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Abstract

Differential invariants for linear and nonlinear ordinary and partial differential equa-
tions have been derived using Lie infinitesimal method. These invariants help in reduc-
tion of differential equations to their simplest possible solvable forms through invertible
transformations of the dependent and independent variables (point transformations).
We employ Lie infinitesimal method here to derive differential invariants for systems
of two nonlinear parabolic type partial differential equations. Canonical forms for the
considered systems are derived using obtained invariants which lead to solutions of the

systems of nonlinear parabolic type partial differential equations.
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Chapter 1

Introduction

Differential equations (DEs) initially appeared in the theory of calculus, developed by
Isaac Newton (1642-1727) and Gottfried Wilhelm Leibniz (1646-1716) in the seven-
teenth century. Newton formulated three kinds of DEs in 1671. Leibniz was the first,
who introduced the term DEs in 1676, in his letter to Newton and then utilized it in his
publication [1] in 1684. Since then, in many disciplines including physics, engineering,
economics, cosmology, epidemiology etc., the term DEs is frequently used to express

mathematical models.

An equation that attains derivatives is named as differential equation, which re-
lates certain function with it derivatives. In DEs functions generally represent physical
quantities while its derivatives express their rates of change. DEs must contain de-
pendent and independent variables. If in DEs dependent variables contain only one
independent variable, then the equations are named as ordinary differential equations
(ODEs). Whereas, partial differential equations (PDEs) are referred to those equations

in which dependent variables are functions of more than one independent variable.

There are numerous strategies to find the exact solutions of DEs, however these
do not address and solve all classes of ODEs and PDEs. In the nineteenth century,
a Norwegian mathematician, Marius Sophus Lie [2]|, developed a method named as
Lie symmetry methods for DEs to get their solutions. Lie’s method for integrating
the DEs is based on the groups of continuous transformations, known as Lie groups.

The significance of this method is that it is applicable to any class of DEs. Whereas,



neither the nature of DE nor the number of variables involved in the equation effects

application of this method [4, 6, 21, 23].

Equivalence transformations are those transformations which maintain the differ-
ential structure of the DEs i.e., it leaves the DEs form invariant. The set of all the
equivalence transformations makes a continuous group. Equivalence transformations
play a vital role in the course of the calculations of differential invariants. In 1770 two
semi differential invariants acquired by Euler in his integral calculus [24] and then, in
1773, Laplace [25] presented semi differential invariants for the linear hyperbolic PDEs
in his fundamental memoir on the integration of linear PDESs, recognized as the Laplace
invariants. Laplace invariants are those invariants which remain unchanged under a
subgroup of equivalence transformation corresponding to the dependent variable only,
therefore these quantities are named as semi differential invariants. In 1900, Cotton
[18] obtained semi differential invariants for the linear elliptic PDEs , known as the
Cotton invariants. Laplace and Cotton invariants remain conserved under the linear
changes of the dependent variable, which respectively, map the linear hyperbolic and
elliptic PDEs into themselves. Hyperbolic and elliptic PDEs can be transformed into
each other by the application of linear complex transformations of the independent

variables, as do Laplace and Cotton invariants.

Modern group analysis declares that differential invariants provide a powerful tool
for handling initial value problems, quantitative analysis of DEs etc. semi differential
invariants for linear ODEs were discussed in the 1870-1880 by J. Cockle [27], E. La-
guerre [28], J.C. Malet [30], G.H. Halphen [32], R Harley [34] and A.R. Forsyth [36].
The restriction to linear equation was necessary in their approach, as these calculations
were extremely lengthy in case of nonlinear equations. Indeed, when Roger Liouville
investigated invariants for nonlinear ODEs introduced by Lie, the direct method led to
70 pages of calculations. Lie pointed that all variational problems and invariant DEs
can be expressed in terms of differential invariants [37, 39]. He also declared that the
theory of differential invariants is based on the infinitesimal method. Later on, Ovsian-
nikov [13| and Ibragimov |7, 14, 16, 20, 33, 38, 43, 45, 46| systematically developed the

infinitesimal method to calculate invariants of the algebraic and DEs, known as Lie



infinitesimal method. This method is applicable to algebraic equations and DEs pos-
sessing finite or infinite equivalence group [5, 8, 10, 11, 15, 22, 26, 29, 31, 35, 40, 44, 47|.

In this thesis first chapter provides some basic definitions, theorems of symmetry
analysis and differential invariants. In second chapter, we review equivalence transfor-
mations and differential invariants of scalar PDEs by using Lie infinitesimal method.
In the third chapter we find the set of equivalence transformations associated with sys-
tems of two nonlinear parabolic type PDEs. In forth chapter, joint and semi differential
invariants for systems of two nonlinear parabolic type PDEs are obtained by using Lie
infinitesimal method. Then these invariants are shown to reduce such systems into
their canonical forms via transformations of the dependent, independent and only the

dependent variables. Last chapter concludes this work.

1.1 Lie Symmetry Analysis for ODEs

A symmetry group of a system of DEs is the largest group of transformations acting on
the space of dependent and independent variables that maps a solution of the system
of DEs into another solution. In other words, the solution manifold of the system of

DEs remains invariant under a symmetry transformation of that system of DEs.

1.1.1 One Parameter Group of Transformations

Consider m and w be independent and dependent variables respectively. A point
transformation

m = m(m,w), w = w(m,w), (1.1)

can be used to simplify system of DEs. A set of invertible transformations that depends

on an arbitrary parameter §

m = m(m,w;?), w = w(m,w;d), (1.2)

such that it contains the identity i.e., for § = 0, m(m,w;0) = m, w(m,w;0) = w,

and composition also belongs to same family. For example

m(m, w;0) = m(m,w; ), (1.3)

3



for some & = & (9,6), then the set of transformations (1.2) forms a group named as the
one-parameter group of point transformations. If the group of transformations (1.2) is
such that § is a continuous parameter, transformations are infinitely differentiable with
respect to the independent and dependent variables and g (5 ,0) is an analytic function
of § and 4 then it form a one-parameter Lie group of continuous transformations.
The one-parameter transformations (1.2) map one point (m,w) to another point
(m,w) in the mw-plane and when the parameter ¢ changes from some initial value, say
J, to some other value then the point (1m,w) moves along some curve. For different
initial points, different curves are obtained which can be mapped into one another
under the action of the group (1.2). The set of these curves, called the orbits of the
groups and can be completely described by the field of its tangent vectors X and vice

versa.

1.1.2 Infinitesimal Transformations and Their Generators

Consider one-parameter Lie group of transformations

m = m(m,w;?d), w = w(m,w;J), (1.4)
with

m(m,w;0) =m, w(m,w;0) = w. (1.5)
If we consider that ¢ is small, then we expand Taylor series of (1.4) about § = 0. Then

m = m(m,w;0)+ 56(;—?|60 + 0(6%),

W = w(m,w;0)+5g—?|50+0(52). (1.6)
Assume that
on. ow
§mw) = Seloco.  m(m,w) = S5l (17)

after using (1.5), (1.7) in (1.6), we get

m = m+6E(m,w) + O(6%),
W = w+on(m,w)+ 0. (1.8)

4



The above equation can also be written as

m = m+6Xm+ 0(5?),
W o= w+6Xw+ O(6?), (1.9)

where the operator X is given by

0 0

The operator X is called infinitesimal generator of (1.1). It is also known as symmetry
operator having ¢ and n as its components that are called infinitesimal coordinates. It
indicates that by repeating the application of infinitesimal transformation one can get
finite transformation which is an alternative way of expression that the integral curves

of vector field X are the group of orbits.

Example 1.1.1. Corresponding to one-parameter group of rotation the infinitesimal

transformations
m = mcosd — wsind, W = msind + wcos 6, (1.11)

gives the associated generator

0 0
X = —w%—l—ma—w. (1.12)

Example 1.1.2. Infinitesimal generator for the group of translation is

0
X=— 1.13
am Y ( )
from (1.13), we have
om -1, 20— (1.14)
55 19=0 = L g =0 = U .
it gives the infinitesimal transformations of the form
m=m+ 9, W= w. (1.15)



1.1.3 Extension of Point Transformations and Their Symmetry
Generators

To apply a point transformation (1.1) or (1.2) on a differential equation we require
an extension or prolongation to include all the derivatives. For instance consider the

following n-th order ODE

_dw

I D @ ™) — 0 m_dw
(m, w,w™ W, .. w'™) , w o

(1.16)

a0 = di(m,w; J)
dm(m,w;0)
_(0w/ow) w + (9w /Om)
(Om/ow)w™ + (Om/om)

dw™ (m, w, w"; )

~2) _
‘ dim, ;)
= (aw(l)/aw(l))wfz) i (aﬁ](l)/aw)fﬂ(l) + (9™ /Om) = W (m, w, w?, w?; ),
(0m/Ow)yw® + (O /0m)
@D(n) B (aﬁ)(n—l)/aw(n—l))w(n) + .+ (aw(n—l)/aw)w(l) + (aw(n_l)/am)

(Om/ow)w™ + (dm/Om)
= ﬁ)(l)(m7 w7 w(1)7w(2)7"'7w(n);6)' (1'17)

Now, the n-th order extension of the infinitesimal generator (1.10) is given as follows

m = m+5(m,w) + O(5?) = m + X, + O(6?),
W = w+on(m,w)+ 0(6?) =m+ X, + O(6%),
@M = w4+ W (m,w, w?) + 0(6%) = wh + X 0 + O(6?),



™ = w™ 4 5™ (m,w,w®, . w™) + 0(6%) = w™ 46X + O(6?)(1.18)

Where nM_..., n™ are defined as

oM o™
) = 9% 520, -y '™ = 9% |6 0- (1.19)
Substituting the expression (1.18) in (1.17), we obtain
oM = w® 4+ 5" 4 0(8%) = 3—“’
_ dw+6dn+0(6%)  wh +6(dn/dm) + O(8?)
dm+0dE+0(02) 1+ 6(dE/dm) + O(62)
dn dg
= w® 2
() o (£Y] o w0
Similarly, for the n™ (m,w,w™, ..., w™) we have
dw(n—l)
~(n) 2
w " on™ 4+ 0(6%) = s
d (n—1) df
R U _om) [ as 2
w™ +9 [( - ) w (dm)} + O(69). (1.21)

Here 7™ (m,w,w™, ..., w™) is the n-th prolongation of n(m,w) [9]. The results are

summarized in the following theorem.

Theorem 1.1.1. For one-parameter Lie group of point transformations (1.2) the in-
finitesimal generator can be extended as follows [9]

dn dg
1) il AN 08 Rt -l
g dm v dm

Y

dn(nfl) d€
) = —wW = 1.22
n T —w o (1.22)

as the corresponding n-th order infinitesimal generator is expressed

0 0 0 0
n ¢ 2 - H_~- (n)_~
X & - +n " +n e +...+n MOk (1.23)

Definition 1.1.3. A point transformation

m = m(m,w;?), w = w(m,w;J), (1.24)



is termed as a point symmetry of the DE
H(m,w,w w? . w") =0, (1.25)

if and only if the DE remains same under the n-th prolongation of transformations
(1.24), i.e., it remains invariant and preserves the form of DE [41] that can be expressed
as

H(m,w, oM, w®, ... o™ = 0. (1.26)

In simple words we say, any solution of (1.25) can be mapped into a solution of (1.26).

1.1.4 Multiple Parameter Lie Groups of Transformations and
Their Generators

A transformation (1.2) can depend on more than one parameter such as
m=m(m,w;dy), w=w(m,w;dy). N=12 ..,r (1.27)

The transformation (1.27) is said to be r-parameter lie group of transformation if it
satisfies all properties of one-parameter Lie group transformations [9] with distinct dy.

A symmetry generator X can be associated with each parameter d by the following

expression
0 0
Xy =Ev— — 1.2
where
om ow
Env(im,w) = %!mzo, nn(m,w) = @‘JNZO- (1.29)

1.2 Lie Symmetry Analysis for PDEs

Consider m = (m;) and w = (w,,) be ¢ independent and p dependent variables respec-

tively. The derivatives of w with respect to m are denoted by

oW = wa,; = Di(w,), (1.30)
aQW = Wa,ij :DiDj(wa), (131)



and so on n-th term becomes

8(n)W = wa,hiz...ik = D11D12D1k (wa), (132)
where
0 0 0
Dy = —— 4+ Way—— + Waij—— + ...\ 1.33
8mi+w’8wa+w’]8wa7]~+ (1.33)

is the total derivative operator. Then a system of PDEs can be reported as
H (m, w, 0w, 9w, ...,0Mw) =0, c=12,..,s. (1.34)

To deal with symmetries of system of PDEs (1.34), we form the group of invertible

transformations that depend on the real parameter § which leaves (1.34) invariant.

1.2.1 Point Transformations and Their Symmetry Generators

For p dependent w = (w,) and ¢ independent m = (m;) variables one-parameter Lie

point transformations can be written as

m; = m(m;, wa;0),

Wo = Wa(mi, wy;0), (1.35)

since ¢ is a small parameter therefore series expansion of transformation (1.35) can be

written as
mi == m,+5§l(mz,wa)+0(52), 1= 1,27...,(]
We = Wa + 0Ma(mi, we) + O(62), a=1,2,...,p (1.36)
where
a % (9 «
§ilmiwa) = S lsco, malmiwa) = 5250, (1.37)
The infinitesimal transformations are generated by an operator of the form
0 0
X =§— y—. 1.38
§i g g, (1.38)



Theorem 1.2.1. For a one-parameter Lie group of point transformations (1.35) the

nth extension of the corresponding infinitesimal generator (1.38) is given by

0 (n) 0

0 0
X" = —— o m_=Z S 1.39
¢ om; K Ow, o awa,i T Maiain awa,ilig...ik’ ( )
where
1
77&,2 = Dﬂ)a — wa,jDigju
n n—1
,r]gc,i)lig...ik - Dinn((x,ilig)...in,1 - wa7i1i2~~~in71Dik§j' (]'40>

1.2.2 Lie Point Symmetries

A one-parameter Lie group of point transformations (1.35) is called a Lie point symme-
try of a system (1.34) if and only if the system remains invariant and can be elaborated

as
H (th, w, 0w, 9w, ..., 0"™w) = 0, o=1,2..5s. (1.41)

In other words, the solution manifold of the system (1.34) remains invariant under the

transformations (1.35).

Theorem 1.2.2. A one-parameter Lie group of point transformations (1.35) with the
n-th order extended generator (1.89) is said to be point symmetry of the ststem (1.34)

if and only if [9]
XM H (m, w, dw, *w, ..., 0™ w) = 0, oc=1,2,...,s (1.42)
whenever

H? (m, w, 0w, w, ..., 0™ w) = 0, c=12..s.

1.3 Equivalence Transformations

Equivalence transformations are invertible transformations that preserve the differen-

tial structure of the equations. One-parameter Lie group of point transformations
m; = m(mi, wa;d), 1=1,2,....q

10



Wo = Wa(mi,wy;0), a=1,2,....p

Pl = Pl(mi,wa,Pl;é), l:1,2,...,7". (143)

is called one-parameter Lie group of equivalence transformations if it maps a system
of DEs into a system of the same family. According to Ovsiannikov [42], an equiva-
lence transformation is represented by a generator of continuous equivalence group of
transformations behaving in the expanded space of dependent variables, independent
variables, functions and their derivatives (arbitrary coefficients of the DEs) which does

not alter the form of the equation under investigation.

Equivalence transformations play very important role to classify the DEs , where
the nature of transformations help to characterize the DEs. In the theory of invariants,
equivalence transformations are also used. Derivation of equivalence transformations
for the class of equations under consideration is the first step towards determination
of differential invariants. The set of all equivalence transformations of a given family
of DEs forms a group which is called the equivalence group. The method used here
to derive equivalence transformations is called infinitesimal method. System of PDEs
may involve arbitrary functions P;, thus the equivalence operator X is written in the

following form

) 0 = 0
X—&—+naa—%+;m&—w (1.44)

8mi
where functions &;, 1, represents independent and dependent variables, while p; express

arbitrary functions that appears in DEs.

Lie Infinitesimal Method
We consider an example here to illustrate Lie infinitesimal method, we take a well

known Korteweg-de Vries equation [19] which is given as
Wy + Wess + wws = 0. (1.45)
The operator corresponding to this equation is of the form

X =& (mys, w)i + &(m, s,w)2 + n(m, s,w)i (1.46)

om 0s ow
11



Equation (1.46) is a symmetry generator of (1.45) if
X[S] (wm + Wsss + wws) ‘wm:fwsssfwws = 0.

For this case the third prolongation of operator (1.46) is

3]_§i+£8+i+ a+sa+ssa+sss
1 2 778 n" dw,, U@ws n D, n

(1.47)

(1.48)

(1.49)

Owgss
where
" = Dp(n) — wnDn(&) — wsDn (&),
n® = Ds(n) —wnDs(&) — wsDs(&2),
n” = Di(n’) = wmnDs(&1) — wsDs(&2),
n** = Ds(n*) - Ds(fl) —wsDy(&2),
and
D,, = i+wmi+wmm 0 +wmsi+ ;
om ow Ow,y, Ow,
D, = i—I—wsi~|—wm 0 + Wgs 0 + ..,
om ow ow,y, Ow,
which provides
"= N+ Wn(Mw — Em) — WaELw — Webom — Winwsaw,
Nt = ns+ws(ny —&a5) — w§£2,w — Wnéis — WnWs&1 w,
N = Nss + 2WsNsw — Wil ss — 2WinWs&1 s — Weo 55 — 2W2Es sy + WMo
~ W WL = W — 2Wmns€1s = 2WmstWs€1 + WesTl — WesWmEiw
—2Wss2,5 — BWssWs&2w
0% = Mgss — BWnW2EL sww — W WsWes&1 ww + 3WssNsw — 3Wimsli s

2 2 3
+3wsn1,ssw - wmgl,sss - w8£2,sss - 3w5§2,ssw + 3w5nsww - 3ws£2,sww

_3wmws£1,ssw - 6wmsws£1,sw - 3wmwss£1,sw - gwswssélsw - wmwsssgl,w

3 2 2
_4wswsssé2,w - wmwsél,www - meswsgl,ww + 3wswssnww - 6wsswsé2,ww

3 4
_3wmswss§1,w - 3u}sU)mssgl,w - 3wss§2,ss + W Nwww — ws§2,www

12
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_Swmssfl,s + WsssThy — 3wsss§2,s- (150)
After applying third order prolongated generator, the determining equation (1.47) gives

77m + T’SSS + wsn —l— wns|wm:_wsss_wws - O (]‘5]‘)

Substituting (1.50) in (1.51) and replacing w,, with —(wsss + wwy). Afterwards, coeffi-
cients of WyssWs, Winss, W, WeslWs, Wys, Wss, Ws and constant terms gives the following

system of linear homogenous PDEs

S1w =0,

15 =0,

S0 =0,

Nww = 0,

Nsw — &2,55 = 0,

—382,s + &1m =0,

Mssw — E2,555 — WE2,s — Som + WM + 1 =0,

Msss + N + wis = 0, (1.52)

that generates

361

& = —m + C2,
¢
§ = cm— 515 + cs,
n = cw+cy, (1.53)

when solved, here ¢; for i = 1,2,3,4 are arbitrary constants. The expression (1.53)
is termed as an equivalence transformation for equation (1.45). The corresponding

generator becomes

3 0 0 0
X = (_%m+02)a_m+<62m_%8+63)&+(61w+64)a_w7 (154)

which can separately be written as

0
X, = 2
! om’

13



X2 - 887
0 0
X3 = mg—i‘a—w,
3m 0

w—-. (1.55)

1.4 Differential Invariants

Invariants of a DE are mathematical expressions written in terms of its coefficients,
while differential invariants are those that also involve derivatives of the coefficients.
Differential invariant of DEs remains invariant under the group of equivalence transfor-
mations and satisfies invariance test (Infinitesimal criteria of invariance). A differential

invariant of order r can be expressed as
J(P;,0P;,0°Py, ..., 0"P)), (1.56)

where P, represents coefficients (arbitrary) of the considered DEs and 0P, are their
partial derivatives. Given mathematical form of the criteria for zeroth order invariants,

we employ X that is given in (1.44) in the following equation
XJ(P;) =0. (1.57)
To get first order differential invariants we extend X once and apply
XU P, oP) = 0. (1.58)
Likewise, r-th order differential invariants have the invariance condition
XMy, 0P, Py, ..., 0'P)) = 0. (1.59)

For reader complete extension procedure is given in later sections e.g., (2.1.2).
Differential invariants play an essential role in converting DEs into canonical and

integrable forms. In order to deduce differential invariants for a DE, one has to obtain

the associated set of equivalence transformations. Once the differential invariants of

a DE are obtained then one can attempt reduction of DE into its simpler forms. For

14



instance these invariants can be employed to linearize nonlinear DEs. If differential
invariants for any two DEs are same then it guarantees that they are mappable into

each other through point transformations.

Differential invariants have two major categories. The first one is joint differen-
tial invariants which are derived under transformations of both the independent and
dependent variables. The invariants which are obtained under the transformations of
only the dependent or independent variables separately, are known as semi differential

moariants.
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Chapter 2

Equivalence Transformations and
Differential Invariants for Scalar PDEs

A general second order scalar linear PDE with two independent variables m and s is
of the form

AWy + DWys + cwys + dw,, + ew, + fw = g, (2.1)

where a, b, c,d, e, f, g are given differentiable functions of m and s. The discriminant is
defined by b — 4ac, and equation (2.1) can be classified with the sign of discriminant.
If b* — 4ac = 0, then (2.1) is called parabolic equation, which describe heat flow and
diffusion process. Hyperbolic equations satisfy the property b*> — 4ac > 0, which for
example describe vibrating system and wave motion, while elliptic equations describe
processes in equilibrium which satisfy the property v* — 4ac < 0.

This chapter is a review of literature where we present equivalence transformations
and differential invariants for scalar PDEs. The first section is on Laplace invariants
for linear scalar parabolic PDEs, in which study equivalence transformations and then
corresponding to those transformations we get semi differential invariants. Second

section deals with differential invariants of scalar nonlinear hyperbolic type PDEs.

2.1 Differential Invariants of Scalar Linear PDEs

In 1773, Laplace discovered invariants for linear scalar hyperbolic DEs and applied

in his theory of integration for hyperbolic equations. These invariants are termed as

16



Laplace invariants [17]. Cotton expanded Laplace invariants and obtained invariants
for linear elliptic equations [18] in 1900, named as Cotton’s invariants. Afterwards, N.
H. Ibragimov find Laplace type invariants for linear scalar parabolic equations by Lie

infinitesimal method in 2001 and fill the gap.

2.1.1 Equivalence Transformations
Consider the scalar parabolic equation with two independent variables m, s of the form
Wy + a(m, $)wss + b(m, s)ws + ¢(m, s)w = 0, (2.2)

where a, b, ¢ are arbitrary coefficients while the subscripts represents the partial deriva-
tives, i.e., wy,, = Ow/0m, etc. The equivalence transformation of (2.2) is an invertible

transformation
m:¢1(m,S,U)), §:¢2(ma37w)7 w :¢3(masaw)’ (23)

such that (2.2) remains the same, as for example in order, homogeneity and linearity etc
under (2.3). The set of all the equivalence transformations of (2.2) makes an equivalence
group and in order to find the continuous group by making use of infinitesimal method,

we apply the following operator

0 0

BT + M3

o (2.4)

0
+ 15—+ e

0 8
X =85+ &y 5

Tow

Here, the coordinates i, &, n are functions of (m, s, w) while p, ps, us are functions

of (m, s,w,a,b,c). The Lie invariance criterion for (2.2) reads as
x2 (Wi, 4+ awss + bw, + cw)|(2.2) = 0, (2.5)

where X is the second order prolongation of the operator (2.4) which is expressed as

0 0 0 0 0
X[2] - X m_“ s mm ms ss ) 2.6
i ow,, i ow, OWom, i OWys i OWgg (2:6)
By applying (2.6) on (2.2), we obtain
n"™ 4 an® + 00 + cn + pwss + pows + pswl 2.2y = 0, (2.7)
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where ™, n°, n* are obtainable from (1.49). Substituting these extension coefficients,
replacing w,, with —(awss + bw, + cw) and equating coefficients of wy,sws, Wy, WssWs,

w? and other terms in (2.7), we get

fl,w =0, fl,s =0, 52,w =0, Nww = 0, (28)
it implies
gl = 51 (m)7
52 = 52(m7 S)’
n = m(m,s)w+n(m,s). (2.9)

Subsequently, coefficients of wss, w, and remaining terms in (2.7) gives

H1 = 2a€2,s - agl,ma
Ho = a€2,ss + b£2,s + £2,m - 2a775w - bgl,m

Hs = CWNy — ANss — N — bs — W&y . (2.10)

2.1.2 Semi Differential Invariants for Parabolic PDEs

Laplace type invariants (or semi differential invariants) of scalar parabolic PDEs cor-
responding to the dependent variable, are reviewed in this subsection by the use of the
Lie infinitesimal method. In order to find these differential invariants for (2.2), we get
the following generator

0 0

0
X:M1%+M2%+M38_c’ (2.11)

by considering &;, & and all their derivatives equal to zero in (2.9) and (2.10), which

leads to

=0, o = 2an;, I3 = N + anss + bns. (2.12)

Using (2.12) in (2.11), gives

0 0
X = 2&175— + (nm + anss + b778)_

5 o (2.13)
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The infinitesimal test XK = 0, for zeroth order invariant K(a,b,c) gets to the form

0K
+ (M + anss + bns) —— = 0. (2.14)

5 oK
ans——
Oc

b
Equating coefficients of 7, 1, equal to zero, one obtains

0K oK
w0 a (219

As a result, there is only independent invariant K = a. Now to find first order differ-
ential invariants of the form K(a, a,,, as; b, by, bs; ¢, ¢, ¢s) for (2.2), one need to extend

(2.13) which has the expression

0 0 0 0
1] — il
X X+N2mab +N2sab +,UJ3maCm +/~L3,saCS' (216>
Where
N2,m - Dm(,UQ) - mem(gl) - bst<£2)7
H2s = Ds(,u2) - mes(gl) - bst(§2)’
H3m = [)m(,US) - Cm[)m(gl) - Cs[)m(£2)7
H3,s = Ds(,u?)) - Cmbs(fl) - CSD8(€2)7 (217)
and
~ 0 0 0 0 0 0
D, = — — —_— —+ o+ by, =+ by —— + bys——
m T G T mgg T Omm g, T mage, T Oy F Ommgp e ma
fotenZ e b em
ma mm aCm ms aCsu
~ 0 0 0 0 0 0 0
D, = — — + ..+ by— + byg— + b —
A PR I I P T
0 0 0
) 2.1
TG T Gy T g (2.18)
So the once extended generator reads as
0 0 0 0
XU = 2 —+2 —— 42 —
6”78 ab (nm + a’nSS + bns)ac + (anms + am778) abm + (anSS + 0’87733) abs

+(nmm + anmss + amnss + bnms + bmns)g
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0
+(77ms + AMsss + AMss + bnss + bsns)a_c (219>

From the invariance criteria
XK =o, (2.20)

equating coefficients of 1sss, Ns, Mins, Mms Nss, Ns t0 zero yields

oK 0K _ oK _,
oy des ob,,

0K 0K 0K

Te=0 =0 Gr=o (2.21)

Hence, there exist first order differential invariants only of the form K(a,a,,,as). Ac-

cordingly, we consider derivation of second order differential invariants by using

2 . . —
XK (a, Gm, @s, Qmms Qs Qs by by D, by D, Bsss €, Cony Cs, Coms Cinss Css) = 0, (2.22)

where
0 0 0 0
X[2} = X[I] mma. ms ;. ss 7 mma_
[ T e T T S,
0 0
+M3,m386— + ,u3,ssaT- (2.23)
Applying the same procedure as above, one first finds the equations
oK oK oK oK 0
8Cmm 7 aCms o acss o abmm -
0K oK 0K
=0 — =0 — =0. 2.24
Ob,ns ’ oc,, ’ Oc (2.24)

It follows that K = K(a, am, s, Gmm, Gms, Gss; b, b, bs, bss; ¢s). Afterwards, (2.22) gives

following system of equations

8K+28K_0 0K 0K
805 aabm - aabm abss -
0K 0K
aop, (@ = 05— =0,
0K 0K 0K 0K
(l% + am% + asa—bs (ass - bs)abss =0. (225)
One obtain following differential invariants after solving (2.25)
K = K(CL, am7a87amm7amsaass;Kl>7 (226>
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with
1
K, = ébzas + (A + Gy — ai)b + (aas — ab)bs — ab,, — a’by, + 2a’c,, (2.27)

which is termed as Laplace type invariant for parabolic equation (2.2).

2.2 Differential Invariants of Scalar Nonlinear PDEs

In this section, we observe how Lie infinitesimal method works to calculate differential
invariants for the class of scalar nonlinear DEs. Here first we derive equivalence trans-
formations corresponding to second order scalar nonlinear hyperbolic type PDEs, then
to determine joint differential invariants we get differential invariants under transfor-

mations of both independent and dependent variables.

2.2.1 Equivalence Transformations
Consider a second order scalar nonlinear equation|[12]
Winm = a8, ws)wss + b(s, w), (2.28)

where a, b are differentiable functions which involve first order derivatives. An equiva-
lence transformation of (2.28) is an invertible transformation of the variables m, s and

w, of the type
m=¢1(m,s,w),  §=da(m,s,w), W= psz(m,s,w), (2.29)

that map an equation of the form (2.28) into an equation of the same form. To obtain

equivalence transformations of (2.28), we use an operator

0 0 0 0 0
X =&+l +no Ty + ey 2.
“om T2 T ow T aa T (2:50)
The Lie invariance condition for (2.28) is
Xp](wmm — QWss — b)|(2.28) = 07 (231)
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where, X is second prolongation of equivalence operator (2.30) which have the form

0 0 0
mm SS . 2' 2
i OWomm, i OWsgsg (2.32)

0
XP =X

The invariance condition (2.31), after operating generator (2.32) can be written as

N —an® — pwss — fizf(2.28) = 0. (2.33)

Inserting ™™, n** and introducing the relation wy,,, = (awss+ b) to eliminate w;s, one
can easily find

§i1 = cam+cs,

&= &(s),

n = ciw+cym?® + esm +n(s),

pr = 2alzs — 2acy,

po = 2¢4 + a(wsbsss — Nss) + b1 — 2¢2). (2.34)
Where £(s), n(s) are two arbitrary functions and ¢; for ¢ = 1,2,3,4,5 are constants.

Hence, the class of equations (2.28) has infinite continuous group of equivalence trans-

formations which is spanned by the following infinitesimal operators |3|

0
X = ?,
Xy = 0’
X3 = m%,
Xy = s%,

X, =m0

Xr = m28%+2§b’

X, = §%+2af'%+a§”ws%,

X, = na%—an”%. (2.35)

Here, the prime represents differentiation with respect to s.
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2.2.2 Joint Differential Invariants for Hyperbolic Type PDEs

To acquire the differential invariants of order zero, i.e., invariants of the form J =
J(m, s, w, wy,, ws,a,b), one employ the invariant test X.J = 0, using operators Xj,
Xs, X3, X4, X¢ and determine that the zeroth order invariants does not depend on
m, s, w, w,, and ws. Therefore, J = J(a,b). Consequently, applying the invariant test
to the operators Xg and X7, one gets

% =0, % =0. (2.36)

So, equation (2.28) do not have differential invariants of order zero.

Differential Invariants of the First Order

In order to derive differential invariants of the first order, the following criteria is used
XU J(a,b, as, auw, , bs, bw,) = 0, (2.37)

where

0 0
XM =x+ M1im— + M2 i € {s,ws}. (2.38)

&zi 8bl ’
Here, 4, 2 is expressed as

His = Di(,ul) - &sDi(fz) - awSDi<nws)>

Hai = Di(,UZ) - bsDi<€2) - bwsDi(nws)a

with
b= 2l el van v L2
ST s %o assﬁas s da,, ~—~ 9s "0b
0 0

+bssa_bs+bswswws--'a
Y i++8+b2
T w, M 9a e, ey, T dw, | 0b

+bsu, J 0 4. (2.39)

ab, Vv

23



The invariance conditions X[II]J =0,..., XEJ = (0 are verified identically. Furthermore,

if one takes first prolongation X[71] of the operator X, then it can readily observe that

this prolongation matches with X5 itself, and so

n o, 0J _
X{lg =5 =0. (2.40)

It implies that
J = J(a,as, ay,,bs, by,). (2.41)

Similarly, holding in the first prolongation of the operator X5 with quantities, we get

3} 0 0 0
xWo o9 9 9 9 2.42
ST T 0a, b, "y, " Db, (242)
Now applying this operator on (2.41), we find
aJ aJ aJ 0J
xW = _q, — b= — ay — by, =0. 2.43
> T e o T e, Py, (243)
From the characteristics equations
das  dbs  day db,,
= = s — s 2.44
as by aw, by, (2:44)
it follows that J = J(a, Ji, J2, J3), where
bS w bw
Ji=—, J= . = Jy3=—, (2.45)
as s s

provided that ay # 0. The first extension of the operator Xg, in the form which we

require, is
XM = a% + asg—a‘]s + bsg—i + aws% + bws% =0. (2.46)
Employing this operator on the invariants (2.45), one finds that
XUy =xp =x g =o, (2.47)
and hence
XMy = ag—i = 0. (2.48)
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It acquires that the terms (2.45) present a basis of invariants (2.37) for Xy, ..., X7,
J = J(J1,J2,J3). Now we move on the first prolongation of the operator X,, and write

it in the following form

1" 8

"

a " " " a
XM= —p"aq, — — s by ) — — 1 Ay ——. 2.49
T AT el G AL LT N . (2.49)
The invariant test X,[71]J = 0, implies
" at] " " 1" a!] " a
ws s buw,) =7 ws = = 0. 2.50
N G, -+ (an 4 as+n s)astrnaéabws (2.50)

As n(s) is an arbitrary function and its derivatives ", " are functionally independent,
so (2.50) could be separated by equating coefficients of n and its derivatives to zero,

which provides the following system

oJ a oJ

Yo, " a, ajl -0
aJ aJ
w —J: J3 —1)=—| = 0. 2.51
aS(@as > 2{ 50, T Vg, (251)
It follows that J = J(w) with
B Jg—l :bws—as

= 2.52
J2 aws ? ( )

with a,,, # 0. Finally, we keep the first prolongation of the operator X, taking only

the essential terms

1" ! " a ’ a " " ’ a
X[l] — (92 —_ —. (2.
¢ = (208 +as§ +ayt ws)aas +3a,,& D, +(a€ +aw,§ ws+by & )abws (2.53)
Considering (2.52), one has
1 1" / a{]
7 _ —
X = = Jag" =26 (0, —bu)| 55 =0 (2.54)

Treating ¢ and ¢ as independent functions and accepting that a,, # 0, one obtains

oJ

5, =0 (2.55)
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Differential Invariants of the Second Order: With the objective, to attain dif-
ferential invariants occupying second order derivatives J = J(a,b,a;,b;, a;j,b;;) for

i, € {s,ws}. The second extension of the generator X is written as

0 0

xP2 = xl i— — 2.56
+ lul, J&IU + /1'2, ¥l 8bija ( )
with
Hi4i5 = Di(,ul,i) - as,ibi(€2) - aws,ibi(nws)v
H2.ij Dz’(ﬂzi) - bs,iDi(§2) - bws,i[)i(nws)- (2-57)

Repeating the same procedure, the following second order differential invariants are

derived
Aoy w
J4 f— a S 52 ,
(aws)
Jo = Ay g (g —as ) —AGw g Gsws —3(Awg )2 (bws —as)
5 =

[, (b, — @) + a5y — bugw,)]
s (AsQu,w, + 200,0uw0,) + 40w, [Gww,(Dw, — a5) — Aw,buwuw,]
[, (b, — as) + alasw, — b, )]
2(ay,)?[(as)? + (bw,)?] + a(ass — 2bgw,) + Qu,bs — Sagby,

) (@, (b, — as5) + aasw, = bu,w,)]? - (2.98)

Hence it is observed that, scalar nonlinear hyperbolic type PDEs (2.28) have no dif-
ferential invariants of zero order. However, it contains three functionally independent

differential invariants of first and second order expressed in (2.45) and (2.58).
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Chapter 3

Equivalence Group Classification for
Systems of Two Nonlinear Parabolic

Type PDEs

Equivalence transformations are the basic source to find differential invariants and with
the help of these differential invariants one can linearize nonlinear complicated forms
of DEs to linear or simple solvable nonlinear forms of DEs.

In this chapter, we address a major class and few special cases of systems of two
second order nonlinear parabolic type PDEs to investigate associated equivalence trans-
formations. Moreover, we also discuss linearity and nonlinearity of equivalence trans-
formations corresponding to our considered systems of nonlinear parabolic type PDEs.
To characterize on the bases of equivalence transformations, here first we study the
equivalence transformations for a system of nonlinear parabolic type PDEs which in-
volves first order derivatives in its arbitrary coefficients and then we consider its various

subclasses.

3.1 Equivalence Transformations

Consider a system of two second order nonlinear parabolic type PDEs with a, b, ¢, d as
its arbitrary functions
Wy, + a(m, s, w, v)wss + b(m, s, w, v, ws, vy)

= O,
(3.1)
U + c(m, 8, w,0)vgs + d(m, s, w, v, ws, vs) =0,
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where, m and s in subscripts denotes partial derivatives i.e., w,, = g—:’;, wy = %—15”,
2 2 . . .
Uy = a%, Vg = %, Weg = %Tg”, Vgg = %. An equivalence transformation of (3.1) is

an invertible transformation of the dependent and independent variables which maps

(3.1) into itself. Lie infinitesimal method engages the following operator

0 0 0
X = 51—+§2 +Tha + Mo+ o eyt s+ e (3.2)

ov da ob Oc ad’

to provide the set of equivalence transformations for (3.1), where & = &.(m, s, w,v),
me = nk(m, s,w,v), w = w(m,s,w,v,ws,vs,a,b,c,d) for k =1,2, 1 =1,2,3,4. For

system (3.1), second order prolongation of the above generator is needed that reads as

0 0 0 0 0 0
X2 = x s_~7 58 s 3.3
+nla +7728 +/’718 +/’728’US+771 awss ( )
where
no= Dm(m) - mem(gl) — ws D (&2),
ny = Dm(n2> - UmDm(fl) - vst(€2)>
mo= DS<771) DS(£1> - wsDS(£2>>
n = DS<772) DS(&) - USDS(€2)7
Ufs = Ds(”ig) Wins D (51) wsst(§2>,
ny° = Ds(15) — Vs Ds(&1) — vs55Ds(E2),
with
D, = i+w i%—v g—kw i—kv i_’_
™ Om "ow  "ow W, " Qv ’
0 0 0 0 0
Ds = 3 s A E ss A ss Tt 3.4
8s+w3w+vﬁv+w 8w5+v 8vs+ (34)
These expressions finally leads us to
nin = Mmm + UmM v + WmMaw — wmgl,m - wmvmgl,v - wfngl,w

_ws€2,m - wsvm€2,v - wmws£2,w7
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Ty = M2m + UmT2,v + WmMN2w — /Umél,m - wmvmgl,w - Uzngl,v

_Us£2,m - Umvs’SZ,v - wmvsflw?
= Mis + Vs v + WsMw — wmgl,s - wmvsfl,v - w§£2,w

_ws€2,s - wmwsgl,w - wsvs£2,vv
o = TMhas + UsT2,0 + WsTo,w — Umgl,s - Umvsgl,v - 0352,1)

_U5£2,5 - 'Umwsgl,w - wS”SfQ,’uH
nis - nl,ss + 2'05771,511 + 2ws€1,sw - wmgl,ss - ws&?,ss - wsvssglv + vssnl,v
_2w§€2,sw + U?nl,vv + wgnl,ww - wg’gZ,ww + 2wsvs771,wv - 2wmwsvsgl,wv
_mesfl,s + wssnl,w - 2wss€2,s - 2wmsvsgl,v - ws”?&é,vv - wmvssgl,v
_zwmswsfl,w - wmvzgl,vv - 3wsswsé—2,w - wsswmgl,w - 2’6030352,%

_Qwssvsglv - wmwgél,ww - mevsgl,sv - mewsél,sw - 2wsvs£2,sv>

ss 2
Ub! = M2;ss — 2wsvmvsgl,wv + 27}5”2,51} + 2w5n2,sw - 'Umfl,ss - Uséé,ss - 27}552,511

2 3 2
+vs772,vv - U3€2,vv - 2Ums€1,s + Uss772,v - 27}3552,3 + w5772,ww + wssn2,w
_ZUmUsél,sv - 2wsvm£1,sw - 2U)svséTZ,sw - wssvmgl,w - wssvs£2,w
2 2
) S ) 5 ) )
+2wsvs772 wv Um? 51 VU 2wsvs 52 wv 2Umsvsgl v 2Umsws€1 w

2 2
_Ussvmgl,v - 31}55”552,1} - 2wsvss§2,w - wsvmgl,ww - vsws§2,ww'
Lie invariance condition for system (3.1) is

X2 (w,, + awss + )|z = 0,

(3.5)
XP] (Um + CUgs + d)l(gl) = 0,
which expands to the following equations
771” + anfs + H1Wss + ,u2|(3.1) - O, (36)
ny' + ey’ 4 p3vss + palz1) = 0. (3.7)

Substituting 77", n;* in (3.6), 75", n5* in (3.7) and replacing w,, with —(awss + b), vy,
with —(cvgs + d), provides

nl,m - ws§2,m - (awss + b)'r]l,w + (awss + b)gl,m - (awss + b)(cvss + d)gl,v
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—(awgs 4+ b)2E10 — (CVss + A1y + Wi(CVgs + d)Eay + we(aWss + b)Er

+a[2W VN1 o+ Wes(AWss + b)E1 1w — 2030E0 .00 + 20s(atWss + b)E1 0 — WVEEn o
+2uw, 05 (a5 + D)E1ww + 205M1,50 + 20N s — WsEa,ss — 2052 50 + VI w0 + Vsl
FW2N 0w — WoE s — 2WinsE1s + Wesw — 2WesEas + (aWss + B)EL s + N1ss
—WyVss€ap — 2WinsVs€1,0 — 2WinsWsElw — 2WssVsa,0 — 3WsWso + V3 (AWss + b)E1 00
w3 (wss + D) &1 + Vss(0Wss + b)E1y + 20, (aWss + )1 w0 — 2ws0sE2 50

Hwss + po = 0, (3.8)

Nom — (CVss + )2y — (AWss 4 D)N2aw + (CVss + )1 m + (cvss + d)2£17v

—(cvgs + d)(awss + b)&1 1 — Vs€am + Vs(cvss + d)Eay + vs(awss + b)Ea
+[2wsvsM,w0 + 2WsVs(CVss + d)E1 1w + 20sM2,50 + 2WsN2 500 — 2WsVsEa 500

—20msVs€10 + 205(CUss + d)E1 g — 2WsVssE20 + WE(CVss + d)EL i — WesVsEr
—30Uss€2, + 2w (CUss 4 )€1 s — 2WsVs€lw + Wes (CUss + d)E1w + VEN2,00

+02(Cvss + d)E1po — 2WV2E wy — VsW2E iy — 2Umsis + Vss(CVss + d)E1

(Vg5 + d)€1 g5 — 2055€0.6 — V3E9 00 + VasTw — 202E2.50 + W2T2 000 + WesN2,00

—s&a,55 + Ma,ss] + Havss + pa = 0, (3.9)

respectively. After simplification coefficients of wg,ws, WssVs, Wins, WinsWs, WinsVs, Vss 1N

(3.8) and wg;, in (3.9), when equating to zero, yields

2a2§1,sw - 2a§2,w = 07
2&261,57} - 2a€2,v = 07

§1,s =0,

E1w =0,

§1,0 =0,

(ab—bc)éry + (@ — ), =0,

(ed — ad)&y 4 + (¢ — a)naw = 0. (3.10)

30



Solving (3.10), we obtain

which implies

&= &i(m),
L = &(m,s),
m = m(m,s,w),
ne = 1p(m,s,v)

Afterwards using (3.11) in (3.8) and (3.9), reduces these equations to

2
awsnl,ww + 2awsn1,sw + anl,ss - aws£2,ss - bnl,w - ws£2,m

+7]1,m - 2awss§2,s + awssgl,m + bfl,m + H1Wss + Ho = 07

2
CULT)2 v + 20@5772,511 + Clj2.ss — CUS&Q,SS - d772,v - US£2,m

+772,m - 26058&2,8 + Cvssgl,m + dgl,m + U3Vss + g = 0.

(3.11)

(3.12)

(3.13)

(3.14)

Now coefficients of wgs and remaining terms in (3.13) as well as the coefficients of v

and other terms in (3.14) provides

pr = 2alss — alim,

o = awsass + Ui + Wsom — QWML ww — Nim
—20WM 50y — QM1 55 — bfl,m

ps = 2c8as — C&im,

fa = CUsags + Aoy + Vilom — CVZN200 — Noim

_26U8n2,s’l) - C772,ss - dgl,m-

(3.15)

Here, &;, n;, p; characterize the infinitesimal changes in the dependent, independent

variables and arbitrary coefficients of considered system for ¢ = 1,2, j =1,2,3,4.
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Now we consider a few special cases of (3.1) to investigate associated equivalence

transformations.

Case-1
Consider a system of nonlinear parabolic type PDEs
W, + al(m7 S, w, U)wss + a?(ma S, w, U)USS + a3(m7 S, W, V, Ws, 'US) = 07

(3.16)

Um + bl (m7 S, w, U)Uss + bQ(ma S, w, v)wss + b3(m7 S, W, V, Wy, U}s) = 07

where a;, b; for i = 1,2, 3 are arbitrary coefficients. Second order prolonged generator
for (3.16) is

0 0 0 0 0
(2] v m m 58
X 51 52 7718 7728 h ow,, & 0v,, h OWssg

. " ) ) ) ) ) )
+/’72 av + H1 aal + H2 8@2 + /u38 + Ha—m7— abl + M5 ab + He 7~ ab (317)

where p; to pg are functions of (m, s, w, v, ws, vs,a;, b;). Operating generator (3.17) on

(3.16), we get
A a4 agns’ + pwes + povss + sl .16 = 0, (3.18)
Ny 4+ b1m5° 4 bani® + pravss + piswss + pi6|(3.16) = 0. (3.19)

Coefficients of wgsvss, WeswWs, Wiy in (3.18) gives the following expression after substitut-

ing nina 77?87 77587 and replaCing W, with _(alwss+a2vss+a3)a Um with _(blvss+b2wss+b3)

gl,w - 07 gl,v = 07 52,11] = Oa 52,11 = Oa 51,5 = 0. (32())
It implies
51 = fl(m),
§a = &(m,s),
m = 771(771,5,'11),'1)),
Ny = mne(m,s,w,v). (3.21)



Afterwards coefficients of wsg, v and remaining terms in (3.18), (3.19) gives

1 = 2a1&as + baniy — a2 — @11 m,

fo = 2a282s 4+ aoniw + 0171y — 1M1 — Q22 — @281 m,

3 = a1Ws2 55 + W&o m + A2V 55 + 31y + 3110 — alwim,ww
— AWM — ALV 0 — A2V — 201 WV — 202W VT2 000
—201WsN1 50 — 202WsN2 50 — 201VsT1,50 — 202VsN2,50 — Q171,55
—Q2M2,5s — Mym — @381,m;

pa = 201825 + asMow — baniy — 0181 m,

fs = 2b38s s 4 banay + a1n2, — 0172, — D21 — D2&1 s

fe = bawsloss + Vslom + b10sEa s + 3N + baaw — b2W2N1 s
— bW — B2V 00 — D1V 200 — 269WUN1 . — 2D1W VM2 0
—2b0WsN1 510 — 201WM2 500 — 209U5M1 50 — 2010572 50 — D21 ss
—b1m2,5s — N2m — 03§1,m- (3.22)

Here, uq to pg represents the arbitrary coefficients.

Case-11

A system of two second order nonlinear parabolic type PDEs

Wy, + A1 Wss + A2Vss + agwg + aqwsvs + a5v§ + agws + a7vs + ag = 0, ( )
3.23
U + b10ss + bowss + bgvg + bavswg + bg,wf + bgvs + byw, + bg = 0,

where a; to ag and by to bg all are functions of (m,s,w,v). For (3.23) we have second-

order prolonged generator of the form

<6 _ o o 9 .0 0 o 0
= 51 +52 4'771a ‘1‘772a +771m+77 . +7728 +772(%8
mm SSs a mm a 6 a a
T S Fomm " o THga T2,
0 0 0 0 0
+M484+M58—(15+M68a6+/~67a +M888+M9abl+uloab2
0 0 0 0 0
+'u11863 + 2 b, + 13— b + pa—=— Bbs + pis = ab, + fi6=— by’ (3.24)
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where p; to pye are functions of (m,s,w,v,a;,b;) for ¢ = 1,2,...,8. The Lie invariance

condition is given by

x2 (Wi + a1 Wss + A2Vss + A3W2 + asWVs + azV2 + agWs + azvs + ag)|z.23) = 0,

X2 (U + b1vss + bowgs + bgv:f + byv,w, + b5w§ + bgvs + brws + bg)|

which gives

3.23) = 0,

M A an” + agny’ 4 2a3niws + 2a5150s + agty + aanvs + asnyws 4 ag;

+M1wss + H2Uss + N3w§ + H4aWsVg + M5"U§ + HeWs + M7Usg + ,u8|(3423)

=0, (3.2

Ny 4+ bims® + bany® 4 2bsn5vs + 2bsmiws + bens + banivs + banaws 4 by 4 [1oVss

HH10Wss + f1107 4 H1aVsWs + p13w2 + [1140s + p15Ws + gl (3.23) = 0. (3.26)

Inserting 07", 05", 0, 3, n5°, n5° in above equations and replacing w,, with —(ajw,s +

A2Vgg + a3w52, + A4WgVg + CLSUE + AWy + a7V + a8)7 Um, Wlth _<blvss + wass + bSUE +

bvsws + bsw? + bgvs + byw, + bg), we obtain the determining equations. Coefficients of

Winsy WinsWs, Wi, WS in (3.25) provides

it implies
él = gl(m)v
52 = 52(m7 5>7
m = nl(m787w7v)7
ne = 1na(m, s, w,v)

Subsequently utilizing (3.27) in (3.25), (3.26) simplifies these equations
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. After the said



insertions, comparing coefficients of ws, vys, W2, W05, V2, ws, v, and remaining terms

provide

1 = 2a1&25 + baniw — a1§1,m — A2M2,0,

Po = Q2Miw + 202825 + 011y — @171 — A2M2,0 — A281,m,

ps = 2a3&as + b5y — Q1M ww — G2N2,ww — A3N1,w — AaN2,0 — A3E1,m,

pa = 2a4&os + baniy — 20111 w0 — 202M2,00 — 20301, — Q4T
—2a5M2,0 — @4&1,m;

fs = a5 + 205825 + b3sniy — Q10100 — Q2M2,00 — Q4N
—2a4M20 — a1 ,m,

pe = 12,65 + Eom + 011y — 201M1 6w — 20272, 50 — A7N2,0
—2a3m s — aa”o,s — a6&1,m — A652,s,

pr = 26265 + 71w + a782,s + b o — 201150 — 2027250 — A6N10
—a7Moy — 4M1,s — 205725 — A781,m,

pg = agMw + bsnl,u — A1M1,ss — 212,55 — AeT,s — A7N)2,s — Ni,m — asfl,m

Lo = QM2 + 2b1&2s — bamiy — 011 m,

Hio = 12 + Doty + 2628 s — b2 — baniw — 0261 ,m,

i1 = 5N + 203825 — bani ve — 01M2.00 — b37M2.0 — Dami oy — b3&1 m,

Hi2 = QN2 + 20482 s — 209m1 wo — 201200 — 20372, — 2b671 0
—bam w — ba&1.m,

iz = 32w + 05Ny + 26582 s — Dot ww — b1M2,0w — baM2.w
—2b5m 0 — b5&1,m5

pia = Ao + 018255 + b6o,s + Eo.m — 202M1 50 — 20172 60
—brM1 .y — bani s — 203m2.5 — b6&1m,

fis = N2 + brnoy + b28a s + 07825 — 26211 sy — 20102, 50 — b6M2,w
—brM1w — 2bsm,s — bana,s — b7&1m,

e = asN2w + bshow — bami ss — bima,ss — b71s — beTa.s — Nam — bs&im- (3.29)

35



Case-111

For a system of nonlinear parabolic type PDEs
Wy + G Wes + agwg + azws + a4 = 0,
(3.30)
U, + 01Vss + bgvg + b3vs + by = 0,

where all coefficients are functions of (m,s,w,v), second-order prolonged generator has

the form
0 0 0 0 0 0
X0 51—+€2 S T Mgy T gy T o g G
+538+“a+8+ a+ a+ a+a
Ui D, Up .., Ha Da; M2 Day M3 as 2z da, M5 b,
0 0
31
s Gy T s T g, (3:31)

Where 1 to pg are functions of (m,s,w,v,a;,b;). After applying generator (3.31) on
(3.30), we get

Ny + arn;® + 2aamiws + azng 4 pwss + pow? + paws + tal(3.30) = 0, (3.32)

m5" + bims® + 2bam5vs + b3nl + psvss + pev: + pi7vs + 5| (3.30) = 0. (3.33)

3 3

Coefficients of wl, wiv,, w3, v?w,, wsvs in (3.32) along with the coefficients of w,v,

RS

in (3.33) respectively gives the following expression after substituting n{", nf, 13", 15,
n5s, ns¥, as a consequence replacing w,, with —(ajws, + asw? + asw, + aq), v, with

—(b1vgs + bov? + byv, + by), we get

él,w = 07 fl,v = U, 62,11) = 07 61,8 = 07
52,1) = O; Ty = O; N2,w = U. (334)

The above equations implies

§ = €1<m>7
52 = £2<m75)7
m = m(m,s,w),



e = 772(m, S, U)' (335)

Further, coefficients of wy,, w?, w, and constant terms in (3.32) as well as the coefficients

of vy, v2, v, and constant terms in (3.33) gives

w1 = 2a1&2s — a1&1m,

po = 20282 — Q1M1 ww — @2M1w — @261,m;

ps = a1 + 382 + Eom — 2011 5w — 202715 — 31m,
Ha = Qa1 — Q1M,ss — @3M1,s — ym — G451,m7

s = 2b1§2,s - blgl,ma

He = 25252,5 - b1772,vv - b27]2,'u - b2§1,m7

pr = bi&aes + 0326 + Eam — 20172 60 — 20212, s — b3E1 m,

Hg = b4772,'u - 517]2,35 - 53772,3 —Mm — b4§1,m- (3'36)

Case-1V
A nonlinear system of PDEs of the type

Wy, + a1w§ + agvg + asw,v, = 0,
(3.37)
Um + bw? + bng + byvsw, = 0,
where a;, b;, for ¢ = 1,2,3, are functions of (m,s,w,v), the second-order prolonged

generator is written as

xXP = ¢ +§a+ A A A
- 1 2 Tha 7728 771 a nla 772 a /)728,05

0, 9
o, 00D,

0
f iy 5 3 3.38
+ 11 l—l—ug + 3 3+u4 b1+u5 ( )

Here 1 to pg are functions of (m,s,w,v,a;, b;). Applying (3.38) on (3.37), we get

777171 + 261177wa + 2&277;Us + ag?ﬁ’l}s + agngws
FpwE + pav;  pawsts| 37 = 0, (3.39)
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My + 2b1m5v5 + 2bamiws + b3njvs + banyw,
402 4 psw? + pgvsws| 3.3y = 0. (3.40)

Using 5", n§, 5", n5 in above equations and replacing w,, with —(a;w?+aov? +azw,vs),

U With —(b1v? + byw? + bzvsw,). After this coefficients of w?, w?, w,, v, and constant

terms in (3.39) and also coefficients of constant terms in (3.40) provides

it generates

51,10 = 07 51,1} - 07 62,11) - 07 52,1} = 07 gl,s = 07

52,777, = 07 M, = 07 M2,s = 07 Mm = 0. 2m = 07 (341>
51 = 51 (m>’
52 = §2<S)7
m = m (w7 ’U),
ne = ne(w,v). (3.42)

2

. 2 . 2 2 . .
Later on, coefficients w3, v, wsvs in (3.39), v, w3, vsws in (3.40) gives

M1
H2
3
Ha
Hs
He

Case-V

201825 + baniy — a1 0w — a3M2.00 — @1&1,m,

20285 s + oMy + 0111y — a3y — 202725 — 281 m,

2a382 s + b3 p — 201710 — 3M2,0 — 20272, — a3E1,m,

201825 + aanaw — b3ni e — bin2w — b1&1m,

20280 s + a1m2, + ban)2y — b2, — 26211 4 — 021 m,

asnNaw + 203825 — 201M2,0 — 262015 — 03100 — b3E1 .- (3.43)

For a second order system of nonlinear parabolic type PDEs

Wy + A1 Wss + A2Vss + A3 = 07
(3.44)
Um + blvss + b2wss + b3 = 07
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where arbitrary coefficients are functions of (m,s,w,v), we have following generator

X[Q]—§a+§a+ AN S L A
- Som 05 n ow 12 ov h Ow,, L OV, " OWgs
2y i e i e el (3.45)
2 Dves Mlaal M28a2 'u?’(?ag 'u46b1 M56b2 M6ab3- .
Employing (3.45) on (3.44), provides
'+ a4 agns’ + pWss + poVss + 3344y = 0, (3.46)
7751 + blngs + bgnfs + H4Uss + H5Wss -+ ,U6|(3.44) =0. (347)

SUbStituting n;nv 775n» nfsa 7758 and W, as _(alwss+a2,uss+a3)v Um as _(blvss+b2wss+b3)a

2 2

and equating coefficients of wgsvss, WssWs, Wps, W3, V3,

WV, Vs, W, in (3.46) to zero,

we get

2 ,ww = 07 M = 07 N2,00 = O, Mawe = 0, N2,wv = O, M,sv = 07
2772,81) = 62,857 M,sw = 07 2772,311} = 62,887 52,m = 0. (348)

Solving these equations, we find

&G o= &(m),

& o= &ls),

m = film)w+ fa(m)v+ f3(m, s),

= L+ fo(m)o + fom,s) + 3w+ 1) (3.49)

Moreover, coefficients of wss, vss and remaining terms in (3.46), (3.47) gives

1 = 21825 + ban .y — @220 — @1&1,m,

fo = 2a282s + aoniw + 0171y — 171 — Q212 — @281 m,
M3 = asfiw + b3y — 1Miss — 212,66 — Nm — @3&1,m,
e = 2b1&a s + aonew — bamiy — b1&im,

ps = 2b2&s s+ banay + 120 — 01M2.0 — 0211w — b2&1 ms
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He = a3772,w + b3772,v - b2771,ss - 51772,55 - 772,m - b3§1,m- (350)

Notice that, here ny, 1, are linear in w and v.

Case-VI

Consider a system
Wy + A Wss + A2Vss = 07

(3.51)
Um + blvss + wass - 07

where all the coefficients are functions of (m,s,w,v). Second-order extended generator

for (3.51) has the form

0 0 0 0 0
2 ¢ 7 — - _
X 51 + 52 _I_ T 8 + 2 a + /’71 a + 772 avm
+ 0 + a 0 + 0 + 8 + 0 (3.52)
7]1 8 772 a 6 ay MH2=— a as M35~ ab Ha—— abg .

where p; to py are functions of (m,s,w,v,al, as,b1,bs). The Lie invariance condition in
this case is

X[2]<wm + a1 Wes + (121)53>|(3_51) = 07 (353)

X (0, + byvgs + bowss)|3.51) = 0. (3.54)

Applying the generator and replacing w,, with —(ajwss + agvss), vy, with —(byvss +
2

S

WesWs, VssVs, Umss vg, wyvs, W, and constants terms in

bywss). Coefficients of w? w

ss)

(3.53) along with coefficients of vs and remaining terms in (3.54) gives

f1,w =0, 51,11 =0, 52,w =0, fz,u =0, 51,5 =0 7w =0,
2,00 = 0, Mww = 0, M2,ww = 0, M wo = 0, N2,uv = 0,
2015w = 2,58 M2,5w = 0, Som = 0, M,ss =0,  Moss =0,
Mm =0, M,so = 0, 212,00 = &2, n2,m = 0, (3.55)

Solving (3.55), we obtain
& o= fl(m)v
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& = 152 + a5 + cs,
m = (cw+cq)s+ csw + cgv + e,

ne = (c1v+cg)s+ cow + c19v + 13- (3.56)

Here ¢; for ¢« = 1,2,...,11 are arbitrary constants. Thereupon, coefficients of wgs, v,

in (3.53) and vgs, wgs, in (3.54) provides

1 = 21825 + bani .y — @220 — @1&1,m

po = 202825+ a1 + 011w — @11 — Q2720 — A281m,

pz = 201825 + asnow — baniy — 0181 m,

pa = 202825 + banay + a1z — biM2.w — 21w — D261 m. (3.57)

As is evident from (3.56), both 7, 72 are linear in s, w and v.

Case-VII
A system of PDEs of the form

Wy, + A1 Wss + a2 = 07
(3.58)
Um + blvss +by = 0,

where ay, as, by, by, all are functions of (m,s,w,v), applying (3.52) on (3.58), provide
M4 a4 pwss + pi2@ss) = 0, (3.59)

Ny’ + bins’ + [3vss + ,U4\(3.58) = 0. (3.60)

Utilizing 07", n;%, 3, n5® and changing w,, with —(ajwss + a2), vy, with —(byvss + ba).

Coefficients of Wy, Ws, WssVss, WssWs, VssWs, Wins, Vss, W2, wy in (3.59) wy,, v2, vy in
(3.60) gives

fl,w = 07 51,7.1 - 07 §Q,w - 07 52,1) - 07 51,5 = 07

Mo = 0; Mmuww = 07 2771,sw - 527887 g?,m = 07

Now =Y, 2,00 = 07 2772,81) = 52,557 (361)
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which implies

& o= &i(m),

£ = &ls),

mo= film)w+ falm,s) + S,

me = fa(m)v+ f4(m,s)+§§2,s. (3.62)

With these coordinates, coefficients of wg, and constant terms in (3.59) along with

coefficients of vy, and remaining terms in (3.60) provides

M1 = 261152,3—@151,%

Ho = Q2w — A1M1,ss — ym — a2§1,m,
H3 = 2b1§2,s - bl&,ma
He = 52772,v - 51772,55 —M2m — 5251,m- (3-63)

Again the noticeable factor is linearity of n; and 7, in w and v, respectively.

It is identified that, for the systems (3.1), (3.16), (3.23), (3.30), (3.37) we get non-
linearities in the infinitesimal coordinates 7; and 7, with respect to w and v. Therefore
for such systems one can further pursue differential invariants which enable reduction
in nonlinearities of these systems. On the other hand, systems (3.44), (3.51), (3.58)
have linear form of equivalence transformations coordinates 7, and 7 in w and v, which

can not be used to linearize them, by driving associated differential invariants.
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Chapter 4

Differential Invariants for Systems of
Two Nonlinear Parabolic Type PDEs

In this chapter, differential invariants of systems of two second order nonlinear parabolic
type PDEs are studied by using Lie infinitesimal method. Here in first section we derive
joint differential invariants. Semi differential invariants under the transformations of
only the dependent variables are deduced in second section. Applications corresponding
to semi and joint differential invariants are also discussed in their relevant sections. In
the last section, different subclasses of these systems are investigated and characterized

them by using both the semi and joint differential invariants.

4.1 Joint Differential Invariants

In this section the joint differential invariants of system of PDEs (3.1) are derived under
the transformations of both the dependent and independent variables. For this system
the equivalence transformations are given in (3.12) and (3.15). Corresponding to the

equivalence transformations, we have an infinitesimal generator

0 0 0 0 0
X=L— . 4.1
51 +§2 PR e b i E e Ve e (4.1)
To deduce a zeroth order invariant we apply the infinitesimal test
XJ(m, s, w,v,a,b,c,d) =0, (4.2)
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which leads us to

oJ oJ oJ oJ oJ

R —_ —_— - 2 s m) 5 s82,ss b w
&1 o &2 55 T Moy ta, t (2a&2,s — a&y, )aa + (aws€a,ss + by,

oJ
+ws§2,m - aw?nl,ww - nl,m - 2aws7]1,sw - anl,ss - bgl,m)% + (2052,3
_Cfl,m)% + (CUS§2,SS + d772,11 + Us€2,m — CUT2.00 — N2m — 26”5772,511
oJ

- ss d m) N5 — O; 4.3

cne, &1, )8d (4.3)

This equation splits into the following equations
Jn=0, J,=0, J,=0, J,=0, —-J,=0 —-J;=0, (4.4)

obtained by annulling the terms with &, &2, 71, 12, M1.m, N2.m- Hence, J = J(a, c). Now

the terms with & ,,, &, provide the following system of two equations
—aJ, —cJ. =0, 2aJ, + 2¢J. =0, (4.5)
after solving the above system of equations we get zeroth order invariant
c
Jp=—. 4.6
=< (4.6

In order to find first order differential invariants, i.e., the invariants of the form
J(m,s,w,v,a,b,c,d, a;bj, c;,d;), the once extended generator is
0 0 0 0
XMW =X+ pj=— + oo + 3 + pa = 4.7
Ha, B, 2,5 ab, M3, e, N ad, (4.7)
where, ¢ € {m,s,w,v} and j € {m, s, w,v,ws,vs}. In above equation py;, 2, H3,

Ha 5 are expressed as

pi = Di(n) = amDi(&1) — asDi(&) — awDi(m) — avDi(ne),

pog = Diu2) = bmD;(€1) = bsD;j(€5) = buwDj(m) — by Dj(1) = bu, Dy (n3) — by, D; (13),
psi = Di(ps) — conDi(&1) — esDi(&) — cwDi(m) — cuDi(ng),

pag = Di(na) = dnDj(&) — dsDj(&) — dywDj(m) — dyDj(1) — du, D;(n}) — du, D;(n3).
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Since i C j, therefore D; C Dj and generally total derivative operator is defined by

D. — 2_{_ .2_'_ ..i+ +2+b.2+b..i+
T 9 T Mea T e, T Ty T T e, T

2_{_ .24_ ..i_|_ +2+d.2+d.
Cjac Cii - ]ad j

07 dc; 07 (48)

’j@ + ...

Thus, after substituting concerned from the above in (4.7), one can find the following

first order extended generator

XU = 600 + &0, + MmOy + n20y + (2062, — a61.m) 00 + (AWsE2,5 + b1 0
FWsEam — QWM ww — Mn — 20WT1 s — AN1,ss — DE1m ) O + (2¢2,6
—c&1.m) 0 + (V5o 55 + A2y + Vs€om — Cvzﬂz,vu — M2,m — 2CUsM2 sp — CN2,ss
—d&1m) 00 + (26€2,ms — A1 mm + 2am&a.s — 20mE1m — As€om — QuwMim
—QyM2,m)m + (206255 + 05805 — As&1m — QN — QuT2,)as + (20062,
—&1m — QM) O + (200825 — A1 m — QuT2.0) Ay + (AWsE2 mss + WsE2mm
F0N 0 — QW2 s — 20W N s — 1 mss — Mmm — DELmm + AmWs&a s
— A W21y — 20 W1 sy = A1 5+ b1 — 26mE1m — bsEom — buTh m
—buM2.m = bw,Mms — Dw, WsMmw + Duw, Ws2,ms — by, M2ms — bu, VsN2,mu
Fb,UsE2,ms ) bm + (AW, 555 + We2,ms + V15w — QWD s — 20WsN1 550
— N1 555 — NMims + AsWs2,55 — AW ww — 205WeT 500 — AsT1s5 + T
—bs&1m — bs€2.s — by s — byMas — by, M1 ss — buw, WsN sw + by, W2 55 — by, M2.s5
—by, UsNa,50 + Do, VsE2,55)bs + (DN1ww — QWD wwnw — 200N s — A1 s
M + QW€ g6 — AWM — 200 WM 5w — M55 — Duw€lm — Duwa 1 sw
b, W10 bes + (A Ws2,55 — AWML w00 — 20 WM 500 — Aol ss + Dol
—bo&1m — b2, — o250 — Do Vs2,00) 00 + (aa,ss + Eom — 2001w — 2071 50
—bu,&1m + b, &2.5)buw, + (b, N1w = b, E1m — buM2,0 + D0,E2,6) b, + (2662, ms
—C&1mm + 26ma,s — 26m&1m — Csbam — Cwllim — Collzm)Cm + (266,55 + CsE,s
—Cs€1m — Cwlls — Col2,s)Cs + (2¢0€2.s — Cwélm — Cwllw)Cw + (26825 — €1 m

2
_Cvn2,11>cv + (Cvsglmss + Us&Q,mm + d772,mv — CUT2.mov — 2cvsn2,msv — CN2,mss
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—Namm — A& mm + CmVs€2,85 — CmUaT,00 — 20mVsN2,50 — Crml2,ss + Am20
—2d&1m — dsom — duwim — duNom — dw,Mims — dw, Wi mw + A, Ws&2.ms
—dy,N2,ms — Qo VsTamo + Ao, VsE2,ms ) + (CUsE2 555 + VsEo,ms + ANz, — VN2, 500
—2CUsM2,550 — CT2,sss — N2ims T CsUsEa,ss — CsVeM200 — 2CsUsTh,s0 — Csl2,ss + dsto
—ds&1m — ds€os — dylis — dyos — Ay, M55 — G, WsN1 5w + Ay, W2, 55 — dy,M2,55
—dy,UsN2,50 + Ay, VsE2 55)ds + (CyUs€a,55 — cwvﬁnm — 2CVsN2,50 — Cw2,ss

F w2 — Auwéim — duwlw — Qw1 sw — Quw W w0w)dw + (AN2.00 — CVZN2 500
—2CV1,500 — (2,550 — N2.mv + ColsEa,ss — ColaN2,m0 — 2C0UsTla,s0 — Coll2,ss
—dp&im — du,M2.50 — Au,VsM2.00)dy + (A 2.0 — dw,&1.m — Auw,Mw + duw,E2.s)du,
+(cbo,55 + E2m — 2€UsN2, 00 — 262,50 — Ay, E1m + Ay o5 )y, (4.9)

For derivation of first order joint differential invariants we consider the invariance cri-

terion

X[”J(m, s,w,v,a,b,c,d, a;,b;,c;,d;) =0. (4.10)

UpOIl equating to zero the terms with 517 527 N M2, Mymms Msssy Thwwws 112,mms 1)2,sss)

Ne.wow 0 (4.10) respectively gives the following results after simplification

Jm - 0, Js = 07 Jw = 07 Jv = 07 me = 07
Jo=0, Jo =0, Jo =0, Jo=0, Ju =0, (4.11)

E]

hence, J = J(a,b, ¢, d, G, s, Gy, Gy, by, b,y by, s Cony Csy Cupy Coy gy Ao,y oy, ). Now the terms
With &1 m, §1mms Eo,ms 2,50 E2mss §2.550 Mams Myss Mws Mossy Mosws Mwws M2ms 2,85 12,05
N2.ss, M2,50, N2.00 Provide following system of equations

—by, Jo,, — dw,Ja,, — buw,Jp,, — aJo — by — cJo — dJy — 201 J4,, — 20 e, — s Ja,

—Cse, — wa, — Cwde, — dwda, — ayvJo, — boJy, — e, — dy,Ja,, =0,

—adJ,

am

—cJ

Cm

=0,

Ty, + Wsdy +05Jqg — agty,, — 5o, + Ja,, =0,

by, Jp,, + dw,Ja,, + bw,Jb,, +20aJq +2¢). + 204, + 20mJe,, + a5,
+esde, + 200 Ja, + 200 e, + 2004, + 2¢,Jc, +dy, Jg,, =0,

46



2aJ,, +2cd.,, =0,

ady,, + awsJy + cvgJg + 2ad,, + 2¢J., + cyvs g, + aywsy, + cJg,,
—Jy —ayds, — cwde,, =0,

wJa, — Cwde, =0,

bo, S, — w,Ja, + 0Jo — awJa, — cwto, — dwJa, + bydy, =0,
—aJy — ayJp, =0,

—2ady,, — 20wy — dy, Jg, — 20,wsJp, =0,

—2awsJy,. — aw?Jy — dy,wsJg, — a,w2Jy, =0,

—Jg—ayd,, —cyd., =0,

—QyJa, — Cpde, = 0,

—by, Sy, +dw,Ja,, +dJg+dyJa, — avJa, — by Jy, — cyde, =0,
—cJy — cwdg, =0,

—2cvsJq — 2¢ Vs, — by, o, — 2¢Jg, =0,

2 2
—cvyJg — cuwviJa, — by, Vs Sy, — 2cv5Jy,, = 0.

(4.12)

After solving (4.12) in MAPLE, we get following first order joint differential invariants

along with Jy,
Cuw Cy b,.a

Jy = —, J3 = — Jy=—"=5.

oy ay’ dw,a

4.1.1 Applications

(4.13)

In this subsection a few examples of systems of two second order nonlinear parabolic

type PDEs are provided to illustrate the invariance criteria developed.

Example 1
A coupled parabolic type system of PDEs

sw? + sv swr+sv, 5, 2w — s+ 20

W+ (e ¥ (e (e
2 2
U — (g 4+ (C )y + —— =0,
m m ms
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having

sw? + sv sw? + sv 2w? — s+ 2v
et b: 2 S
om (S g u
2
w w
=0 d=— s - )Ws —
- P

can be transformed into

up 4+ (U + ¢)ug, =0,
¢+ u, =0, (4.15)

by means of transformations

m=t, s:f, w:\/g, v=2. (4.16)
t T T

Jl - O, J2 - 0, Jg - O, J4 =0. (417)

Example 2
Consider a system of nonlinear parabolic type PDEs
swuv sin(m) s s v
m - 5 ss - S . 7N S t . N — 07
Wiy, + ( o Jw (m)w +(msm(m)>v + wco (m)—l—msm(m)

1 2 —s’m sin(m) v
Um + (W)Uss + ( 8m2 )Us + ( ms )U}S - E =0. (418)

Joint differential invariants corresponding to both the dependent and independent vari-

ables for (4.18) can be calculated as

c 1
Ji=—= .
a  swvsin(m)
JZ = C_w =Y,
Ay
Jy =" =0,
Ay
b, a? 2,2
J=wle YV (4.19)




where

swuv sin(m) —$ s v
=(—— b= (—)ws + (——=——=)vs t .
= m? ) ( m Juws + (msm(m))v Fweot(m) + msin(m)
1 2 — s*m sin(m) v
— —_— d = _— s s~ T -
c= (), Co Sy (B, 0
Equation (4.18) can be mapped into
Up + UCULy + C = 0,
¢t + Cpp + Uy =0, (4.20)
by using the equivalence transformations
t
m =t, s:g, w = .u , v="2, (4.21)
t sin(t) x

Joint differential invariants for (4.20) are also same as for (4.18), under the transfor-

mations (4.21).

Example 3
Consider a coupled system of PDEs

v, 2w s 2w
m ss s — \)Ws - = 07
i+ (0 = (50 + (L = (D 2
v S 1 v
m ——)VUss 7 \ " )VUs - — s _:O, 4.22
b+ ()t = ()00 + (o + (122
with the following joint differential invariants
Jo= Sy L=0 =" (4.23)
1 — 3_m\/aa 2 — Y, 4_w- .
Equation (4.22) is transformable to
Uy + UCUL, + ¢ = 0,
¢t + CCpp + Uy = 0, (4.24)
under invertible transformations
x u? c
m =t, 5= W= 15 V=g (4.25)



Joint differential invariants for (4.24) are

1
Ji=Js= = Jy=0, J= .

U u2

(4.26)

The joint differential invariants for both (4.22) and (4.24) are same with transforma-

tions (4.25).

Example 4
Both the following systems

2 2
9 o . M7S 9 ms. oo S, M

Wy, + (M w* + - Jwss + (mw + P Jw? + (m)ws (2wv2)vs

2wv

m?sw? 2m?sw? ,  sv+ 2miw? 2mwv?

Um + ( )USS - ( 02 )Us + (T)Us - ( s )ws
Ty,

m

and

g+ (U~ gy + ¢ =0,

C + UCCyy + Uy = 0,
are mappable into each other under invertible transformations
m =t, s =tux, w = Vu, v=—.
c

Joint differential invariants for both of them read as

2

SWw S
1 w2U+S’ 2 ’U7 3 w-, 4 ’
uc
JIZ ) JQZC, J3:U, J4:17
U+ c

that are equal under transformation (4.29).
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4.2 Semi Differential Invariants

Semi differential invariants of system of two second order nonlinear parabolic type
PDEs (3.1) are investigated in this section by Lie infinitesimal approach. To get these
semi differential invariants corresponding to only the dependent variables we put &, &

and all their derivatives equal to zero in (3.12) and (3.15), which give

fl = 07 52 = 07 m = 771<m7 va)v T2 = 02(m7 571))
=0, iz = bW — QW0 — Nm — 20057 s — AT)155,

H3 = 07 Ha = dn2,v - CU?”Q,UU —MN2em — 20“5772,511 — C1)2 ss- (432>

So the corresponding generator for these infinitesimal transformations becomes

0 0 0
X - ~ = b w T 2 ww m 2 S sw ss) a1
m D + 12 BN + (b, awgn, m, awsn, any, )(%
0
+(d772,v - CU§772,U1) — N2m — QCUSTIZSU - Cn?,ss)%- (433>
The infinitesimal test for the zeroth order invariants
XK(w,v,a,b,c,d) =0, (4.34)
leads to
oK n oK L 9 5 )8[(
A A w — aw ww m — 2QWg sw — @ ss) a7
m Jw 2 90 M, s, M, m, m, b
9 oK
+(dna,p — CULT0 — Nom — 2CUsT2 50 — 6772,55)% = 0. (4.35)
Coefficients of 01, 72, N1.m, No.m in (4.35) provides
K, =0, K, =0, —K, =0, —-K;=0. (4.36)
Solution of the above system provide
Ki=a Ky, =c. (4.37)

In order to get invariants of first order i.e., K(w,v,a,b,c,d,a;,b;,c;,d;) we extend

the generator (4.33) up to order one, which is
XM = 7100 + 120 + (0w — QWML w0 — Mm — 20W N1 500 — A1ss) Oy + (1o
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2
—CU 200 — T2m — 26@5772,51) - CnQ,ss)ad + (_awnl,m - avnQ,m)aam + <_aw771,5
2

_av772,s)8a5 - awnl,waaw - av772,vaau + (bnl,mw - awsnl,mww - 2@wsn1,m5w
- - WP — 2 - -

anl,mss 771,mm amwsnl,ww amwsnl,sw amnl,ss + m771,w wnl,m
_bv772,m - bwsnl,ms - bwswsnl,mw - bvs772,ms - bvsvsnlmv)abm + (bnl,sw

2 2 2 2
—AW TN sww — 24QGWsT1 ssw — AN sss — T,ms — AsW T ww — 2AsWsT sw — AsT1,ss
+bs7]1,w - bwnl,s - bvﬂ?,s - bwsnl,ss - bwswsnl,sw - bvsn2,ss - bvsUsTIQ,SfU)@bs
2 2
+(bn1,ww — QW T www — 2awsn1,sww — M1 ssw — Mymw — GuwW T ww — 2awu}s’r]l,gw
2
—QyM1,ss — bwsnl,sw - bwswsnl,ww)abw + <_avw5771,ww - 2CLvUanl,sw — QM1 ss
+bv771,w - bv772,v - bvsnlsv - bvsvan,vv)abv + (_2aw5771,ww - 2a771,sw)8bwS
+<bvs771,w - bvan,v)abvs + (_Cwnl,m - Cv772,m)acm + <_C'w771,s - CvUQ,s)acs
2
_Cwnl,wacw - Cvn2,vacv + (dn2,m'u — CUy 7]2,mvv - 26@3772,17151) - Cn2,mss - n2,mm
2
—CnU T2 00 — Qcmvsn2,sv — Cm1)2,ss + dmn2,’u - dwnl,m - d’u'r]2,m - dwsnl,ms
2
_dwswsnl,mw - dvsn2,ms - dvsvsn2,mv)adm + (dn2,sv — CUGTN2, 500 — 20“5772,5311
2
—CN2,5s5s — N2;ms — CsUgM2,00 — 205”5772,511 — CsT)2;ss + ds772,v - dwnl,s - dv772,s
2
_dwsnl,ss - dwswsnl,sw - deT/Q,ss - dvsvsn2,sv)8d5 + (_vaanUU - Qvas/rIZ,sv
2
—CyT)2,ss + dw772,v - dwan - dwsanw - dwswsnl,ww)adw + (dnlvv — CUT)2 vov
-2 — — — cyv? -2 — —d
Cvs772,svv 0772,551) 772,mv CyUyg 772,'01} vas772,sv CU772,55 Vs 772,511

—dy, VsM2,00)0d, + (duw, M2 — duw,Mw)0d,, + (—2¢0sN2,00 — 2¢N2,50) O, -
The invariance criterion
XYWK (w,v,a,b,¢,d,a;,bj,¢;,d;) =0, (4.38)
after equating the terms 11, M2, M1 mms M.ssss M wwws> N2mms N2.sss5 2000 1O Z€Tr0, provides

Kw:()a szo, Kb = U, Kbs:Ou

m

Ky, =0, K, =0, Ky =0, Ky, = 0. (4.39)

807 K = K(aabac7d7am7asaa’waavabvabwsabvsaCmaCS7cw7cvadwadw57dv5)- Furthera the

terms wWith 71, N5y M2m, N2.50 Misss M2sss M2svs M200s Toswy Toaww, Maws M2,0 Provide
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following system of equations

—aywK,,, —cwK., — K, =0,
—ayK,, — K., =0,

—Ji =0,
—a, Ko, — e K, =0,

—ay K, — K,
—aky — avaU =0,

—cKyg—cpKy, =0,

—2cv,Kgq — 2¢c,vsKq,, — by, Ky, — 2cKy,, =0,

—cv2 Ky — c,v2Ka, — by, 0Ky, — 2cv5Kg, =0,

—2aw, Ky — dy, Kaq, — 20,0, K, — 20K, =0,

—aw? Ky — dy,wsKg, — a,w? K, — 20w Ky, = 0,

—cwKe, + 0Ky — dwKq, — by Ky, — dw, Ky, + by, Ks, — awkK,, =0,

—e, Koy — 0y Ko, + dK g+ dyKg, — byKy, + du, Ka, — by K, = 0. (4.40)

Solving (4.40) simultaneously in MAPLE, we obtain following first order semi differ-

ential invariants along with K; and Kj,

w v wa wbv
K3:C_) K4:c_7 K5:L7 Kﬁzba
a'LU a'U aw a'U
K L (=2ac2 (ayd — an) + [{(2dcy — 26 ) + 2aycdy}
= —2ac: (a,d — a,y, Co — 2Cm ) Ay aycdy,t a
T iy, (AyCy — AyCy) v
1
—QyChy, dy, | Cw + QCava(Ebwsdws — ady)],
K L 12¢a2(cub — cn) + [{(—2bas + 2a,)cs — 2acuby}
= caz(cyb — ¢ —2bay, Ay )Cy — 2aCy,by Y C
8 aby, (@yCy — QypCy) v
1
+acyd,, by, a, — 2aawcy(§bvsdvs — cby)], (4.41)

provided that a,, a,, b,,, ¢y, Cy, dy, 1s not equal to zero.
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4.2.1 Applications

To illustrate applications of the derived semi differential invariants for system of two
second order nonlinear parabolic type PDEs, we present a few examples in this sub-

section.

Example 1

A second order coupled system of nonlinear parabolic type PDEs

w?s ws s
Wi + (== )wss + (—=)w] — ( Jus + o— =0,
2wv? 2wv (4.42)
(w20+s) (2w21)+23) 2+(2w2”u+28) (2wv2) 0 '
Um USS - ra— XV - /US - wS = Y
v v? s SV s
has the following semi differential invariants
w?s s v 1 w?v
Klz_v K2:(w2+_)7 K3:_a K4:_27 K5:_7
v v s w s
s 2w? swy 2(w*v + s)vg
Ko= —— K= 205 e WO 4.43
T w’ T (w?v + s) ® s (4.43)
System (4.42) can be mapped into
Up + UCUL, + C = 0,
¢+ (U~ )y + uy =0, (4.44)
using invertible transformations
x
m=t, s =z, w = Vu, v=—. (4.45)
c
Semi differential invariants for (4.44) are
1 1
Klzuc, K2:U+C, K3:_, K4:_7 K5:E7
c u c
2 2
Ko Sy Kpm e 2eros (4.46)
u (u+c) c

which are similar to (4.42), under (4.45).
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Example 2
A coupled system of parabolic type PDEs

1+ wo? 2+ 2wvd, 9 9
Wy, + ( " )wss—(T)ws—(?)wv)vs:O,
v? 202, 1
L (=0, 14
vt (Dot G2 = (o, =0 (a47)
having
1+ wv? 242w, 5 9
= , = (2 — (3 .
o= (F10) B2 (suteR)y
v? 202 1
= (— d:— 2—— s
=2, 2~ (g

can be transformed into

g+ (U~ gy + ¢ =0,
¢t + UCCpy + Uy = 0, (4.48)

by means of transformations
1 1/3
m=t, s =z, w=—, v=rc’". (4.49)

The semi differential invariants for (4.47)

1 3 1
K= —+0° Ky =2 Ks = 0%, Ky = —,

w w w
Ks=Ke=1, Kr=(2+ 2w K (—2”3 ) (4.50)
— — , — ’u}57 = US7 .

5 6 7 8 1+/1.U’US

that are same as (4.48) under transformations of dependent variables only.

Example 3
Consider a coupled system of PDEs

muL/w + s muL/w + s 2sy/w 2wv + 2w
Wiy + Jwss — ( )w§+ws_( 2)1)5—1— =0,
v 2w muv muv
msy/w 2msyw., 5, 2my/w mu?
m ss s s — O, 451
bt (P2 — (T (T o — 5 (4.51)
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with semi differential invariants

Kimmvot s, K="V K= Ki—mve, K=l
v v

v
2
w1, K= 2TSVE
mu+/w muy/w + s

(ws +vs).  (4.52)
It is transformable to

U 4+ (U + €)Ugy + Uy + ¢ =0,
¢t + UCCyy + Uy = 0, (4.53)

by using invertible transformations

u T
m =t, s=ux, W= v=- (4.54)
Semi differential invariants of (4.53) is
Ki=u+c¢, Ko = uc, K3 =c, Ky=u, Ks=1,
Ko=1, Ki=25+Du+1,  Ke= =" (u, +c) (4.55)
— = — Ux s = ux CJ? . .
om0 ! u *Tu+ec

Notice that the semi differential invariants of (4.51) and (4.53) are same by means of

the transformations (4.54).

4.3 Characterization of a Few Classes of Systems of
Two Parabolic Type PDEs

In this section we classify different subclasses of systems of two second order nonlinear
parabolic type PDEs (3.1) by using Lie Symmetry Method. For this sake, we find both
joint and semi differential invariants corresponding to each subclass with the help of
their equivalence transformations. Furthermore, using deduced differential invariants
we get canonical forms for our considered systems. Total number of symmetries of each

simpler form of systems of nonlinear parabolic type PDEs are also given.

o6



Case-1

A second order system of nonlinear parabolic type PDEs with a, b, ¢, d as its arbitrary

coefficients
Wy + a(m, s, w)wss + b(m, s, w, v, ws, vs) = 0,
(4.56)
U + c(m, s, w)vss + d(m, 8, w, v, w4, v5) = 0,
have 1st oder joint differential invariants
n=5 p=% (4.57)

a Qo

with the help of joint differential invariants (4.57) we get following canonical form of

(4.56)

Wy, + Wwgs = 0,

Um = 0. (4.58)

Another simpler form of (4.56) can be obtained using 1st order joint differential invari-

ants

Wy + WWss = 07

Uy, + Wogs = 0. (4.59)

Semi differential invariants corresponding to the dependent variable for (4.56) are

AyCs — AsCy

K =a, Ky =c¢, K3 =1b,.d,,, Ky=—"—""—
Aoy
w wtm — Umbw bv dv - 2 bv
Ks= S = Qwlm ZOmCw e Dunu, 7 20 (4.60)
Qqy Ay b'Us

Canonical form of (4.56) under these semi differential invariants (4.60) is

Wy, + WWss + V5 = 0,

VU = 0. (4.61)

Equation (4.58) have four, (4.59) have nine and (4.61) have five symmetries.
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Case-11

For a system of nonlinear parabolic type PDEs

Wy + a(m, s, w)wss + b(m, s, w, v, ws, vs) = 0,
(4.62)
U + ¢(m, 8, 0)vss + d(m, s, w, v, ws, vs) = 0,
joint differential invariants of 1st kind are
L=< =% (4.63)
a Ay

N

which give the same canonical form (4.58). Simpler form of (4.62) under 1st order joint

differential invariants is

Wy, + wwgs = 0,

Uy, + Vg5 = 0. (4.64)

For (4.62) semi differential invariants derived are

v bv~dw wts — UWsly
Kl_a7 KQ_Cv K3:C_7 K4:§—sa K5:ac ac?
Aoy 2a Ao
AwCrm — A, Co b,.d,. — 2cb, 2ad,, — by, dy,
K¢ = K, =——= = e 4.65
6 aw Y 7 bvs 9 8 z&dws ( )
By means of (4.65) least form for (4.62) is
Wy + WWss + Vs = 07

U + ws = 0. (4.66)

Both (4.64) and (4.66) have same number of Lie symmetries, i.e., four.

Case-I111

Consider a system of nonlinear parabolic type PDEs

W, + a(m, s, v)wss + b(m, s, w, v, ws, vs) = 0,
(4.67)
U + c(m, $,0)vss + d(m, s, w, v, ws, vs) = 0,
along with
Wy + a(m, s, v)wss + b(m, s, w, v, ws, vs) =0,
(4.68)
U + c(m, s, w)vgs + d(m, s, w, v, ws, vs) = 0.
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Joint differential invariants of 1st order for (4.67) and (4.68) have the following forms

=< Jy = & (4.69)
a y

n=5 L= (4.70)
a aa,

respectively. Under these joint differential invariants we get same canonical form for

both (4.67) and (4.68) i.e.,

Wy, + VW = 0,

Uy, = 0. (4.71)

Semi differential invariants for (4.67) are

b’u,dw\ vbs ™ S™v
Klzaa KQZCJ K3:#7 K4:ac ac7
2a Qy
Cy ApCry, — A, Coy 2ad,, — by, dy
K — K P — K = s s 472
5 ava 6 1y ) 7 2adws ) ( )
which generate a canonical form
Wy + VWgs = 0,
U + ws = 0. (4.73)
while semi differential invariants of (4.68) are
Ki=a,  Ky=c  Ky=bydy,, K="
Ay
K= WO G g @O Al (4.74)
aU a’U

that also gives the same canonical form (4.71). Number of symmetries for (4.71) are

eight while (4.73) have five symmetries.

Case-1V

A second order system of nonlinear parabolic type PDEs
Wy, + a(w, v)wss + b(m, s, w, v, w, vs)

= ()’
(4.75)
U, + C(’U), U)Uss + d(m7 S, W, V, Ws, Us) = 07
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has canonical form

Wy + VWss = 07

U + V05 = 0, (4.76)

under 1st order joint differential invariants

c by.d
Ji=— Jy = ————. 477
T > (ac, — cay)? (4.77)
Semi differential invariants of (4.75) are
Kl = a, Kg = C, Kg = Qyy, K4:Cw,
K5 = Qy, Kﬁ = Cy, K7 = bvsdw57 (478>

which give the following simpler form for (4.75)

Wy + WVWss + Vs = 0,

Uy, + WOV + wg = 0. (4.79)

For (4.76) and (4.79) we have nine and three Lie symmetries.

Case-V
Consider the following systems of nonlinear parabolic type PDEs
Wy, + a(m, w, v)wss + b(m, s, w, v, ws, vs) =0,

(4.80)

Um + c(m,w, v)vss + d(m, s, w, v, ws, v5) = 0,

u]m + a(m, w, U)wsg + b(m7 S; w) U? wS? US) = O?
(4.81)
/Um + 6(87 U), /U)USS —'I— d(m7 87 w7 U, wS? US) = 07
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W + CL(S, w, U)wss + b<m> S, W, VU, Ws, Us) = 07

(4.82)
U + (8, 0, V)55 + d(m, s, W, 0, W, vs) = 0,
Wy + a8, w, v)wss + b(m, s, w, v, ws,v5) =0,
(4.83)
U + (M, w, v)vgs + d(m, s, w, v, w, vs) =0,
Wy, + a<m7 S)wss + b(ma S, W, v, Ws, Us) = O,
(4.84)
Uy, + C('U}, U)Uss + d(m7 S, W, V, Ws, Us) = 07
Wy + CL(S, w)wSS + b(mv S, W, v, Ws, Us) = 07
(4.85)
U + (8, W)vgs + d(m, s, w, v, w,, v5) = 0,
Wy, + CL(S, U)’U)SS + b(m7 S, W, V, Ws, Us) = 07
(4.86)

U, + C(S7 U)USS + d(ma S, W, vV, Ws, Us) =0.
For all the above system we get same 1st order joint differential invariants, i.e., J = ¢

which generates the following canonical form

Wy, + Wss = 07

U = 0. (4.87)
Semi differential invariants of 1st kind found for equation (4.80) to (4.86), yields

K(K, Ky, K3, K4, K5, Kg),
K(Ky, Ky, K3, K4, K5, K7),
K(Ky, Ky, K3, K4, K5, Kg),
(
(

I
=

K17K27 K37 K47 K57 K9)7

=R AR R
I

K K17K27K37K107K115 KlQa K137K14)7
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K = K(Ky, Ky, K3, K11, K19, K14, Ki5, Ki6),
K = K(K17K2>K127K137 K157K177K187K19)5

where
Ky :=a, K =c, K3 :=b,.dy,, Ky =
AyyCoy — QqyCyy AyCrm — A Cy
Ky = e Tty K = o Tm
Ay Qy
AyCs — A Cy AyCs — AsCy
K7 = — K8 = _,
Ay Qy
AyCm — AsCy
Ky = ———, Ky = ap, K1 = cy,
Ay
b,.d,. — 2cb,
K12 = ag, Klg = Cy, K14 = — s
by,
K15 := ¢, K6 := ay, K7 = ay,
o 2ady = bydu, i bud,
18 -— ) 19 -—
2ad,y, 2a

(4.88)

(4.89)

Under these semi differential invariants equation (4.80) to (4.83) have (4.71) as a canon-

ical form while least forms for (4.84), (4.85) and (4.86) are

’LUm+U5:0,

U = 0,
and

Wy, + Wes = 07

Um+ws:07

respectively. Here, (4.90) has one and (4.91) have six Lie symmetries.
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Chapter 5

Conclusion

Lie infinitesimal method has been employed to find the set of equivalence transforma-
tions associated with the considered systems of nonlinear parabolic type PDEs. These
equivalence transformations are used to derive differential invariants for systems of
nonlinear parabolic type PDEs under transformations of both the dependent, indepen-
dent and only dependent variables, that are called joint and semi differential invariants

respectively.

By using derived joint and semi differential invariants, we reduce the nonlinearities
of the highly nonlinear parabolic type systems of PDEs under point transformations.
The forms of systems of PDEs attained here have some nonlinearities but they are
solvable. For characterization different subclasses of systems of parabolic type PDEs
are considered in which differential invariants are derived under transformations of
both the dependent, independent and only dependent variables. Utilizing these differ-
ential invariants, canonical forms are obtained which provide a classification of these
systems by putting them into the reducible and non-reducible classes under differential

Invariants.

The reductions achieved here through differential invariants are shown to solve many
systems of PDEs from the considered classes. This idea can further be implemented to
attempt double reductions of these systems. For double reduction one needs to inves-
tigate joint and semi differential invariants of canonical forms obtained here. Higher

order differential invariants of systems of parabolic type PDEs can also be investigated
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in order to provide complete set of basis. Investigation of semi differential invariants
under transformation of only the independent variables would also lead to reductions
of system of parabolic type PDEs. Both the cases mentioned may require much more
efficient algebraic computing tools and machines but can generate interesting results

for systems of PDEs.
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