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Abstract

Most of the phenomenon in nature are generally nonlinear. Therefore, many mathe-
maticians are always in pursuit of finding methods to solve nonlinear real world prob-
lems. One of the most elegant ways to solve a nonlinear fractional differential equation
is to formulate it into the corresponding Volterra integral then solve it. But it is very
applicative to comprehend whether there is a solution to a given differential equation
beforehand, otherwise all the attempts to find a numerical or analytic solution will
become valueless. We proved some equivalence results for the nonlinear BVP involv-
ing generalized Katugampola derivatives and coupled system of fractional differential
equations involving generalized derivative operator. We proved the uniqueness of so-
lutions using suitable fixed point theorems and discussed the stability of solutions by
showing continuous dependence onto given parameters with suitable examples. The
thesis presents many useful results and inequalities for generalized fractional opera-
tors and used them to calculate the estimated difference of solutions of two fractional
differential equations. The generalization of Riesz fractional operators is introduced.
Many properties for the generalized fractional operators are formulated and existence
of solutions of generalized of fractional differential equations with Riesz derivative in
certain spaces are discussed. The results presented in the dissertation can be viewed as
a refinement and generalization of existence theory for fractional differential equations
with R-L, Caputo , Katugampola and classical Riez derivative. The corresponding
existence results for fractional differential equations involving said operators can be

derived taking into account the special cases.
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Chapter 1

Introduction

The development of differential equations is specifically a eloquent part in development
of mathematics. The differential equations appear while modeling of many physical
phenomenon. For example rate of change involves while discussing the motion of fluids,
Flow of current in electrical circuits, Dissipation of heat in solid objects, Population
dynamics models, Motion of mechanical systems, Seismic wave theory etc. Meanwhile
the fractional differential equations are considered as an prolongation of the concept
of derivative operator from integer order to any real or complex order. The analy-
sis of fractional differential equations has been carried out by various Scientists and
Mathematicians. For instance, see [1, 2, 3, 4, 6, 8, 9, 10]. In the recent past the
research on different properties of solutions to numerous fractional differential and in-
tegral equations is the key topic of applied mathematics research because modeling of
many systems and processes in physics, chemistry, optimal control theory, population
dynamics, fluid dynamics, fiber optics, electro dynamics, electromegnetic theory etc. all
involve fractional differential and integral operators. The purpose of this dissertation
is to contribute in the field of Fractional Calculus particularly in the field of existence
theory. The dissertation is organized as follows: Chapter 2 presents some basic defini-
tions and lemmas from literature. We derived many useful properties and inequalities
involving the generalized Katugampola fractional operators. In chapter 3 we proved
equivalence results for generalized fractional differential equations and system of frac-

tional differential equations involving the generalized Katugampola derivatives. We



discussed existence and uniqueness of solutions with suitable examples. In chapter
4 we introduced the generalized Riesz fractional operators and derived some useful
results. We established some equivalence results for the boundary value problem in-
volving the generalized Riesz derivatives and discussed the existence and uniqueness of
solutions. We proved the stability of solutions for the generalized fractional differential

equations by means of continuous dependence on parameters.



Chapter 2

Generalized Fractional Integrals and
Derivatives

2.1 Brief Introduction

Many Physical phenomenon in nature when expressed in mathematical language re-
sult ordinary or partial differential equations, while fractional differential equations
are considered as an prolongation of the concept of derivative operator from integer
order to any real or complex order. Fractional differential equations usually describes
the non-local effects. From the last decade there is a blistering growth in the field of
fractional calculus. Owing to the vast amount of applications, many mathematicians
focused their engrossment to fractional calculus.

There exists several definitions for fractional derivatives and fractional integrals, like
Riemann-Liouville, Caputo, Hadamard, Riesz, Grunwald-Letnikov, Marchaud, etc.
Meanwhile the well-developed theory and many more applications of the said oper-
ators, are still spotlight area of research in applied sciences. Recently, U. Katugampola

generalized the above mentioned integrals and differential operators.

In this chapter we discuss the different properties of the Katugampola integral and
derivative operators in detail. Inasmuch as we shall discuss the results related to ex-
istence and uniqueness of solutions related to generalized fractional operators as well.

We obtain the existence and uniqueness of solutions of linear and nonlinear fractional

4



differential equations with initial and boundary conditions using the generalized Katun-
gapola derivative [37]. In order to enhance the flow of this work, we provide here results
required for later chapters, including useful definitions, examples and theorems related
to fractional derivatives and integrals. This chapter gives a brief introduction of some
structural properties which are explained with suitable examples and definitions. It

also gives content of this thesis along with the inspiration for writing this thesis.

2.2 A Brief Historical Exposition on Different Ap-
proaches to Fractional Derivatives and Integrals

Fractional differential calculus has been an intriguing topic over the years. Initially the
development in the theory of "Fractional Calculus" started during the 19th century
through discernment and intellect of great mathematicians of that era. The begin-
ning of "Fractional Calculus" is motivated by L’Hospital. In a letter to Leibniz in

mn

1695, L’Hospital raised the question; "What does we mean by %‘i, ifn=1/27"
Later on many mathematicians tried to answer this question and various kinds of
differential and integrals operators were introduced like Riemann-Liouville, Caputo,
Hadamard, Erdelyi-Kober, Katungampola, Grunwal-Letnikov, Marchand, and Riesz
operators etc.[1, 2, 15, 37, 39, 38, 40]. We discuss some of these operators briefly, but
throughout this research work our main focus will be Katungampola fractional opera-
tors. In 1819, the French mathematicians, S.F Lacroix [41] intimates a straightforward

approach to define a derivative of arbitrary order, by considering the power function,

y = xP with p being a positive integer, He found that nth derivative of x? is

d"y p! _
Y= an (p— n)!x
Lp+1)
=X TL’ > n
T(p—n+1) b=

where """ is Gamma function (generalization of factorial function). For example, if

(2.1)

we take y = 2 and n = 1/2 then we have,

d'?y _ I'2) 212 — 2y/x
dz'2 ~ T(3/2) NG




Lacroix suggests that; since analytic functions can be expressed in terms of convergent
power series, so we can use the above definition to determine the fractional order
derivatives of all such functions. Likewise applying this formula with negative values
of n gives the integral of a polynomial. For example to compute the whole integral of
y=2123weset p=3andn=—1ie.

d'(2®) _TM) 4, 1,

dz—t _ T() 4
Abel was the first mathematician who presented the first application of fractional
derivative in 1823 [3]. Using the fractional operator he determined the solution of the
integral equation related to tautochronous problem [42],

Vo = [ w07

t=0
where ¢ is gravitational acceleration. In terms of fractional differential operator Abel
wrote the right hand side of integral as

—1/2
T\/2g = VT (7))

1/2

Tl on both sides of above equation he
x

By applying fractional derivative operator

computed the result as follow

fle) =242

T\ x
In 1822 J.B.J. Fourier [1] derived the following integral representation of the fractional
derivative,
o 1 [*e tee am
D=5 [ € [ pcostola - ) + Ty,

where a be any positive or negative real number.

Later on Joseph Liouville gave a better way of writing Fourier’s formula. In 1832 [43]
Liouville starting with the famous possible exponential approach to fractional order

derivatives, in the way that for non-integer values of a the form of definition would be

daek‘x

dx®

= ke, aeR (2.2)



Liouville supposed the series representation of f(z) as

f(z) = Z e,
k=0

then a-derivative of f(z) would be
DS f(z) =) bpczes.
k=0

where « is any real or complex number and negative values of « represents the integral
of f(z). However, this formula cannot be considered as a general definition of fractional
derivative because this definition works for the functions which can be written in the
form of exponential series or whose exponential Fourier representation exists. For

example a-derivative of trigonometric functions using above definition becomes,

ﬁ(e"kx) = k*{cos(kx) + isin(km)}{cos(g) + 1 sin(%)}.
dx® 2 2
In particularly if f(z) = cos(z) then,
am am
g ei(:c—Q—T) B e—i(x-i-?) o
%{cos(x)} = 5 = cos(z + 7)

This shows that the fractional differential operator simply shifts the phase of cosine
function and in the same way sine function as well. Liouville derived another method
to calculate the fractional derivatives of the explicit functions. His method was applied
to the explicit function =™ [1|. He used the following indefinite integral to develop the

definition of a-derivative for explicit functions.

]:/ et
0

Substitute xt = u in the above integral gives,
o0
I= m_”/ u"teMdu =z "T(n), Ren>0
0

or

1
==

(k)



Applying fractional differential operator D with respect to x on both sides gives,
1 oo
Do (a") = —pey / (" Le= ) .
I'(n) 0

or

/ f (,f (e )Yt

Using equation 2.1 we have,

D*(x™") = (F_(;); /0 Tttty gy

Again Substituting xt = u gives,
o [
DYz =~ o a+n) u(oz—i—n) 16 “\ du
@ = X )
I'(a+n)
I'(n)

:(_1)a —n—o
This definition is a lot more reliable than that of Lacroix’s definition [41] in equation
(2.1), because the fractional derivative of a constant function f(z) = Cz° is zero due

the fact that I'(0)=oc. But this definition is only applicable to the functions of the

type 7" where n is a non-negative real number. Liouville used the above result to
explore the potential theory. He suggests, since the n-th order differential equation
d’ﬂ

= 0 has the complementary solution, y = a, + a1z + asx® + asx® + ... + ap_1 2" L.

d%y
da

dn

So the fractional order differential equation =0, « € R, must have a appropriate

complementary solution as well. For detail see [45].

2.2.1 Local fractional derivative and integral

Mostly fractional derivatives are computed using the fractional integrals, due to this
they inherit non-local effects in terms of left and the right derivative. Due to this
non locality most of the fractional derivative operators do not satisfy some familiar
properties of classical derivative operator. For example fractional derivative operators
do not satisfy the Chain Rule, Roll’s Theorem, Mean Value Theorem, and Semi-group

property. Except Caputo type derivative operator most of the fractional derivative
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operators violates the fact that derivative of a constant function is zero. Also Caputo
type operators assume the differentiability condition as well, though there are many
functions which are not differentiable everywhere but they have their fractional order
derivative everywhere. For example the function f(z) = 323 is not differentiable at
x = 0 but it has a fractional order derivative everywhere. So in order to overcome
these deficiencies many mathematicians defined local fractional derivative operators
with similar properties of ordinary differentiation. These local derivatives also named

as conformable derivatives. For detail see [59, 7, 60, 61].

Definition 1. [7/ Let ¢ : [0,00) — R then for > 0 and 8 € (0,1], The generalized
local fractional derivative is defined by,
e
D3(6(n)) = lim 2L )= O,

e—0 £

where €5 is a truncated exponential function defined as e = > ’;—f If ¢ ia B-differentiable
=0

on (0,a), a > 0, and the lim D? (¢(u1)) exists, then derivative at point a is
p—a

DZ,(¢)(a) = lim DI (¢(n))

pn—at
In particular if n = 1 then above definition reduces to following conformable deriva-

tive [59, 60].

D (()) = lim 2 E7) = #(1)

e—0 g

For upcoming results we use the above definition for n = oo i.e,

D2 (6(3) =ty 2E ) = 000

e—0 £

(2.3)

Theorem 2.2.1. [7] Let § € (0,1] and g, h are S-differentiable functions at a point
u >0, then following properties holds true:

(i) D8 (ag + bh) = aD?% (g) + aD5 (h),  for all a,b € R.

(ii) DY, (gh) = gD5,(h) + hD5 (g).



8 (\—aDP
(ZZZ) Dgo (%) — hDOO(g)hZQDOO(h)
(iv) D’ (goh) (1) = g’ (h(1)) D2.g(1),  provided g is differentiable at h(p).
(v) D8 (g)(u) = ulfad%—(u”), if g is differentiable.

Lemma 2.2.1. [7] Let § € (0,1] and a,nR Then following results holds:
(i) DS (c) =0,  where c is any constant.

(i) DE (u") = nu"=".

(iii) DF (e) = au'~Pewr
(iv) D? (sinap) = apt=? cos ap.
(v) D8 (cosap) = —ap'~? sinap.

Theorem 2.2.2. [7/(Fractional Roll’s theorem) Let a > 0 and ¢ : [a,b] — R be a
continuous function on a,b and a-differentiable on (a,b) fore p > 0 and 5 € (0,1],
furthermore ¢p(a) = ¢(b). Then there exists a point ¢ € (a,b) such that

DZ()(c) = 0.

Theorem 2.2.3. [7/(Fractional Mean value theorem ) Let a > 0 and ¢ : [a,b] — R be
a continuous function on a,b and a-differentiable on (a,b) fore p > 0 and 5 € (0, 1],

then there exists a point ¢ € (a,b) such that

DL = Gy

Due to the fact that the fractional derivative (2.3) is not defined using the fractional
integral as in the case of nonlocal derivative operators. So for the operator (2.3) there
may be more than one fractional integrals that are considered as inverse of (2.3). One

of such fractional integrals is defined by the UN. Katugampola as follows,

10



Definition 2.2.2. [7/ Let 5 € R and p > a with a € Ry, if ¢ : (a,u] — R then
B-fractional integral of ¢ is defined by,

m

13(6) () = / WP ()

a

The above fractional integral is a special case of the generalized fractional integral

defined by Prakash Agarwal, with r = 1,5 = 0 and K, = u“ !, see definition 4.2.1.

Lemma 2.2.3. [7] Let ¢ : (a, ] — R be a continuous function with such that I°(¢)
exists, then for B € (0,1), a € Ry following result holds true,

D (12(6)) (1) = ¢(u).

Applications and different properties of the conformable derivative (2.3) has been
discussed by various mathematicians for detail see [60, 59, 61, 62, 63] and the references

therein.

Theorem 2.2.4. Let § € (0,1] and t € R then the following fractional Chebyshev

differential equation with conformable derivative has at-least one solution,
(cos™H (1) (1 = #2)* (1)
+ {j:(ﬁ — V1 —+¢2 ((cos_l(t))lfw - (cos_l(t))Q(lf'B)> - 3t(cos_1(t))2(176)} (D)

n(n +2)
(COS*l(t))W?—l) o(t) =0

Proof. Since the conformable derivative is not defined by means of fractional integral
unlike the many other fractional derivative operators. So this may not have unique
integral representation. Here we use informal way to show the existence of solutions for
the above fractional differential equation, knowing the fact that Chebyshev polynomials
when are normalized presents the solution for corresponding Chebyshev differential
equation. Since the Chebyshev polynomials of second kind [64] satisfies the following

recurrence relation
Sp(cos ) sind = sin(n + 1)¥ (2.4)

11



let t = cosd, then from the above relation we can write

sin(n + 1)9
sin v

o) = (2.5)

Taking D on both sides, we have

69(0) = D (o(0) = D2 (L)

sin

oI (V) =
(n + 1) sind cos(n + 1) — 9P sin(n + 1)Y cos v
(sin¥))?
7P {(n+ 1)sind cos(n + 1)9 — sin(n + 1)9 cos ¥}
B sin?y
91=h [(RQLU {sin(n + 2)¥ — sinnd} — L {sin(n + 2)9 + sin m?}]
sin®y
(n+ 1)sin(n + 2)Y — (n + 1) sinnd — sin(n + 2)Y — sinnd
2095~1sin%y
_ nsin(n + 2)Y — (n + 2) sinnd
B 208~ 1sin?

or

_ nsin(n + 2)Y — (n + 2) sinnd

B
2017 (0) ¥8-1sin?y

(2.6)

Again applying D? on both sides, we have

2¢"(0) = 2D5, (6" (9))
n(n + 2)sin?y {cos(n + 2)¥ — cosn}
(95-1sin29)”
(¥ — 1)sin®9 {nsin(n + 2)9 — (n + 2) sinnd}
9(98-1sin%9)’
2sin v cos ¥ {nsin(n + 2)9¥ — (n + 2) sinnd}
- (98-1sin2)”

12



n(n + 2) . n+24+4n .. n+2-—n
-9 ) Lrere L N
192(51)Sin219{ 2 sin( 5 )V sin( 5 ) }

(8 —1){nsin(n + 2)9 — (n + 2) sinnd}
B ¥2(6-Dsin?y
2 cos nsin(n 4 2)9 — (n + 2) sinnd
26D ging { siny
—2n(n+2)sin(n+1)J (8 —1){nsin( n+2)19 (n 4 2)sinnd}
)

92(8=1) gin ¢ ~Dsin?y
2cotd (msin(n+ 2)Y — (n + 2)sin m9
926D sin?1)

Using the equations (2.5) and (2.8) into the above equation, we have

—2 2 2 4 0
2¢2(,8) (V) = %Wﬁ) _ %qﬁ(ﬁ)( 9) — %qb(ﬁ)(z?)
or
2 cot v — 2
20 (w) + 20 o)+ LoDy M0 Dy 0 (2

Since, S, (t) = % = ¢(0¥) with t = cos?). Then by chain rule
That is
¢P(9) = =SV ()9 P sin v

Again using the chain rule, we have

¢* P (9) = DE (=9 P sin9 S (1))
= —(1 - B9 sinvSP(t) — 191 /3191 B cos9SWD (t) — 9P sin .52 ()tP)

= (B — 1) sinSP) (t) — 9207 cos 9.SP) (1) + 9 P9 P sin ) sin 952D (¢)
= (B — 10" sinSP (t) — 9207 cos 9SP) () + 921 Psin?9. 529 (1)

Now using all values in equation (2.7), we get

P Dsin?9 2O (1) + ((8 — 1) sindg — 9207 cos9) S (1)

2L (i) + C (<000 ) +

n(n+ 2)
e onlt) =0

13



or
P2 Psin?9 52 () + { (91728 — 92A) (8 — 1) sin®) — 3021 cos v} SP)(2)

n(n+ 2)

92(6-1) Sa(t) =0

Since cos™!(t) = ¥ and sin®*y = 1 — cos?(¥) = 1 — t2. Therefore, the above equations

takes the form

n(n + 2)
(cos1(¢))*#Y

Whinch implies Chebyshev polynomials satisfy the given differential equation, and

Su(t) =0

hence normalizing these polynomials gives the solution of given fractional differential
equation. likewise, conversely one can easily verify the given equation by substituting

the Chebyshev polynomials into the given equation. This completes the proof. O

For 8 = 1 the above equation coincides with the classical Chebyshev differential

equation.

2.2.2 Riemann-Liouville and Hermann Weyl Approaches

Most of the fractional differential operators are defined using fractional integrals.
Riemann-Liouville’s contribution made the Fractional Calculus more interesting and
gave it a new direction. He got motivation from Cauchy integral formula for repeated

integration and defined the fractional integral and fractional order derivative as follows:

Definition 2.2.4. [1] If g(§) € Lia,b], and o € C with Re(«) > 0, Then J¢ g, J g

+

corresponding left and right Riemann-Liouville integral of order o are defined as,

1 13
(72,96 = Fos / (€—p)f " f(u)dp.  —co<a<f<os  (28)
and
1 b
59O = /5 (- O lg()dy,  —so<f<b<os,  (29)

respectively. When o = 0, the integral J is called the identity operator.

14



While for @ = —oo and b = oo one can refer equations (2.8) and (2.9) as correspond-
ing Weyl’s left and right hand integrals. In fact for different values of a and b there is
a class of fractional integrals. For a = 0 equation (2.8) is known as Riemann-Liouville
fractional integral without complementary function. For a = n equation (2.8) is the

unique solution of the following initial value problem.

Yy (&) = f(&), yla)=y"(a)=y*(a)=..=y" D (a)=0, neN

Theorem 2.2.5. [2] Let g(§) € Ly]a,b] and ay,as € RTU{0} . Then,

JatJi29(6) = Jg(€) = g2 g (6),
holds almost everywhere on |a,b]. Moreover if g(§) € Cla,b], or ay + as > 1 then semi

group property holds everywhere on |a, b|.

Since differentiation is the left inverse of integration, using the said property Riemann-

Liouville defined the fractional differentiation operator as follows:

Definition 2.2.5. If g(§) € Li[a,b] and let o > 0 and ¢ = [«a], then the Riemann
Liouwille fractional differential operator D%, is defined by,

Dig= DI, “g.

For positive integer value of « this definition coincides with ordinary differentiation
operator, and for a = 0, DY is called the identity operator. There is an ambiguity in the
Riemann Liouville’s definition for fractional derivative that fractional order derivative
of constant function is not zero. Later in 1967 by using the definition of Riemann
Liouville fractional integral Caputo defined the fractional differentiation operator as

follows:

Definition 2.2.6. [2/(Caputo differential operator )
Let g(&) € Ly]a,b] and Re(a) > 0. and ¢ = [«], Then
"Dag(€) = 15 D%g(E)

A
‘/a Me—a) 7

is called the Caputo fractional differentiation operator of order o. For positive integer

a<§&<b,

values of a this definition gives the ordinary derivative of g(&).

15



2.2.3 Hadamard and Erdelyi-Kober Operators

Since fractional integrals and derivatives of a function can be calculated in innumerable
ways, Therefore many mathematicians are in a hunt to generalize the things further.
In this context in 1892, Hadamard [15] used the similar approach that was used by
Riemann-Liouville and he was able to generalize the Riemann-Lioville’s definition of
fractional integration and derivative to some extent. He considered the following n-

tuple integral to define the fractional order integration.

T m n2 NMn—1 T

1 1 1 1 1 . .1 f(n)
B /—d /—d /_ ndn:—/lo—”l—d.
/771 m [ gl [ adis nnf(n)n 1) (gn) il

Where n is positive integer.

Definition 2.2.7. [15, 46/ (Hadamard fractional integral operator)
Let g(p) : [a,b] — R be an integrable function and R(«) > 0, then the corresponding
left and the right integral are defined by,

U200 = s [ Oos Mg 0 1<n<oe (210
and
(J3Lg)(p) = ﬁ / (logg)al%dn, pw<b 1<n< oo, (2.11)

Definition 2.2.8. [15/(Hadamard derivative operators) If g(u) € Li[a,b], let
R(a) > 0 and ¢ = [«], then for u € (0,00), Hadamard left and right derivative
are defined by,

(D)) = sy )" [ os By gtnn,. wsn @12)
and
(D5 0)() = g ()" [ S0oa D gtdn, m<p (219



In 1940 Erdelyi-Kober [15, 46] defined the fractional integral operator as follows:

Definition 2.2.9. [15] Let g(§) € LP[a,b], p € Ry, and Re(o) > 0 Then the corre-

sponding left and the right fractional integral operators are defined as,

~platr)
(Jaspr9)(§) = % /T]p7+pl(§p — )" g(n)dn, —o<a<&<oo (2.14)

and
b
ng pl a— T Py~ 1
5
respectively.

Correspondingly Edelyi-Kober fractional derivative operators are defined as;

Definition 2.2.10. [15] Let g(§) € LP[a,b] and Re(a) > 0, also ¢ = [«a], p > 0, and
7 € C then the left and right Erdelyi-Kober fractional derivative operators are defined

by,
(D96 = € 7 (i 20 6L 1a9)(€) (2.16)

and
(Die0)(€) = 67— VT O (27

Although, like Riemann-Liouville’s fractional integrals and derivatives operators
Erdelyi-Kober’s integrals and derivative operators satisfy the useful properties likewise,
which we are not discussed here but we can not name the Erdelyi-Kober operators as
generalized operators because from here we couldn’t reduce the exact form of Riemann-
Liouville’s integral. When 7 = 0 and p = 1 Erdelyi-Kober fractional integral looks
like Riemann-Liouville’s integral but differ by the factor ¢ called power weight, and
thereby derivative operator as well. For detail see [15, 46, 47|. Before we discuss
generalized fractional integral and and derivative operators by Katugampula, we prove
the following case of Fubini’s theorem first, which will be used frequently in our later

results. In 1965 Whittaker [14| gave the following formula for double integrals.
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Lemma 2.2.11. The Special Case of Fubini’s Theorem (Dirichlet Formula)
If F(u,v) be the jointly continuous map and let o, B € Ry Then,
/ (x — u)aldu/ (u —v)P 7 F (u, v)dv = /dv / (z —u)* " (u—v)" " F(u,v)du.
0 v

' ’ (2.18)

Proof. Consider the double integral, [ [ (z —u)*™* (u— v)’7'F(u,v)dvdu. This iter-
00

xT u
ated integral can be written in another notationi.e. [ (z —u)*'du [ (u — v)*~1F(u,v)dv.

Now the second integral in the above iterated integoral is to be com(i)uted first with re-
spect to v treating u as constant. That is first the strip with breadth du is integrated
across the v-direction. By adding the infinite number of rectangles with breadth du
along v-direction forms a 3-dimensional small slender fragments along the u-direction
from v = 0 to v = x. To carry out the result when we interchange the order of in-
tegration by taking the strip of breadth dv along wv-direction is integrated across the
u-direction. Similarly, by considering the infinite number of such small strips we need

to integrate from u = v to u = z. Hence follows the required result. O]

Corollary 2.2.12. If F(u,v) = g(u)h(v), with g(u) = 1 then the Dirichlet formula
(2.18) reduces to,

/x (x — u)o‘ldu/u (u —v)*Th(v)dv = B(a, B) /x (z — )2 P h(v)dv. (2.19)
Proof. From equation (2.18) we have,
j (z —u)* dv /u (u — v)° " h(v)du = /xh(v)dv/x (z —u)* 1 (u—0)""du. (2.20)

Now we will show that,

xT

/(m —u)* ! (u— ) du = B(a, B) (x — v) “TF1,

v

18



For this, let’s start from definition of beta function,

1

Bla, 8) = / (€ (1 — o) dr.

0

Let £ =% = df{= jT“v. Then substituting in the above integral we have,

F =\ e —u\* du
B(a’ﬁ):/(az—v) (:E—v) r—v

)a+ﬁ—1

u(z —v

= (z —v)*™ 1 B(a, p) = / (u—0)"""(z —u)" du.
Using the above result in the equation (2.20) we have the required result.

xT u xT

/ (z — u)*du / (1 — )~ h(v)dv = B(a, B) / (2 — v) PR (p)do.

0 0 0

2.3 Katugampola Fractional Integrals

So far in this chapter we have discussed briefly different approaches to define fractional
integrals and derivatives. There are still a lot more definitions of fractional integrals
and derivative operators which we are not going to discuss in thesis work; like, Mar-
chaud, Gateaux, Grunwald; Riesz, Dzherbashyan’s and Guy Jumarie’s approaches etc.
Our objective is to explore the useful properties of Katungampola’s operators which
generalizes Riemann-Liouville, Hadamard and somehow Erdelyi-Kober’s operators as

well. In 2011 Katugampola [48] come out with the generalized integral formula. He

19



used the following n-fold integral to develop new definition for fractional order integral.

T n n2 NMn—1
/nf’ldm/né’_ldnz/n??_ldns . / 1 b (1) dn-

For n being a natural number and p € R the above repeated integral can easily be

computed using Fubini’s theorem. For example consider the double integral first i.e,

oM
PI20(1) =//nf‘1n§_1¢(nz)dn2dn1.

Using Fubini’s theorem change in the order of integration brought in,

7 7 7

P P
/n§1¢(n2)/ni’ldnldnz = /775%(772)(“— — s,
a 72 a

I
17
= ;/?75 Y(u” = n2”)(n2)dna. (2.21)
Now
B M2
pf§’¢(u)—///nf1n§1n§1¢(n3)dn3dmdm
M mn n2
Z/ni’_l{//né’_lné’_l@ﬁ(ns)dnsdnz}dm-

Using the result for double integral from equation (2.21) we have,

I
1 - _
PISO(1) = ;/77{’ 1/773’? Yy = ns”)p(ns)dnsdn.

20



Again by using Fubini’s theorem and change in the order of integration yields;
o

I
1 .
‘ﬁsz;/%RWM/%IW$WﬁMM%

a 173
17 ’
i;/%AM%H/mﬁVM—%QMng
a 73
o

1

:2_p2 /Ug_l(ﬂp - n§)2¢(n3)dn3.

a

Similarly after repeating the same steps up to n — 1 iterations yields,

13 m NMn—1 o
_ _ . | ) .
/%%m/%3%~ /%%mMm:@jﬁ;T/W%M—W L(n)dn.

Definition 2.3.1. [/8/(Katungampola fractional integral)
Let o« € Ri,c € R and g € XP(a,b) where, XP(a,b) is the space of Lebesque measur-
able functions. Then corresponding generalized left and right-sided fractional integrals

(PIS g) (1) and (P17 g)(1) of order a € C(Re(ar)) > 0 are defined by

11—« w p—1

p n*"tg(n)
P10 9)(p) = /‘ dn, p>a,p>0,
e =1y ), ey

-« b p—1

p n*"g(n)
oW 5o [ Ly, u<bp>0,

’ (@) p (ﬁp_ﬂp)l

respectively. Where I'(.) is a Euler’s gamma function.

2.3.1 Some Properties of Katungampola Fractional Integral Op-
erators

Theorem 2.3.1. [/8/ Ifa e R, U{0}, 1 <p<oo, andp>0,c € R. Then, for p>c
with g € XP(a,b) the integral operator PI$, g is bounded in XF(a,b)

Hpngrg”)(f = L||9||x£>

where

b
a

PEVES S NS Vi
o bl*&(/}«%l)l"(a) flchra(erl)
1

¢, 0<a<b<oo.
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Katugampola integral operator is linear operator and different values of the pa-
rameter p yields different operators. In fact this operator represents a class of linear
operators depending on the values of p. In a limiting case Katugampola integral op-
erator reduces to Riemann-Lioville and Hadamard integral operators. The following
theorem describes this relationship with Hadamard Riemann-Liouville and fractional

integrals.

Theorem 2.3.2. [5] Let Re(a) > 0, and p > 0, Then, for g € XP(a,b) following
relation holds:
n
) i CL) —r [ Goxy Wy
(2) lml@Eﬁ@@ﬂ‘"QLi/ﬂuw—WQAQWNM-
po1t I'(@) Ja

Theorem 2.3.3. Let g(p) = (u—a)?, and o > 0. Then for some p > 0, the Katugam-
pola fractional integral of g(p) is

F(% +1)p=@

pro — alp=1)(,, — q)PTe.
(P15 g) (1) N§+Q+DM (1 — a)

Before we prove this theorem, let’s first discuss the following property of Beta

integral which we will use in the proof.

Lemma 2.3.2. Let «a, 5, and p be the positive real numbers. Then the Beta function

satisfies the following equality.

Ble.p)= (1— aoi)“ﬂs—l /{(/f —a?)’} T (1= ) . (2.22)

Proof. By definition,

1

B(a, f) = / (O (1 — €0y per e

0
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The above form of the Beta function can easily be obtained by using the substitution

x = £ in the standard definition of Beta integral. Now put £ = “;:ng = pfrld¢ =

p—1
puP”du e

1—ag?
; 1 B—1 14
uf — ag? " uf —ag” 77 pu du
B = _— 1— d
ao
1
- ; / {(w — )"} 7 (1 —u?)’ " ur~du.
(1 . aop)oﬁ*ﬂfl
ao
or

(1 B aop)a+,3—1
p

T8 / {(w” = ao”)} (1 = )" du,

Now we prove the theorem (2.3.3).

Proof. Let g(u) = (u — a)?, then by definition (2.3.1) we have,

11—« woap—1 - p
P /n (n a)d

pre

R Vo N A
R A » N\ prat
:W/n (n=ap((1 = (L)

Let u = ff = dn = pdu. Then above integral becomes,

1
l—a,,ap—p
PR

112 e = 0 =l [ G = (=)

m
1 +p
-,
pr A prTP a.p

e /u"’_ (= 21— )

1
p_o‘uo‘p+p/ a.p %-1—1—1 o1 4
= u— — 1—u pul ™ du.
ra =0T

23
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Using the Lemma 2.3.2 we have,
p—a,uap-kp a D
PIY (n—a)? =———[(1 — =)P"*B(= + 1,a)
O (T i A R
e () T 4 o)
- Tla) e T(E+a+l)
P
I'E+1)

_ o, a(p-1) pta
= U)o, ) (2.24)
I'E+a+1)

Corollary 2.3.3. When a = 0 then Theorem 2.5.3 yields,
I'2+1)

p—
IE+a+1)

P P —a, ptap
Iy p” = P .

Lemma 2.3.4. [/8/(Semigroup Property) Let o, > 0,1 <p<oo, and p>0,c€
R. Then, for p > ¢ with g € X*(a,b) where 0 < a < b < oo. following relation holds:

(I P12 9) () = ("I g) ()
Proof. Consider,
("I P17 9) (1)

1-8 J%51 p—1
_rpap)P m”glm) 1
ot {F(B) /a (1P — ﬂlp)l_ﬁ )

l—a , 1-8 fp p—1 H1 p—=1
_ P / ( 2 = / (771 9(77;1)_6(17716[772

C(a)T(B) [P — moP [P — 1P
1 ! p=1(,p pya—1 " p=1(,, p pyB-1
- P20 ()T(B) J, m2" " (P — m2”) . (= m?)" g(m)dmdns.

Using Fubini’s theorem changing the order of above double integral gives,

(I3, 17, 9) (k)
1

B I3
— p—1 p=1(, p _ o \B=1 p . pyoa—l
= AT (Q)T(B) / m” " g(m) /ﬂ T (a” = m®)" (P = m”)™ dnadi.

Using the Lemma 2.3.2 substitute the value of second integral we get,
1p)a+ﬂ—1

pra p _ 1 : p—1 (? —mn

("I ff+g)(u)—pa+ﬁ2r<a)r(m/a M g(m){ ; B(Oz,ﬁ)}dm
| piletd)
" I(a+B)

m
/ m”~ (= m”) ' g () = (T 9) ()
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Theorem 2.3.4. Let a > 0, and {$;}32, be a uniformly convergent sequence of contin-
uous functions on [a,b]. Then we can interchange the Katungampola fractional integral

operator and the limit. i.e,
12 T 65) (1) = (Jim "1567) (1)

Proof. Let ¢(p) be the limit of the sequence {¢,}. Since {¢;} is the convergent sequence
of continuous functions so ¢ is also continuous. To prove that under the given conditions
we can interchange fractional integral and limit, it is enough to show that the sequence
{PI5, ¢332, is also uniformly convergent. i.e. P12, &5 (1) =PI d(p)| — 0 as j — oc.

For this consider,

pe j b (mn’~! p _pe /u o (n)n’~!

PIS 0 () = PIg o(p)| = — —dn
12 +#u)] L(e) J (e —ne)! L(e) J (e =)'
-« r p—1
p (¢5(n) — o(m)n
S l—« d77
Dle) J o1 (e =)
plfa .
< - P=L( P — ). 2.2
< fllos = ol [ w e =y an (2.25)
Now first we will evaluate the integral,
n n
np a—1
/?7"‘1(#” — ")ty = M“”"’/np‘l(l — ) dn.
1

Substituting Z—i = u, we have

n

1
ap
/np‘l(u" — ") tdn = % /uo(l —u)* 'du.

a nP
P
or n 1
[t et = = Ty e
p e
a nP
uP

By comparing with the following result,



&2
/ (0= &)1 (& — u)du = (& — €)" " B(a, ).

&1
we have,
/ “ [ (@ — )" B(1,0)
- a— o ne—a , O
/np NP =)y =— { ap }
p u
(n* —a?)"B(1, o)
p
(= af)"
=
Using this result in equation (2.25) we get,
(n” —a’)"
PT P <
P12 05(0) = *T20l)| < SEm 0, L.

Since {¢;} is uniformly convergence sequence, Thus

P12, () =I5 d(p)| = 0. as  j — oo.

Therefore, the sequence (°1, ¢;)32, is also uniformly convergence and hence the result

follows. L

Lemma 2.3.5. If ¢(u) is an analytic function in (ag — &, ag + &), where t > 0, and let
a € R,. Then,
oo F + 1)504(;) 1)(5 O)j-i-a

(a0 Lta+1)p @ ().

j=0

In particular, P15 ¢ is also analytic.

Proof. Since ¢(&) is an analytic function, Thus it can be written in the form of conver-

gent power series, i.e.
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Using definition (2.3.1) we get,

er0©) = £ [ = Y P i a)ay

Using Theorem 2.3.4, interchange summation and integral sign we have,

9
l-a j
« 1Y QSJ Q — j a—
Cr0)(©) = £ > P [oemity - aoyer iyt
ao
Now by using Theorem 2.3.3 substitute the value of the integral on right gives,
l-a a(p—1 Jjta :
P ¢ (a0)€~ V(€ = ap) J
PIS @) B(=+1,«a
L, T(a) Z P! (p )
> P —' >£aﬂ (€ —ag)™
agp).
JZ Ltat1)p° ¢'(ao)

[]

Theorem 2.3.5. Let ¢(u) € XZ(a,b) and if {\;}52, be a convergent sequence of non-

negative real numbers with limit . Then,
P A
lm(°1 S0 () = (L4 (n).

Where convergence of the sequence {*I, jrgb}] 1 s signified in terms of XPa,b norm,

with 1 <p<oo. pceR,p>0andc<p+1.

Proof. Let the sequence {\;}32; converges to the limit A\. Then by definition,

" PN ()
OO = 55 [, G 400

Taking limit on both sides and by using the Theorem 2.3.4 we have,
lim (1—X;)

,oﬁo 6 Aj—1
p TN P P PN
}Hn( I+¢)( )= h { YA {hm (u? —n?) }dn

0

(1 A) (2
= <§ — / () — ) dn
=("I340) (1)-
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For analytic functions the relation between Katugampola and the Riemann-Liouville’s

fractional integral operator is given in the following theorem.

Theorem 2.3.6. Let ¢(z) is an analytic function in a simply connected region R,
which contains the origin as well, and let o, B, p € C with [Re(«a), Re(5), Re(p)] > 0.
Then the following relation holds:

a—j—1
- Zp( & )<p>jq Jﬁ+p(j+1)¢<u —2)|
0+ u=z-

PIo (P (2)) = 2 —o) g

Jj=0

and

1-aP(2 — a) & (1) 27D (p), -
pro B _ p Jq Jlfa p(F+1)+B8-1 )
O*(’Z ¢(Z)) F(Oé) JZ_O: j' o+ z (b(Z)
where (p)jq 18 the generalized Pochhammer symbol with p = 2—a—7 and g = w,
and Joﬁfp(jﬂ) 1s the Riemann-Liouville integral.
Proof. By definition,
-« y ) .
I o) < [ = ) oan,
0
/ W ) (),
0
Using the substitution n = z — p we have,
11—« a
o' p - a—
I 0(:) =fms [ (2= 7 = (=)ol =
0
o / 1= ) =tz -
= —(—— z— z—

0

Now substituting the generalized binomial series [52] of (1 — (£ )p)a_1 into the above
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expression we get,

z

I3 (P6(2)) = 1aapp]§; ) (-~ z‘“ff@—ufﬂ*wz—M@%

Z 50 JPF(2_a) Z—,LLjp Bt
/;OFJH 2—Oz—j)< —) (=)0 — wdp,

Using Theorem 2.3.4 interchanging the integral and summation sign we have,

> (_1)jﬂzp(a—j—1)

I (Pole)) = P S

[ = o~

M) & TE o)
(2.26)
Since f )PP G (2 — ) =T (B + p+ jp) g PP (u — 2)]ues,
where J(’? PP (1 — z) being a Riemann-Liouville integral operator 2.2.2. Hence the

equation (2.26) becomes,

o poT(2 — a) o= (=1)727 T IT(5 4 p + jp)
LIS (2P 9(2)) = I'a) Z TE—a—7) Jg+p+30¢( s,
Jj=0
1 ar(2 & ]Pzp(a J= 1)(p)jq B4l
_ J p(3+1) e
F(O{ J;O 0+ (b(u Z)’ -

(2.27)

Where (p);, is the Pochhammer’s symbol [54] defined by {(p)jq = L) (p)y = 1},

I'(p)
B+p(i+1)—p

withp=2—-—a—jand ¢ = 5

For second part let us consider,
fo! P — a—
I (0(:) = B [ 7 e sl
Taking limit as p — 1 on both sides gives,

hm & (2Po(2)) = lim

p—1

P Z B+p=1(,p pyo—l
NP E =) e(n)dn
(a)o/



Using theorem (2.3.2) and (2.3.4) we have,

1
5 (6(:) = s / Wz~ ) o)y
0

Now substituting n = z — u = dn = —du gives,
o (.8 _ 1 [ B a1
0 =gy [ (2= w0l =
0
J5+1 a— lqb(u— 2)|ucs
Now by replacing a with 1 — a and 8 by 8+ p+ jp — 1 we get,
T )], = ()

Using the above value in equation (2.27) completes the proof. i.e,

P10 (P (2)) = 2 —o) g

Jj=0

Jpzp(a j—1) p). A
( >Jf1 J&;azp(]-i-l)—l—ﬁ—lqs(z)‘

Corollary 2.3.6. For p =0 theorem 2.3.6 yields,

—Oé

P15 (27 ¢(2))

(a—j—1)
z . .
) (p)]q Joﬁj(j+1)¢(u . Z)|u:2,

“ME%

withp=2—a—j (mdq:w,
Lemma 2.3.7. [51] Let ¢(2) is an analytic function in a simply connected region R,
which contains the origin also, and let a,p € C with Re(a),Re(p) > 0. Then the

following relation holds:

© (= (a—j—1)
o P 2 —a) T zp (p); j
PIg o(z) = Z = J{ffﬂ)cb(u = 2)|u=-
Jj=0
Proof. Proof simply follows from the Theorem 2.3.6 by substituting g = 0. m

Example 2.3.8. Let ¢(u) = e, where k, u > 0. Then Katugampola fractional integral

PIS ¢ is computed as follows.

30



Proof. First we consider the Maclaurin series of e ie. ¢(u) = e = Y (k:; !)n, and
n=0
using the definition (2.3.1), we have

1R (k)™
et Y S

(@) ] (e =)

15 6)(w) = £ .

By using the Theorem 2.3.4 interchanging summation and the integral sign yields,
1 apyeP=p a—1
7.P

T =Ll / o)1= ()

1
laappool n+p1 n.p.a-l
Pt I / -y

n=0 n: K

Using the substitution u = "—Z we get,
o

1

o p—a - k:“ arn oLy o—

(PI5+ &) (1) :F(a) z% ( n!)kap /u( 21— ) du,
n= 0

(k)Y (k)" L ot p

P k)™ &~ (k)" T(SP)

o ntp |
kop ot I( pp—i—a) n!

PO ¢ (e  ra+3)
o ker ZF(%n—l—a—l—l) L(1)n! ’

1

where "E ? +1(§ )" is the generalized Mittag Leffler function [49] with & = kp.

Remark 1. When p = 1 then fractional integral of e** reduces to PO Ellollﬂ(f) and

e

this coincides with integer order integration of e** when « is an integer.
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Lemma 2.3.9. The Katugampola fractional integral of sin(p) and cos(u) are given as

follows.
—« [e} & n 2n+1
T Sin(ﬂ) =f (_HJ) ' (—,u)2 - F(l + P )
’ ()T T2 o +1) 20+ 1)
(=)
and
—« ap ©© n 2n
PISY cos(p) _pem™ <_'u)2 I'( ) T 1)
0 - ap+n n )
(—1)n F(27 +a+1) (2n)!
T =m
—(_UWE%@H(—/U-
respectively.

Proof. The proof is similar to that of Example 2.3.8, considering the Maclaurin series of
sine and cosine one can easily prove the above results. One may prove the above results
either by considering the exponential form of sine and cosine functions or by taking
the Katugampola fractional integral of ¢ and then compute the real and imaginary
parts. But this is rather complicated because fractional order integral of cosine and
stne may have imaginary coefficients too depending on value of . When p =1 and «
is integer the results coincides with classical integrals. Applications of above operators

are discussed in next chapters. O]

Now we are quite familiar with fractional integration, so let’s go forward to gener-

alized Katugampola fractional order differentiation.

2.4 Katugampola Fractional Derivatives

Fractional derivatives are usually defined by means of fractional integrals, so fractional
derivatives are as many fractional integrals. Katugampola [5] used the notation »D%,
for fractional order differentiation. Using the left inverse property of derivatives for
integer order i.e, D"f = D™I™"f m > n, He defined the generalized derivative

operator as follows.
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Definition 2.4.1. [48/(Type-1 K-derivative)
Let a € C, with Re(a) >0, and g € XP(a,b). Then the left derivative operator PD2, , is
defined as,

a—n—+1 dm

“w
("Dgig)(p) = T / e — )" g(n)dn,  p>a,p >0, (2.28)

(n— a) dyu
where n = [a].

When p = 1 this definition reduces to Riemann-Lioville differential operator. The

Caputo modification of above operator is given as follows;

Definition 2.4.2. [48] Let a € C, with Re(a) >0, and g € XP(a,b), also n = [«].
Then the Caputo type left derivative operator D¢, is defined as,

po / bl (n)
"Dy = d > >0
(* a+g) (Iu) F(n _ Oé) . (uf’ _ np)a_n+1 7, % a, p )

When p = 1 and « is an integer then this definition coincides with ordinary deriva-

tives.

Theorem 2.4.1. Let ¢(p) = (u— ao)?. Then for some p > —1, the type-1 generalized
K -deriwative of ¢(p) is given as,

prrE+T) & i)

(g n— a4+ 1) p (?)¢17n

(D50 (1) =

where ¢y, (1) = pP 0= and ¢y, (1) = (1 — ag)? %, p,a € Ry and n = [a].

Proof. From equation (2.28) we have,

(pDa ¢)( )_pa_—nﬂﬂ/u p—l( P _ p)"*afl( —a )pd (2 29)
R N O N7 o |

First we will evaluate the integral,

/ o) — ) g = e / (n—ao)’ (1= (1)) ldn.

an ap /’L

33



Using the substitution u = ﬁ we have,

1

m
/ (n = ao)" (" = n")" "~ dy =Y / (= ag)"(1 — w?)" ™ (pu)*™ pdlu,

aq
a
0 3

pn—ap+p) ' o \P pyn—a—1: \p—1
e [ (1w )
i

(2.30)

Using the Lemma 2.3.2 computing the integral on the right hand side we have,

/V NIRRT YAV SN Clubrd Y PR
u——) (1—u u u=—"+—B(=+1,n—a).
w o p p

Substituting this value in equation (2.30) yields,

m ) (1 _ a_o)P+nfa P
/ (n— ao)" (" —n°)" ="'ty =p P — - B(=+1,n—aq) s,
p

ao

Now substituting the value of above integral into equation (2.29) gives,

p*"I(E+1) gr
I’(%—I—n—a—i—l)du”
pr (G + 1)

:P(§+n Oz—i—l) d,u {¢1n( )¢2,n(ﬂ)}a

("D2 ) (1) = {plr 0= ( — g )P

By applying the Leibniz rule [50| and hence completes the proof.

a nI‘( + 1) n

(D5 d) 1) = T e D) 2o (00 el (u).

i=0
O
Corollary 2.4.3. If ag = 0 then ?DguP takes the form,
De i — F( +D)(p+p(n —a) +1) o),
F(;+n—a+1)F(p+p(n—a)—n—l—l)
Proof. The proof follows from the Theorem 2.4.1 by substituting ag = 0. O
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Corollary 2.4.4. For a € (0,1), p > —1, The K-deriative of ¢(u) = p takes the

form,

(2 41
("D 6) () = % (=)

Proof. The proof simply follows from the Theorem 2.4.1 by substituting ag = 0 and
n=1. 0

U.N Katugampola [5] gave another beautiful definition of fractional derivative op-
erator, which also generalizes the two familiar fractional derivative operators, namely
the "Riemann-Liouville" and the "Hadamard" frational derivatives |2, 15] to a single

form.

Definition 2.4.5. /5] Generalized Derivative Operator (Type-2 K -derivative)
Let a € C, with Re(a) >0, and g € XP(a,b). Then left and right-sided Katugampola
derivative operators PDY,. and P Dy are defined as,

a—n—+1 d

I-p
ey

("Darg)(pn) = m M

o
)”/ " —n?)" " g(n)dn,  w>a,p >0,
(2.31)

a—n+1

,d ., b o
(*Dig)(u) = (o) / N — 1) gy, < bp > 0,
o

I'(n—«
(2.32)

The association of this generalized operator with "Riemann-Liouville" and "Hadamard"

derivatives is postulated in theorem 2.4.4.

2.4.1 Some Properties of Generalized Katungampola Fractional
Derivative Operators

Theorem 2.4.2. [5/(Linearity) Let o € C, and p, Re(a) > 0, and ¢y, ¢2 € XP(a,b).
Then,

P D3+ (91 + ¢2) (1) ="Dg (1) +" Dgi o(11).
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Proof. The proof is straight forward, just follows from linearity of K-integral. n

Theorem 2.4.3. Let ¢(u) = (u—ag)? with p > —1 and a € (0,1), then the generalized
K -deriwative of ¢(p) is,
(" D5+ 0) (1)
a—17(P
P F(_ +_1) a—ap—1 —a+1 a—o —a
:F(’/—j—(ijQ) {(p—ap+a -1 —ao)’ +(p— o+ 1) (u— ap)” "}

Proof. From equation (2.31) we have,

CDe-0)i) = —ay (4

First we will evaluate the integral,

(67

%) / P ) — aofdn. (233)

° P —« -1 [y Ye K P 17 P @ —1
/ (n —ao)’ (@’ —n")""“n° d77=ﬂ"/ (n — ao) (1—(;)) n’~ dn,
aop ao

Using the substitution u = ﬁ we have,

1

m
/ (1 = ao)’ (" — )"0~ dny = p="° A (e — ap)" (1 = u?) ™" ()™ pddu,

ag

1
= pPmorte) / (u — @)p(l —uf) " (w)” M du. (2.34)
%0 ©
Using the lemma (2.3.2) computing the integral on the right hand side we have,
1 1 _ %)p—a—l—l
aop \P - -1 ( p
u——) (1—u") ‘() du= —-2"——B(-+1,1—aq).
fu = —l )

Substituting this value in equation (2.34) yields,

m ( . @)p7a+1 P
/ (n = ao)"(uf — ) P~ tdn =pf~ " § —+——B(= +1,1-qa)

ag p P
:’u(p—l)(l—a) F(% +1I'(1 - o) L—a )pfaJrl
P T2 —a+2) " '

Now substituting the value of above integral into equation (2.33) gives,

a—1, 1—pT (P
I F(p + 1)i {lu(p—l)(l—a)(lu _ ao)pmﬂ}
FE—a+2) du ’

("Dgy+d) (1) =

a—1l1/(P
B___E£:;tE2 a—ap— -« a—o —«
:F(l—)—opz—l—Q){(p_ap_'—a_l)# ﬂl('u_ao)p +1—{—(p—a—|-1)# p(,u_ao)p }
p

]
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Theorem 2.4.4. [5] Let Re(a) > 0, and p > 0, Then, for g € XP(a,b) following

relation holds:

0. lim D% ) =) [ log ety

! %)” / "= gy,

a

(2). lim (“Dy+g) (1) “T—a)

Theorem 2.4.5. Let ¢(z) is an analytic function in a simply connected region R,
which contains the origin as well, and let o, B, p € C with [Re(«a), Re(5), Re(p)] > 0.
Then the following relation holds:
?Dg (7 9(2))
pl-

‘T'C4+a—n), ,_ y
(2!
['(n—a) dz

n—a—j—1
Zp( (P4 U 5
0

U — 2)|y=s-

“M8

and
?Dis (27 6(2))
1-a oo p(n—a—j—1)
P F(2+a—n p d & <p>jq I+a—n p(j+1)+8-1
— el n Jita—n p(j )

where n = [a] and (p),, is the generalized Pochhamer symbol with p =2+ a — (n+ j)

Brp(i+l)—p  gB+r(i+1)
i o
of order 5+ p(j + 1) and 1 + o — n respectively.

and q = , and Jgfo‘_" denotes the Riemann - Liouville integrals

Proof. Since, ?Dg, (2°¢(z)) is defined as,

i (P0(2)) = () (T ().

Now using Theorem 2.3.6 substituting the value of I “28¢(z) completes the proof.
O

Lemma 2.4.6. [40] Let ¢(z) is an analytic function in a simply connected region

R, which contains the origin as well, and let o, 5,p € C with 0 < Re(a) < 1, and
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[Re(B), Re(p)] > 0. Then PD§ ¢(z) is defined in terms of Riemann-Liouville integral

operator as follows.

I—a 00 (_ 1\IP ,—p(a+tyj)
prT1l+aw), ; ,d (=1)"z ()i pi41)
P DY = P— - =z
0+¢(z) F(l —04) (Z dz); j' J0+ (U Z)|u—z
and
X (14 a), o d e (F)PE e )
Do) = Lo D s 5 P0(2).

j!

pli+l)—p

where (p)jq 15 the generalized Pochhamer symbol with p =1+ a — 7 and q = =

and Jg§. denotes the Riemann-Liouville integral.

Proof. The proof simply follows from theorem 2.4.5 by putting # =0and n=1. [

2.5 Composition of Generalized K-Derivatives and In-
tegrals

In this section we will present some useful relations between generalized Katugampola

derivatives and integral operators.

Theorem 2.5.1. [5/(Inverse property) Let o € (0,1), such that and p,a > 0 Then
for ¢ € XP(a,b) following relation holds:

("Dg: P15 ) d(p) = o).
Proof. Consider,

("D IS ) (1) 1
(6% 14 —Q n
SR ] (ul"’i) / (e — )L / P — 7)o (r)drdn,

[l -« dpu INGe
P 1—p d ! p=1(, p _ P\~ ! p=L(pp _ pyo—1
= Tara—a) ¥ @)/a (W =) /a T = 7P)"o(r)drdy.
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Using the Lemma 2.2.11 we have,

("D 17, ) (1)
— i) [ ot [ =y = e 0
F(a)F(l - Oé) d,u a T
Now consider the inner integral and using lemma (2.3.2) we get,
I p_ —a+l—a—1
[y = ey _wr=r Bl —oa).
. p
_B(l1—-a,a)
P :
Using the value of the above integral into the equatlon (2.36) we have,
P B(1 —a,a)
P P — p12 - g
( at a+)¢(u) F(O&)F(l — Oé du / ¢ T T,
d
1) / S(ryrt~tdr.
Using the fundamental theorem of calculus we have the required result, i.e.
("Dg " I35 )9 (1) = d(p).
O

Theorem 2.5.2. [5] Let o, B € C such that Re(a), Re(B) € (0,1), and p,a > 0 Then
for ¢ € XP(a,b) following relation holds:

D I d(p) = 16 ().
Proof. The proof is similar to the proof of theorem 2.5.1. O]

Likewise the above composition rule holds for right sided K-integrals and derivative

operators as well.

Theorem 2.5.3. [30] Let « € N, and p > 0. Then for g(u) € XF(a,b), following

relation holds,

a—1 51 a P _ P i
eI = gt - 3 240 (o).

Where 6 = (nl_pi>a.
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2.5.1 Caputo Type Modification of Generalized K-Derivative

Ricardo Almeida et.al [29] demonstrated a Caputo version of generalized Katugampola

generalized derivative.

Definition 2.5.1. [29] Let a,p € C with Re(a), Re(p) > 0, and if g(p) € XP(a,b),
Then the left and the right sided generalized Caputo type deriwative operators D%, g
and D} g are defined as,

Dty = [ i g
'Dyrg = ——(n"""==) gn)dn, pn>n,p>0,
T T—a) o (e — ) dn

=("1y 05 9) (1)

and

PDyg = o /b np_la_nﬂ (—ul"’i)ng(n)dn, p<mn,p>0,
Ln—a) ), (nr—ur) dn

=(=1)"("I;= 6, 9) ()
where 6% = (nl_p%y and n = [a].
Theorem 2.5.4. [30] Let a,p € R, such that and p,a > 0 Then for ¢ € XP(a,b)

following relation holds:

(CD I 9) (1) = o(p).

Similarly the inverse property holds for right-sided integral and derivative operator as

well.

Lemma 2.5.2. Let ¢(u) = pu®, then for some B> —1, p € Ry and 1 < a < 2, the

generalized Caputo derivative of ¢p(u) is computed as follows,

s PTEBB AT

LDg e
o L(3—ap+p)
Proof. Using the definition 2.5.1 we have,
PP P = P /# Pl (P — p)lia( 1-p )2 Bd
Do =gy ) W )
-1
pa ﬁ(ﬂ — p) /N B—p—1/,p p\l—a
= - d
re—a ), " (W2 =mP) “dn
_ P8 = ppt /“ 11— (DY an
['(2—a) 0 H ’
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Using the substitution u = ﬁ we have,

a—1 —« 1
(Dgp’ = - ?(é__’;))“ = / W (1= ()) T du
p B8 = p)i” B—p
I'2-a)
P 2B(5 — p)T(2)
I'(B—ap+p)

ap
B(

,2—a)

B—ap'

Corollary 2.5.3. For 0 < a < 1 the above result becomes,
pD a—lF(ﬁ/p—i— 1)M6_ap_
L(B/p—a+1)
Theorem 2.5.5. [30] Let o, € C such that R(«), R(B) € (0,1), and p,a > 0 Then
for ¢ € XP(a,b) following relation holds:

DT p(p) =PIV p(p).

Theorem 2.5.6. [30] Let o,p € Ry, Then for g(u) € XF(a,b), following relation
between Generalized Katugampola derivative and Caputo type generalized derivative

operators holds:

(¢Dg+g) (1) = ("Dgrg)(n) — i F( -5f)g(a) (M” — a”) - .

‘=T —a+1) p

Where 6] = (7]1*'0%>] and n = [a].

Corollary 2.5.4. When 0 < a < 1 the above relation takes the following form,

(ED30)(0) = (D)) ~ e

Theorem 2.5.7. [30] Let a,p € Ry, and ¢(u) € ACYla,b], Then following relation
holds:

("I3+ £Dgvg) (1) = g(p) — é_l (%g.(a) (MP — ap)j-

p
Where n = [o] and ) = (nl_p%y
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Remark 2. [/5] Let a > 0 and ¢(n) € C(0,1) N L'(0,1) then the following fractional

differential equation
Dg¢(n) = 0.
has solution of the form,
O(p) = crp® Heop® s 4 L e
Where ¢, € R and n € N.

Remark 3. /56 Let o > 0 and ¢(u), D3 ¢p(p) € C(0,1) N L*(0,1) then the following

relation holds true.
o Dgrd(p) = o) + ap® + cop® "+ e+ L+ e

Where ¢, € R and n = [a], and 1., I§, are Riemann Liouville’s integral and deriva-

tive operator respectively.

In the same way one can easily deduce the same composition rule for Katugampola

integral and derivative operator.

Lemma 2.5.5. Let a > 0 and ¢(n),” D ¢(p) € C(0,1) N LY0,1) then the following

relation holds true.

P P _ :up :up 2 lup n—1
o+ o+ (/~L) —Cb(/l) +Co+01? +02(?) + ... +Cn—1(?) ,
n—1
_ Cj K n—1
=¢() ‘l'ZF(?)
7=0

Where c; € R and n = [a].

Proof. The proof is straight forward. One can easily verify the above result by taking
into account the Remark 2, theorem 2.5.4 and using the Theorem 2.5.7. We will

frequently use this lemma in our later results. O]
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Now its look quite adequate to start the study of fractional differential equations
which involves generalized K-derivative operator because we have discussed the neces-
sary properties of Katugampola integro-differential operators which we shall use in the
adjacent chapters. Interested reader may find the some other properties of above op-
erators in [48, 51, 37, 30]. In the next chapters we will also discuss local Katugampola

derivative operator and some of its applications.
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Chapter 3

Analysis of Fractional differential
equations involving Katugampola
Derivative Operators

3.1 Introdution

As we know many natural Phenomenons when modeled in mathematical language,
involves rates at which particular, activity or things happen and are non-linear in na-
ture. So its useful to discuss the generalized behavior. In this chapter we consider
the problems which involves, generalized Katugampola fractional derivative operators.
Before we begin a solemn study on existence and uniqueness of solutions of partic-
ular fractional differential equations which involves K-derivative operators, we try to
discuss basic perspectives on existence and uniqueness of solutions of fractional differ-
ential equations. Existence theory is meat-and-potatoes in every field of Science. As
it is very applicative to comprehend whether there is a solution to a given differential
equation beforehand, otherwise all the attempts to find a numerical or analytic solution
will become valueless. The analysis of fractional differential equations has been carried
out by various authors. For details, see [1, 2|. In this chapter we will study existence
and uniqueness of solutions for fractional boundary value problems. There are various
techniques to show the existence and uniqueness of solutions. The commonly used
technique is to transform the given differential equation into intego-differential opera-

tor and then using the contractive mapping principle, Lipschitz conditions and some
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suitable fixed point theorems we can check the existence and uniqueness of solutions.
In this chapter wee also use the same approach because many boundary value prob-
lems can be transfigured into the comparable voltera-integral operator through some
so-called green functions. Zhanbing Bai et.al [57] considered the following fractional

boundary value problem with Riemann-Liouville differential operator D, .

Dgio(p) = g, o(n)  0<p<1
¢(0) =0 W)

where a € (1,2).
We will discuss the same problem but with the generalized Katugampola derivative

operator i.e.

/:D(C)X+¢(N) = g(ﬂa ¢(M>)7 (3 1)
¢(0) = ¢o, (1) =¢n ‘
(H) 0<pu<l,l1<a<2¢:[0,1] = Randg:[0,1] x R — R are continuous and
9(p, d(1))] < e+ d|p(p)| where ¢,d € Ry

And define the space B = {¢ € C'[0,1] : ||¢|| < r, p € [0,1]}, clearly B is the Banach
space. The existence and uniqueness of solutions of similar two point boundary value
problem is also discussed by many mathematicians with different approaches like using
Laplace Transform, Mellin Transform methods and using different fixed point theorems.
In this section our objective is to overview the different criterions to check the exis-
tence and uniqueness of solutions for fractional order boundary value problems which
involves Caputo type generalized K-derivative operator. Numerous methods have been
developed to the check the existence and uniqueness of solutions for FDE’s. But all
the methods and approaches are girdled by fixed point theorems. We will follow the
analogous approaches used in [37, 2, 57, 55, 56| to check the existence and uniqueness
results for FBVP 3.1.

By means of Schauder fixed point theorem, Xinwei Su [58] demonstrated the existence
result for the following coupled system of fractional boundary value problem.

D (i) = g1 (p ~<u§, Da*ém;) 0<p<l,

s @
Dy.d(1) = g2(m, (1), D¥ p(n)) 0 <p<1, (3.2)
M@dezd@zMUzO
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Where o, 8 € (1,2), o, 8* > 0, a—p* > 1, —a* > 1,and ¢1, g2 : [0, ] xRxR — R are
known functions and D is the Riemann-Liouville differentiation operator. The papers
[57, 58, 55, 56| by various authors demonstrates the existence and uniqueness results
for solutions of fractional boundary value problems. Motivated by [58] and previous
results, we present the analysis on existence of solutions for the following non-linear
system of fractional differential equations involving generalized K-derivative operator

with general boundary conditions.

005, d(1) = g1(, $(), D" b)) 0<p<l
ﬁDéd)—ﬂﬂm()fDBMM) 0<pu<l (3.3)
¢(0) = ¢(0) = Ao, ¢(1) =¢(1) =

Where o, 8 € (1,2), o, 6* >0, a—*> 1, f—a* > 1,and g1,92 : [0, 1] x RxR = R
are continuous known functions and £ D;, is the Caputo type generalized Katugampola

differentiation operator.

3.2 Main Results

3.2.1 Existence Results for Generalized Fractional Differential
Equations

Lemma 3.2.1. Let condition (Hy) holds then the problem (3.1) is equivalent to the
following Voltera integral equation of second kind. 1i.e fixed points of the following

voltera integral operator are solutions of boundary value problem 3.1.

6(12) = p(61 — do)t + G + / (G mg(n, 6(n))}dn. (3.4)

where G(u,n) is the Green’s function for problem 3.1 and defined as,

Gy = { B (00 = Lo ) i 0SS
T (e (=), if n<n<l.
Lemma 3.2.2. Let ¢(u) € [0,1] be the given function such that M = sup |g(u, ¢(1))],
(m¢)EB

then for u,n € (0,1), the Green’s function G(u,n) defined by equation (3.5) satisfies
the following properties:
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1. G(u,n) € C([0,1] x [0,1)) and G(u,n) > 0.

1

2. Of{G(u ;1) g(n, ¢(n))ydn € B.

Proof. Tt is easily perceptible from the expression of G(u, n) that G(u,n) € C([0,1] x [0,1)) .
Also since € [0,1], 1 < a < 2, p > 0, therefore (u* —n”)*~! > 0 for n < p and
(1=n)t>0forn> -

Therefore Gy (11,7) = 4y {0~ (= n?)* ™ = prme=1(1 = 7)° "'} > 0. Also Ga(p, ) =
b A (=)} = 0. As G(,m) = Galp,n) + Galp,m), and both Gi(u, 1)
and G(p,n) are positive. Hence G(p,n) > 0 for u,n € (0,1).

Now consider,

/{G w,m)g(n, (n)) ydn

j e "
Z{i(a /{77” Yl =) = T (= 7) " g(n, 6(n)
1
o P (1 =) g(n, d(n))dn.
m
Therefore,
11—« "
/{G 1,1)g(n, (1)) ydn| < ﬁw/ln” Y =) gl |dn
0

o
+ p_a / [P~ (=)™ g o) |y
0

P (1 =) g(n, ¢(n))]|dn.

Since M = sup |[g(u, d(p))|. So above inequality becomes,
(n.¢)eB

1

[ (G gt m)an (36)

0
I

pl—aM " 1
< / 7~ (p? = n?)* " |dn + / P~ (1 =) dn +/ |~ (1 =) dn | -
M) |/ M

0
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Now consider,

n 7
a—1
/np‘l(up — )" dy = proY /77”‘1(1 — (N an.
0 0 g
Using the substitution u = Z—Z = dn = %u%_ldu. we get,
o 1
/n”‘l(u” )" dn Zua”/uo(l )™
0 0

By comparing with beta function [ we have,

w
_ _ “ ()M «)
=P — P\ gy = A SO LAY/
/77 (1 —n)" "dn S T(ta)
0
ap
= ,o_a
Similarly,
i ap+1
o—1/ p ona—1, M r 1-1 pya—1
pof (W =) dn = s (1 —up”)™ du,
0 0
ap+1
I [ ey = )
p 0
ap+1
=4 B@1,a),
P
,uap—i—l
=

Therefore, from inequality (3.6) we have,

I(a) -

1
-« o' ap+1 «
pOM [t per pf (1= p)
dn| < [l
/{Gw,n)g(n, (n))}dn| < {pa + o p :
0

M o
= (e D) T )
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That is,

/ MK,
O/{G(u,n)g(n, (n)) }dn| < (et 1)

1
where K, = p® + p*™ + pf(1 — ). Thereupon, [{G(u,n)g(n,(n))}dne€ B. O
0

Proof.(Lemma 3.2.1). Let ¢ € B is the solution of problem (3.1), then by applying
the generalized integral operator on both sides of equation (3.1) and using definition

(2.3.1) and the lemma 2.5.5 yields,

T e

Using the boundary conditions ¢(0) = ¢o and ¢(1) = ¢; into above equation we get

11—«

co = ¢o, and ¢ = pd1 — pco — % fal 7P~ (1 —1°)* " g(n, ¢(n))dn. Now substituting

these values of constants into equation (3.7) we get,

o) = ?1(;; /0 ' (1 =) g(n, (n))dn
- 161(;3 /0 pn” (1= )" g(n, (n))dn + o + (61 — do)i’,
B ?(a) /0 0 =) g, d(m)dny
B l/i(oz) {/0 o= (L= 1) g (. $(n)) i + /H pon? T (=) g, ¢(n))}

+ ¢ + (P1 — ¢o) 1’

_ P —a) / {7 (= ") = PP L =) ) g(m, 6(m))dn

N

+ I/i(a) /“ P~ 1 = 12)* g0, d(n) + do + (d1 — )i’

or

P(p) = p(dp1 — do) it + do + / {G(,m)g(n, ¢(n)) ydn.
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Where,

p p=1(,p — pp\ L ppp=1(1 — )L ;
e~ (wf —n?) (1 =n?)* ), if0<n<p.
G(W})Z{ ,f(l( )

T(a) (M”U” 1(1_77p>a_1)7 ifp<n<l

is called Green function. Therefore from lemma (3.2.2) we find that the voltera integral

(3.4) is bounded and hence belongs to B. i.e, Every solution that satisfies problem (3.1)
also satisfies integral operator (3.4). Conversely, let ¢(u) € B is the solution of the
integral operator (3.4), then using the definition of the Green’s function we can write

the right hand side of integral operator (3.4) as follows, and we denote it by ¥(u).

¢(M) pl(oj; /,u 771p1(lu,o _ np)a—1g<n’ ¢(77))d77
16(04) /0 P~ (L= n?)* " g(n, 6(n))dn + o + (é1 — po)u”

Applying the generalized Caputo type derivative operator on both sides and using the
theorem 2.5.4 and the Lemma 2.5.2 we get,
Db (i) = g(p, (p)).

Now, on the other side we perceive that,

7”710 — )" L g(n, d(n))dn — 0 + ¢o + 0 = ¢y

and
-1
d
@ 9(n, ¢(n))dn
p - p—1 a—1
1—n d —
T / " (L =n)""g(n, é(n))dn + do + ¢1 — ¢o
= ¢

Thus ¢(u) € B is also a solution of problem (3.1). This completes the proof. O

Now define an operator T': B — B by,

T((p) = p(d1 — do)p + do + / {G1(p,m) + Ga(p,m) } g(n, ¢(n))dn. (3.8)

Considering the expression of G(u,n) and lemma 3.2.2 we can see-through that T'(¢(p)) =
o(p), p € [0,1]. Lemma 3.2.1 signifies that solutions of boundary value problem (3.1)
coincides with fixed points of T'(¢(p)).
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Remark 4. The operator defined by equation (3.8) is continuous.

Proof. Let ¢1, 02 € B, and we consider,

T(P1(1) = T(2())|
= |p(d1 — do)p + ¢o — p(d1 — do)pu — do + / {G () (g(n, o1(n) — g(n, @2(n))) ydn| -

= | [ (Gt (ot onn)) = gl dx(m)}e

1

< / G () (g(n, 61(n))) — g(17, ().

0

Since g is uniform continuous function i.e, |(g(u, 1(1))) — g(w, ¢1(1))| < € whenever

lo1(p) — d2(p)]] < d(e) for all p € [0,1]. Also G(u,n) is bounded therefore from
lemma 3.2.2 and the continuity of g implies, |T'(¢1()) — T'(¢p2(1))| < € provided that
|1 () — ()| < 0(e) for ¢1,¢0 € B and p € [0,1]. Hence the operator (3.8) is

continuous. O

Lemma 3.2.3. Let the condition (Hy) holds then, the operator (3.8) is relatively com-
pact subset of J = C'|[0, 1].

Proof. First we show that the operator T'(¢(p)) is uniformly bounded. For this, by

using the definition of Green’s function into above operator we get,

T(¢(n)) = ¢o+ ¢1 Po)”

-1 Yt P (1= )Y g(n, 6(n))dn

ﬁ(a)/ ot (L= 1)" " g(n, ¢(n))dn.
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Now

T (6(1))]
< |[po + (1 — ¢o)p”||
16(03 {/ (1 —n7)*g(n, ¢(n))\dn+0/\u”np‘l(1 np)“g(n,gb(n))dn}

* g(:; / |0 (L= 0”)* " g(n, d(n))]dn.

Using lemma 3.2.2 we get,

(c+dlo(w)]) K

T < 60+ (6 — o)l + P,

<ri MBy
or T(a+ 1)

T(¢(1)| < R.

where R = L+ aﬂlfI(Kj‘rl and L = sup||¢o + (¢1 — ¢o)p”||. That is T(¢(x)) is uniformly

bounded. Now we show that T'(¢(u)) is an equicontinuous operator. For this consider,

T (0(p)) = T (P(p2))] < [l(¢1 = ¢o i’ — )|

(030/’777" ? =) g (e, d(ne) |dne

11—«
+ L / |0 (2 = ) g (e, ()| diy

[(a) /

m
11—«
P

+ T(a) 0/ |1 — ") g (e, o(n,))|dn,

11—«

p B -
+ F(CY) 0/ ’lu2p77rp (1 — nrp) 9(77r,¢(77r))‘dnr

1

T(a) / [ (L =)™ gy, $(0)) |y

m

l1-a
+ (a) / ‘,ngnjpfl(l — nrp)a—1g(nr,¢(m>>‘dm'

H2
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Since |g(p, d(1))| < ¢+ d|d(u)|, therefore from the above expression we can write,

[T (6(n)) =T (¢ (Mz )I < |¢1 ¢o)| | (pa” = ")

B2
1—
p C+d P(p o _ o
L | /Im” Nm? =) 1}dnr+/|m” Hpe? = ) |d,
0
(e +dlo(p)) i
p C o— - oa—
+ /\ul 0" (1 —n,”) lldnﬂr/luz”m'” Y1 =) dn,
()
0 0
1—
p c+d o(p = a—
Lo | /\ulnﬁll—m " dn, +/!u2n’” )" dn,
P~ tg(nr,¢

Using the substitution u = ’Z one can easily verify that, f i dm = L: and

pnplf"

_MP+

nr" 9(77T7¢(’7T))d

A A - Also since f e~ (L= 1) g (e, G() )l = A
0

ap
w

Hence the above inequahty becomes,

[T (¢(11)) = T" (P (1))

+ d -« pa pa pa+1 pa+1 1 — P& 1— P\
< (c+dlop(w])p P et et (1= )t el - )
INEY! ap ap ap ap ap ap
+ (@1 = ¢o)| | (11” — "),
= (M {1+ ™) + 2 (1 4 p12”) + pa (1 — pa?)™ + pa(1 — p12”)"}

pel(a+ 1)
+ (@1 = @)l [1(” = p2®) I

Since p € [0,1], @ € (1,2) and p > 0. Also (1 — p”)*, u(1 — p?)* € [0, 1]. Therefore,

(c+dlo(w)]) K

1,442
+ 01 =e.
pl(a+1)

IT"(p(p1)) — T (P(p2))| <

Provided that,
01
(11" = p2”)|| < = 0.
[(61 = o)l
Where K, 1, = m”*(1 4+ p1”%) 4+ 2 (1 + p2”*) + p1(1 — 1) + pa(1 — po?)®. Since
w1 — pP)® and (1 + pP*) are uniformly continuous, hence the operator defined
by equation (3.8) is equicontinuous. Therefore by Arzela Ascoli [] the operator (3.8) is

relatively compact. O]
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Lemma 3.2.4. Assume that condition Hy holds then the boundary value problem (3.1)

has at-least one solution in B.

Proof. The remark (4) asserts that the operator (3.8) is continuous and from Lemma
3.2.3 we see through that |T'(¢(u))| < R. Therefore T is self mapped and lemma
3.2.3 shows that the operator (3.8) is compact subset of C'(J). Hence the lemma 3.2.1
and Schauder’s fixed point theorem [| indicates the existence of atleast one solution of

boundary value problem (3.1). O
For the existence results we use the following assumption.

(Hy)) 0 <p<l,1<a<2 ¢:[0,1] - Randg:[0,1 xR — R are continuous

and |g(p, 91(1)) — g(p, p2())| < Ly [|@1(p) — d2(p)|| where Ly is such that 0 <
LK, < pT(a+1).

Lemma 3.2.5. Let the condition Hy holds then the equation (3.4) and (3.5) describe

the unique solution of boundary value problem (3.1).

Proof. To prove this lemma we use the Banach fixed point theorem []. For this we
necessitate to confirm that 7" is self mapped and a contraction mapping. Lemma 3.2.3
shows T'(¢(p)) € B and taking into account the definition of the operator T', lemma
3.2.2 and the remark (4) shows that 7" is self mapped. Now we need to check contraction

principle. For this let gzﬁ,qg € B, we consider

1

= |p(¢1 — do)p + do — p(d1 — Po)pt — do + / {G(u, m(g(n, o)) — g(n, é(n)))}dn :

0
1

_ / (G ) (9(n, 6))) — g, 6(n)) }dy

0
1

< [ 6w (ot 60) = o0, ).

0
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Since the function ¢ satisfies the Lipchitz condition i.e, |g(u, ¢1(n)) — g(p, pa(pr))] <
Ly ||p1(p) — ¢2(p)|| - Therefore we have,

T(6() — T(B(w)| < Ly o) — o) / (om)d
:L|I|0(£§()C(+1() H{/Lap‘f‘,uap—i_l—l—,u(l—,u)},
L K

:mﬂﬁb( w) — o]l -

The Banach fixed point theorem [| asserts that the operator 7" has a unique fixed

point. Hence from lemma 3.2.1 shows that, (3.4) is the unique solution of the problem
(3.1). m

Now for the existence results and discussion for the boundary value system (3.3) we
use the following conditions. Let J = [0, 1] and C'(J) be the space of all continuous func-
tions defined on J. We define the space X = {¢(u)|¢(1) € C(J) and *D* ¢(p) € C(J)}
characterized by the norm ||¢(u)|x = max lo(p)| + max 7D ().

Lemma 3.2.6. /58] (X,|.||x) ia a Banach space.

Proof. Let (¢;);2, be a cauchy sequence in (X, |.[x), then clearly ("D* ¢]) is also
a cauchy sequence in the space C'(J). Therefore both (¢;(u ))oo and (?DP gb]( ))] o
converges uniformly, say u(u) and v(u) respectively in the space C'(J). We just have

to show that v="D? u. For this consider.

i 1 l—a b p—1
pTB P B 1 _pyB _ 0+¢J 77p P v(n)n
R | R e e e ol e
0 0
/” (D 05(m) — vl |
- p—pp) @
ki (uP — ne)!

<
= pF(a 1) nes

"D 65() = v(p)|.

Since ("D ¢;(p )) o
P15 Dy (1) — Io+v<u>\ = 0as j = oo. ie, im L7 DG 6; (1) = PIgcv(p).

converges uniformly to v(u) for p € J.

Hence
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Now considering pDéﬁ(hm I(’)B:”Doiqﬁj(u)) = ngj:pIg:U(u) and taking into account
j—oo

theorem 2.3.4 and theorem 2.5.1 we get that, v(u)="D? u(n). This completes the

proof. ]

For upcoming results we consider the following Banach space,
Y = {(/g(u) | (1) € C(J)and PD* ¢(1) € C’(J)} characterized by the norm ngz(,u) HY =
/’D"‘*qg(u) ‘ Then for ((b, <;~§> eX XY, let

ma 900+ may

I
H(gb, (5)” = max{”¢HX, (;BH } Then certainly (X xY,||.|[y,y) is a Banach
XxY Y

space. Furthermore for our convenience let,

RI Z max {4M21CL1]€2, 4M1a2k:2 max ’é(ﬂ)‘ s 4M1k2b1 max

DY §(pu) ’} :

and
R; Z max {4M1a3k2, 4M1a4k2 max ’¢(M)’ y 4M1k2b2 max

PD7 ()|} -

Here M; = max |p® 4+ p* ™ + pf(1 — pP)?|, k1 = max |p(A; — Ao)p”|, and ko =
neJ,peR

T
T(a+1)"

Lemma 3.2.7. Let a € (1,2),a" € (0,1) and g, € C(J), then the problem

{ PD§ o) = g1(p, d(), "D (1)) 0<p<l
$(0) = Ap, (1) = Aj.

18 equivalent to the following Volterra integral.

1

() = p(Ar — Ag)p+ Ao + / {G1(1,m)g1(n, (n), "D ¢(n)) }dn,

where

2 (p=1(,p _ oo\l pop—1(1 _ o\ ;
n' = (p’ —n’) prnP (L =n?)* 7)), if 0<n<p.
Gi(pm) = { R ( )

- a- . (3.9)
T(a) (w1 =)™, if p<n<l.

Proof. The proof is similar to the proof of the lemma 3.2.1. m
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Let

b (e =) = =) o<y <
Gap,m) = 9 15 _1 b1 , (3.10)
o (o (L =) ) if p<n<Ll

We bring out (G, G2) to be the Green’s function of coupled system (3.3). Let’s ensue

the following coupled system of volterra integral equations.

() = pls = Ao+ Ao+ [ {Galpm)gs(n, (). 2D 3(m)) b, -
g 3.11

d(p) = p(A; — Ag)p + Ao + b} {Ga(p,m)g2(n, &(n), "D $(n)) }dn.

Before we demonstrate main results, for our convenience let’s define the following

discussion first. we define

5 = { (000 300 1 000, S € X .| <Ruei}.

(6(1). d(n))|

XXY

Where,

R > max {4k, + Ay, R}, Ry, 2Ry 2R;pr0—) 2R: 2R;}.

Ahead of the existence results we discuss the important property of Green’s function

G1(p,m) and Go(p, n) that we use in our later results. We use the following conditions,

(H) 1l <a<2 0<a*<1landg :[0,1] x Rx R — R is continuous function,
9101, 612 D" $(10)| < ar + az max | (1) 2D (1)

where a1, as,b; € Ry

furthermore + by max

Y

(H)) 1 <a<2 0<p*<1landg :[0,1] xR xR — R is continuous function,
furthermore |ga(j1, 6(4)2 D¥'6(u))| < a5 + asmax|o(u)| + by max [2D¥" o(n)

9

where as, as, by € R

Lemma 3.2.8. Assume that functions g, and gy satisfies condition (Hy) and (Hs)
respectively, then Green’s function (3.9) and (3.10) satisfies the following properties:

1

L [{ G, 90n) 2D S0)) pan € B

0

57



2. [ {Galw a6 D” (o) b € B

Proof. Consider,

/ {G1(,m) g1 (n, 9(n),? D> $(n)) }dn

11—«
§<a / o — 1 (L= 1)} g1(n, 6(n). DY (n))dny
0
[} 1 3 )
1€<a>/u o (L= 1)" g1 (0, 6(n).," D ().
Therefore,

/{ (1. m)g1 (1, & )"D“*fﬁ(u))}dn

1[:1(03 j " g1, 60 D B(m) |y
lel(ac;o/ 91(77 Qb( )pDa ’dn
+ ?1(03 /: Ppp(1 — np)oﬁlgl(n ¢(77) PD & ‘dn

D p(p) ’ . Therefore,

9101 B(12), DP3(10)| < a1 + 0 mae |B(30)| + by max

Since

/ G1 (1t m) g1 (12, B (1), '”Da*a?(u))}dn

p'~*(a1 + az max ‘qb ,u)‘ + by max

= +

D" d(n) [, L (1 - o)

YA ['(«) pa pa pa
- pTla+1) —
Here My = (a; + as max q;(,u)‘ + by max Do‘*qg(,u)‘).
1 ~ ~
Thus [ {Gl(,u, (), ? D p(p) }dn € B*. One can easily prove the second part likewise.
0

]
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3.2.2 Existence Results for Coupled System of Generalized Non-
linear Fractional Differential Equations

Lemma 3.2.9. Assume that g1,g2 : [0,1] x R x R — R are continuous functions.

Then (gb(u),q;(u)) € B* is a solution of nonlinear coupled system (3.83) if and only if
(1), d(1n)) is a solution of the system (3.11).

Proof. Let (¢(p), ¢(p)) € B* is a solution of (3.3), now applying the generalized
Katugampola integral operator on both sides of the first equation in (3.3) and making

use of the definition (2.3.1) and the lemma 2.5.5 yields,

Pl [F P gi(n, ¢(n),, D ¢(n)) 1
e ] T

Using the boundary conditions ¢(0) = Ay and ¢(1) = A; into the above equation we

o(p) =

get7
pe " 1 .
o) = oy | = w0 o o) 27 o)
-« 1
_ ? 5/ 1P H (1 = 1) gu(, 6(0) LD (1)) dn + Ao + (A1 — Ao)p,
11— o
- f‘(a) T =)™ g0, 0(m)." D b))
_ ,01_04 M pp—1 1 — P a—1 pDa* d
Doy J, K A=) gam 6(n).2 D% 6(n))dn
11—« 1
- ?‘(a) pP L= 1) g1 (0, ()P D () + Ag + (A1 — Ag)pr?,
m
_ pl—oz o—1(,p . pya—1 _  p -1 1— P a—1 » o d
Ty J = T =) a0, 0n) "D o))
pl—?) 1 )
+ I(a) / /Lpnpfl(l — np)a—1g1<77,¢(77),pD0‘ d(n) + Ag + (A1 — Ag) i’
or .

() = p(Ar — Ag)p’ + Ao + / {G1 (1, m)gr(n, 6(n),» D ¢(n)) }dn.

0
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Where Gy(u,n) is the Green’s function defined by (3.9). Similarly by applying the
same procedure on second equation of the non-linear system (3.3) we get,

I

- 1-8 ) )
P(p) = I/i(ﬁ) /{npl(,up _ np)ﬂ—l — PP (1 = np)ﬁ—l} 52, ¢(U)>pDﬁ*¢(77))d7]
1-8 1 i )
+ 18 / W11 = ) gar, S D B)) + Ao + (Ar — Ao

or
1

30 = (s ~ Ao+ Ao+ [ {Galuemaalon &) D o)}
0
where Go(u,n) is the Green’s function defined by (3.10). The lemma 3.2.8 shows that
the system (3.11) of volterra integral equations is bounded. i.e, every solution that
satisfies system (3.3) also satisfies the non-linear system (3.11) of velterra integral
equations. Conversely, let (¢(u), ¢(11)) € B* is the solution of the system (3.11), Now
we denote the right hand side of the first equation of the system (3.11) by ¢ (u) then

by using the definition of Green’s function G;(u,n) we can write,

vl = ?(;3 /OM 7w = ") gu(n, (n), DY b(n))dn
- 16(:; /0 P (1= 0?)" " gi(n, (n)," D G(n))dn + Ag + (A1 — Ao’

Now by applying the generalized Caputo derivative operator on both sides and using

the Theorem 2.5.4 and Lemma 2.5.2 we get,

pD(01+ (:u) =01 (777 é(ﬁ)apDa*Qg(T/))

Cognitively, by applying the same procedure on the second equation of the system

(3.11) yields,

2D d(k) = ga(n, ¢(n)," D™ $(n)).

Now we observe that the system (3.11) of volterra integrals satisfy the boundary con-
ditions. ie. ¢(0) = ¢(0) = Ay and ¢(1) = ¢(1) = A;. Hence the problem (3.3) is
equivalent to (3.11). O
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Now we present the existence and uniqueness results for the non-linear boundary
value problem (3.3). Before we present the detailed investigation, let us have the

following consideration first. We define an operator T : B* — B* by:

+f <G1 1) g1 (1, ¢(n),pDa*¢3(n)))dn, o
(¢, 9) (1) = | =: (T1¢(M),T2¢(lu)> .
+0f(G2 1,1)92(n, ¢(n)," D d(n))) dn

(3.12)

Where f(u) = p(A; — Ag)u” + Ag. As long as we descry the Lemma 3.2.9, then clearly
we see through that the fixed points of the integral operator (3.12) are the solutions
of the boundary value problem (3.3). For our convenience, we define the following

confabulation.

(A = Ag)” 17"

B =10

(A1 — Ag)p 0@ — [0"])

i = T(2— a%)

Miap” e M p? ~*ay max (95(#)’ .\ M p? ~*by max ’D“*iﬁ(u)‘

R;:F(a—ﬁ*ﬂ) T(a— B +1) T(a—B*+1)

Myazp® = Mjp* ~®aqmax|p(u)]  M;p* ~“bymax |D* ¢(u)|

R =
O Dla—ar+1) Do —a*+1) Mo —a*+1)

Where M] = max
ped,peRy

Mp(a a’) 4 M(a a”)(p+1) 4 pP (1 — pP)*”

OB a8t (] — ,up)"‘*ﬁ*’, and

M} = max
reJ,pEy

(H3) 1 <a<2 0<a*<landg :[0,1] xR xR — R is continuous function,
furthermore ¢ satisfies the Lipschitz condition i.e,

|91 (191 (1), " D" 61.(1) = 1 (11, 62.(12), D" b2 (1)) | < L (161 () = d2(1)| + [?D*" ga(m) = D" g ()] ) -
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(H) 1 < B <2 0<p <1landg,:[0,1]] xR xR — R is continuous function,
furthermore ¢ satisfies the Lipschitz condition i.e,

|92 (1 @3 (), D7 63(m) = g2 (164 (), "D 6 ()| < L2 (163(12) = 6a)| + [?D7" $a(m) =D 43(m)|)

Where L, and Ly are Lipschitz constants such that 0 < Ly < K7 and 0 < Ly < K3.

Remark 5. Let g and g, satisfy the condition (Hy) and (Hs) then the operator defined
by (3.12) is continuous.

Proof. The result follows from the boundedness of G (u,n), Ga2(u, 1) and the continuity
of g1(p) and ga(p). O

Theorem 3.2.1. Assume that the conditions (Hy) and (Hy) hold then the problem

(3.3) has at-least one solution in B*.

Proof. We prove this result using the Schauder fixed point theorem. First we show
that the operator T : B* — B* is self mapped. For this let us consider,

1

[Tid)] < lo(s = A0her + Aol +| [ {Gutamiantn. G2 D% ) b

0

—1 a—1 o
(&) P =) gi(n, d(n),F D ‘dn
o
a—1 o*
—ao/‘ (1 =n")" " gi(n, (n),) D ‘dn
plia ! — a—1 o
+ F(a)/# 1P (1 =) g1 (n, (n),, D ¢ ‘dn,

< |Aol+ [p(Ar — Ag)p’|

(a1 + a2 max | ()| + bi max | D" (11
Pl (a+1)

< ky 4 My(a1ks + ap max ‘&(M)

(1 + p® 4 P (1= pP)")

ks + byks max ]Da*&(u)‘).

+

and hence,

_ R R R R
<4+ 4+ =4+ =R
T1¢(“)Hx—4+4+4+4 R

|
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Also,

1
D7 T < 207 )]+ D7 [ (Gatiws o )0 60 ).
0
Where f (1) = p(A;—Ag) i+ Ap and since by the Lemma 2.5.2 QDgif(u) = Riprt=F"),
Therefore using the definition of Green’s function (3.9) above inequality becomes,
pDﬂ*TIé(M)H < R};up(l_ﬂ*)

-« i - . ~
leps |2 /f#”@“ﬂﬁ”?@@@@ﬂﬂadmwn

(o) J
+2D% &;; /{Mn”‘l(l—n”)a1}91(77795(77),”D“*c5(n))d77
o [ [t ot o oo

Using the Theorem 2.5.5 we get,

”DB*T@(M)H < Ry
I
1—(a—f") P
p 1 a—p* -1
+ o n’ " (w’ —=n’) }
['a — p* /{
(a—p") J
o
1—(a—g") P .
+ b /{u”n”l(l—n”)a_ﬁ _1}
0
1-(a-g") [l )
+ / {u”'rz”’l(l—np)“_ﬁ _1}
I

Using the condition (H;) and the Theorem 2.3.3 we get,

91(n, &), D $(m) | dn

910 6(0)" D" 3(n))| di

a1(n,6(n).” D é(n)) ‘dn-

"D T ()| < Ry
P ay + 0 max () D 3(u)|) ot

_l’_
P —p%) pla— %)
ple=Fet) (1 — )P

=5 T pla-p)

+ b; max

),

+
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That is

* ~ * R R
D’ T1¢(M)H SR+ Ry <+ o =R

Executing the same arguments for the operator ngb(,u) we observed that, HTQQS(;L) H <
Y

R, and HpDa*ngb(u) < R. Thus HT(QZ), QE)H < R for any (¢, ) € B*. Therefore, the
operator T : B* — B* is self mapped. Next we show that the operator T is completely

continuously. For this let (¢, é) € B* and u,v € J, then we have

= |p(A; = Ag)(p” — v*) + / {(G1(psm) — Gi(v,m))g1(n, 3(0)," D™ $(n)) ydn|

< |p(Ar — Ag) (= v°) + |g1(n, (n),* D ¢(m))|] / ((Gi(p,m) — Gi(v,m))]|dn,

M.
<Lty (17 = V) (D ) (1= ) = (1= ))

Where L = sup |p(A; — Ag)(u” — v?)|. Next we consider,
wvedJ

i’Dﬁ*Tﬂ;(N) - 5D'B*f1¢3(V)‘

1
- i’DB*f(u)—ZDB*f(V)Jri’Dﬁ*/{(Gl(u,n)—Gl(v,n))gl(n,¢(n),pD“*¢(n>)}dn :
< ‘R;up(l_ﬁ*) + R;,/p(l—ﬂ*)‘ ’

+ | g1 (1, (1) "D (1))

PP ( / (Gr(p1sm) — Ga(v.m))dn).

Using the Lemma 2.5.2, definition of the Green’s function (3.9) and the given condition
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(Hy) we have,
<R (Iup(lfﬁ*) + yp(lfﬁ*))

l—«a r

* p _ o— _ a—
+ | My D? r(a)/{"p Yt — ) = v =)

0
m
) / {pn= (1 =) = v (1 =) dn
0

1
+ [MyeD? |2
* NG

j e 1 _
+ |MytDP {p ) / {prn? (A=) =P (1 =)™ Y
w |

INGe

Using the Theorem 2.5.5 yields,
2D* Ty () — D" Ty v)|
< R: (up(l—ﬁ*) + Vp(l—ﬁ*))

I
Mpl_(a_ﬂ*) _ a—B*_ _ a—B*—
* TaTF /{77" =) = )

I

Ao pl—(a—B%) o e

+ —;('; 5 / {upnp‘l(l — )T e (1 = ) 1} dn
0

Mopl—(a—8 71 * .
i / {uf’np‘l(l — ) T (1= )P ’l}dn,
m

I'(a— %)
. . M,pP . . .
— R (=57 p(1—5%) _omp g ela=B%) _  p(a—pB%) (a=B%)(p+1)

5 (w +v )+F(a—@*+1){“ v + p

— la=B7)(p+1) _ PP (1 — )= — P —pP)ef7)

Here we omit the calculations for T5¢, similarly one can easily make out that,

7o) = Tab0)| <L+ —dsl (= 07%) (040 =0
+ (P (1= vP)™ =P (1 = )%,

and
2D To (1) — £D" Tao ()| = By () 107)

Msp™ ™ oaca®) _ pla-a®) 4, (a—a®)(pt1)
T Ta—a v T
_ pla=a®)(p+1) _ pf (1 — Mp)cz—a* — (1 — ,/p)a—a*}'
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Where M3 = a3 + a4 max|o(p)
pP (1 —vP)e, M(afﬁ*)(pﬂ), vP(1 — Vﬂ)afoz"7 pP (1 — Mp)afﬁ*7ﬂ(afﬁ*)(p+1)7 and p(@=89+1)

gb(u)‘. Since the functions p®?, v,

are uniform continuous for u,v € J, so we see-through that the operator TB* is
equicontinuous. Also since TB* C B*, implies TB* is uniformly bounded as well.
Henceforth, T is completely continuous and thus Schauder fixed point theorem [| assures
the existence of atleast one fixed point of the operator (3.12). Hence taking into account

the Lemma 3.2.9 completes the proof. O]

Theorem 3.2.2. Assume that the conditions (Hs) and (Hy) are satisfied then the

problem (8.8) has a unique solution.

Proof. To prove this theorem we use the Banach fixed point theorem [|. For this first we
necessitate to confirm that 7 is a self mapped and then we show that the operator (3.12)
satisfy the contraction mapping priciple as well. Since the conditions (ﬁg) and (Iﬂ)
are stronger than we used in the Theorem 3.2.1, so obviously the operator T satisfies
the self mappedness condition under these conditions as well. The only stipulation

that we need to verify here is contraction. For this consider,

T1¢~51 (1) — Tl ng (1) ‘

(Gr () g1 (m, d1(),? D" i (m)) — Gl(u,77))91(77,éz(n),pDa%(n))}dn 7

910 61 (1), D d1(n)) = g1 (n, Ga().2 D Ba() | iy,

/1
N / [(Galpm) {91 (n, 61(1).7D" Gr(n)) = g1 (n, S2(n)." D" Ga(m)) } |
/ (G1(psm)

1

< L (|61 = ot + D dali) = D b)) /(Gl(u,n)dn,
i ()~ ) ) o1 ) { ),
= % O1(1) = da(p)
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Also,

QDB*Tﬁgl(M) - ’:Dﬁ*ﬁél (M)‘

1

= QDB*/{(Gl(MJI) (91(77>¢1(77)£Da*¢1(77)—91(77>¢2( ) D* ¢2 )}dn )

0
SiDﬁi/{U?ﬂmn)Mﬂm¢nW%$D“¢dn)—gﬂm¢a@L£D“¢ﬂnH}mr
0

Using the definition of Green’s function (3.9) and the Theorem 2.5.6 we get,

o

. .~ ~ —(a=8") pf _ B

D7 Ty () =2 D” T1¢2(/~b)) < W/{n" Yt =) 1}d77
0

[(a = p%)

I=(e=B)pg, 1
P 4 p.p—1 1—pP a—pB*-1 d
+—F(Q_5*) /ﬂ{un (1—=n") }n~
Where My = |g1(n, ¢1(n).2 D* ¢1(n) — g1(n, p2(n),2 D™ ¢(n)|. Now after some simple

calculations and using the condition (H) gives,

(a8 )\, [
P / {upnp‘l(l —~ np)"‘*ﬁ**l} dn
0

iDﬁ*TﬂZ;l (M) - fDB*TNJBz(M)‘

pi=(=8) L, ( 1 (p) — Q~52(M)‘ + pD“*c%z(u)—pD“*ez;l(u)’) ="

Ta— 57 Y
Iu(a—ﬁ*)(p+1) lup(l . Iup>a—5

<

H e T e
Ly |1 (1) — da(p

(a=pB*)(p+1) pye—B"\ .
— pafﬁ*r( 6*) <lu +[L rr +H’ (1 2 ) ) )

= pa_g*FL(;K_g;* 1) ‘ €Z~51(M) - &2(#)” :

Where Kﬁ* = pP @B 4 pa=Be+) (1 — )@= Therefore,

. LKS
101 (s ’ - OT a+ 1) * P B T — 5*) ‘

= 7 [t = .

b1(p) — Pa(p)
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where K* — po‘_ﬂ*l"(a—i-l)l"(a—ﬁ*) i,
L p B T (a—B") Kt D (at 1)Ky,

. Likewise, one can easily see-through that,

T2¢1 (1) — T2¢2(N) <

o2 1610 = 620

: a* a—a* a—a* a—a* * a—a’p a+1)IN'a—a*
With K" = pPe=om) 4 plo=a)orl) L ye(1 — 14P) and K} = p_ﬂfF(afag)Ku)JrI(‘(aJrl))Kﬁ‘*'

Therefore,

< 2 (loa(m) = 900 +|

T(¢17 &1) - T(¢27 éZ) K

&1(#) - éz(ﬂ)H) :

Where, K = max (K7, K}). Thus Banach fixed point theorem [| assures the existence
of a unique fixed point of the operator (3.12). Therefore taking into account the Lemma

3.2.9 we concluded that the boundary problem (3.3) has a unique solution. O
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Chapter 4

Existence and stability results for
fractional differential equations
involving generalized Riesz-Caputo
Katugampola derivative

4.1 Introduction

The analysis of fractional differential equations has been carried out by various authors.
For details, see [1, 2, 3, 4, 6]. Mostly fractional derivatives are computed using the frac-
tional integrals, due to this they describe the non-local effects in terms of left and the
right derivative. In 1892, Riesz [15] demonstrated the two-sided fractional operators
using the both left and the right Riemann-Liouville’s fractional differential and integral
operators. In the resent past the research on different properties of solutions to numer-
ous fractional differential and integral equations is the key topic of applied mathematics
research. While modeling of many systems and processes in physics, chemistry, opti-
mal control theory, population dynamics, fluid dynamics, fiber optics, electro dynam-
ics, electromegnetic theory etc. all involve fractional differential and integral operators.
Due to the two-sided nature of Riesz’s differential operator, the interesting differential is
specifically used for fractional modeling on finite domain. Some optimality conditions
are discussed by Almeida [16] for fractional variational problems with Riesz-Caputo

derivative. Frederico et.al derived a Noether’s theorem for variational problems having
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Riesz-Caputo derivatives. Mandelbrot [17] demonstrated that there ia a close connec-
tion between Brownian motion and fractional calculus. Sami,I Muslih and P Agrawal
[18] solved the fractional poisson’s equation having Riesz derivative using Fourier trans-
form. Due the validity of Riesz derivative operator on the whole domain it appears in
the fractional turbulent diffusion model. For example the advection-diffusion process
relies on the whole space at any position. Ding, Hengfei et.al [19] numerically solved
the advection-diffusion equation having Riesz derivative. For further applications of

Riesz derivative on the anomalous diffusion see |20, 21, 22, 23].

In this chapter we define the generalized Riesz-Caputo type derivative operator
using the generalized Katugampola integral and differential operators. We present
basic perspectives on existence and uniqueness of solutions of fractional differential
equations. Motivated by [24, 25|, we present the analysis on existence of solutions
for the following non-linear fractional differential equation involving generalized Riesz
-Caputo type derivative operator with general boundary conditions.

{ 0PI () = 9(p, d(1),5C DEPH(n),  pe 0,4, (4.1)
¢(0) =¢o,  ¢(<) = ¢, |

where ¢ : [0,¢] x R — R is continuous with 1 < @ <2 and 0 < o* < 1.

The rest of the chapter is organized as follows: The Section 4.2 presents some basic
definitions and lemmas from literature. In Section 4.3 we introduce the generalized
Riesz’s fractional operators and derived some useful results. While, in the section
4.4 we established some equivalence results for the boundary value problem (4.1) and
establish the results for the existence and uniqueness of solutions for BVP (4.1). The
last section of this chapter presents the stability of solutions for BVP (4.1) by means

of continuous dependence on parameters.

4.2 Preliminaries

In this section we demonstrate some useful results including definitions and lemmas
related to Riesz-Caputo derivatives and integrals that will help us in our later dis-

cussions. Following the same traditional definitions of Riesz-Caputo derivative and
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integral |15, 24, 26] we can generalize these definitions using generalized Caputo type
Katugampola derivative operator. Some preliminaries structural properties are also in-
troduced in this section, which we will frequently use in our later discussion. In 2010,

Prakash Agrawal defined the Generalized fractional in the following way.
Definition 4.2.1. [27] Let o > 0, then the generalized fractional integral operator
Aa

(a,sm,s

) s defined as,

(acrs) (1) = ﬁ T/Ka(u,n)cb(n)dn+8/Ka(u,n)¢(n)dn ,

where the kernel function K,(u,n) may depend on o furthermore, a < p < ¢ and
r,s € R.

This is the generalized fractional integral operator, using the specific kernel function

leads to the specific operator for example if K,(u,n) = % and taking ¢ = 0 will
leads to the left sided R-L integral operator and taking K, (u,n) = % with

¢ = 0 gives the left Katugampola integral defined below. Furthermore, the limits of

integration a and ¢ can be extended to —oo and oo respectively.

Lemma 4.2.2. [30] Let o, p € Ry, and g(p) € AC}[0,5], Then for 0 < p << following

relations holds:

n—1 o 7
(i) (130D§ ,9) (1) = g(p) — > 6”?—!(0)(“p 0> ;

J=0

(ii) (p120D% g) (5) = (1) {g(u) - nf % (%)J}

) J
_ _(1-pd
where n = [a] and 0) = (77 p%> .
Lemma 4.2.3. [31] Let « > 0, g(u) and uy(p) are locally integrable, nonnegative
and nondecreasing functions with u € [0,<], also assume that vi(u) be nondecreasing

continuous function, such that 0 < vi(u) < L where L is a constant. Furthermore, if

I

g(p) < wi(p) + p' v () /np‘l(u" —n)* " g(n)dn, 0<p<s.
0
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then the following inequality holds true,

Corollary 4.2.4. [31] Let a > 0 and assume that g(p), ui(p), and vi(p) are defined

in the same way as in the Lemma 4.2.3. Furthermore if g satisfies,

m
g(p) < ui(p) + p'vi(p) / (= n?)* g(n)dn, 0<n<u
0

on p € [0,5], then
9(n) < (i) Eay (p~ 01 ()T (a)u™) .
Where E, 1 (.) is a Mittag-Leffler function [49].

Likewise, the Gronwall inequality for generalized right sided Katugampola fractional

operator is defined as;

Lemma 4.2.5. [31] Let a > 0, p € [0,5] and assume that g(p), us(p), and va(p) are

defined in the same way as in the Lemma 4.2.3. Furthermore if,
S
o) < walp) + 9 "ual) [N~ gladn, 0< <
o

then the following inequality holds true,

g(p) < us(p) + /g

['(na)

X 1-na n
P (UQ(g)F(a>) — na—
> " ua(n)(nf — p)" " | dn.
j=1
Proof. To prove this lemma we define an operator,

Tg(p) = p'“uz(p) / g 7 — 1) g(n)dn.

and the sequence T7(j € N) as T =T, T9 = TT9~' (j € N — {1}). Therefore,



Which implies,

Next we claim,
W — )" g(n)dn. (42)

and T"g(11) = 0 as n — oo for p € [0,¢]. We prove the above inequality by induction.
Clearly the inequality 4.2 holds true for n = 1. Let us assume that it true for n = k as

well. i.e,

(v a)” ka—1
Trg(p) < pt=+ / (o OT)) (Fg(),f(i))) " = pf)" g (n)dn.

Now if n = k + 1 and using the fact that 7% = TT* we have,

Tkﬂg(u) k
< P —(k+1)« U k:-i-l/ 5/7 1 p 0‘1/5 %np—l(np _ fp)kailg(n)dnd&
_ (F<a)) v kol p—1 &P — P a—l1 S np_gp ka—1
_F(ka)(2())+/§ =) M” NS gl de

I

Now by changing the order of integration using the special Case of Fubini’s Theorem

(Dirichlet Formula) introduced by Whittaker [14] in 1965, i.e

x

/ (z — u)*du / (1 — 0)P P (, v)dv = / v / (= 1) ™ (1 — v)P F(u, v)du.

k / f p_ P ol pp_ ¢p ka-l
7000 < L (o [ | [ EEE T IS aeay
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Using the substitution u = % into the inner integral and evaluating it yields,

S

74900 < (F- ) o {Blka,a)or = ) Y

I

(P ()" ot e
ZW(U2(§))k+ /77 (n” — p?) "%

m
Therefore by induction method the relation 4.2 is true. Since vy(<) is bounded function

and lim % = (0 as denominator goes to infinity faster than numerator. Therefore,
n—oo

Trg(p) < p'= / ( —(U2(If()£$))nnp‘l(np —p”)"g(n)dn — 0 as k — oo

for p € [0,<]. Hence,

g(p) < ua(p +ZT]“2 )+ (1),

Z TIuy(pn) =us(p)

+ /: > £ _mgéz)r(&))nnp‘lw(n)(np — )" .

j=1

4.3 Generalized Riesz-Caputo fractional operators.

In this section we introduce the generalized Riesz fractional integrals and derivative

operators.

Definition 4.3.1. [15] For g(u) € C(0,<) the classical Riesz-Caputo derivative is
defined by,

BDg g(n) /|u "= g™ (n)dn,

1

= 5(*D6“,# + (=1)"Dy; )g(p).

Where .Dg,, and Dy . are left and the right Caputo derivative operators respectively.
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Following the same mechanism we generalize the Riesz fractional integral by means

of the definition 2.3.1 as follows,

Definition 4.3.2. Let g(u) € XP(a,b) and a, p > 0 then, for 0 < p < < the generalized
Riesz type integral is defined as,

-«

@) = s [ 76 =) gty

=0l7g9(p) + 0 1%g(1).

Accordingly, the Riesz-Caputo derivative [15] can be generalized by means of gen-

eralized Katugampola Caputo type derivative operators [5] as follows.

Definition 4.3.3. Let o, p € C with Re(a), Re(p) > 0 and if g(n) € XP(a,b) then for
0 < u < then the generalized Riesz-Caputo type derivative operator is defined as,

oz n+1 d n

RC Nna 1—
DP P
100 = s | s 0 ) oy

n—a

= 5 (D5, + (~1)"2D5) (),

where £Dg, and YD - are the left and the right generalized Caputo type Katugampola

derivatives [29] respectively.

ope — P / ' i (nl‘pi)ng(n)dn
* 0 I'n—a) J, (Mp_np)a_"“ dn ’

and

pa n+1 S T]p—l - d "
P — _ [ d
#7116 F(n—oz)/u (7 — a—n+1< n dn) g(n)dn,
where n = [a].

Since, for @« = 1 the right Katugampola derivative is the negative of the left
Katugampola derivative, so for integer values of «, the generalized Riesz type derivative

defined above comes to term with conventional definitions of derivative.

Lemma 4.3.4. Let g € AC}[0, ] with 0 < p <, then following relation holds true:

prs x

1 n (0% (0%
010 D) = 5 (GIED5,, + (=)L 2D ) 9(n). (*)
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Proof. Using the above definitions, we can write

1 S
6120 DI g(n) = 618 (205, + (—1)"CD} ) g(u)

- 20 S

= %g 122Dg ,9(1) + #813 (D49 (1)

- % (613 D5, +4 122D5,) 9(1) + (_21 E (prz g, +410005.) o(0)
_ % (GI122D5,, + (=1)"012D% ) g(p).

Remark 6. If 0 < a < 1, and for g(u) € C|[0,s]. Then relation in (*) becomes,

4IS5C DR () = 9(0) ~ 3 (9(0) + (<))

Proof. The proof simply follows by using n = 1 in the Lemma 4.3.4 and using the
Lemma 4.2.2, yields the required result. [

Theorem 4.3.1. Let o > 0, and {qu}j-‘;l be a uniformly convergent sequence of con-
tinuous functions on [a,b]. Then we can interchange the generalized Riesz fractional

integral operator and the limit. i.e,
(617t 65) () = (Tim §1205) (1)

Proof. The result follows taking into account the definition 4.3.2, the Theorem 2.3.4

and the fact that sum of two convergent sequence is convergent. O

Lemma 4.3.5. Let a > 0 and assume that g(p), ui(p), and vi(p) are defined in the

same way as in the Lemma 4.2.3. Furthermore, if
S
9(p) < ua(p) + pl““vz(u)/ (0" = p?)* " g(n)dn, 0<u<mn.
o
on p € [0,¢], then

9(1) < ug(p) Eay (p~ 0a()T(a)(s” — p?)?) .
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Proof. From Lemma 4.2.5,

S

g(p) < ug(p) + / ) : _m<11“}§o(72)r (a))nn”‘lw(n)(np - u”)nall dn.

I

j=1

Since uy(n) is nondecreasing function, therefore uq(n) < wus(p) for all n € [0,¢], and

hence

]

Lemma 4.3.6. Let a > 0, 0 < o < ¢ and assume that g(p), ui(p), ua(p), vi(p) va(p)
are defined in the same way as in the Lemma 4.2.3 and the Lemma 4.2.5. Furthermore

if g(p) satisfies the inequality,

m

g(p) < ur(p) + p'~ o1 (p) / 7 (= n)* " g(n)dn

0
S

+ up(p) + p' 02 (p) / 7 (= pP)* g (n)dn,

I

then the following inequality holds true,

9(p) < (ur(p) + uz(p)) Ean (p~02()T(@)(s” — p”)*) Eant (p~ 01 ()T () ") .

where Eq1 (.) is a Mittag-Leffler function.
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Proof. Conflating the Lemma 4.2.3 and the Lemma 4.3.5 gives,

g(p) < (ul(u) + up(p) + p' vz () / g n" (" — u”)o‘_ldn> Ean (p%v1(p)T () ™),

< (ur () +ua(p1)) oyt (P02 ()T (a)(s” = 1)) B (0~ 01 ()T (@) ) .
0

These Gronwall inequalities are helpful to compute the estimated difference of so-
lutions of two differential equations. Now we define the similar type of inequality for

generalized Caputo type Riesz-Katugampola fractional operators.

4.4 Main Results

For the upcoming existence results and discussion for the boundary value (4.1) we use
the following conditions. Let J = [0,¢] and C(J) be the space of all continuous func-
tions defined on J. We define the space X = {¢(u)|¢p(n) € C(J) and 2D* ¢(n) € C(J)}

o).

characterized by the norm ||¢(p)||y = max|¢(p)| + max |2
nedJ ned

Lemma 4.4.1. (X, ||.||y) ia a Banach space.

Proof. Let {¢;}52, be a cauchy sequence in (X, ||.||y), then clearly {#D* gbj}oo is also
a cauchy sequence in the space C/(J). Therefore both {¢;(1)}32, and {2D* ¢;( )}] o
converges uniformly, say u(u) and v(u) respectively in the space C'(J). We just have

to show that v = #D% u. For this consider.

PISED 6() — T v(p)
0+ % J
1-o* pDa p—1
_|r / o+¢J()1*n / nl*dn,
['(a*) / (e —mp) =« N (e —mp) =
M *
< P[RS g ) — vl
Y (e =) ’
e

(DG ¢(1) — v(p)] .

A —
~ pl(a* +1) pe
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Since {#D*" qﬁj(u)};io converges uniformly to v(u) for p € J.

Hence ‘ngngj@(M — 15 u(p)| — 0. asj — oo. ie, jlixalo PISTEDS () =PI v(p).
Now considering #Dg; (jli)r?o IO DY bi(1)) = 2DgPIe v(p) and taking into account
the Theorem 2.3.4 and the Theorem 2.5.4 we get, v(u) = 2D u(p). This completes
the proof. n

Lemma 4.4.2. Let o€ (1,2),a* € (0,1) and g € C(J), then the problem (4.1) is

equivalent to the following integral equation,

o(p) = % (¢o + &c) + (M) (2uF —<”)

2¢P

l—a () p _ cp ; .
+ %@g) 0/ ™"~ tg(n. 6(n), o DE"p(n))dn

=

pl—a y *
<p1€(a> O/ " =) g(n, 6(n), DG (n))dn

S
11—«

P p—=1i,.p pla—1 RC ma*,p
*rm»/” [ — 11" g(m, o), §° D ()l

= 200+ 0) + (). (4.3

where,

U(p)
(ps—d)uP _ pPpl~® fgn”’lg(mb(n),é{cD?*"’<f>(n))
26P T'(a)sP

— 0

- o p_cp P_ePypl= % g(n,6(n),FC D" P () 1—o & P Lg(n,¢(n),FC D" Pg(n)
I B e

1-a fnpflg(n,as(n),é?CD?*~P¢<n>>dn,

P
(gp_np)l—a d77+ F(a) 5 (Mp_np)l—a M > 5

n> Wy

Proof. Let ¢(u) € X be a solution of the boundary value problem (4.1), then by
applying the generalized Riesz-type integral operator on both sides of equation (4.1)
and using the definition 4.3.2, the Lemma 4.2.2 and the Lemma 4.3.4 yields,

1

1 | 1 1 Pr—gP
2900) = 30(0) — o+ 5000 = 56() = ("=

p

5 )

l—«

= 16(&) /n”‘ll(n" — u”)|*g(n, d(n), D" (n))dn.
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or

Using the boundary conditions ¢(0) = ¢y and ¢(s) = ¢ into above equation we get co =
plds—d0) _ 20>~ j P~ Lg(n.6(n) £ DL ()
)s?

s 2—a RO pa’p
o T'(a R Dn. and ¢; = 2 ¢<p¢0)+2p = f 9(m,9(n). o) g

771 ap

Now again substituting these values of constants into the above equatlon we get,

5(1) = L0 + 0 L 2 “%ka/"pwm¢WMWD?wm»

2¢° ['(a)sr / (¢ —np) i
I
P [P rg(n, (). 8¢ D2 *p(n)) (65 — o) (1 — <)
(n? — ")t [ g(n, d(n),FC D¢ (n))
-+ F(oz)gp / 7]1_ap d77

L j n"~'g(n, $(n),5< D4 6(n))

(np _ Mp)lfa dn

o) =5 G+ 00+ (2o ) @ = )

I—a(yp P i .
%@g) / ™9 (n. 6(n), ¢ D" d(n))dn
0

~—r

11—« P
- [ =yt 00 80D ohan
0

-«
+fay [ = 1 0 000 £ o)
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Y1)
(be—d)p?  uPpl= % 1P lg(n,e(m),FCD2" P e(n) 1—a B P lg(n,¢(n),F° DS P g(n)
St - 555 Of (P —npyi=& dn + gy J T dn, >
- be—d0)(uf <P P_gPypl=e S g(n,é(m),BC DS P p(n) L=a S 0P~ lg(n,6(n).5C D2 2o (n))
: 02><(PH = + i F(ga)><pﬂ f gl—ap dn + pp(a) ;[ (npf:pﬂ_a dn, n > u,

Conversely, let ¢(u) € X be a solution of the fractional integral operator (4.3) and we
denote the right hand side of the equation (4.3) by ®(u). i.e,

D) = 5 (60 + 60) + ().

Now taking left and the right Caputo-Katugampola derivative on both sides of above

equation we get,

1 c — o
2D, 8(0) =5, 560+ 6) + o Weng (0

C0L9(s, 9(), 67D (s))

= 205, (1)
+2D8 618 g(1, (1), D" p (1))
=g, ¢(11), § D (1)) (4.4)

1 _
2D () =25 (3 o+ 6) + e (-

Pra RC na*,p
0189(s,0(s), 5" D2 PH(S)) , a
+ : P > gDu,c(up - gp)

+0D% AT (1, S(p), 7 DX Pd(w))
=g, p(1), D PP (1)) (4.5)

Here we have used the Theorem 2.5.4 and some simple calculation leads to the facts
that £Dg (1) = 0 and 2Dy (pu” — ¢#) = 0. Consequently from equations (4.4), (4.5)
and the definition 4.3.3 the required result follows, i.e.

(£D5,,2(1) + D5 @ (p)) = ¢ DD () = gp, G ¢ < D b (1)),

DN | —
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Now we present the existence and uniqueness results for the non-linear boundary

value problem (4.1). We define an operator 7 : X — X by,

7o) =5 (60 + 60+ (252 e <)

plfa(ﬂp_gp> / ap 1 a*,p
+WO/ 9(n, ¢(n)¢C DEP¢(n))dn

=

s [ = o) 5 D2 o)

S

11—«
* 1€<a) / 00" = 1| g, 6(n).g < DI d(n))dn. (4.6)

0

The Lemma 4.4.2 signifies that solutions of the problem 4.1 coincides with the fixed
points of the operator T'(¢(u)). Ahead of the the detailed existence results, let us have

the following consideration first.

(Hf) 1<a<2 0<a*<landg:[0,¢] xR xR — R is continuous function and
U(p) € L'[J,R,], be a nonnegative function such that U(u) < ¢(u). Further-

more ¢ satisfies,

N . b
|9(11, S(1), EEDE 2 d())| < p (a1 |6(10)] + as [EEDE P d()]) + =T (1).

where aq,a2,b0 € R,.

(HY) 1<a<2,0<a*<landg:[0,¢] xR xR — R is continuous function and g

satisfies, the Lipschitz condition, i.e.

l9(n, o1(n), FEDEP1(n)) — g(n, d2(n), §C D ¢s(n))|
< A1 ([o1(p) = @2(p)| + |69 D Po1(n)) — D P a(n))]) -

where 0 < \; < %max{Kl,Kg}.
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Let M; = rilg;({hl(u) Dha(p)] < dg} and M* = IB;LJX{f(/L) | f(p)] < di}, where,

ha(p) = P g — ol 1= 2azKprle—e"—Y

L 2¢PT(2 — o) P T(2 — a*)

2azpL K ppla—a®)  pplta’ o pi-a)
MNa—a*+1) (2 — a*)s?

and

Fp) =" 4 p® 4 (P — ).

Furthermore, let

S

<
K = s mas / PN — )2 U (), / 7010 ()
0 0

Ly = sup {max (€™ 4+ p™ + (¢ = up)“)} '
pnedJ

gﬂ(a_l)lup(l_o‘*) Iu(a_o‘*) gp(a_l) (gp — ’up>1_o‘*
I, —
2 = swlmad o S re — oy T e e s T Tlat IR = o)
<gp — :up)a_a* }]
MNao—a*+1)""

By means of local integrability of U(u), K* exists certainly. Define a set A, =
{6 €0 oll < v}, where r = {4max (|0 |go], 2%, KM ) L B2 (b). Then

manifestly the set A, is a closed, bounded and convex subset of the above defined

Banach space (X, ||.||y)-

Theorem 4.4.1. Assume that the condition (H?) holds then the problem 4.1 has atleast

one solution in A,.

Proof. We prove this result using the Schauder fixed point theorem. First we show

that the operator T : A, — A, is self mapped. Suppose ¢ € A, and for L € (0,1), the
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operator (4.6) satisfies (1) = LT(¢(y)), then from (4.6) and using the condition (H?*)

we have that,

o 1 s ¢ Mp
601 < [To(m)] <5160 +00)) + 122 0l
L 10— ad (e =)
2¢P
, <
ai1pp p—1/ p pya—l
+§pr(a)/n (” =n?)"" [é(n)|dn
0
) S
A2p p—17 p p RC nya*,p
0
b S 7
ph - o Jo-
T @0 (a) / NP =) N Ho(n)dn

[e=]
[e=]

I
a’p — o— [6%
+F2 /np Hpe — ) T [ECDE P () |dn
0

"

bp p=1( p pye—1

— U(n)d

+ o [ =y vy
0

S S

ai1p(s” — p*) / p—1 azp(s” — p*) / 1 |RC

- = 7 & d DL ap Da P d
0 0

% 0/ ™t U (n)dn + I?(lolz)) / 0’ — 1) ()| dn

I

_|_

S

azp p—1 2y a 1 RCDO‘ P d
+F(04)/77 (n K o(n)| dn

I

S
bp p—1(.p pya—1

- U (n)dn.

+ T ) /n (0 = )™ " U(n)dn

I
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S S

2a3 K pp? / 1 a-1 bpp” / 1 a-1
< |@s B P P _nP d P N U(n)d
< [ds] + [o] + oT(a) " (" =) "t @ ) " (<7 =n")" " Uln)dn
0 0
2asKp | b [
asfp P=1(,P — P\ g P / p=1(,p _ pp\a—1 d
T /n (" = nP)" dn + o) ) " (W =n?)" U (n)dn
0 0
S S
2a3K p(s” — p”) / po1 o, bp(s” — 1) / 1
= lip 4+ o L0 [ per=gy(n)d
T T LR v reverll I (n)dn
2a:Kp | b |
agis p p—=l( p _ ,.p afld 14 / p=l( p _ ,p OzflU d
T /n (n” — )™ dn + () ) " (0 = p?)™ " Un)dn,

ju j

where K = max (|¢(p)] ,
nelJ

FODX P (p)]).

) 25 K 1P DK™ 2a3K s’
To(u)| < 16,
‘ ¢(u)| < |os| + |0l + P (v + 1) * P " [ +1)

2a3K(¢? — p?)  2a3K(¢P — pP)”

PO (ar + 1) I'a+1)
n 3
bp p=1(, p _ opyo—l bp / —1 a—1
_ Un)d P=1(pp _ PV T () d
+ o [ = U+ s [ = U
0 H
bK* 2Kas

= ‘QSS‘ + ‘QSO’ + o + {gp(a—l) +Map + (gﬂ _ up)a}

['(a+1)

1 S

bp p=1(,p pye—1 bp / -1 a—1

— U(n)d P (P — p?)" U (n)dn.

+ i [ = U+ s [ = U
0 M

Since the functions p* and (¢ — p”)® are integrable, uniformly continuous and non-
negative for u € [0,¢], also U(pu) < ¢(u), hence by applying the Lemma 4.3.6 gives,

. 2BK*  2Ka o N b(sP — pP)™ bucr
[Tot] < {161+ lenl + T + it (st e s (00— )} ey (BE2E) s ()

bK*  2KazM* b(sP — pP)® bpP
< —_— E, —F | E,
_{|¢s‘+‘¢0‘+ P + F(a+1)} a,l( o a,l s

~ 20K*  2KasM*
[7o00] < {lo.]+ ol + 225 + S E2,0) <

Q,
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Also,

g (To)| <405, (5 0+00) + L2 (eg () + (

2gP

2a3p°0 DG, (1) \ (0
o IO K

bpa a* (o' « a* a bpa « «
+ (ngf:DO,,u(lup)) SIC U(:u) + 2a3p 5D0,,u8]uK + g_pro,ugluU(U)

Using the Theorem 2.5.4 and the Lemma 4.2.2 we get,

P 16— Gl w10 2ay o=

2¢rT'(2 — o) Ppl= (2 — a¥)

bpte =01 ()
[(2 — a*)¢?r

205, (To(n))| <

bp*™

+ LA
P

+ 2a3p° 015 K + —012 U (n).

PG — o U 205 Ky Qa0 K e

2¢PT(2 — a¥) ¢Ppl="I(2 — a*) I'a—a*+1)

bpl—&—a*K*lup(l—a*) bp1+a*
['(2—a)s% * ¢!I'(a — o

+

) /’7”_1(#’) — ) U (n)dn.

Since U(p) < ¢(p), and prd=2") prle="=1 are measurable and continuous functions
for 1 € [0,¢], therefore by using the assumption ¢(u) = LT(¢()) and the Corollary
4.2.4 we get,

* s a*b *
2D (To(w))| < MiEioae) (”gp e >ﬂ) < (47)
Moreover,
ZDu,c(T¢<“))‘ S5Dy,<(§(¢0+¢s))+TfDu,g(gp—up)ﬂLWﬁDu,g(g”—up)
bK* a* (e} a* « bpa a* 1o
+ §2p Q‘Dy,g(gp - /‘Lp) + 2a'3p iDy,gﬁlg K+ g_pf:Dth]C U(T])
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Using the Theorem 2.5.4 and the Lemma 4.2.2 we get,

. P e — ol (¢ — )™ | 203K p*" (8 — p#)' T
fDu,g(TWM)) S | S 0|( ) 3 ( )

2¢rT'(2 — %) ['(a)T(2 — a*)
bK*pa* (gp - :up)lia* ap ra—a* bpap a—a*

1"(2 _ O{*)§2p + 2a3p ,Uf[§ K + ?H1§ U(n)7

P b — ol (s — )T 25K p (P — )

2¢PT(2 — a¥) Ma)'(2 — a¥)
bK*pa* (gp . Mp)l—a* 2a3Kpa* (CP _ Mp)oé—a*

['(2 - a*)¢? MNa—a*+1)

S
bp1+a* o1/ p a—at—1
—_— - — ) U (n)dn.
+ S [ =y T Uy
0

Since U(p) < ¢(p), and (¢* — p?)*™* e L'[J,R,] for pu € [0,¢], therefore taking into
account the assumption that ¢(u) = LT(¢(p)) with L € (0,1) and the Corollary 4.2.4
yields,

oz*b
GP

fDZXTwﬂﬁwféﬂﬁE@ML1(p @p—;fff“) <7y (4.8)

From the definition 4.3.3 the inequalities (4.7) and (4.8) we have that,

5D (o) = 5

2DE, (T6(1) = D3 (To())| <7

Which implies T¢ € A,, that is the operator T : A, — A, is self-mapped. Next we
show that the operator (4.6) is continuous. For this let ¢1(u), p2(p) € A,, then we

have

‘chl(ﬂ) - T%(M)‘

o M / 7 g(n, ¢1(n), E°DE#d1(n)) — g(n, ¢2(n), §C D" * o ()|
—n@wo (P —nP)

p / ne! ‘9(777 ¢1(n), ch?*’p¢1(ﬁ)) —g9(n, p2(n), oRCD?*’p¢2(77))’

L(a) ) (ur —ne)' =

dn

l—«a

dn
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et / 9, 01(0), 6 D5 #61(m)) = 9,20, FDE 06|,

11—«
n P

0
. 103 jn’” 9(n, &1(n), 67D d1(n)) — g(n, czﬁz(n),é%cD?*’%(??))\dm

P
I'( (np — )=
In

A+ (=)

AT(a 1) }|9 Lo1(n), §CDE P pr(m)) — g(n, da(n), ¢ DX da(m))] -

Since ¢ is continuous on A,, hence for all u € [0,¢] there exists § > 0 such that
I¢1(n) = @2(n)|| < 4, and for any € > 0,
|g(777 ¢1(7])?§CD?*7P¢1<7]>) - 9(777¢2(77)7§0Dg*’p¢2<77))‘ < pF(—aﬂg Therefore

Tou(n) — Toa(r)
{<* + (" — p”)
p°T(a+1)
e, (P —p)"
< 4L x> "7
Syt T €
<E.

g0, 61(0). 5D 261 (n)) — g, da(n), FC D #u(n))|.

Likewise one can prove §¢Do"r (Té(1)) is continuous on A,. Moreover, we show that
the operator (4.6) is completely continuous. For this, let ny, 79 € J, with 1 < 1y, and
¢ € A,. Then

To(u) = To ()
_ 16— ool (o = 1)

P [(a)s?

(17 — ph)p' /np 'g (n(cb( )0 )D: Po(n ))d77
gP—nP

dn —

p' /77” "g(n, 9(n),6° D p(n ))d77

T(a) J (15 —me)' =

—a
1

n* " g(n, ¢(n),§¢ D ¢(n))
" aO/ W — )’

(M‘f—ué’)p”/g(n ,0(n),6 DX Po(n ))dn
n

[(a)g? l-ap
0

Lo j " Lg(n, ¢(n),£° D ¢(n)) o ple j " g(n, ¢(n),¢ Do) |

(e — )= - T(a) (e — )= ’

%51 w2
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< |¢ ¢0|( Ng)

2@3Kp /h

gP

bp(pi —

T'(a

/npl _naldn

0

() ) L n)dn
0

M1

+ 161(;«; 0/ {np‘l(u‘f —n7)

H2

pe )
p=1(, P
+ F(Oé) /77 (:UQ

— ") |g(n, ¢(n). &

— 0" (b — n")“‘l} l9(n, 6(n).6C D P (n

1 «
4 / l9(n, ¢
§P

DX p(n))|dn
© D ro(n))
1 ap ‘d77
n!

e

H2

(- u")l““} l9(n. @(n)." D" $(m))] dn
2

D g(n))|

H2
L /n’“ |9(n, ¢(n),§°
I(a) (e =)'
M1

— 1)

203 K" (p1y

dn,

—Q

—p5) bRy — p)

< |¢< - ¢0| (:ui)

gP

Fa+1)

2T ()

bp p—1¢,.p pya—1
o) /{77 (ki =)
0
VK H2
asp p—1¢, P ) a—ld I
T / (s =) +
M1
2K as(pf — pf)sP @D (uf — b)) K*
+
P<Oé -+ 1) gP

S
2K asp / { b1/ p  pri-a
+ [(a) n’(n” — uy)

B2

S
bp p—1/ p Ml—a
T (o) / {77 (0 = )

H2

H2
+ 2KCL3P/ np_l
L) J (=)

M1

11—«

dn

-

S U Mg)l_a}U(n)dn

Iz
bp 89 F2

p=1r7
+ / y p(qzadn
<’I'(a) (n? — p1)
H1

)|dn



Since U(u) € Ll[J R.], therefore the functions (np Yl — )t =P (uh np)(kl) U(n),

(np‘l(up n?)* U (n )) and (77” Y =) = (P — ) *“) U(n) are Lebesgue

integrable in 7, also (uf — p5)s” @Y, ¢ (uf — ) are uniformly continuous for pi1, po €

J. So we see-through that right hand side of the above inequality tends to zero as
R 5D (T () € D n(T ()| - 0 as
w1 — o for all py, po € [0,¢] with py < po. For this let us compute first the left and

the right Caputo-Katugampola derivative of the operator (4.6).

o (0 — gt pilen "~ g(n, 6(n),5< D é(n))
pD (T¢( )) - 2§p[‘(2 _ a*) gPF 2 — Oé* / gP — 77[’) o di
0
p-(eamet) T neLg(n 6(n) RE D" pg(n)
< d 4.9
and
a* _ p__ P 1—a*
pDa (T¢( )) (¢0 ¢C)(g :ul)

2¢rT'(2 — )

e (e — ) j 9(n,¢(n).5'“ D" (n))
¢"I(@)0(2 — o) nt-ar

dn  (4.10)

_|_

* S, _ a*
pt=(e=e?) / n°tg(n, (n).5¢ D" P (n)) i

Ha—a) (= pf)
H1

From the Definition 4.3.3 the equations (4.9) and (4.10) we have,

FOD (o)) = 5 (405, (To(m)) — D5 (To(m)))
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R W R
2 2¢rT'(2 — a¥)

o p — o* —(a—a*
pemen s )/n” g(n, $(n) £ DT 6(m) ,  p )
¢*T(a)T(2 — a*) (¢p —np) ™ I'a—a*)
0
gm0 £ D)) L p (0 = do)(sh — i)
1~(a—a”) g 2,T(2 — a*
() 2 - o)
* —a* S o*
PN — ) / g(n. 9(n) 5 Do) ;.
¢*T'()T'(2 — a*) ni-ar
* S _ a*
o pe) / " g(n, 6(n).5 D o)) |
T(a—ar) (g — iy e
H1
Therefore by using the above equation we established that,
o p(1—a™) p(1—a*)
RC ma*,p/T __RC pya*,p( P (QSC - (bO)(/J“l — M )
B (T () £ DE(To(ne))| < o)
pl—(oc—

+

26T (a)'(2 — a¥) “
0

plf(afa*) 7’1 { npfl 77pfl
+ —(a—a*) -
2= ) S (g —me) 7T (=) T

o) (st ) ey /np lg CD?*’pcb(n))dn
gp—np)

p1

/

0

} (. 6(m)6 D (1))dny

o k2 ot
N p' o) / " tg(n, 6(n).° D o)) |
% 1—(a—a*) n
20 (o — %) (15— 1°)
w1
o (6 = 00) { (7 — )™ = (2 = 1)}
* 4¢rT'(2 — a¥)
prleme {(gp — i) = (- 9(n, 6(n).§° D¢ ro(m) |
* 2T (@) (2 — o) / T 7
0
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* H2 _ a*

N peme [ g, ¢(n).5 DEo(m))

2T (e — o) o _ ,p\1—-(a—a*) N

(77 :U’l)
B
1—(a—a*) ; p—1 y p—1

P / n / n RC na*,p
+ - — o ———= ¢ 90, 9(n)0- D Pé(n))dn

e =a) | e — )= e — ) T "

2 M2

Using the condition (H7)

5D (T ()~ D2 (To1a))|

P | = ol ("~ — s ™)
- 4gPF(2 — )
T T /np P
()2 — o)
0
bp1+a* (Mp(lfa*) _ Mp(lfa*) - o
+ ;g2pr(a) : /n” 1(§p—77p) 1U(77)d71

M1
1+a*
P (I3K { p_ p\a=a*)=1_p-1 o1/ p _p (‘X—O‘*)_l}d
+—I‘(a—a*)/ (17 = 1") =" (g =) U
0

H2 2
I4a~ 1+a*
P a3t as K p=lc P _ P (Oé—a*)—ld bp / p=1¢ 0 _ p (a—a*)—lU d
Moo /n (1 =) 1 5ot —a ) " (1 =) (n)dn
M1 1
{6 =)™ =@ =) agkp {(r =) = (o — )
* 4¢PT'(2 — a¥) + T(a)(a — o) (2 — o )gr(i-ata’)

bp'+” {(cp — i) = (s - MQ’)H*} / _
+ / =T () dn

2 (a)T'(2 — a*)¢?r /

asK p” {(c” — )0 — (o - ué)(“_o‘*)}
['a)(a — a*)['(2 — a¥)

_|_
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S

b e p=1(p p\(a—a*)-1 p—1/ p o\ (a—a*)—1
{w=or = up) =M = 1) Uy

T T (T (2 — )

H2
2
bp'+ p—1(rp _  pyla—a®)-1
— U(n)dn.
231
Since U(p) € L'[J,R,] and the functions =1 (u5 — n?) @71 (prle—e)=1y (),

(= ) ) et — =1y — ) @71 (1)) are Lebesgue integrable on [0, ],
so the right hand side of the above inequality tends to zero as p; — 2. Hence the set of
operators T'A, is equicontinuous. Also T4, C A,, implies T'A, is uniformly bounded.
Henceforth, T is completely continuous and thus Schauder fixed point theorem assures
the existence of atleast one fixed point of the operator (4.6). Hence taking into account

the Lemma 4.4.2 completes the proof. m

Theorem 4.4.2. Assume that the conditions (H}) and (H3) hold then the equation
(4.3) comports as a unique solution of the Problem (4.1).

Proof. To prove this theorem we use the Banach fixed point theorem. For this first
we necessitate to confirm that (4.6) is a self mapped operator and afterwards we show
that T satisfy the contraction mapping principle. Since, we have shown in the Theorem
4.4.1 that, To(u), F D #(T¢ (1)) € A,, so the operator T satisfies the self mappedness
property under these conditions. Hence, the only stipulation that we need to verify

here is contraction. For this consider,

Tou () = Toa(p)

. ) p ol ; p—1
< ‘9(7% ¢1(77)70RCD? Po1(n)) — g(n, ¢2(ﬁ),§cD? ’p¢2(77>>‘ {M : / (gPi a1

C(a)sP / n°)
(=) |1 Pl
() / (ue —ne)' = dn+ ['(a)s? 0/771_°‘pdn i I'(o) / (nP — M”)l_adn}
_M (chl(u) G2(p)| + [FCD 21 (n)) — FED 2o (m))]) (s + po + (¢ — pP))

pel(a+1) ’
< 2 610) — 6t
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where K = %(fﬂ). Moreover,
5D (g (1)) — 5D (T ()|

_ peme e / "~ g(n, 61 (1), EED2 2 1(n)) — g, da(n), EED2" 265 (n)))|
2 PT(a)T(2 — a¥) J (¢P — 1P)

dn

-«

+ dn

prtem / 77 g(n, o1 (), D1 (n)) — 9(n, da(n), 7D P5(n))|
2T(a —a%) (e — ey~

pl=(@=a)(¢r — M” / |9 0, 01(n), FCDPh1(n)) — g(n, ¢2(77)>(])%CD?*”]¢2<77))}
2¢rT ()T (2 — a*) nl-ar

dn

+ dn,

1—(a—a*)

pl ) / 177" g(n, 1(n), §EDP¢1(n)) — g(n, da(n), §C D P(n))]
2l (a — o) (nP — pe)

7
p(a*fa)gp(a l)lup( )

S A 20 (a + 1)F(2 o)

(a*—a),, (a—a* ) )
me £ Y (|¢1( ) = da(p)] + |6C D21 (n)) — 6/C D e (n))])
p(a*—a)gp(a 1)(§p _ HP)

2N+ DHI(2 — a¥)

(a*=a)(-p _ , py—C" ) )
i (10100 = a0+ D2 76 (1) = 5D ()

_ j(_ lé1() = G2

where Ky = —L Therefore,

(I91(1) = Ga(w)] + |67 D hr(m)) — 5D Ppa(n))])

+ M\

+A1 (|¢1(M) = &)l + [ D du () — ¢ D Pd2(n))])

+ M\

T6u() — Ton(un)] < 2% 16n (1) — (i)

where, M = max(K;, K3). Thus Banach fixed point theorem assures the existence of
a unique fixed point of the operator (4.6). So in consequence of the Lemma 4.4.2 we

concluded that (4.3) is the unique solution of the boundary value problem (4.1). [

Lemma 4.4.3. Assume that 1 < a <2, 0< f* <1l andg:[0,1]] x RxR — R is

continuous function, furthermore g satisfies,

|9(1, &), §9 D PH(1))| < ag + ag max |¢(p)| + by max [ Do (p)] -
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where ag,ay, by € Ry. Then the solution ¢(u) of (4.1) exists in A,.

Proof. The result follows from the Theorem 4.4.1. m

Lemma 4.4.4. Assume that 1 < o <2, 0< f* <1l andg:[0,1]] x RxR — R is

continuous function, furthermore g satisfies the following condition,
a* pa
|90, $(1), 5 D ()] < o 12wl
Then the problem (4.1) has atleast one solution in A,.

Proof. Let a; = as = 0 and U(u) = |¢|, then taking into account the Theorem 4.4.1
the result holds. O

Example 4.4.5. Consider the following fractional differential equation

7
RC 12 _ |u]
o Di"ulp) = i p € [0, m].
uw(0) =0,  u(m)=1.
Where g(p,u) = Wﬁ, a =1 and ¢ = 7w Also since, ||g(p,u) — g(p,v)|| <

A1 ||lu — v with Ay = 1—16, Therefore the Theorem 4.4.2 assures that the boundary value

problem has a unique solution on [0.7].

4.4.1 Dependence of Solutions on the Parameters

The stability analysis of fractional differential equations has been carried out by many
mathematicians. For detail one can see [2, 33, 34, 35| and the references therein. The
solutions satisfy various type of stability, continuous dependence on initial data is one
of them. This section demonstrates that solution of the problem (4.1) depends on the
parameters «, ¢g, ¢. and g provided that the function ¢ satisfy the conditions (H7) and
(H%). Continuous dependence of solutions on the parameters indicates the stability of

solutions.

Theorem 4.4.3. Assume that ¢1(n) be the solution of the BVP (4.1) and ¢2(n) be the

solution of the following problem,

{ FOD2=P(p) = g(p, (1), D Pd(w)), 1€ [0,¢],
#(0) = o,  P(s) = ¢.

where, l <a—e<a<2 0<a* <1, andg is continuous. Then ||¢p1 — ¢2| = O(e).
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Proof. Using the equation (4.3) we have that,

|01(1) — @2(p)]

< |g(n, o1(n),5° DE*da(n)) — g(n, da(n)§C DX o)) | { (€% + u® + (2 = p)")

pT(a+1)

(gp(afs) + 'u/p(afg) + (gp — Mp)ais)

* pl(a—e+1) b
COP 4 1P 4 (P — pP)® cPla—e) 4 ypla—e) 4 (cp 1 p)*—¢
SAl{( pr+ (= p)") 2 (" = p")") 6 — ol
Pl (a+1) pe—f (e —e+1)
= O(e).
Also,
[5€ D2 (60 (1))~ D #(a(1))] < M 161 — bl (H (1) + H(.)) = O(c).
where,
H(M) _ p(a*_a)gp(a_l)lu/p(l_a*) + p(a*_a)ﬂ(a_a*)
Al'(a+1)I(2—a*)  2I'(2—a*+1)
+ p(a*_a)gp(a_1)<gp — Mp)l_a* + p(a*_a) (gp — ,up>a_a*
2l (a+ DHI(2 — a¥) 2l — a* + 1)
and
(a*—a—s)gp(a—s—l) p(l—a*) (a*—a—¢) ,,(a—e—a*)
Hip,e) = - T o
2l —e+ 12 — ax) 22 —a*+1)
" p(a*_a_a)gl)(a_a_l) (gp — Iup)l_a N p(o‘*_o‘_a) (gp — Iup>a_6_a
AM(a—e+1)I(2—a¥) 2 (a —a* + 1)
This completes the proof. n

Theorem 4.4.4. Assume that the conditions of the Theorem 4.4.2 hold and if ¢1(n)
be the solution of the BVP (4.1) and ¢2(n) be the solution of the following problem,

{ RODePG(1) = g(p, (1), 5 DX P(p)), e [0,].
$(0) = ¢o + €1, o(s) = Pc + €a.

Then, ||¢1 — ¢o|| = O(max{eq,e2}).

96



Proof.

|¢1(1) — d2(p)]
o et N (61 +€2)

B 2 2¢P
. L901,01(m)§° D 261() — gn, 62(m) £ D260 (67 + 7 + (" = 7))
pel(a+1)
(e1 +e)p? | (e1+e2) | M(s™ +pu™ + (¢F = p)")
< J——
ST Tae 7 AT(a s 1) 161 (1) — da(p)|
= O({gla 52)-
This follows the desired result. =

Theorem 4.4.5. Assume that ¢1(n) be the solution of the BVP (4.1) and ¢2(n) be the

solution of the following problem,

{ §CDEPo(1) = g, d(1) 6 D Pé(p)) + €, pu € [0,¢].
¢(O) = o, ¢(§) = ¢§-

where, 1l < a—e < a<2and0 < a* <1, and g is continuous. Then ||¢p1 — @2 =

O(e).

Proof. From the Lemma 4.4.2 we have that,

|¢1(M) - ¢2(M)|
< Lo, 61 (9).5° D 261(n)) — (1, ba() 52 D225 (m))] £
e(™ + p + (f = p)”)
pel(a+1)
< {0 (16102) — 62| + |FEDE" 261 (n)) — B D2 )| + )}

(S0 + p + (6P — p)%)
poT (o +1)
= O(e).

S 4 + (6P — p)”)
p*T (e +1)

}

(6P 4 + (¢# — p?)")
pel(a+ 1)

<

{Mllor — ¢l + ¢}

Moreover,

ORCD?*’p(Tgbl(,u)) - ORCDS*”)(T@(H)) < H(p) {1 ]|o1r — @2l + e} = O(e),

97



where
p(a 70‘)§p(a71)lup(17a ) p(a 70‘)#(0‘70‘ )

Mat+ )2—a)  A2—a +1)
p(a*_a)gp(a_l) (gp — Mp)lia* —I— p(a*_a) (gp — Iu/p>a7a*

H(p) =

_|_

2l (a+ DHI(2 — a¥) Al(a—a*+1)

This completes the proof.
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Chapter 5

Conclusions

This thesis contributes in the field of fractional calculus. Many mathematical prop-
erties of fractional operators are discussed in this thesis. A generalization of Riesz’s
fractional operators is presented. Some useful results and inequalities for new gener-
alized Riesz’s fractional operators are studied. Some generalized Gronwall inequalities
are derived that are helpful to compute the estimated difference of solutions of two frac-
tional differential equations. We proved some equivalence results for the nonlinear BVP
involving generalized Katugampola derivatives and coupled system of fractional differ-
ential equations involving generalized derivative operator. We proved the uniqueness
of solutions using suitable fixed point theorems and several mathematical techniques,
and discussed the stability of solutions by showing continuous dependence onto given
parameters. An instructive comparison with literature shows this thesis presents the
generalization of various results in the field of fractional calculus. Moreover, the results
presented in this thesis can be used in several directions, like diffusion process where the
diffusion rate at any position depends on the whole space so Riesz fractional derivative
can be useful in a sense that a-differentiable function needs not to be differentiable on
whole domain. For example the function f(z) = 323 is not differentiable at = = 0 but
it has a fractional order derivative everywhere. Although the physical and geometrical
interpretation of fractional derivative is the area that needs a lot more attention. The
author would like to describe the geometrical interpretation of fractional derivative

hereafter.
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