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Abstract

In this thesis, using the Lie symmetry method, optimal systems, group invari-
ants and exact solutions of Monge-Ampere and (2 + 1)−dimensional Zabolotskaya-
Khokholov equations are obtained.
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Chapter 1

Fundamentals of symmetry
analysis of differential equations

1.1 Introduction

There is an old Armenian saying, ”He who lacks a sense of the past is condemned
to live in the narrow darkness of his own generation.” Mathematics without history
is mathematics stripped of its greatness [25]. The history of mathematics is full of
the stories of people who spent almost all of their lives in solving equations. At first
they solved algebraic equations and later, they done differential equations. Since
the last three centuries mathematical analysis has been the most dominant branch
of mathematics. Differential equation is at the heart of mathematical analysis. It
is a fact that nothing is permanent except change. The basic purpose of differential
equations are to serve as a tool for the study of change in different phenomena of the
physical world. Differential equations are the natural goal of elementary calculus.
It was independently invented by the English physicist Isaac Newton (1643− 1716)
and the German mathematician Gottfried Leibniz (1646 − 1716). Also differential
equations are the most important part of mathematics for understanding the phys-
ical sciences. Isaac Newton wrote laws of nature in terms of differential equations.
The first book on the subject of differential equations was written between 1701 and
1704, by the Italian mathematician Gabriel Manfredi’s. The book was on first degree
differential equations and was published in Latin. Differential equations have diverse
uses in physics, engineering, chemistry, biology, astrophysics, economics etc. Mostly
differential equations represent different physical phenomena in respective applied
sciences. From the history of mathematics we came to know that mathematicians
are interested in finding the solutions of equations. In comparison of solution of or-
dinary differential equations with the solution of partial differential equations, it is
simpler to find the solution of ordinary differential equation. It is because of the fact
that the solution space of partial differential equations is infinite dimensional. Ac-
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tually a problem arises when we have to deal with non-linear differential equations.
The reason is that, up to now many techniques have been developed for finding the
analytic solution of non-linear ordinary as well as partial differential equations. But
we do not have any generalized way except the Lie technique.

In 1867, the Norwegian mathematician Sophus Lie, introduced a powerful tech-
nique for the solutions of differential equations [4, 9, 15, 19]. The best part of the
technique is that it is applicable to all types of differential equations, whether they
are homogeneous, non homogeneous, linear or nonlinear of any order. The idea of
this technique came into his mind when he was attending lectures of Ludwing Sylow
on the work of Galios on solubility of algebraic equations. After that he thought that
the same approach can be used for solution of differential equations. Galois theory
associates permutation groups with the solution of algebraic equation. Lie used the
same idea for the solution of differential equations. He assumed that there must be
group of transformations (Lie groups) which will be associated to the solution of
differential equations. This idea construct a new branch of mathematics that is Lie
group analysis (Lie symmetry analysis). This analysis combine three branches of
mathematics namely: algebra, analysis and geometry. The main idea of Lie group
of transformations is that it employs transformations which form a vector space
closed under Lie algebra. It also replace the global object that is group, with its
local infinitesimal group which is known as its Lie algebra. In this chapter we briefly
explain fundamentals of symmetry analysis, comprising of manifolds, vector space,
tangent space, Lie brackets, Lie group and Lie algebra, Lie point transformations,
adjoint representations and optimal system.

In second chapter, we review the optimal algebra of Korteweg de Vries equa-
tions of fifth order. In third chapter, we find the optimal algebra of non linear non
homogeneous Monge-Ampere equation for two particular cases. In fourth chapter,
we find exact solutions of (2 + 1) dimensional non linear Zabolotskaya Khokholov
equation by using its optimal algebra.

1.2 Manifold

An n−dimensional manifold is a set M , together with a countable collection of
subsets mi ⊂M , called coordinate charts, and one−one functions fi : mi → vi onto
connected open subsets vi ⊂ Rn, called local coordinate maps [19], which satisfy the
following properties:

(a) The coordinate chart covers M , i.e.⋃
i

mi = M.

(b) On the overlap of any pair of coordinate charts mi∩mj the composite
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map
fi ◦ f−1j : fi(mi ∩mj)→ fj(mi ∩mj),

is smooth (infinitely differentiable) function.

(c) For distinct points p ∈ mi, q ∈ mj in M , there exists open sets u ⊂ vi,
v ⊂ vj, with the property fi(p) ∈ u, fi(q) ∈ v, satisfying

f−1i (u) ∩ f−1j (v) = Φ.

An n−dimensional manifold is actually a topological space which is similar to
Euclidean space at the neighborhood of each point, where topological space (X,T )
is the set X together with the topology T on the set X.

Euclidean space Rn itself is the n-dimensional manifold. There is a single coordi-
nate chart U = Rn, with local coordinate map given by the identity : x = I : Rn →
Rn. More generally, any open subset U ⊂ Rn is an n−dimensional manifold with a
single coordinate chart given by U itself, with local coordinate map identity. Con-
versely, if M is any manifold with a single global coordinate chart x : M → V ⊂ Rn,
we can identify M with its image V , an open subset of Rn.

Another example of manifold is unit circle i.e. a circle of unit radius

S1 = {(x, y) : x2 + y2 = 1},

which is seen to be a one dimensional manifold with two coordinate charts.
The unit sphere

S2 = {(x, y) : x2 + y2 + z2 = 1},

is also an example of non-trivial two dimensional manifold realized as surface in Rn

when n = 3.

1.2.1 Vector field

A vector field V on a manifold M is a function which assigns a tangent vector
V|p at each point P ∈ M , where V|P varies smoothly while moving from point to
point on the manifold M [19]. For local coordinates x = (x

1
, x

2
, x

3
, . . . , x

n
), then

the vector field takes the form as

V|P = ξ1(x)
∂

∂x1
+ ξ2(x)

∂

∂x2
+ ξ3(x)

∂

∂x3
+ · · ·+ ξn(x)

∂

∂xn
, (1.1)

where every ξi,s(x) are smooth functions of x. A simple example of vector field is
the velocity field of steady fluid flow at some open subset M ⊂ R3. At every point
(x, y, z) ∈ V|(x,y,z) will give the velocity of fluid particles which are passing through
the point (x, y, z).
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Suppose N ⊂M is a submanifold of M i.e. N is a subset of M and satisfying
all the properties of manifolds parameterized by the immersion Ψ : Ñ →M , Ñ ⊂ N .
The tangent space to N at x ∈ N , is the image of the tangent space to Ñ at the
corresponding point x̃ :

TN |x = dΨ(TÑ |x̃), x̃ = Ψ(x).

TN |x is a subspace of TM |x of the same dimension as that of N [19]. So, simply
we can say that the collection of all tangent vectors at point P ∈ N to all possible
curves those passing through the point P is called the tangent space to N at point
P to which we denote as TN |P , also an n−dimensional tangent space is generated
by basis vectors

∂

∂x1
,
∂

∂x2
,
∂

∂x3
, · · · , ∂

∂xn
.

The collection of all possible tangent spaces passing through point P ∈ N
over the manifold N is called the tangent bundle of N , that is

TN =
⋃
P∈N

TN |P .

1.3 Lie group and Lie algebra

A Lie group is somewhat a relation between the algebraic concept of groups and
geometric notion of manifold. This combination of algebra and calculus results the
powerful techniques for the study of symmetry. We start discussing Lie group by
first defining the abstract group.

A group G is an ordered pair (G, ∗) with its binary operation ∗ satisfying the
following axioms
(i) G is closed under the binary operation ∗.
(ii) a ∗ (b ∗ c) = (a ∗ b) ∗ c ∀a, b, c ∈ G i.e. G is associative under binary
operation ∗.
(iii) There must exist an element e such that a ∗ e = e ∗ a = a i.e. G has an
identity element.
(iv) For each element a ∈ G there is an element a−1 ∈ G, such that a−1 ∗ a =
a∗a−1 = e, i.e. inverse of every a ∈ G [6]. Some examples of group are given below.

(i) G = R\{0} is a group under binary operations of multiplication(×), under
the binary operation of multiplication e = 1 is the identity and inverse of every

element a of G is reciprocal of a i.e. a =
1

a
.

(ii) G = R is also a group under the binary operation of addition e = 0 is the
identity and inverse of every element a of G is negative of a i.e. a = −a.

(iii) In a similar way, GL(n,R), the set of all invertible matrices of order n× n
with real entries is a group under the binary operation of matrix multiplication, with
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identity element be identity matrix and inverse is the ordinary inverse of a matrix
which normally have rational entries. Usually we denote general linear matrix by
just GL(n).

Now moving towards Lie group, the remarkable trait of Lie group is that it also
have the structure of smooth manifolds, so the elements of group can be varied
continuously. From above examples the manifold structure is clear for R, for general
linear group, it can be identified with open subset

GL(n) = V : detV 6= 0,

of the space Mn×n of all n×n matrices. But Mn×n is isomorphic to Rn2
, thus GL(n)

is also an n2−dimensional manifold. In both cases analytically the group operation
is smooth. This exemplifies to the general definition of Lie group, now moving to-
wards the definition of Lie group.

An n−dimensional Lie group is a group G which has the structure of an
n−dimensional manifold such that the following composition function σ and inver-
sion function κ are smooth for all elements of group G [19].

σ : G×G→ G , σ(a, b) = a · b, a, b ∈ G,
κ : G→ G , κ(a) = a−1, a ∈ G.

G = Rn, with the obvious manifold structure be the group under the action of
vector addition (a,b)→ a+b. The identity element is the null vector and the inverse
element of vector a be negative vector −a. So Rn is an example of n−parameter
abelian Lie group.
Also consider the group of orthogonal n× n matrices SO(n)

SO(n) = V ∈ GL(n) : V ᵀV = I : detV = I,

thus SO(n) is the subset of Rn2
defined by n2 equations

V ᵀV − I = 0,

involving the matrix entries vij of V .
A Lie subgroup H of a Lie group G is given by a submanifold φ : H̃ → G,

here H̃ is itself a Lie group such that, H = φ ˜(H) is the image of φ, and φ is a Lie
group homomorphism[19].
Usually, Lie group occurs as subgroups of some larger Lie groups, like orthogonal
groups are subgroup of general linear groups of every invertible matrices. Generally
we will be interested in Lie subgroups during our work which are considered as Lie
group.

If G is a Lie group then there are certain distinguished vector fields on G
characterized by their invariance under the group multiplication. These invariant
vector fields form finite dimensional vector space called the Lie algebra of Lie group
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G. Precisely, Lie algebra is the infinitesimal generator of Lie group G. Also an
n−parameter Lie group has an n−dimensional Lie algebra which form a vector space
and is denoted by g it contains all the generators of n−dimensioanl Lie group, sat-
isfying the conditions of
(i) Bilenearity:

For vector fields V1, V2, V3 and V4 on any manifold and a, b, c and d be
constants then the bilenearity condition is

[aV1 + bV2, cV3 + dV4] = ac[V1,V3] + ad[V1,V4] + bc[V2,V3] + bd[V2,V4].

(ii) Skew-Symmetry:
For vector fields V1 and V2 on the manifold M are called skew-symmetric if

following condition holds
[V1,V2] = −[V2,V1].

(iii) Jacobi identity:
Let V1, V2 and V3 be vector fields on the manifold M then they satisfy the

following condition

[V1, [V2,V3]] + [V2, [V3,V1]] + [V3, [V1,V2]] = 0,

called the Jacobi identity. Lie algebra is called abelian if

[Vi,Vj] = 0 ∀Vi,Vj ∈ g .

Commutator table (commutator relation table) are used to display the struc-
ture of given Lie algebra. Also to display structure of Lie algebra, it is convenient to
write it in the tabular form. For an n−dimensional Lie algebra g , with basis vectors
V1,V2 · · · ,Vn commutator relation table will be the n × n table, whose (i, j)−th
entry represent the lie bracket [Vi,Vj]. Its all diagonal entries are zero and the
table is always skew-symmetric.

For example, consider Benjamin Bona Mahony (BBM) equation

ut + ux + uux − uxxt = 0.

Symmetry generators of BBM equation are as follow

V1 =
∂

∂t
, V2 =

∂

∂x
, V3 = t

∂

∂t
− (u+ 1)

∂

∂u
.

One can write its Lie algebra as
[V1,V1] = 0, [V1,V2] = 0, [V1,V1] = V1,
[V2,V1] = 0, [V2,V2] = 0, [V2,V3] = 0,
[V3,V1] = 0, [V3,V2] = −V2, [V3,V3] = 0.

Using these results of commutator relations one can construct commutator rela-
tion table as:
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, V1 V2 V3

V1 0 0 V1

V2 0 0 0
V3 −V1 0 0

Commutator relation table

1.4 Lie point transformations

Here our main goal is to use symmetry generators to make given differential
equation that can be ordinary differential equation or partial differential equation,
such that if we are given with ordinary differential equation, then to reduce its order
and if we are given with partial differential equation, then to reduce its dimension
or make it an ordinary differential equation. Here we are dealing with non linear
partial differential equations, so our focus will be on reducing the dimension of
given non linear partial differential equation. For this we need a proper definition
of symmetry generators and a proper technique that describe the way to find them.
This in turn requires few knowledge about transformations and their symmetry
generators. Starting from somehow a simpler case of ordinary differential equation.
For coordinates (x, y) x is independent variable while y is dependent variable. To
make ordinary differential equations of lower order we often need to find appropriate
change of variables i.e. by a transformation of independent variable x and dependent
variable y

x̃ = x̃(x, y; ε) = x+ εξ(x, y),

ỹ = ỹ(x, y; ε) = y + εη(x, y),

are known as Lie point transformations, also one parameter Lie point transforma-
tions as they depend on only one parameter ε. These one parameter point trans-
formations form a group with identity transformation when ε = 0. The group of
one parameter point transformation defines a family of curves in manifold M , These
parametric curves can be viewed as the integral curves of a differentiable vector field
V ∈M . These curves are parameterized by the parameter ε and also known as the
orbits of the group of transformations.

As x̃(x, y; ε), ỹ(x, y; ε) are parametric equations of group of transformation
through the point p. The tangent vector V|p i.e. tangent vector V at the point
p = p(x, y; 0) at ε = 0 is given by

V|p =
∂x̃

∂ε
|ε→0

∂

∂x
|p +

∂ỹ

∂ε
|ε→0

∂

∂y
|p, (1.2)
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where,

x̃ = x+ εξ; ξ =
∂x̃

∂ε
|ε=0,

ỹ = y + εη; η =
∂ỹ

∂ε
|ε=0.

(1.3)

Then equation (1.2) can be written as

V = ξ(x, y)
∂

∂x
+ η(x, y)

∂

∂y
, (1.4)

is the infinitesimal generator.
The transformation (1.3) is a one parameter point transformation which is

also known as infinitesimal point transformation.
If we have a differential equation of some arbitrary order say n, of the form

f(x, y, y′, y′′, · · · , yn) = 0,

here yn denotes the arbitrary nth order derivative of dependent variable y with
respect to independent variable x, then differentiating the Lie point transformations
successively, which takes the form

x̃ = x̃(x, y; ε) = x+ εξ(x, y),

ỹ = ỹ(x, y; ε) = y + εη(x, y),

ỹ′ = ỹ′(x, y, y′; ε) = y′(x, y, y′) + εη′(x, y, y′),

continuing in this manner,m we have

ỹ(n) = ỹ(n)(x, y, y′ · · · , y(n); ε) = y(n)(x, y, y′, · · · , y(n)) + εη(n)(x, y, y′, · · · , y(n)).

Now moving towards the prolongation of generator for ordinary differential equa-
tion, for the first prolongation function η(1), we have

η(1) =
dη

dx
− y(1) dξ

dx
,

η(2) =
dη(1)

dx
− y(2) dξ

dx
,

...

η(n) =
dη(n−1)

dx
− y(n) dξ

dx
.

Now the expressions for the infinitesimal generators be as
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V(1) = V + η(1)
∂

∂y1
,

V(2) = V + η(1)
∂

∂y1
+ η(2)

∂

∂y2
,

...

V(n) = V + η(1)
∂

∂y1
+ η(2)

∂

∂y2
+ · · ·+ η(n)

∂

∂yn
.

For ordinary differential equations relations for η(1) and η(2) are

η(1) = η,x + (η,y − ξ,x)y′ − ξ,yy′2,
η(2) = η,xx + (2η,xy − ξ,xx)y′ + (η,yy − 2ξ,xy)y

′2 − ξ,yyy′3 + (η,y − 2ξ,x − 3ξ,yy
′)y′′.

Now extending this concept for system of partial differential equations. If we
have more than one independent variable say k such that x = (x1, x2, x3, · · · , xk)
here x1 be the first independent variable, x2 be the second independent variable and
similarly xk be the kth independent variable. For more than one dependent variable
say m, such that u = (u1, u2, u3, · · · , um) here u1 be the first dependent variable, u2

be the second dependent variable similarly um be the mth dependent variable. If
we have a partial differential equation of kth order as

f(x, u, ui1 , ui1i2 , . . ., ui1i2...ik) = 0,

then its infinitesimal transformations will be of the form

x̃i = x̃i(xi, uj; ε) = xi + εξi(xi, uj),

ỹj = ỹj(xi, uj; ε) = yj + εηj(xi, uj),

ũj i1 = ũj i1(x
i, uj; ε) = uj i1(x

i, uj, ui1) + εηj i1(x
i, uj, uj i1),

...

ũj i1,i2,··· ,ik = ũj i1,i2,··· ,ik(x
i, uj, uj i1 , · · · , uj i1,i2,··· ,ik ; ε)

= uj i1,i2,··· ,ik(x
i, uj, uj i1 , · · · , uj i1,i2,··· ,ik) + εηj i1,i2,··· ,ik(x

i, uj, uj i1,i2,··· ,ik).

Here the subscripts represent derivative while superscripts represent coordinates.
Now extending this concept to prolongation of generator for partial differential

equation. The generator for partial differential equation is

V = ξi
∂

∂xi
+ ηj

∂

∂uj
, (1.5)
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V(1) = V + ηj i1
∂

∂uj i1
,

V(2) = V(1) + ηj i1i2
∂

∂uj i1i2
,

...

V(n) = ξi
∂

∂xi
+ ηj

∂

∂uj
+ ηj i1

∂

∂uj i1
+ ηj i1i2

∂

∂uj i1i2
+ · · ·+ ηj i1i2···in

∂

∂uj i1i2···in
, (1.6)

here (1.6) is nth order prolongation of (1.5), we will extend the generator according
to the order of partial differential differential equation. Also the expressions for
general first and second order prolongation of η,s are as follows

ηα,n =
Dηα

Dxn
− uα,i

Dξi

Dxn
,

ηα,nm =
Dηαm
Dxn

− uα,im
Dξi

Dxn
,

D

Dxn
=

∂

∂xn
+ uα,n

∂

∂uα
+ uα,nm

∂

∂uα ,m
,

here superscript of η,s is for number of depending variable subscript is for order
of derivative, superscript of ξ is for independent variable and similarly superscripts
of u representing number of dependent variable while its subscripts representing
independent variable.

1.5 Optimal system

Lie group analysis is a powerful tool for obtaining exact similarity solutions of
nonlinear differential equations. To calculate the group invariant solutions, one first
need to find the full Lie point symmetry group admitted by the given differential
equations and to determine all the subgroups of this Lie group. An effective system-
atic way to classify the similarity solutions is in terms of the set of representatives
of all the conjugacy classes of Lie group, which is called representative system. Now
an optimal is defined as the best, most efficient or of the greatest value, sometimes
under certain parameters or constraints. Here the optimal system is the one with
the minimal representatives of each class of similar vectors. That is a list of group
invariant solutions from which every other solution can be derived. The problem to
find an optimal system of similarity solutions leads to construct an optimal system
of sub-algebras for the Lie algebra of the known Lie point symmetry group.

Let us suppose we have a differential equation which admits a Lie algebra Ln of
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dimension n > 1. Then in principle one can consider invariant solutions of differen-
tial equations based on one, two or more sub-algebras of Ln. But we also knew that
there are an infinite number of sub algebras for one dimensional Lie algebra. We can
make this problem manageable by recognizing that if two sub-algebras are similar
that is if they can be connected with each other by means of some transformation
from symmetry group which also have Lie algebra Ln, then their corresponding in-
variant solutions can also be connected by means of transformation which connected
sub-algebras. Therefore, it will be enough to put all the sub-algebras of same di-
mension, say s, and then select one representative from each class. The set of all
these representatives of all these is an optimal system of order s. If we have to find
all the invariant solutions with respect to s−dimensional sub-algebras, then it will
be enough to construct invariant solutions for the optimal solution of order s. The
set of invariant solution obtained, as a result of these optimal algebras, is called an
optimal system of invariant solutions. To find optimal system of given differential
equation we follow the following steps.

(i) First we calculate the commutator table for symmetry generators of given
differential equation.

(ii) Next we construct adjoint representation table, by conjunction of adjoint
map with already calculated commutator relation table.

(iii) After that, we consider the construction of optimal system of given differen-
tial equation. Where the method requires simplification of general vector by using
judicious application of adjoint map.

Let V be a vector field on a manifold M and a function f which maps from
manifold M to the real numbers R is smooth [19],

f : M→ R.
Here we are interested in seeing how the function f changes f(exp(εV)) as ε

varies.

In local coordinates V =
∑
ξi

∂

∂xi
, then

d

dε
f(exp(εVx)) =

∑m

i=1
ξi(exp(εVx))

∂f

∂xi
(exp(εVx)),

d

dε
f(exp(εVx)) = V(f)[exp(εVx)],

in particular at ε = 0,

d

dε
f(exp(εVx))|ε=0 = V(f)(x),

11



the vector field V is the first order partial differential operator on real valued func-
tions f(x) on M. Furthermore, by Taylor’s theorem

f(exp(εVx)) = f(x) + εVf(x) + o(ε2).

So, V(f) gives the infinitesimal change in the function f under the flow generated
by V. We can continue the process of differentiation and substitution into the Taylor
series, obtaining

f(exp(εVx)) = f(x) + εVf(x) +
ε2

2
V2(f)(x) + · · ·,

where V2(f) = V(V(f)).

1.6 Adjoint representation

To define the adjoint representation first we define a group representation and
then the adjoint representation and its tabular form.

1.6.1 Group representation

Let G be a group. A representation of G is a homomorphism

ρ : G −→ Gn(C) (1.7)

for some number n, which is called the dimension or degree of the representation.
Let V be an n−dimensional vector space. The set of all invertible linear maps

from V to V form a group which we call general linear matrix over the vector space
V as GL(V). A representation of a group G is a choice of vector space and a
homomorphism

ρ : G −→ G(V). (1.8)

If we pick a basis of V, we get a representation in the previous sense. Informally
a representation of a group is a way of writing it down as a group of matrices.
Representation of a group is a map between any group element ′g′ of a group G and
a linear transformation ρ(g) of some vector space in such a way that the identity
element of the group transforms the identity. Every inverse element is mapped
to the corresponding inverse transformation. The combination of transformations
corresponding to any elements of group g ,h is the same as the transformation
corresponding to the point gh.
(i) ρ(e) = I,
(ii) ρ(g−1) = (ρ()),

12



(iii) ρ(g)ρ(h) = ρ(gh).
Linear actions of Lie groups play a vital role in development and applications

of mathematics. For theoretical aspects one is interested in considering an abstract
group with its group action operation and manifold structure. While considering
physical applications one is more interested in what the group actually does that
is the group action. Most of time in physics one is more concerned with linear
transformations in a vector space. Therefore the concept of a representation is more
relevant to physics. A representation identifies with each point of the group manifold
a linear transformation of a vector space.

1.6.2 Representation of a Lie algebra

The representation of a Lie algebra g is defined by a Lie algebra homomorphism

ρ : g −→ gl(V),

the space of linear maps on vector space V. Also we can say that representation of
Lie algebra is a linear map which preserves the Lie bracket operation:

ρ([v,w]) = ρ(w)ρ(v)− ρ(v)ρ(w),

while

ρ(v)(x) =
d

dt
ρ(exp(tv))x |t=0 ; x ∈ V,v ∈ g,

defines the infinitesimal version of the Lie algebra g. If the representation

ρ : G −→ G(n)

acts on Rn, with coordinates x = (x1, x2, . . . , xn) its infinitesimal generators

VA =
n∑

i,j=1

aij∂xi

are linear vector fields on Rn.
Consider a Lie algebra g over the real field, gl(g) the Lie algebra of linear

operators on g and the map

ad : g −→ gl(g), ad(x)y = [x, y], ∀x, y ∈ g .

The map
ad(x) : g −→ g

is known as the adjoint action of the element x on g .

13



1.6.3 Adjoint representation

Let G be a Lie group and g be its Lie algebra, then the differential of conjugation
action

Kg : h −→ ghg−1

of G defines a representation of G on its Lie algebra g , called the adjoint represen-
tation of G:

Kg(h) = ghg−1,

Adg(v) = dKg(v) ; v ∈ g .

Also, if v ∈ g generates the one parameter subgroup H = {exp(εv) : ε ∈ R},
then Adg(v) generates the conjugate one parameter subgroup Kg(H) = gHg−1.

The best part of Lie group analysis is that a curved object Lie group G can
be almost completely captured by a flat one that is the tangent space TeG of G at
identity. Lie algebra of Lie group is also the tangent space at identity. The adjoint
representation is a homeomorphism from group G to the space of linear operators
on the tangent space at identity TeG. Denoted by Kg(h) = ghg−1 and is known as
the adjoint action.

Kg(hj) = ghjg−1,

Kg(hj) = ghejg−1,

Kg(hj) = gh(g−1g)jg−1 ; ∴ e = gg−1

Kg(hj) = (ghg−1)(gjg−1),

Kg(hj) = Kg(h)Kg(j) where h, j ∈ v.

Also this homomorphism maps the identity to identity for every group element g :

kg(e) = geg−1

kg(e) = e,

which shows that any curve through identity e on the manifold G is mapped by this
homeomorphism to another curve through e. Therefore, the adjoint representation
maps any tangent vector of the curve on G in tangent space of G at identity to
another vector in TeG. Now we are going to show that adjoint action is given by
commutator relation.
Consider a curve α(t) on the manifold G with α(0) = e ∈ G and tangent vector
α′(0) = X ∈ TeG. Also, assume that the curve goes through some arbitrary element
g ∈ G. Then the adjoint action

Adg(X) = gXg−1

14



as
Adg(Y) = Adα(t)(Y) = α(t)Yα(t)−1.

Differentiating this map at the identity, t = 0, gives the Lie algebra homomor-
phism.

d

dt
Adα(t)(Y) |t=0 =

d

dt
(α(t)Yα(t)−1) |t=0,

d

dt
Adα(t)(Y) |t=0 = α′(0)Yα(0)−1 + α(0)Y

d

dt
α(t)−1 |t=0 .

Here, using the definition of a matrix Lie algebra to calculate
d

dt
α(t)−1, we get

d

dt
Adα(t)(Y) |t=0 = α′(0)Yα(0)−1 + α(0)Y(−α(0)−1α′(0)α(0)−1),

d

dt
Adα(t)(Y) |t=0 = α′(0)Yα(0)−1 − α(0)Yα(0)−1α′(0)α(0)−1.

d

dt
Adα(t)(Y) |t=0 = XYe− eYeXe,

d

dt
Adα(t)(Y) |t=0 = XY−YX,

d

dt
Adα(t)(Y) |t=0 = [X,Y].

The adjoint action of the Lie algebra on itself is given by commutator relation.
Thus the natural product of tangent space at identity is given by Lie bracket. The
representation of Lie algebra on itself is given by a Lie algebra. Now to get more
understanding physically, we consider an example of group of rotations in three
dimensions i.e. SO(3).

The orthogonal group in three dimensions is comprised of transformations
that leaves x2 + y2 + z2 invariant. If we restrict ourselves to transformations with
unit determinant, we obtain the group of proper rotations on three dimensions
SO(3).
Consider first rotation about x-axis by an angle φ,

Rx
φ =

 1 0 0
0 cosφ − sinφ
0 sinφ cosφ


its corresponding infinitesimal generator is

Ax = V1 =
d

dφ
Rx
φ |φ=0=

0 0 0
0 0 − 1
0 1 0


15



For rotation about y-axis with an angle φ, we have

Ry
φ =

 cosφ 0 sinφ
0 1 0

−sinφ 0 cosφ


and its generator is

Ay = V2 =
d

dφ
Ry
φ |φ=0=

 0 0 1
0 0 0
−1 0 0


Finally, for rotation about z-axis by an angle φ

Rz
φ =

 cosφ − sinφ 0
sinφ cosφ 0

0 0 1


and the corresponding generator is

Az = V3 =
d

dφ
Rz
φ |φ=0=

0 − 1 0
1 0 0
0 0 0


The adjoint action of Rx

φ on the generator Ay can be found by differentiating the
product Rx

φR
y
εR

x
−φ with respect to ε and setting ε = 0. We get

AdRx
φA

(y) =

 1 0 0
0 cosφ − sinφ
0 sinφ cosφ

 cosε 0 sinε
0 1 0

−sinε 0 cosε

 1 0 0
0 cosφ sinφ
0 − sinφ cosφ



AdRx
φA

(y) =

 cosε − sinφcosε cosεcosφ
sinφcosε − sin2φsinε sinφcosφsinε
cosφcosε sinφcosφsinε − cos2φsinε


Now differentiating with respect to ε and setting ε = 0, we obtain

AdRx
φA

(y) =

 0 − sinφ cosφ
sinφ 0 0
cosφ 0 0


AdRx

φA
(y) = cosφAy + sinφAz.

Similarly, we obtain
AdRx

φA
(x) = Ax,
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and
AdRx

φA
(z) = −sinφAy + cosφAz.

Thus the adjoint action of the subgroup Rx
φ of rotations around the x-axis in

physical space is the same as the group rotations around the Ax−axis in the Lie
algebra space SO(3). Finally the infinitesimal generators are found by differentiation

adAx |Ay=
d

dφ
AdRx

φA
(y) |φ=0= Az

which can also be found by
Rx
φA

yRx
−φ = Az,

which agrees with the commutator relation

[Ay, Ax] = AxAy − AyAx = Az

If we know the infinitesimal adjoint action ′adg ′ of a Lie algebra, we can construct
the AdG of the underlying Lie group by integrationg the system of linear ordinary
differential equations.

adV|W =
d

dε
Ad(exp(εV))W|ε=0; W∈g .

A fundamental fact is that the infinitesimal adjoint action agrees with the Lie bracket
on g .

adV|W =
dW

dε
; W(0) = Wo,

with solution
W(ε) = Ad(exp(εV))Wo.

By using Lie series

Ad(exp(εV))Wo =
∑∞

n=0

εn

n!
(adV)n(Wo),

Ad(exp(εV))Wo = Wo − ε[V,Wo] +
ε2

2!
[V, [X,Wo]− · · ·.

Adjoint representation table are used to display the structure of conjugacy
maps of given Lie algebra. Also it is convenient to display conjugacy relations of each
sub algebra with every other sub algebra in the tabular form. For an n−dimensional
Lie algebra g , adjoint representation table will be the n× n table, whose (i, j)−th
entry represent the adjoint action of Vi on Vj as Ad(exp(εVi))Vj. Adjoint action
is defined by using Lie series in conjunction with commutator relation table as:
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Ad(exp(εVi))Vj = Vj − ε[Vi,Vj] +
ε2

2!
[Vi, [Vi,Vj]]− · · ·,

where [Vi,Vj] is the Lie bracket for the generators Vi and Vj. Using this definition
of adjoint action one can easily construct adjoint representation table.

Consider Benjamin Bona Mahony (BBM) equation

ut + ux + uux − uxxt.

Symmetry generators of BBM equation are as follow

V1 =
∂

∂t
, V2 =

∂

∂x
, V3 = t

∂

∂t
− (u+ 1)

∂

∂u
.

By using Lie series definition of adjoint action one can easily calculate adjoint
actions of each of its sub-algebras.

Ad(exp(εV1))V1 = V1 − ε[V1,V1] +
ε2

2!
[V1, [V1,V1]]− ....,

as [V1,V1] = 0, adjoint action of V1 on itself be

Ad(exp(εV1))V1 = V1.

Ad(exp(εV1))V2 = V2 − ε[V1,V2] +
ε2

2!
[V1, [V1,V2]]− ....,

we have [V1,V2] = 0, hence

Ad(exp(εV1))V2 = V2.

Ad(exp(εV1))V3 = V3 − ε[V1,V3] +
ε2

2!
[V1, [V1,V3]]− ....,

since [V1,V3] = V1 and

[V1, [V1,V3]] = [V1,V1] = 0.

Therefore, the adjoint action of V1 on V3 be

Ad(exp(εV1))V3 = V3 − εV1.

Ad(exp(εV2))V1 = V1 − ε[V2,V1] +
ε2

2!
[V2, [V2,V1]]− ....,

from commutator relation table of BBM equation, we have [V2,V1] = 0,
by using this we get

Ad(exp(εV2))V1 = V1.
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Ad(exp(εV2))V2 = V2 − ε[V2,V2] +
ε2

2!
[V2, [V2,V2]]− ....,

as [V2,V2] = 0. So, the adjoint action of V2 on itself be

Ad(exp(εV2))V2 = V2.

Ad(exp(εV2))V3 = V3 − ε[V2,V3] +
ε2

2!
[V2, [V2,V3]]− ....,

from commutator relation table of BBM equation, we have [V2,V3] = 0. Therefore,

Ad(exp(εV2))V3 = V3.

Ad(exp(εV3))V1 = V1 − ε[V3,V1] +
ε2

2!
[V3, [V3,V1]]− ....,

we know that [V3,V1] = −V1,

[V3, [V3,V1]] = −[V3,V1] = (−1)2V1.

Therefore,
Ad(exp(εV3))V1 = V1e

ε.

Ad(exp(εV3))V2 = V2 − ε[V3,V2] +
ε2

2!
[V3, [V3,V2]]− ....,

since [V3,V2] = 0, by using this we get

Ad(exp(εV3))V2 = V2.

Ad(exp(εV3))V3 = V3 − ε[V3,V3] +
ε2

2!
[V3, [V3,V3]]− ....,

from commutator relation table of BBM equation, we have [V3,V3] = 0. So, the
adjoint action of V3 on itself be

Ad(exp(εV3))V3 = V3.

From these results of adjoint maps one can construct adjoint representation table
as:

Ad V1 V2 V3

V1 V1 V2 V3 + εV1

V2 V1 V2 V3

V3 V1e
ε V2 V3

Adjoint representation table
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Chapter 2

Optimal algebra of Korteweg de
Vries type equation of order five

2.1 Introduction

The Korteweg de Vries (KdV) type equations are very important because of their
physical applications. The generalized fifth order KdV type equations are given by

ut + αuux + βuxuxx + γuuxxx + uxxxxx = 0,

where u(t, x) is a function of temporal variable t and spatial variable x. The
coefficients α, β and γ are arbitrary real constants. Usually, KdV type equations
arise while studying shallow water waves. Particularly, KdV type equations describe
the traveling of long water waves. It is formally proved that KdV type equations
have solitary wave solutions. KdV type equations have wide range of applications
in quantum mechanics and nonlinear optics. Because of such wide range of applica-
tions KdV type equations got a lot of attention and have been studied extensively.
For different values of α, β and γ, they represent different fifth order KdV type evo-
lutionary equations.

In this chapter, optimal system of fifth order KdV type equations which usually
arise during modeling of many physical phenomena such as gravity-capillary waves
on shallow layer and magneto-sound propagation in plasma are discussed. After
that ordinary differential equations are obtained by using transformations obtained
from optimal algebra of each equation.

In this chapter we review the formation of optimal algebra of KdV type
equations of order five [16].
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2.2 Simplified Kawahara equation

In this section optimal algebra of simplified Kawahara equation is discussed

ut + λuux + µuxxxxx = 0, (2.1)

where λ and µ are arbitrary constants. To find the optimal system of simplified
Kawahara equation (2.1), one can follow the following procedure,

Step 1: Find vector fields.

Step 2: Use vector fields to form commutator relation table.

Step 3: Construct adjoint representation table by conjunction of adjoint map
with commutator relation table.

Step 4: Use adjoint representation table to find the set of spanning sub algebras.

From sub algebras of optimal system one can find transformations which reduces
simplified Kawahara equation (2.1) to the ordinary differential equation.

2.2.1 Lie symmetries and commutator relation table

One can easily get the Lie point symmetries of simplified Kawahara equation
(2.1) by using Lie symmetry method [4, 9, 15, 19]. For equation (2.1) one parameter
group of transformations are

t̃ = t+ εξ1(t, x, u) +O(ε2),

x̃ = x+ εξ2(t, x, u) +O(ε2),

ũ = u+ εη(t, x, u) +O(ε2),

where ε is the parameter of group of transformations. For general case of two
independent and one dependent variables the infinitesimal generator is

V = ξ1(t, x, u)
∂

∂t
+ ξ2(t, x, u)

∂

∂x
+ η(t, x, u)

∂

∂u
. (2.2)

It is needed to prolongate infinitesimal generator (2.2) upto fifth order as the
simplified Kawahara equation involved first and fifth order derivatives w.r.t. x,
while first order derivative w.r.t. t. Therefore, the form of infinitesimal generator
becomes

V = ξ1(t, x, u)
∂

∂t
+ ξ2(t, x, u)

∂

∂x
+ η(t, x, u)

∂

∂u
+

ηt(t, x, u)
∂

∂u ,t
+ ηx(t, x, u)

∂

∂u ,x
+ ηxxxxx(t, x, u)

∂

∂u ,xxxxx
. (2.3)
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Apply infinitesimal generator (2.3) to simplified Kawahra equation (2.1). It
yields the system of over determined linear partial differential equations in ξ1, ξ2

and η. By solving those we get symmetry generators of simplified Kawahara equation
(2.1) as:

V1 =
∂

∂t
, V2 =

∂

∂x
, V3 = λt

∂

∂x
+

∂

∂u
, V4 = x

∂

∂x
+ 5t

∂

∂t
− 4u

∂

∂u
,

which are closed under Lie bracket operation. One can write their commutator
relation table as:

, V1 V2 V3 V4

V1 0 0 λV2 5V1

V2 0 0 0 V2

V3 −λV3 0 0 −4V3

V4 −5V1 −V2 −V3 0

Table 1 (a)

2.2.2 Construction of adjoint representation table

Construct adjoint representation table, by using Lie series in conjunction with
commutator relation Table 1(a).

Ad(exp(εV1))V1 = V1 − ε[V1,V1] +
ε2

2!
[V1, [V1,V1]]− ....,

as [V1,V1] = 0, it gives
Ad(exp(εV1))V1 = V1.

Ad(exp(εV1))V2 = V2 − ε[V1,V2] +
ε2

2!
[V1, [V1,V2]]− ....,

since [V1,V2] = 0, it yields

Ad(exp(εV1))V2 = V2.

Ad(exp(εV1))V3 = V3 − ε[V1,V3] +
ε2

2!
[V1, [V1,V3]]− ....,

from commutator relation Table 1(a), [V1,V3] = λV2, and

[V1, [V1,V3]] = λ[V1,V2] = 0,

by using these, it gives

Ad(exp(εV1))V3 = V3 − ελV2.
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Ad(exp(εV1))V4 = V4 − ε[V1,V4] +
ε2

2!
[V1, [V1,V4]]− ....,

as [V1,V4] = 5V5, and

[V1, [V1,V4]] = 5[V1,V1] = 0,

then adjoint map of V1 on V4 is

Ad(exp(εV1))V4 = V4 − 5εV1.

Ad(exp(εV2))V1 = V1 − ε[V2,V1] +
ε2

2!
[V2, [V2,V1]]− ....,

from Table 1(a), [V2,V1] = 0, it yields

Ad(exp(εV2))V1 = V1.

Ad(exp(εV2))V2 = V2 − ε[V2,V2] +
ε2

2!
[V2, [V2,V2]]− ....,

since [V2,V2] = 0, it implies

Ad(exp(εV2))V2 = V2.

Ad(exp(εV2))V3 = V3 − ε[V2,V3] +
ε2

2!
[V2, [V2,V3]]− ....,

from commutator relation Table 1(a), [V2,V3] = 0, using this, it yields

Ad(exp(εV2))V3 = V3.

Ad(exp(εV2))V4 = V4 − ε[V2,V4] +
ε2

2!
[V2, [V4,V4]]− ....,

as [V2,V4] = V2, and
[V2, [V2,V4]] = [V2,V2] = 0,

therefore
Ad(exp(εV2))V4 = V4 − εV2.

Ad(exp(εV3))V1 = V1 − ε[V3,V1] +
ε2

2!
[V3, [V3,V1]]− ....,

since [V3,V1] = −λV2, and

[V3, [V3,V1]] = −λ[V3,V2] = 0,

so, adjoint action of V3 on V1 is

Ad(exp(εV3))V1 = V1 + ελV2.
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Ad(exp(εV3))V2 = V2 − ε[V3,V2] +
ε2

2!
[V3, [V3,V2]]− ....,

from Table 3(a), [V3,V2] = 0, therefore

Ad(exp(εV3))V2 = V2.

Ad(exp(εV3))V3 = V3 − ε[V3,V3] +
ε2

2!
[V3, [V3,V3]]− ....,

as [V3,V3] = 0, it gives
Ad(exp(εV3))V3 = V3.

Ad(exp(εV3))V4 = V4 − ε[V3,V4] +
ε2

2!
[V3, [V3,V4]]− ....,

from commutator relation Table 1(a), [V3,V4] = −4V3, and

[V3, [V3,V4]] = −4[V3,V3] = 0,

using these one can find adjoint action of V3 on V4 as

Ad(exp(εV3))V4 = V4 + εV3.

Ad(exp(εV4))V1 = V1 − ε[V4,V1] +
ε2

2!
[V4, [V4,V1]]− ....,

since [V4,V1] = −5V1, and

[V4, [V4,V1]] = −5[V4,V1] = (−5)2V1,

hence
Ad(exp(εV4))V1 = e5εV1.

Ad(exp(εV4))V2 = V2 − ε[V4,V2] +
ε2

2!
[V4, [V4,V2]]− ....,

as [V4,V2] = −V2, then the adjoint action of V4 on V2 is

Ad(exp(εV4))V2 = eεV2.

Ad(exp(εV4))V3 = V4 − ε[V4,V3] +
ε2

2!
[V4, [V4,V3]]− ....,

from Table 3(a), [V4,V3] = 4V3, therefore

Ad(exp(εV3))V3 = e4εV3.

Ad(exp(εV4))V4 = V4 − ε[V3,V4] +
ε2

2!
[V3, [V3,V4]]− ....,

as [V4,V4] = 0, hence
Ad(exp(εV4))V4 = V4.

Using above calculated results of adjoint maps to write the adjoint representation
Table 2(a).
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Ad V1 V2 V3 V4

V1 V1 V2 V3 − ελV2 V4 − 5εV1

V2 V1 V2 V3 V4 − εV2

V3 V1 + ελV2 V2 V3 V4 + 4εV3

V4 e5εV1 eεV2 e−εV3 V4

Table 2 (a)

2.2.3 Formation of optimal system

Using adjoint representation Table 2(a) to find the optimal system of simplified
Kawahara equation (2.3). Consider a general non-zero vector

V = a1V1 + a2V2 + a3V3 + a4V4. (2.4)

One-dimensional sub algebras are spanned by vector of the form (2.4). Suppose
first that a4 6= 0 (for sake of convenience assume a4 = 1), then the general non zero
vector (2.4) becomes

V = a1V1 + a2V2 + a3V3 + V4.

From adjoint representation Table 2(a), it can be seen that, if one act on V by

Ad(exp(
−a3

4
)V3), then coefficient of V3 vanishes. For distinction one can name the

resultant vector as V′

V′ = a1V1 + a2V2 + V4.

Also by acting on V′ by Ad(exp(a2)V2), then coefficient of V2 vanishes, which
is represented by V′′

V′′ = a1V1 + V4.

Similarly, by acting on V′′ by Ad(exp(
a1
5

)V1), coefficient of V1 vanish. Here

one can see that the coefficients of all those symmetry generators which are written
in linear combination with V4 are vanished. That is, the vector V is equivalent to
V4 under adjoint representation. In other words, every one dimensional sub alge-
bra spanned by the vector V with a4 6= 0 is equivalent to sub algebra spanned by V4.

The remaining sub algebras are obtained by vector (2.4) with a4 = 0. If a3 6= 0,
then for convenience one can scale it to make a3 = 1. Then the general non zero
vector (2.4) get the form

V = a1V1 + a2V2 + V3.

By observing adjoint representation Table 2(a), one can see that the symmetry

generator V3 written only with V2. So, by acting on V with Ad(exp(
a2
λ

)V2), then
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one can make coefficient of V2 vanish. Name the resulting vector as V′

V′ = a1V1 + V3.

Now it can be seen that coefficients of all those symmetry generators which are
written in linear combination with V3 are vanished. Therefore, symmetry genera-
tors which are included in optimal system of (2.1) are:

(i) aV1 + V3,

(ii) V3.

Proceeding the same method for symmetry generators V1 and V2. One can find
the optimal system of simplified Kawahara equation (2.1) as

V1, V2 + aV1 V3, V4, aV1 + V3,
with a be any constant. Which are also same as the classification of real three and
four dimensional Lie algebras done by J. Patera and P. Winternitz in [20].

2.2.4 Reduction

In this section reduction of simplified Kawahara equation into ordinary differen-
tial equations is discussed.

(i) For the symmetry generator V1 =
∂

∂t
,

which can be written as
dt

1
=
dx

0
=
adu

0
,

using method of characteristics, one can calculate

x = ξ,

u = f(ξ).

Substituting these to simplified Kawahara equation (2.1), they reduces it to the
following ordinary differential equation

µf 5 + λff ′ = 0.

(ii) For the symmetry generator V2 =
∂

∂x
one can write it as

dt

0
=
dx

1
=
adu

0
,
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from here trivial solution u(t, x) = c obtain, where c is any constant.

(iii) For the symmetry generator V3 = λt
∂

∂t
+

∂

∂u
,

by using method of characteristics one can find that

t = ξ,

u =
1

λ
xt−1 + f(ξ).

Substitute t and u in simplified Kawahara equation (2.1), then it becomes an
ordinary differential equation

ξff ′ + f = 0.

(iv) For the symmetry generator V4 = λt
∂

∂x
+
∂

∂t
− 4u

∂

∂u
,

one can find

xt−5 = ξ,

u = t
−4
5 f(ξ).

By using u and ξ in simplified Kawahara equation (2.1), then one get reduced
ordinary differential equation

µf 5 + λff ′ − ξf ′

5
+

4f

5
= 0.

(v) For the combination of symmetry generators aV1 +V3 = a
∂

∂t
+λt

∂

∂x
+
∂

∂u
,

from method of characteristics one can calculate

x− λt2

a
= ξ,

u =
t

a
+ f(ξ).

By using the values of u and ξ in simplified Kawahara equation (2.1), then it
will be reduced to the following ordinary differential equation,

µf 5 + λff ′ +
1

a
= 0.

2.3 General Kawahara equation

In this section optimal algebra of another type of fifth order KdV type equation

ut + αuux + βuxxx + γuxxxxx = 0, (2.5)

known as general Kawahara equation is discussed. Here α, β and γ are arbitrary
constants.
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2.3.1 Lie symmetries and commutator relation table

Following the method that adopted in finding symmetry generators of simplified
Kawahara equation (2.1). One can get the symmetry generators of general Kawahara
equation (2.5) as:

V1 =
∂

∂t
, V2 =

∂

∂x
, V3 = αt

∂

∂x
+

∂

∂u
,

which are closed under the Lie bracket operation. The Lie algebra of these symmetry
generators is

[V1,V1] = 0, [V1,V2] = 0, [V1,V3] = αV2,

[V2,V1] = 0, [V2,V2] = 0, [V2,V3] = 0,

[V3,V1] = −αV2, [V3,V2] = 0, [V3,V1] = 0.

One can write commutator relation table as:

, V1 V2 V3

V1 0 0 αV2

V2 0 0 0
V3 -αV2 0 0

Table 3 (a)

2.3.2 Construction of adjoint representation table

To compute adjoint representation, one can use Lie series in conjunction with
commutator relation Table 1(c). The adjoint action is given by the Lie series as

Ad(exp(εVi))Vj = Vj − ε[Vi,Vj] +
ε2

2!
[Vi, [Vi,Vj]]− · · ·,

where [Vi,Vj] is the Lie bracket for the generators Vi and Vj. Using this definition
of adjoint action.

Ad(exp(εV1))V1 = V1 − ε[V1,V1] +
ε2

2!
[V1, [V1,V1]]− ....,

as [V1,V1] = 0,
therefore

Ad(exp(εV1))V1 = V1.

In this manner, one can construct the table with (i, j)-th the entry representing
Ad(exp(εVi))Vj.
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Ad V1 V2 V3

V1 V1 V2 V3 + εαV2

V2 V1 V2 V3

V3 V1 + εαV2 V2 V3

Table 4 (a)

2.3.3 Formation of optimal algebra

From the adjoint representation Table 4(a), one can form the optimal algebra of
general Kawahara equation (2.5). For this consider a general non-zero vector

V = a1V1 + a2V2 + a3V3. (2.6)

First consider a3 6= 0 and then for sake of convenience consider a3 = 1, general
non zero vector (2.6) get the form

V = a1V1 + a2V2 + V3,

V = a1
∂

∂t
+ a2

∂

∂x
+ αt

∂

∂x
+

∂

∂u
.

Referring adjoint representation Table 4(a). It can be seen that by acting on
V by Ad(exp( 1

α
a2V1)), then the coefficient of V2 vanish. The resultant vector is

represented by V′

V′ = Ad(exp(
1

α
a2V1))V = V− a2

α
[V1,V] + (

a2
α

)2
1

2!
[V1, [V1,−V],

as

[V1,V] =
( ∂
∂t
, a1

∂

∂t
+ a2

∂

∂x
+ αt

∂

∂x
+

∂

∂u

)
,

[V1,V] = α ∂
∂x
,

and
[V1, [V1,V]] = 0,
therefore

V′ = Ad(exp(
1

α
a2V1))V = V− a2

α
(α

∂

∂x
)

V′ = a1
∂

∂t
+ a2

∂

∂x
+ αt

∂

∂x
+

∂

∂u
− a2
α
α
∂

∂x
,

V′ = a1
∂

∂t
+ αt

∂

∂x
+

∂

∂u
V′ = a1V1 + V3.
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From Table 4(a), it can be seen that coefficients of all those symmetry generators
which are written in linear combination with V3. So, from here the sub algebras
which are included in optional algebra of general Kawahara equation (2.5) are

(i) V3,

(ii) V3 + aV1,
where a be any constant except zero.

The remaining one-dimensional sub algebras are spanned by vector of above form
(2.6) with a3 = 0. If a2 6= 0, then scale to make a2 = 1 for convenience, then the
general vector (2.6) become

V = a1V1 + V2.

From adjoint representation Table 2(a), it is clear that there is no linear com-
bination of V2 with any other symmetry generator in second column. But in first
column of adjoint representation Table 2(a) there is a combination of V2 and V1.
Therefore, by acting on V by Ad(exp(αa1)V1), then coefficient of V1 vanishes. Call
the resulting vector as V′

V′ = V2.

Therefore, from here the symmetry generators included in optimal algebra of
general Kawahara equation (2.5) is V2. The remaining one dimensional sub algebras
are spanned by vector of above form (2.6) with a3 = a2 = 0, a1 6= 0 and for
convenience scale to make a1 = 1, then the general vector V get the form

V = V1.

As there is no linear combination of V1 with any other symmetry generator.
Therefore, the only symmetry generator which is included in optimal algebra from
here is V1. The set of optimal algebra (optimal system) of general Kawahara equa-
tion are

V1, V2, V3, aV1 + V3,
where a is an arbitrary constant. Which are also same as the classification of real
three and four dimensional Lie algebras done by J. Patera and P. Winternitz in [20].

2.3.4 Reduction

Here symmetry generators of optimal system of general Kawahara equation (2.5)
are use to reduce it to ordinary differential equation.
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(i) For the generator V1 = ∂
∂t

,
one can write it as

dx

0
=
dt

1
=
du

0
,

by method of characteristics, it yields

ξ = x,

u = f(ξ).

Substituting these in general Kawahara equation (2.5), they reduces it to the
following ordinary differential equation

γf (5) + βf ′′′ + αff ′ = 0,

where f ′ = df
dξ

.

(ii) For the generator, V2 = ∂
∂x
,

trivial solution u(t, x) = c exists, where c is an arbitrary constant.

(iii) For the generator, V3 = αt ∂
∂x

+ ∂
∂u
,

using method of characteristics one can obtain

t = ξ,

u =
1

α
t−1x+ f(ξ).

By substitution of t and u in general Kawahara (2.5), which results the reduction
of (2.5) to the following ordinary differential equation

ξf ′ + f = 0.

(iv) For the linear combination, aV1 + V3 = a
∂

∂t
+ αt

∂

∂x
+

∂

∂u
,

by the use of methods of characteristics one can find

x− αt2

2
= ξ,

u =
t

a
+ f(ξ).

Using these in general Kawahara (2.5), then (2.5) reduce to the following ordinary
differential equation,

µf 5 + λff ′ +
1

a
= 0.
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2.4 General modified Kawahara equation

In this section optima system of one more type of fifth order KdV equation

ut + αu2ux + βuxxx + γuxxxxx = 0, (2.7)

known as general modified Kawahara equation is dicussed. With α, β, and γ are
arbitrary constants. To get optimal algebra first vector fields of general modified
Kawahara equation (2.7) are to find. Then use these to construct commutator
relation table and adjoint representation table. These tables use in finding optimal
algebra of general modified Kawahara equation (2.7). From optimal system one can
get transformations which reduces it to the ordinary differential equation.

2.4.1 Lie Symmetries and Commutator Relation Table

Following the method that adopted in finding symmetry generators of general
Kawahara equation (2.1), one can find the symmetry generators of general modified
Kawahara equation (2.7) as:

V1 =
∂

∂t
, V2 =

∂

∂x
,

their commutator relation table be

, V1 V2

V1 0 0
V2 0 0

Table 5 (a)

Construction of adjoint representation table

To compute adjoint representation, one can use Lie series in conjunction with
commutator relation Table 1(c). The adjoint action is given by the Lie series as

Ad(exp(εVi))Vj = Vj − ε[Vi,Vj] +
ε2

2!
[Vi, [Vi,Vj]]− · · ·,

where [Vi,Vj] is the Lie bracket for the generators Vi and Vj. Using this definition
of adjoint action.

Ad(exp(εV1))V1 = V1 − ε[V1,V1] +
ε2

2!
[V1, [V1,V1]]− ....,
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as [V1,V1] = 0,
therefore

Ad(exp(εV1))V1 = V1.

In this manner, one can construct the Table 6(a) with (i, j)-th the entry repre-
senting Ad(exp(εVi))Vj.

Ad V1 V2

V1 V1 V2

V2 V1 V2

Table 6 (a)

2.4.2 Formation of optimal system

Use adjoint representation Table 6(a), to find the optimal system of general
modified Kawahara equation (2.7). Consider a general non-zero vector

V = a1V1 + a2V2. (2.8)

First assume that a2 6= 0 (for sake of convenience consider that a2 = 1). Then
the general non zero vector (2.6) get the form

V = a1V1 + V2.

Observing adjoint representation Table 6(a), one can see that it is not possible to
vanish symmetry generator V1 from above vector V. Because in adjoint representa-
tion Table 6(a) there is no linear combination of V1 and V2 is written. Therefore,
from here possible symmetry generators included in optimal algebra of (2.7) are

(i) aV1 + V2,

(ii) V1.

2.4.3 Reduction

(i) For the combination of symmetry generators, aV1 + V2 = a
∂

∂t
+

∂

∂x
,

one can write it as

dt

a
=
dx

1
=
adu

0
,
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using method of characteristics one can find

ξ = t− ax,

u =
t

a
+ f(ξ).

Substituting these to general modified Kawahara equation (2.7), then they re-
duces it to the following ordinary differential equation

a5γf (5) + a3βf ′′′ + aαf 2f ′ − f ′ = 0.

(ii) For symmetry generator, V1 =
∂

∂t
,

from here trivial solution u(t, x) = c obtained, where c is an arbitrary constant.
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Chapter 3

Optimal system of Monge-Ampere
equation

3.1 Introduction

In this chapter we find the optimal system of the semi-linear non-homogeneous
Monge-Ampere equation

uxxuyy − u2xy + a(x, y) = 0. (3.1)

Here a(x, y) is a non-homogeneous part and u(x, y) is the dependent variable
with x, y as independent variables. The name “Monge-Ampere equation”have been
derived from its early formulation in two different directions. One by the French
mathematician and civil engineer Gaspard Monge (1746 − 1818) while the second
by the French physicist Andre Marie Ampere (1775− 1836). Gaspard Monge is the
inventor of descriptive geometry. In 1781, Gaspard Monge originally formulated and
analyzed the problem of optimal transportation, initiating a profound mathematical
theory, which connects the different areas of differential geometry, nonlinear partial
differential equations, linear programming and probability theory. It was later stud-
ied by Minkowski (1864 − 1909), Schauder (1899 − 1943), Lewy (1904 − 1988),
Bernstein (1918− 1990) and mnay others. During the last century the development
of Monge-Ampere equation was closely related to geometric problems. It also arise
in meteorology and fluid mechanics. In fluid mechanics it is coupled with transport
equation, like semi-geostrophic equation. Due to these abundance of applications
and beautiful theory, equations of Monge Ampere type are important and got lot of
attention and studied extensively [18].

In this chapter we find an optimal system of the semi-linear non-homogeneous
Monge-Ampere equation. On optimal system of nonlinear partial differential equa-
tions a lot of excellent work has been done by experts [19, 15, 12, 8, 11, 7]. Many
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techniques have been developed for obtaining optimal systems. Here we use Peter.
J. Olver’s technique [19] to derive optimal system for different cases of Monge-
Ampere equation by assuming different particular values of the non-homogeneous
part a(x, y). Then we use transformations from sub algebras of an optimal system
to reduce the semi-linear non-homogeneous Monge-Ampere equation (3.1) to an or-
dinary differential equation.

3.1.1 Lie symmetries and commutator relation table

In equation (3.1) we have two independent variables x and y while u the depen-
dent variable. For one parameter ε the one parameter group of transformations for
equation (3.1) are

x̃ = x+ εξ1(x, y, u) + o(ε2),

ỹ = y + εξ2(x, y, u) + o(ε2),

ũ = u+ εη(x, y, u) + o(ε2).

Equation (3.1) verifies the above set of transformations. For general case of two
independent variables and one dependent variable the symmetry generator is

V = ξ1(x, y, u)
∂

∂x
+ ξ2(x, y, u)

∂

∂y
+ η(x, y, u)

∂

∂u
. (3.2)

Second order prolonged generator for non-homogeneous semi-linear Monge-Ampere
equation (3.1) is

V = ξ1
∂

∂x
+ ξ2

∂

∂y
+ η

∂

∂u
+ ηx

∂

∂u ,x
+ ηy

∂

∂u ,y
+ ηxx

∂

∂u ,xx
+ ηxy

∂

∂u ,xy
+ ηyy

∂

∂u ,yy
. (3.3)

By applying generator (3.3) to the equation (3.1), we obtain a system of over
determined linear partial differential equations in ξ1, ξ2 and η. Solving these to get
symmetry generators of equation (3.1).

3.2 Case I: a(x, y) = ex

First consider particular value for non-homogeneous part of non-homogeneous
Monge-Ampere equation (3.1) to be ex. For this case symmetry generators are:

V1 =
∂

∂u
, V2 =

∂

∂y
, V3 = x

∂

∂y
, V4 = x

∂

∂u
, V5 = y

∂

∂u
, V6 =

∂

∂x
+ u

∂

∂u
, V7 = y

∂

∂y
+ u

∂

∂u
.

One can write its commutator relation table as:
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, V1 V2 V3 V4 V5 V6 V7

V1 0 0 0 0 0 V1 V7

V2 0 0 0 0 V1 0 V2

V3 0 0 0 0 V4 −V2 V3

V4 0 0 0 0 0 V4 −V1 V4

V5 0 0 −V4 0 0 V5 0
V6 −V4 0 V2 V1 −V4 −V5 0 0
V7 −V1 −V2 −V3 −V4 0 0 0

Table 1 (b)

3.2.1 Construction of adjoint representation table

To compute adjoint representation, we use the Lie series in conjunction with
commutator relation Table 1(b). The adjoint action is given by the Lie series as

Ad(exp(εVi))Vj = Vj − ε[Vi,Vj] +
ε2

2!
[Vi, [Vi,Vj]]− · · ·,

where [Vi,Vj] is the Lie bracket for the generators Vi and Vj. Using this defi-
nition of adjoint action.

Ad(exp(εV1))V1 = V1 − ε[V1,V1] +
ε2

2!
[V1, [V1,V1]]− ....,

as [V1,V1] = 0, adjoint action of V1 on itself be

Ad(exp(εV1))V1 = V1.

Ad(exp(εV1))V2 = V2 − ε[V1,V2] +
ε2

2!
[V1, [V1,V2]]− ....,

we have [V1,V2] = 0, therefore

Ad(exp(εV1))V2 = V2.

Ad(exp(εV1))V3 = V3 − ε[V1,V3] +
ε2

2!
[V1, [V1,V3]]− ....,

since [V1,V3] = 0, using this we get

Ad(exp(εV1))V3 = V3.

Ad(exp(εV1))V4 = V4 − ε[V1,V4] +
ε2

2!
[V1, [V1,V4]]− ....,
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as [V1,V4] = 0, hence
Ad(exp(εV1))V4 = V4.

Ad(exp(εV1))V5 = V5 − ε[V1,V5] +
ε2

2!
[V1, [V1,V5]]− ....,

since [V1,V5] = 0, adjoint action of V1 on V4 be

Ad(exp(εV1))V4 = V5.

Ad(exp(εV1))V6 = V6 − ε[V1,V6] +
ε2

2!
[V1, [V1,V6]]− ....,

we have [V1,V6] = V1, using this we obtain

Ad(exp(εV1))V6 = V6 − εV1.

Ad(exp(εV1))V7 = V7 − ε[V1,V7] +
ε2

2!
[V1, [V1,V7]]− ....,

from commutator Table 1(b), [V1,V7] = V1, hence

Ad(exp(εV1))V7 = V7 − εV1.

Ad(exp(εV2))V1 = V1 − ε[V2,V1] +
ε2

2!
[V2, [V2,V1]]− ....,

we have [V2,V1] = 0, therefore

Ad(exp(εV2))V1 = V1.

Ad(exp(εV2))V2 = V2 − ε[V2,V2] +
ε2

2!
[V2, [V2,V2]]− ....,

we know that [V2,V2] = 0, using this we get

Ad(exp(εV2))V2 = V2.

Ad(exp(εV2))V3 = V3 − ε[V2,V3] +
ε2

2!
[V2, [V2,V3]]− ....,

as [V2,V3] = 0, therefore

Ad(exp(εV2))V3 = V3.

Ad(exp(εV2))V4 = V4 − ε[V2,V4] +
ε2

2!
[V2, [V4,V4]]− ....,

we know that [V2,V4] = 0, it yields

Ad(exp(εV2))V4 = V4.
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Ad(exp(εV2))V5 = V5 − ε[V2,V5] +
ε2

2!
[V2, [V2,V5]]− ....,

from commutator relation Table 1(b), [V2,V5] = V1, hence

Ad(exp(εV2))V5 = V5 − εV1.

Ad(exp(εV2))V6 = V6 − ε[V2,V6] +
ε2

2!
[V2, [V2,V6]]− ....,

as [V2,V6] = 0, adjoint action of V2 on V6 be

Ad(exp(εV2))V6 = V6.

Ad(exp(εV2))V7 = V7 − ε[V2,V7] +
ε2

2!
[V2, [V2,V7]]− ....,

we have [V2,V7] = V7, therefore

Ad(exp(εV1))V7 = V7 − εV2.

Ad(exp(εV3))V1 = V1 − ε[V3,V1] +
ε2

2!
[V3, [V3,V1]]− ....,

since [V3,V1] = 0, using this we get

Ad(exp(εV3))V1 = V1.

Ad(exp(εV3))V2 = V2 − ε[V3,V2] +
ε2

2!
[V3, [V3,V2]]− ....,

as [V3,V2] = 0, hence
Ad(exp(εV3))V2 = V2.

Ad(exp(εV3))V3 = V3 − ε[V3,V3] +
ε2

2!
[V3, [V3,V3]]− ....,

we have [V3,V3] = 0, using this, it yields

Ad(exp(εV3))V3 = V3.

Ad(exp(εV3))V4 = V4 − ε[V3,V4] +
ε2

2!
[V3, [V3,V4]]− ....,

we know that [V3,V4] = 0, therefore

Ad(exp(εV1))V3 = V4.

Ad(exp(εV3))V5 = V5 − ε[V3,V5] +
ε2

2!
[V3, [V3,V5]]− ....,
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from commutator relation Table 1(b), [V3,V5] = V4, using this we get

Ad(exp(εV3))V5 = V5 − εV4.

Ad(exp(εV3))V6 = V6 − ε[V3,V6] +
ε2

2!
[V3, [V3,V6]]− ....,

as [V3,V6] = −V2, hence

Ad(exp(εV3))V6 = V6 + εV2.

Ad(exp(εV3))V7 = V7 − ε[V3,V7] +
ε2

2!
[V3, [V3,V7]]− ....,

we have [V3,V7] = V3, adjoint action of V3 on V7 be

Ad(exp(εV3))V7 = V7 − εV3.

Ad(exp(εV4))V1 = V1 − ε[V4,V1] +
ε2

2!
[V4, [V4,V1]]− ....,

since [V4,V1] = 0, therefore

Ad(exp(εV4))V1 = V1.

Ad(exp(εV4))V2 = V2 − ε[V4,V2] +
ε2

2!
[V4, [V4,V2]]− ....,

we have [V4,V2] = 0, by using this we obtain

Ad(exp(εV3))V2 = V2.

Ad(exp(εV4))V3 = V3 − ε[V4,V3] +
ε2

2!
[V4, [V4,V3]]− ....,

we know that [V4,V3] = 0, it yields

Ad(exp(εV4))V3 = V3.

Ad(exp(εV4))V4 = V4 − ε[V4,V4] +
ε2

2!
[V4, [V4,V4]]− ....,

as [V4,V4] = 0, hence
Ad(exp(εV4))V4 = V4.

Ad(exp(εV4))V5 = V5 − ε[V4,V5] +
ε2

2!
[V4, [V4,V5]]− ....,

since [V4,V5] = 0, therefore

Ad(exp(εV4))V5 = V5.
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Ad(exp(εV4))V6 = V6 − ε[V4,V6] +
ε2

2!
[V4, [V4,V6]]− ....,

we know that [V4,V6] = V4 −V1, adjoint action of V4 on V6 be

Ad(exp(εV4))V6 = V6 + εV2.

Ad(exp(εV4))V7 = V7 − ε[V4,V7] +
ε2

2!
[V4, [V4,V7]]− ....,

since [V4,V7] = V4, adjoint action of V4 on V7 be

Ad(exp(εV4))V7 = V7 − εV4.

Ad(exp(εV5))V1 = V1 − ε[V5,V1] +
ε2

2!
[V5, [V5,V1]]− ....,

we have [V5,V1] = 0, using this we obtain

Ad(exp(εV5))V1 = V1.

Ad(exp(εV5))V2 = V2 − ε[V5,V2] +
ε2

2!
[V5, [V5,V2]]− ....,

as [V5,V2] = 0, therefore

Ad(exp(εV5))V2 = V2.

Ad(exp(εV5))V3 = V3 − ε[V5,V3] +
ε2

2!
[V5, [V5,V3]]− ....,

from commutator relation Table 1(b), [V5,V3] = −V4, it yields

Ad(exp(εV5))V3 = V3 + εV4.

Ad(exp(εV5))V4 = V4 − ε[V5,V4] +
ε2

2!
[V5, [V5,V4]]− ....,

we have [V5,V4] = 0, hence

Ad(exp(εV4))V4 = V4.

Ad(exp(εV5))V5 = V5 − ε[V5,V5] +
ε2

2!
[V5, [V5,V5]]− ....,

we know that, [V5,V5] = 0, adjoint action of V5 on itself be

Ad(exp(εV5))V5 = V5.

Ad(exp(εV5))V6 = V6 − ε[V5,V6] +
ε2

2!
[V5, [V5,V6]]− ....,
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from commutator relation Table 1(b), [V5,V6] = V5, using this we get

Ad(exp(εV5))V6 = V6 − εV5.

Ad(exp(εV5))V7 = V7 − ε[V5,V7] +
ε2

2!
[V5, [V5,V7]]− ....,

as [V5,V7] = 0, therefore

Ad(exp(εV5))V7 = V7.

Ad(exp(εV6))V1 = V1 − ε[V6,V1] +
ε2

2!
[V6, [V6,V1]]− ....,

we have [V6,V1] = −V1, adjoint action of V6 on V1 be

Ad(exp(εV6))V1 = eεV1.

Ad(exp(εV6))V2 = V2 − ε[V6,V2] +
ε2

2!
[V6, [V6,V2]]− ....,

as [V6,V2] = 0, using this we get

Ad(exp(εV6))V2 = V2.

Ad(exp(εV6))V3 = V3 − ε[V6,V3] +
ε2

2!
[V6, [V6,V3]]− ....,

since [V6,V3] = V2, therefore

Ad(exp(εV6))V3 = V3 − εV2.

Ad(exp(εV6))V4 = V4 − ε[V6,V4] +
ε2

2!
[V6, [V6,V4]]− ....,

we have [V6,V4] = V1 −V4, hence

Ad(exp(εV6))V4 = eε(V4 − εV1).

Ad(exp(εV6))V5 = V5 − ε[V6,V5] +
ε2

2!
[V6, [V6,V5]]− ....,

we know that [V6,V5] = −V5, adjoint action of V6 on V5 be

Ad(exp(εV6))V5 = eεV5.

Ad(exp(εV6))V6 = V6 − ε[V6,V6] +
ε2

2!
[V6, [V6,V6]]− ....,
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as [V6,V6] = 0, therefore

Ad(exp(εV6))V6 = V6.

Ad(exp(εV6))V7 = V7 − ε[V6,V7] +
ε2

2!
[V6, [V6,V7]]− ....,

we know that [V6,V7] = 0, hence

Ad(exp(εV6))V7 = V7.

Ad(exp(εV7))V1 = V1 − ε[V7,V1] +
ε2

2!
[V7, [V7,V1]]− ....,

we have [V7,V1] = −V1, using this, it yields

Ad(exp(εV7))V1 = eεV1.

Ad(exp(εV7))V2 = V2 − ε[V7,V2] +
ε2

2!
[V7, [V7,V2]]− ....,

as [V7,V2] = −V2, therefore

Ad(exp(εV7))V2 = eεV2.

Ad(exp(εV7))V3 = V3 − ε[V7,V3] +
ε2

2!
[V7, [V7,V3]]− ....,

since [V7,V3] = −V3, hence

Ad(exp(εV7))V3 = eεV3.

Ad(exp(εV7))V4 = V4 − ε[V7,V4] +
ε2

2!
[V7, [V7,V4]]− ....,

we have [V7,V4] = −V4, using this we obtain

Ad(exp(εV7))V4 = eεV4.

Ad(exp(εV7))V5 = V5 − ε[V7,V5] +
ε2

2!
[V7, [V7,V5]]− ....,

we know that [V7,V5] = 0, therefore

Ad(exp(εV7))V5 = V5.

Ad(exp(εV7))V6 = V6 − ε[V7,V6] +
ε2

2!
[V7, [V7,V6]]− ....,
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from commutator relation Table 1(b), [V7,V6] = 0, adjoint action of V7 on V6 be

Ad(exp(εV7))V6 = V7.

Ad(exp(εV7))V7 = V7 − ε[V7,V7] +
ε2

2!
[V7, [V7,V7]]− ....,

since [V7,V7] = 0, therefore

Ad(exp(εV7))V7 = V7.

Now use these results of adjoint actions to construct an adjoint representation
table as:

Ad V1 V2 V3 V4 V5 V6 V7

V1 V1 V2 V3 V4 V5 V6 − εV1 V7 − εV1

V2 V1 V2 V3 V4 V5 − εV1 V6 V7 − εV2

V3 V1 V2 V3 V4 V5 − εV4 V6 + εV2 V7 − εV3

V4 V1 V2 V3 V4 V5 V6 − ε(V4 −V1) V7 − εV4

V5 V1 V2 −V4 V3 + εV4 V5 V6 − εV5 V7

V6 eεV1 e−εV2 V3 − εV2 eε(V4 − εV1) eεV5 V6 V7

V7 eεV1 eεV2 eεV3 eεV4 V5 V6 V7

Table 2 (b)

3.2.2 Formation of optimal system

Optimal system defined earlier in (1.5), it constitutes the set of conjugacy classes
of group of transformations. As we know that adjoint action gives the conjugacy
classes of group of transformations which are written in columns of adjoint repre-
sentation Table 2(b). Our aim is to find the set of one dimensional sub algebras,
that cover all conjugacy classes. Following Olver’s technique [7, 8, 11, 16, 19] we
assume a general vector V as the combination of all symmetry generators. Then by
observing columns of adjoint representation Table 2(b), we try to vanish coefficients
of as much symmetry generators as possible by using appropriate adjoint action on
general vector V. In this case there are seven symmetry generators. So, non zero
general vector is

V = a1V1 + a2V2 + a3V3 + a4V4 + a5V5 + a6V6 + a7V7. (3.4)

Use judicious application of adjoint map to make as many as constants a′s vanish.
Assume that a7 6=0 and also for convenience a7 = 1. Then the general non zero vector
(3.4) become

V = a1V1 + a2V2 + a3V3 + a4V4 + a5V5 + a6V6 + V7.
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Referring adjoint representation Table 2(b), if we act on V by Ad(exp(a4V4)),
then coefficient of V4 vanish. Name the resulting vector as V′

V′ = a1V1 + a2V2 + a3V3 + a5V5 + a6V6 + V7.

Similarly, if we act on V′ by adjoint map Ad(exp(a3V3)), then the coefficient of
V3 vanish. Call the resulting vector as V′′

V′′ = a1V1 + a2V2 + a5V5 + a6V6 + V7.

Working on same lines we find that, if we act on V′′ by Ad(exp(a2V2)), then the
coefficient of V2 vanish from the general vector V′′, which is represented in V′′′

V′′′ = a1V1 + a5V5 + a6V6 + V7.

Also if we act on V′′′ by Ad(exp(a1V1)), then coefficient of V1 vanish and we
got the vector free from the coefficients a4, a3, a2 and a1, that is

Viv = a5V5 + a6V6 + V7.

Referring adjoint representation Table 2(b), coefficient of symmetry generator
V5 can be vanish from above vector if we act on above general non-zero vector by
Ad(exp(a5)V5). After that, we cannot vanish any other coefficient of symmetry gen-
erators. Therefore, from here we have two symmetry generators which are include
in optimal algebra of non homogeneous Monge-Ampere equation.

(i) a6V6 + V7.

(ii) V7.
Remaining sub algebras are spanned by the vector (3.4), when a7 = 0. If a6 6=0

then for convenience also assume that a6 = 1, then general nonzero vector get the
form

V = a1V1 + a2V2 + a3V3 + a4V4 + a5V5 + V6.

Referring adjoint representation Table 2(b), if we act on V by Ad(exp(a5V5)),
then coefficient of V5 cancel from above vector and we call it V′

V′ = a1V1 + a2V2 + a3V3 + a4V4 + V6.

In the same column of adjoint representation Table 2(b), there is a relation of V6

with V4 and V1. Here choice is our that to whom vanish first. Now we act on V′

by Ad(exp(a4V4)), so, that coefficient of V4 vanish and we call the resulting vector
as V′′

V′′ = a1V1 + a2V2 + a3V3 + V6.
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Continuing in the same way, we observe from adjoint representation Table 2(b),
that by acting on V′′ by Ad(exp(a2V2)) the coefficient of V2 vanish and we call thee
resultant vector as V′′′

V′′′ = a1V1 + a3V3 + V6.

To vanish the coefficient of V1, we act on V′′′ by Ad(exp(a1V1)). Name the
resulting vector as Viv

Viv = a3V3 + V6.

Here we are succeeded in vanishing all the coefficients a′s, whose symmetry
generators are written in linear combination of V6. Therefore, from here the sym-
metry generators which are included in optimal algebra of non homogeneous Monge-
Ampere equation (3.1) with ex as non homogeneous part are

(i) a3V3 + V6,

(ii) V6.

Remaining sub algebras are spanned by the vector (3.4), if a7 = a6 = 0, a56=0.
For sake of convenience we further assume that a5 = 1, then the vector (3.4) become

V = a1V1 + a2V2 + a3V3 + a4V4 + V5.

From adjoint representation Table 2(b) we come to know that, if we act on V by
Ad(exp(a4V4)), then the coefficient of V4 vanish and call the new resulting vector
as V′

V′ = a1V1 + a2V2 + a3V3 + V5.

Similarly, if we act on V′ by Ad(exp(a1V1)), then coefficient of V1 vanish and
name the resulting vector as V′′

V′′ = +a2V2 + a3V3 + +V5.

Now in whole adjoint representation table there is not any symmetry generator
which is written in linear combination with V5. From here, the set of symmetry
generators included in optimal algebra of non homogeneous Monge-Ampere equa-
tion (3.1) with non homogeneous part ex are

(i) a2V2 + a3V3 + V5,

(ii) V5.
For remaining sub algebras of optimal system we assume that a7 = a6 = a5 =
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0, a4 6=0 and further for sake of convenience assume that a4 = 1. Then the general
non zero vector (3.4) become

V = a1V1 + a2V2 + a3V3 + V4.

Referring adjoint representation Table 2(b), if we act on above vector V by
Ad(exp(−a3V3)), then coefficient of V3 vanish and we call the resulting vector as
V′

V′ = a1V1 + a2V2 + V4.

Also the coefficient of V1 cancel, if we act on V′ by Ad(exp(a1V1)) and name
the resulting generator to V′′

V′′ = a2V2 + V4.

Now there is no any other linear combination of V4 exist whose coefficient has
not been vanish till yet. Therefore, from here the symmetry generators included in
optimal algebra of non homogeneous Monge-Ampere equation (3.1) are

(i) a2V2 + V4,

(ii) V4.
Remaining sub algebras are spanned by vector (3.4), if a7 = a6 = a5 = a4 = 0.

If a3 6=0 then for sake of convenience assume that a3 = 1. Then the general non zero
vector (3.4) become

V = a1V1 + a2V2 + V3.

From adjoint representation Table 2(b), we come to know that, if we act on above
vector V by Ad(exp(a2V2)). Then coefficient of V2 vanish and we call the resulting
vector as V′

V′ = a1V1 + V3.

Now there is no any other linear combination of V3 exist, whose coefficient has
not been vanish till yet. Therefore, from here the symmetry generators included in
optimal algebra of non homogeneous Monge-Ampere equation (3.1) are

(i) a1V1 + V3,

(ii) V3. Remaining sub algebras are spanned by the vector (3.4), if a7 =
a6 = a5 = a4 = a3 = 0, a2 6=0 and further for sake of convenience assume that a2 = 1.
Then the general non zero vector (3.4) become

V = a1V1 + V2.
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From adjoint representation Table 2(b), we find that V2 is not written with any
other symmetry generator. So, from here the only symmetry generator will belong
to optimal system is

(i) a1V1 + V2.
Similarly, by assuming a7 = a6 = a5 = a4 = a3 = 0, a2 = 0, for general non zero

vector (3.11). We get symmetry generator V1, which is included in optimal algebra
of non homogeneous Monge-Ampere equation (3.1).

Therefore, the optimal system of one dimensional sub algebras of Non homoge-
neous Monge-Ampere equation(3.1) with ex as the non homogeneous part is

V7+a6V6, V5+a3V3+a2V2, V4+a2V2, V6+a3V3, V3+a1V1,
V2+a1V1, V7, V6, V5, V4, V3, V1.

3.2.3 Reduction

As non homogeneous Monge-Ampere equation (3.1) is semi linear partial dif-
ferential equation. So, by using any transformation and reducing it to ordinary
differential equation is not an easy task. Here we are going to show reduction of
those optimal sub algebras because of which semi-linear non-homogeneous Monge-
Ampere equation either reduces to an ordinary differential equation or gives solution.
Remaining sub algebras yields either the trivial solution or reduces the order of semi-
linear non-homogeneous Monge-Ampere equation.

(i) For symmetry generator V7, V7 = y
∂

∂y
+ u

∂

∂u
,

it can be written as
dx

0
=
dy

y
=
du

u
,

from here we have

x = ξ, y = eξ, u = U(ξ)eξ.

Substituting these in non homogeneous Monge-Ampere equation (3.1) with non
homogeneous part as ex, it reduces to the following ordinary differential equation

U ′
2 − eξ = 0, (3.5)

where U ′ = dU
dξ

.
While

u(x, y) = ±
√
−2C1x− 8e(x+y) + 2C2 (3.6)
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be the solution of semi-linear non-homogeneous Monge-Ampere equation (3.1) with
ex the non-homogeneous part.

(ii) For combination of V3 and V6, one can write their combination as

V =
∂

∂x
+ x

∂

∂y
+ u

∂

∂u
,

it yields

x = ξ, y =
η2

2
+ ξ, u = Ueξ.

Using these we obtain an ordinary differential equation as

U ′′(U − U ′)eξ − U ′2eξ = 1, (3.7)

where U ′ =
dU

dξ
.

(iii) For combination of V6 and V3, one can write their combination as

V =
∂

∂x
+ y

∂

∂y
+

3u

2

∂

∂u
,

it can also be written as
dx

1
=
dy

y
=

2du

3u
,

it yields

x = ξ, y = ξeη, u = Ue
3η
2 . Using these we get an ordinary differential equation

as
4ξU ′U ′′ + U ′

2 − 9UU ′′ + 4 = 0, (3.8)

where U ′ =
dU

dξ
.

(iv) For combination of V5, V6 and V7, one can write their combination as

V =
∂

∂x
+ y

∂

∂y
+ (y +

3u

2
)
∂

∂u
.

It can also be written as
dx

1
=
dy

y
=

2du

2y + 3u
.

From here we get solution of semi-linear non-homogeneous Monge-Ampere equation
(3.1) as

u(x, y) =
2y(e

−3x
2 )− 1

1− e−3x
2

. (3.9)
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(v) For symmetry generator V6 =
∂

∂x
+ u

∂

∂u
, one can also write it as

dx

1
=
dy

0
=
du

u
.

It yields
x = ξ, y = η, u = Ueξ. Using these we obtain

u(x, y) =

√
C1ex[(e

−
√
C1e

x(y+C2)

ex )2 + ex]

2(e
−
√
C1e

x(y+C2)

ex )
(3.10)

the solution of semi-liner non-homogeneous Monge-Ampere equation (3.1).

3.3 Case II: a(x, y) = exφ(y)

Now consider another case of family of non homogeneous Monge-Ampere equa-
tion (3.1) with particular value of non homogeneous part as exφ(y).

3.3.1 Lie symmetries and commutator relation table

Adopting the method that we adopted for finding symmetry generators for the
first case of non homogeneous Monge-Ampere equation. We get symmetry genera-

tors of equation (3.1) with exφ(y) as non homogeneous part, as: V1 =
∂

∂u
,

V2 = x
∂

∂u
, V3 = y

∂

∂u
, V4 =

∂

∂x
+
u

2

∂

∂u
,

which are closed under Lie bracket operation. Symmetry generator V1 =
∂

∂u

representing translation, V2 = x
∂

∂u
, V3 = y

∂

∂u
representing Galilean transforma-

tion while V4 =
∂

∂x
+
u

2

∂

∂u
representing translation in x direction and scaling in u

direction.
One can write their commutator relation table as:

3.3.2 Construction of adjoint representation table

To construct the Adjoint representation table we use results of commutator re-
lation Table 3(b). The adjoint action is given by the Lie series as,

Ad(exp(εVi))Vj = Vj − ε[Vi,Vj] +
ε2

2!
[Vi, [Vi,Vj]]− · · ·,
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, V1 V2 V3 V4

V1 0 0 0
1

2
V1

V2 0 0 0
1

2
V2 −V1

V3 0 0 0
1

2
V3

V4 −1

2
V1 V1 −

1

2
V2 −1

2
V3 0

Table 3 (b)

where [Vi,Vj] is the Lie bracket for the generators Vi and Vj. Using this definition
of adjoint action.

Ad(exp(εV1))V4 = V4 − ε[V1,V4] +
ε2

2!
[V1, [V1,V4]]− ....,

from commutator relation Table 1(b), [V1,V4] =
1

2
V1,

and

[V1, [V1,V4]] =
1

2
[V1,V1] = 0,

adjojnt action of V1 on V4 be

Ad(exp(εV1))V4 = V4 −
ε

2
V1.

In this manner we the construct adjoint representation table.

Ad V1 V2 V3 V4

V1 V1 V2 V3 V4 −
ε

2
V1

V2 V1 V2 V3 V4 −
ε

2
V2 + εV1

V3 V1 V2 V3 V4 −
ε

2
V3

V4 V1e

ε

2 V2e

ε

2 − εV1e

ε

2 V3e

ε

2 V4

Table 4 (b)

3.3.3 Formation of optimal system

Following Olver’s technique [7, 8, 11, 16, 19] we assume a general vector V
as the combination of all symmetry generators. Then by observing columns of
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adjoint representation Table 4(b), we try to vanish coefficients of as much symmetry
generators as possible by using appropriate adjoint action on general vector V. For
this now consider a general non zero vector

V = a1V1 + a2V2 + a3V3 + a4V4. (3.11)

Suppose first that a4 6=0, further assume for convenience that a4 = 1, we have

V = a1V1 + a2V2 + a3V3 + V4,

V = a1
∂

∂u
+ a2x

∂

∂u
+ a3y

∂

∂u
+

∂

∂x
+
u

2

∂

∂
u,

observing the adjoint representation Table 4(b), if we act on V by Ad(exp(2a3V3)),
then coefficient of V3 vanishes, we call the resultant vector as V′

V′ = Ad(exp(2a3V3))V = V− 2a3[V3,V] +
(2a3)

2

2!
[V3, [V3,V]]− · · ·,

[V3,V] = [y
∂

∂u
, a1

∂

∂u
+ a2x

∂

∂u
+ a3y

∂

∂u
+

∂

∂x
+
u

2

∂

∂
u],

[V3, [V3,V]] = 0,

therefore

V′ = Ad(exp(2a3V3))V = a1
∂

∂u
+ a2x

∂

∂u
+ a3y

∂

∂u
+

∂

∂x
+
u

2

∂

∂u
− 2a3

y

2

∂

∂u
,

here a3 vanishes. We have

V′ = a1
∂

∂u
+ a2x

∂

∂u
+

∂

∂x
+
u

2

∂

∂u
,

that is
V′ = a1V1 + a2V2 + V4.

Again referring adjoint representation Table 4(b), if we act on V′ byAd(exp(2a2V2)),
then coefficient of V2 vanish. Represented it in V′′

V′′ = Ad(exp(2a2V2))V
′ = V′ − 2a2[V2,V

′] +
(2a2)

2

2!
[V2, [V2,V

′]]− · · ·,

[V2,V
′] = [x

∂

∂u
, a1

∂

∂u
+ a2x

∂

∂u
+

∂

∂x
+
u

2

∂

∂u
],

[V2,V
′] =

x

2

∂

∂u
− ∂

∂u
,

and
[V2, [V2,V

′]] = 0,
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therefore

V′′ = Ad(exp(2a2V2))V
′ = a1

∂

∂u
+ a2x

∂

∂u
+

∂

∂x
+
u

2

∂

∂u
− 2a2(

x

2

∂

∂u
− ∂

∂u
),

V′′ = (a1 + 2a2)
∂

∂u
+

∂

∂x
+
u

2

∂

∂u
,

taking a1
′ = a1 + 2a2,

we get, V′′ = a1
′ ∂

∂u
+

∂

∂x
+
u

2

∂

∂u
,

V′′ = a1
′ ∂

∂u
+

∂

∂x
+
u

2

∂

∂u
,

that is,
V′′ = a1

′V1 + V4.

Continuing in the same way, if we act on V′′ by Ad(exp(2a1
′V1)), then coefficient

of V1 vanish, we call the resultant vector as V′′′

V′′′ = Ad(exp(2a1
′V1))V

′′ = V′′ − 2a1
′[V1,V

′′] +
(2a1

′)2

2!
[V1, [V1,V

′′]]− · · ·,

[V1,V
′′] = [

∂

∂u
, a1
′ ∂

∂u
+

∂

∂x
+
u

2

∂

∂u
],

[V1,V
′′] =

1

2

∂

∂u
,

and
[V1, [V1,V

′′]] = 0,

therefore

V′′′ = Ad(exp(2a1
′V1))V

′′ = a1
′ ∂

∂u
+

∂

∂x
+
u

2

∂

∂u
− 2a1

′(
1

2

∂

∂u
),

V′′′ =
∂

∂x
+
u

2

∂

∂u
,

that is

V′′′ = V4.

Here we are succeeded in vanishing all the coefficients from general vector V and
finally we have a relation V′′′ = V4. Therefore V4 is included in optimal system
of one dimensional sub algebras of non homogeneous non linear Monge-Ampere
equation with non homogeneous part exφ(y).
The remaining one dimensional sub algebras are spanned by vector of above form
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with a4 = 0. If a3 6=0 and for convenience we assume that a3 = 1. Then the general
vector V given by equation (3.5) get the form

V = a1V1 + a2V2 + V3.

In adjoint representation Table 4(b), the symmetry generator V3 is not written
in linear combination of any other symmetry generators. So, it is impossible for us
to vanish any coefficient a′s from above general vector. Therefore the vector

V = a1V1 + a2V2 + V3,

is included in optimal system of one dimensional sub algebras of non homogeneous
non linear Monge-Ampere equation (3.1) with non homogeneous part exφ(y).
Beside these sub algebras are spanned by above vector (3.5) of the form a4 = a3 = 0,
and a2 6= 0. For convenience we scale it to make a2 = 1. Then the general vector V
(3.5) get the form

V = a1V1 + V2.

From adjoint representation Table 4(b), we come to know that the symmetry
generator V2 is not written in the linear combination of any other symmetry gen-
erators. So, it is impossible for us to vanish coefficient of symmetry generator V1.
Therefore, the symmetry generator

V = a1V1 + V2,

is included in optimal system. Also here e
ε
2 term is involved so, for simplicity we

are taking a1 = +1,−1, 0. Then we have, V1 + V2, V2 −V1, V2. Also from first
column we get V1 as the one dimensional sub algebra which is included in optimal
system.

Therefore, the optimal system of one dimensional sub algebras of (3.1) be
V4, a1V1 + a2V2 + V3, a1V1 + V2 V2− a1V1, V2, V1.

Which are also same as the classification of real three and four dimensional Lie
algebras done by J. Patera and P. Winternitz in [20].

3.3.4 Reduction

We have non homogeneous Monge-Ampere equation which is semi linear partial
differential equation, for this we found set of optimal algebras. As equation (3.1) is
semi linear partial differential equation so by using any transformation and reducing
it to ordinary differential equation is not an easy task. But here if we try to reduce it
with optimal algebra V4 we succeed to get its reduced ordinary differential equation.

V4 =
∂

∂x
+

1

2
u
∂

∂u
,
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it can be written as
dx

1
=
dy

0
=

2du

u
,

we have

z = y, w = ue
−
x

2 . Using these in (3.1), we get the ordinary differential equation

ww′′

4
+
w′2

4
+ φ(z) = 0. (3.12)

Its solution be,

w2 = −8

∫ ∫
φ(z)dz + 4 C1

∫
dz + C2, (3.13)

for convenience considering particular value of φ(z) = z, also using the substitutions
z = y, w = ue−

x
2 , we get solution

u2 =
4

3
exy3 + C ex,

which also satisfies the semi-linear non-homogeneous Monge-Ampere equation (3.1)
with exφ(y).

By using any other optimal algebra we did not get any transformation, so, that
we can reduce equation (3.1) to ordinary differential equation. But we are able to
just reduce the order of semi linear non homogeneous Monge-Ampere equation or
we get its trivial solution.

3.4 Conclusion

In this chapter we found solutions of semi-linear non-homogeneous Monge-Ampere
equation (3.1) from its optimal systems. We consider two particular cases by consid-
ering ex and exφ(y) as non-homogeneous parts in Case I and Case II respectively. All
solutions satisfies original partial differential equation (semi-linear non-homogeneous
Monge-Ampere equation (3.1)) with respective conditions. Since we know that
equation (3.1) is semi-linear. It also involves three basic symmetries (symmetries

depending on homogeneous part only) as
∂

∂u
, x

∂

∂u
, and y

∂

∂u
. Symmetries of this

form basically defines translation and Galelian translation. These type of symmetry
generators does not follow translation geometrically. That is why reduction by using
such symmetries is sometimes very difficult. Because of this we are unable to find
solutions from all sub algebras of optimal system. Here, because of optimal algebra
we are able to find such sub algebra which reduces equation (3.1) to an ordinary
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differential equation with its respective conditions. Therefore, either by using any
sub algebra of equation (3.1) or linear combination of its sub algebras will only give
these solutions. Otherwise they reduce the order of equation or give trivial solution.
We can further extends this work to find all solutions of those differential equations
whose symmetry generators are of the type as given here.
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Chapter 4

One dimensional symmetry
reduction of (2 + 1) dimensional
nonlinear Zabolotskaya Khokhlov
equation

4.1 Introduction

As we have already discuss in (1.1) about the role of differential equations es-
pecially the role of nonlinear partial differential equations in applied sciences and
engineering. With the help of non linear partial differential equations many prob-
lems are modeled in plasma physics, geometry, fluid dynamics, biology and nonlinear
acoustics. In this chapter we find optimal system of (2 + 1) dimensional nonlinear
Zabolotskaya-Khokhlov equation

utx − (uux)x − uyy = 0. (4.1)

This is one of the basic equation in nonlinear acoustic and nonlinear wave theory.
It is named after two Russian mathematicians R. V. Khokhlov and E. A. Zabolot-
skaya. They derived it for the first time and presented an approximate solution
which describes some important features of nonlinear waves [23]. After development
of new medical devices for nonlinear diagnostic ultrasound imaging, acoustic surgery
for noninvasive destruction of tumors and stone communication for kidney, exten-
sive research have been made in nonlinear acoustics. Propagation of confined wave
beam or sound beam on nonlinear medium without dispersion or with dispersion
is describe by Zabolotskaya-Khokhlov equation. It also investigates the deforma-
tion of beam which is associated with the properties of nonlinear medium [14, 24].
Zabolotskaya-Khokhlov equation has its applications in many fields of life such as
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it is used to simulate the estimation of fish stock abundance, discrimination be-
tween fish species, the effect of excess attenuation which occurs due to nonlinear
sound propagation in water absorption and diffraction in the focused sound beams
[5, 13, 22, 27].

4.2 Lie symmetries and commutator relation ta-

ble

Zabolotskaya-Khokhlov equation (4.1) have three independent variables the tem-
poral variable t while x, y the spatial variable, whereas u the dependent variable. For
one parameter ε, one parameter group of transformations for Zabolotskaya-Khokhlov
equation (4.1) be

t̃ = t+ εξ1(x, y, u) +O(ε2),

x̃ = x+ εξ2(x, y, u) +O(ε2),

ỹ = y + εξ3(x, y, u) +O(ε2),

ũ = u+ εη(x, y, u) +O(ε2).

Also Zabolotskaya-Khokhlov equation (4.1) verifies the above set of transforma-
tions. For general case of three independent variables and one dependent variable
the symmetry generator is

V = ξ1(x, y, u)
∂

∂t
+ ξ2(x, y, u)

∂

∂x
+ ξ3(x, y, u)

∂

∂y
+ η(x, y, u)

∂

∂u
. (4.2)

We need prolongation of generator (4.2) according to order of derivatives involved
in equation (4.1). As equation (4.1) have one derivative of first order with respect
to x, double derivatives with respect to x and y, while one mixed double derivative
of t and x. So, generator (4.2) get the form

V = ξ1
∂

∂t
+ ξ2

∂

∂x
+ ξ3

∂

∂y
+ η

∂

∂u
+ ηx

∂

∂u ,x
+ ηxx

∂

∂u ,xx
+ ηtx

∂

∂u ,tx
+ ηyy

∂

∂u ,yy
. (4.3)

By applying generator (4.3) to equation (4.1), we get a system of over deter-
mined linear partial differential equations in ξ1, ξ2, ξ3 and η. Solving these we get
symmetry generators of equation (4.1) as:

V1 =
∂

∂t
, V2 =

∂

∂x
, V3 =

∂

∂y
, V4 = y

∂

∂x
+ 2t

∂

∂y
, V5 = t

∂

∂x
− ∂

∂u
,

V6 = t
∂

∂t
+ x

∂

∂x
+ y

∂

∂y
, V7 = 4t

∂

∂t
+ 2x

∂

∂x
+ 3y

∂

∂y
− 2u

∂

∂u
.

One can find Lie algebra of these symmetry generators as:
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[V1,V1] = 0, [V1,V2] = 0, [V1,V3] = 0, [V1,V4] = 0, [V1,V5] = 0,
[V1,V6] = V1, [V1,V7] = 4V1,
[V2,V1] = 0, [V2,V2] = 0, [V2,V3] = 0, [V2,V4] = 0, [V2,V5] = 0,
[V2,V6] = V2, [V2,V7] = 4V1,
[V3,V1] = 0, [V3,V2] = 0, [V3,V3] = 0, [V3,V4] = V2, [V3,V5] = 0,
[V3,V6] = V3, [V3,V7] = 3V3,
[V4,V1] = −2V3, [V4,V2] = 0, [V4,V3] = −V2, [V4,V4] = 0, [V4,V5] = 0,
[V4,V6] = 0, [V4,V7] = −V4,
[V5,V1] = 0, [V5,V2] = 0, [V5,V3] = 0, [V5,V4] = 0, [V5,V5] = 0,
[V5,V6] = 0, [V5,V7] = 2V7,
[V6,V1] = −V1, [V6,V2] = −V2, [V6,V3] = −V3, [V6,V4] = 0, [V6,V5] = 0,
[V6,V6] = 0, [V6,V7] = 0,
[V7,V1] = −4V1, [V7,V2] = −2V2, [V7,V3] = −3V3, [V7,V4] = V4,
[V7,V5] = −2V7, [V7,V6] = 0, [V7,V7] = 0.

Also one can construct commutator relation table from these as:

, V1 V2 V3 V4 V5 V6 V7

V1 0 0 0 2V3 0 V1 4V1

V2 0 0 0 0 0 V2 2V2

V3 0 0 0 V2 0 V3 3V3

V4 −2V3 0 −V2 0 0 0 −V4

V5 0 0 0 0 0 0 2V7

V6 −V1 −V2 −V3 0 0 0 0
V7 −4V1 −2V2 −3V3 V4 −2V7 0 0

Table 1 (c)

4.3 Construction of adjoint representation table

To compute adjoint representation, we use the Lie series in conjunction with
commutator relation Table 1(c). The adjoint action is given by the Lie series as

Ad(exp(εVi))Vj = Vj − ε[Vi,Vj] +
ε2

2!
[Vi, [Vi,Vj]]− · · ·,

where [Vi,Vj] is the Lie bracket for the generators Vi and Vj. Using this definition
of adjoint action.

Ad(exp(εV1))V1 = V1 − ε[V1,V1] +
ε2

2!
[V1, [V1,V1]]− ....
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as [V1,V1] = 0, adjoint action of V1 on itself be

Ad(exp(εV1))V1 = V1.

Ad(exp(εV1))V2 = V2 − ε[V1,V2] +
ε2

2!
[V1, [V1,V2]]− ....,

as [V1,V2] = 0, therefore

Ad(exp(εV1))V2 = V2.

Ad(exp(εV1))V3 = V3 − ε[V1,V3] +
ε2

2!
[V1, [V1,V3]]− ....,

since [V1,V3] = 0, we have

Ad(exp(εV1))V3 = V3.

Ad(exp(εV1))V4 = V4 − ε[V1,V4] +
ε2

2!
[V1, [V1,V4]]− ....,

we have [V1,V4] = 2V3, therefore

Ad(exp(εV1))V4 = V4 − 2εV3.

Ad(exp(εV1))V5 = V5 − ε[V1,V5] +
ε2

2!
[V1, [V1,V5]]− ....,

we know that [V1,V5] = 0, hence

Ad(exp(εV1))V4 = V5.

Ad(exp(εV1))V6 = V6 − ε[V1,V6] +
ε2

2!
[V1, [V1,V6]]− ....,

from commutator relation Table 1(c), [V1,V6] = V1, using this we get

Ad(exp(εV1))V6 = V6 − εV1.

Ad(exp(εV1))V7 = V7 − ε[V1,V7] +
ε2

2!
[V1, [V1,V7]]− ....,

as [V1,V7] = 4V1, adjoint action of V1 on V7 be

Ad(exp(εV1))V7 = V7 − 4εV1.

Ad(exp(εV2))V1 = V1 − ε[V2,V1] +
ε2

2!
[V2, [V2,V1]]− ....,
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as [V2,V1] = 0, hence
Ad(exp(εV2))V1 = V1.

Ad(exp(εV2))V2 = V2 − ε[V2,V2] +
ε2

2!
[V2, [V2,V2]]− ....,

we have [V2,V2] = 0, adjoint action of V2 on itself be

Ad(exp(εV2))V2 = V2.

Ad(exp(εV2))V3 = V3 − ε[V2,V3] +
ε2

2!
[V2, [V2,V3]]− ....,

we know that [V2,V3] = 0, therefore

Ad(exp(εV2))V3 = V3.

Ad(exp(εV2))V4 = V4 − ε[V2,V4] +
ε2

2!
[V2, [V4,V4]]− ....,

from commutator relation Table 1(c) [V2,V4] = 0, using this we get

Ad(exp(εV2))V4 = V4.

Ad(exp(εV2))V5 = V5 − ε[V2,V5] +
ε2

2!
[V2, [V2,V5]]− ....,

since [V2,V5] = 0, hence
Ad(exp(εV2))V5 = V5.

Ad(exp(εV2))V6 = V6 − ε[V2,V6] +
ε2

2!
[V2, [V2,V6]]− ....,

we have [V2,V6] = V2, therefore

Ad(exp(εV2))V6 = V6 − εV2.

Ad(exp(εV2))V7 = V7 − ε[V2,V7] +
ε2

2!
[V2, [V2,V7]]− ....,

from commutator relation Table 1(c), [V2,V7] = 2V2, using this we obtain

Ad(exp(εV1))V7 = V7 − 2εV2.

Ad(exp(εV3))V1 = V1 − ε[V3,V1] +
ε2

2!
[V3, [V3,V1]]− ....,

we know that [V3,V1] = 0, adjoint action of V3 on V1 be

Ad(exp(εV3))V1 = V1.
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Ad(exp(εV3))V2 = V2 − ε[V3,V2] +
ε2

2!
[V3, [V3,V2]]− ....,

as [V3,V2] = 0, therfore
Ad(exp(εV3))V2 = V2.

Ad(exp(εV3))V3 = V3 − ε[V3,V3] +
ε2

2!
[V3, [V3,V3]]− ....,

since we know that [V3,V3] = 0, so, adjoint action of V3 on itself be

Ad(exp(εV3))V3 = V3.

Ad(exp(εV3))V4 = V4 − ε[V3,V4] +
ε2

2!
[V3, [V3,V4]]− ....,

we have [V3,V4] = V2, hence

Ad(exp(εV1))V3 = V4 − εV2.

Ad(exp(εV3))V5 = V5 − ε[V3,V5] +
ε2

2!
[V3, [V3,V5]]− ....,

from commutator relation Table 1(c), [V3,V5] = 0, using this it yields

Ad(exp(εV3))V5 = V5.

Ad(exp(εV3))V6 = V6 − ε[V3,V6] +
ε2

2!
[V3, [V3,V6]]− ....,

as [V3,V6] = V3, therefore

Ad(exp(εV3))V6 = V6 − εV3.

Ad(exp(εV3))V7 = V7 − ε[V3,V7] +
ε2

2!
[V3, [V3,V7]]− ....,

since [V3,V7] = 3V3, adjoint action of V3 on V7 be

Ad(exp(εV3))V7 = V7 − 3εV3.

Ad(exp(εV4))V1 = V1 − ε[V4,V1] +
ε2

2!
[V4, [V4,V1]]− ....,

as [V4,V1] = −2V3, from here we obtain

Ad(exp(εV4))V1 = V1 + 2εV3 + ε2V2.

Ad(exp(εV4))V2 = V2 − ε[V4,V2] +
ε2

2!
[V4, [V4,V2]]− ....,
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since [V4,V2] = 0, using this we get

Ad(exp(εV3))V2 = V2.

Ad(exp(εV4))V3 = V3 − ε[V4,V3] +
ε2

2!
[V4, [V4,V3]]− ....,

we have [V4,V3] = −V2, hence

Ad(exp(εV4))V3 = V3 + εV2.

Ad(exp(εV4))V4 = V4 − ε[V4,V4] +
ε2

2!
[V4, [V4,V4]]− ....,

from commutator relation table 1(c), [V4,V4] = 0, therefore

Ad(exp(εV4))V4 = V4.

Ad(exp(εV4))V5 = V5 − ε[V4,V5] +
ε2

2!
[V4, [V4,V5]]− ....,

we know that [V4,V5] = 0, using this we obtain

Ad(exp(εV4))V5 = V5.

Ad(exp(εV4))V6 = V6 − ε[V4,V6] +
ε2

2!
[V4, [V4,V6]]− ....,

since [V4,V6] = 0, adjoint action of V4 on V6 be

Ad(exp(εV4))V6 = V6.

Ad(exp(εV4))V7 = V7 − ε[V4,V7] +
ε2

2!
[V4, [V4,V7]]− ....,

from commutator relation Table 1(c), [V4,V7] = −V4, therefore

Ad(exp(εV4))V7 = V7 + εV4.

Ad(exp(εV5))V1 = V1 − ε[V5,V1] +
ε2

2!
[V5, [V5,V1]]− ....,

as [V5,V1] = 0, using this we get adjoint action of V5 on V1

Ad(exp(εV5))V1 = V1.

Ad(exp(εV5))V2 = V2 − ε[V5,V2] +
ε2

2!
[V5, [V5,V2]]− ....,
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since [V5,V2] = 0, using this we get

Ad(exp(εV5))V2 = V2.

Ad(exp(εV5))V3 = V3 − ε[V5,V3] +
ε2

2!
[V5, [V5,V3]]− ....,

we have [V5,V3] = 0, therefore

Ad(exp(εV5))V3 = V3.

Ad(exp(εV5))V4 = V4 − ε[V5,V4] +
ε2

2!
[V5, [V5,V4]]− ....,

from commutator relation Table 1(c), [V5,V4] = 0, hence

Ad(exp(εV4))V4 = V4.

Ad(exp(εV5))V5 = V5 − ε[V5,V5] +
ε2

2!
[V5, [V5,V5]]− ....,

we know that [V5,V5] = 0, adjoint action of V5 on itself be

Ad(exp(εV5))V5 = V5.

Ad(exp(εV5))V6 = V6 − ε[V5,V6] +
ε2

2!
[V5, [V5,V6]]− ....,

as [V5,V6] = 0, hence
Ad(exp(εV5))V6 = V6.

Ad(exp(εV5))V7 = V7 − ε[V5,V7] +
ε2

2!
[V5, [V5,V7]]− ....,

we have [V5,V7] = 2V7, using this we get adjoint action of V5 on V7

Ad(exp(εV5))V7 = V7e
−2ε.

Ad(exp(εV6))V1 = V1 − ε[V6,V1] +
ε2

2!
[V6, [V6,V1]]− ....,

we have [V6,V1] = −V1, therefore

Ad(exp(εV6))V1 = eεV1.

Ad(exp(εV6))V2 = V2 − ε[V6,V2] +
ε2

2!
[V6, [V6,V2]]− ....,

as [V6,V2] = −V2, using this we get

Ad(exp(εV6))V2 = eεV2.
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Ad(exp(εV6))V3 = V3 − ε[V6,V3] +
ε2

2!
[V6, [V6,V3]]− ....,

we have [V6,V3] = −V3, therefore

Ad(exp(εV6))V3 = eεV3.

Ad(exp(εV6))V4 = V4 − ε[V6,V4] +
ε2

2!
[V6, [V6,V4]]− ....,

we know that [V6,V4] = 0, adjoint action of V6 on V4 is

Ad(exp(εV6))V4 = V4.

Ad(exp(εV6))V5 = V5 − ε[V6,V5] +
ε2

2!
[V6, [V6,V5]]− ....,

from commutator relation Table 1(c), [V6,V5] = 0, adjoint action of V6 on V − 5
be

Ad(exp(εV6))V5 = V5.

Ad(exp(εV6))V6 = V6 − ε[V6,V6] +
ε2

2!
[V6, [V6,V6]]− ....,

since [V6,V6] = 0, adjoint action of V6 on itself be

Ad(exp(εV6))V6 = V6.

Ad(exp(εV6))V7 = V7 − ε[V6,V7] +
ε2

2!
[V6, [V6,V7]]− ....,

we know that [V6,V7] = 0, using this we get

Ad(exp(εV6))V7 = V7.

Ad(exp(εV7))V1 = V1 − ε[V7,V1] +
ε2

2!
[V7, [V7,V1]]− ....,

since [V7,V1] = −4V1, adjoint action of V7 on V1 be

Ad(exp(εV7))V1 = e4εV1.

Ad(exp(εV7))V2 = V2 − ε[V7,V2] +
ε2

2!
[V7, [V7,V2]]− ....,

we know that [V7,V2] = −2V2, therefore

Ad(exp(εV7))V2 = e2εV2.

Ad(exp(εV7))V3 = V3 − ε[V7,V3] +
ε2

2!
[V7, [V7,V3]]− ....,
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from commutator relation Table 1(c), [V7,V3] = −3V3, hence

Ad(exp(εV7))V3 = e3εV3.

Ad(exp(εV7))V4 = V4 − ε[V7,V4] +
ε2

2!
[V7, [V7,V4]]− ....,

we have [V7,V4] = V4, using this we get

Ad(exp(εV7))V4 = e−εV4.

Ad(exp(εV7))V5 = V5 − ε[V7,V5] +
ε2

2!
[V7, [V7,V5]]− ....,

since [V7,V5] = −2V7, adjoint action of V7 on V5 be

Ad(exp(εV7))V5 = V5 + 2εV7.

Ad(exp(εV7))V6 = V6 − ε[V7,V6] +
ε2

2!
[V7, [V7,V6]]− ....,

we have [V7,V6] = 0, using this we obtain

Ad(exp(εV7))V6 = V7.

Ad(exp(εV7))V7 = V7 − ε[V7,V7] +
ε2

2!
[V7, [V7,V7]]− ....,

from commutator relation Table 1(c), [V7,V7] = 0, using this we get adjoint action
of V7 on itself

Ad(exp(εV7))V7 = V7.

Using these results one can construct an adjoint representation table.

Ad V1 V2 V3 V4 V5 V6 V7

V1 V1 V2 V3 V4 − εV3 V5 V6 − εV1 V7 − 4εV1

V2 V1 V2 V3 V4 V5 V6 − εV2 V7 − 2εV2

V3 V1 V2 V3 V4 − εV2 V5 V6 − εV3 V7 − 3εV3

V4 V1 + 2εV3 V2 V3 + εV2 V4 V5 V6 V7 + εV4

V5 V1 V2 V3 V4 V5 V6 e−2εV7

V6 eεV1 eεV2 V3e
ε V4 V5 V6 V7

V7 e4εV1 e2εV2 e3εV3 e−εV4 V5 + 2εV7 V6 V7

Table 2 (c)
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4.4 Formation of optimal system

We have defined optimal system in 1.5, it constitutes the set of conjugacy classes
of group of transformations. Also we know that adjoint action gives the conjugacy
classes of group of transformations which are written in columns of adjoint represen-
tation table. Our aim is to find the set of one dimensional sub algebras which cover
all conjugacy classes. Following Olver’s technique [12, 15, 16, 17, 19], assume a gen-
eral vector V as the combination of all symmetry generators and then by observing
columns of adjoint representation table try to vanish as much symmetry generators
as possible by using appropriate adjoint action on general vector V. Consider a
general non zero vector of the form

V = a1V1 + a2V2 + a3V3 + a4V4 + a5V5 + a6V6 + a7V7. (4.4)

Our task is to vanish as many as of the coefficients a′s as possible by the judicious
application of adjoint map to V. Suppose first that a7 6= 0 and also further assume
for convenience that a7 = 1

V = a1V1 + a2V2 + a3V3 + a4V4 + a5V5 + a6V6 + V7

V = a1
∂

∂t
+ a2

∂

∂x
+ a3

∂

∂y
+ a4y

∂

∂x
+ 2a4t

∂

∂y
+ a5t

∂

∂x
− a5

∂

∂u
+

a6t
∂

∂t
+ a6x

∂

∂x
+ a6y

∂

∂y
+ 4t

∂

∂t
+ 2x

∂

∂x
+ 3y

∂

∂y
− 2u

∂

∂u
.

Referring to Table 2(c), if we act on V by Ad(exp(−a4)V4) then we can make
the coefficient of V4 vanish. We call the resulting vector as V′

V′ = a1V1 + a2V2 + a3V3 + a5V5 + a6V6 + V7,

V′ = a1
∂

∂t
+ a2

∂

∂x
+ a3

∂

∂y
+ a5t

∂

∂x
− a5

∂

∂u
+ a6t

∂

∂t
+

a6x
∂

∂x
+ a6y

∂

∂y
+ 4t

∂

∂t
+ 2x

∂

∂x
+ 3y

∂

∂y
− 2u

∂

∂u
.

Next we act on V′ by Ad(exp(
1

3
a3)V3) to cancel the coefficient of V3. Which is

represented by
V′′ = a1V1 + a2V2 + a5V5 + a6V6 + V7,

V′′ = a1
∂

∂t
+ a2

∂

∂x
+ a5t

∂

∂x
− a5

∂

∂u
+ a6t

∂

∂t
+ a6x

∂

∂x
+ a6y

∂

∂y
+ 4t

∂

∂t
+ 2x

∂

∂x
+ 3y

∂

∂y
− 2u

∂

∂u
.
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Similarly, if we act on V′′ by Ad(exp(
1

2
a2)V2), then coefficient of V2 vanish. We

call the resulting vector as V′′′

V′′′ = a1V1 + a5V5 + a6V6 + V7,

V′′′ = a1
∂

∂t
+ a5t

∂

∂x
− a5

∂

∂u
+ a6t

∂

∂t
+ a6x

∂

∂x
+

a6y
∂

∂y
+ 4t

∂

∂t
+ 2x

∂

∂x
+ 3y

∂

∂y
− 2u

∂

∂u

In adjoint representation Table 2(c), we observe that V7 and V1 are written in a

combination. So we can vanish coefficient of V1, if we act on V′′′ byAd(exp(
1

4
a1)V1).

We call the resulting vector as Viv

Viv = a5V5 + a6V6 + V7

Viv = a5t
∂

∂x
− a5

∂

∂u
+ a6t

∂

∂t
+ a6x

∂

∂x
+ a6y

∂

∂y
+ 4t

∂

∂t
+ 2x

∂

∂x
+ 3y

∂

∂y
− 2u

∂

∂u
.

Referring to adjoint representation Table 2(c), if we act on Viv byAd(exp(2a5)V5),
then coefficient of V5 cancel from Viv. We name the resulting vector as Vv

Viv = a6V6 + V7,

Viv = a6t
∂

∂t
+ a6x

∂

∂x
+ a6y

∂

∂y
+ 4t

∂

∂t
+ 2x

∂

∂x
+ 3y

∂

∂y
− 2u

∂

∂u
.

Up to now we are succeed in vanishing all those symmetry generators written
with V7 in its linear combination in adjoint representation Table 2(c). So, from here
the symmetry generators which are included in optimal system be:

(i) V7,

(ii) aV6+V7, where a be an arbitrary constant. The remaining one-dimensional
sub algebras are spanned by vector (4.4) of the above form with a7 = 0. If a6 6= 0,
we scale to make a6 = 1. Then the general non zero vector (4.4) get the form

V = a1V1 + a2V2 + a3V3 + a4V4 + a5V5 + V6.

Referring adjoint representation Table 2(c), symmetry generator V6 is written
in linear combination of V3,V2 and V1. We can make their coefficients vanish
by acting on V by Ad(exp(a3)V3), Ad(exp(a2)V2) and Ad(exp(a1)V1) respectively.
After acting Ad(exp(a3)V3) on V, we get vector V′ free of coefficient of V3

V′ = a1V1 + a2V2 + a4V4 + a5V5 + V6,
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V′ = a1
∂

∂t
+a2

∂

∂x
+a4y

∂

∂x
+2a4t

∂

∂y
+a5t

∂

∂x
−a5

∂

∂u
+a6t

∂

∂t
+a6x

∂

∂x
+y

∂

∂y
+4t

∂

∂t
.

After acting Ad(exp(a2)V2) on V′, we get the vector free of coefficient of V2, we
call resulting vector as V′′

V′′ = a1V1 + a4V4 + a5V5 + V6,

V′′ = a1
∂

∂t
+ a4y

∂

∂x
+ 2a4t

∂

∂y
+ a5t

∂

∂x
− a5

∂

∂u
+ a6t

∂

∂t
+ a6x

∂

∂x
+ y

∂

∂y
+ 4t

∂

∂t
.

Similarly, by applying Ad(exp(a1)V1) on V′′, the coefficient of V1 vanish, which
is represented in the vector V′′′

V′′′ = a4V4 + a5V5 + V6,

V′′′ = a4y
∂

∂x
+ 2a4t

∂

∂y
+ a5t

∂

∂x
− a5

∂

∂u
+ a6t

∂

∂t
+ a6x

∂

∂x
+ y

∂

∂y
+ 4t

∂

∂t
.

Therefore, from here the sub algebras which are included in optimal system are:

(i) V6,

(ii) aV4 + bV5 + V6,

where a ,b be arbitrary constants, which we assume to be one during reduction.
The remaining one-dimensional sub algebras are spanned by vector (4.4) of the above
form with a7 = a6 = 0. If a5 6= 0, for convenience we assume that a5 = 1. Then
general non zero vector (4.4) be

V = a1V1 + a2V2 + a3V3 + a4V4 + V5.

From adjoint representation Table 2(c), we came to know that V5 written only
with V7, but we have already utilized this relation while we were interested in find-
ing the representative for the class involving V7. Therefore, from here the only
only sub algebra which included in optimal system is the combination of symmetry
generators:

(i) a1V1 + a2V2 + a3V3 + a4V4 + V5,

where these a′s are coefficients and are arbitrary constants, which we assumed
for simplicity to be one during reduction.

Beside these one-dimensional sub algebras are spanned by vector (4.4) of the
above form with a7 = a6 = a5 = 0. For a4 6= 0 also for our our convenience we
further assume that a4 = 1 then the general non zero vector (4.4) be

V = a1V1 + a2V2 + a3V3 + V4.
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Concerning adjoint representation Table 2(c), if we act on V by Ad(exp(a2)V4),
then we can make the coefficient of V4 vanish, which is represented in V′

V′ = a1V1 + a3V3 + V4.

On similar lines if we act on V′ by Ad(exp(a3)V3), then we vanish coefficient of
V3, we call that resulting vector as V′′

V′′ = a1V1 + V4.

Till now we are succeed in vanishing coefficients of all those symmetry generators
written with the combination of V4. So, from here the symmetry generators which
are included in the optimal system are:

(i) V4,

(ii) aV1 + V4.
Now for remaining one dimensional sub algebras we assume in general non zero

vector (4.4) that a7 = a6 = a5 = 0 = a4 = 0. If a3 6= 0 then for convenience we scale
it to a3 = 1. General non zero vector get the form

V = a1V1 + a2V2 + V3.

Referring adjoint representation Table 2(c), we came to know that the symmetry
generator V3 written in linear combination with V2 in second column and with V1

in first column. If we act on V by Ad(exp(−a2)V2) then coefficient of V2 vanish
and we call the resulting generator as V′

V′ = a1V1 + V3.

Similarly, if we act on V′ by Ad(exp(−2a1)V1) then we can make coefficient of
V1 vanish and we name the resulting vector as V′′

V′′ = V3.

So far we are succeed in vanishing coefficients of all those symmetry generators
written in the linear combination with V3. So, from here the symmetry generator
which included in the optimal system is V3 only.

Working on same lines for considering all coefficients to be zero except a2 and
a1 respectively. we find out that the symmetry generator which are included to the
optimal system be

(i) aV1 + V2,
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(ii) V1.
Recapitulating, we have found an optimal system of one dimensional sub algebras

to be those spanned by
V5+a4V4+a3V3+a2V2+a1V1, V6+a5V5+a4V4, V7+a6V6, V4+a1V1,

V2 + a1V1, V7, V6, V4, V3, V1.

4.5 Reduction

(i) For symmetry generator V7 = 4t
∂

∂t
+ 2x

∂

∂x
+ 3y

∂

∂y
− 2u

∂

∂u
,

one can write it as
dt

4t
=
dx

2x
=
dy

3y
=

du

−2u
,

from here we get

t = e4ρ, x = ξ
√
e4ρ, y = ηe3ρ, u =

U(ξ, η)√
e4ρ

.

Substituting in equation (4.1), we get

Uξξ(
1

2
ξ + U) + Uηη +

3

4
ηUξη + Uξ

2 + Uξ = 0, (4.5)

which is one dimension less than the equation (4.1).
Symmetry generators of equation (4.5) are

V1 = −2
∂

∂ξ
+

∂

∂U
, V2 = 4η

∂

∂ξ
+

32

3

∂

∂η
+y

∂

∂U
, V3 = ξ

∂

∂ξ
+
η

2

∂

∂η
+U

∂

∂U
.

Using these symmetries we get solutions of Zabolotskaya-Khokhlov equation (4.1) as:

u(t, x, y) =
y2

8t2
− x

t
+ C1

y

t
3
4

+ C2, (4.6)

which is defined for all values of x, y and t except when t = 0. From these symmetry
generators we obtain another solution as:

u(t, x, y) =
1

t
1
2

[
39y2

512t6
− 3x

64t
1
2

+
eC1

288
(192C1e

C1 + 27eC1(
5y2

86
− x

t
1
2

)

−

√
(384C1eC1 − 27eC1(

5y2

86
− x

t
1
2

) + 4) + 2)],

which is also undefined for t = 0.
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(ii) For symmetry generator V3 =
∂

∂y
,

it can be written as
dt

0
=
dx

0
=
dy

1
=
du

0
,

from here we get

t = ξ, x = η, y = ρ, u = U(ξ, η).

By substituting these in equation (4.1), we get

Uξη − UUηη − Uη2 = 0,

which is one dimension less than the equation (4.1). It yields trivial solution of
Zabolotskaya-Khokhlov equation (4.1).

(iii) For symmetry generator V4 = y
∂

∂x
+ 2t

∂

∂y
,

one can write it as
dt

0
=
dx

y
=
dy

2t
=
du

0
,

from here we get

t = ξ, x =
4ρ2ξ2 − η

4ξ
, y = 2ρξ, u = U(ξ, η).

Substituting in equation (4.1), we get

Uηη(4η + 16ξ2U) + 16ξ2Uη
2 + 4ξUξη + 6Uη = 0,

which is one dimension less than the equation (4.1). It also gives trivial solution of
Zabolotskaya-Khokhlov equation (4.1).

(iv) For symmetry generator V6 = t
∂

∂t
+ x

∂

∂x
+ y

∂

∂y
,

we can write it as

V6 = t
∂

∂t
+ x

∂

∂x
+ y

∂

∂y
+ 0

∂

∂u
,

dt

t
=
dx

x
=
dy

y
=
du

0
,

from here we get
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t = eρ, x = ξeρ, y = ηeρ, u = U(ξ, η).
Using these in equation (4.1), we obtain

Uξξ(ξ + U) + Uηη + ηUξη + Uξ
2 + uξ = 0, (4.7)

which is one dimension less than the equation (4.1). Here (4.7) have three dimen-
sional Lie algebra as:

V1 = − ∂

∂ξ
+

∂

∂U
, V2 =

η

2

∂

∂ξ
+

∂

∂η
, V3 = ξ

∂

∂ξ
+
η

2

∂

∂η
+ U

∂

∂U
.

Using these symmetry generators one can easily get the solution of Zabolotskaya-
Khokhlov equation (4.1) as

u(t, x, y) = C1
y

t
− x

t
+ C2, (4.8)

which is undefined when t = 0.

(v) For symmetry generator V1 =
∂

∂t
,

one can write it as
dt

1
=
dx

0
=
dy

0
=
du

0
,

from here we get

t = ρ, x = ξ, y = η, u = U(ξ, η).
Using in equation (4.1), we get

UUξξ − Uξ2 − Uηη = 0,

which is one dimension less than the equation (4.1). Its solution can be easily cal-
culated in terms of Wiestrass function.

(vi) For combination of symmetry generators V1 and V2, one can write their
combination as

V =
∂

∂t
+

∂

∂x
,

it can also be written as
dt

1
=
dx

1
=
dy

0
=
du

0

from here we get

t = ρ, x = ξ + ρ, y = η, u = U(ξ, η).

73



Using these in equation (4.1), we obtain

Uξξ(U + 1) + Uηη + Uξ
2 = 0 (4.9)

which is one dimension less than the equation (4.1). Equation (4.9) has four dimen-
sional Lie algebra as:

V1 =
∂

∂ξ
, V2 =

∂

∂η
, V3 = ξ

∂

∂xi
+ (2U − 2)

∂

∂U
, V4 = η

∂

∂η
+ (2− 2U)

∂

∂U
.

Using these we get the solution of Zabolotskaya-Khokhlov equation (4.1) as

u(t, x, y) = 1 +
C1

2y2
A(e

x−t
C1 )2 + 12AC1(e

x−t
C1 ) + 36C1

2

A(e
x−t
C1 )

, (4.10)

where A = e
C2
C1 . Also solution is undefined when y = o

(vii) For combination of symmetry generators V1 and V4, one can write their
combination as

V =
∂

∂t
+ y

∂

∂x
+ 2t

∂

∂y
,

it can also be written as
dt

1
=
dx

y
=
dy

2t
=
du

0
,

it yields

t = ρ, x =
1

3
ρ3 + ρξ + η, y = ρ2 + ξ, u = U(ξ, η).

Using these in equation (4.1), we get

Uηη(U + ξ) + Uξξ + Uη
2 = 0, (4.11)

which is one dimension less than the equation (4.1). Equation (4.11) has four di-
mensional Lie algebra as:

V1 =
∂

∂η
, V2 =

∂

∂ξ
− ∂

∂U
, V3 = η

∂

∂η
+2(ξ+U)

∂

∂U
, V4 = ξ

∂

∂ξ
−(2U+3ξ)

∂

∂U
.

Using these we get following solutions of Zabolotskaya-Khokhlov equation (4.1)
as

u(t, x, y) = t2 − y + C2e
C1(x+

2t3

3
−ty), (4.12)

and

u(t, x, y) = t2 − y +
C1

2(y − t2)
A2(e

x+2t3

3 −ty
C1 )2 + 12AC1(e

x+2t3

3 −ty
C1 ) + 36C1

2

A(e
x+2t3

3 −ty
C1 )

, (4.13)
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where A = e
C2
C1 . Here first solution is defined every where for t, x and y while second

solution becomes undefined when y = ±t.

(viii) For combination of symmetry generators V6 and V7, one can write their
combination as

V = 5t
∂

∂t
+ 3x

∂

∂x
+ 4y

∂

∂y
− 2u

∂

∂u
,

one can also write it as
dt

5t
=
dx

3x
=
dy

4y
=

du

−2u
,

it yields

t = e5ρ, x = ξe3ρ, y = ηe4ρ, u = U(ξ, η)e−2ρ.
Using these in equation (4.1), it yields

Uξξ(U +
3

5
ξ) + Uηη +

4

5
ηUξη + Uξ(Uξ + 1) = 0, (4.14)

which is one dimension less than the equation (4.1). Equation (4.14) has two di-
mensional algebra as:

V1 = η
∂

∂U
, V2 =

∂

∂U
.

Using these one can easily obtain solution of Zabolotskaya-Khokhlov equation
(4.1).

(ix) For combination of symmetry generators V4,V5 and V6, we can write their
combination as

V =
∂

∂t
+ (x+ y + t)

∂

∂x
+ (2t+ y)

∂

∂y
− ∂

∂u
,

we can also write it as

dt

1
=

dx

(x+ y + t)
=

dy

(2t+ y)
=
du

−1
,

from here we get

t = eρ, x = eρ(ρ2 + ρξ + ρ+ η), y = eρ(2ρ+ ξ), u = U(ξ, η).

substituting in equation (4.1), we get

Uηη(ξ + η + U + 1) + Uξη(ξ + 2) + Uξξ + U2
η + Uη = 0, (4.15)
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which is one dimension less than the equation (4.1). Equation (4.15) has three di-
mensional Lie algebra as:

V1 = −2
∂

∂η
+

∂

∂U
, V2 = 2

∂

∂ξ
+x

∂

∂η
, V3 = (

ξ

2
+1)

∂

∂ξ
+η

∂

∂η
+(

ξ

4
+U)

∂

∂U
.

Using these we obtain the following solution of Zabolotskaya-Khokhlov equation
(4.1) as:

u(t, x, y) =
−1

2
[
x

t
− (lnt)2 + lnt(1− lnt2 +

y

t
)] + (

y

t
− lnt2)(1

8
+ C1) + C2, (4.16)

which is undefined when t = 0.

(x) For combination of symmetry generators V1,V2,V3,V4 and V5, their com-
bination can be written as

V =
∂

∂t
+ (1 + y + t)

∂

∂x
+ (2t+ 1)

∂

∂y
− ∂

∂u
,

one can write it as
dt

1
=

dx

(x+ y + t)
=

dy

(2t+ y)
=
du

−1
,

it yields

t = ρ, x =
1

3
(ρ3 + ρ2 + ρξ + ρ+ η), y = ρ2 + ρ+ ξ, u = U(ξ, η)− ρ.

Using these in equation (4.1), we get

Uηη(ξ + U + 1) + Uξη + Uξξ + U2
η = 0 (4.17)

which is one dimension less than the equation (4.1). Equation (4.17) has four di-
mensional Lie algebra as:

V1 =
∂

∂η
, V2 = − ∂

∂ξ
+

∂

∂U
, V3 = −ξ ∂

∂ξ
− η ∂

∂η
+ ξ

∂

∂U
,

V4 = (ξ +
5

4
)
∂

∂ξ
+ (−ξ

4
+

3η

2
)
∂

∂η
+ U

∂

∂U
.

Using these symmetry generators we obtain the solution of Zabolotskaya-Khokhlov
equation as

u(t, x, y) = y − t2 − 1 + C2e
C1(x+

2t3

3
+x2−t(1+y)), (4.18)

which is defined for every value of t, x and y.
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4.6 Conclusion

In this chapter we found solutions of nonlinear Zabolotsaya-Khokhlov equation
(4.1). Nonlinear Zabolotsaya-Khokholov equation (4.1) involves three independent
variables, one temporal variable t and two spatial variables x and y, while one
dependent variable u. We find ten sub algebras which are included in optimal
system of equation (4.1). As a result of these optimal algebras we get reduced partial
differential equations. These reduced partial differential equations are one dimension
less than the original equation (Zabolotskaya-Khokhlov equation (4.1)). Then we use
symmetry generators of each reduced equation to find their solutions. Then we use
transformations of sub algebras, included in optimal systems to get the solutions of
Zabolotskaya-Khokhlov equation. Since we know that the reduced partial differential
equations are obtained from the transformations, which are calculated from optimal
system. Therefore, either by using any Lie algebra of equation (4.1) or combination
of these Lie algebras, one can reduce the one dimension of Zabolotskaya-Khokhlov
equation (4.1). For future work we can extend this work of classification of seven
dimensional Lie algebras according to the fundamental work done by J. Patera and
P. Winternitz [20, 21, 26] in a generalized way for three and four dimensional Lie
algebras.
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