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ABSTRACT 

Human factors are increasingly leading the General Aviation’s (GA) accident 

causation although the total number of accidents have significantly improved over past few 

decades. The actions majorly taken so far correspond to reactive safety approaches rather 

than proactive ones. GA has been neglected a lot in terms of safety and risk mitigation as 

the fatality rate has been almost constant for many years now. In this research study, the 

probable causes of GA Loss of Control-In Flight (LOC-I) accidents under Initial Climb 

(ICL) phase of flight are obtained from National Transportation Safety Board (NTSB). 

Each accident is classified into one of the 9 LOC-I accident categories defined by 

International Air Transport Association (IATA). The preprocessed and feature engineered 

dataset is fed to a Random Forest (RF) model to be trained. The prediction model gives an 

accuracy and F-1 score of 88% on the test set. Feature importance and SHapley Additive 

exPlanation (SHAP) analysis of RF model is performed to get the most influencing features 

on prediction. The most influential features of the RF model vulnerable are connected to 

the Human Factor Analysis and Classification System (HFACS) to get insights into the 

most vulnerable HFACS levels.  

Keywords: Aviation Safety, HFACS, Machine Learning, Random Forest, Loss of 

Control-In Flight. 
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CHAPTER 1: INTRODUCTION 

1.1. Background 

Aviation accidents are among the deadliest in the transportation world, resulting in a 

significant loss of lives, numerous injuries, and the destruction of the aircraft body 

destroyed, gaining widespread public attention. Technological advancements since the 

1920’s have significantly contributed to mitigating the occurrences. The establishment of 

mandatory reporting and thorough investigation for every accident has further improved 

protocols. Among the top aviation accident, the shooting down of a Ukrainian Aircraft in 

Iranian airspace in January 2020 resulted in 176 casualties. The second deadliest accident 

was the crash of Pakistan Airline Flight with 98 causalities in May 2020 [1]. 

Focusing on Pakistan’s aviation accidents, Dawn, a Pakistani print media, has 

reported 18 serious commercial airplane crashes in the country’s history. These range from 

the first crash on 20th May 1965, which resulted in 124 casualties, to the most recent one 

on 22nd May 2020, with 98 casualties [2]. Investigation by the Pakistan Civil Aviation 

Authority revealed that the PIA Airbus A320 crash, on 22nd May 2020 near Karachi 

airport, was due to human error [3]. The cockpit crew was flying the plane above the 

recommended speed and altitude, and the control tower granted permission for it. This 

negligence towards critical parameters led to the plane crash [3]. One of the most disastrous 

crashes was the Airblue Airbus 321 crash in the Margalla mountains of Islamabad, causing 

fatal injuries to all 152 passengers on board [2]. The pilot’s mishandling due to bad weather 

conditions came out to be the reason behind the accident in the preliminary investigation 

reports. 
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1.2. Factors Leading to General Aviation Accidents 

The aviation accidents can be attributed to three main factors: human, weather and 

aircraft. In the early days of aviation, mechanical faults were a common cause of accidents 

due to continuous changes in machine design. However, even with advancements in 

aircraft design, accidents persisted, leading to the realization that human error might be 

more threatening than aircraft issues (Mason 1993,[4] cited in Murray 1997) [5]. Trollip 

and Jensen (1991) stated that over 80% of the General Aviation (GA) accidents were a 

result of pilot error, often streaming from wrong judgements of the situation [6]. However, 

solely blaming pilots was a simplistic approach, as accidents are rarely due to single 

absolute reason or the fault of a single person (Helmreich, Peterson, and Roos, 1980) [7]. 

In aviation, accidents typically involve multiple faults at various organization levels, with 

the cockpit crew’s unsafe acts being the final cause [8][9] [10].  

Jensen and Benel (1977) reported that 52% of fatal GA accidents, between 1987 to 

1989 in the United States (US), were due to poor decision-making by pilots. This finding 

was further supported by another research study in 1991, which analyzed US civil aviation 

accidents during the same period and concluded that 56% of accidents resulted from poor 

pilot judgement [11]. Despite the disastrous consequences of human error, it is important 

to question why pilots continue to adopt such behaviors.   

1.3. Understanding General Aviation Accident Categories 

To study aviation accidents and enhance safety parameters, one must understand the 

classification and taxonomy of aviation occurrence categories. These categories classify 

accident data into sub-sets based on different phases of an aircraft accident. The 
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International Civil Aviation Organization (ICAO) has classified the aircraft accident 

phases into thirty-eight (38) occurrence categories [12]. Research study by ICAO, 

analyzing accident data over a10 year period (2011-2021), showed that Loss of Control In-

Flight (LOC-I) caused the highest number of fatal accidents (49% of the total considered 

accidents), even though the total number of LOC-I accidents was less than other categories 

(8% of the total considered accidents). This emphasized the high fatality rate of LOC-I 

compared to other accident categories [13].  

The Federal Aviation Authority (FAA) established the General Aviation Joint 

Steering Committee (GAJSC) in 1997 to decrease the number of fatal GA accidents [14]. 

The GAJSC Accident Data Set of GA fatal accidents from 2001 to 2010 revealed that LOC-

I was the most common occurring accident category, accounting for 40% of the 3136 total 

fatal GA accidents [15]. This data set was utilized in a 2012 report by the GAJSC, which 

aimed to determine the causes of fatal GA accidents and preventing future occurrences 

[16].  

The FAA also introduced the Joint Safety Analysis Team (JSAT) to enhance aviation 

safety and identified the three most frequent occurrence categories as Controlled Flight 

into Terrain (CFIT), Loss of Control in Flight (LOC-I), and Approach and Landing [17]. 

An analysis report by the International Air Transport Association (IATA) for the period of 

2009-2018 confirmed that LOC-I accidents were the most fatal among all categories [18]. 

The report revealed that 94% of analyzed LOC-I accidents resulted in fatalities among 

passengers or flight crew, emphasizing the severity of LOC-I accidents [18]. JSAT defined 

LOC-I as “a significant, unintended departure of the aircraft from controlled flight, the 

operational flight envelope, or usual flight attitudes, including ground events. "Significant" 
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implies an event that results in an accident or incident. This definition excluded 

catastrophic explosions, CFIT, runway collisions, complete loss of thrust that did not 

involve loss of control, and any other accident scenarios in which the crew retained control” 

[17].   

Aviation occurrence categories are linked to the phases of flight of an aircraft, which 

ICAO classifies into 13 distinguishing groups, including Takeoff (TOF), Initial Climb 

(ICL), Cruise (CRZ) etc. [19]. LOC-I accidents are particularly catastrophic when they 

occur during the Initial Climb (ICL) phase of flight, as reported by IATA in their accident 

analysis report (2009-2018) [3]. Approximately 26% of all LOC-I accidents happened 

during this flight phase, with a fatal to non-fatal accident ratio of 94% [18]. The FAA 

defined the Initial Climb (ICL) phase as “The initial climb begins when the airplane leaves 

the surface, and a climb pitch attitude has been established. Normally, it is considered 

complete when the airplane has reached a safe maneuvering altitude, or an en-route climb 

has been established” [20].   

1.4. Accident Mitigation Techniques Through Decades 

Failures in organizations are often viewed as a negative outcome that must be 

avoided at all costs. However, the concept of learning from failures is crucial for 

organization growth, even though such organizations are still rare. Organizational failures 

can also have a positive impact, as they provide opportunities to develop countermeasures 

and build resilience within the organization, preventing the repetition of the same mistakes 

[21][22][23][24]. Although small failures may be disregarded due to their limited impact, 

they can accumulate over time, leading to more significant disasters [22]. Taleb N., in his 



5 

 

book, refers to this phenomenon as ‘Black Swan’, where small errors combine in a chain 

reaction to result in a larger catastrophe [25].  

The analysis of failure/accident in any system has always been a topic of concern. 

However, the focus was often on blaming human operator rather than considering the 

overall system structure and environment. An example of this is the ‘theory of dominos’ 

presented by a safety engineer H. W. Heinrich in 1931[26]. It described accident as ‘a linear 

sequence of event or stones (dominoes)’ standing edge-to-edge, where if one falls, the 

others follow, leading to a system collapse. While considered one of the best accident 

defining theories, it faced criticism for putting excessive blame on individuals and 

neglecting the effects of organization and management [27].  

Over time, with research advancements, several statistical and analytical techniques 

were introduced and used for accident causation analysis. Widely used techniques include 

Why-because analysis, Root Cause analysis, Sequentially Timed and Events Plotting, 

Management Oversight and Risk Tree (MORT), Fault Tree Analysis (FTA), and Event 

Tree Analysis (ETA) [28][29]. These techniques offer a more comprehensive approach to 

understanding the underlying causes of accidents and allow for a more systemic view rather 

than solely focusing on human operators as the source of failure.  

Fault Tree Analysis (FTA) is a deductive analytical technique based on Boolean 

Algebra, Probability theory, and Reliability theory. It utilizes a sequential diagram to 

analyze accidents, starting from the basic events at the bottom and leading to the undesired 

event at the top. The main aim of FTA is to identify the causes of the event. Represented 

as an inverted tree, the branches (causing events) connect to form the trunk (accident) 
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through logic gates like AND, OR, and NOT. These gates' function like those in electric 

circuits or piping networks, allowing few, all, or none to pass based on the gate type. FTA 

does not require the inclusion of all possible types and causes of system failures, but it must 

cover all the causes of a specific failure (top event). 

1.5. Reason’s Swiss Cheese Model 

James Reason introduced the "Swiss Cheese" model in 1990 to describe human error 

causation, initially focusing on nuclear power plant operators [8]. However, this model can 

be adapted for use in any organization with minor adjustments. The model represents four 

stages of human failure represented as slices of cheese, influencing each other, and 

culminating in a failure event. The holes in the slices symbolize vulnerability to human 

failure, categorized as latent failures or active failures. Latent failures remain dormant until 

they contribute to mishaps, while active failures refer to unsafe acts by humans. Mishaps 

occur when latent and active failures align, as shown in Figure 1.1. The “Swiss cheese” 

underscores how small, and neglected errors can combine to cause catastrophic accidents. 

In the context of aviation accidents, the "Swiss Cheese" model highlights “Unsafe 

Acts” as the nearest failure leading to accidents, often attributed to aircrew members or 

pilots. Investigations commonly concentrate on this level, as it reveals the cause of most 

accidents, whether directly or indirectly.  

The following three levels are based on latent failures. The first level, “Preconditions 

to Unsafe Acts”, addresses mental and physical conditions of operators. Crew Resource 

Management (CRM) aims to mitigate these conditions, as they can lead to poor decision-

making and accidents. The third slice, “Unsafe Supervision”, emphasizes the lack of 
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controlled supervision over aircrew and their practices, leading to failures. Last but not the 

least, Reason links the failure back to “Organizational Influences” addressing problems at 

higher organization levels affecting supervision (CRM) and contributing to unsafe acts by 

aircrew members.   

 

Figure 1.1: Reason’s "Swiss cheese" model of human error [8] 

1.6. Human Factor Analysis and Classification System (HFACS) 

Following Reason’s theory, Dr. Scott Shappell and Dr. Douglas Weigmann 

developed the Human Factor Analysis and Classification System (HFACS) in 1997 to 

address high-rate aviation accidents in the United States Navy [9]. The cause of the 

accidents was found to be violations committed by experienced Navy/Marine officers and 

new enlistees [30]. Later, HFACS further classifies latent and active failures into sub-

categories to analyze aviation accidents. This research will focus solely on discussing 

‘Unsafe Acts’ and ‘Precondition for Unsafe Acts’ in detail, given its scope.  

Unsafe Acts- Operator’s unsafe acts can be broadly classified as errors and 

violations. Errors are an undeniable part of human nature, where one fails to accomplish 
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the required task. Whilst violations are deliberate actions taken to disregard the set rules 

and regulations of an organization. Among these two, the enactment of violations by 

aircrew rules over the causation of aviation accidents. Although pilots are highly literate 

and experienced in their field, they are still humans, and making mistakes is a normal trait. 

Therefore, it is crucial to minimize the occurrence and consequences of these traits [31]. 

HFACS further divides errors into three categories and violations into two sub-categories.  

The first division of error, decision errors, includes situations where the proper 

intended plan to carry out an operation becomes improper and inadequate under those 

circumstances. These are often referred to as ‘honest mistakes’, meaning that the doer has 

good intentions but made a poor decision. Decision errors include poor decision-making, 

inadequate procedures, failure to perceive emergencies, and incorrect reactions to them. In 

the context of aviation, pilots often make poor decisions in critical situations, leading to 

accidents. For example, on 20th April 2012, M/s Bhoja Air Flight BHO-213 was flying 

from Karachi to Islamabad with 127 passengers, including 6 crew members. The plane 

crashed, resulting in the loss of all onboard lives and the complete destruction of the 

aircraft. The investigation report by Pakistan Civil Aviation Authority (PCAA) clearly 

stated that the reason for the accident was the incorrect decision-making of the cockpit 

crew under adverse weather conditions (AWC), and non-adherence to prescribed rules and 

regulations [32].  

The second division of error is skilled-based errors, which involves instinctive 

behavior by pilots without conscious thinking. These errors can be attributed to timely 

visual breakdown, memory failures due to lack of proper attention, skipping a step in some 

procedure, and use of substandard techniques, among others.  



9 

 

The third and final division of error is perceptual errors, which occur when a person’s 

perception of the world around them differs from reality. In the case of aviation, such errors 

occur when the input data from the senses becomes delusional, leading to misjudge the 

altitude or speed of the aircraft.  Perceptual errors can also be attributed to visual illusions 

and space-disorientation. 

 

Figure 1.2: Unsafe Acts; HFACS [9] 

Violations, as discussed earlier, refer to voluntary actions or behaviors of pilots that 

lead them to disregard rules and regulations governing safe flight operations, often 

resulting in unfortunate incidents involving fatalities. It’s worth noting that pilots with a 

history of violations are more likely to repeat such behavior in the future [33]. Additionally, 

many aviation accidents occur due to indecisive transitions from VFR (Visual Flight Rules) 

to IMC (Instrument Meteorological Conditions) under unexpected weather conditions [34]. 

Most disastrous aviation accidents, by percentage, involve continued VFR to IMC 

situations [35]. This behavior can also be attributed not only to poor decision-making but 

also to presumptuous behavior in handling adverse situations [36].   

Based on frequency and possibility of committing violations, there are two types. 

The first type is routine violations, which are repeated periodically and become a habit for 
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the doer.  Unfortunately, such violations are often overlooked by supervisory personnel 

[9]. For example, flying the plane slightly faster than the prescribed speed for a specific 

zone may be accepted without proper consequences, exacerbating the problem. 

Implementing proper warnings or fines for routine violations can significantly reduce their 

occurrences.  

The second type of violation is exceptional violations. The term ‘exceptional’ here 

does not imply that the act is extraordinary, but rather that such violations are not typical 

behavior for the pilot and are not accepted by the authorities [9]. The most challenging 

aspect of such violations is that they do not align with the pilot’s usual behavior, leaving 

them with few exceptions when asked about the reasons behind their actions. 

 

 

 

 

 

 

 

 

 



11 

 

CHAPTER 2: LITERATURE REVIEW 

2.1. Background 

Aviation has always been associated with accidents and incidents. From the first 

crash happening on 17th September 1908, Wright brothers improved the aircraft design 

and thus officially started the aviation safety system as we call it today [45]. James Reason 

described the objective of safety as the avoidance of damage as much as possible, including 

injuries, fatalities, aircraft, and surroundings [46]. Human factors are the cause of more 

than 90% of the incidents that happen in the aviation industry and others such as maritime, 

highway etc. [47]. Aviation safety is not only the task of a single person i.e., pilot. It 

involves all levels of management, supervision and even organization. Textron explained 

that safety starts from the top levels of management, and so all the individuals including 

pilots, supervisors, mechanics etc. should be properly trained to prevent all levels of 

injuries [48]. To further strengthen the concept, Reason showed a broader understanding 

of humans causing aviation accidents. He argued that the ones in the proximity of the 

system might be more probable to cause an accident (active failures), however it is a dire 

need to understand the unseen factors that contributed to such outcome (latent failures) 

[49]. In today’s world, we call this approach ‘Safety Management Systems’. 

2.2. Human Factors Contribution to GA Accidents 

A significant number of studies have been carried out in the past that declared that 

human error majorly contributes to GA accidents either directly or indirectly. Annual report 

issued by U.S. General Aviation Accident Data 2006 [50] showed that 91% of the 1494 
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GA accidents happened in the year 2006 were personnel-related, with 95% personnels 

being pilots. Other personnels not aboard the aircraft also caused 8% of the accidents, 

including flight instructors, maintenance personnels and airport staff [50]. It also showed 

that student pilot’s aircraft control and decision-making errors were the main cause of the 

flight instruction GA accidents [50]. The 33rd AOPA Air Safety Institute Accident Report 

[51] encompassed non-commercial accidents from 2012 to 2021. It showed that 647 out of 

938 accidents (69%) studied in the report were pilot-related [51]. Out of these accidents, 

62% were fatal accidents [51]. Jensen and Benel (1977) reported that 52% of fatal GA 

accidents, between 1987 to 1989 in the United States (US), were due to poor decision-

making by pilots [52]. This finding was further supported by another research study in 

1991, which analyzed US civil aviation accidents during the same period and concluded 

that 56% of accidents resulted from poor pilot judgement [53].  

Over the past few decades, aviation accidents have reduced largely in numbers, with 

the advancements in technology and safety systems.  However, the contribution of human 

factors as the leading cause has increased drastically [54][55]. Human-factors not only 

correspond to pilots but also the air traffic staff, air crew and maintenance personnels. The 

related factors can be psychological factors such as stress and anxiety, health issues, errors, 

and violations, experience-related etc. Kara A. Latorella studied the role of aviation 

maintenance in the causation of the accident [56]. It was found that fatigue, 

miscommunication among the aviation workers and less knowledge were the leading 

causes of the aviation accidents [56]. 

 



13 

 

2.3. Machine Learning in Aviation Accidents Study 

In recent years, ML has proved to be the most powerful tool to play with the past 

datasets to derive future predictions. In contrast to the traditional regression analysis, it has 

shown better and more accurate prediction results [57]. This led to its larger use in aviation 

accidents studies [58] and the related human factors analysis on it [59]. Olja Čokorilo 

conducted a cluster analysis study over 1500 aircraft accidents occurring between 1985 and 

2010 to compare these accidents based on aircraft, environment, and traffic characteristics 

[60]. Bradley S. Baugh in 2020 analyzed GA accidents from 1998 to 2018 using ML and 

data mining techniques [37]. To find the best fitted model, he used both the unstructured 

(text format) and tabular data from NTSB, and applied ML methods of Decision Tree, 

Gradient Boosting, Logistic Regression, Neural Network, and Random Forest [37]. 

Tomas Madeira et al. (2021) identified human factors from the aviation incident 

reports from 2000 to 2020. The HFACS framework was modified by making it compatible 

with the investigation reports of Aviation Safety Network (ASN). The engineered dataset 

was then fed into the machine learning algorithms; semi-supervised Label Spreading (LS) 

algorithm, supervised Support Vector Machine (SVM). Micro F1 scores of 0.9, 0.779 and 

0.875 were obtained for predictions for unsafe supervision, preconditions to unsafe acts 

and unsafe acts respectively [61]. A. Khattak (2023) studied the missed approaches 

(MAPs) at Hong Kong International Airport (HKIA) from 2017 to 2021 under low-level 

wind shear conditions [62]. Machine learning techniques of random forest (RF), light 

gradient boosting machine (LGBM) and extreme gradient boosting machine (XGBoost) 

were used in the analysis. For the hypermeters tuning, Bayesian optimization and 10-fold 

cross validation is used. The LGBM got the highest precision of 75.23%, while RF got 
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69.11% precision [62]. Rui P. R. Nogueira (2023) studied human factors’ involvement in 

the failure of aviation operations [63]. The study was mainly focused on predicting the 

occurrences of fatal accidents because of human-related input features. HFACS is used to 

find the relationships among the input features and human factors. For the model training, 

two supervised algorithms (Random Forest & Artificial Neural Networks) and one semi-

supervised (Active Learning) were used. The RF model gave the prediction accuracy of 

90% and outperformed ANN models [63].  

Some of the researchers took detailed aviation accidents written reports and applied 

NLP techniques to find out the main topics of the accidents in the form of words [64]. The 

drawback with such a study is that those words are not necessarily used as the cause of 

accident but can be used anywhere in the report. To handle such a wide range of multilabel 

classifications, S. Robinson took 4000+ accidents from ASRS dataset and trained in a 

Latent Semantic Analysis (LSA) model [65]. The results of the study were not very good 

with an F1 score of 0.409 only, the reason for which was the little sample size used to 

classify all the contributing factors [65]. D. Tianxi devised a deep learning model to make 

the extraction of causal factors from aviation accidents easy [66]. Around 200,000 incident 

reports from Aviation Safety Reporting System (ASRS) are used to train, validate, and test 

the model. To obtain causal factors, first NLP and then long short-term memory (LSTM) 

model is used [66]. 

2.4. Research Gap 

1. Government and semi-government institutions conduct limited research to reduce 

general aviation (GA) accidents [37]. Their focus primary lies in reactive safety 
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approaches, which deals with addressing incidents that have already occurred. 

Safety mitigations are generally categorized into reactive safety, proactive safety, 

and predictive safety. Reactive safety deals with past incidents, proactive safety 

identifies and corrects preconditions of potential incidents, while predictive safety 

involves predicting incidents using models build from past data. Proactive safety is 

rarely applied for GA accidents, while it is more common in the case of commercial 

aviation (CA) [37]. Similarly, predictive safety is also utilized in GA research, 

despite its potential for addressing safety deficiencies. Utilizing machine learning 

algorithms can significantly overcome GA safety and risk mitigation by actively 

employing the predictive safety approach.   

2. Another compelling reason to focus on GA accidents in research is that their total 

number of occurrences exceeding commercial aviation accidents. Bradley S. Baugh 

research [37] showed a significant disparity between Part 91 (GA) and Part 121 

(CA) accident rates. Of particular concern is the fatality rate, which has decreased 

for CA accidents due to improved safety measures and risk mitigations adopted 

since 2002. In contrast, GA fatality rates have remained relatively constant over the 

same 15-year period.  

3. Autonomous vehicles, such as Unmanned Aerial Vehicles (UAVs) and drone 

operations, will be controlled under Unmanned Aircraft System Traffic 

Management (UTM) in cooperation with FAA to ensure smooth aerial operations 

without conflicting with other aviation operations [38]. Taiwan has already 

implemented UTM services under the Civil Aeronautical Administration (CAA) 

since March 31, 2020 [39]. Small UAVs flying below 400 ft are controlled by local 
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governments, while those flying above 400 ft fall under the jurisdiction of CAA 

[39]. Federal Aviation Regulation (FAR) part 91.119 states that all aviation 

operations must maintain a minimum flying altitude of 500 ft above rural areas and 

1000 ft above urban areas [40]. As GA includes low-line operations, the integration 

of UAVs with GA is expected to change the landscape of GA operations, which is 

the focus of this research.  

4. The initial climb (ICL) is a critical phase of flight, as flight crews face heavy 

workload coordinating with Air Traffic Control (ATC) and following standard 

operating procedures (SOPs). While the importance of the ICL flight phase in Loss 

of Control In-flight (LOC-I) accidents has been highlighted in CA accident reports 

[41][42][43], it has received limited attention in GA accident analyses. This 

research aims to address this gap, found in literature, by solely focusing on LOC-I 

accidents occurring during the ICL flight phase.  

5. Although Human Factor Analysis and Classification System (HFACS) is valuable 

in evaluate GA accidents causation, it has some limitations. Accident investigation 

reports issued by governing bodies often fail to attribute organizational factors as 

contributing factor [44], making the application of HFACS challenging. Since 

organizational influence plays a significant role in aviation accidents, it cannot be 

ignored. Additionally, the specific categories in the HFACS framework make it 

difficult to classify the diverse range of aviation accidents accurately. Hence, this 

research combines HFACS with machine learning (ML) algorithms to get more 

detailed results, keeping in view model limitations of statistical tools for analysis.  
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6. In understanding the psychological factors contributing to aviation accidents, many 

studies involve interviews with relevant personnel or experts’ opinions. However, 

such classifications can be influenced by personal thinking or bias. To avoid 

ambiguity, this research relies solely on unbiased methods using the original 

accident data. 
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CHAPTER 3: METHODOLOGY 

To engineer human factors contributing to the GA LOC-I accidents in the ICL phase 

of flight, two major sections in methodology are adopted. The first section focuses on the 

acquiring of desired dataset and implementing the machine learning algorithm to better 

understand the dataset and its trends. Another major outcome of the study is to find the 

important input variables influencing the predictions made by the trained model.  

The second section of the study focuses on the modification of the HFACS 

framework to adapt to the obtained dataset. The modified framework is then used to 

identify the HFACS’s level corresponding to the important features and hence suggesting 

required reforms at those levels respectively. 

3.1. Data Collection 

The general aviation accidents dataset was obtained from the National Transportation 

Safety Board (NTSB) official website, identified as a ‘publicly available dataset’. Access 

to the dataset was facilitated through the ‘custom search’ feature within the CAROL Query 

section of the website [a]. The applied filters during the custom research focused on the 

aviation operation labelled as General Aviation and investigation fields specified as 

‘Probable Cause’ and ‘Finding Text’. The dataset contained GA accidents recorded from 

January 2008 to January 2023, with a total count of 78,905 accidents. Once the dataset was 

accessible, it underwent preprocessing procedure. 
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3.2. Data Preprocessing 

Data preprocessing is a critical step that involves identifying and rectifying 

inaccuracies, addressing discrepancies, and eliminating extraneous data. Datasets acquired 

from open sources are typically raw and necessitate extensive preprocessing to enhance 

data quality and prepare them for subsequent analysis. This process ranges from 

Figure 3.1: Methodology Framework 
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straightforward tasks like removing incomplete entries to more intricate procedures such 

as encoding the entire dataset into a format compatible with specific algorithms. 

3.2.1. Data Cleaning and Filtering 

Data filtering involves selecting specific data points from a dataset based on 

predefined criteria and conditions. In this study, ‘categorical filtering’ was employed, 

applying specific filters such as setting the phase of flight as ‘initial climb’, accident 

occurrence category as ‘loss of control in flight’ and selecting only the FAR 91 and FAR 

137 GA accidents. These filters narrowed down the accidents count to 719.  

Subsequently, data cleaning was conducted, eliminating all empty or incomplete 

accident entries. Entries containing ‘not determined’ or ‘unknown’ in the findings were 

also removed to further refine the dataset. This additional cleaning reduced the dataset to 

703 accident entries. 

3.2.2. Feature Engineering 

Feature engineering includes modifying, deleting, or creating new features to prepare 

the data for machine learning (ML) algorithms. Commonly used techniques involve 

selection, transformation, and amalgamation.  

The ‘findings’ of the GA accidents, extracted from the dataset, were categorized into 

three main types: aircraft, personal issues, and environmental issues. These three categories 

were further subdivided based on the causes of the accidents. Each accident could have 

multiple findings or causes, totalling more than 550, which is overwhelming for input 

feature ‘x’ in a machine learning algorithm. The main concern lies not in the high number 
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of input features but in the relatively lower number of available accidents. To address this 

issue, features were grouped together, and some were removed based on importance and 

frequency. The clustering of features falls under the domain of ‘data transformation’ as 

‘aggregation of features’. The table below shows a few feature aggregations used in this 

study. 

Table 3.1: Aggregation of few Inputs Features 

Lack of Inspection Decision Making/ Judgement Improper Aircraft Control 

Aircraft - Aircraft 

handling/service - 

Maintenance/inspections - Time 

limits - Not inspected 

Personnel issues - 

Action/decision - Info 

processing/decision - Decision 

making/judgment – Pilot 

Personnel issues - Task 

performance - Use of 

equip/info - Aircraft control - 

Pilot 

Aircraft - Aircraft 

handling/service - 

Maintenance/inspections - 

Scheduled maintenance checks 

- Not inspected 

Personnel issues - 

Action/decision - Info 

processing/decision - Decision 

making/judgment - 

Instructor/check pilot 

Personnel issues - Task 

performance - Use of 

equip/info - Aircraft control - 

Student/instructed pilot 

Aircraft - Aircraft structures - 

Doors - Service doors - Not 

inspected 

Personnel issues - 

Action/decision - Info 

processing/decision - Decision 

making/judgment - 

Student/instructed pilot 

Personnel issues - Task 

performance - Use of 

equip/info - Aircraft control - 

Flight crew 

Aircraft - Aircraft 

handling/service - 

Maintenance/inspections - 

(general) - Not inspected 

Personnel issues - 

Action/decision - Info 

processing/decision - Decision 

making/judgment - 

Owner/builder 

Personnel issues - Task 

performance - Use of 

equip/info - Aircraft control - 

Instructor/check pilot 

Aircraft - Aircraft systems - 

Flight control system - Aileron 

control system - Not inspected. 

Personnel issues - 

Action/decision - Info 

processing/decision - Decision 

making/judgment – Copilot. 

Personnel issues - Task 

performance - Use of 

equip/info - Aircraft control - 

Not specified 

Personnel issues - 

Miscellaneous - Intentional act 

- Stolen/unauthorized – Pilot 

Personnel issues - 

Action/decision - Info 

processing/decision - Decision 

making/judgment - Flight 

crew. 

Personnel issues - Task 

performance - Use of 

equip/info - Aircraft control - 

Pilot of other aircraft. 
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3.2.3. Data Augmentation 

Data augmentation is applied in case of class imbalance in classification tasks to 

enhance the dataset and the robustness of the machine learning. Typically, the dataset 

exhibits a significant bias towards a few features that occur most frequently. Such class 

imbalance affects the accuracy of the ML model due to insufficient entries for less common 

classes. Addressing this issue involves generating one-to-one relationships between inputs 

and outputs, automatically improving the accuracy of the ML model. 

Given that the available dataset was insufficient for achieving a higher accuracy ML 

model, a data augmentation technique called ‘oversampling’ was applied. This technique 

equalizes the weight differences among the various classes of the output ‘y’, effectively 

increasing the dataset size by 3.2 times the original. The augmented dataset is now used 

for further analysis. 

3.2.4. Text Preprocessing 

Natural Language Processing (NLP) plays a vital role while dealing with text 

databases. The dataset in this research involves input features ‘x’ and output classes ‘y’ in 

the form of sentences/ words, it is essential to transform the text into a readable format for 

the ML algorithm. To achieve this, the oversampled dataset obtained in the previous step 

underwent ‘tokenization’ and then ‘one-hot encoding’. Tokenization is a text preprocessing 

technique that involves converting words into individual tokens.  

One-hot encoding, falling under the domain of ‘NLP feature extraction’, takes these 

tokens and transforms them into binary vectors. Each feature is converted into a column 
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with the number of rows equal to the sample size of the dataset. In this process, entries in 

the dataset containing a specific feature are assigned 1, indicating presence, while others 

are assigned 0, indicating absence. 

3.2.5. Finalized Dataset 

Consider a multiclass classification problem with a Boolean feature space. This space 

refers to a dataset where features take values of 0 or 1, representing the presence (1) or 

absence (0) of that feature. In other words, it is a one-hot encoded dataset as discussed in 

3.2.4. The input space can be defined as follows: 

x = 0, 1B, where b are the input features having the value 0 or 1. 

Table 3.2: Input features and their % presence in the dataset 

Abb. Input Features % Abb. Input Features % 

B1 Action/ Decision 18.21 B31 Improper Use/ Operation of Aircraft 

Propeller System 

0.71 

B2 Aircraft Airspeed Performance/ 

Capability 

36.13 B32 Improper Use/ Operation of Flight 

Control System 

2.42 

B3 Aircraft Altitude Performance/ 

Capability 

2.42 B33 Inadequate Inspection 5.12 

B4 Aircraft Angle of Attack 

Performance/ Capability 

24.89 B34 Inadequate Service/ Maintenance 4.41 

B5 Aircraft CG/ Weight Distribution  1.99 B35 Inadequate Training 1.00 

B6 Aircraft Climb Performance/ 

Capability 

1.85 B36 Incorrect Service/ Maintenance 3.13 

B7 Aircraft Climb Rate Performance/ 

Capability 

2.56 B37 Incorrect/ Use Operation of Landing 

Gear System 

0.57 

B8 Aircraft Engine & Systems Failure 4.13 B38 Lack of Communication 0.28 

B9 Aircraft Engine & Systems 

Malfunction 

4.27 B39 Lack of Inspection 1.28 
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B10 Aircraft Fluids (Fuel)/ Misc 

Hardware 

4.69 B40 Lack of Service/ Maintenance 1.28 

B11 Aircraft General Performance/ 

Capability 

0.43 B41 Lateral/ Bank Control Parameters 5.26 

B12 Aircraft Maximum Weight 

Capability 

3.56 B42 Light Condition 2.99 

B13 Aircraft Performance/ Control 

Parameters 

17.78 B43 Operation Through High Denstiy 

Altitude 

4.55 

B14 Aircraft Structures Failure/ 

Improper Use 

3.84 B44 Operation Through Icing Condition 1.42 

B15 Aircraft Systems & Equipment 0.57 B45 Operation Through Turbulence 1.42 

B16 Aircraft Takeoff Distance 

Performance/ Capability 

0.43 B46 Operation Through Winds 11.95 

B17 Aircraft Yaw Control Performance/ 

Capability 

1.85 B47 Operation Under High Temperature 0.43 

B18 Airport Facilities/ Design 0.57 B48 Organizational Issues 0.85 

B19 Ceiling/ Visibility/ Precipitation 4.84 B49 Perception/ Orientation/ Illusion 5.83 

B20 Damaged/ Degraded Aircraft 

Engine & Systems 

1.42 B50 Physical Environment Obstruction 5.83 

B21 Decision Making/ Judgement 15.65 B51 Pitch Control Parameters 5.83 

B22 Directional Control Parameters 4.55 B52 Planning/ Preparation 6.12 

B23 Experience/ Knowledge 7.25 B53 Psychological Factors 4.84 

B24 Fatigue/ Wear/ Corrosion of 

Aircraft Engine & Systems 

1.14 B54 Qualification Certification 3.70 

B25 General Health/ Fitness 2.70 B55 Runway/ Land/ Takeoff/ Taxi surface 1.14 

B26 Identification/ Recognition 1.28 B56 Terrain Physical Environment 1.85 

B27 Impairment/ Incapacitation due to 

Health Issues 

1.71 B57 Use of Alcohol/ Illicit Drugs 1.56 

B28 Improper Aircraft Control 68.14 B58 Use of Equipment/ Information 8.53 

B29 Improper Use Operation of Aircraft 

Fuel System 

1.14 B59 Use of Medication Drugs 3.56 

B30 Improper Use/ Operation of Aircraft 

Power Plant (Engine) 

3.56 
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And the output space can be defined as follows: 

y = {1, 2, …, C}, consisting of C possible output classes.  

The input features, obtained through the data preprocessing steps, are shown in Table 

3.2 below. The % represents the proportion of entries being TRUE (1) in the respective 

feature column in the one-hot encoded dataset.  

The output classes are derived from the LOC-I accident categories defined by IATA 

in the Loss of Control In-Flight Accident Analysis Report (Edition 2019) [18]. According 

to the report, LOC-I accidents in the ICL flight phase confenciated in these nine (9) broader 

categories as shown in Table 3.3. 

Table 3.3: Output Classes for LOC-I Accidents 

Abb. LOC-I (ICL) Accident Categories Size 

C1 Aircraft System Malfunction 94 

C2 Operating Outside Aircraft Limitations 34 

C3 Poor Manual Handling 249 

C4 Poor, or Lack of Decision-Making 94 

C5 Inadequate Crew Monitoring and Cross Checking 18 

C6 Operating in Adverse Meteorological Conditions (AMC) 26 

C7 Non-Adherence to Standard Operating Procedures (SOPs) 42 

C8 Inadequate Implementation of Safety Management Systems (SMS) 79 

C9 Incorrect Response to the Scenario Faced 67 

All the accidents were carefully analysed based on their findings and probable 

causes. After careful analyses, each accident was assigned the most suitable output class 

and put into one of the 9 above mentioned output classes. These individual accidents’ 

interpretation was done between the researcher and the research supervisor. 
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3.3. Data Splitting 

Machine learning algorithms partition the dataset into three smaller datasets for 

training, testing, and validation of the model. This segregation guarantees that the model 

being assessed is distinct from the one it is trained on. The training set is the most critical, 

constituting 80% of the overall dataset, while testing and validation sets typically each 

account for 10% [b]. The testing set evaluates the performance of the trained ML model on 

unseen data, providing insights into the accuracy of predictions. Although not mandatory, 

the validation set proves beneficial for hyperparameters tuning and model optimization. 

3.4. Model Selection and Training 

Random Forest (RF) is an ensemble learning method employing trees, utilized for 

both classification and regression tasks. It involves multiple decision trees trained on 

slightly varied datasets through techniques like feature bagging, bootstrap aggregating, and 

a voting mechanism. 

3.4.1. Bagging and Bootstrapping 

Each decision tree involves conditions at each node, culminating in a final prediction 

at the leaf node, expressed mathematically as: 

Xi ≤ d or Xi > e                                               (3.1) 

where, Xi  is a feature and d is a threshold.  

In feature bagging, every decision tree randomly selects a unique set of features from 

the dataset, offering varied perspective of studying distinctive features and their 
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correlations. Bootstrap aggregating involves drawing and replacing dataset entries, 

ensuring each decision tree has a unique dataset, thus adding larger scope and variety to 

the model. The voting mechanism aggregates predictions from all decision trees through a 

‘majority vote’, reducing overfitting concerns associated when using a single decision tree. 

3.4.2. Splitting Criterion 

The splitting criterion, a metric in RF, guides data division at each node for every 

decision tree in the ensemble. Three metrics, entropy, information gain, and Gini impurity, 

are employed for classification problem. Entropy measures dataset disorder 

mathematically expressed as: 

H(S) =  − ∑  𝑝𝑖 𝑙𝑜𝑔2(𝑝𝑖)
𝐶
𝑖=1     (3.2) 

where, 

S  Set of data points with C classes 

Pi Proportion of data points in class i 

Information gain represents the reduction in entropy resulting from dataset splitting 

based on a particular feature.  

IG (S,V) = H(S) − ∑  
|𝑆𝑖|

|𝑆|
 𝐻(𝑆𝑖)𝑘

𝑖=1              (3.3) 

Gini impurity, like entropy, quantifies disorder, with lower values indicating less 

disorder: 

Gini (S) = 1− ∑ ( 𝑝𝑖)
𝐶
𝑖=1

2
               (3.4) 
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The objective of these criteria is to select a node splitting that minimizes entropy and 

Gini impurity while maximizing information gain. 

3.4.3. Hyperparameter Optimization 

Random Forest (RF) encompasses numerous hyperparameters crucial for tuning 

based on the dataset and analysis type. Tuning can be performed through Grid Search, 

where values are individually selected, or Randomized Search, involving providing a range 

for each hyperparameter and letting the algorithm choose the optimal set after a specified 

number of iterations. 

The hyperparameters in this research comprise of n-estimators, max depth, min 

sample split, min samples leaf, max features, bootstrap, and random state. Their 

explanations are detailed in the Table 3.4 below: 

Table 3.4: Random Forest Hyperparameters 

Hyperparameters Explanation 

n-estimators Total number of decision trees in the forest 

max depth The maximum depth of the tree 

min sample split Min sample split at an internal node of decision tree 

min sample leaf Min samples at the leaf node 

max features Maximum number of features at the best split 

bootstrap Randomizing the samples of each decision tree 

random state Number controlling the model’s randomness 

3.4.4. Random Forest Classifier 

The RF classifier is executed in ‘Jupyter Notebook’ using Python as the kernel. This 

utilizes the optimal set of hyperparameters chosen through randomized search. Once the 
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model is trained, it undergoes evaluation based on accuracy with the test set and validation 

set. 

3.5. Model Testing and Validation 

The final step in RF modelling is to access the accuracy by applying the test set and 

validation tests. Once a satisfactory value is achieved, it can be concluded that the model 

is prepared for future data usage. If the accuracy falls outside the acceptable range, 

additional steps must be taken in data preprocessing and feature engineering to enhance the 

data’s suitability for RF modelling. 

3.6. HFACS Modified Framework 

The aviation accidents are mostly due to combination of environmental impact, 

aircraft malfunction and personnel’s errors rather than a single reason. This makes it 

difficult to assign accidents directly to one of the HFACS levels/ sub-levels. Hence, rather 

than linking the whole accident to HFACS, the input features of the ML model are linked 

to HFACS levels to design a modified framework. These frameworks cover the levels of 

organizational influences, unsafe supervision, preconditions to unsafe acts, unsafe acts, and 

external factors. The modified frameworks are shown in Figure 3.2, 3.3 & 3.4. 
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Figure 3.2: Input Features corresponding to External Factors & Organizational Influences 

 

Figure 3.3: Input Features corresponding to Unsafe Supervision & Preconditions to Unsafe Acts  
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Figure 3.4: Input Features corresponding to Unsafe Acts - HFACS 
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CHAPTER 4: RESULTS & DISCUSSION 

Random Forest Classifier was used on a dataset of 2241 accidents, having 59 input 

features and 9 output classes. The best-fitted RF model hyperparameters obtained through 

randomized search are shown in Table 4.1. A range of values were given to each of these 

hyperparameters and run on the model to get the best values for the highest accuracy. The 

relationship between these hyperparameters and their effect on accuracy of predictions can 

be depicted into a surface 3D plot as shown in Figure 4.1. X-axis has n-estimators (number 

of Decision Trees), y-axis has the max-depth (maximum depth of tree) and z-axis has 

accuracy of the model. 

Table 4.1: Best Hyperparameters from Randomized Search 

 

The overall RF model accuracy was 85% and 88% on the validation set and test set 

respectively. This overall classification accuracy is a general performance metric which is 

a ratio of correct predictions to the total number of predictions. This method is usually 

dominant class biased and can be misleading in a lot of ways. So, to normalize the results 

Hyperparameters Best Randomized Search Values 

n-estimators 100 

max depth 50 

min sample split 2 

min sample leaf 1 

max features log2 
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and to give equal importance to all the classes including the rare-occurring ones, different 

performance metrics are used to evaluate the RF model. 

 

Figure 4.1: Surface 3D Plot of RF Hyperparameters 

4.1. Performance Metrics 

A classification report is generated from the Random Forest model that shows the 

overall performance of each of the output classes in the prediction model. The performance 

metrics evaluated in this report are the precision, recall, and F1-score. 

   Precision = 
TP

(TP+TN)
     (4.1) 

     Recall = 
TP

(TP+FN)
     (4.2) 

                    Accuracy = 
TP+TN

(TP+FN+FP +TN)
    (4.3) 
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    F1-Score = 2 x 
Precision x Recall

(Precison+Recall)
    (4.4) 

where, 

TP True Positives 

TN True Negatives 

FP False Positives 

FN False Negatives 

 

Figure 4.2: Classification Report Generated from the RF Model 

It can be seen from Figure 4.2 that class 4 has the highest precision, classes 0, 1, 5, 

6 has the highest recall and class 1 has the highest F1-score out of the 225 cases in the test 

set. The highest weighted average accuracy is 89% which shows the overall good 

performance of the classification model. 
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4.2. RF Model Performance 

As the data was split into three datasets of training, validation and testing, the 

performance of the model was checked from the validation set in the form of confusion 

matrix (Figure 4.3). It breaks down each class’s predictions against all output classes in 

the form of number of accidents of the validation set predicted for that class. Each row in 

the matrix corresponds to the actual output class while the columns represent the predicted 

classes. Here the main diagonal of the matrix represents the true positives of each class. 

For instance, Actual 0 refers to the actual class 1 ‘Aircraft System Malfunction’ and all the 

27 actual output cases were predicted correctly, and the other columns have 0 instances. 

 

Figure 4.3: Confusion Matrix for Output Classes 
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Table 4.2: Confusion Matrix Percentages Table 

When the values in the confusion matrix are obtained as a percentage of the total 

instances, a confusion matrix table is obtained. The non-diagonal values show the 

percentage of incorrectly predicted classes and help in understanding and improving the 

dataset better. An extremely low percentage of incorrectly predicted classes can be seen 

scattered in Table 4.2. 

4.3. Human Factor Analysis, HFACS 

All the input features are linked to the HFACS levels in the modified framework as 

shown in the ‘methodology’ section of this study. Few of the features do not fall directly 

under the human factors definition and hence are assigned to external factors. After finding 

the model’s performance in different perspectives, the next step is to find the promising 

human factors prevailing in the dataset. For that purpose, feature importance is performed. 

 

 0 1 2 3 4 5 6 7 8 

0 12 0 0 0 0 0 0 0 0 

1 0 9.78 0 0 0 0 0 0 0 

2 1.33 0 8 0.89 0 0.44 0.44 0.89 1.33 

3 0 0 0.44 11.56 0 0.89 0 0 0 

4 0 0 0 0 8.89 0.89 0 0 0 

5 0 0 0 0 0 12 0 0 0 

6 0 0 0 0 0 0 11.11 0 0 

7 1.33 0.44 0 0 0 0 0 9.33 0 

8 0.44 0 0.44 0.89 0 0 0.44 0 5.78 
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4.3.1. Feature Importance 

Feature importance is performed on the RF model to obtain the top 10 features that 

are the most influential in making predictions. It is calculated based on average impurity 

reduction of a specific feature during the formation of decision trees in the forests. The 

more the impurity reduction, the more the feature importance. It also considers the number 

of times a feature is used in splitting the data, which also increases its importance. This 

ultimately helps to align our concentration to the most impactful features while feature 

selection. If there are features with very less feature importance value, these can be 

removed from the dataset to improve the overall accuracy of the model. Figure 4.4 shows 

the top ten features in making predictions in the descending order with the topmost holding 

the highest importance. 

 

Figure 4.4: Feature Importance (Top 10 Features) 
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The important features listed above are linked back to the HFACS framework shown in 

‘methodology’ section. Table 4.3 lists the top 10 important features and their 

corresponding HFACS levels and sub-levels. 

Table 4.3: HFACS Levels and Sub-Levels of Top 10 Most Important Features 

S. No. Top 10 Important Features HFACS Level HFACS Sub-Level 

1 Aircraft Airspeed Performance Capability Unsafe Acts Decision Errors 

2 Improper Aircraft Control Unsafe Acts Violations 

3 Operation through Winds 
External 

Factors 

Severe Weather 

Conditions 

4 
Aircraft Angle of Attack Performance 

Capability 
Unsafe Acts Decision Errors 

5 Decision Making/ Judgement Unsafe Acts Decision Errors 

6 Aircraft Performance Control Parameters Unsafe Acts Skill-Based Errors 

7 Action/ Decision Unsafe Acts Decision Errors 

8 Physical Environment Obstruction 
External 

Factors 

Bird Strike and Foreign 

Object Damage  

9 Use of Equipment/ Information Unsafe Acts Skill-Based Errors 

10 Experience/ Knowledge 
Unsafe 

Supervision 
Supervisory Violations 

The blue highlighted rows are the features that come under HFACS levels while the 

grey ones are the external factors. Many of these features correspond to ‘Unsafe Acts’ level 

and one comes under ‘Unsafe Supervision’. It is a crucial step as it highlights the most 

important HFACS levels and sublevels that contribute most to the predictions of GA LOC-

I accidents in ICL flight phase. This is the crux of our study, and hence it is explored well 

for better understanding. 

4.3.2. Pearson’s Correlation Matrix 

Now that we have the most important human factors contributing to accidents of our scope, 

relationships among these features are found through Pearson’s Correlation Matrix. It is a 
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method of establishing a linear relationship of one feature with another. It has values 

ranging from -1 to 1, while -1 means a complete negative relationship and vice versa. The 

main diagonal has value of 1, which is the highest for each class against itself. Figure 4.5 

shows a correlation matrix of 11 features. These features are all HF-based and are obtained 

from feature importance list (top 20) of the model, excluding the features relating to 

external factors. 

 

Figure 4.5: Pearson's Correlation Matrix for Top 11 HFACS Features of the Trained RF-Model 
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The non-diagonal values are on the lower side and even negative. This indicates a 

weak correlation among HF-based features. It might seem discouraging at first, but there 

are positive insights to this analysis.  

• The absence of strong relationships among HF-based features shows how aviation 

accidents are caused by numerous numbers of triggering factors. This calls for a holistic 

safety approach which is focused on multiple aspects rather than one. 

• Aviation accidents are not caused by a single HF-based factor, but a combination 

of factors. Optimistically, we can say that different levels of hierarchy in the aviation 

industry need to work together for safety improvements. There is a dire need to 

continuously improve the safety strategies and to adapt to the future unpredictability.  

• This calls for better and detailed training programs for the aviation personnels so 

that a wide range of skills is obtained to mitigate the risks of human factors.  

• Instead of implementing a solution based solely on a specific correlation between 

two human factors (strong correlation), it is better to tailor a customized intervention can 

be introduced based on the unique combination of many human factors (weak correlation) 

of the accidents.  

• Such a weak correlation among the human factors calls for better communication 

among the personnels of aviation sectors. There should be effective collaboration so that 

they can work on identifying and addressing the multiple human-related errors and 

violations together. 
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4.3.3. SHAP (Shapley Additive exPlanations) Analysis 

SHAP analysis is performed on the validation set of RF model to get the average impact 

of each feature on the overall output of the model. It works by considering marginal 

contribution of each feature against all the possible feature combinations. Figure 4.6 shows 

the impact of each feature on the overall as well as each output class’s prediction. The 

features are listed from top to bottom according to the absolute average SHAP values while 

the length of the bar shows the impact magnitude of that feature to the model’s prediction 

accuracy. 

 

Figure 4.6: Mean SHAP Value Graph 
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The output classes are distributed among the important SHAP features. This helps in 

identifying the impact of a specific feature on each of the output classes. To further dive 

into the feature-class relationship specific to HFACS, another SHAP analysis of interaction 

plots is performed. For this analysis, 7 out of the 9 output classes were used. It is because 

‘Aircraft System Malfunction’ (C1) and ‘Operating in Adverse Meteorological Conditions 

(AMC)’ (C6) are non-HF accident categories. Furthermore, HF-related features from 

Figure 4.6 are separated into a list and were utilized into getting interaction plots as shown 

in Figure 4.7, against each of the 7 HF-related classes. 

 

Figure 4.7: Output Class-C2, Operating Outside Aircraft Limitations 

The blue and red dots against the input features represent the number of accidents 

falling under that feature for that specific output class, while red color shows higher 

positive impact on the Quadrant-I of the graph while blue color shows lower negative 

impact in the Quadrant-IV and vice versa. From Figure 4.7, decision making, and 

judgement of the pilot highly influences the capability of him flying the aircraft inside its 

set limitations. Similarly, improper planning of flight and inexperience of the pilot also 

contribute a lot to the accidents under the output class C2. 
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Figure 4.8: Output Class-C3: Poor Manual Handling 

Poor manual handling of the aircraft flight resulted majorly from the improper 

aircraft control by the pilot. Improper use of flight controls, errors in aircraft handling and 

failure to get stability at unusual altitudes leads to accidents falling under output class C3.  

 

Figure 4.9: Output Class-C4: Poor, or Lack of Decision-Making 

A high accident occurring class of poor decision making has a lot of contributing 

factors, while the actions and decisions of the pilots tops the list. Poor decision making and 

incorrect action performance during the initial climb phase of flight results in the loss of 

control in flight of the aircraft. Not having a proper preparation for the unexpected 
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scenarios during the flight and being inexperienced to make best decisions could lead to 

loss of control in flight.  

 

Figure 4.10: Output Class C-5, Inadequate Crew Monitoring & Cross Checking 

Improper aircraft control affects adversely the crew monitoring and cross checking 

as it can easily divert attention of the crew members on the instability of the aircraft. 

Decision making among the crew members during difficult scenarios could be problematic 

as different members could have different opinions and psychological states of mind.  

 

Figure 4.11: Output Class-C7: Non-Adherence to SOPs 

If the crew members of the aircraft are making decisions that does not follow the 

established protocols of the flight such as SOPS regarding specific speed, altitude, or angle 
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of attack during a specific encounter, this could lead to loss of control inflight. In addition 

to that, crew members should be well prepared and should correctly use equipment 

according to their respective use. For example, not utilizing the navigational aids according 

to SOPs could result in disastrous accidents.  

 

Figure 4.12: Output Class-C8: Inadequate Implementation of SMS 

Safety management during the flight is the foremost priority. Failure in identifying 

any underlying issues related to the aircraft engine or flight procedures during inspection 

could lead to unsafe flight operations often resulting in accidents. Pilot in command is also 

expected to put safety first in all his flight decisions and pre-flight preparations.  

 

Figure 4.13: Output Class-C9: Incorrect Response to the Scenario Faced 
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Pilots often encounter situations where a very abrupt action is needed to keep the 

flight operation safe and smooth. Miscalculations in the actions and improper handling of 

the aircraft while being exposed to adverse conditions lead to loss of control in flight and 

ultimately cause accidents.  
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CHAPTER 5: CONCLUSIONS 

General Aviation accidents are caused by a wide set of features covering all the 

human, environmental and aircraft mechanical factors. No accident can be contributed 

solely to one contributing factor as different factors, either active or latent, contribute to 

the unsafe act. Instead of running raw or a little preprocessed dataset on the machine 

learning algorithm, it is extremely time saving to study the dataset in detail and apply 

different techniques (e.g. feature engineering, NLP, etc.) to make it suitable for the ML 

algorithm before training. This will not only increase the prediction accuracy drastically, 

but also will help in getting purified and error-free outcomes i.e., contributing factors. 

Random forest model shows an accuracy of 85% on the test set, and 88% accuracy 

on the validation set. This concludes that the preprocessed dataset and the model training 

were compatible, and the model can be used for further predictions.  80% of the top 10 

most important contributing factors obtained from the RF model are human-related. Out of 

which 50% are Decision Errors, 25% are Skill-Based Errors, and 25% are Violations. All 

of these human factors correspond to the HFACS level of Unsafe Acts. 

The Person’s correlation matrix shows a weak relationship among the most important 

human factors. This calls for a holistic safety approach which focuses on multiple aspects. 

Different hierarchy levels need to work together to have effective collaboration and 

communication amongst themselves.  

SHAP interaction plots of the human-related output classes showed that the most 

concerning human factors are ‘Action/ Decision’, ‘Decision Making/ Judgement’, 
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Planning/ Preparation’, ‘Experience/ Knowledge’, and ‘Improper Aircraft Control’. 

‘Action/ Decision’ factor contributes majorly to the accident category of ‘Poor or Lack of 

Decision Making’, and ‘Non-Adherence to SOPs’. Poor execution of decisions or taking 

inappropriate actions during the initial climb phase can contribute to the loss of control. 

Similarly, if pilots make decisions that deviate from established procedures or take actions 

contrary to SOPs, it can lead to non-compliance and increase the risk of accidents.  

‘Decision making/ judgement’ majorly contributes to the accident category of 

‘Operation Outside Aircraft Limitations’. Pilots may make decisions that lead to operating 

the aircraft beyond its designated limitations, possibly due to misinterpretation of 

information or inadequate decision-making skills. ‘Planning/ preparation’ contributes to 

the accident categories of ‘Non-Adherence to SOPs’ and ‘Operation Outside Aircraft 

Limitations’. If there's a deficiency in planning or preparation, pilots may not be well-

equipped to follow the established procedures during the initial climb, potentially leading 

to deviations from SOPs. 

‘Improper Aircraft Control’ contributes majorly to the accident categories of ‘Poor 

Manual Handling’ and ‘Incorrect Response to the Scenario Faced’. It could imply instances 

where pilots are not effectively managing the aircraft, leading to a loss of control. This 

could be due to factors such as inadequate pilot training, lack of situational awareness, or 

failure to respond appropriately to changing conditions. ‘Experience/ Knowledge’ highly 

contributes to the accident category of ‘Inadequate Implementation of SMS’. 

Inexperienced individuals or those lacking specific knowledge related to safety procedures 

might inadvertently neglect aspects of the Safety Management System, leading to 

inadequate implementation. 
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FUTURE RECOMMENDATIONS 

In future works, the focus should be shifted from the Reactive Safety Approach 

towards the Proactive safety approach. All hierarchy levels of aviation industry must 

undergo an evaluation and improvement training programs to lessen the human- related 

features causing accidents. From airport facilities to maintenance and pilots/ staff’s 

psychological and skill-based training, everything should be improved based on the results. 

The organizations should be critical about choosing the individuals based on experience 

and knowledge and keep in check their periodic performance. 
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