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Abstract

Differential invariants for linear and nonlinear ordinary and partial differential equa-

tions have been derived using Lie infinitesimal method. These invariants help in reduc-

tion of differential equations to their simplest possible solvable forms through invertible

transformations of the dependent and independent variables (point transformations).

We employ Lie infinitesimal method here to derive differential invariants for systems

of two nonlinear parabolic type partial differential equations. Canonical forms for the

considered systems are derived using obtained invariants which lead to solutions of the

systems of nonlinear parabolic type partial differential equations.
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Chapter 1

Introduction

Differential equations (DEs) initially appeared in the theory of calculus, developed by

Isaac Newton (1642-1727) and Gottfried Wilhelm Leibniz (1646-1716) in the seven-

teenth century. Newton formulated three kinds of DEs in 1671. Leibniz was the first,

who introduced the term DEs in 1676, in his letter to Newton and then utilized it in his

publication [1] in 1684. Since then, in many disciplines including physics, engineering,

economics, cosmology, epidemiology etc., the term DEs is frequently used to express

mathematical models.

An equation that attains derivatives is named as differential equation, which re-

lates certain function with it derivatives. In DEs functions generally represent physical

quantities while its derivatives express their rates of change. DEs must contain de-

pendent and independent variables. If in DEs dependent variables contain only one

independent variable, then the equations are named as ordinary differential equations

(ODEs). Whereas, partial differential equations (PDEs) are referred to those equations

in which dependent variables are functions of more than one independent variable.

There are numerous strategies to find the exact solutions of DEs, however these

do not address and solve all classes of ODEs and PDEs. In the nineteenth century,

a Norwegian mathematician, Marius Sophus Lie [2], developed a method named as

Lie symmetry methods for DEs to get their solutions. Lie’s method for integrating

the DEs is based on the groups of continuous transformations, known as Lie groups.

The significance of this method is that it is applicable to any class of DEs. Whereas,
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neither the nature of DE nor the number of variables involved in the equation effects

application of this method [4, 6, 21, 23].

Equivalence transformations are those transformations which maintain the differ-

ential structure of the DEs i.e., it leaves the DEs form invariant. The set of all the

equivalence transformations makes a continuous group. Equivalence transformations

play a vital role in the course of the calculations of differential invariants. In 1770 two

semi differential invariants acquired by Euler in his integral calculus [24] and then, in

1773, Laplace [25] presented semi differential invariants for the linear hyperbolic PDEs

in his fundamental memoir on the integration of linear PDEs, recognized as the Laplace

invariants. Laplace invariants are those invariants which remain unchanged under a

subgroup of equivalence transformation corresponding to the dependent variable only,

therefore these quantities are named as semi differential invariants. In 1900, Cotton

[18] obtained semi differential invariants for the linear elliptic PDEs , known as the

Cotton invariants. Laplace and Cotton invariants remain conserved under the linear

changes of the dependent variable, which respectively, map the linear hyperbolic and

elliptic PDEs into themselves. Hyperbolic and elliptic PDEs can be transformed into

each other by the application of linear complex transformations of the independent

variables, as do Laplace and Cotton invariants.

Modern group analysis declares that differential invariants provide a powerful tool

for handling initial value problems, quantitative analysis of DEs etc. semi differential

invariants for linear ODEs were discussed in the 1870-1880 by J. Cockle [27], E. La-

guerre [28], J.C. Malet [30], G.H. Halphen [32], R Harley [34] and A.R. Forsyth [36].

The restriction to linear equation was necessary in their approach, as these calculations

were extremely lengthy in case of nonlinear equations. Indeed, when Roger Liouville

investigated invariants for nonlinear ODEs introduced by Lie, the direct method led to

70 pages of calculations. Lie pointed that all variational problems and invariant DEs

can be expressed in terms of differential invariants [37, 39]. He also declared that the

theory of differential invariants is based on the infinitesimal method. Later on, Ovsian-

nikov [13] and Ibragimov [7, 14, 16, 20, 33, 38, 43, 45, 46] systematically developed the

infinitesimal method to calculate invariants of the algebraic and DEs, known as Lie
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infinitesimal method. This method is applicable to algebraic equations and DEs pos-

sessing finite or infinite equivalence group [5, 8, 10, 11, 15, 22, 26, 29, 31, 35, 40, 44, 47].

In this thesis first chapter provides some basic definitions, theorems of symmetry

analysis and differential invariants. In second chapter, we review equivalence transfor-

mations and differential invariants of scalar PDEs by using Lie infinitesimal method.

In the third chapter we find the set of equivalence transformations associated with sys-

tems of two nonlinear parabolic type PDEs. In forth chapter, joint and semi differential

invariants for systems of two nonlinear parabolic type PDEs are obtained by using Lie

infinitesimal method. Then these invariants are shown to reduce such systems into

their canonical forms via transformations of the dependent, independent and only the

dependent variables. Last chapter concludes this work.

1.1 Lie Symmetry Analysis for ODEs

A symmetry group of a system of DEs is the largest group of transformations acting on

the space of dependent and independent variables that maps a solution of the system

of DEs into another solution. In other words, the solution manifold of the system of

DEs remains invariant under a symmetry transformation of that system of DEs.

1.1.1 One Parameter Group of Transformations

Consider m and w be independent and dependent variables respectively. A point

transformation

m̃ = m̃(m,w), w̃ = w̃(m,w), (1.1)

can be used to simplify system of DEs. A set of invertible transformations that depends

on an arbitrary parameter δ

m̃ = m̃(m,w; δ), w̃ = w̃(m,w; δ), (1.2)

such that it contains the identity i.e., for δ = 0, m̃(m,w; 0) = m, w̃(m,w; 0) = w,

and composition also belongs to same family. For example

˜̃m(m̃, w̃; δ̃) = ˜̃m(m,w; ˜̃δ), (1.3)
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for some ˜̃δ = ˜̃δ(δ̃, δ), then the set of transformations (1.2) forms a group named as the

one-parameter group of point transformations. If the group of transformations (1.2) is

such that δ is a continuous parameter, transformations are infinitely differentiable with

respect to the independent and dependent variables and ˜̃δ(δ̃, δ) is an analytic function

of δ̃ and δ then it form a one-parameter Lie group of continuous transformations.

The one-parameter transformations (1.2) map one point (m,w) to another point

(m̃, w̃) in the mw-plane and when the parameter δ changes from some initial value, say

δo to some other value then the point (m̃, w̃) moves along some curve. For different

initial points, different curves are obtained which can be mapped into one another

under the action of the group (1.2). The set of these curves, called the orbits of the

groups and can be completely described by the field of its tangent vectors X and vice

versa.

1.1.2 Infinitesimal Transformations and Their Generators

Consider one-parameter Lie group of transformations

m̃ = m̃(m,w; δ), w̃ = w̃(m,w; δ), (1.4)

with

m̃(m,w; 0) = m, w̃(m,w; 0) = w. (1.5)

If we consider that δ is small, then we expand Taylor series of (1.4) about δ = 0. Then

m̃ = m̃(m,w; 0) + δ
∂m̃

∂δ
|δ=0 +O(δ2),

w̃ = w̃(m,w; 0) + δ
∂w̃

∂δ
|δ=0 +O(δ2). (1.6)

Assume that

ξ(m,w) =
∂m̃

∂δ
|δ=0, η(m,w) =

∂w̃

∂δ
|δ=0, (1.7)

after using (1.5), (1.7) in (1.6), we get

m̃ = m+ δξ(m,w) +O(δ2),

w̃ = w + δη(m,w) +O(δ2). (1.8)
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The above equation can also be written as

m̃ = m+ δXm+O(δ2),

w̃ = w + δXw +O(δ2), (1.9)

where the operator X is given by

X = ξ(m,w)
∂

∂m
+ η(m,w)

∂

∂w
. (1.10)

The operator X is called infinitesimal generator of (1.1). It is also known as symmetry

operator having ξ and η as its components that are called infinitesimal coordinates. It

indicates that by repeating the application of infinitesimal transformation one can get

finite transformation which is an alternative way of expression that the integral curves

of vector field X are the group of orbits.

Example 1.1.1. Corresponding to one-parameter group of rotation the infinitesimal

transformations

m̃ = m cos δ − w sin δ, w̃ = m sin δ + w cos δ, (1.11)

gives the associated generator

X = −w ∂

∂m
+m

∂

∂w
. (1.12)

Example 1.1.2. Infinitesimal generator for the group of translation is

X =
∂

∂m
, (1.13)

from (1.13), we have
∂m̃

∂δ
|δ=0 = 1,

∂w̃

∂δ
|δ=0 = 0, (1.14)

it gives the infinitesimal transformations of the form

m̃ = m+ δ, w̃ = w. (1.15)
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1.1.3 Extension of Point Transformations and Their Symmetry
Generators

To apply a point transformation (1.1) or (1.2) on a differential equation we require

an extension or prolongation to include all the derivatives. For instance consider the

following n-th order ODE

H(m,w,w(1), w(2), ..., w(n)) = 0, w(1)≡ dw
dm

(1.16)

the derivatives can be transformed as

dw̃ =

(
∂w̃

∂w

)
dw +

(
∂w̃

∂m

)
dm,

dm̃ =

(
∂m̃

∂w

)
dw +

(
∂m̃

∂m

)
dm,

w̃(1) =
dw̃(m,w; δ)

dm̃(m,w; δ)

=
(∂w̃/∂w)w(1) + (∂w̃/∂m)

(∂m̃/∂w)w(1) + (∂m̃/∂m)
= w̃(1)(m,w,w(1); δ),

w̃(2) =
dw̃(1)(m,w,w(1); δ)

dm̃(m,w; δ)

=
(∂w̃(1)/∂w(1))w(2) + (∂w̃(1)/∂w)w(1) + (∂w̃(1)/∂m)

(∂m̃/∂w)w(1) + (∂m̃/∂m)
= w̃(1)(m,w,w(1), w(2); δ),

...
...

...

w̃(n) =
(∂w̃(n−1)/∂w(n−1))w(n) + ...+ (∂w̃(n−1)/∂w)w(1) + (∂w̃(n−1)/∂m)

(∂m̃/∂w)w(1) + (∂m̃/∂m)

= w̃(1)(m,w,w(1), w(2), ..., w(n); δ). (1.17)

Now, the n-th order extension of the infinitesimal generator (1.10) is given as follows

m̃ = m+ δξ(m,w) +O(δ2) = m+ δXm +O(δ2),

w̃ = w + δη(m,w) +O(δ2) = m+ δXw +O(δ2),

w̃(1) = w(1) + δη(1)(m,w,w(1)) +O(δ2) = w(1) + δXw(1) +O(δ2),
...

...
...
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w̃(n) = w(n) + δη(n)(m,w,w(1), ..., w(n)) +O(δ2) = w(n) + δXw(n) +O(δ2).(1.18)

Where η(1),..., η(n) are defined as

η(1) =
∂w̃(1)

∂δ
|δ=0, ..., η

(n) =
∂w̃(n)

∂δ
|δ=0. (1.19)

Substituting the expression (1.18) in (1.17), we obtain

w̃(1) = w(1) + δη(1) +O(δ2) =
dw̃

dm̃

=
dw + δdη +O(δ2)

dm+ δdξ +O(δ2)
=
w(1) + δ(dη/dm) +O(δ2)

1 + δ(dξ/dm) +O(δ2)

= w(1) + δ

[(
dη

dm

)
− w(1)

(
dξ

dm

)]
+O(δ2). (1.20)

Similarly, for the η(n)(m,w,w(1), ..., w(n)) we have

w̃(n) = w(n) + δη(n) +O(δ2) =
dw̃(n−1)

dm̃

= w(n) + δ

[(
dη(n−1)

dm

)
− w(n)

(
dξ

dm

)]
+O(δ2). (1.21)

Here η(n)(m,w,w(1), ..., w(n)) is the n-th prolongation of η(m,w) [9]. The results are

summarized in the following theorem.

Theorem 1.1.1. For one-parameter Lie group of point transformations (1.2) the in-

finitesimal generator can be extended as follows [9]

η(1) =
dη

dm
− w(1) dξ

dm
,

...

η(n) =
dη(n−1)

dm
− w(n) dξ

dm
, (1.22)

as the corresponding n-th order infinitesimal generator is expressed

X(n) = ξ
∂

∂m
+ η

∂

∂w
+ η(1)

∂

∂w(1)
+ ...+ η(n)

∂

∂w(n)
. (1.23)

Definition 1.1.3. A point transformation

m̃ = m̃(m,w; δ), w̃ = w̃(m,w; δ), (1.24)
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is termed as a point symmetry of the DE

H(m,w,w(1), w(2), ..., w(n)) = 0, (1.25)

if and only if the DE remains same under the n-th prolongation of transformations

(1.24), i.e., it remains invariant and preserves the form of DE [41] that can be expressed

as

H(m̃, w̃, w̃(1), w̃(2), ..., w̃(n)) = 0. (1.26)

In simple words we say, any solution of (1.25) can be mapped into a solution of (1.26).

1.1.4 Multiple Parameter Lie Groups of Transformations and
Their Generators

A transformation (1.2) can depend on more than one parameter such as

m̃ = m̃(m,w; δN), w̃ = w̃(m,w; δN). N = 1, 2, ..., r (1.27)

The transformation (1.27) is said to be r-parameter lie group of transformation if it

satisfies all properties of one-parameter Lie group transformations [9] with distinct δN .

A symmetry generator XN can be associated with each parameter δN by the following

expression

XN = ξN
∂

∂m
+ ηN

∂

∂w
, (1.28)

where

ξN(m,w) =
∂m̃

∂δN
|δN=0, ηN(m,w) =

∂w̃

∂δN
|δN=0. (1.29)

1.2 Lie Symmetry Analysis for PDEs

Consider m = (mi) and w = (wα) be q independent and p dependent variables respec-

tively. The derivatives of w with respect to m are denoted by

∂w = wα,i = Di(wα), (1.30)

∂2w = wα,ij = DiDj(wα), (1.31)
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and so on n-th term becomes

∂(n)w = wα,i1i2...ik = Di1Di2 ...Dik(wα), (1.32)

where

Di =
∂

∂mi

+ wα,i
∂

∂wα
+ wα,ij

∂

∂wα,j
+ ..., (1.33)

is the total derivative operator. Then a system of PDEs can be reported as

Hσ(m,w, ∂w, ∂2w, ..., ∂(n)w) = 0, σ = 1, 2, ..., s. (1.34)

To deal with symmetries of system of PDEs (1.34), we form the group of invertible

transformations that depend on the real parameter δ which leaves (1.34) invariant.

1.2.1 Point Transformations and Their Symmetry Generators

For p dependent w = (wα) and q independent m = (mi) variables one-parameter Lie

point transformations can be written as

m̃i = m̃i(mi, wα; δ),

w̃α = w̃α(mi, wα; δ), (1.35)

since δ is a small parameter therefore series expansion of transformation (1.35) can be

written as

m̃i = mi + δξi(mi, wα) +O(δ2), i = 1, 2, ..., q

w̃α = wα + δηα(mi, wα) +O(δ2), α = 1, 2, ..., p (1.36)

where

ξi(mi, wα) =
∂mi

∂δ
|δ=0, ηα(mi, wα) =

∂wα
∂δ
|δ=0, (1.37)

The infinitesimal transformations are generated by an operator of the form

X = ξi
∂

∂mi

+ ηα
∂

∂wα
. (1.38)
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Theorem 1.2.1. For a one-parameter Lie group of point transformations (1.35) the

nth extension of the corresponding infinitesimal generator (1.38) is given by

X(n) = ξi
∂

∂mi

+ ηα
∂

∂wα
+ η

(1)
α,i

∂

∂wα,i
+ ...+ η

(n)
α,i1i2...ik

∂

∂wα,i1i2...ik
, (1.39)

where

η
(1)
α,i = Diηα − wα,jDiξj,

η
(n)
α,i1i2...ik

= Dinη
(n−1)
α,i1i2...in−1

− wα,i1i2...in−1Dikξj. (1.40)

1.2.2 Lie Point Symmetries

A one-parameter Lie group of point transformations (1.35) is called a Lie point symme-

try of a system (1.34) if and only if the system remains invariant and can be elaborated

as

Hσ(m̃, w̃, ∂w̃, ∂2w̃, ..., ∂(n)w̃) = 0, σ = 1, 2, ..., s. (1.41)

In other words, the solution manifold of the system (1.34) remains invariant under the

transformations (1.35).

Theorem 1.2.2. A one-parameter Lie group of point transformations (1.35) with the

n-th order extended generator (1.39) is said to be point symmetry of the ststem (1.34)

if and only if [9]

X(n)Hσ(m,w, ∂w, ∂2w, ..., ∂(n)w) = 0, σ = 1, 2, ..., s (1.42)

whenever

Hσ(m,w, ∂w, ∂2w, ..., ∂(n)w) = 0, σ = 1, 2, ..., s.

1.3 Equivalence Transformations

Equivalence transformations are invertible transformations that preserve the differen-

tial structure of the equations. One-parameter Lie group of point transformations

m̃i = m̃i(mi, wα; δ), i = 1, 2, ..., q
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w̃α = w̃α(mi, wα; δ), α = 1, 2, ..., p

Pl = Pl(mi, wα,Pl; δ), l = 1, 2, ..., r. (1.43)

is called one-parameter Lie group of equivalence transformations if it maps a system

of DEs into a system of the same family. According to Ovsiannikov [42], an equiva-

lence transformation is represented by a generator of continuous equivalence group of

transformations behaving in the expanded space of dependent variables, independent

variables, functions and their derivatives (arbitrary coefficients of the DEs) which does

not alter the form of the equation under investigation.

Equivalence transformations play very important role to classify the DEs , where

the nature of transformations help to characterize the DEs. In the theory of invariants,

equivalence transformations are also used. Derivation of equivalence transformations

for the class of equations under consideration is the first step towards determination

of differential invariants. The set of all equivalence transformations of a given family

of DEs forms a group which is called the equivalence group. The method used here

to derive equivalence transformations is called infinitesimal method. System of PDEs

may involve arbitrary functions Pl, thus the equivalence operator X is written in the

following form

X = ξi
∂

∂mi

+ ηα
∂

∂wα
+

r∑
l=1

µl
∂

∂Pl

, (1.44)

where functions ξi, ηα represents independent and dependent variables, while µl express

arbitrary functions that appears in DEs.

Lie Infinitesimal Method

We consider an example here to illustrate Lie infinitesimal method, we take a well

known Korteweg-de Vries equation [19] which is given as

wm + wsss + wws = 0. (1.45)

The operator corresponding to this equation is of the form

X = ξ1(m, s, w)
∂

∂m
+ ξ2(m, s, w)

∂

∂s
+ η(m, s, w)

∂

∂w
. (1.46)
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Equation (1.46) is a symmetry generator of (1.45) if

X[3](wm + wsss + wws)|wm=−wsss−wws = 0. (1.47)

For this case the third prolongation of operator (1.46) is

X[3] = ξ1
∂

∂m
+ ξ2

∂

∂s
+ η

∂

∂w
+ ηm

∂

∂wm
+ ηs

∂

∂ws
+ ηss

∂

∂wss
+ ηsss

∂

∂wsss
, (1.48)

where

ηm = Dm(η)− wmDm(ξ1)− wsDm(ξ2),

ηs = Ds(η)− wmDs(ξ1)− wsDs(ξ2),

ηss = Ds(η
s)− wmDs(ξ1)− wsDs(ξ2),

ηsss = Ds(η
ss)− wmDs(ξ1)− wsDs(ξ2),

and

Dm =
∂

∂m
+ wm

∂

∂w
+ wmm

∂

∂wm
+ wms

∂

∂ws
+ ...,

Ds =
∂

∂m
+ ws

∂

∂w
+ wms

∂

∂wm
+ wss

∂

∂ws
+ ..., (1.49)

which provides

ηm = ηm + wm(ηw − ξ1,m)− w2
mξ1,w − wsξ2,m − wmwsξ2,w,

ηs = ηs + ws(ηw − ξ2,s)− w2
sξ2,w − wmξ1,s − wmwsξ1,w,

ηss = ηss + 2wsηsw − wmξ1,ss − 2wmwsξ1,sw − wsξ2,ss − 2w2
sξ2,sw + w2

sηww

−wmw2
sξ1,ww − w3

sξ2,ww − 2wmsξ1,s − 2wmswsξ1,w + wssηw − wsswmξ1,w

−2wssξ2,s − 3wsswsξ2,w

ηsss = ηsss − 3wmw
2
sξ1,sww − 3wmwswssξ1,ww + 3wssηsw − 3wmsξ1,ss

+3wsη1,ssw − wmξ1,sss − wsξ2,sss − 3w2
sξ2,ssw + 3w2

sηsww − 3w3
sξ2,sww

−3wmwsξ1,ssw − 6wmswsξ1,sw − 3wmwssξ1,sw − 9wswssξ2,sw − wmwsssξ1,w

−4wswsssξ2,w − wmw3
sξ1,www − 3wmsw

2
sξ1,ww + 3wswssηww − 6wssw

2
sξ2,ww

−3wmswssξ1,w − 3wswmssξ1,w − 3wssξ2,ss + w3
sηwww − w4

sξ2,www − 3w2
ssξ2,w

12



−3wmssξ1,s + wsssηw − 3wsssξ2,s. (1.50)

After applying third order prolongated generator, the determining equation (1.47) gives

ηm + ηsss + wsη + wηs|wm=−wsss−wws = 0. (1.51)

Substituting (1.50) in (1.51) and replacing wm with −(wsss+wws). Afterwards, coeffi-

cients of wmssws, wmss, w2
ss, wssws, wss, wsss, ws and constant terms gives the following

system of linear homogenous PDEs

ξ1,w = 0,

ξ1,s = 0,

ξ2,w = 0,

ηw,w = 0,

ηsw − ξ2,ss = 0,

−3ξ2,s + ξ1,m = 0,

3ηssw − ξ2,sss − wξ2,s − ξ2,m + wξ1,m + η = 0,

ηsss + ηm + wηs = 0, (1.52)

that generates

ξ1 = −3c1
2
m+ c2,

ξ2 = c2m−
c1
2
s+ c3,

η = c1w + c4, (1.53)

when solved, here ci for i = 1, 2, 3, 4 are arbitrary constants. The expression (1.53)

is termed as an equivalence transformation for equation (1.45). The corresponding

generator becomes

X = (−3c1
2
m+ c2)

∂

∂m
+ (c2m−

c1
2
s+ c3)

∂

∂s
+ (c1w + c4)

∂

∂w
, (1.54)

which can separately be written as

X1 =
∂

∂m
,
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X2 =
∂

∂s
,

X3 = m
∂

∂s
+

∂

∂w
,

X4 = −3m

2

∂

∂m
− s

2

∂

∂s
+ w

∂

∂w
. (1.55)

1.4 Differential Invariants

Invariants of a DE are mathematical expressions written in terms of its coefficients,

while differential invariants are those that also involve derivatives of the coefficients.

Differential invariant of DEs remains invariant under the group of equivalence transfor-

mations and satisfies invariance test (Infinitesimal criteria of invariance). A differential

invariant of order r can be expressed as

J(Pl, ∂Pl, ∂
2Pl, ..., ∂

rPl), (1.56)

where Pl represents coefficients (arbitrary) of the considered DEs and ∂Pl are their

partial derivatives. Given mathematical form of the criteria for zeroth order invariants,

we employ X that is given in (1.44) in the following equation

XJ(Pl) = 0. (1.57)

To get first order differential invariants we extend X once and apply

X[1]J(Pl, ∂Pl) = 0. (1.58)

Likewise, r-th order differential invariants have the invariance condition

X[r]J(Pl, ∂Pl, ∂
2Pl, ..., ∂

rPl) = 0. (1.59)

For reader complete extension procedure is given in later sections e.g., (2.1.2).

Differential invariants play an essential role in converting DEs into canonical and

integrable forms. In order to deduce differential invariants for a DE, one has to obtain

the associated set of equivalence transformations. Once the differential invariants of

a DE are obtained then one can attempt reduction of DE into its simpler forms. For

14



instance these invariants can be employed to linearize nonlinear DEs. If differential

invariants for any two DEs are same then it guarantees that they are mappable into

each other through point transformations.

Differential invariants have two major categories. The first one is joint differen-

tial invariants which are derived under transformations of both the independent and

dependent variables. The invariants which are obtained under the transformations of

only the dependent or independent variables separately, are known as semi differential

invariants.
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Chapter 2

Equivalence Transformations and
Differential Invariants for Scalar PDEs

A general second order scalar linear PDE with two independent variables m and s is

of the form

awmm + bwms + cwss + dwm + ews + fw = g, (2.1)

where a, b, c, d, e, f, g are given differentiable functions of m and s. The discriminant is

defined by b2 − 4ac, and equation (2.1) can be classified with the sign of discriminant.

If b2 − 4ac = 0, then (2.1) is called parabolic equation, which describe heat flow and

diffusion process. Hyperbolic equations satisfy the property b2 − 4ac > 0, which for

example describe vibrating system and wave motion, while elliptic equations describe

processes in equilibrium which satisfy the property b2 − 4ac < 0.

This chapter is a review of literature where we present equivalence transformations

and differential invariants for scalar PDEs. The first section is on Laplace invariants

for linear scalar parabolic PDEs, in which study equivalence transformations and then

corresponding to those transformations we get semi differential invariants. Second

section deals with differential invariants of scalar nonlinear hyperbolic type PDEs.

2.1 Differential Invariants of Scalar Linear PDEs

In 1773, Laplace discovered invariants for linear scalar hyperbolic DEs and applied

in his theory of integration for hyperbolic equations. These invariants are termed as

16



Laplace invariants [17]. Cotton expanded Laplace invariants and obtained invariants

for linear elliptic equations [18] in 1900, named as Cotton’s invariants. Afterwards, N.

H. Ibragimov find Laplace type invariants for linear scalar parabolic equations by Lie

infinitesimal method in 2001 and fill the gap.

2.1.1 Equivalence Transformations

Consider the scalar parabolic equation with two independent variables m, s of the form

wm + a(m, s)wss + b(m, s)ws + c(m, s)w = 0, (2.2)

where a, b, c are arbitrary coefficients while the subscripts represents the partial deriva-

tives, i.e., wm = ∂w/∂m, etc. The equivalence transformation of (2.2) is an invertible

transformation

m̃ = φ1(m, s, w), s̃ = φ2(m, s, w), w̃ = φ3(m, s, w), (2.3)

such that (2.2) remains the same, as for example in order, homogeneity and linearity etc

under (2.3). The set of all the equivalence transformations of (2.2) makes an equivalence

group and in order to find the continuous group by making use of infinitesimal method,

we apply the following operator

X = ξ1
∂

∂m
+ ξ2

∂

∂s
+ η

∂

∂w
+ µ1

∂

∂a
+ µ2

∂

∂b
+ µ3

∂

∂c
. (2.4)

Here, the coordinates ξ1, ξ2, η are functions of (m, s, w) while µ1, µ2, µ3 are functions

of (m, s, w, a, b, c). The Lie invariance criterion for (2.2) reads as

X[2](wm + awss + bws + cw)|(2.2) = 0, (2.5)

where X[2] is the second order prolongation of the operator (2.4) which is expressed as

X[2] = X+ ηm
∂

∂wm
+ ηs

∂

∂ws
+ ηmm

∂

∂wmm
+ ηms

∂

∂wms
+ ηss

∂

∂wss
. (2.6)

By applying (2.6) on (2.2), we obtain

ηm + aηss + bηs + cη + µ1wss + µ2ws + µ3w|(2.2) = 0, (2.7)
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where ηm, ηs, ηss are obtainable from (1.49). Substituting these extension coefficients,

replacing wm with −(awss+ bws+ cw) and equating coefficients of wmsws, wms, wssws,

w2
s and other terms in (2.7), we get

ξ1,w = 0, ξ1,s = 0, ξ2,w = 0, ηww = 0, (2.8)

it implies

ξ1 := ξ1(m),

ξ2 := ξ2(m, s),

η := η1(m, s)w + η2(m, s). (2.9)

Subsequently, coefficients of wss, ws and remaining terms in (2.7) gives

µ1 = 2aξ2,s − aξ1,m,

µ2 = aξ2,ss + bξ2,s + ξ2,m − 2aηsw − bξ1,m

µ3 = cwηw − aηss − ηm − bηs − cwξ1,m. (2.10)

2.1.2 Semi Differential Invariants for Parabolic PDEs

Laplace type invariants (or semi differential invariants) of scalar parabolic PDEs cor-

responding to the dependent variable, are reviewed in this subsection by the use of the

Lie infinitesimal method. In order to find these differential invariants for (2.2), we get

the following generator

X = µ1
∂

∂a
+ µ2

∂

∂b
+ µ3

∂

∂c
, (2.11)

by considering ξ1, ξ2 and all their derivatives equal to zero in (2.9) and (2.10), which

leads to

µ1 = 0, µ2 = 2aηs, µ3 = ηm + aηss + bηs. (2.12)

Using (2.12) in (2.11), gives

X = 2aηs
∂

∂b
+ (ηm + aηss + bηs)

∂

∂c
. (2.13)
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The infinitesimal test XK = 0, for zeroth order invariant K(a, b, c) gets to the form

2aηs
∂K

∂b
+ (ηm + aηss + bηs)

∂K

∂c
= 0. (2.14)

Equating coefficients of ηs, ηm equal to zero, one obtains

∂K

∂b
= 0,

∂K

∂c
= 0. (2.15)

As a result, there is only independent invariant K = a. Now to find first order differ-

ential invariants of the form K(a, am, as; b, bm, bs; c, cm, cs) for (2.2), one need to extend

(2.13) which has the expression

X[1] = X+ µ2,m
∂

∂bm
+ µ2,s

∂

∂bs
+ µ3,m

∂

∂cm
+ µ3,s

∂

∂cs
. (2.16)

Where

µ2,m = D̃m(µ2)− bmD̃m(ξ1)− bsD̃m(ξ2),

µ2,s = D̃s(µ2)− bmD̃s(ξ1)− bsD̃s(ξ2),

µ3,m = D̃m(µ3)− cmD̃m(ξ1)− csD̃m(ξ2),

µ3,s = D̃s(µ3)− cmD̃s(ξ1)− csD̃s(ξ2), (2.17)

and

D̃m =
∂

∂m
+ am

∂

∂a
+ amm

∂

∂am
+ ams

∂

∂as
+ ...+ bm

∂

∂b
+ bmm

∂

∂bm
+ bms

∂

∂bs

+...+ cm
∂

∂c
+ cmm

∂

∂cm
+ cms

∂

∂cs
,

D̃s =
∂

∂s
+ as

∂

∂a
+ ass

∂

∂as
+ ams

∂

∂am
+ ...+ bs

∂

∂b
+ bss

∂

∂bs
+ bms

∂

∂bm

+...+ cs
∂

∂c
+ css

∂

∂cs
+ cms

∂

∂cm
. (2.18)

So the once extended generator reads as

X[1] = 2aηs
∂

∂b
+ (ηm + aηss + bηs)

∂

∂c
+ 2(aηms + amηs)

∂

∂bm
+ 2(aηss + asηx)

∂

∂bs

+(ηmm + aηmss + amηss + bηms + bmηs)
∂

∂cm
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+(ηms + aηsss + asηss + bηss + bsηs)
∂

∂cs
. (2.19)

From the invariance criteria

X[1]K = 0, (2.20)

equating coefficients of ηsss, ηs, ηms, ηm, ηss, ηs to zero yields

∂K

∂cm
= 0,

∂K

∂cs
= 0,

∂K

∂bm
= 0,

∂K

∂c
= 0,

∂K

∂bs
= 0,

∂K

∂b
= 0. (2.21)

Hence, there exist first order differential invariants only of the form K(a, am, as). Ac-

cordingly, we consider derivation of second order differential invariants by using

X[2]K(a, am, as, amm, ams, ass; b, bm, bs, bmm, bms, bss; c, cm, cs, cmm, cms, css) = 0, (2.22)

where

X[2] = X[1] + µ2,mm
∂

∂bmm
+ µ2,ms

∂

∂bms
+ µ2,ss

∂

∂bss
+ µ3,mm

∂

∂cmm

+µ3,ms
∂

∂cms
+ µ3,ss

∂

∂css
. (2.23)

Applying the same procedure as above, one first finds the equations

∂K

∂cmm
= 0,

∂K

∂cms
= 0,

∂K

∂css
= 0,

∂K

∂bmm
= 0,

∂K

∂bms
= 0,

∂K

∂cm
= 0,

∂K

∂c
= 0. (2.24)

It follows that K = K(a, am, as, amm, ams, ass; b, bm, bs, bss; cs). Afterwards, (2.22) gives

following system of equations

∂K

∂cs
+ 2a

∂K

∂bm
= 0, a

∂K

∂bm
− ∂K

∂bss
= 0,

a
∂K

∂bs
+ (as − b)

∂K

∂bss
= 0,

a
∂K

∂b
+ am

∂K

∂bm
+ as

∂K

∂bs
+ (ass − bs)

∂K

∂bss
= 0. (2.25)

One obtain following differential invariants after solving (2.25)

K = K(a, am, as, amm, ams, ass;K1), (2.26)
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with

K1 =
1

2
b2as + (am + aass − a2s)b+ (aas − ab)bs − abm − a2bss + 2a2cs, (2.27)

which is termed as Laplace type invariant for parabolic equation (2.2).

2.2 Differential Invariants of Scalar Nonlinear PDEs

In this section, we observe how Lie infinitesimal method works to calculate differential

invariants for the class of scalar nonlinear DEs. Here first we derive equivalence trans-

formations corresponding to second order scalar nonlinear hyperbolic type PDEs, then

to determine joint differential invariants we get differential invariants under transfor-

mations of both independent and dependent variables.

2.2.1 Equivalence Transformations

Consider a second order scalar nonlinear equation[12]

wmm = a(s, ws)wss + b(s, ws), (2.28)

where a, b are differentiable functions which involve first order derivatives. An equiva-

lence transformation of (2.28) is an invertible transformation of the variables m, s and

w, of the type

m̃ = φ1(m, s, w), s̃ = φ2(m, s, w), w̃ = φ3(m, s, w), (2.29)

that map an equation of the form (2.28) into an equation of the same form. To obtain

equivalence transformations of (2.28), we use an operator

X = ξ1
∂

∂m
+ ξ2

∂

∂s
+ η

∂

∂w
+ µ1

∂

∂a
+ µ2

∂

∂b
. (2.30)

The Lie invariance condition for (2.28) is

X[2](wmm − awss − b)|(2.28) = 0, (2.31)
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where, X[2] is second prolongation of equivalence operator (2.30) which have the form

X[2] = X+ ηm
∂

∂wm
+ ηs

∂

∂ws
+ ηmm

∂

∂wmm
+ ηss

∂

∂wss
. (2.32)

The invariance condition (2.31), after operating generator (2.32) can be written as

ηmm − aηss − µ1wss − µ2|(2.28) = 0. (2.33)

Inserting ηmm, ηss and introducing the relation wmm = (awss+ b) to eliminate wss, one

can easily find

ξ1 = c2m+ c3,

ξ2 = ξ(s),

η = c1w + c4m
2 + c5m+ η(s),

µ1 = 2aξ2,s − 2ac2,

µ2 = 2c4 + a(wsξ2,ss − ηss) + b(c1 − 2c2). (2.34)

Where ξ(s), η(s) are two arbitrary functions and ci for i = 1, 2, 3, 4, 5 are constants.

Hence, the class of equations (2.28) has infinite continuous group of equivalence trans-

formations which is spanned by the following infinitesimal operators [3]

X1 =
∂

∂m
,

X2 =
∂

∂w
,

X3 = m
∂

∂w
,

X4 = s
∂

∂w
,

X5 = m
∂

∂m
+ s

∂

∂s
+ 2w

∂

∂w
,

X6 = m
∂

∂m
− 2a

∂

∂a
− 2b

∂

∂b
,

X7 = m2 ∂

∂w
+ 2

∂

∂b
,

Xξ = ξ
∂

∂s
+ 2aξ

′ ∂

∂a
+ aξ

′′
ws

∂

∂b
,

Xη = η
∂

∂w
− aη′′ ∂

∂b
. (2.35)

Here, the prime represents differentiation with respect to s.
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2.2.2 Joint Differential Invariants for Hyperbolic Type PDEs

To acquire the differential invariants of order zero, i.e., invariants of the form J =

J(m, s, w, wm, ws, a, b), one employ the invariant test XJ = 0, using operators X1,

X2, X3, X4, Xξ and determine that the zeroth order invariants does not depend on

m, s, w, wm and ws. Therefore, J = J(a, b). Consequently, applying the invariant test

to the operators X6 and X7, one gets

∂J

∂a
= 0,

∂J

∂b
= 0. (2.36)

So, equation (2.28) do not have differential invariants of order zero.

Differential Invariants of the First Order

In order to derive differential invariants of the first order, the following criteria is used

X[1]J(a, b, as, aws , bs, bws) = 0, (2.37)

where

X[1] = X+ µ1,i
∂

∂ai
+ µ2,i

∂

∂bi
, i ∈ {s, ws} . (2.38)

Here, µ1,i, µ2,i is expressed as

µ1,i = D̃i(µ1)− asD̃i(ξ2)− awsD̃i(ηws),

µ2,i = D̃i(µ2)− bsD̃i(ξ2)− bwsD̃i(ηws),

with

D̃s =
∂

∂s
+ as

∂

∂a
+ ass

∂

∂as
+ asws

∂

∂aws

+ ...+
∂

∂s
+ bs

∂

∂b

+bss
∂

∂bs
+ bsws

∂

∂bws

...,

D̃ws =
∂

∂ws
+ aws

∂

∂a
+ asws

∂

∂as
+ awsws

∂

∂aws

+ ...+
∂

∂ws
+ bws

∂

∂b

+bsws

∂

∂bs
+ bwsws

∂

∂bws

+ .... (2.39)
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The invariance conditions X[1]
1 J = 0, ...,X[1]

4 J = 0 are verified identically. Furthermore,

if one takes first prolongation X[1]
7 of the operator X7, then it can readily observe that

this prolongation matches with X7 itself, and so

X[1]
7 J =

∂J

∂b
= 0. (2.40)

It implies that

J = J(a, as, aws , bs, bws). (2.41)

Similarly, holding in the first prolongation of the operator X5 with quantities, we get

X[1]
5 = −as

∂

∂as
− bs

∂

∂bs
− aws

∂

∂aws

− bws

∂

∂bws

. (2.42)

Now applying this operator on (2.41), we find

X[1]
5 = −as

∂J

∂as
− bs

∂J

∂bs
− aws

∂J

∂aws

− bws

∂J

∂bws

= 0. (2.43)

From the characteristics equations

das
as

=
dbs
bs

=
daws

aws

=
dbws

bws

, (2.44)

it follows that J = J(a, J1, J2, J3), where

J1 =
bs
as
, J2 =

aws

as
, J3 =

bws

as
, (2.45)

provided that as 6= 0. The first extension of the operator X6, in the form which we

require, is

X[1]
6 = a

∂

∂a
+ as

∂J

∂as
+ bs

∂J

∂bs
+ aws

∂J

∂aws

+ bws

∂J

∂bws

= 0. (2.46)

Employing this operator on the invariants (2.45), one finds that

X[1]
6 J1 = X[1]

6 J2 = X[1]
6 J3 = 0, (2.47)

and hence

X[1]
6 J ≡ a

∂J

∂a
= 0. (2.48)
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It acquires that the terms (2.45) present a basis of invariants (2.37) for X1, ...,X7,

J = J(J1, J2, J3). Now we move on the first prolongation of the operator Xη and write

it in the following form

X[1]
η = −η′′aws

∂

∂as
− (aη

′′′
+ η

′′
as + η

′′
bws)

∂

∂bs
− η′′aws

∂

∂bws

. (2.49)

The invariant test X[1]
η J = 0, implies

η
′′
aws

∂J

∂as
+ (aη

′′′
+ η

′′
as + η

′′
bws)

∂J

∂bs
+ η

′′
aws

∂

∂bws

= 0. (2.50)

As η(s) is an arbitrary function and its derivatives η′′ , η′′′ are functionally independent,

so (2.50) could be separated by equating coefficients of η and its derivatives to zero,

which provides the following system

a
∂J

∂bs
=

a

as

∂J

∂J1
= 0,

aws

(
∂J

∂as
+

∂J

∂bws

)
= −J2

[
J2
∂J

∂J2
+ (J3 − 1)

∂J

∂J3

]
= 0. (2.51)

It follows that J = J(ω) with

ω =
J3 − 1

J2
≡ bws − as

aws

, (2.52)

with aws 6= 0. Finally, we keep the first prolongation of the operator Xξ taking only

the essential terms

X[1]
ξ = (2aξ

′′
+asξ

′
+awsξ

′′
ws)

∂

∂as
+3awsξ

′ ∂

∂aws

+(aξ
′′
+awsξ

′′
ws+ bwsξ

′
)
∂

∂bws

. (2.53)

Considering (2.52), one has

X[1]
ξ J = − 1

aws

[
aξ
′′ − 2ξ

′
(as − bws)

] ∂J
∂ω

= 0. (2.54)

Treating ξ′ and ξ′′ as independent functions and accepting that aws 6= 0, one obtains

∂J

∂ω
= 0. (2.55)
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Differential Invariants of the Second Order: With the objective, to attain dif-

ferential invariants occupying second order derivatives J = J(a, b, ai, bi, aij, bij) for

i, j ∈ {s, ws}. The second extension of the generator X is written as

X[2] = X[1] + µ1,ij
∂

∂aij
+ µ2,ij

∂

∂bij
, (2.56)

with

µ1,ij = D̃i(µ1,i)− as,iD̃i(ξ2)− aws,iD̃i(ηws),

µ2,ij = D̃i(µ2,i)− bs,iD̃i(ξ2)− bws,iD̃i(ηws). (2.57)

Repeating the same procedure, the following second order differential invariants are

derived

J4 = a
awsws

(aws)
2
,

J5 =
aawsws(2bws−as)−aawsasws−3(aws )

2(bws−as)

aws [aws(bws − as) + a(asws − bwsws)]
,

J6 =
aas(asawsws + 2awsbwsws) + 4bws [awsws(bws − as)− awsbwsws ]

[aws(bws − as) + a(asws − bwsws)]
2

−2(aws)
2[(as)

2 + (bws)
2] + a(ass − 2bsws) + awsbs − 5asbws

[aws(bws − as) + a(asws − bwsws)]
2

. (2.58)

Hence it is observed that, scalar nonlinear hyperbolic type PDEs (2.28) have no dif-

ferential invariants of zero order. However, it contains three functionally independent

differential invariants of first and second order expressed in (2.45) and (2.58).
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Chapter 3

Equivalence Group Classification for
Systems of Two Nonlinear Parabolic
Type PDEs

Equivalence transformations are the basic source to find differential invariants and with

the help of these differential invariants one can linearize nonlinear complicated forms

of DEs to linear or simple solvable nonlinear forms of DEs.

In this chapter, we address a major class and few special cases of systems of two

second order nonlinear parabolic type PDEs to investigate associated equivalence trans-

formations. Moreover, we also discuss linearity and nonlinearity of equivalence trans-

formations corresponding to our considered systems of nonlinear parabolic type PDEs.

To characterize on the bases of equivalence transformations, here first we study the

equivalence transformations for a system of nonlinear parabolic type PDEs which in-

volves first order derivatives in its arbitrary coefficients and then we consider its various

subclasses.

3.1 Equivalence Transformations

Consider a system of two second order nonlinear parabolic type PDEs with a, b, c, d as

its arbitrary functions

wm + a(m, s, w, v)wss + b(m, s, w, v, ws, vs) = 0,

vm + c(m, s, w, v)vss + d(m, s, w, v, ws, vs) = 0,
(3.1)
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where, m and s in subscripts denotes partial derivatives i.e., wm = ∂w
∂m

, ws = ∂w
∂s
,

vm = ∂v
∂m

, vs = ∂v
∂s
, wss = ∂2w

∂s2
, vss = ∂2v

∂s2
. An equivalence transformation of (3.1) is

an invertible transformation of the dependent and independent variables which maps

(3.1) into itself. Lie infinitesimal method engages the following operator

X = ξ1
∂

∂m
+ ξ2

∂

∂s
+ η1

∂

∂w
+ η2

∂

∂v
+ µ1

∂

∂a
+ µ2

∂

∂b
+ µ3

∂

∂c
+ µ4

∂

∂d
, (3.2)

to provide the set of equivalence transformations for (3.1), where ξk = ξk(m, s, w, v),

ηk = ηk(m, s, w, v), µl = µl(m, s, w, v, ws, vs, a, b, c, d) for k = 1, 2, l = 1, 2, 3, 4. For

system (3.1), second order prolongation of the above generator is needed that reads as

X[2] = X+ ηm1
∂

∂wm
+ ηm2

∂

∂vm
+ ηs1

∂

∂ws
+ ηs2

∂

∂vs
+ ηss1

∂

∂wss
+ ηss2

∂

∂vss
, (3.3)

where

ηm1 = Dm(η1)− wmDm(ξ1)− wsDm(ξ2),

ηm2 = Dm(η2)− vmDm(ξ1)− vsDm(ξ2),

ηs1 = Ds(η1)− wmDs(ξ1)− wsDs(ξ2),

ηs2 = Ds(η2)− vmDs(ξ1)− vsDs(ξ2),

ηss1 = Ds(η
s
1)− wmsDs(ξ1)− wssDs(ξ2),

ηss2 = Ds(η
s
2)− vmsDs(ξ1)− vssDs(ξ2),

with

Dm =
∂

∂m
+ wm

∂

∂w
+ vm

∂

∂v
+ wmm

∂

∂wm
+ vmm

∂

∂vm
+ · · · ,

Ds =
∂

∂s
+ ws

∂

∂w
+ vs

∂

∂v
+ wss

∂

∂ws
+ vss

∂

∂vs
+ · · · . (3.4)

These expressions finally leads us to

ηm1 = η1,m + vmη1,v + wmη1,w − wmξ1,m − wmvmξ1,v − w2
mξ1,w

−wsξ2,m − wsvmξ2,v − wmwsξ2,w,
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ηm2 = η2,m + vmη2,v + wmη2,w − vmξ1,m − wmvmξ1,w − v2mξ1,v

−vsξ2,m − vmvsξ2,v − wmvsξ2,w,

ηs1 = η1,s + vsη1,v + wsη1,w − wmξ1,s − wmvsξ1,v − w2
sξ2,w

−wsξ2,s − wmwsξ1,w − wsvsξ2,v,

ηs2 = η2,s + vsη2,v + wsη2,w − vmξ1,s − vmvsξ1,v − v2sξ2,v

−vsξ2,s − vmwsξ1,w − wsvsξ2,w,

ηss1 = η1,ss + 2vsη1,sv + 2wsξ1,sw − wmξ1,ss − wsξ2,ss − wsvssξ2,v + vssη1,v

−2w2
sξ2,sw + v2sη1,vv + w2

sη1,ww − w3
sξ2,ww + 2wsvsη1,wv − 2wmwsvsξ1,wv

−2wmsξ1,s + wssη1,w − 2wssξ2,s − 2wmsvsξ1,v − wsv2sξ2,vv − wmvssξ1,v

−2wmswsξ1,w − wmv2sξ1,vv − 3wsswsξ2,w − wsswmξ1,w − 2w2
svsξ2,wv

−2wssvsξ2,v − wmw2
sξ1,ww − 2wmvsξ1,sv − 2wmwsξ1,sw − 2wsvsξ2,sv,

ηss2 = η2,ss − 2wsvmvsξ1,wv + 2vsη2,sv + 2wsη2,sw − vmξ1,ss − vsξ2,ss − 2v2sξ2,sv

+v2sη2,vv − v3sξ2,vv − 2vmsξ1,s + vssη2,v − 2vssξ2,s + w2
sη2,ww + wssη2,w

−2vmvsξ1,sv − 2wsvmξ1,sw − 2wsvsξ2,sw − wssvmξ1,w − wssvsξ2,w

+2wsvsη2,wv − vmv2sξ1,vv − 2wsv
2
sξ2,wv − 2vmsvsξ1,v − 2vmswsξ1,w

−vssvmξ1,v − 3vssvsξ2,v − 2wsvssξ2,w − w2
svmξ1,ww − vsw2

sξ2,ww.

Lie invariance condition for system (3.1) is

X[2](wm + awss + b)|(3.1) = 0,

X[2](vm + cvss + d)|(3.1) = 0,
(3.5)

which expands to the following equations

ηm1 + aηss1 + µ1wss + µ2|(3.1) = 0, (3.6)

ηm2 + cηss2 + µ3vss + µ4|(3.1) = 0. (3.7)

Substituting ηm1 , ηss1 in (3.6), ηm2 , ηss2 in (3.7) and replacing wm with −(awss + b), vm
with −(cvss + d), provides

η1,m − wsξ2,m − (awss + b)η1,w + (awss + b)ξ1,m − (awss + b)(cvss + d)ξ1,v
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−(awss + b)2ξ1,w − (cvss + d)η1,v + ws(cvss + d)ξ2,v + ws(awss + b)ξ2,w

+a[2wsvsη1,wv + wss(awss + b)ξ1,w − 2w2
svsξ2,wv + 2vs(awss + b)ξ1,sv − wsv2sξ2,vv

+2wsvs(awss + b)ξ1,wv + 2vsη1,sv + 2wsη1,sw − wsξ2,ss − 2w2
sξ2,sw + v2sη1,vv + vssη1,v

+w2
sη1,ww − w3

sξ2,ww − 2wmsξ1,s + wssη1,w − 2wssξ2,s + (awss + b)ξ1,ss + η1,ss

−wsvssξ2,v − 2wmsvsξ1,v − 2wmswsξ1,w − 2wssvsξ2,v − 3wsswsξ2,w + v2s(awss + b)ξ1,vv

+w2
s(awss + b)ξ1,ww + vss(awss + b)ξ1,v + 2ws(awss + b)ξ1,sw − 2wsvsξ2,sv]

+µ1wss + µ2 = 0, (3.8)

η2,m − (cvss + d)η2,v − (awss + b)η2,w + (cvss + d)ξ1,m + (cvss + d)2ξ1,v

−(cvss + d)(awss + b)ξ1,w − vsξ2,m + vs(cvss + d)ξ2,v + vs(awss + b)ξ2,w

+c[2wsvsη2,wv + 2wsvs(cvss + d)ξ1,wv + 2vsη2,sv + 2wsη2,sw − 2wsvsξ2,sw

−2vmsvsξ1,v + 2vs(cvss + d)ξ1,sv − 2wsvssξ2,w + w2
s(cvss + d)ξ1,ww − wssvsξ2,w

−3vsvssξ2,v + 2ws(cvss + d)ξ1,sw − 2wsvmsξ1,w + wss(cvss + d)ξ1,w + v2sη2,vv

+v2s(cvss + d)ξ1,vv − 2wsv
2
sξ2,wv − vsw2

sξ2,ww − 2vmsξ1,s + vss(cvss + d)ξ1,v

+(cvss + d)ξ1,ss − 2vssξ2,s − v3sξ2,vv + vssη2,v − 2v2sξ2,sv + w2
sη2,ww + wssη2,w

−vsξ2,ss + η2,ss] + µ3vss + µ4 = 0, (3.9)

respectively. After simplification coefficients of wssws, wssvs, wms, wmsws, wmsvs, vss in

(3.8) and wss in (3.9), when equating to zero, yields

2a2ξ1,sw − 2aξ2,w = 0,

2a2ξ1,sv − 2aξ2,v = 0,

ξ1,s = 0,

ξ1,w = 0,

ξ1,v = 0,

(ab− bc)ξ1,v + (a− c)η1,v = 0,

(cd− ad)ξ1,w + (c− a)η2,w = 0. (3.10)
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Solving (3.10), we obtain

ξ1,s = 0, ξ1,w = 0, ξ1,v = 0, ξ2,w = 0,

ξ2,v = 0, η1,v = 0, η2,w = 0, (3.11)

which implies

ξ1 := ξ1(m),

ξ2 := ξ2(m, s),

η1 := η1(m, s, w),

η2 := η2(m, s, v). (3.12)

Afterwards using (3.11) in (3.8) and (3.9), reduces these equations to

aw2
sη1,ww + 2awsη1,sw + aη1,ss − awsξ2,ss − bη1,w − wsξ2,m

+η1,m − 2awssξ2,s + awssξ1,m + bξ1,m + µ1wss + µ2 = 0, (3.13)

cv2sη2,vv + 2cvsη2,sv + cη2,ss − cvsξ2,ss − dη2,v − vsξ2,m

+η2,m − 2cvssξ2,s + cvssξ1,m + dξ1,m + µ3vss + µ4 = 0. (3.14)

Now coefficients of wss and remaining terms in (3.13) as well as the coefficients of vss
and other terms in (3.14) provides

µ1 = 2aξ2,s − aξ1,m,

µ2 = awsξ2,ss + bη1,w + wsξ2,m − aw2
sη1,ww − η1,m

−2awsη1,sw − aη1,ss − bξ1,m

µ3 = 2cξ2,s − cξ1,m,

µ4 = cvsξ2,ss + dη2,v + vsξ2,m − cv2sη2,vv − η2,m

−2cvsη2,sv − cη2,ss − dξ1,m. (3.15)

Here, ξi, ηi, µj characterize the infinitesimal changes in the dependent, independent

variables and arbitrary coefficients of considered system for i = 1, 2, j = 1, 2, 3, 4.
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Now we consider a few special cases of (3.1) to investigate associated equivalence

transformations.

Case-I

Consider a system of nonlinear parabolic type PDEs

wm + a1(m, s, w, v)wss + a2(m, s, w, v)vss + a3(m, s, w, v, ws, vs) = 0,

vm + b1(m, s, w, v)vss + b2(m, s, w, v)wss + b3(m, s, w, v, wm, ws) = 0,
(3.16)

where ai, bi for i = 1, 2, 3 are arbitrary coefficients. Second order prolonged generator

for (3.16) is

X[2] = ξ1
∂

∂m
+ ξ2

∂

∂s
+ η1

∂

∂w
+ η2

∂

∂v
+ ηm1

∂

∂wm
+ ηm2

∂

∂vm
+ ηss1

∂

∂wss

+ηss2
∂

∂vss
+ µ1

∂

∂a1
+ µ2

∂

∂a2
+ µ3

∂

∂a3
+ µ4

∂

∂b1
+ µ5

∂

∂b2
+ µ6

∂

∂b3
, (3.17)

where µ1 to µ6 are functions of (m, s, w, v, ws, vs,ai, bi). Operating generator (3.17) on

(3.16), we get

ηm1 + a1η
ss
1 + a2η

ss
2 + µ1wss + µ2vss + µ3|(3.16) = 0, (3.18)

ηm2 + b1η
ss
2 + b2η

ss
1 + µ4vss + µ5wss + µ6|(3.16) = 0. (3.19)

Coefficients of wssvss, wssws, wms in (3.18) gives the following expression after substitut-

ing ηm1 , ηss1 , ηss2 , and replacing wm with−(a1wss+a2vss+a3), vm with−(b1vss+b2wss+b3)

ξ1,w = 0, ξ1,v = 0, ξ2,w = 0, ξ2,v = 0, ξ1,s = 0. (3.20)

It implies

ξ1 := ξ1(m),

ξ2 := ξ2(m, s),

η1 := η1(m, s, w, v),

η2 := η2(m, s, w, v). (3.21)

32



Afterwards coefficients of wss, vss and remaining terms in (3.18), (3.19) gives

µ1 = 2a1ξ2,s + b2η1,v − a2η2,w − a1ξ1,m,

µ2 = 2a2ξ2,s + a2η1,w + b1η1,v − a1η1,v − a2η2,v − a2ξ1,m,

µ3 = a1wsξ2,ss + wsξ2,m + a2vsξ2,ss + b3η1,v + a3η1,w − a1w2
sη1,ww

−a2w2
sη2,ww − a1v2sη1,vv − a2v2sη2,vv − 2a1wsvsη1,wv − 2a2wsvsη2,wv

−2a1wsη1,sw − 2a2wsη2,sw − 2a1vsη1,sv − 2a2vsη2,sv − a1η1,ss

−a2η2,ss − η1,m − a3ξ1,m,

µ4 = 2b1ξ2,s + a2η2,w − b2η1,v − b1ξ1,m,

µ5 = 2b2ξ2,s + b2η2,v + a1η2,w − b1η2,w − b2η1,w − b2ξ1,m,

µ6 = b2wsξ2,ss + vsξ2,m + b1vsξ2,ss + a3η2,w + b3η2,v − b2w2
sη1,ww

−b1w2
sη2,ww − b2v2sη1,vv − b1v2sη2,vv − 2b2wsvsη1,wv − 2b1wsvsη2,wv

−2b2wsη1,sw − 2b1wsη2,sw − 2b2vsη1,sv − 2b1vsη2,sv − b2η1,ss

−b1η2,ss − η2,m − b3ξ1,m. (3.22)

Here, µ1 to µ6 represents the arbitrary coefficients.

Case-II

A system of two second order nonlinear parabolic type PDEs

wm + a1wss + a2vss + a3w
2
s + a4wsvs + a5v

2
s + a6ws + a7vs + a8 = 0,

vm + b1vss + b2wss + b3v
2
s + b4vsws + b5w

2
s + b6vs + b7ws + b8 = 0,

(3.23)

where a1 to a8 and b1 to b8 all are functions of (m,s,w,v). For (3.23) we have second-

order prolonged generator of the form

X[2] = ξ1
∂

∂m
+ ξ2

∂

∂s
+ η1

∂

∂w
+ η2

∂

∂v
+ ηm1

∂

∂wm
+ ηs1

∂

∂ws
+ ηm2

∂

∂vm
+ ηs2

∂

∂vs

+ηmm1

∂

∂wmm
+ ηss1

∂

∂wss
+ ηmm2

∂

∂vmm
+ ηss2

∂

∂vss
+ µ1

∂

∂a1
+ µ2

∂

∂a2

+µ4
∂

∂a4
+ µ5

∂

∂a5
+ µ6

∂

∂a6
+ µ7

∂

∂a7
+ µ8

∂

∂a8
+ µ9

∂

∂b1
+ µ10

∂

∂b2

+µ11
∂

∂b3
+ µ12

∂

∂b4
+ µ13

∂

∂b5
+ µ14

∂

∂b6
+ µ15

∂

∂b7
+ µ16

∂

∂b8
, (3.24)
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where µ1 to µ16 are functions of (m,s,w,v,ai, bi) for i = 1, 2, ..., 8. The Lie invariance

condition is given by

X[2](wm + a1wss + a2vss + a3w
2
s + a4wsvs + a5v

2
s + a6ws + a7vs + a8)|(3.23) = 0,

X[2](vm + b1vss + b2wss + b3v
2
s + b4vsws + b5w

2
s + b6vs + b7ws + b8)|(3.23) = 0,

which gives

ηm1 + a1η
ss
1 + a2η

ss
2 + 2a3η

s
1ws + 2a5η

s
2vs + a6η

s
1 + a4η

s
1vs + a4η

s
2ws + a7η

s
2

+µ1wss + µ2vss + µ3w
2
s + µ4wsvs + µ5v

2
s + µ6ws + µ7vs + µ8|(3.23) = 0, (3.25)

ηm2 + b1η
ss
2 + b2η

ss
1 + 2b3η

s
2vs + 2b5η

s
1ws + b6η

s
2 + b4η

s
1vs + b4η

s
2ws + b7η

s
1 + µ9vss

+µ10wss + µ11v
2
s + µ12vsws + µ13w

2
s + µ14vs + µ15ws + µ16|(3.23) = 0. (3.26)

Inserting ηm1 , ηm2 , ηs1, ηs2, ηss1 , ηss2 in above equations and replacing wm with −(a1wss +
a2vss + a3w

2
s + a4wsvs + a5v

2
s + a6ws + a7vs + a8), vm with −(b1vss + b2wss + b3v

2
s +

b4vsws+ b5w
2
s + b6vs+ b7ws+ b8), we obtain the determining equations. Coefficients of

wms, wmsws, wmsvs, w3
s in (3.25) provides

ξ1,s = 0, ξ1,w = 0, ξ1,v = 0, ξ2,w = 0, ξ2,v = 0, (3.27)

it implies

ξ1 := ξ1(m),

ξ2 := ξ2(m, s),

η1 := η1(m, s, w, v),

η2 := η2(m, s, w, v). (3.28)

Subsequently utilizing (3.27) in (3.25), (3.26) simplifies these equations. After the said
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insertions, comparing coefficients of wss, vss, w2
s , wsvs, v

2
s , ws, vs and remaining terms

provide

µ1 = 2a1ξ2,s + b2η1,v − a1ξ1,m − a2η2,w,

µ2 = a2η1,w + 2a2ξ2,s + b1η1,v − a1η1,v − a2η2,v − a2ξ1,m,

µ3 = 2a3ξ2,s + b5η1,v − a1η1,ww − a2η2,ww − a3η1,w − a4η2,w − a3ξ1,m,

µ4 = 2a4ξ2,s + b4η1,v − 2a1η1,wv − 2a2η2,wv − 2a3η1,v − a4η2,v

−2a5η2,w − a4ξ1,m,

µ5 = a5η1,w + 2a5ξ2,s + b3η1,v − a1η1,vv − a2η2,vv − a4η1,v

−2a4η2,v − a4ξ1,m,

µ6 = a1ξ2,ss + ξ2,m + b7η1,v − 2a1η1,sw − 2a2η2,sw − a7η2,w

−2a3η1,s − a4η2,s − a6ξ1,m − a6ξ2,s,

µ7 = a2ξ2,ss + a7η1,w + a7ξ2,s + b6η1,v − 2a1η1,sv − 2a2η2,sv − a6η1,v

−a7η2,v − a4η1,s − 2a5η2,s − a7ξ1,m,

µ8 = a8η1,w + b8η1,v − a1η1,ss − a2η2,ss − a6η1,s − a7η2,s − η1,m − a8ξ1,m,

µ9 = a2η2,w + 2b1ξ2,s − b2η1,v − b1ξ1,m,

µ10 = a1η2,w + b2η2,v + 2b2ξ2,s − b1η2,w − b2η1,w − b2ξ1,m,

µ11 = a5η2,w + 2b3ξ2,s − b2η1,vv − b1η2,vv − b3η2,v − b4η1,v − b3ξ1,m,

µ12 = a4η2,w + 2b4ξ2,s − 2b2η1,wv − 2b1η2,wv − 2b3η2,w − 2b6η1,v

−b4η1,w − b4ξ1,m,

µ13 = a3η2,w + b5η2,v + 2b5ξ2,s − b2η1,ww − b1η2,ww − b4η2,w

−2b5η1,w − b5ξ1,m,

µ14 = a7η2,w + b1ξ2,ss + b6ξ2,s + ξ2,m − 2b2η1,sv − 2b1η2,sv

−b7η1,v − b4η1,s − 2b3η2,s − b6ξ1,m,

µ15 = a6η2,w + b7η2,v + b2ξ2,ss + b7ξ2,s − 2b2η1,sw − 2b1η2,sw − b6η2,w

−b7η1,w − 2b5η1,s − b4η2,s − b7ξ1,m,

µ16 = a8η2,w + b8η2,v − b2η1,ss − b1η2,ss − b7η1,s − b6η2,s − η2,m − b8ξ1,m. (3.29)
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Case-III

For a system of nonlinear parabolic type PDEs

wm + a1wss + a2w
2
s + a3ws + a4 = 0,

vm + b1vss + b2v
2
s + b3vs + b4 = 0,

(3.30)

where all coefficients are functions of (m,s,w,v), second-order prolonged generator has

the form

X[2] = ξ1
∂

∂m
+ ξ2

∂

∂s
+ η1

∂

∂w
+ η2

∂

∂v
+ ηm1

∂

∂wm
+ ηs1

∂

∂ws
+ ηm2

∂

∂vm
+ ηs2

∂

∂vs

+ηss1
∂

∂wss
+ ηss2

∂

∂vss
+ µ1

∂

∂a1
+ µ2

∂

∂a2
+ µ3

∂

∂a3
+ µ4

∂

∂a4
+ µ5

∂

∂b1

+µ6
∂

∂b2
+ µ7

∂

∂b3
+ µ8

∂

∂b4
. (3.31)

Where µ1 to µ8 are functions of (m,s,w,v,ai, bi). After applying generator (3.31) on

(3.30), we get

ηm1 + a1η
ss
1 + 2a2η

s
1ws + a3η

s
1 + µ1wss + µ2w

2
s + µ3ws + µ4|(3.30) = 0, (3.32)

ηm2 + b1η
ss
2 + 2b2η

s
2vs + b3η

s
2 + µ5vss + µ6v

2
s + µ7vs + µ8|(3.30) = 0. (3.33)

Coefficients of w4
s , w3

svs, w3
s , v2sws, wsvs in (3.32) along with the coefficients of wsvs

in (3.33) respectively gives the following expression after substituting ηm1 , ηs1, ηm2 , ηs2,

ηss1 , ηss2 , as a consequence replacing wm with −(a1wss + a2w
2
s + a3ws + a4), vm with

−(b1vss + b2v
2
s + b3vs + b4), we get

ξ1,w = 0, ξ1,v = 0, ξ2,w = 0, ξ1,s = 0,

ξ2,v = 0, η1,v = 0, η2,w = 0. (3.34)

The above equations implies

ξ1 := ξ1(m),

ξ2 := ξ2(m, s),

η1 := η1(m, s, w),

36



η2 := η2(m, s, v). (3.35)

Further, coefficients of wss, w2
s , ws and constant terms in (3.32) as well as the coefficients

of vss, v2s , vs and constant terms in (3.33) gives

µ1 = 2a1ξ2,s − a1ξ1,m,

µ2 = 2a2ξ2,s − a1η1,ww − a2η1,w − a2ξ1,m,

µ3 = a1ξ2,ss + a3ξ2,s + ξ2,m − 2a1η1,sw − 2a2η1,s − a3ξ1,m,

µ4 = a4η1,w − a1η1,ss − a3η1,s − η1,m − a4ξ1,m,

µ5 = 2b1ξ2,s − b1ξ1,m,

µ6 = 2b2ξ2,s − b1η2,vv − b2η2,v − b2ξ1,m,

µ7 = b1ξ2,ss + b3ξ2,s + ξ2,m − 2b1η2,sv − 2b2η2,s − b3ξ1,m,

µ8 = b4η2,v − b1η2,ss − b3η2,s − η2,m − b4ξ1,m. (3.36)

Case-IV

A nonlinear system of PDEs of the type

wm + a1w
2
s + a2v

2
s + a3wsvs = 0,

vm + b1v
2
s + b2w

2
s + b3vsws = 0,

(3.37)

where ai, bi, for i = 1, 2, 3, are functions of (m,s,w,v), the second-order prolonged

generator is written as

X[2] = ξ1
∂

∂m
+ ξ2

∂

∂s
+ η1

∂

∂w
+ η2

∂

∂v
+ ηm1

∂

∂wm
+ ηs1

∂

∂ws
+ ηm2

∂

∂vm
+ ηs2

∂

∂vs

+µ1
∂

∂a1
+ µ2

∂

∂a2
+ µ3

∂

∂a3
+ µ4

∂

∂b1
+ µ5

∂

∂b2
+ µ6

∂

∂b3
. (3.38)

Here µ1 to µ6 are functions of (m,s,w,v,ai, bi). Applying (3.38) on (3.37), we get

ηm1 + 2a1η
s
1ws + 2a2η

s
2vs + a3η

s
1vs + a3η

s
2ws

+µ1w
2
s + µ2v

2
s + µ3wsvs|(3.37) = 0, (3.39)
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ηm2 + 2b1η
s
2vs + 2b2η

s
1ws + b3η

s
1vs + b3η

s
2ws

+µ4v
2
s + µ5w

2
s + µ6vsws|(3.37) = 0. (3.40)

Using ηm1 , ηs1, ηm2 , ηs2 in above equations and replacing wm with −(a1w2
s+a2v

2
s+a3wsvs),

vm with −(b1v2s + b2w
2
s + b3vsws). After this coefficients of w4

s , w3
s , ws, vs and constant

terms in (3.39) and also coefficients of constant terms in (3.40) provides

ξ1,w = 0, ξ1,v = 0, ξ2,w = 0, ξ2,v = 0, ξ1,s = 0,

ξ2,m = 0, η1,s = 0, η2,s = 0, η1,m = 0. η2,m = 0, (3.41)

it generates

ξ1 := ξ1(m),

ξ2 := ξ2(s),

η1 := η1(w, v),

η2 := η2(w, v). (3.42)

Later on, coefficients w2
s , v2s , wsvs in (3.39), v2s , w2

s , vsws in (3.40) gives

µ1 = 2a1ξ2,s + b2η1,v − a1η1,w − a3η2,w − a1ξ1,m,

µ2 = 2a2ξ2,s + a2η1,w + b1η1,v − a3η1,v − 2a2η2,v − a2ξ1,m,

µ3 = 2a3ξ2,s + b3η1,v − 2a1η1,v − a3η2,v − 2a2η2,w − a3ξ1,m,

µ4 = 2b1ξ2,s + a2η2,w − b3η1,v − b1η2,v − b1ξ1,m,

µ5 = 2b2ξ2,s + a1η2,w + b2η2,v − b3η2,w − 2b2η1,w − b2ξ1,m,

µ6 = a3η2,w + 2b3ξ2,s − 2b1η2,w − 2b2η1,v − b3η1,w − b3ξ1,m. (3.43)

Case-V

For a second order system of nonlinear parabolic type PDEs

wm + a1wss + a2vss + a3 = 0,

vm + b1vss + b2wss + b3 = 0,
(3.44)
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where arbitrary coefficients are functions of (m,s,w,v), we have following generator

X[2] = ξ1
∂

∂m
+ ξ2

∂

∂s
+ η1

∂

∂w
+ η2

∂

∂v
+ ηm1

∂

∂wm
+ ηm2

∂

∂vm
+ ηss1

∂

∂wss

+ηss2
∂

∂vss
+ µ1

∂

∂a1
+ µ2

∂

∂a2
+ µ3

∂

∂a3
+ µ4

∂

∂b1
+ µ5

∂

∂b2
+ µ6

∂

∂b3
. (3.45)

Employing (3.45) on (3.44), provides

ηm1 + a1η
ss
1 + a2η

ss
2 + µ1wss + µ2vss + µ3|(3.44) = 0, (3.46)

ηm2 + b1η
ss
2 + b2η

ss
1 + µ4vss + µ5wss + µ6|(3.44) = 0. (3.47)

Substituting ηm1 , ηm2 , ηss1 , ηss2 and wm as −(a1wss+a2vss+a3), vm as −(b1vss+b2wss+b3),
and equating coefficients of wssvss, wssws, wms, w2

s , v2s , wsvs, vs, ws in (3.46) to zero,

we get

ξ1,w = 0, ξ1,v = 0, ξ2,w = 0, ξ2,v = 0, ξ1,s = 0, η1,ww = 0,

η2,ww = 0, η1,vv = 0, η2,vv = 0, η1,wv = 0, η2,wv = 0, η1,sv = 0,

2η2,sv = ξ2,ss, η1,sw = 0, 2η2,sw = ξ2,ss, ξ2,m = 0. (3.48)

Solving these equations, we find

ξ1 := ξ1(m),

ξ2 := ξ2(s),

η1 := f1(m)w + f2(m)v + f3(m, s),

η2 := f4(m)w + f5(m)v + f6(m, s) +
1

2
(w + v)ξ2,s. (3.49)

Moreover, coefficients of wss, vss and remaining terms in (3.46), (3.47) gives

µ1 = 2a1ξ2,s + b2η1,v − a2η2,w − a1ξ1,m,

µ2 = 2a2ξ2,s + a2η1,w + b1η1,v − a1η1,v − a2η2,v − a2ξ1,m,

µ3 = a3η1,w + b3η1,v − a1η1,ss − a2η2,ss − η1,m − a3ξ1,m,

µ4 = 2b1ξ2,s + a2η2,w − b2η1,v − b1ξ1,m,

µ5 = 2b2ξ2,s + b2η2,v + a1η2,w − b1η2,w − b2η1,w − b2ξ1,m,
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µ6 = a3η2,w + b3η2,v − b2η1,ss − b1η2,ss − η2,m − b3ξ1,m. (3.50)

Notice that, here η1, η2 are linear in w and v.

Case-VI

Consider a system
wm + a1wss + a2vss = 0,

vm + b1vss + b2wss = 0,
(3.51)

where all the coefficients are functions of (m,s,w,v). Second-order extended generator

for (3.51) has the form

X[2] = ξ1
∂

∂m
+ ξ2

∂

∂s
+ η1

∂

∂w
+ η2

∂

∂v
+ ηm1

∂

∂wm
+ ηm2

∂

∂vm

+ηss1
∂

∂wss
+ ηss2

∂

∂vss
+ µ1

∂

∂a1
+ µ2

∂

∂a2
+ µ3

∂

∂b1
+ µ4

∂

∂b2
, (3.52)

where µ1 to µ4 are functions of (m,s,w,v,a1, a2, b1, b2). The Lie invariance condition in

this case is

X[2](wm + a1wss + a2vss)|(3.51) = 0, (3.53)

X[2](vm + b1vss + b2wss)|(3.51) = 0. (3.54)

Applying the generator and replacing wm with −(a1wss + a2vss), vm with −(b1vss +
b2wss). Coefficients of w2

ss, wssws, vssvs, vms, v2s , w2
s , wsvs, ws and constants terms in

(3.53) along with coefficients of vs and remaining terms in (3.54) gives

ξ1,w = 0, ξ1,v = 0, ξ2,w = 0, ξ2,v = 0, ξ1,s = 0 η1,vv = 0,

η2,vv = 0, η1,ww = 0, η2,ww = 0, η1,wv = 0, η2,wv = 0,

2η1,sw = ξ2,ss, η2,sw = 0, ξ2,m = 0, η1,ss = 0, η2,ss = 0,

η1,m = 0, η1,sv = 0, 2η2,sv = ξ2,ss. η2,m = 0, (3.55)

Solving (3.55), we obtain

ξ1 := ξ1(m),
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ξ2 := c1s
2 + c2s+ c3,

η1 := (c1w + c4)s+ c5w + c6v + c7,

η2 := (c1v + c8)s+ c9w + c10v + c11. (3.56)

Here ci for i = 1, 2, ..., 11 are arbitrary constants. Thereupon, coefficients of wss, vss,

in (3.53) and vss, wss, in (3.54) provides

µ1 = 2a1ξ2,s + b2η1,v − a2η2,w − a1ξ1,m,

µ2 = 2a2ξ2,s + a2η1,w + b1η1,v − a1η1,v − a2η2,v − a2ξ1,m,

µ3 = 2b1ξ2,s + a2η2,w − b2η1,v − b1ξ1,m,

µ4 = 2b2ξ2,s + b2η2,v + a1η2,w − b1η2,w − b2η1,w − b2ξ1,m. (3.57)

As is evident from (3.56), both η1, η2 are linear in s, w and v.

Case-VII

A system of PDEs of the form

wm + a1wss + a2 = 0,

vm + b1vss + b2 = 0,
(3.58)

where a1, a2, b1, b2, all are functions of (m,s,w,v), applying (3.52) on (3.58), provide

ηm1 + a1η
ss
1 + µ1wss + µ2|(3.58) = 0, (3.59)

ηm2 + b1η
ss
2 + µ3vss + µ4|(3.58) = 0. (3.60)

Utilizing ηm1 , ηss1 , ηm2 , ηss2 and changing wm with −(a1wss + a2), vm with −(b1vss + b2).

Coefficients of wmsws, wssvss, wssws, vssws, wms, vss, w2
s , ws in (3.59) wss, v2s , vs in

(3.60) gives

ξ1,w = 0, ξ1,v = 0, ξ2,w = 0, ξ2,v = 0, ξ1,s = 0,

η1,v = 0, η1,ww = 0, 2η1,sw = ξ2,ss, ξ2,m = 0,

η2,w = 0, η2,vv = 0, 2η2,sv = ξ2,ss, (3.61)
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which implies

ξ1 := ξ1(m),

ξ2 := ξ2(s),

η1 := f1(m)w + f2(m, s) +
w

2
ξ2,s,

η2 := f3(m)v + f4(m, s) +
v

2
ξ2,s. (3.62)

With these coordinates, coefficients of wss and constant terms in (3.59) along with

coefficients of vss and remaining terms in (3.60) provides

µ1 = 2a1ξ2,s − a1ξ1,m,

µ2 = a2η1,w − a1η1,ss − η1,m − a2ξ1,m,

µ3 = 2b1ξ2,s − b1ξ1,m,

µ4 = b2η2,v − b1η2,ss − η2,m − b2ξ1,m. (3.63)

Again the noticeable factor is linearity of η1 and η2 in w and v, respectively.

It is identified that, for the systems (3.1), (3.16), (3.23), (3.30), (3.37) we get non-

linearities in the infinitesimal coordinates η1 and η2 with respect to w and v. Therefore

for such systems one can further pursue differential invariants which enable reduction

in nonlinearities of these systems. On the other hand, systems (3.44), (3.51), (3.58)

have linear form of equivalence transformations coordinates η1 and η2 in w and v, which

can not be used to linearize them, by driving associated differential invariants.
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Chapter 4

Differential Invariants for Systems of
Two Nonlinear Parabolic Type PDEs

In this chapter, differential invariants of systems of two second order nonlinear parabolic

type PDEs are studied by using Lie infinitesimal method. Here in first section we derive

joint differential invariants. Semi differential invariants under the transformations of

only the dependent variables are deduced in second section. Applications corresponding

to semi and joint differential invariants are also discussed in their relevant sections. In

the last section, different subclasses of these systems are investigated and characterized

them by using both the semi and joint differential invariants.

4.1 Joint Differential Invariants

In this section the joint differential invariants of system of PDEs (3.1) are derived under

the transformations of both the dependent and independent variables. For this system

the equivalence transformations are given in (3.12) and (3.15). Corresponding to the

equivalence transformations, we have an infinitesimal generator

X = ξ1
∂

∂m
+ ξ2

∂

∂s
+ η1

∂

∂w
+ η2

∂

∂v
+ µ1

∂

∂a
+ µ2

∂

∂b
+ µ3

∂

∂c
+ µ4

∂

∂d
. (4.1)

To deduce a zeroth order invariant we apply the infinitesimal test

XJ(m, s, w, v, a, b, c, d) = 0, (4.2)
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which leads us to

ξ1
∂J

∂m
+ ξ2

∂J

∂s
+ η1

∂J

∂w
+ η2

∂J

∂v
+ (2aξ2,s − aξ1,m)

∂J

∂a
+ (awsξ2,ss + bη1,w

+wsξ2,m − aw2
sη1,ww − η1,m − 2awsη1,sw − aη1,ss − bξ1,m)

∂J

∂b
+ (2cξ2,s

−cξ1,m)
∂J

∂c
+ (cvsξ2,ss + dη2,v + vsξ2,m − cv2sη2,vv − η2,m − 2cvsη2,sv

−cη2,ss − dξ1,m)
∂J

∂d
= 0, (4.3)

This equation splits into the following equations

Jm = 0, Js = 0, Jw = 0, Jv = 0, −Jb = 0, −Jd = 0, (4.4)

obtained by annulling the terms with ξ1, ξ2, η1, η2, η1,m, η2,m. Hence, J = J(a, c). Now

the terms with ξ1,m, ξ2,s provide the following system of two equations

−aJa − cJc = 0, 2aJa + 2cJc = 0, (4.5)

after solving the above system of equations we get zeroth order invariant

J1 =
c

a
. (4.6)

In order to find first order differential invariants, i.e., the invariants of the form

J(m, s, w, v, a, b, c, d, ai, bj, ci, dj), the once extended generator is

X[1] = X+ µ1,i
∂

∂ai
+ µ2,j

∂

∂bj
+ µ3,i

∂

∂ci
+ µ4,j

∂

∂dj
, (4.7)

where, i ∈ {m, s, w, v} and j ∈ {m, s, w, v, ws, vs}. In above equation µ1,i, µ2,j, µ3,i,

µ4,j are expressed as

µ1,i = D̃i(µ1)− amD̃i(ξ1)− asD̃i(ξ2)− awD̃i(η1)− avD̃i(η2),

µ2,j = D̃j(µ2)− bmD̃j(ξ1)− bsD̃j(ξ2)− bwD̃j(η1)− bvD̃j(η2)− bwsD̃j(η
s
1)− bvsD̃j(η

s
2),

µ3,i = D̃i(µ3)− cmD̃i(ξ1)− csD̃i(ξ2)− cwD̃i(η1)− cvD̃i(η2),

µ4,j = D̃j(µ4)− dmD̃j(ξ1)− dsD̃j(ξ2)− dwD̃j(η1)− dvD̃j(η2)− dwsD̃j(η
s
1)− dvsD̃j(η

s
2).
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Since i ⊂ j, therefore D̃i ⊂ D̃j and generally total derivative operator is defined by

D̃j =
∂

∂j
+ ai

∂

∂a
+ ai,i

∂

∂ai
+ ...+

∂

∂j
+ bj

∂

∂b
+ bj,j

∂

∂bj
+ ...

∂

∂j
+ cj

∂

∂c
+ ci,i

∂

∂ci
+ ...+

∂

∂j
+ dj

∂

∂d
+ dj,j

∂

∂dj
+ .... (4.8)

Thus, after substituting concerned from the above in (4.7), one can find the following

first order extended generator

X[1] = ξ1∂m + ξ2∂s + η1∂w + η2∂v + (2aξ2,s − aξ1,m)∂a + (awsξ2,ss + bη1,w

+wsξ2,m − aw2
sη1,ww − η1,m − 2awsη1,sw − aη1,ss − bξ1,m)∂b + (2cξ2,s

−cξ1,m)∂c + (cvsξ2,ss + dη2,v + vsξ2,m − cv2sη2,vv − η2,m − 2cvsη2,sv − cη2,ss

−dξ1,m)∂d + (2aξ2,ms − aξ1,mm + 2amξ2,s − 2amξ1,m − asξ2,m − awη1,m

−avη2,m)am + (2aξ2,ss + asξ2,s − asξ1,m − awη1,s − avη2,s)as + (2awξ2,s

−awξ1,m − awη1,w)aw + (2avξ2,s − avξ1,m − avη2,v)av + (awsξ2,mss + wsξ2,mm

+bη1,mw − aw2
sη1,mww − 2awsη1,msw − aη1,mss − η1,mm − bξ1,mm + amwsξ2,ss

−amw2
sη1,ww − 2amwsη1,sw − amη1,ss + bmη1,w − 2bmξ1,m − bsξ2,m − bwη1,m

−bvη2,m − bwsη1,ms − bwswsη1,mw + bwswsξ2,ms − bvsη2,ms − bvsvsη2,mv

+bvsvsξ2,ms)bm + (awsξ2,sss + wsξ2,ms + bη1,sw − aw2
sη1,sww − 2awsη1,ssw

−aη1,sss − η1,ms + aswsξ2,ss − asw2
sη1,ww − 2aswsη1,sw − asη1,ss + bsη1,w

−bsξ1,m − bsξ2,s − bwη1,s − bvη2,s − bwsη1,ss − bwswsη1,sw + bwswsξ2,ss − bvsη2,ss

−bvsvsη2,sv + bvsvsξ2,ss)bs + (bη1,ww − aw2
sη1,www − 2awsη1,sww − aη1,ssw

−η1,mw + awwsξ2,ss − aww2
sη1,ww − 2awwsη1,sw − awη1,ss − bwξ1,m − bwsη1,sw

−bwswsη1,ww)bw + (avwsξ2,ss − avw2
sη1,ww − 2avwsη1,sw − avη1,ss + bvη1,w

−bvξ1,m − bvη2,v − bvsη2,sv − bvsvsη2,vv)bv + (aξ2,ss + ξ2,m − 2awsη1,ww − 2aη1,sw

−bwsξ1,m + bwsξ2,s)bws + (bvsη1,w − bvsξ1,m − bvsη2,v + bvsξ2,s)bvs + (2cξ2,ms

−cξ1,mm + 2cmξ2,s − 2cmξ1,m − csξ2,m − cwη1,m − cvη2,m)cm + (2cξ2,ss + csξ2,s

−csξ1,m − cwη1,s − cvη2,s)cs + (2cwξ2,s − cwξ1,m − cwη1,w)cw + (2cvξ2,s − cvξ1,m

−cvη2,v)cv + (cvsξ2,mss + vsξ2,mm + dη2,mv − cv2sη2,mvv − 2cvsη2,msv − cη2,mss
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−η2,mm − dξ1,mm + cmvsξ2,ss − cmv2sη2,vv − 2cmvsη2,sv − cmη2,ss + dmη2,v

−2dmξ1,m − dsξ2,m − dwη1,m − dvη2,m − dwsη1,ms − dwswsη1,mw + dwswsξ2,ms

−dvsη2,ms − dvsvsη2,mv + dvsvsξ2,ms)dm + (cvsξ2,sss + vsξ2,ms + dη2,sv − cv2sη2,svv

−2cvsη2,ssv − cη2,sss − η2,ms + csvsξ2,ss − csv2sη2,vv − 2csvsη2,sv − csη2,ss + dsη2,v

−dsξ1,m − dsξ2,s − dwη1,s − dvη2,s − dwsη1,ss − dwswsη1,sw + dwswsξ2,ss − dvsη2,ss

−dvsvsη2,sv + dvsvsξ2,ss)ds + (cwvsξ2,ss − cwv2sη2,vv − 2cwvsη2,sv − cwη2,ss

+dwη2,v − dwξ1,m − dwη1,w − dwsη1,sw − dwswsη1,ww)dw + (dη2,vv − cv2sη2,vvv

−2cvsη2,svv − cη2,ssv − η2,mv + cvvsξ2,ss − cvv2sη2,vv − 2cvvsη2,sv − cvη2,ss

−dvξ1,m − dvsη2,sv − dvsvsη2,vv)dv + (dwsη2,v − dwsξ1,m − dwsη1,w + dwsξ2,s)dws

+(cξ2,ss + ξ2,m − 2cvsη2,vv − 2cη2,sv − dvsξ1,m + dvsξ2,s)dvs . (4.9)

For derivation of first order joint differential invariants we consider the invariance cri-

terion

X[1]J(m, s, w, v, a, b, c, d, ai, bj, ci, dj) = 0. (4.10)

Upon equating to zero the terms with ξ1, ξ2, η1, η2, η1,mm, η1,sss, η1,www, η2,mm, η2,sss,

η2,vvv in (4.10) respectively gives the following results after simplification

Jm = 0, Js = 0, Jw = 0, Jv = 0, Jbm = 0,

Jbs = 0, Jbw = 0, Jdm = 0, Jds = 0, Jdv = 0, (4.11)

hence, J = J(a, b, c, d, am, as, aw, av, bv, bws , bvs , cm, cs, cw, cv, dw, dws , dvs). Now the terms

with ξ1,m, ξ1,mm, ξ2,m, ξ2,s, ξ2,ms, ξ2,ss, η1,m, η1,s, η1,w, η1,ss, η1,sw, η1,ww, η2,m, η2,s, η2,v,

η2,ss, η2,sv, η2,vv provide following system of equations

−bvsJbvs − dwsJdws
− bwsJbws

− aJa − bJb − cJc − dJd − 2amJam − 2cmJcm − asJas
−csJcs − awJaw − cwJcw − dwJdw − avJav − bvJbv − cvJcv − dvsJdvs = 0,

−aJam − cJcm = 0,

Jbws
+ wsJb + vsJd − asJam − csJcm + Jdvs = 0,

bvsJbvs + dwsJdws
+ bwsJbws

+ 2aJa + 2cJc + 2amJam + 2cmJcm + asJas

+csJcs + 2awJaw + 2cwJcw + 2avJav + 2cvJcv + dvsJdvs = 0,
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2aJam + 2cJcm = 0,

aJbws
+ awsJb + cvsJd + 2aJas + 2cJcs + cwvsJdw + avwsJbv + cJdvs = 0,

−Jb − awJam − cwJcm = 0,

awJas − cwJcs = 0,

bvsJbvs − dwsJdws
+ bJb − awJaw − cwJcw − dwJdw + bvJbv = 0,

−aJb − avJbv = 0,

−2aJbws
− 2awsJb − dwsJdw − 2avwsJbv = 0,

−2awsJbws
− aw2

sJb − dwswsJdw − avw2
sJbv = 0,

−Jd − avJam − cvJcm = 0,

−avJas − cvJcs = 0,

−bvsJbvs + dwsJdws
+ dJd + dwJdw − avJav − bvJbv − cvJcv = 0,

−cJd − cwJdw = 0,

−2cvsJd − 2cwvsJdw − bvsJbv − 2cJdvs = 0,

−cv2sJd − cwv2sJdw − bvsvsJbv − 2cvsJdvs = 0. (4.12)

After solving (4.12) in MAPLE, we get following first order joint differential invariants

along with J1,

J2 =
cw
aw
, J3 =

cv
av
, J4 =

bvsa
2
w

dwsa
2
v

. (4.13)

4.1.1 Applications

In this subsection a few examples of systems of two second order nonlinear parabolic

type PDEs are provided to illustrate the invariance criteria developed.

Example 1

A coupled parabolic type system of PDEs

wm + (
sw2 + sv

m
)wss + (

sw2 + sv

mw
)w2

s + (
2w2 − s+ 2v

m
)ws = 0,

vm − (
s

m
)vs + (

2w

m
)ws +

w2

ms
= 0, (4.14)
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having

a = (
sw2 + sv

m
), b = (

sw2 + sv

mw
)w2

s + (
2w2 − s+ 2v

m
)ws,

c = 0, d = −( s
m
)vs + (

2w

m
)ws +

w2

ms
,

can be transformed into

ut + (u+ c)uxx = 0,

ct + ux = 0, (4.15)

by means of transformations

m = t, s =
x

t
, w =

√
u

x
, v =

c

x
. (4.16)

The joint differential invariants for (4.14) and (4.15) are same, which are

J1 = 0, J2 = 0, J3 = 0, J4 = 0. (4.17)

Example 2

Consider a system of nonlinear parabolic type PDEs

wm + (
swv sin(m)

m2
)wss − (

s

m
)ws + (

s

m sin(m)
)vs + w cot(m) +

v

m sin(m)
= 0,

vm + (
1

m2
)vss + (

2− s2m
sm2

)vs + (
sin(m)

ms
)ws −

v

m
= 0. (4.18)

Joint differential invariants corresponding to both the dependent and independent vari-

ables for (4.18) can be calculated as

J1 =
c

a
=

1

swv sin(m)
,

J2 =
cw
aw

= 0,

J3 =
cv
av

= 0,

J4 =
bvsa

2
w

dwsa
2
v

=
s2v2

sin2(m)w2
, (4.19)
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where

a = (
swv sin(m)

m2
), b = (

−s
m

)ws + (
s

m sin(m)
)vs + w cot(m) +

v

m sin(m)
,

c = (
1

m2
), d = (

2− s2m
sm2

)vs + (
sin(m)

ms
)ws −

v

m
.

Equation (4.18) can be mapped into

ut + ucuxx + cx = 0,

ct + cxx + ux = 0, (4.20)

by using the equivalence transformations

m = t, s =
x

t
, w =

u

sin(t)
, v =

tc

x
. (4.21)

Joint differential invariants for (4.20) are also same as for (4.18), under the transfor-

mations (4.21).

Example 3

Consider a coupled system of PDEs

wm + (v
√
w)wss − (

v

2
√
w
)w2

s + (
2
√
w

m
)vs − (

s

m
)ws +

2w

m
= 0,

vm + (
v

m
)vss − (

s

m
)vs + (

1

2m
√
w
)ws +

v

m
= 0, (4.22)

with the following joint differential invariants

J1 = J3 =
1

m
√
w
, J2 = 0, J4 =

v2

w
. (4.23)

Equation (4.22) is transformable to

ut + ucuxx + cx = 0,

ct + ccxx + ux = 0, (4.24)

under invertible transformations

m = t, s =
x

t
, w =

u2

t2
, v =

c

t
. (4.25)
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Joint differential invariants for (4.24) are

J1 = J3 =
1

u
, J2 = 0, J4 =

c2

u2
. (4.26)

The joint differential invariants for both (4.22) and (4.24) are same with transforma-

tions (4.25).

Example 4

Both the following systems

wm + (m2w2 +
m2s

v
)wss + (m2w +

m2s

wv
)w2

s + (
s

m
)ws − (

ms

2wv2
)vs

+
m

2wv
= 0,

vm + (
m2sw2

v
)vss − (

2m2sw2

v2
)v2s + (

sv + 2m3w2

mv
)vs − (

2mwv2

s
)ws

− v

m
= 0, (4.27)

and

ut + (u+ c)uxx + cx = 0,

ct + uccxx + ux = 0, (4.28)

are mappable into each other under invertible transformations

m = t, s = tx, w =
√
u, v =

tx

c
. (4.29)

Joint differential invariants for both of them read as

J1 =
sw2

w2v + s
, J2 =

s

v
, J3 = w2, J4 = 1, (4.30)

J1 =
uc

u+ c
, J2 = c, J3 = u, J4 = 1, (4.31)

that are equal under transformation (4.29).
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4.2 Semi Differential Invariants

Semi differential invariants of system of two second order nonlinear parabolic type

PDEs (3.1) are investigated in this section by Lie infinitesimal approach. To get these

semi differential invariants corresponding to only the dependent variables we put ξ1, ξ2
and all their derivatives equal to zero in (3.12) and (3.15), which give

ξ1 := 0, ξ2 := 0, η1 := η1(m, s, w), η2 := η2(m, s, v)

µ1 = 0, µ2 = bη1,w − aw2
sη1,ww − η1,m − 2awsη1,sw − aη1,ss,

µ3 = 0, µ4 = dη2,v − cv2sη2,vv − η2,m − 2cvsη2,sv − cη2,ss. (4.32)

So the corresponding generator for these infinitesimal transformations becomes

X = η1
∂

∂w
+ η2

∂

∂v
+ (bη1,w − aw2

sη1,ww − η1,m − 2awsη1,sw − aη1,ss)
∂

∂b

+(dη2,v − cv2sη2,vv − η2,m − 2cvsη2,sv − cη2,ss)
∂

∂d
. (4.33)

The infinitesimal test for the zeroth order invariants

XK(w, v, a, b, c, d) = 0, (4.34)

leads to

η1
∂K

∂w
+ η2

∂K

∂v
+ (bη1,w − aw2

sη1,ww − η1,m − 2awsη1,sw − aη1,ss)
∂K

∂b

+(dη2,v − cv2sη2,vv − η2,m − 2cvsη2,sv − cη2,ss)
∂K

∂d
= 0. (4.35)

Coefficients of η1, η2, η1,m, η2,m in (4.35) provides

Kw = 0, Kv = 0, −Kb = 0, −Kd = 0. (4.36)

Solution of the above system provide

K1 = a K2 = c. (4.37)

In order to get invariants of first order i.e., K(w, v, a, b, c, d, ai, bj, ci, dj) we extend

the generator (4.33) up to order one, which is

X[1] = η1∂w + η2∂v + (bη1,w − aw2
sη1,ww − η1,m − 2awsη1,sw − aη1,ss)∂b + (dη2,v
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−cv2sη2,vv − η2,m − 2cvsη2,sv − cη2,ss)∂d + (−awη1,m − avη2,m)∂am + (−awη1,s

−avη2,s)∂as − awη1,w∂aw − avη2,v∂av + (bη1,mw − aw2
sη1,mww − 2awsη1,msw

−aη1,mss − η1,mm − amw2
sη1,ww − 2amwsη1,sw − amη1,ss + bmη1,w − bwη1,m

−bvη2,m − bwsη1,ms − bwswsη1,mw − bvsη2,ms − bvsvsη2,mv)∂bm + (bη1,sw

−aw2
sη1,sww − 2awsη1,ssw − aη1,sss − η1,ms − asw2

sη1,ww − 2aswsη1,sw − asη1,ss

+bsη1,w − bwη1,s − bvη2,s − bwsη1,ss − bwswsη1,sw − bvsη2,ss − bvsvsη2,sv)∂bs
+(bη1,ww − aw2

sη1,www − 2awsη1,sww − aη1,ssw − η1,mw − aww2
sη1,ww − 2awwsη1,sw

−awη1,ss − bwsη1,sw − bwswsη1,ww)∂bw + (−avw2
sη1,ww − 2avwsη1,sw − avη1,ss

+bvη1,w − bvη2,v − bvsη2,sv − bvsvsη2,vv)∂bv + (−2awsη1,ww − 2aη1,sw)∂bws

+(bvsη1,w − bvsη2,v)∂bvs + (−cwη1,m − cvη2,m)∂cm + (−cwη1,s − cvη2,s)∂cs
−cwη1,w∂cw − cvη2,v∂cv + (dη2,mv − cv2sη2,mvv − 2cvsη2,msv − cη2,mss − η2,mm

−cmv2sη2,vv − 2cmvsη2,sv − cmη2,ss + dmη2,v − dwη1,m − dvη2,m − dwsη1,ms

−dwswsη1,mw − dvsη2,ms − dvsvsη2,mv)∂dm + (dη2,sv − cv2sη2,svv − 2cvsη2,ssv

−cη2,sss − η2,ms − csv2sη2,vv − 2csvsη2,sv − csη2,ss + dsη2,v − dwη1,s − dvη2,s

−dwsη1,ss − dwswsη1,sw − dvsη2,ss − dvsvsη2,sv)∂ds + (−cwv2sη2,vv − 2cwvsη2,sv

−cwη2,ss + dwη2,v − dwη1,w − dwsη1,sw − dwswsη1,ww)∂dw + (dη2,vv − cv2sη2,vvv

−2cvsη2,svv − cη2,ssv − η2,mv − cvv2sη2,vv − 2cvvsη2,sv − cvη2,ss − dvsη2,sv

−dvsvsη2,vv)∂dv + (dwsη2,v − dwsη1,w)∂dws
+ (−2cvsη2,vv − 2cη2,sv)∂dvs .

The invariance criterion

X[1]K(w, v, a, b, c, d, ai, bj, ci, dj) = 0, (4.38)

after equating the terms η1, η2, η1,mm, η1,sss, η1,www, η2,mm, η2,sss, η2,vvv to zero, provides

Kw = 0, Kv = 0, Kbm = 0, Kbs = 0,

Kbw = 0, Kdm = 0, Kds = 0, Kdv = 0. (4.39)

So, K = K(a, b, c, d, am, as, aw, av, bv, bws , bvs , cm, cs, cw, cv, dw, dws , dvs). Further, the

terms with η1,m, η1,s, η2,m, η2,s, η1,ss, η2,ss, η2,sv, η2,vv, η1,sw, η1,ww, η1,w, η2,v provide
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following system of equations

−awKam − cwKcm −Kb = 0,

−awKas − cwKcs = 0,

−avKam − cvKcm − Jd = 0,

−avKas − cvKcs = 0,

−aKb − avKbv = 0,

−cKd − cwKdw = 0,

−2cvsKd − 2cwvsKdw − bvsKbv − 2cKdvs = 0,

−cv2sKd − cwv2sKdw − bvsvsKbv − 2cvsKdvs = 0,

−2awsKb − dwsKdw − 2avwsKbv − 2aKbws
= 0,

−aw2
sKb − dwswsKdw − avw2

sKbv − 2awsKbws
= 0,

−cwKcw + bKb − dwKdw − bvKbv − dwsKdws
+ bvsKbvs − awKaw = 0,

−cvKcv − avKav + dKd + dwKdw − bvKbv + dwsKdws
− bvsKbvs = 0. (4.40)

Solving (4.40) simultaneously in MAPLE, we obtain following first order semi differ-

ential invariants along with K1 and K2,

K3 =
cw
aw
, K4 =

cv
av
, K5 =

avdws

aw
, K6 =

awbvs
av

,

K7 =
1

cdws(awcv − avcw)
[−2ac2w(avd− am) + [{(2dcv − 2cm)aw + 2avcdw} a

−avcbwsdws ]cw + 2cawcv(
1

2
bwsdws − adw)],

K8 =
1

abvs(avcw − awcv)
[2ca2v(cwb− cm) + [{(−2baw + 2am)cv − 2acwbv} c

+acwdvsbvs ]av − 2aawcv(
1

2
bvsdvs − cbv)], (4.41)

provided that aw, av, bvs , cw, cv, dws is not equal to zero.
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4.2.1 Applications

To illustrate applications of the derived semi differential invariants for system of two

second order nonlinear parabolic type PDEs, we present a few examples in this sub-

section.

Example 1

A second order coupled system of nonlinear parabolic type PDEs

wm + (
w2s

v
)wss + (

ws

v
)w2

s − (
s

2wv2
)vs +

1

2wv
= 0,

vm + (
w2v + s

v
)vss − (

2w2v + 2s

v2
)v2s + (

2w2v + 2s

sv
)vs − (

2wv2

s
)ws = 0,

(4.42)

has the following semi differential invariants

K1 =
w2s

v
, K2 = (w2 +

s

v
), K3 =

v

s
, K4 =

1

w2
, K5 =

w2v

s
,

K6 =
s

w2v
, K7 =

2w2sws
(w2v + s)

, K8 =
2(w2v + s)vs

s
. (4.43)

System (4.42) can be mapped into

ut + ucuxx + cx = 0,

ct + (u+ c)vxx + ux = 0, (4.44)

using invertible transformations

m = t, s = x, w =
√
u, v =

x

c
. (4.45)

Semi differential invariants for (4.44) are

K1 = uc, K2 = u+ c, K3 =
1

c
, K4 =

1

u
, K5 =

u

c
,

K6 =
c

u
, K7 =

2ucux
(u+ c)

, K8 =
2(u+ c)cx

c
, (4.46)

which are similar to (4.42), under (4.45).
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Example 2

A coupled system of parabolic type PDEs

wm + (
1 + wv3

w
)wss − (

2 + 2wv3

w2
)w2

s − (3w2v2)vs = 0,

vm + (
v3

w
)vss + (

2v2

w
)v2s − (

1

3w2v2
)ws = 0, (4.47)

having

a = (
1 + wv3

w
), b = −(2 + 2wv3

w2
)w2

s − (3w2v2)vs,

c = (
v3

w
), d = (

2v2

w
)v2s − (

1

3w2v2
)ws,

can be transformed into

ut + (u+ c)uxx + cx = 0,

ct + uccxx + ux = 0, (4.48)

by means of transformations

m = t, s = x, w =
1

u
, v = c1/3. (4.49)

The semi differential invariants for (4.47)

K1 =
1

w
+ v3, K2 =

v3

w
, K3 = v3, K4 =

1

w
,

K5 = K6 = 1, K7 = (2 + 2wv3)ws, K8 = (
2v3

1 + wv3
)vs, (4.50)

that are same as (4.48) under transformations of dependent variables only.

Example 3

Consider a coupled system of PDEs

wm + (
mv
√
w + s

v
)wss − (

mv
√
w + s

2wv
)w2

s + ws − (
2s
√
w

mv2
)vs +

2wv + 2
√
w

mv
= 0,

vm + (
ms
√
w

v
)vss − (

2ms
√
w

v2
)v2s + (

2m
√
w

v
)vs −

mv2

2s
√
w
ws = 0, (4.51)
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with semi differential invariants

K1 = m
√
w +

s

v
, K2 =

ms
√
w

v
, K3 =

s

v
, K4 = m

√
w, K5 = 1,

K6 = 1, K7 = 2(
s

mv
√
w

+ 1)ws + 1, K8 =
2ms
√
w

mv
√
w + s

(ws + vs). (4.52)

It is transformable to

ut + (u+ c)uxx + ux + cx = 0,

ct + uccxx + ux = 0, (4.53)

by using invertible transformations

m = t, s = x, w =
u2

t2
, v =

x

c
. (4.54)

Semi differential invariants of (4.53) is

K1 = u+ c, K2 = uc, K3 = c, K4 = u, K5 = 1,

K6 = 1, K7 = 2(
c

u
+ 1)ux + 1, K8 =

2uc

u+ c
(ux + cx). (4.55)

Notice that the semi differential invariants of (4.51) and (4.53) are same by means of

the transformations (4.54).

4.3 Characterization of a Few Classes of Systems of
Two Parabolic Type PDEs

In this section we classify different subclasses of systems of two second order nonlinear

parabolic type PDEs (3.1) by using Lie Symmetry Method. For this sake, we find both

joint and semi differential invariants corresponding to each subclass with the help of

their equivalence transformations. Furthermore, using deduced differential invariants

we get canonical forms for our considered systems. Total number of symmetries of each

simpler form of systems of nonlinear parabolic type PDEs are also given.
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Case-I

A second order system of nonlinear parabolic type PDEs with a, b, c, d as its arbitrary

coefficients
wm + a(m, s, w)wss + b(m, s, w, v, ws, vs) = 0,

vm + c(m, s, w)vss + d(m, s, w, v, ws, vs) = 0,
(4.56)

have 1st oder joint differential invariants

J1 =
c

a
, J2 =

cw
aw
, (4.57)

with the help of joint differential invariants (4.57) we get following canonical form of

(4.56)

wm + wwss = 0,

vm = 0. (4.58)

Another simpler form of (4.56) can be obtained using 1st order joint differential invari-

ants

wm + wwss = 0,

vm + wvss = 0. (4.59)

Semi differential invariants corresponding to the dependent variable for (4.56) are

K1 = a, K2 = c, K3 = bvsdws , K4 =
awcs − ascw

aw
,

K5 =
cw
aw
, K6 =

awcm − amcw
aw

, K7 =
bvsdvs − 2cbv

bvs
. (4.60)

Canonical form of (4.56) under these semi differential invariants (4.60) is

wm + wwss + vs = 0,

vm = 0. (4.61)

Equation (4.58) have four, (4.59) have nine and (4.61) have five symmetries.
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Case-II

For a system of nonlinear parabolic type PDEs

wm + a(m, s, w)wss + b(m, s, w, v, ws, vs) = 0,

vm + c(m, s, v)vss + d(m, s, w, v, ws, vs) = 0,
(4.62)

joint differential invariants of 1st kind are

J1 =
c

a
, J2 =

acv
aw

, (4.63)

which give the same canonical form (4.58). Simpler form of (4.62) under 1st order joint

differential invariants is

wm + wwss = 0,

vm + vvss = 0. (4.64)

For (4.62) semi differential invariants derived are

K1 = a, K2 = c, K3 =
cv
aw
, K4 =

bvsdws

2a
, K5 =

awcs − ascv
aw

,

K6 =
awcm − amcv

aw
, K7 =

bvsdvs − 2cbv
bvs

, K8 =
2adw − bwsdws

2adws

. (4.65)

By means of (4.65) least form for (4.62) is

wm + wwss + vs = 0,

vm + ws = 0. (4.66)

Both (4.64) and (4.66) have same number of Lie symmetries, i.e., four.

Case-III

Consider a system of nonlinear parabolic type PDEs

wm + a(m, s, v)wss + b(m, s, w, v, ws, vs) = 0,

vm + c(m, s, v)vss + d(m, s, w, v, ws, vs) = 0,
(4.67)

along with
wm + a(m, s, v)wss + b(m, s, w, v, ws, vs) = 0,

vm + c(m, s, w)vss + d(m, s, w, v, ws, vs) = 0.
(4.68)
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Joint differential invariants of 1st order for (4.67) and (4.68) have the following forms

J1 =
c

a
, J2 =

cv
av
, (4.69)

J1 =
c

a
, J2 =

cw
aav

, (4.70)

respectively. Under these joint differential invariants we get same canonical form for

both (4.67) and (4.68) i.e.,

wm + vwss = 0,

vm = 0. (4.71)

Semi differential invariants for (4.67) are

K1 = a, K2 = c, K3 =
bvsdws

2a
, K4 =

avcs − ascv
av

,

K5 =
cv
av
, K6 =

avcm − amcv
av

, K7 =
2adw − bwsdws

2adws

, (4.72)

which generate a canonical form

wm + vwss = 0,

vm + ws = 0. (4.73)

while semi differential invariants of (4.68) are

K1 = a, K2 = c, K3 = bvsdws , K4 =
cw
av
,

K5 =
avcs − ascw

av
, K6 =

avcm − amcw
av

. (4.74)

that also gives the same canonical form (4.71). Number of symmetries for (4.71) are

eight while (4.73) have five symmetries.

Case-IV

A second order system of nonlinear parabolic type PDEs

wm + a(w, v)wss + b(m, s, w, v, ws, vs) = 0,

vm + c(w, v)vss + d(m, s, w, v, ws, vs) = 0,
(4.75)
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has canonical form

wm + vwss = 0,

vm + vvss = 0, (4.76)

under 1st order joint differential invariants

J1 =
c

a
, J2 =

bvsdws

(acv − cav)2
. (4.77)

Semi differential invariants of (4.75) are

K1 = a, K2 = c, K3 = aw, K4 = cw,

K5 = av, K6 = cv, K7 = bvsdws , (4.78)

which give the following simpler form for (4.75)

wm + wvwss + vs = 0,

vm + wvvss + ws = 0. (4.79)

For (4.76) and (4.79) we have nine and three Lie symmetries.

Case-V

Consider the following systems of nonlinear parabolic type PDEs

wm + a(m,w, v)wss + b(m, s, w, v, ws, vs) = 0,

vm + c(m,w, v)vss + d(m, s, w, v, ws, vs) = 0,
(4.80)

wm + a(m,w, v)wss + b(m, s, w, v, ws, vs) = 0,

vm + c(s, w, v)vss + d(m, s, w, v, ws, vs) = 0,
(4.81)
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wm + a(s, w, v)wss + b(m, s, w, v, ws, vs) = 0,

vm + c(s, w, v)vss + d(m, s, w, v, ws, vs) = 0,
(4.82)

wm + a(s, w, v)wss + b(m, s, w, v, ws, vs) = 0,

vm + c(m,w, v)vss + d(m, s, w, v, ws, vs) = 0,
(4.83)

wm + a(m, s)wss + b(m, s, w, v, ws, vs) = 0,

vm + c(w, v)vss + d(m, s, w, v, ws, vs) = 0,
(4.84)

wm + a(s, w)wss + b(m, s, w, v, ws, vs) = 0,

vm + c(s, w)vss + d(m, s, w, v, ws, vs) = 0,
(4.85)

wm + a(s, v)wss + b(m, s, w, v, ws, vs) = 0,

vm + c(s, v)vss + d(m, s, w, v, ws, vs) = 0.
(4.86)

For all the above system we get same 1st order joint differential invariants, i.e., J = c
a

which generates the following canonical form

wm + wss = 0,

vm = 0. (4.87)

Semi differential invariants of 1st kind found for equation (4.80) to (4.86), yields

K = K(K1, K2, K3, K4, K5, K6),

K = K(K1, K2, K3, K4, K5, K7),

K = K(K1, K2, K3, K4, K5, K8),

K = K(K1, K2, K3, K4, K5, K9),

K = K(K1, K2, K3, K10, K11, K12, K13, K14),
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K = K(K1, K2, K3, K11, K12, K14, K15, K16),

K = K(K1, K2, K12, K13, K15, K17, K18, K19), (4.88)

where

K1 := a, K2 := c, K3 := bvsdws , K4 :=
cv
av
,

K5 :=
avcw − awcv

av
, K6 :=

avcm − amcv
av

,

K7 :=
avcs − amcv

av
, K8 :=

avcs − ascv
av

,

K9 :=
avcm − ascv

av
, K10 := am, K11 := cw,

K12 := as, K13 := cv, K14 :=
bvsdvs − 2cbv

bvs
,

K15 := cs, K16 := aw, K17 := av,

K18 :=
2adw − bwsdws

2adws

, K19 :=
bvsdws

2a
. (4.89)

Under these semi differential invariants equation (4.80) to (4.83) have (4.71) as a canon-

ical form while least forms for (4.84), (4.85) and (4.86) are

wm + vs = 0,

vm = 0, (4.90)

and

wm + wss = 0,

vm + ws = 0, (4.91)

respectively. Here, (4.90) has one and (4.91) have six Lie symmetries.

62



Chapter 5

Conclusion

Lie infinitesimal method has been employed to find the set of equivalence transforma-

tions associated with the considered systems of nonlinear parabolic type PDEs. These

equivalence transformations are used to derive differential invariants for systems of

nonlinear parabolic type PDEs under transformations of both the dependent, indepen-

dent and only dependent variables, that are called joint and semi differential invariants

respectively.

By using derived joint and semi differential invariants, we reduce the nonlinearities

of the highly nonlinear parabolic type systems of PDEs under point transformations.

The forms of systems of PDEs attained here have some nonlinearities but they are

solvable. For characterization different subclasses of systems of parabolic type PDEs

are considered in which differential invariants are derived under transformations of

both the dependent, independent and only dependent variables. Utilizing these differ-

ential invariants, canonical forms are obtained which provide a classification of these

systems by putting them into the reducible and non-reducible classes under differential

invariants.

The reductions achieved here through differential invariants are shown to solve many

systems of PDEs from the considered classes. This idea can further be implemented to

attempt double reductions of these systems. For double reduction one needs to inves-

tigate joint and semi differential invariants of canonical forms obtained here. Higher

order differential invariants of systems of parabolic type PDEs can also be investigated
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in order to provide complete set of basis. Investigation of semi differential invariants

under transformation of only the independent variables would also lead to reductions

of system of parabolic type PDEs. Both the cases mentioned may require much more

efficient algebraic computing tools and machines but can generate interesting results

for systems of PDEs.
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