where[
1 + (1− p)

∫ β(y)

β(y0)

c(p−1)(x, t)B(x, t)E1
p(x, t)dt

] 1
1−p

= Q1(x, y),

as defined in (3.1.21). This implies

z(x, y) ≤ c(x, y)Q1(x, y). (3.1.30)

Finally substituting the last inequality into (3.1.28), we have

Φ(x, y) ≤ c(x, y)E1(x, y)Q1(x, y).

(A2) We define a function z(x, y) by

z(x, y) = c(x, y) +

∫ α(x)

α(x0)

A(s, y)Φp(s, y)ds, (3.1.31)

by substituting (3.1.31) in (3.1.22), we get

Φ(x, y) ≤ z(x, y) +

∫ β(y)

β(y0)

B(x, t)Φ(x, t)dt, (x, y) ∈ I. (3.1.32)

Clearly z(x, y) is a non-negative, continuous and non-decreasing function in

y. Keeping x ∈ I fixed in (3.1.32), a suitable application of Lemma 3.1.1 to

(3.1.32) implies

φ(x, y) ≤ z(x, y) exp

(∫ β(y)

β(y0)

B(x, t)dt

)
,
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for (x, y) ∈ I, where

exp

(∫ β(y)

β(y0)

B(x, t)dt

)
= E2(x, y),

as defined in (3.1.24). Thus

φ(x, y) ≤ z(x, y)E2(x, y). (3.1.33)

By (3.1.31) and (3.1.33), we obtain

z(x, y) ≤ c(x, y) +

∫ α(x)

α(x0)

A(s, y)E2
p(s, y)zp(s, y)ds. (3.1.34)

Keeping y fixed in (3.1.34), an estimation of z(x, y) can be obtained by a

suitable application of Lemma 3.1.1 to (3.1.34), after that, we obtained

z(x, y) ≤ c(x, y)

[
1 + (1− p)

∫ α(x)

α(x0)

c(p−1)(s, y)A(s, y)E2
p(s, y)ds

] 1
1−p

,

for (x, y) ∈ I, where[
1 + (1− p)

∫ α(x)

α(x0)

c(p−1)(s, y)A(s, y)E2
p(s, y)ds

] 1
1−p

= Q2(x, y),

as defined in (3.1.25). This implies

z(x, y) ≤ c(x, y)Q2(x, y). (3.1.35)

Finally substituting the last inequality into (3.1.33), we have

Φ(x, y) ≤ c(x, y)E2(x, y)Q2(x, y).

Theorem 3.1.3. Let c, φ, A, B, α and β be defined as in Theorem 3.1.2. Suppose

that q ≥ p > 0 are constants. If φ(x, y) satisfies the inequality:

Φq(x, y) ≤ c(x, y) +

∫ α(x)

α(x0)

A(s, y)Φp(s, y)ds+

∫ β(y)

β(y0)

B(x, t)Φp(x, t)dt, (3.1.36)
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for all (x, y) ∈ I, then we have:

Φ(x, y) ≤

{
[c(x, y)E1(x, y)Q3(x, y)]

1
p , if p = q

c1/q(x, y)E4(x, y)Q4(x, y), if p < q

}
(3.1.37)

for all (x, y) ∈ I, where

Q3(x, y) = exp

(∫ β(y)

β(y0)

B(x, t)E1(x, t)dt

)
, (3.1.38)

and E1(x, y) is defined as (3.1.20), and

Q4(x, y) =

[
1 +

q − p
q

∫ β(y)

β(y0)

z
(p−q)

q (x, t)B(x, t)dt

] 1
q−p

, (3.1.39)

E4(x, y) =

[
1 +

q − p
q

∫ α(x)

α(x0)

c
(p−q)

q (s, y)A(s, y)Q4
p(s, y)ds

] 1
q−p

, (3.1.40)

where z(x, y) ≤ c(x, y)E4
q(x, y), for all (x, y) ∈ I.

Proof. (1) If p < q holds, we define a function z(x, y) by

z(x, y) = c(x, y) +

∫ α(x)

α(x0)

A(s, y)Φp(s, y)ds, (3.1.41)

by substituting (3.1.41) in (3.1.36), we get

Φq(x, y) ≤ z(x, y) +

∫ β(y)

β(y0)

B(x, t)Φp(x, t)dt. (3.1.42)

Clearly z(x, y) is a non-negative, continuous and non-decreasing function in

y. Treating x fixed in (3.1.42), and a suitable application of Lemma 3.1.1 to

(3.1.42) gives

φ(x, y) ≤ z(x, y)
1
q

[
1 +

q − p
q

∫ β(y)

β(y0)

z
(p−q)

q (x, t)B(x, t)dt

] 1
q−p

,

for (x, y) ∈ I, where[
1 +

q − p
q

∫ β(y)

β(y0)

z
(p−q)

q (x, t)B(x, t)dt

] 1
q−p

= Q4(x, y),
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as defined in (3.1.39). This implies

φ(x, y) ≤ z(x, y)
1
qQ4(x, y). (3.1.43)

By (3.1.43) and (3.1.41), we obtain

z(x, y) ≤ c(x, y) +

∫ α(x)

α(x0)

A(s, y)Q4
p(s, y)zp/q(s, y)ds. (3.1.44)

Keeping y fixed in (3.1.44), an estimation of z(x, y) can be obtained by a

suitable application of Lemma 3.1.1 to (3.1.44), after that, we obtain

z(x, y) ≤ c(x, y)

[
1 +

q − p
q

∫ α(x)

α(x0)

c
(p−q)

q A(s, y)Q4
p(s, y)

] q
q−p

,

for (x, y) ∈ I, where[
1 +

q − p
q

∫ α(x)

α(x0)

c
(p−q)

q A(s, y)Q4
p(s, y)

] 1
q−p

= E4(x, y),

as defined in (3.1.40). This implies

z(x, y) ≤ c(x, y)E4
q(x, y). (3.1.45)

Finally, substituting the last inequality into (3.1.43), the desired inequality

(3.1.37) follows i.e

φ(x, y) ≤ c1/q(x, y)E4(x, y)Q4(x, y).

(2) If p = q, we define a function z(x, y) by

z(x, y) = c(x, y) +

∫ β(y)

β(y0)

B(x, t)Φp(x, t)dt, (3.1.46)

by substituting (3.1.46) in (3.1.36), we get

Φq(x, y) ≤ z(x, y) +

∫ α(x)

α(x0)

A(s, y)Φp(s, y)ds. (3.1.47)
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Clearly z(x, y) is a non-negative, continuous and non-decreasing function in

x. Treating y fixed in (3.1.47), and a suitable application of Lemma 3.1.1 to

(3.1.47) gives

φ(x, y) ≤ z(x, y)
1
p exp

[
1

p

∫ α(x)

α(x0)

A(s, y)ds

]
,

= z(x, y)
1
p

[
exp

(∫ α(x)

α(x0)

A(s, y)ds

)] 1
p

,

(3.1.48)

for (x, y) ∈ I, where

exp

[∫ α(x)

α(x0)

A(s, y)ds

]
= E1(x, y),

as defined in (3.1.20). This implies

φ(x, y) ≤ z(x, y)
1
pE1

1
p (x, y). (3.1.49)

By (3.1.46) and (3.1.49), we obtain

z(x, y) ≤ c(x, y) +

∫ β(y)

β(y0)

B(x, t)E1(x, t)z(x, t)dt. (3.1.50)

Keeping x fixed in (3.1.50), an estimation of z(x, y) can be obtained by a

suitable application of Lemma 3.1.1 to (3.1.50), after that, we obtain

z(x, y) ≤ c(x, y) exp

[∫ β(y)

β(y0)

B(x, t)E1(x, t)dt

]
,

for (x, y) ∈ I, where

exp

[∫ β(y)

β(y0)

B(x, t)E1(x, t)dt

]
= Q3(x, y),

as defined in (3.1.38). This implies

z(x, y) ≤ c(x, y)Q3(x, y). (3.1.51)
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Finally, substituting the last inequality into (3.1.49), the desired inequality

(3.1.37) follows i.e

φ(x, y) ≤ [c(x, y)E1(x, y)Q3(x, y)]
1
p .

Remark 3.1.1. If we take B(x, y) = 0 and keeping y fixed, then Theorem 3.1.3

reduce exactly to Lemma 3.1.1.

3.2 Generalization of Retarded Integral Inequali-

ties of Gronwall-Bihari Type in Two Indepen-

dent Variables

Before stating the theorem, we will define the set S as follows:

S = {(x, y, s, t) ∈ I2 : x0 ≤ s ≤ x ≤ X; y0 ≤ t ≤ y ≤ Y }

Theorem 3.2.1. Let c, φ, A, B, α and β be defined as in Theorem 3.1.2. Let

H(x, y, s, t) ∈ C(S,R+) be a non-decreasing and continuous functions in x and y

for each (s, t) ∈ I. Let w ∈ C(R+,R+) be non-decreasing and sub-multiplicative

function with w(φ) > 0 for φ > 0.

(B1) If φ(x, y) satisfies

Φ(x, y) ≤ c(x, y) +

∫ α(x)

α(x0)

A(s, y)Φ(s, y)ds+

∫ β(y)

β(y0)

B(x, t)Φp(x, t)dt

+

∫ α(x)

α(x0)

∫ β(y)

β(y0)

H(x, y, s, t)w(Φ(s, t))ds dt, (3.2.1)

for all (x, y) ∈ I. Then

Φ(x, y) ≤M1(x, y)E1(x, y)Q̃1(x, y), (3.2.2)

for all x0 ≤ x ≤ x1, y0 ≤ y ≤ y1. Where

M1(x, y) ≤ G−1 [G(c(x, y)) + C1] , (3.2.3)

37



for all x0 ≤ x ≤ x1, y0 ≤ y ≤ y1. Where

C1 =

∫ α(x)

α(x0)

∫ β(y)

β(y0)

H(x, y, s, t)w(E1(s, t))w(Q̃1(s, t))ds dt, (3.2.4)

and

G(φ) =

∫ φ

φ0

δt

w(t)
, φ ≥ φ0 > 0. (3.2.5)

Where E1(x, y) is defined in (3.1.20) and

Q̃1(x, y) =

[
1 + (1− p)

∫ β(y)

β(y0)

B(x, t)M1
(p−1)(x, t)E1

p(x, t)dt

] 1
1−p

, (3.2.6)

where G−1 is the inverse function of G and the real numbers x1, y1 ∈ R+ are

chosen so that G(c(x, y))+
∫ α(x)
α(x0)

∫ β(y)
β(y0)

H(x, y, s, t)w(E1(s, t))w(Q̃1(s, t))ds dt ∈
Dom(G−1).

(B2) If φ(x, y) satisfies

Φ(x, y) ≤ c(x, y) +

∫ α(x)

α(x0)

A(s, y)Φp(s, y)ds+

∫ β(y)

β(y0)

B(x, t)Φ(x, t)dt

+

∫ α(x)

α(x0)

∫ β(y)

β(y0)

H(x, y, s, t)w(Φ(s, t))ds dt, (3.2.7)

for all (x, y) ∈ I. Then

Φ(x, y) ≤M2(x, y)E2(x, y)Q̃2(x, y), (3.2.8)

for all x0 ≤ x ≤ x2, y0 ≤ y ≤ y2. Where

M2(x, y) ≤ G−1 [G(c(x, y)) + C2] , (3.2.9)

for all x0 ≤ x ≤ x2, y0 ≤ y ≤ y2. Where

C2 =

∫ α(x)

α(x0)

∫ β(y)

β(y0)

H(x, y, s, t)w(E1(s, t))w(Q̃1(s, t))ds dt, (3.2.10)

and G and E2 are defined in (3.2.5) and (3.1.24) with

Q̃2(x, y) =

[
1 + (1− p)

∫ α(x)

α(x0)

A(s, y)M2
(p−1)(s, y)E2

p(s, y)ds

] 1
1−p

, (3.2.11)
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where G−1 is the inverse function of G and the real numbers x2, y2 ∈ R+ are

chosen so that G(c(x, y))+
∫ α(x)
α(x0)

∫ β(y)
β(y0)

H(x, y, s, t)w(E2(s, t))w(Q̃2(s, t))ds dt ∈
Dom(G−1).

Proof. (B1) If c(x, y) > 0. Setting

M1(x, y) = c(x, y) +

∫ α(x)

α(x0)

∫ β(y)

β(y0)

H(x, y, s, t)w(φ(s, t))ds dt, (3.2.12)

the inequality (3.2.1) can be restated as

Φ(x, y) ≤M1(x, y)+

∫ α(x)

α(x0)

A(s, y)Φ(s, y)ds+

∫ β(y)

β(y0)

B(x, t)Φp(x, t)dt. (3.2.13)

Clearly M1(x, y) is non-negative and non-decreasing function in each x and

y. Now a suitable application of the inequality (3.1.18) in Theorem 3.1.2 to

(3.2.13), yields

Φ(x, y) ≤M1(x, y)E1(x, y)Q̃1(x, y), (3.2.14)

where E1(x, y) and Q̃1(x, y) are defined in (3.1.20) and (3.2.6). From (3.2.12)

and (3.2.14) and by using the fact that w is a sub-multiplicative, we have

M1(x, y) ≤ c(x, y)+

∫ α(x)

α(x0)

∫ β(y)

β(y0)

H(x, y, s, t)w(E1(s, t)Q̃1(s, t))w(M1(s, t))ds dt,

(3.2.15)

for (x, y) ∈ I.
Fixing any numbers x̃1 and ỹ1 with 0 < x̃1 ≤ x1 and 0 < ỹ1 ≤ y1, from (3.2.15)

we have

M1(x, y) ≤ c(x̃1, ỹ1) + D̃1,

for x0 ≤ x ≤ x̃1, y0 ≤ y ≤ ỹ1. Defining

r1(x, y) = c(x̃1, ỹ1) + D̃1,

where

D̃1 =

∫ α(x)

α(x0)

∫ β(y)

β(y0)

H(x̃1, ỹ1, s, t)w(E1(s, t)Q̃1(s, t))w(M1(s, t))ds dt.
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Then r1(x0, y) = r1(x, y0) = c(x̃1, ỹ1) and

M1(x, y) ≤ r1(x, y), (3.2.16)

with r1(x, y) is positive and non-decreasing in y ∈ [y0, ỹ0], and

D1r1(x, y) = u′
∫ β(y)

β(y0)

H(x̃1, ỹ1, u, t)w(E1(u, t)Q̃1(u, t))w(M1(u, t))dt,

≤ u′
∫ β(y)

β(y0)

H(x̃1, ỹ1, u, t)w(E1(u, t)Q̃1(u, t))w(r1(u, t))dt,

≤ w(r1(x, y))u′
∫ β(y)

β(y0)

H(x̃1, ỹ1, u, t)w(E1(u, t)Q̃1(u, t))dt. (3.2.17)

Where u = α(x) implying u′ = α′(x). Dividing both sides of (3.2.17) by

w(r1(x, y)), we obtain

D1r1(x, y)

w(r1(x, y))
≤ α′(x)

∫ β(y)

β(y0)

H(x̃1, ỹ1, α(x), t)w(E1(α(x), t)Q̃1(α(x), t))dt,

(3.2.18)

from (3.2.5) and (3.2.18) we have

D1G(r1(x, y)) ≤ α′(x)

∫ β(y)

β(y0)

H(x̃1, ỹ1, α(x), t)w(E1(α(x), t)Q̃1(α(x), t))dt.

(3.2.19)

Now setting x = s in (3.2.19) and then integrating with respect to s from x0

to x, we obtain

G(r1(x, y)) ≤ G(r1(x0, y)) +

∫ α(x)

α(x0)

∫ β(y)

β(y0)

H(x̃1, ỹ1, s, t)w(E1(s, t)Q̃1(s, t))ds dt.

Noting G(r1(x0, y)) = G(c(x̃1, ỹ1)), we have

G(r1(x, y)) ≤ G(c(x̃1, ỹ1)) +

∫ α(x)

α(x0)

∫ β(y)

β(y0)

H(x̃1, ỹ1, s, t)w(E1(s, t)Q̃1(s, t))ds dt.

Taking x = x̃1, y = ỹ1 in (3.2.16) and the last inequality, we obtain

M1(x̃1, ỹ1) ≤ r1(x̃1, ỹ1), (3.2.20)
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and

G(r1(x̃1, ỹ1)) ≤ G(c(x̃1, ỹ1))+

∫ α(x)

α(x0)

∫ β(y)

β(y0)

H(x̃1, ỹ1, s, t)w(E1(s, t)Q̃1(s, t))ds dt.

(3.2.21)

Since 0 < x̃1 ≤ x1 and 0 < ỹ1 ≤ y1 are arbitrary, from (3.2.20) and (3.2.21)

we have

M1(x, y) ≤ r1(x, y), (3.2.22)

and

r1(x, y) ≤ G−1

[
G(c(x, y)) +

∫ α(x)

α(x0)

∫ β(y)

β(y0)

H(x, y, s, t)w(E1(s, t)Q̃1(s, t))ds dt

]
,

(3.2.23)

for all x0 < x ≤ x1, y0 < y ≤ y1. Hence by (3.2.22) and (3.2.23), we obtain

M1(x, y) ≤ G−1

[
G(c(x, y)) +

∫ α(x)

α(x0)

∫ β(y)

β(y0)

H(x, y, s, t)w(E1(s, t)Q̃1(s, t))ds dt

]
,

(3.2.24)

for all x0 < x ≤ x1, y0 < y ≤ y1. By (3.2.1), (3.2.24) holds also when x = x0

and y = y0.

Finally substituting the last inequality into (3.2.14), the desired inequality

(3.2.2) follows immediately.

(B2) If c(x, y) > 0. Setting

M2(x, y) = c(x, y) +

∫ α(x)

α(x0)

∫ β(y)

β(y0)

H(x, y, s, t)w(φ(s, t))ds dt, (3.2.25)

the inequality (3.2.7) can be restated as

Φ(x, y) ≤M2(x, y)+

∫ α(x)

α(x0)

A(s, y)Φp(s, y)ds+

∫ β(y)

β(y0)

B(x, t)Φ(x, t)dt. (3.2.26)

Clearly M2(x, y) is non-negative and non-decreasing function in each x and

y. Now a suitable application of the inequality (3.1.22) in Theorem 3.1.2 to

(3.2.26), yields

Φ(x, y) ≤M2(x, y)E2(x, y)Q̃2(x, y), (3.2.27)
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where E2(x, y) and Q̃2(x, y) are defined in (3.1.24) and (3.2.11).

From (3.2.25) and (3.2.27) and by using the fact that w is a sub-multiplicative,

we have

M2(x, y) ≤ c(x, y)+

∫ α(x)

α(x0)

∫ β(y)

β(y0)

H(x, y, s, t)w(E2(s, t)Q̃2(s, t))w(M2(s, t))ds dt,

(3.2.28)

for (x, y) ∈ I.
Fixing any numbers x̃2 and ỹ2 with 0 < x̃2 ≤ x2 and 0 < ỹ2 ≤ y2 , from

(3.2.28) we have

M2(x, y) ≤ c(x̃2, ỹ2) + D̃2,

for x0 ≤ x ≤ x̃2, y0 ≤ y ≤ ỹ2. Defining

r2(x, y) = c(x̃2, ỹ2) + D̃2,

where

D̃2 =

∫ α(x)

α(x0)

∫ β(y)

β(y0)

H(x̃2, ỹ2, s, t)w(E2(s, t)Q̃2(s, t))w(M2(s, t))ds dt.

Then r2(x0, y) = r2(x, y0) = c(x̃2, ỹ2) and

M2(x, y) ≤ r2(x, y), (3.2.29)

with r2(x, y) is positive and non-decreasing in x ∈ [x0, x̃0], and

D2r2(x, y) = v′
∫ α(x)

α(x0)

H(x̃2, ỹ2, s, v)w(E2(s, v)Q̃2(s, v))w(M2(s, v))ds,

≤ v′
∫ α(x)

α(x0)

H(x̃2, ỹ2, s, v)w(E2(s, v)Q̃2(s, v))w(r2(s, v))ds,

≤ w(r2(x, y))v′
∫ α(x)

α(x0)

H(x̃2, ỹ2, s, v)w(E2(s, v)Q̃2(s, v))ds.

(3.2.30)

Where v = β(y) implying v′ = β′(y). Dividing both sides of (3.2.30) by

w(r2(x, y)), we obtain

D2r2(x, y)

w(r2(x, y))
≤ β′(y)

∫ α(x)

α(x0)

H(x̃2, ỹ2, s, β(y))w(E2(s, β(y))Q̃2(s, β(y)))ds,

(3.2.31)
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from (3.2.5) and (3.2.31) we have

D2G(r2(x, y)) ≤ β′(y)

∫ α(x)

α(x0)

H(x̃2, ỹ2, s, β(y))w(E2(s, β(y))Q̃2(s, β(y)))ds.

(3.2.32)

Now setting y = t in (3.2.32) and then integrating with respect to t from y0

to y, we obtain

G(r2(x, y)) ≤ G(r2(x, y0)) +

∫ α(x)

α(x0)

∫ β(y)

β(y0)

H(x̃2, ỹ2, s, t)w(E2(s, t)Q̃2(s, t))ds dt.

Noting G(r2(x, y0)) = G(c(x̃2, ỹ2)), we have

G(r2(x, y)) ≤ G(c(x̃2, ỹ2)) +

∫ α(x)

α(x0)

∫ β(y)

β(y0)

H(x̃2, ỹ2, s, t)w(E2(s, t)Q̃2(s, t))ds dt.

Taking x = x̃2, y = ỹ2 in (3.2.29) and the last inequality, we obtain

M2(x̃2, ỹ2) ≤ r2(x̃2, ỹ2), (3.2.33)

and

G(r2(x̃2, ỹ2)) ≤ G(c(x̃2, ỹ2))+

∫ α(x)

α(x0)

∫ β(y)

β(y0)

H(x̃2, ỹ2, s, t)w(E2(s, t)Q̃2(s, t))ds dt.

(3.2.34)

Since 0 < x̃2 ≤ x2 and 0 < ỹ2 ≤ y2 are arbitrary, from (3.2.33) and (3.2.34)

we have

M2(x, y) ≤ r2(x, y), (3.2.35)

and

r2(x, y) ≤ G−1

[
G(c(x, y)) +

∫ α(x)

α(x0)

∫ β(y)

β(y0)

H(x, y, s, t)w(E2(s, t)Q̃2(s, t))ds dt

]
,

(3.2.36)

for all x0 < x ≤ x2, y0 < y ≤ y2. Hence by (3.2.35) and (3.2.36), we obtain

M2(x, y) ≤ G−1

[
G(c(x, y)) +

∫ α(x)

α(x0)

∫ β(y)

β(y0)

H(x, y, s, t)w(E2(s, t)Q̃2(s, t))ds dt

]
,

(3.2.37)
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for all x0 < x ≤ x2, y0 < y ≤ y2. By (3.2.7), (3.2.37) holds also when x = x0

and y = y0.

Finally substituting the last inequality into (3.2.27), the desired inequality

(3.2.8) follows immediately.

If c(x, y) ≥ 0 is non-negative, we carry out the above procedure in (B1) and

(B2) with c(x, y) + ε instead of c(x, y) where ε > 0 is an arbitrary small

constant and subsequently pass to the limit as ε → 0 to obtain (3.2.2) and

(3.2.8). This completes the proof.

Remark 3.2.1. If we take H(x, y, s, t) = 0 in the last theorem then Theorem 3.2.1

reduce to Theorem 3.1.2.

Remark 3.2.2. Theorem 3.2.1 (B2) reduces to Theorem 2.3.3 in Chapter 2, if

p = 1, w(s) = s, c(x, y) = c, α(x) = x, β(y) = y, H(x, y, s, t) = H(s, t) x0 = y0 = 0.

Using Theorem 3.1.3, we can get some more generalized results as follows:

Theorem 3.2.2. Let c, φ, A, B, H, α, β and w be defined as in Theorem 3.2.1.

Suppose that q ≥ p > 0 are constants. If φ(x, y) satisfies

Φq(x, y) ≤ c(x, y) +

∫ α(x)

α(x0)

A(s, y)Φp(s, y)ds+

∫ β(y)

β(y0)

B(x, t)Φp(x, t)dt

+

∫ α(x)

α(x0)

∫ β(y)

β(y0)

H(x, y, s, t)w(Φ(s, t))ds dt, (3.2.38)

for all (x, y) ∈ I, then the following conclusions are true:

(C1) If p = q, then

Φ(x, y) ≤ [N1(x, y)E1(x, y)Q3(x, y)]1/p , (3.2.39)

for all x0 ≤ x ≤ x3, y0 ≤ y ≤ y3. Where

N1(x, y) ≤ K−1 [K(c(x, y)) + C3] , (3.2.40)

for all x0 ≤ x ≤ x3, y0 ≤ y ≤ y3. Where

C3 =

∫ α(x)

α(x0)

∫ β(y)

β(y0)

H(x, y, s, t)w(E1

1
p (s, t))w(Q3

1
p (s, t))ds dt. (3.2.41)
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and

K(φ) =

∫ φ

φ0

δt

w(t1/q)
, φ ≥ φ0 > 0. (3.2.42)

Where E1(x, y) and Q3(x, y) are defined in (3.1.20) and (3.1.38). And K−1

is the inverse function of K and the real numbers x3, y3 are chosen so that

K(c(x, y))+
∫ α(x)
α(x0)

∫ β(y)
β(y0)

H(x, y, s, t)w(E1

1
p (s, t))w(Q3

1
p (s, t))ds dt ∈ Dom(K−1).

(C2) If p < q, then

Φ(x, y) ≤ N2
1/q(x, y)Ẽ4(x, y)Q̃4(x, y), (3.2.43)

for all x0 ≤ x ≤ x4, y0 ≤ y ≤ y4. Where

N2(x, y) ≤ K−1

[
K(c(x, y)) +

∫ α(x)

α(x0)

∫ β(y)

β(y0)

H(x, y, s, t)w(Ẽ4(s, t)Q̃4(s, t))ds dt

]
,

(3.2.44)

for all x0 ≤ x ≤ x4, y0 ≤ y ≤ y4, K is defined in (3.2.42), with

Q̃4(x, y) =

[
1 +

(q − p)
q

∫ β(y)

β(y0)

B(x, t)z̃
(p−q)

q (x, t)dt

] 1
q−p

, (3.2.45)

Ẽ4(x, y) =

[
1 +

(q − p)
q

∫ α(x)

α(x0)

A(s, y)N2

(p−q)
q (s, y)Q̃4

p
(s, y)ds

] 1
q−p

, (3.2.46)

for all x0 ≤ x ≤ x4, y0 ≤ y ≤ y4, where z̃(x, y) ≤ N2(x, y)Ẽ4
p
(x, y).

Where K−1 is the inverse function of K and the real numbers x4, y4 are

chosen so that K(c(x, y)) +
∫ α(x)
α(x0)

∫ β(y)
β(y0)

H(x, y, s, t)wẼ4(s, t))w(Q̃4(s, t))ds dt ∈
Dom(K−1).

Proof. (C1) If p = q, we define a function N1(x, y) by

N1(x, y) = c(x, y) +

∫ α(x)

α(x0)

∫ β(y)

β(y0)

H(x, y, s, t)w(Φ(s, t))ds dt, (3.2.47)

by substituting (3.2.47) in (3.2.38), we get

Φq(x, y) ≤ N1(x, y) +

∫ α(x)

α(x0)

A(s, y)Φp(s, y)ds+

∫ β(y)

β(y0)

B(x, t)Φp(x, t)dt.

(3.2.48)
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Clearly N1(x, y) is a non-negative and non-decreasing function in each variable

x and y. A suitable application of the inequality (3.1.36) in Theorem 3.1.3 to

(3.2.48) gives

φ(x, y) ≤ [N1(x, y)E1(x, y)Q3(x, y)]1/p , (3.2.49)

where E1(x, y), Q3(x, y) are defined in (3.1.20) and (3.1.38).

From (3.2.47) and (3.2.49) and by using the fact that w is sub-multiplicative,

we obtain

N1(x, y) ≤ c(x, y) +D3, (3.2.50)

for (x, y) ∈ I. Where

D3 =

∫ α(x)

α(x0)

∫ β(y)

β(y0)

H(x, y, s, t)w(N1

1
p (s, t))w(E1

1
p (s, t)Q3

1
p (s, t))ds dt.

Fixing any numbers x̃3 and ỹ3 with 0 < x̃3 ≤ x3 and 0 < ỹ3 ≤ y3, from (3.2.50)

we have

N1(x, y) ≤ c(x̃3, ỹ3) + D̃3,

for x0 ≤ x ≤ x̃3, y0 ≤ y ≤ ỹ3. Defining

r3(x, y) = c(x̃3, ỹ3) + D̃3.

Where

D̃3 =

∫ α(x)

α(x0)

∫ β(y)

β(y0)

H(x̃3, ỹ3, s, t)w(E1

1
p (s, t)Q3

1
p (s, t))w(N1

1
p (s, t))ds dt.

Then r3(x0, y) = r3(x, y0) = c(x̃3, ỹ3) and

N1(x, y) ≤ r3(x, y), (3.2.51)

with r3(x, y) is positive and non-decreasing in y ∈ [y0, ỹ0], and

D1r3(x, y) = u′
∫ β(y)

β(y0)

H(x̃3, ỹ3, u, t)w(E1

1
p (u, t)Q3

1
p (u, t))w(N1

1
p (u, t))dt,

≤ u′
∫ β(y)

β(y0)

H(x̃3, ỹ3, u, t)w(E1

1
p (u, t)Q3

1
p (u, t))w(r3

1
p (u, t))dt,

≤ w(r3
1
p (x, y))u′

∫ β(y)

β(y0)

H(x̃3, ỹ3, u, t)w(E1

1
p (u, t)Q3

1
p (u, t))dt.

(3.2.52)
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Where u = α(x) implying u′ = α′(x). Dividing both sides of (3.2.52) by

w(r3
1/p(x, y)), we obtain

D1r3(x, y)

w(r3
1
p (x, y))

≤ α′(x)

∫ β(y)

β(y0)

H(x̃3, ỹ3, α(x), t)w(E1

1
p (α(x), t)Q4

1
p (α(x), t))dt,

(3.2.53)

from (3.2.42) and (3.2.53) we have

D1K(r3(x, y)) ≤ α′(x)

∫ β(y)

β(y0)

H(x̃3, ỹ3, α(x), t)w(E1

1
p (α(x), t)Q3

1
p (α(x), t))dt.

(3.2.54)

Now setting x = s in (3.2.54) and then integrating with respect to s from x0

to x, we obtain

K(r3(x, y)) ≤ K(r3(x0, y)) + C̃3.

Noting K(r3(x0, y)) = K(c(x̃3, ỹ3)), we have

K(r3(x, y)) ≤ K(c(x̃3, ỹ3)) + C̃3.

Taking x = x̃3, y = ỹ3 in (3.2.51) and the last inequality, we obtain

N1(x̃3, ỹ3) ≤ r3(x̃3, ỹ3), (3.2.55)

and

K(r3(x̃3, ỹ3)) ≤ K(c(x̃3, ỹ3)) + C̃3. (3.2.56)

Where

C̃3 =

∫ α(x)

α(x0)

∫ β(y)

β(y0)

H(x̃3, ỹ3, s, t)w(E1

1
p (s, t)Q3

1
p (s, t))ds dt.

Since 0 < x̃3 ≤ x3 and 0 < ỹ3 ≤ y3 are arbitrary, from (3.2.55) and (3.2.56),

and using the fact that w is sub-multiplicative, we have

N1(x, y) ≤ r3(x, y), (3.2.57)

and

r3(x, y) ≤ K−1 [K(c(x, y)) + C3] , (3.2.58)
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for all x0 < x ≤ x3, y0 < y ≤ y3. Hence by (3.2.57) and (3.2.58), we obtain

N1(x, y) ≤ K−1 [K(c(x, y)) + C3] , (3.2.59)

for all x0 < x ≤ x3, y0 < y ≤ y3. Where C3 is defined in (3.2.41). By (3.2.38),

(3.2.59) holds also when x = x0 and y = y0.

Finally substituting the last inequality into (3.2.49), the desired inequality

(3.2.39) follows immediately.

(C2) If p < q holds, we define a function N2(x, y) by

N2(x, y) = c(x, y) +

∫ α(x)

α(x0)

∫ β(y)

β(y0)

H(x, y, s, t)w(Φ(s, t))ds dt, (3.2.60)

by substituting (3.2.60) in (3.2.38), we get

Φq(x, y) ≤ N2(x, y) +

∫ α(x)

α(x0)

A(s, y)Φp(s, y)ds+

∫ β(y)

β(y0)

B(x, t)Φp(x, t)dt.

(3.2.61)

Clearly N2(x, y) is a non-negative and non-decreasing function in each variable

x and y. A suitable application of the inequality (3.1.36) in Theorem 3.1.3 to

(3.2.61) gives

φ(x, y) ≤ N2
1/q(x, y)Ẽ4(x, y)Q̃4(x, y), (3.2.62)

where Ẽ4(x, y), Q̃4(x, y) are defined in (3.2.46) and (3.2.45).

From (3.2.60) and (3.2.62) and by using the fact that w is sub-multiplicative,

we obtain

N2(x, y) ≤ c(x, y) +D4, (3.2.63)

for (x, y) ∈ I. Where

D4 =

∫ α(x)

α(x0)

∫ β(y)

β(y0)

H(x, y, s, t)w(N2

1
q (s, t))w(Ẽ4(s, t)Q̃4(s, t))ds dt.

Fixing any numbers x̃4 and ỹ4 with 0 < x̃4 ≤ x4 and 0 < ỹ4 ≤ y4, from (3.2.63)

we have

N2(x, y) ≤ c(x̃4, ỹ4) + D̃4,
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for x0 ≤ x ≤ x̃4, y0 ≤ y ≤ ỹ4. Defining

r4(x, y) = c(x̃4, ỹ4) + D̃4,

Where

D̃4 =

∫ α(x)

α(x0)

∫ β(y)

β(y0)

H(x̃4, ỹ4, s, t)w(Ẽ4(s, t)Q̃4(s, t))w(N2

1
q (s, t))ds dt.

Then r4(x0, y) = r4(x, y0) = c(x̃4, ỹ4) and

N2(x, y) ≤ r4(x, y), (3.2.64)

with r4(x, y) is positive and non-decreasing in y ∈ [y0, ỹ0], and

D1r4(x, y) = u′
∫ β(y)

β(y0)

H(x̃4, ỹ4, u, t)w(Ẽ4(u, t)Q̃4(u, t))w(N2

1
q (u, t))dt,

≤ u′
∫ β(y)

β(y0)

H(x̃4, ỹ4, u, t)w(Ẽ4(u, t)Q̃4(u, t))w(r4
1
q (u, t))dt,

≤ w(r4
1
q (x, y))u′

∫ β(y)

β(y0)

H(x̃4, ỹ4, u, t)w(Ẽ4(u, t)Q̃4(u, t))dt.

(3.2.65)

Where u = α(x) implying u′ = α′(x). Dividing both sides of (3.2.65) by

w(r4
1/q(x, y)), we obtain

D1r4(x, y)

w(r41/q(x, y))
≤ α′(x)

∫ β(y)

β(y0)

H(x̃4, ỹ4, α(x), t)w(Ẽ4(α(x), t)Q̃4(α(x), t))dt,

(3.2.66)

from (3.2.42) and (3.2.66) we have

D1K(r4(x, y)) ≤ α′(x)

∫ β(y)

β(y0)

H(x̃4, ỹ4, α(x), t)w(Ẽ4(α(x), t)Q̃4(α(x), t))dt.

(3.2.67)

Now setting x = s in (3.2.67) and then integrating with respect to s from x0

to x, we obtain

K(r4(x, y)) ≤ K(r4(x0, y)) +

∫ α(x)

α(x0)

∫ β(y)

β(y0)

H(x̃4, ỹ4, s, t)w(Ẽ4(s, t)Q̃4(s, t))ds dt.
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Noting K(r4(x0, y)) = K(c(x̃4, ỹ4)), we have

K(r4(x, y)) ≤ K(c(x̃4, ỹ4)) +

∫ α(x)

α(x0)

∫ β(y)

β(y0)

H(x̃4, ỹ4, s, t)w(Ẽ4(s, t)Q̃4(s, t))ds dt.

Taking x = x̃4, y = ỹ4 in (3.2.64) and the last inequality, we obtain

N2(x̃4, ỹ4) ≤ r4(x̃4, ỹ4), (3.2.68)

and

K(r4(x̃4, ỹ4)) ≤ K(c(x̃4, ỹ4))+

∫ α(x)

α(x0)

∫ β(y)

β(y0)

H(x̃4, ỹ4, s, t)w(Ẽ4(s, t)Q̃4(s, t))ds dt.

(3.2.69)

Since 0 < x̃4 ≤ x4 and 0 < ỹ4 ≤ y4 are arbitrary, from (3.2.68) and (3.2.69)

we have

N2(x, y) ≤ r4(x, y), (3.2.70)

and

r4(x, y) ≤ K−1

[
K(c(x, y)) +

∫ α(x)

α(x0)

∫ β(y)

β(y0)

H(x, y, s, t)w(Ẽ4(s, t)Q̃4(s, t))ds dt

]
,

(3.2.71)

for all x0 < x ≤ x4, y0 < y ≤ y4. Hence by (3.2.70) and (3.2.71), we obtain

N2(x, y) ≤ K−1

[
K(c(x, y)) +

∫ α(x)

α(x0)

∫ β(y)

β(y0)

H(x, y, s, t)w(Ẽ4(s, t)Q̃4(s, t))ds dt

]
,

(3.2.72)

for all x0 < x ≤ x4, y0 < y ≤ y4. By (3.2.38), (3.2.72) holds also when x = x0

and y = y0.

Finally substituting the last inequality into (3.2.62), the desired inequality

(3.2.43) follows immediately.

Remark 3.2.3. Theorem 3.2.2 (C2) reduces to Theorem 2.2.1 in Chapter (2), if

q = 1, w(s) = s, c(x, y) = c, α(x) = x, β(y) = y, H(x, y, s, t) = H(s, t) x0 = y0 = 0.
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3.3 Applications of the Generalized Retarded In-

tegral Inequalities of Gronwall-Bihari Type in

Two Independent Variables

Some exciting new inequalities can be obtained from Theorem 3.2.1 and Theorem

3.2.2, by choosing suitable functions for w. For example, if we take w(s) = sr, then

we have the following results.

Corollary 3.3.1. Let p, c, φ, A, H, B, α and β be defined as in Theorem 3.2.1.

Let 0 < r < 1 is a constant and if φ(x, y) satisfies

Φ(x, y) ≤ c(x, y) +

∫ α(x)

α(x0)

A(s, y)Φ(s, y)ds+

∫ β(y)

β(y0)

B(x, t)Φp(x, t)dt

+

∫ α(x)

α(x0)

∫ β(y)

β(y0)

H(x, y, s, t)Φr(s, t)ds dt, (3.3.1)

for all (x, y) ∈ I. Then

Φ(x, y) ≤ m1(x, y)e1(x, y)q̃1(x, y), (3.3.2)

for all (x, y) ∈ I. Where

m1(x, y) ≤

[
c1−r(x, y) + (1− r)

∫ α(x)

α(x0)

∫ β(y)

β(y0)

H(x, y, s, t)e1
r(s, t)q̃1

r(s, t)ds dt

] 1
1−r

,

(3.3.3)

for all (x, y) ∈ I, and

q̃1(x, y) =

[
1 + (1− p)

∫ β(y)

β(y0)

B(x, t)m1
p−1(x, t)e1

p(x, t)dt

] 1
1−p

, (3.3.4)

e1(x, y) = exp

(∫ α(x)

α(x0)

A(s, y)ds

)
. (3.3.5)

Proof. Setting

m1(x, y) = c(x, y) +

∫ α(x)

α(x0)

∫ β(y)

β(y0)

H(x, y, s, t)φr(s, t)ds dt, (3.3.6)
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the inequality (3.3.1) can be restated as

Φ(x, y) ≤ m1(x, y) +

∫ α(x)

α(x0)

A(s, y)Φ(s, y)ds+

∫ β(y)

β(y0)

B(x, t)Φp(x, t)dt. (3.3.7)

Clearly m1(x, y) is non-negative and non-decreasing function in each x and y. Now

a suitable application of the inequality (3.1.18) in Theorem 3.1.2 to (3.3.7), yields

Φ(x, y) ≤ m1(x, y)e1(x, y)q̃1(x, y), (3.3.8)

where e1(x, y) and q̃1(x, y) are defined in (3.3.5) and (3.3.4). From (3.3.6) and

(3.3.8), we have

m1(x, y) ≤ c(x, y) +

∫ α(x)

α(x0)

∫ β(y)

β(y0)

H(x, y, s, t)e1
r(s, t)q̃1

r(s, t)m1
r(s, t)ds dt, (3.3.9)

for (x, y) ∈ I. Fixing any numbers x̃1, and ỹ1 with 0 < x̃1 ≤ x1 and 0 < ỹ1 ≤ y1, we

have

m1(x, y) ≤ c(x̃1, ỹ1) +

∫ α(x)

α(x0)

∫ β(y)

β(y0)

H(x̃1, ỹ1, s, t)e1
r(s, t)q̃1

r(s, t)m1
r(s, t)ds dt,

for x0 ≤ x ≤ x̃1, y0 ≤ y ≤ ỹ1. Defining

z1(x, y) = c(x̃1, ỹ1) +

∫ α(x)

α(x0)

∫ β(y)

β(y0)

H(x̃1, ỹ1, s, t)e1
r(s, t)q̃1

r(s, t)m1
r(s, t)ds dt,

(3.3.10)

then z1(x0, y) = z1(x, y0) = c(x̃1, ỹ1) and

m1(x, y) ≤ z1(x, y), (3.3.11)

with z1(x, y) is positive and non-decreasing in y, and

D1z1(x, y) = α′(x)

∫ β(y)

β(y0)

H(x̃1, ỹ1, α(x), t)e1
r(α(x), t)q̃1

r(α(x), t)m1
r(α(x), t)dt,

≤ α′(x)

∫ β(y)

β(y0)

H(x̃1, ỹ1, α(x), t)e1
r(α(x), t)q̃1

r(α(x), t)z1
r(α(x), t)dt,

≤ z1
r(x, y)α′(x)

∫ β(y)

β(y0)

H(x̃1, ỹ1, α(x), t)e1
r(α(x), t)q̃1

r(α(x), t)dt.

(3.3.12)
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Dividing both sides of (3.3.12) by z1
r(x, y), we obtain

D1z1(x, y)

z1r(x, y)
≤ α′(x)

∫ β(y)

β(y0)

H(x̃1, ỹ1, α(x), t)e1
r(α(x), t)q̃1

r(α(x), t))dt. (3.3.13)

Now setting x = s in (3.3.13) and then integrating with respect to s from x0 to x,

we obtain

1

1− r
(
z1

1−r(x, y)− c1−r(x̃1, ỹ1)
)
≤
∫ α(x)

α(x0)

∫ β(y)

β(y0)

H(x̃1, ỹ1, s, t)e1
r(s, t)q̃1

r(s, t)ds dt,

z1
1−r(x, y)− c1−r(x̃1, ỹ1) ≤ (1− r)

∫ α(x)

α(x0)

∫ β(y)

β(y0)

H(x̃1, ỹ1, s, t)e1
r(s, t)q̃1

r(s, t)ds dt,

and

z1(x, y) ≤

[
c1−r(x̃1, ỹ1) + (1− r)

∫ α(x)

α(x0)

∫ β(y)

β(y0)

H(x̃1, ỹ1, s, t)e1
r(s, t)q̃1

r(s, t)ds dt

] 1
1−r

.

Taking x = x̃1, y = ỹ1 in (3.3.11) and the last inequality, gives:

m1(x̃1, ỹ1) ≤ z1(x̃1, ỹ1),

and

z1(x̃1, ỹ1) ≤

[
c1−r(x̃1, ỹ1) + (1− r)

∫ α(x)

α(x0)

∫ β(y)

β(y0)

H(x̃1, ỹ1, s, t)e1
r(s, t)q̃1

r(s, t)ds dt

] 1
1−r

.

Since 0 < x̃1 ≤ x1 and 0 < ỹ1 ≤ y1 are arbitrary, from the previous two equations

we have

m1(x, y) ≤ z1(x, y),

and

z1(x, y) ≤

[
c1−r(x, y) + (1− r)

∫ α(x)

α(x0)

∫ β(y)

β(y0)

H(x, y, s, t)e1
r(s, t)q̃1

r(s, t)ds dt

] 1
1−r

,

(3.3.14)

for all (x, y) ∈ I. Finally substituting the last inequality into (3.3.11), the desired

inequality (3.3.3) follows immediately, and this completes the proof.
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Remark 3.3.1. (1) If r = 0, an estimation of the inequality (3.3.1) can be easily

obtained.

(2) If r = 1, an estimation of the inequality (3.3.1) can be easily obtained.

Remark 3.3.2. Corollary 3.3.1 reduces to Theorem 2.3.1, when c(x, y) = c, α(x) =

x, β(y) = y, H(x, y, s, t) = H(s, t) x0 = y0 = 0 and r = p

Corollary 3.3.2. Let p, c, φ, A, H, B, α and β be defined as in Theorem 3.2.1.

Let 0 < r < 1 is a constant and if φ(x, y) satisfies

Φ(x, y) ≤ c(x, y) +

∫ α(x)

α(x0)

A(s, y)Φp(s, y)ds+

∫ β(y)

β(y0)

B(x, t)Φ(x, t)dt

+

∫ α(x)

α(x0)

∫ β(y)

β(y0)

H(x, y, s, t)Φr(s, t)ds dt, (3.3.15)

for all (x, y) ∈ I. Then

Φ(x, y) ≤ m2(x, y)e2(x, y)q̃2(x, y), (3.3.16)

for all (x, y) ∈ I. Where

m2(x, y) ≤

[
c1−r(x, y) + (1− r)

∫ α(x)

α(x0)

∫ β(y)

β(y0)

H(x, y, s, t)e2
r(s, t)q̃2

r(s, t)ds dt

] 1
1−r

,

(3.3.17)

for all (x, y) ∈ I, and

q̃2(x, y) =

[
1 + (1− p)

∫ α(x)

α(x0)

A(s, y)m2
p−1(s, y)e2

p(s, y)ds

] 1
1−p

, (3.3.18)

e2(x, y) = exp

(∫ β(y)

β(y0)

B(x, t)dt

)
. (3.3.19)

Proof. Setting

m2(x, y) = c(x, y) +

∫ α(x)

α(x0)

∫ β(y)

β(y0)

H(x, y, s, t)φr(s, t)ds dt, (3.3.20)

the inequality (3.3.15) can be restated as

Φ(x, y) ≤ m2(x, y) +

∫ α(x)

α(x0)

A(s, y)Φp(s, y)ds+

∫ β(y)

β(y0)

B(x, t)Φ(x, t)dt. (3.3.21)
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Clearly m2(x, y) is non-negative and non-decreasing function in each x and y. Now

a suitable application of the inequality (3.1.18) in Theorem 3.1.2 to (3.3.21), yields

Φ(x, y) ≤ m2(x, y)e2(x, y)q̃2(x, y), (3.3.22)

where e2(x, y) and q̃2(x, y) are defined in (3.3.19) and (3.3.18). From (3.3.20) and

(3.3.22), we have

m2(x, y) ≤ c(x, y) +

∫ α(x)

α(x0)

∫ β(y)

β(y0)

H(x, y, s, t)e2
r(s, t)q̃2

r(s, t)m2
r(s, t)ds dt, (3.3.23)

for (x, y) ∈ I. Fixing any numbers x̃1, and ỹ1 with 0 < x̃1 ≤ x1 and 0 < ỹ1 ≤ y1, we

have

m2(x, y) ≤ c(x̃1, ỹ1) +

∫ α(x)

α(x0)

∫ β(y)

β(y0)

H(x̃1, ỹ1, s, t)e2
r(s, t)q̃2

r(s, t)m2
r(s, t)ds dt,

for x0 ≤ x ≤ x̃1, y0 ≤ y ≤ ỹ1. Defining

z2(x, y) = c(x̃1, ỹ1) +

∫ α(x)

α(x0)

∫ β(y)

β(y0)

H(x̃1, ỹ1, s, t)e2
r(s, t)q̃2

r(s, t)m2
r(s, t)ds dt,

(3.3.24)

then z2(x0, y) = z2(x, y0) = c(x̃1, ỹ1) and

m2(x, y) ≤ z2(x, y), (3.3.25)

with z2(x, y) is positive and non-decreasing in y, and

D1z2(x, y) = α′(x)

∫ β(y)

β(y0)

H(x̃1, ỹ1, α(x), t)e2
r(α(x), t)q̃2

r(α(x), t)m2
r(α(x), t)dt,

≤ α′(x)

∫ β(y)

β(y0)

H(x̃1, ỹ1, α(x), t)e2
r(α(x), t)q̃2

r(α(x), t)z2
r(α(x), t)dt,

≤ z2
r(x, y)α′(x)

∫ β(y)

β(y0)

H(x̃1, ỹ1, α(x), t)e2
r(α(x), t)q̃2

r(α(x), t)dt.

(3.3.26)

Dividing both sides of (3.3.26) by z2
r(x, y), we obtain

D1z2(x, y)

z2r(x, y)
≤ α′(x)

∫ β(y)

β(y0)

H(x̃1, ỹ1, α(x), t)e2
r(α(x), t)q̃2

r(α(x), t))dt. (3.3.27)
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Now setting x = s in (3.3.27) and then integrating with respect to s from x0 to x,

we obtain

1

1− r
(
z2

1−r(x, y)− c1−r(x̃1, ỹ1)
)
≤
∫ α(x)

α(x0)

∫ β(y)

β(y0)

H(x̃1, ỹ1, s, t)e2
r(s, t)q̃2

r(s, t)ds dt,

z2
1−r(x, y)− c1−r(x̃1, ỹ1) ≤ (1− r)

∫ α(x)

α(x0)

∫ β(y)

β(y0)

H(x̃1, ỹ1, s, t)e2
r(s, t)q̃2

r(s, t)ds dt,

and

z2(x, y) ≤

[
c1−r(x̃1, ỹ1) + (1− r)

∫ α(x)

α(x0)

∫ β(y)

β(y0)

H(x̃1, ỹ1, s, t)e2
r(s, t)q̃2

r(s, t)ds dt

] 1
1−r

.

Taking x = x̃1, y = ỹ1 in (3.3.25) and the last inequality, gives:

m2(x̃1, ỹ1) ≤ z2(x̃1, ỹ1),

and

z2(x̃1, ỹ1) ≤

[
c1−r(x̃1, ỹ1) + (1− r)

∫ α(x)

α(x0)

∫ β(y)

β(y0)

H(x̃1, ỹ1, s, t)e2
r(s, t)q̃2

r(s, t)ds dt

] 1
1−r

.

Since 0 < x̃1 ≤ x1 and 0 < ỹ1 ≤ y1 are arbitrary, from the previous two equations

we have

m2(x, y) ≤ z2(x, y),

and

z2(x, y) ≤

[
c1−r(x, y) + (1− r)

∫ α(x)

α(x0)

∫ β(y)

β(y0)

H(x, y, s, t)e2
r(s, t)q̃2

r(s, t)ds dt

] 1
1−r

,

(3.3.28)

for all (x, y) ∈ I. Finally substituting the last inequality into (3.3.25), the desired

inequality (3.3.17) follows immediately, and this completes the proof.

Remark 3.3.3. Corollary 3.3.2 reduces to Theorem 2.3.2, when c(x, y) = c, α(x) =

x, β(y) = y, H(x, y, s, t) = H(s, t) x0 = y0 = 0 and r = p
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Corollary 3.3.3. Let p, q, c, φ, A, H, B, α and β be defined as in Theorem 3.2.2.

Suppose that q > r > 0 are constants and if φ(x, y) satisfies

Φq(x, y) ≤ c(x, y) +

∫ α(x)

α(x0)

A(s, y)Φp(s, y)ds+

∫ β(y)

β(y0)

B(x, t)Φp(x, t)dt

+

∫ α(x)

α(x0)

∫ β(y)

β(y0)

H(x, y, s, t)Φr(s, t)ds dt, (3.3.29)

for all (x, y) ∈ I. Then the following conclusions are true

(D1) If p = q, then

Φ(x, y) ≤ [n1(x, y)e1(x, y)q3(x, y)]1/p , (3.3.30)

for all (x, y) ∈ I. Where

n1(x, y) ≤
[
c

p−r
p (x, y) + (

p− r
p

)C4

] p
p−r

, (3.3.31)

for all (x, y) ∈ I. Where

C4 =

∫ α(x)

α(x0)

∫ β(y)

β(y0)

H(x, y, s, t)e1
r
p (s, t)q3

r
p (s, t)ds dt, (3.3.32)

and

q3(x, y) = exp

(∫ β(y)

β(y0)

B(x, t)e1(x, t)dt

)
, (3.3.33)

and e1(x, y) is defined in (3.3.5).

(D2) If p < q

Φ(x, y) ≤ n2
1/q(x, y)e4(x, y)q4(x, y), (3.3.34)

for all (x, y) ∈ I. Where

n2(x, y) ≤
[
c

q−r
q (x, y) + (

q − r
q

)C5

] q
q−r

, (3.3.35)

for all (x, y) ∈ I. Where

C5 =

∫ α(x)

α(x0)

∫ β(y)

β(y0)

H(x, y, s, t)e4
r(s, t)q4

r(s, t)ds dt, (3.3.36)
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and

q4(x, y) =

[
1 +

q − p
q

∫ β(y)

β(y0)

z
p−q
q (x, t)B(x, t)dt

] 1
q−p

, (3.3.37)

and

e4(x, y) =

[
1 +

q − p
q

∫ α(x)

α(x0)

n2

p−q
q (s, y)A(s, y)q4

p(s, y)ds

] 1
q−p

. (3.3.38)

Proof. (D1) If p = q. Setting

n1(x, y) = c(x, y) +

∫ α(x)

α(x0)

∫ β(y)

β(y0)

H(x, y, s, t)φr(s, t)ds dt, (3.3.39)

the inequality (3.3.29) can be restated as

Φq(x, y) ≤ n1(x, y) +

∫ α(x)

α(x0)

A(s, y)Φp(s, y)ds+

∫ β(y)

β(y0)

B(x, t)Φp(x, t)dt.

(3.3.40)

Clearly n1(x, y) is non-negative and non-decreasing function in each x and

y. Now a suitable application of the inequality (3.1.36) in Theorem 3.1.3 to

(3.3.40), yields

Φ(x, y) ≤ [n1(x, y)e1(x, y)q3(x, y)]1/p , (3.3.41)

where e1(x, y) and q3(x, y) are defined in (3.3.5) and (3.3.33). From (3.3.41)

and (3.3.39), we have

n1(x, y) ≤ c(x, y) +

∫ α(x)

α(x0)

∫ β(y)

β(y0)

H(x, y, s, t)e1
r
p (s, t)q3

r
p (s, t)n1

r
p (s, t)ds dt,

(3.3.42)

for (x, y) ∈ I. Fixing any numbers x̃1, and ỹ1 with 0 < x̃1 ≤ x1 and 0 < ỹ1 ≤
y1, we have

n1(x, y) ≤ c(x̃1, ỹ1) +

∫ α(x)

α(x0)

∫ β(y)

β(y0)

H(x̃1, ỹ1, s, t)e1
r
p (s, t)q3

r
p (s, t)n1

r
p (s, t)ds dt,

for x0 ≤ x ≤ x̃1, y0 ≤ y ≤ ỹ1. Defining

z1(x, y) = c(x̃1, ỹ1)+

∫ α(x)

α(x0)

∫ β(y)

β(y0)

H(x̃1, ỹ1, s, t)e1
r/p(s, t)q3

r/p(s, t)n1
r/p(s, t)ds dt,

(3.3.43)
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then z1(x0, y) = z1(x, y0) = c(x̃1, ỹ1) and

n1(x, y) ≤ z1(x, y), (3.3.44)

with z1(x, y) is positive and non-decreasing in y, and

D1z1(x, y) = u′
∫ β(y)

β(y0)

H(x̃1, ỹ1, u, t)e1
r
p (u, t)q3

r
p (u, t)n1

r
p (u, t)dt,

≤ u′
∫ β(y)

β(y0)

H(x̃1, ỹ1, u, t)e1
r
p (u, t)q3

r
p (u, t)z1

r
p (u, t)dt,

≤ z1
r
p (x, y)u′

∫ β(y)

β(y0)

H(x̃1, ỹ1, u, t)e1
r
p (u, t)q3

r
p (u, t)dt. (3.3.45)

Where u = α(x) implying u′ = α′(x). Dividing both sides of (3.3.45) by

z1
r/p(x, y), we obtain

D1z1(x, y)

z1r/p(x, y)
≤ α′(x)

∫ β(y)

β(y0)

H(x̃1, ỹ1, α(x), t)e1
r/p(α(x), t)q3

r/p(α(x), t))dt.

(3.3.46)

Now setting x = s in (3.3.46) and then integrating with respect to s from x0

to x, we obtain

1

1− r
p

(
z1

1− r
p (x, y)− c1−

r
p (x̃1, ỹ1)

)
≤ C̃4,

z1
p−r
p (x, y)− c

p−r
p (x̃1, ỹ1) ≤

(
1− r

p

)
C̃4,

and

z1(x, y) ≤
[
c

p−r
p (x̃1, ỹ1) + (

p− r
p

)C̃4

] p
p−r

.

Taking x = x̃1, y = ỹ1 in (3.3.44) and the last inequality, gives:

n1(x̃1, ỹ1) ≤ z1(x̃1, ỹ1),

and

z1(x̃1, ỹ1) ≤
[
c

p−r
p (x̃1, ỹ1) + (

p− r
p

)C̃4

] p
p−r

.

Where

C̃4 =

∫ α(x)

α(x0)

∫ β(y)

β(y0)

H(x̃1, ỹ1, s, t)e1
r
p (s, t)q3

r
p (s, t)ds dt.

59



Since 0 < x̃1 ≤ x1 and 0 < ỹ1 ≤ y1 are arbitrary, from the previous two

equations we have

n1(x, y) ≤ z1(x, y),

and

z1(x, y) ≤
[
c

p−r
p (x, y) + (

p− r
p

)C4

] p
p−r

, (3.3.47)

for all (x, y) ∈ I. Where C4 is defined in (3.3.32). Finally substituting the last

inequality into (3.3.44), the desired inequality (3.3.31) follows immediately,

and this completes the proof.

(D2) If p < q. Setting

n2(x, y) = c(x, y) +

∫ α(x)

α(x0)

∫ β(y)

β(y0)

H(x, y, s, t)φr(s, t)ds dt, (3.3.48)

the inequality (3.3.29) can be restated as

Φq(x, y) ≤ n2(x, y) +

∫ α(x)

α(x0)

A(s, y)Φp(s, y)ds+

∫ β(y)

β(y0)

B(x, t)Φp(x, t)dt.

(3.3.49)

Clearly n2(x, y) is non-negative and non-decreasing function in each x and

y. Now a suitable application of the inequality (3.1.36) in Theorem 3.1.3 to

(3.3.49), yields

Φ(x, y) ≤ n2
1/q(x, y)e4(x, y)q4(x, y), (3.3.50)

where e4(x, y) and q4(x, y) are defined in (3.3.38) and (3.3.37). From (3.3.50)

and (3.3.48), we have

n2(x, y) ≤ c(x, y) +

∫ α(x)

α(x0)

∫ β(y)

β(y0)

H(x, y, s, t)e4
r(s, t)q4

r(s, t)n2
r/q(s, t)ds dt,

(3.3.51)

for (x, y) ∈ I. Fixing any numbers x̃1, and ỹ1 with 0 < x̃1 ≤ x1 and 0 < ỹ1 ≤
y1, we have

n2(x, y) ≤ c(x̃1, ỹ1) +

∫ α(x)

α(x0)

∫ β(y)

β(y0)

H(x̃1, ỹ1, s, t)e4
r(s, t)q4

r(s, t)n2
r/q(s, t)ds dt,
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for x0 ≤ x ≤ x̃1, y0 ≤ y ≤ ỹ1. Defining

z2(x, y) = c(x̃1, ỹ1) +

∫ α(x)

α(x0)

∫ β(y)

β(y0)

H(x̃1, ỹ1, s, t)e4
r(s, t)q4

r(s, t)n2
r/q(s, t)ds dt,

(3.3.52)

then z2(x0, y) = z2(x, y0) = c(x̃1, ỹ1) and

n2(x, y) ≤ z2(x, y), (3.3.53)

with z2(x, y) is positive and non-decreasing in y, and

D1z2(x, y) = u′
∫ β(y)

β(y0)

H(x̃1, ỹ1, u, t)e4
r(u, t)q4

r(u, t)n2

r
q (u, t)dt,

≤ u′
∫ β(y)

β(y0)

H(x̃1, ỹ1, u, t)e4
r(u, t)q4

r(u, t)z2
r
q (u, t)dt,

≤ z2
r
q (x, y)u′

∫ β(y)

β(y0)

H(x̃1, ỹ1, u, t)e4
r(u, t)q4

r(u, t)dt. (3.3.54)

Where u = α(x) implying u′ = α′(x). Dividing both sides of (3.3.54) by

z2
r/q(x, y), we obtain

D1z2(x, y)

z2
r
q (x, y)

≤ α′(x)

∫ β(y)

β(y0)

H(x̃1, ỹ1, α(x), t)e4
r(α(x), t)q4

r(α(x), t)dt. (3.3.55)

Now setting x = s in (3.3.55) and then integrating with respect to s from x0

to x, we obtain(
1 +

r/q

1− r
q

)(
z2

1− r
q (x, y)− c1−

r
q (x̃1, ỹ1)

)
≤ C̃5.

This implies
1

1− r
q

(
z2

1− r
q (x, y)− c1−

r
q (x̃1, ỹ1)

)
≤ C̃5,

z2
q−r
q (x, y)− c

q−r
q (x̃1, ỹ1) ≤

(
1− r

q

)
C̃5,

and

z2(x, y) ≤
[
c

q−r
q (x̃1, ỹ1) + (

q − r
q

)C̃5

] q
q−r

.
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Taking x = x̃1, y = ỹ1 in (3.3.53) and the last inequality gives:

n2(x̃1, ỹ1) ≤ z2(x̃1, ỹ1),

and

z2(x̃1, ỹ1) ≤
[
c

q−r
q (x̃1, ỹ1) + (

q − r
q

)C̃5

] q
q−r

.

Where

C̃5 =

∫ α(x)

α(x0)

∫ β(y)

β(y0)

H(x̃1, ỹ1, s, t)e4
r(s, t)q4

r(s, t)ds dt.

Since 0 < x̃1 ≤ x1 and 0 < ỹ1 ≤ y1 are arbitrary, from the previous two

equations we have

n2(x, y) ≤ z2(x, y),

and

z2(x, y) ≤
[
c

q−r
q (x, y) + (

q − r
q

)C5

] q
q−r

, (3.3.56)

for all (x, y) ∈ I. Where C5 is defined in (3.3.36). Finally substituting the last

inequality into (3.3.53), the desired inequality (3.3.34) follows immediately,

and this completes the proof.

Corollary 3.3.4. Let p, q, c, φ, A, H, B, α and β be defined as in Theorem 3.2.2.

Suppose that q = r > 0 are constants and if φ(x, y) satisfies

Φq(x, y) ≤ c(x, y) +

∫ α(x)

α(x0)

A(s, y)Φp(s, y)ds+

∫ β(y)

β(y0)

B(x, t)Φp(x, t)dt

+

∫ α(x)

α(x0)

∫ β(y)

β(y0)

H(x, y, s, t)Φr(s, t)ds dt, (3.3.57)

for all (x, y) ∈ I. Then the following conclusions are true

(E1) If p = q, then

Φ(x, y) ≤ [n1(x, y)e1(x, y)q3(x, y)]1/p , (3.3.58)

for all (x, y) ∈ I. Where

n1(x, y) ≤ c(x, y) exp

(∫ α(x)

α(x0)

∫ β(y)

β(y0)

H(x, y, s, t)e1(s, t)q3(s, t)ds dt

)
, (3.3.59)
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for all (x, y) ∈ I, and q3(x, y) and e1(x, y) are defined in (3.3.33) and (3.3.5)

respectively.

(E2) If p < q

Φ(x, y) ≤ n2
1/q(x, y)e4(x, y)q4(x, y), (3.3.60)

for all (x, y) ∈ I. Where

n2(x, y) ≤ c(x, y) exp

(∫ α(x)

α(x0)

∫ β(y)

β(y0)

H(x, y, s, t)e4
r(s, t)q4

r(s, t)ds dt

)
,

(3.3.61)

for all (x, y) ∈ I, and e4(x, y) and q4(x, y) are defined in (3.3.38) and (3.3.37)

respectively.

Proof. (E1) If p = q. Setting

n1(x, y) = c(x, y) +

∫ α(x)

α(x0)

∫ β(y)

β(y0)

H(x, y, s, t)φr(s, t)ds dt, (3.3.62)

the inequality (3.3.57) can be restated as

Φq(x, y) ≤ n1(x, y) +

∫ α(x)

α(x0)

A(s, y)Φp(s, y)ds+

∫ β(y)

β(y0)

B(x, t)Φp(x, t)dt.

(3.3.63)

Clearly n1(x, y) is non-negative and non-decreasing function in each x and

y. Now a suitable application of the inequality (3.1.36) in Theorem 3.1.3 to

(3.3.63), yields

Φ(x, y) ≤ [n1(x, y)e1(x, y)q3(x, y)]1/p , (3.3.64)

where e1(x, y) and q3(x, y) are defined in (3.3.5) and (3.3.33). From (3.3.64)

and (3.3.62), we have

n1(x, y) ≤ c(x, y) +

∫ α(x)

α(x0)

∫ β(y)

β(y0)

H(x, y, s, t)e1(s, t)q3(s, t)n1(s, t)ds dt,

(3.3.65)

for (x, y) ∈ I. Fixing any numbers x̃1, and ỹ1 with 0 < x̃1 ≤ x1 and 0 < ỹ1 ≤
y1, we have

n1(x, y) ≤ c(x̃1, ỹ1) +

∫ α(x)

α(x0)

∫ β(y)

β(y0)

H(x̃1, ỹ1, s, t)e1(s, t)q3(s, t)n1(s, t)ds dt,
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for x0 ≤ x ≤ x̃1, y0 ≤ y ≤ ỹ1. Defining

z1(x, y) = c(x̃1, ỹ1) +

∫ α(x)

α(x0)

∫ β(y)

β(y0)

H(x̃1, ỹ1, s, t)e1(s, t)q3(s, t)n1(s, t)ds dt,

(3.3.66)

then z1(x0, y) = z1(x, y0) = c(x̃1, ỹ1) and

n1(x, y) ≤ z1(x, y), (3.3.67)

with z1(x, y) is positive and non-decreasing in y, and

D1z1(x, y) = α′(x)

∫ β(y)

β(y0)

H(x̃1, ỹ1, α(x), t)e1(α(x), t)q3(α(x), t)n1(α(x), t)dt,

≤ α′(x)

∫ β(y)

β(y0)

H(x̃1, ỹ1, α(x), t)e1(α(x), t)q3(α(x), t)z1(α(x), t)dt,

≤ z1(x, y)α′(x)

∫ β(y)

β(y0)

H(x̃1, ỹ1, α(x), t)e1(α(x), t)q3(α(x), t)dt.

(3.3.68)

Dividing both sides of (3.3.68) by z1(x, y), we obtain

D1z1(x, y)

z1(x, y)
≤ α′(x)

∫ β(y)

β(y0)

H(x̃1, ỹ1, α(x), t)e1(α(x), t)q3(α(x), t)dt. (3.3.69)

Now setting x = s in (3.3.69) and then integrating with respect to s from x0

to x, we obtain

ln z1(x, y)− ln c(x̃1, ỹ1) ≤
∫ α(x)

α(x0)

∫ β(y)

β(y0)

H(x̃1, ỹ1, s, t)e1(s, t)q3(s, t)ds dt.

This implies

ln

(
z1(x, y)

c(x̃1, ỹ1)

)
≤
∫ α(x)

α(x0)

∫ β(y)

β(y0)

H(x̃1, ỹ1, s, t)e1(s, t)q3(s, t)ds dt,

z1(x, y)

c(x̃1, ỹ1)
≤ exp

(∫ α(x)

α(x0)

∫ β(y)

β(y0)

H(x̃1, ỹ1, s, t)e1(s, t)q3(s, t)ds dt

)
,

and

z1(x, y) ≤ c(x̃1, ỹ1) exp

(∫ α(x)

α(x0)

∫ β(y)

β(y0)

H(x̃1, ỹ1, s, t)e1(s, t)q3(s, t)ds dt

)
.
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Taking x = x̃1, y = ỹ1 in (3.3.67) and the last inequality, gives:

n1(x̃1, ỹ1) ≤ z1(x̃1, ỹ1),

and

z1(x̃1, ỹ1) ≤ c(x̃1, ỹ1) exp

(∫ α(x)

α(x0)

∫ β(y)

β(y0)

H(x̃1, ỹ1, s, t)e1(s, t)q3(s, t)ds dt

)
.

Since 0 < x̃1 ≤ x1 and 0 < ỹ1 ≤ y1 are arbitrary, from the previous two

equations we have

n1(x, y) ≤ z1(x, y),

and

z1(x, y) ≤ c(x, y) exp

(∫ α(x)

α(x0)

∫ β(y)

β(y0)

H(x, y, s, t)e1(s, t)q3(s, t)ds dt

)
, (3.3.70)

for all (x, y) ∈ I. Finally substituting the last inequality into (3.3.67), the

desired inequality (3.3.59) follows immediately, and this completes the proof.

(E2) If p < q. Setting

n2(x, y) = c(x, y) +

∫ α(x)

α(x0)

∫ β(y)

β(y0)

H(x, y, s, t)φr(s, t)ds dt, (3.3.71)

the inequality (3.3.29) can be restated as

Φq(x, y) ≤ n2(x, y) +

∫ α(x)

α(x0)

A(s, y)Φp(s, y)ds+

∫ β(y)

β(y0)

B(x, t)Φp(x, t)dt.

(3.3.72)

Clearly n2(x, y) is non-negative and non-decreasing function in each x and

y. Now a suitable application of the inequality (3.1.36) in Theorem 3.1.3 to

(3.3.72), yields

Φ(x, y) ≤ n2
1/q(x, y)e4(x, y)q4(x, y), (3.3.73)

where e4(x, y) and q4(x, y) are defined in (3.3.38) and (3.3.37). From (3.3.73)

and (3.3.71), we have

n2(x, y) ≤ c(x, y) +

∫ α(x)

α(x0)

∫ β(y)

β(y0)

H(x, y, s, t)e4
r(s, t)q4

r(s, t)n2(s, t)ds dt,

(3.3.74)
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for (x, y) ∈ I. Fixing any numbers x̃1, and ỹ1 with 0 < x̃1 ≤ x1 and 0 < ỹ1 ≤
y1, we have

n2(x, y) ≤ c(x̃1, ỹ1) +

∫ α(x)

α(x0)

∫ β(y)

β(y0)

H(x̃1, ỹ1, s, t)e4
r(s, t)q4

r(s, t)n2(s, t)ds dt,

for x0 ≤ x ≤ x̃1, y0 ≤ y ≤ ỹ1. Defining

z2(x, y) = c(x̃1, ỹ1) +

∫ α(x)

α(x0)

∫ β(y)

β(y0)

H(x̃1, ỹ1, s, t)e4
r(s, t)q4

r(s, t)n2(s, t)ds dt,

(3.3.75)

then z2(x0, y) = z2(x, y0) = c(x̃1, ỹ1) and

n2(x, y) ≤ z2(x, y), (3.3.76)

with z2(x, y) is positive and non-decreasing in y, and

D1z2(x, y) = α′(x)

∫ β(y)

β(y0)

H(x̃1, ỹ1, α(x), t)e4
r(α(x), t)q4

r(α(x), t)n2(α(x), t)dt,

≤ α′(x)

∫ β(y)

β(y0)

H(x̃1, ỹ1, α(x), t)e4
r(α(x), t)q4

r(α(x), t)z2(α(x), t)dt,

≤ z2(x, y)α′(x)

∫ β(y)

β(y0)

H(x̃1, ỹ1, α(x), t)e4
r(α(x), t)q4

r(α(x), t)dt.

(3.3.77)

Dividing both sides of (3.3.77) by z2(x, y), we obtain

D1z2(x, y)

z2(x, y)
≤ α′(x)

∫ β(y)

β(y0)

H(x̃1, ỹ1, α(x), t)e4
r(α(x), t)q4

r(α(x), t)dt. (3.3.78)

Now setting x = s in (3.3.78) and then integrating with respect to s from x0

to x, we obtain

ln z2(x, y)− ln c(x̃1, ỹ1) ≤
∫ α(x)

α(x0)

∫ β(y)

β(y0)

H(x̃1, ỹ1, s, t)e4
r(s, t)q4

r(s, t)ds dt.

This implies

ln
z2(x, y)

c(x̃1, ỹ1)
≤
∫ α(x)

α(x0)

∫ β(y)

β(y0)

H(x̃1, ỹ1, s, t)e4
r(s, t)q4

r(s, t)ds dt,
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z2(x, y)

c(x̃1, ỹ1)
≤ exp

(∫ α(x)

α(x0)

∫ β(y)

β(y0)

H(x̃1, ỹ1, s, t)e4
r(s, t)q4

r(s, t)ds dt

)
,

and

z2(x, y) ≤ c(x̃1, ỹ1) exp

(∫ α(x)

α(x0)

∫ β(y)

β(y0)

H(x̃1, ỹ1, s, t)e4
r(s, t)q4

r(s, t)ds dt

)
.

Taking x = x̃1, y = ỹ1 in (3.3.76) and the last inequality, gives:

n2(x̃1, ỹ1) ≤ z2(x̃1, ỹ1),

and

z2(x̃1, ỹ1) ≤ c(x̃1, ỹ1) exp

(∫ α(x)

α(x0)

∫ β(y)

β(y0)

H(x̃1, ỹ1, s, t)e4
r(s, t)q4

r(s, t)ds dt

)
.

Since 0 < x̃1 ≤ x1 and 0 < ỹ1 ≤ y1 are arbitrary, from the previous two

equations we have

n2(x, y) ≤ z2(x, y),

and

z2(x, y) ≤ c(x, y) exp

(∫ α(x)

α(x0)

∫ β(y)

β(y0)

H(x, y, s, t)e4
r(s, t)q4

r(s, t)ds dt

)
,

(3.3.79)

for all (x, y) ∈ I. Finally substituting the last inequality into (3.3.76), the

desired inequality (3.3.60) follows immediately, and this completes the proof.
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Chapter 4

Conclusion

This thesis is concerned with Gronwall-Bellman type integral inequalities. The main

objective of our study was to establish some inequalities of Gronwall type involving

functions of two independent variables which provide bounds on unknown functions.

Thomas Hakon Gronwall and Richard Bellman has given the concept of Gronwall

type inequalities. We have generalized the Gronwall-Bellman and Gronwall-Bihari

type inequalities to two independent variables. The main purpose was to establish

explicit bounds on retarded Gronwall Bellman and Bihari-like inequalities which

can be used to study the qualitative behavior of the solutions of certain classes

of retarded differential equations. The two independent variable generalizations of

the main results and some applications of one of our results are also given. The

results obtained originated from the celebrated Gronwall-Bellman-Bihari inequality

has been of vital importance in the study of existence, uniqueness, continuous depen-

dence, comparison, boundedness and stability of solutions of integral and differential

equations. In the last three decades, more than one variable generalizations of these

inequalities have been obtained and these results have generated a lot of research

interests due to its usefulness in the theory of differential and integral equations. In

future, these non-linear inequalities can be further generalized to the functions of n

independent variables, which will compliment the existing results in the literature

on Gronwall- Bellman- Bihari type inequalities in several variables.

68



Bibliography

[1] Bainov, D. and Simeonov, P. Integral Inequalities and Applications. Kluwer

Academic Publishers, Dordrecht, 1992.

[2] Beckenbach, E. F. and Bellman, R. Inequalities, Springer-Verlag, New York,

1961.

[3] Bellman, R. The stability of solutions of linear differential equations. Duke

Math. J. 10, 643-647, (1943).

[4] Bihari, I. A generalization of a lemma of Bellman and its application to unique-

ness problems of differential equations. Acta Math. Hung. 7 (1): 81-94, (1956).

[5] Gronwall, T. H. Note on the derivatives with respect to a parameter of the

solutions of a system of differential equations. Ann. Math. 20, 292-296, (1919).

[6] Khan, Z. A. On Certain New Gronwall-Bellman Type Integral Inequalities of

Two Independent Variables. Int. J. Math. Anal, Vol. 6, no. 1. 39-52, (2012).

[7] Khellaf, H. On integral inequalities for functions of several independent vari-

ables. Electron. J. Diff. Eqns., No.123. 1-12, (2003).

[8] Khellaf, H. and Denche, M. Integral inequalities similar to Gronwall inequality.

Electron. J. Diff. Eqns., 1-14, (2007).

[9] Khellaf, H. and Smakdji, M. On some non-linear integrodifferential inequalities

for functions of n-independent variables. ISRN Math. Anal., ID No. 987595.

1-15, (2011).

69



[10] Kim, Y-H. On some new integral inequalities for functions in one and two

variables. Acta Math. Sin. N. 21. 423-434, (2005).

[11] Lalescu, T. Introducere in teoria ecuatiilor integrale, Ed. Acad. Bucuresti, 1956

(First edition in 1911).

[12] Meng, F. W. and Li, W. N. On some new integral inequalities and their appli-

cations. Appl. Math. Comput. Vol. 148, No.2. 381-392, (2004).

[13] Oguntuase, J. A. On an inequality of Gronwall, J. Ineq. Pure and Appl. Math.,

2(1) , Article 9, (2001).

[14] Pachpatte, B. G. Bounds on Certain Integral Inequalities. J. Ineq. Pure and

Appl. Math. N. 47. 23-45, (2002).

[15] Pachpatte, B. G. A note on Gronwall-Bellman inequality, J. Math. Anal. Appl.,

44, 758-762, (1973).

[16] Pachpatte, B. G. Explicit bounds on certain integral inequalities, J. Math. Anal.

Appl., 267, 48-61, (2002)

[17] Polyanin, A. D. and Manzhirov, A. V. Handbook of integral equations, CRC

Press, London, 1998.

[18] Sun, Y. G: On retarded integral inequalities and their applications. J. Math.

Anal. Appl. Vol. 301, No. 2. 265-275, (2005).

[19] Tricomi, F. G. Integral equations, Dover Publications, 1985.

[20] Wang, W: An algorithm for solving the high-order nonlinear Volterra-Fredholm

integrodifferential equation with mechanization. Appl. Math. Comput. No. 1.

1-23, (2006).

[21] Yang, E. H: A new integral inequality with power nonlinearity and its discrete

analogue. Acta Math. Appl. Sinica (Eng. Ser.) Vol. 17, No. 2. 233-239, (2001).

70


