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Abstract

This dissertation has two parts. In the first part we discuss nanofluid over

a stretching sheet while taking thermal radiation effect into account. In the

second part, we consider the boundary layer flow of compressible fluid on

a moving flat plate. The governing partial differential equations (PDEs) in

both parts are reduced into the system of non-linear ordinary differential

equations (ODEs) while considering appropriate similarity transformations.

The numerical solutions of the resulting non-linear ODEs are obtained by

shooting method with the fifth order Runge-Kutta time integration technique

and the results are compared with the built-in solver bvp4c of MATLAB.

Graphs are drawn for the influence of various parameters on the flow field.

The present analysis of the first part shows the effects of velocity ratio and

magnetic parameter on the flow of the field and effect of Prandtl and Lewis

number on the temperature and concentration profile, respectively. In the

second part of the thesis, the non-linear ODEs are solved by applying the

shooting method and the bvp4c. We find a good agreement between the

present results and the results in the literature.
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Preface

Nanofluids has become an active field of research due to its applications in

technological and industrial processes. Applications of nanofluids include

transportation, electronic cooling, solar panels to name a few. Research

on nanofluid has potential to improve the heat transfer and solar collection

process by addition of nanoparticles in the base fluid. The size of these

nanoparticles in diameter is less than 100 nm. The other field of research is

the topic of compressible fluids. Application of compressible fluids include

high speed flows around aeroplane. The arrangement of the dissertation is

as follows:

Chapter 1 is introductory in nature. It presents some basic definitions and

governing laws. Some details about the shooting method and bvp4c method

is also part of this chapter.

Chapter 2 is the review work of Meraj et al [7]. It is concerned with the

thermal radiation effect in the magnetohydrodynamic (MHD) stagnation-

point flow of nanofluids towards a stretching sheet. First we convert partial

differential equation (PDEs) into system of non-linear ODEs and then solve

these system of non-linear ODEs by using shooting method and bvp4c. The

numerical analysis of the obtained results is presented at the end of this

chapter.

Chapter 3 is an extension of Meraj et al [7]. It is concerned with the thermal

radiation effect in the magnetohydrodynamic (MHD) stagnation-point flow

of nanofluids towards a stretching sheet with convective boundary condition.

An approximate as well as the numerical solution of the problem is obtained

with the help of shooting method and bvp4c. A discussion about the obtained
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results is presented at the end of this chapter.

Chapter 4 is the review work of Bachok et al [9]. This chapter is the analysis

of the boundary layer flow with variable fluid properties on a moving flat

plate in a parallel free stream. The nonlinear ODEs are solved by applying

shooting method and bvp4c. The results are discussed.

Chapter 5 contains the conclusion of the thesis and future work.
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Chapter 1

Introduction

This chapter includes basic definitions in fluid dynamics. Some of these

definitions have been used in the thesis.

1.0.1 Nanofluid

The nanofluids are a relatively new class of fluids which consist of base

fluid with nanometer sized particle (1-100 nm) suspended within them. The

nanoparticles used in nanofluids are typically made of metals, oxides, car-

bides, or carbon nanotubes. Common base fluids include water, ethylene

glycol and oil. Nanofluids are useful in many applications in heat transfer

including microelectronics, fuel cells, biomedicine, engine cooling, domestic

refrigerator, chiller, heat exchanger, nuclear reactor coolant.

1.0.2 Stress

Stress is defined as force per unit area. Mathematically, it can be written as

P =
F

A
, (1.0.1)

where F is the applied force and A is the area where the force is applied.
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1.0.3 Shear Stress (Tangential Stress)

The components of stress, when the fluid is in motion, tangential to the area

considered.

1.0.4 Normal Stress

The components of stress, when the fluid is in motion or static, perpendicular

to the area considered.

1.0.5 Stress Tensor Matrix

Stresses in a medium results from forces acting on some portion of the

medium. The force δF acting on δA may be resolved into two components,

one tangent to and the other normal to the area. A shear stress τ and a

normal stress σ are defined as

τ = lim
δAn→0

δFt
δAn

, (1.0.2)

σ = lim
δAn→0

δFn
δAn

. (1.0.3)

There are nine components of the stress matrix which are defined at a point

in a following way

τ =


σxx σxy σxz

σyx σyy σyz

σzx σzy σzz

 .
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1.0.6 Dynamic Viscosity

The fraction of the shear stress to the rate of strain is known as dynamic

viscosity. It is denoted by µ. Mathematically

µ =
shear stress

strain rate
. (1.0.4)

The unit of dynamic viscosity is kg
ms

.

1.0.7 Deformation Rate

Deformation rate or shear strain rate of an element is defined as the rate

of decrease of the angle formed by two mutually perpendicular lines on the

element. Mathematically

eij =
1

2
(
∂ui
∂xj

+
∂uj
∂xi

). (1.0.5)

1.0.8 Newton’s Law of Viscosity

Newton’s law of viscosity states that shear stress is directly and linearly

proportional to the deformation rate. Mathematically

τ = µ
du

dy
, (1.0.6)

where µ is known as proportionality constant, dynamic constant or coefficient

of viscosity.

1.0.9 Kinematic Viscosity

The fraction of dynamic viscosity to the density is called kinematic viscosity.

It is defined by

ν =
µ

ρ
. (1.0.7)

The unit of kinematic viscosity is m2/t.
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1.1 Types of Flows

There are few important types of flows given below.

1.1.1 Steady Flow

If the flow velocity at any point does not change with time then the flow is

called steady.

1.1.2 Unsteady Flow

If the flow velocity change with time then the flow is called unsteady.

1.1.3 Laminar Flow

In laminar flow, velocity at a given point remains a smooth function of time.

1.1.4 Viscous Flow

Viscous flow are those flow in which fluid friction has significant effects.

1.1.5 Inviscid Flow

Inviscid flows are those flows in which there is no fluid friction or in other

words µ=0. For instance, gases are an example of an inviscid fluids.

1.1.6 Incompressible Flow

If the density ρ does not change with space and time then the flow is incom-

pressible. Mathematically
dρ

dt
= 0. (1.1.1)
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1.1.7 Compressible Flow

If the density ρ changes when the pressure is applied on a fluid then the flow

is said to be compressible.

1.2 Type of Forces

There are four important types of forces given below.

1.2.1 Surface Forces

Surfaces forces are exerted on an area element by the surroundings through

direct contacts. For example pressure force, viscous force etc.

1.2.2 Body Forces

The forces that arises from action at a distance without physical contacts are

called body forces. Gravity, electric or magnetic forces are examples of body

forces.

1.2.3 Inertial Forces

Inertial forces are defined as body’s resistance to the forces acting on it to

displace.

1.3 Types of Fluids

There are three kinds of fluids.
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1.3.1 Ideal Fluid

If viscosity effect is negligible then the fluid is called ideal.

1.3.2 Real Fluid

All the fluids for which viscosity is not equal to zero i.e. µ 6= 0 are called real

fluids. These fluids may be compressible or incompressible.

1.3.3 Newtonian Fluids

Fluid obeying Newton’s law of viscosity and for which µ has a constant value

are known as Newtonian fluids. Mathematically

τ = µ
du

dy
. (1.3.1)

Here τ is shear stress, du
dy

is shear strain rate and µ is the dynamic viscosity

of the fluid.

1.4 Law of Conservation of Mass (Continuity

Equation)

Consider a fixed volume in space (see Figure). The rate of increase of mass

inside the volume
d

dt

∫
v

ρdV =

∫
v

∂ρ

∂t
dV, (1.4.1)

where V is the volume. Since the volume is fixed, so d
dt

can be taken inside

the integral. The rate of mass flow out of the volume is surface integral∫
A

ρV.dA. (1.4.2)
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Here ρV.dA is the outward flux, because of the positive sign. By the law of

conservation of mass ”rate of increase of mass within a fixed volume must be

equal to the rate of inflow through the boundaries”, i.e.∫
v

∂ρ

∂t
dV = −

∫
A

ρV.dA. (1.4.3)

By divergence theorem surface integral can be transformed into volume in-

tegral and so ∫
A

ρV.dA =

∫
v

∇.(ρV )dV. (1.4.4)

From Eqs. (1.5.3) and (1.5.4), we have∫
v

[
∂ρ

∂t
+∇.(ρV )]dV = 0 (1.4.5)

This relation holds for any volume, which is possible when integrand must

vanish. This requires
∂ρ

∂t
+∇.(ρV ) = 0 (1.4.6)

which is called continuity equation.
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1.5 Different Forms of Continuity Equation

1.5.1 Steady Flow

For steady flow continuity equation becomes

∇.(ρV) = 0. (1.5.1)

1.5.2 Incompressible Flow

For incompressible fluid, ρ is constant so

∂ρ

∂t
= 0, (1.5.2)

so equation of continuity becomes,

∇.(ρV) = 0, (1.5.3)

as ρ is constant so above equation becomes

ρ(∇.V) = 0, (1.5.4)

and ρ 6= 0 so

(∇.V) = 0. (1.5.5)

1.6 Law of Conservation of Momentum

The law of conservation of momentum states that the total linear momen-

tum of an isolated system remains constant regardless of changes within the

system. In vector form, it can be written as

ρ
dV

dt
= ∇.T + ρb (1.6.1)

Where V is the velocity field, ρb is the body force and T is the stress tensor.
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1.7 Navier-Stokes Equation

In the component form the Navier-Stokes equation is

ρ
Dui
Dt

= − ∂ρ
∂xi

+ ρgi +
∂

∂xj
[2µeij −

2

3
µ(∇.V)δij], (1.7.1)

where p is the hydrostatic pressure, g is the gravity, µ is the dynamic viscosity

and δij is the Kronecker delta, defined by

δij =

1 , if i = j

0 , if i 6= j

(1.7.2)

and

eij =
1

2
(
∂ui
∂xj

+
∂uj
∂xi

), (1.7.3)

if temperature differences are small within the fluid, then µ can be taken

outside and Eq. (1.8.1) takes the form

ρ
Dui
Dt

= − ∂ρ
∂xi

+ ρgi + 2µ
∂eij
∂xj
− 2

3
µ
∂

∂xi
(∇.V), (1.7.4)

= − ∂ρ
∂xi

+ ρgi + µ[∇2ui +
1

3

∂

∂xi
(∇.V)], (1.7.5)

where

∇2ui =
∂2ui
∂xj∂xi

=
∂2ui
∂x21

+
∂2ui
∂x22

+
∂2ui
∂x23

, (1.7.6)

is Laplacian of ui. For incompressible fluids ∇.V = 0 and using vector

notation, the Navier-Stokes equation is

ρ
DV

Dt
= −∇P + ρg + µ∇2V. (1.7.7)

This equation is valid only for incompressible fluid. If viscous effects are

negligible then

ρ
DV

Dt
= −∇P + ρg (1.7.8)

which are the Euler equations of motion.
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1.8 Some Common Useful Non-Dimensional

Parameters

1.8.1 Reynolds Number

The Reynolds number is the fraction of inertia force to viscous force. Math-

ematically, it can be expressed as

Re =
inertial force

viscous force
. (1.8.1)

1.8.2 Prandtl Number

Prandtl number is the ratio of momentum diffusitivity to heat diffusitivity.

Mathematically

Pr =
momentum diffusitivity

heat diffusitivity
=
ν

α
=
cpµ

k
, (1.8.2)

where

α = thermal diffusivity = k
ρcp

µ = dynamic viscosity

k = thermal conductivity

cp = specific heat constant

ρ = density.

1.8.3 Eckert Number

The Eckert number expresses the relationship between the flows kinetic en-

ergy and enthalpy. Mathematically

Ec =
V 2

cp∆T
=

kinetic energy

enthalpy
, (1.8.3)
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where

V = characteristic velocity of flow

cp= specific heat constant

∆T = characteristic temperature.

1.8.4 Nusselt Number

The ratio of convective to conductive heat transfer is called Nusselt number.

Mathematically

NuL =
hL

k
=

convective heat transfer

conductive heat transfer
, (1.8.4)

where

L = characteristic length

k = thermal conductivity of fluid

h = convective heat transfer coefficient of the fluid.

1.8.5 Sherwood Number

The ratio of convective to diffusive mass transfer is called Sherwood number.

Mathematically

Sh =
KL

D
=

convective mass transfer coefficient

diffusive mass transfer coefficient
, (1.8.5)

where

K = mass transfer coefficient

L = characteristic length

D = mass diffusitivity

11



1.9 Laws of Thermodynamics

1.9.1 First Law of Thermodynamics

This law states that, the increase in the internal energy of a system is equal

to the amount of heat energy added to the system and work done by the

system i.e.

∆e = W +Q (1.9.1)

where e is the internal energy, W is the work done and Q is the amount of

heat.

1.9.2 Second Law of Thermodynamics

Any thermodynamic process that proceeds from one equilibrium state to

another, the entropy of the system plus environment remains unchanged or

increase.

1.9.3 Third Law of Thermodynamics

As temperature approaches towards absolute zero, the entropy of a system

approaches a constant.

1.10 Boundary Layer

A boundary layer is the layer of fluid in the immediate vicinity of a bounding

surface where the effects of viscosity are significant.
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1.11 Thermal Boundary Layer

The layer of a liquid or gaseous heat-transfer agent between the free stream

and a heat-exchange surface. In this layer the temperature of the heat-

transfer agent changes from that of the wall to that of the free stream.

1.12 Numerical Techniques

1.12.1 Shooting Method for Non-Linear Differential

Equation

We explain shooting method for the following second order ODE

y′′ = f(x, y, y′), a ≤ x ≤ b (1.12.1)

with boundary conditions,

y(a) = C1, y(b) = C2. (1.12.2)

The first step in shooting method is to reduce the bvp into the IVP.

y′′ = f(x, y, y′) for a ≤ x ≤ b

with

y(a) = C1, y′(a) = s (unknown)

In above equation s is unknown which needs to be find.

lim
t−→∞

y(b, st) = y(b) = C2. (1.12.3)

We generate a sequence of s1, s2,....... with so as the initial guess.

The iteration must stop when

y(b, s)− C2 = 0 (1.12.4)

13



This is a nonlinear equation in variable s. We use the Newton-Raphson

method to generate the sequence st. In Newton’s method only initial guess

so required and generate the remaining terms by

st = st−1 −
(y(b, st−1)− C2)

dy
ds

(b, st−1)
(1.12.5)

For two or more variable the Newton-Raphson formula is

st = st−1 −
(y(b, st−1)− C2)

|J |
(1.12.6)

where J is the Jacobian matrix.

1.12.2 bvp4c

Boundary value problems (BVP) for ordinary differential equations (ODE)

can be solved by using MATLAB bvp4c solver. The solver uses collocation

method. It starts solution with an initial guess supplied at an initial mesh

points and changes step-size (hence changes mesh) to get the specified accu-

racy. For more detail see reference [11].
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Chapter 2

Numerical Solution of

Stagnation-Point Flow of

Nanofluid with Thermal

Radiation Effect

This chapter is organized as follows.

In section 2.1 the introduction is given. In sections 2.2 and 2.3 we formulated

the problem and the governing equations are presented. In section 2.4 we

analyze the numerical results with the help of graphs and tables.

2.1 Introduction

This chapter review the work of Mustafa et al [7]. This chapter describes the

MHD stagnation-point flow and heat transfer of nanofluid over a stretching

sheet in the presence of thermal radiation. Strictly different application of

Rosseland approximation for thermal radiation is made. The governing par-
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tial differential equations are reduced into ordinary differential equations by

similarity transformation. Then these equations have been solved by shoot-

ing method with fifth order Runge-Kutta integration technique. The solution

have been validated with the built-in solver bvp4c of MATLAB. Graphs are

included for the influence of different parameters on the flow field.

2.2 Problem Formulation

In this section we formulate the two-dimensional incompressible flow of nanofluid

over a stretching sheet. The stretching sheet is placed at y = 0. Let us con-

sider the velocities of stretching sheet Uw = ax and the free stream U∞ = bx,

where a, b > 0. We consider the sheet at constant temperature Tw and

nanoparticle concentration Cw. Ambient temperature and concentration are

denoted by T∞ and C∞. The magnetic field is applied perpendicular to the

flow with strength Ho. The boundary layer governing equations of nanofluids

are
∂u

∂x
+
∂v

∂y
= 0, (2.2.1)

u
∂u

∂x
+ v

∂u

∂y
= u∞

du∞
dx

+ νf
∂2u

∂y2
− σeH

2
0

ρf
(u− u∞), (2.2.2)

where u and v are the components of velocity in x and y direction, νf is the

kinematic viscosity, σe is the electrical conductivity, Ho is uniform magnetic

field. The boundary conditions for the governing problem are

u = Uw(x) = ax, v = 0, at y = 0 (2.2.3)

u −→ U∞(x) = bx, as y −→∞ (2.2.4)
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Using the following dimensionless variables

η =

√
a

νf
y, u = axf ′(η) , v = −√νfaf(η), (2.2.5)

∂u

∂x
= af ′(η) , u

∂u

∂x
= a2xf ′2(η), (2.2.6)

∂u

∂y
= −axf ′′(η)

√
a

νf
, v

∂u

∂y
= −a2xf ′′(η)f(η), (2.2.7)

∂u∞
∂x

= b , u∞
∂u∞
∂x

= b2x, (2.2.8)

where

∂2u

∂y2
= −axf ′′′(η)

a

νf
, νf

∂2u

∂y2
= −a2xf ′′′(η), (2.2.9)

σeH
2
o

ρf
(u− u∞) = aM(axf ′(η)− bx), (2.2.10)

∂v

∂y
= −af ′(η). (2.2.11)

Insert Eq. (2.2.6) and Eq. (2.2.11) in Eq. (2.2.1) we get

af ′(η)− af ′(η) = 0.

Therefore, Eq. (2.2.1) is identically satisfied. Now, we put Eqs. (2.2.6) to

(2.2.10) in Eq. (2.2.2) we get

a2xf ′2(η)− a2xf ′′(η)f(η) = b2x+ a2xf ′′′(η)− aM(axf ′(η)− bx), (2.2.12)

after simplifying the above Eq. (2.2.12) we obtain

f ′′′ + ff ′′ − f ′2 + λ2 +M(λ− f ′) = 0. (2.2.13)

In the final step we convert boundary conditions into the new variable.

when η = 0 then

u = axf ′(0), (2.2.14)
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by comparing Eq. (2.2.3) and Eq. (2.2.14) we obtain

ax = axf ′(0),

f ′(0) = 1. (2.2.15)

when η = 0 then

v = −√νfaf(0) (2.2.16)

By equating Eq. (2.2.3) and Eq. (2.2.16) we get

f(0) = 0. (2.2.17)

Comparing both values of u when y −→∞ and η −→∞

x = axf ′(∞),

b

a
= f ′(∞),

f ′(∞) = λ, (2.2.18)

where M = σHo
ρfa

is a magnetic parameter and λ = b
a

is the ratio of the free

stream velocity to the velocity of the stretching sheet.

2.3 Transport Equations

The governing equations of energy and nanoparticles concentration are given

by

u
∂T

∂x
+ v

∂T

∂y
= α

∂2T

∂y2
+
νf
Cf

(
∂u

∂y
)2 − 1

(ρC)f
(
∂qr
∂y

) +

σeH
2
0

(ρC) f
(u∞ − u)2 + τ [DB

∂T

∂y

∂C

∂y
+
DT

T∞
(
∂T

∂y
)2], (2.3.1)

u
∂C

∂x
+
v∂C

∂y
= DB

∂2C

∂y2
+
DT

T∞

∂2T

∂y2
, (2.3.2)
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In above equations T= temperature

C = nanoparticles concentration

α = thermal diffusivity

Cf = specific heat constant of fluid

DB = Brownian motion coefficient

DT = thermophoretic diffusion coefficient

τ = ratio of effective heat capacity of the nanoparticles to the heat capacity

of fluid

qr= radiative heat flux.

qr = −4σ∗

3k∗
∂T 4

∂y
= −16σ∗

3k∗
T 3∂T

∂y
, (2.3.3)

where σ∗ and k∗ are the Stefan-Boltzman constant and the mean absorption

coefficient, respectively. Now Eq. (2.3.1) can be expressed as

u
∂T

∂x
+ v

∂T

∂y
=

∂

∂y
[(α +

16σ∗T 3

3ρCpk∗
)
∂T

∂y
] +

νf
Cp

(
∂u

∂y
)2 +

σeH
2
0

(ρC) f
(u∞ − u)2 + τ [DB

∂T

∂y

∂C

∂y
+
DT

T∞
(
∂T

∂y
)2]. (2.3.4)

2.3.1 Constant Wall Temperature (CWT)

The relevant boundary condition in this situation are

T = Tw, C = Cw, at y = 0, (2.3.5)

T −→ T∞, C −→ C∞, as y −→∞. (2.3.6)

We now define the non-dimensional θ(η) = T−T∞
Tw−T∞ with T = T∞(1+(θw−1)θ)

and θw = Tw
T∞

(temperature parameter), and the non-dimensional concentra-

tion φη = C−C∞
Cw−C∞ . The first term on the right hand side of Eq. (2.3.4) can

be written as

α ∂
∂y

[∂T
∂y

(1 +Rd(1 + θw − 1)θ)3],
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where Rd = 16σ∗T 3
∞

3kk∗
denotes the radiation parameter for the CWT case, and

Rd provides no thermal radiation effect.

First we convert Eq. (2.3.4) into ODEs,

T = T∞(1 + (θw − 1)θ),

T = (Tw − T∞)θ(η) + T∞, (2.3.7)

C = (Cw − C∞)φ(η) + C∞, (2.3.8)

u
∂T

∂x
= 0, (2.3.9)

∂T

∂y
= (Tw − T∞)θ′(η)

√
a

νf
,

v
∂T

∂y
= −a(Tw − T∞)f(η)θ′(η), (2.3.10)

∂

∂y
[(α +

16σ∗T 3

3ρcpk∗
)
∂T

∂y
] = α

∂

∂y
[(1 +

16σ∗T 3

3ρcpk∗α
) (Tw − T∞)

θ′(η)

√
a

νf
]. (2.3.11)

As we know that α = k
ρcp

after putting this value in Eq. (2.3.11) we get

∂

∂y
[(α +

16σ∗T 3

3ρcpk∗
)
∂T

∂y
] = α

a

νf
(Tw − T∞)[1 +Rd(1 + (θw − 1)θ)3θ′(η)]′,

=
a

Pr
(Tw − T∞)[1 +Rd(1 + (θw − 1)θ)3θ′(η)]′, (2.3.12)

νf
cp

∂u

∂y
= axf ′′(η)

√
a

νf
, (2.3.13)

νf
cp

(
∂u

∂y
)2 =

a3x2

cp
f ′′2(η), (2.3.14)

σeH
2
0

(ρc)f
(u∞ − u)2 =

σeH
2
0

(ρc)f
(bx− axf ′(η)), (2.3.15)

τDB
∂T

∂y

∂C

∂y
= τDB(Tw − T∞)(Cw − C∞)

a

νf
θ′(η)φ′(η), (2.3.16)

DT

T∞
(
∂T

∂y
)2 = (Tw − T∞)2θ′2(η)

a

νf
. (2.3.17)
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Insert above Eqs. in Eq. (2.3.4)

−a(Tw − T∞)f(η)θ′(η) =
a

Pr
(Tw − T∞)[1 +Rd(1 + (θw − 1)θ)3θ′(η)]′

+
a3x2

cp
f ′′2(η) +

σeH
2
0

(ρc)f
(bx− axf ′(η))2 + τDB(Tw − T∞)(Cw − C∞)

a

νf
θ′(η)φ′(η) + (Tw − T∞)2θ′2(η)

a

νf
,

Dividing both sides by −a(Tw − T∞)

1

Pr
[1 +Rd(1 + (θw − 1)θ)3θ′(η)]′ + f(η)θ′(η) +

a2x2

(Tw − T∞)cp
f ′′2(η) +

σeH
2
0a

2x2

(ρc)fa(Tw − T∞)

(λ− f ′(η))2 +
τDB(Cw − C∞)

vf
φ′(η)θ′(η) +

τDT (Tw − T∞)

T∞vf
θ′2 = 0,

As we know that ax = uw. So above equation becomes

1

Pr
[1 +Rd(1 + (θw − 1)θ)3θ′(η)]′ + f(η)θ′(η) +Nbφ

′(η)θ′(η) +Ntθ
′2

+E∗c f
′′2(η) +ME∗c (λ− f ′(η))2 = 0. (2.3.18)

Now we convert Eq. (2.3.2) into ODE

u
∂C

∂x
= 0, (2.3.19)

∂C

∂y
= (Cw − C∞)φ′(η)

√
a

vf
,

v
∂C

∂y
= −a(Cw − C∞)φ′(η)f(η), (2.3.20)

DB
∂2C

∂y2
=

aDB

vf
(Cw − C∞)φ′′(η), (2.3.21)

DT

T∞

∂2T

∂y2
=

aDT

vfT∞
(Tw − T∞)θ′′(η). (2.3.22)

After putting Eqs. (2.3.19) to (2.3.22) in Eq. (2.3.2) we get

−a(Cw − C∞)φ′(η)f(η) =
aDB

vf
(Cw − C∞)φ′′(η) +

aDT

vfT∞
(Tw − T∞)θ′′(η).

Dividing both sides of above equation by aDB
vf

(Cw − C∞)

φ′′(η) + Leφ
′(η)f(η) +

Nt

Nb

θ′′(η) = 0. (2.3.23)
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Now we convert the boundary conditions into the new form.

T = Tw, C = Cw, at y = 0

T −→∞, C −→∞, as y −→∞.

When y=0 then T is

T = Tw,

and when η = 0 then T is

T = (Tw − T∞) θ(0) + T∞,

comparing values of T at y = 0 and η = 0

Tw = (Tw − T∞) θ(0) + T∞,

θ(0) = 1.

When y=0 then C is

C = Cw,

and when η = 0 then C is

C = (Cw − C∞) φ(0) + C∞,

comparing values of C at y = 0 and η = 0

Cw = (Cw − C∞) φ(0) + C∞,

φ(0) = 1.

When y −→∞ then T is

T = T∞,

and when η −→∞ then T is
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T = (Tw − T∞)θ(∞) + T∞,

comparing values of T when y −→∞ and η −→∞

T∞ = (Tw − T∞)θ(∞) + T∞,

θ(∞) = 0.

When y −→∞ then C becomes

C = C∞,

and when η = 0 then C becomes

C = (Cw − C∞)φ(∞) + C∞,

comparison of C at y −→∞ and η −→∞

C∞ = (Cw − C∞)φ(∞) + C∞,

φ(∞) = 0.

So relevant boundary condition with respect to ODEs in CWT case are

θ(0) = 1, φ(0) = 1 at η = 0 (2.3.24)

θ(η) = 0, φ(η) = 0 as η →∞, (2.3.25)

where Nb = τDB(Cw−C∞)
vf

, Nt = τDT (Tw−T∞)
T∞vf

are the Brownian and ther-

mophoretic constants respectively and E∗c = U2
w

Cp(Tw−T∞)
is the local Eckert

number. We look for the availability of local similarity solutions. The sur-

face heat and mass fluxes are defined by the following equations

qw = −k(∂T
∂y

)y=0 + (qr)w = −k(Tw − T∞)
√

a
ν
[1 +Rdθ

3
w]θ′0,

and

jw = −DB(∂C
∂y

)y=0 = −DB(Cw − C∞)
√

a
ν
φ′0,

with the help of local Nusselt number Nux = xqw
k(Tw−T∞)

and local Sherwood

number Sh = xj−w
DB(cw−c∞)

one obtains Nux√
Rex

= −[1+Rdθ
3
w]θ′(0) = Nur,

Sh√
Rex

=

−φ(0) =Shr.
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2.3.2 Prescribed Surface Temperature (PST)

The boundary conditions in this case are

T = Tw = T∞ + cx2, C = Cw = C∞ + dx2, at y = 0,(2.3.26)

T −→ T∞, C −→ C∞, as y −→∞,(2.3.27)

where c, d> 0 are constants. Defining the dimensionless temperature θ(η) =

T−T∞
Tw−T∞ and nanoparticles concentration φ(η) = C−C∞

Cw−C∞ .

Now, we convert Eq. (2.3.2) and Eq. (2.3.4) into ODEs.

First, we assume that the temperature difference within the flow such as that

the term T 4 may be expressed as a linear function of temperature. Hence,

expanding T 4 in a Taylor series about T∞ and neglecting higher order terms

we get

T 4 = 4T 3
∞T − 3T 4

∞,

we have

− 1

ρcp

∂qr
∂y

=
16σ∗T 3

∞
3ρcpk∗

∂2T

∂y2
.

After simplifying the first term of Eq. (2.3.4) becomes

α(1 +Rd)
∂2T
∂y2

,

where

Rd = 16σ∗T 3
∞

3kk∗
.

In view of above calculation Eq. (2.3.4) becomes

u
∂T

∂x
+ v

∂T

∂y
= α(1 +Rd)

∂2T

∂y2
+
νf
Cp

(
∂u

∂y
)2 +

σeH
2
0

(ρC) f

(u∞ − u)2 + τDB[
∂T

∂y

∂C

∂y
+
DT

T∞
(
∂T

∂y
)2]. (2.3.28)
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As given that

T = Tw = T∞ + cx2,

T = Tw − T∞ = cx2,

T = cx2θ(η) + T∞, (2.3.29)

∂T

∂x
= 2cxθ(η),

u
∂T

∂x
= 2acx2f ′(η)θ(η). (2.3.30)

By using T = Tw − T∞ = cx2 in Eq. (2.3.30), we have

u
∂T

∂x
= 2a(Tw − T∞)f ′(η)θ(η), (2.3.31)

∂T

∂y
= (Tw − T∞)

√
a

νf
,

v
∂T

∂y
= −a(Tw − T∞)θ′(η)f(η), (2.3.32)

α(1 +Rd)
∂2T

∂y2
=

aα(1 +Rd)(Tw − T∞)θ′′(η)

νf
, (2.3.33)

νf
cp

(
∂u

∂y
)2 =

νa3x2f ′′2(η)

cpνf
, (2.3.34)

σeH
2
0

ρcp
(bx− axf ′(η))2 =

σea
2x2H2

0

ρcp
(λ− f ′2η), (2.3.35)

τDB
∂T

∂y

∂C

∂y
= (Tw − T∞)(Cw − C∞)θ′(η)φ′(η)

a

νf
,(2.3.36)

τDT

T∞
(
∂T

∂y
)2 =

aτDT (Tw − T∞)2θ′2(η)

T∞νf
. (2.3.37)

Insert Eqs. (2.3.31) to (2.3.37) in Eq. (2.3.28) we obtain

2a(Tw − T∞)f ′(η)θ(η)− a(Tw − T∞)θ′(η)f(η) =
aα(1 +Rd)(Tw − T∞)θ′′(η)

νf

+
νa3x2f ′′2(η)

cpνf
+
σea

2x2H2
0

ρcp
(λ− f ′η)2 + (Tw − T∞)(Cw − C∞)θ′(η)φ′(η)

a

νf

+
aτDT (Tw − T∞)2θ′2(/eta)

T∞νf
.
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Dividing both sides of above Eq. by −a(Tw − T∞)

2f ′(η)θ(η)− θ′(η)f(η) =
(1 +Rd)θ

′′(η)

Pr
+

νa2x2f ′′2(η)

cpνf (Tw − T∞)
+

σea
2x2H2

0

a(Tw − T∞)ρcp

(λ− f ′(η))2 +
τDB(Cw − C∞)θ′(η)φ′(η)

νf
+
τDT (Tw − T∞)θ′2(/eta)

T∞νf
,

now put a2x2 = u2w in above equation

2f ′(η)θ(η)− θ′(η)f(η) =
(1 +Rd)θ

′′(η)

Pr
+

νu2wf
′′2(η)

cpνf (Tw − T∞)
+

σeu
2
wH

2
0

a(Tw − T∞)ρcp

(λ− f ′(η))2 +
τDB(Cw − C∞)θ′(η)φ′(η)

νf
+
τDT (Tw − T∞)θ′2(η)

T∞νf
,

where M = σH0

ρfa
is a magnetic parameter, λ = b

a
is the ratio of the free

stream velocity, Nb = τDB(Cw−C∞)
vf

, Nt = τDT (Tw−T∞)
T∞vf

are the Brownian and

thermophoretic constants respectively and E∗c = U2
w

Cp(Tw−T∞)
is the local Eckert

number. After putting all these values in above equation, it becomes

(1 +Rd)

Pr
θ′′(η)+ f(η)θ′(η)− 2f ′(η)θ(η) +Nbθ

′(η)φ′(η) +Ntθ
′2(η)

+Ecf
′′2(η) +MEc(λ− f ′(η))2 = 0. (2.3.38)

Now we convert Eq. (2.3.2) into ODE

As given that

C = Cw = C∞ + dx2,

C = Cw − C∞ = dx2,

C = dx2φ(η) + C∞, (2.3.39)

∂C

∂x
= 2dxφ(η),

u
∂C

∂x
= 2adx2f ′(η)φ(η). (2.3.40)
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Use C = Cw − C∞ = dx2 in Eq. (2.3.40)

u
∂C

∂x
= 2a(Cw − C∞)f ′(η)φ(η), (2.3.41)

v
∂C

∂y
= −a(Cw − C∞)f(η)φ′(η), (2.3.42)

DB
∂2C

∂y2
=
aDB(Cw − C∞)φ′′(η)

νf
, (2.3.43)

DT

T∞

∂(2)T

∂y2
=
aDT (Tw − T∞)θ′′(η)

T∞νf
. (2.3.44)

Put Eqs. (2.3.41) to (2.3.44) in Eq. (2.3.2)

2a(Cw − C∞)f ′(η)φ(η)− a(Cw − C∞)f(η)φ′(η) =
aDB(Cw − C∞)φ′′(η)

νf
+

aDT (Tw − T∞)θ′′(η)

T∞νf
.

Divide both sides of above Eq. by aDB(Cw−C∞)
νf

,

φ′′(η)− 2
νf
DB

φ(η)f ′(η) +
νf
DB

φ′(η)f(η) +
1

τDB(Cw−C∞)
νf

τDT (Tw − T∞)

νfT∞
θ′′(η) = 0,

after simplifying it becomes

φ′′(η) + Le[φ
′(η)f(η)− 2φ(η)f ′(η)] +

Nt

Nb

θ′′(η) = 0. (2.3.45)

Now we convert boundary condition into the new form.

From Eqs. (2.3.24) and (2.3.25) we know that

T = Tw = T∞ + cx2, C = Cw = C∞ + dx2 at y = 0,

T −→ T∞, C −→ C∞, as y −→∞.

As we know

η =
√

a
νf
y,
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so, when y = 0 then η = 0.

T = (Tw − T∞)θ(η) + T∞, (2.3.46)

C = (Cw − C∞)φ(η) + C∞. (2.3.47)

Put η = 0 in Eq. (2.3.46) and compare both values of T at y = 0 and η = 0

cx2 + T∞ = (Tw − T∞)θ(0) + T∞,

As we know that cx2 = Tw − T∞. So above equation becomes

θ(0) = 1.

Put η = 0 in Eq. (2.3.47) and comparing both values of C at y = 0 and

η = 0

dx2 + C∞ = (Cw − C∞)φ(0) + C∞,

as we know that dx2 = (Cw − C∞). So above equation becomes

φ(0) = 1.

Put η = ∞ in Eq. (2.3.46) and comparing both values of T at y=∞ and

η=∞

T∞ = (Tw − T∞)θ(∞) + T∞,

after simplifying

θ(∞) = 0.

Put η= ∞ in Eq. (2.3.47) and comparing both values of C at y = ∞ and η

=∞

C∞ = (Cw − C∞)φ(∞) + C∞,
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after simplifying

φ(∞) = 0.

Here the heat and mass transfer rates at the sheet becomes

qw = −k(∂T
∂y

)∂∂y=0 + (qr)w = −kcx2
√

a
ν
[1 +Rd]θ

′(0),

and

jw = −DB(∂C
∂y

)y=0 = −DB(Cw − C∞)
√

a
ν
φ′(0),

using the definition of reduced Nusselt and Sherwood numbers one obtains

Nux√
Rex

= −[1 +Rd]θ
′(0) = Nur,

Sh√
Rex

= −φ′(0) = Shr.

2.4 Numerical Results and Discussion

The numerical solution of governing differential systems for different values of

thermophoretic parameter Nt, Brownian parameter Nb and thermal radiation

parameter Rd is obtained using shooting method with fifth order Runge-

Kutta integration technique. The resulting equations are first reduced to the

first order equations and then apply shooting method to solve the problem.

We have drawn Figs. 2.1-2.8 to examine the effects of different parameter

and prepared Tables 1 and 2.

2.4.1 Heat and Mass Transfer Rates

In this subsection we discuss the behavior of θ′(0) and φ′(0) for different

parametric values of Nb and Nt. Tables 1 and 2 gives the values in CWT

and PST cases respectively. Heat and mass flux decreases from the sheet
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when the radiation effect strengthens. This decrease is associated with the

values of θ′(0) and φ′(0). The heat transfer rate decreases with an increase

in Brownian motion parameter. The reduced sherwood number is increased

due to increase in −φ(0) when Nb is increased. The effect of Nb on the Nur

and Shr is similar for Rd = 0 and Rd = 1. For a fixed Nb there is decrease in

magnitude of reduced Nusselt number with an increase in Nt. It is found that

the values of −φ′(0) increases with an increase in thermophoretic constant

with and without Rd. The outcomes also show that values of reduced Nusselt

and Sherwood number in the PST case are significant when compared with

the CWT case.
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Table 1. Value of dimensionless heat transfer rate −θ′(0) and dimen-

sionless mass transfer rate −φ′(0) for different values of the Nb, Nt and Rd

when λ = 0.5, M = 0.5, Pr = 7, Le = 1, Ec = 0.2 in the CWT case.

Nb Nt Rd −θ′(0) −θ′(0) −φ′(0) −φ′(0)

shooting method bvp4c shooting method bvp4c

0.1 0.1 0 1.26202 1.26202 -0.11439 -0.11440

1 0.62939 0.62939 0.43257 0.43257

0.2 0 1.02577 1.02578 0.40213 0.40213

1 0.57635 0.57635 0.58769 0.58769

0.3 0 0.81541 0.81543 0.56553 0.56552

1 0.52643 0.52643 0.63842 0.63842

0.4 0 0.63142 0.63142 0.64056 0.64056

1 0.47959 0.47959 0.66305 0.66305

0.1 0.1 0 1.26202 1.26203 -0.11439 -0.11440

1 0.63180 0.62938 0.43257 0.43257

0.2 0 1.08471 1.08473 -0.59564 -0.59569

1 0.59155 0.59155 0.23152 0.23150

0.3 0 0.92689 0.92691 -0.80536 -0.80540

1 0.55582 0.55582 -0.11439 -0.11439

0.4 0 0.78750 0.78750 -0.79755 -0.79755

1 0.52212 0.52212 -0.00320 -0.00320
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Table 2. Value of dimensionless heat transfer rate −θ′(0) and dimen-

sionless mass transfer rate −φ′(0) for different values of the Nb, Nt and Rd

when λ = 0.5, M = 0.5, Pr = 7, Le = 1, Ec = 0.2 in the PST case.

Nb Nt Rd −θ′(0) −θ′(0) −φ′(0) −φ′(0)

shooting method bvp4c shooting method bvp4c

0.1 0.1 0 3.14763 3.14763 -0.72904 -0.72904

1 2.36895 2.36895 -0.04391 -0.04391

0.2 0 2.77955 2.77954 0.55857 0.55857

1 2.19423 2.19423 0.76836 0.76836

0.3 0 2.48849 2.48848 0.93008 0.93008

1 2.02774 2.02773 1.04404 1.04404

0.4 0 2.21418 2.21416 1.12869 1.12869

1 1.86606 1.86606 1.19349 1.19349

0.1 0.1 0 3.14763 3.14763 -0.72903 -0.72904

1 2.36895 2.36895 -0.04391 -0.04391

0.2 0 2.79704 2.79704 -2.02930 -2.02930

1 2.23776 2.23776 -1.31297 -1.31297

0.3 0 2.63806 2.63806 -3.66695 -3.66695

1 2.10831 2.10831 -2.30700 -2.30700

0.4 0 2.4350 2.4350 -4.6516 -4.6516

1 2.0074 2.0074 -3.2810 -3.2810
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2.4.2 Velocity Profile

The outcomes of velocity profile for different values of magnetic parameter

M and velocity ratio λ are shown in Fig. 2.1. It can be seen from the Fig.

2.1 that by increasing λ (λ > 1) the velocity increases and boundary layer

thickness decreases. Fig. 2.1 shows that for λ < 1 the flow has reversed

boundary layer structure. In this case the boundary layer thickness increases

due to decrease in the free stream velocity. Furthermore boundary layer

thickness decreases with an increase in the magnetic parameter M . The

Lorentz force increases by increasing M . This increase in Lorentz force reduce

the velocity of fluid due to drag force.
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Figure 2.1: Influence of M and λ on f ′
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2.4.3 Temperature Profiles

The effects of Brownian motion parameter Nb are presented in Fig. 2.2. It is

observed that the temperature and thermal boundary thickness increase by

increasing Nb in both CWT and PST cases. The outcomes of thermophoretic

effect are shown in Fig. 2.3. It is found that the temperature increases with

increasing values of Nt. Fig. 2.4 displays the impact of thermal radiation

parameter Rd on the temperature profile. From Fig. 2.4 it is seen that with

the increase of Rd the temperature also increases. Fig. 2.5 plots the effect

of Pr on the temperature. The temperature θ decreases rapidly near the

boundary with an increase in Pr. Comparatively the influence of parameters

on the temperature profile is bigger in CWT case than the PST case.
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Figure 2.3: Influence of Nt on θ. (left CWT, right PST)

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

η

θ(
η)

 Pr = 7, Ec = 0.2, M =0.5, Le = 1, Nb = 0.1, Nt = 0.1,λ =0.5,θw = 1.5,

 

 
 Rd = 0.0
Rd = 0.5
Rd = 1
Rd = 1.5

0 0.5 1 1.5 2 2.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Le = 5, Ec = 0.2, M =0.5, Pr = 7, Nb = 0.1, Nt = 0.1,λ = 0.5 

η

 θ
(η

)

 

 
 Rd = 0.0
Rd = 0.5
Rd = 1
Rd = 1.5

Figure 2.4: Influence of Rd on θ. (left CWT, right PST)
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2.4.4 Nanoparticles Concentration Profiles

Fig. 2.6 illustrates the outcome of an increase in the Brownian motion pa-

rameter Nb on the nanoparticles profile φ. We observe that φ is increases by

decreasing Nb. Fig. 2.7 is plotted to analyze the effects of thermophoretic

parameter Nt on nanoparticles. It is found that φ increases by increasing

Nt. This increase in φ is due to the thermophoretic effects because increas-

ingly thermophoretic effect generates the larger mass flux due to temperature

gradient. Fig. 2.8 is plotted to perceive the effects of Le on nanoparticle con-

centration. It is observed that the concentration profile decreases and con-

centration boundary layer thins as Le increases. It is quite obvious because

Le inversely proportional to mass diffusive coefficient.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

η

φ(
η)

 Pr = 7, Ec = 0.2, M =0.5, Le = 1, Rd = 1, Nt = 0.1,λ =0.5,θw = 1.5,

 

 
 Nb = 0.3

Nb = 0.6

Nb = 0.9

Nb = 1.2

0 0.5 1 1.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Le = 20, Ec = 0.2, M =0.5, Pr = 7, Nt = 0.1, Rd = 1,λ = 0.5 

η

 φ
(η

)

 

 
 Nb = 0.1

Nb = 0.4

Nb = 0.7

Nb = 1

Figure 2.6: Influence of Nb on φ. (left CWT, right PST)

36



0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

η

φ(
η)

 Le = 2, Ec = 0.2, M =0.5,Nb = 0.3,Pr = 0.71, λ =0.5,θw = 1.2,

 

 
 Rd = 0, Nt = 0.1

Rd = 0, Nt = 0.3

Rd = 0, Nt = 0.5

Rd = 1, Nt = 0.1

Rd = 1, Nt = 0.3

Rd = 1, Nt = 0.5

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Pr = 0.71, Ec = 1.5, M =1.5,  Le = 2, Rd = 1, Nb = 0.3,  λ =1.5  

η

 φ
(η

)

 

 
Rd = 0, Nt = 0.1

Rd = 0, Nt = 0.3

Rd = 0, Nt = 0.5

Rd = 1, Nt = 0.1

Rd = 1, Nt = 0.3

Rd = 1, Nt = 0.5

Figure 2.7: Influence of Nt on φ. (left CWT, right PST)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

η

φ(
η)

 Pr = 7, Ec = 0.2, M =0.5, Nb = 0.3, Nt = 0.1, λ =0.5,θw = 1.2,

 

 
 Rd = 0, Le = 5
Rd = 0, Le = 10
Rd = 0, Le = 15
Rd = 1, Le = 5
Rd = 1, Le = 10
Rd = 1, Le = 15

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Ec = 1.5, M =1.5, Pr = 7, Nb = 0.1, Nt = 0.1, λ = 1.5 

η

 φ
(η

)

 

 
Rd = 0, Le = 1
Rd = 0, Le = 3
Rd = 0, Le = 5
Rd = 1, Le = 1
Rd = 1, Le = 3
Rd = 1, Le = 5

Figure 2.8: Influence of Le on φ. (left CWT, right PST)

37



Chapter 3

Numerical Solution of

Stagnation-Point Flow of

Nanofluid Using Convective

and Newtonian Heating

Boundary Conditions

Chapter 3 is organized as follows.

Section 3.1 gives introduction. Section 3.2 and 3.3 contains a discussion on

the derivation of the mathematical formulation of the problem. In section

3.4 we discuss the numerical results with the help of graphs and tables.

3.1 Introduction

This chapter is an extension of the work by Mustafa et al [7] described in

chapter 2. This works explain the MHD stagnation-point flow and heat
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transfer of nanofluid over a stretching sheet with convective and Newtonian

heating boundary conditions. The problem with convective boundary condi-

tion have been solved by Mushtaq et al [8]. Strictly different application of

Rosseland approximation for thermal radiation is made. The resulting par-

tial differential equations have been solved numerically by shooting method

with fifth order Runge-Kutta integration technique. The solutions have been

verified with the built-in solver bvp4c of MATLAB. Graphs are portrayed

for the effects of various parameters on the flow fields.

3.2 Mathematical Formulation

We consider the same governing equations of section 2.2 as given in chapter

2.
∂u

∂x
+
∂v

∂y
= 0, (3.2.1)

u
∂u

∂x
+ v

∂v

∂y
= u∞

du∞
dx

+ νf
∂2u

∂y2
− σeH

2
o

ρf
(u− u∞), (3.2.2)

where x− and y− are taken along and normal to the stretching sheet respec-

tively, νf is the kinematic viscosity of fluid, σe is the electrical conductivity,

Ho is uniform magnetic field along y−axis, the velocity components u and v

are selected along x− and y− directions respectively. The boundary condi-

tions for the governed problem are

u = Uw(x) = ax, v = 0, at y = 0, (3.2.3)

u −→ U∞(x) = bx, as y −→∞. (3.2.4)

Using the following similarity transformation

η =
√

a
νf
y , u = axf́(η), v = −

√
νfaf(η).
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Eq. (3.2.1) is uniformly satisfied and Eqs. (3.2.2) (3.2.3) and (3.2.4) take

the forms

f ′′′ + ff ′′ − f ′2 + λ2 +M(λ− f ′) = 0. (3.2.5)

f(0) = 0, f ′(0) = 1, f ′(∞) −→ λ. (3.2.6)

In above equations λ = b
a

denotes the ratio of the free stream velocity to the

velocity of the sheet and M = σHo
ρfa

indicates a magnetic parameter.

3.3 Transport Equations

The boundary layer equations governing the conservations of energy and

nanoparticles field are

u
∂T

∂x
+ v

∂T

∂y
= α

∂2T

∂y2
+
νf
Cf

(
∂u

∂y
)2 − 1

(ρC)f
(
∂qr
∂y

) +
σeH

2
0

(ρC) f

(u∞ − u)2 + τ [DB
∂T

∂y

∂C

∂y
+
DT

T∞
(
∂T

∂y
)2], (3.3.1)

u
∂C

∂x
+
v∂C

∂y
= DB

∂2C

∂y2
+
DT

T∞

∂2T

∂y2
, (3.3.2)

where T and C are the temperature and nanoparticles concentration respec-

tively, α denotes the thermal diffusivity, Cf indicate the specific heat of the

fluid, DB and DT are the Brownian motion and thermophoretic diffusion

coefficient respectively, (τ = (ρC)p
(ρC)f

) is the fraction of effective heat capacity

of the nanoparticle material to the heat capacity of the fluid and qr is the

radiative heat flux. From Rosselands approximation the radiative heat flux

is modeled as

qr = −4σ∗

3k∗
∂T 4

∂y
= −16σ∗

3k∗
T 3∂T

∂y
, (3.3.3)
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where σ∗ is the Stefan-Boltzman constant and k∗ is the mean absorption

coefficient. Eq. (3.3.1) can be expressed as

u
∂T

∂x
+ v

∂T

∂y
=

∂

∂y
[(α +

16σ∗T 3

3ρCpk∗
)
∂T

∂y
] +

νf
Cp

(
∂u

∂y
)2 +

σeH
2
0

(ρC) f

(u∞ − u)2 + τ [DB
∂T

∂y

∂C

∂y
+
DT

T∞
(
∂T

∂y
)2]. (3.3.4)

3.3.1 Heat Transfer Analysis via Convective Boundary

Condition (CBC)

The boundary conditions for our case are

−k∂T
∂y

= h(Tf − T ), C = Cw at y = 0, (3.3.5)

T −→ T∞, C −→ C∞ as y −→∞. (3.3.6)

We now define the non-dimensional θη = T−T∞
Tf−T∞

with T = T∞(1 + (θw −

1)θ) and θw =
Tf
T∞

(temperature parameter), and the non-dimensional con-

centration φ(η) = C−C∞
Cw−C∞ .The first term on the right hand side of Eq. (3.3.4)

can be written as α ∂
∂y

[∂T
∂y

(1 +Rd(1 + θw − 1)θ)3], where Rd = 16σ∗T 3
∞

3kk∗
denotes

the radiation parameter for the CWT case, and Rd provides no thermal ra-

diation effect. The last expression can be further reduced to

α(Tf − T∞)

Pr
[(1 +Rd(1 + (θw − 1)θ)3)θ′]

′
,

where Pr = ν
a

is the Prandtl number. Eqs. (3.3.2) and (3.3.4) take the

following forms

1

Pr
[(1 +Rd(1 + (θw − 1)θ)3)θ′]′+ fθ

′
+Nbθ

′φ′ +Ntθ
′2 + E∗c f

′′2

+ME∗c (λ− f ′)2 = 0, (3.3.7)

φ′′ + Lefφ
′ +

Nt

Nb

θ′′ = 0. (3.3.8)
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with boundary conditions

θ′(0) = −B(1− θ(0)), 0.1 ≤ B <∞, φ(0) = 1, (3.3.9)

θ −→ 0, φ −→ 0, as η −→∞. (3.3.10)

Where Nb = τDB(Cw−C∞)
νf

and Nt =
τDT (Tf−T∞)

T∞νf
are denoted by Brownian

and thermophoretic constants respectively and E∗c = U2
w

Cp(Tw−T∞)
indicates the

local Eckert number. The heat and mass fluxes are defined by the equations

given below.

qw = −k(
∂T

∂y
)y=0 + (qr)w = −Rd[

B + θ′(0)

B
]3(θ3w)(θ′(0)), (3.3.11)

jw = −DB(
∂C

∂y
)y=0 = −DB(Cw − C∞)

√
a

ν
φ′0, (3.3.12)

use local Nusselt number Nux = xqw
k(Tf−T∞)

and local Sherwood number Sh =

xj−w
DB(cw−c∞)

in above equations, one obtains Nux√
Rex

= [1+Rd(
B+θ′(0)

B
)3θ3w]θ′(0) =

Nur,
Sh√
Rex

= −φ(0) = Shr.

3.3.2 Heat Transfer Analysis via Newtonian Heating

(NH)

The relevant boundary conditions in this case are

−k∂T
∂y

= hsT, C = Cw at y = 0, (3.3.13)

T −→ T∞, C −→ C∞ as y −→∞. (3.3.14)

For Newtonian heating the non-dimensional temperature is θ(η) = T−T∞
T∞

with T = T∞(1 + θ).

By using this transformation of θ. The Eq. (3.3.4) takes the following form

1

Pr
[(1 +Rd(1 + θ)3)θ′]′+ fθ

′
+Nbθ

′φ′ +Ntθ
′2 + E∗c f

′′2

+ME∗c (λ− f ′)2 = 0, (3.3.15)
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with boundary conditions

θ′(0) = −B∗(1 + θ(0)), 0.1 ≤ B∗ <∞, φ(0) = 1, (3.3.16)

θ −→ 0, φ −→ 0, as η −→∞. (3.3.17)

In above Equation

B∗ = hs

√
νf
a

’

Nb = τDB(Cw−C∞)
νf

,

Nt = τDT
νf

,

E∗c = U2
w

Cp(T∞)
.

The reduced Nusselt number in this case is Nux√
Rex

= B∗[1 + 1
θ(0)

](1 + Rd(1 +

θ(0))3) = Nur.

3.4 Numerical Results and Discussion

The numerical solution of governing differential systems for different values of

thermophoretic parameter Nt, Brownian parameter Nb and thermal radiation

parameter Rd is obtained using shooting method with fifth order Runge-

Kutta integration technique. After reducing the relevant equations to the

first order systems, suitable values of missing slopes f ′′(0), θ′(0) and φ′(0) are

chosen and then successive iteration are performed using Newton’s method

until the boundary condition at sufficiently large value of η is satisfied. To

examine the physical effects of the embedded parameters, we have plotted

Figs. 3.1-3.4 and prepared table.

3.4.1 Heat and Mass Transfer Rates

In this subsection we discuss the behavior and numerical results of θ′(0) and

φ′(0) for various parametric values. Table provide such values in our case. It
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is seen that heat and mass flux from the sheet decreases as thermal radiation

strengthens. For fixed value of thermophoretic parameter there is decrease

in |θ′(0)| with an increase in Nb. This decrease is in fact due to effective

movement of nanoparticles from the stretching wall to the quiescent fluid. It

is observed that the reduced Sherwood number considerably increases when

Nb is increased. The impact of Nb on the reduced Nusselt number and Sher-

wood number is similar with and without Rd influence. For a fixed Nb there

is decrease in the magnitude of reduced Nusselt number with an increase in

Nt or equivalently the mass flux due to temperature gradient. However mass

transfer rate at the sheet is found to increase upon increasing thermophoretic

constant with and without Rd effects.
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Table 1. Value of dimensionless heat transfer rate −θ′(0) and dimen-

sionless mass transfer rate −φ′(0) for different values of the Nb, Nt and Rd

when λ = 0.5, M=0.5, Pr=7, Le=1, Ec=0.2, B=0.2 in the CWT case.

Nb Nt Rd −θ′(0) −θ′(0) −φ′(0) −φ′(0)

shooting method bvp4c shooting method bvp4c

0.1 0.1 0 0.15457 0.15457 0.63968 0.63967

1 0.15198 0.15198 0.63764 0.63763

0.2 0 0.14786 0.14786 0.67761 0.67761

1 0.14763 0.14763 0.67265 0.67265

0.3 0 0.13963 0.13963 0.69149 0.69149

1 0.14284 0.14284 0.68460 0.68460

0.4 0 0.12950 0.12950 0.69955 0.69955

1 0.13760 0.13760 0.69079 0.69079

0.1 0.1 0 0.15457 0.15457 0.63968 0.63967

1 0.15198 0.15198 0.63764 0.63763

0.2 0 0.15351 0.15351 0.58798 0.58797

1 0.15125 0.15125 0.58159 0.58159

0.3 0 0.15236 0.15236 0.54269 0.54268

1 0.15049 0.15049 0.52922 0.52921

0.4 0 0.15111 0.15111 0.50459 0.50458

1 0.14968 0.14968 0.48074 0.48074
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3.4.2 Velocity Profile

The dimensionless velocity boundary profile is same as we have discussed in

chapter 2. (Cf. subsection 2.4.2).

3.4.3 Temperature Profiles

We have already discussed the effects of Nb, Nt, and Rd on temperature θ in

chapter 2. So we will discuss here only our extended work. Fig 3.1 illustrates

that the temperature increases with an increase in the Biot number. It is

indicated that the thermal resistance of sheet decreases and convective heat

transfer to the fluid increases when Biot number effect intensifies. Fig. 3.2

shows that by increasing Newtonian heat parameter B∗ temperature θ also

increases. Fig. 3.3 and 3.4 depicts the influence of Pr on temperature profile.

It is seen that temperature decreases and thermal boundary layer thins as

Pr increases in both CBC and NH cases. This decrease is related with the

steeper temperature profile and consequently, large rate of heat transfer at

the bounding surface.
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Figure 3.1: Influence of B on θ (for CBC case).
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Figure 3.2: Influence of B∗ on θ (for NH case).
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Figure 3.3: Influence of Pr on θ (for CBC case).
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Figure 3.4: Influence of Pr on θ (for NH case).
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3.4.4 Nanoparticles Concentration Profiles

Fig. 3.5 is displayed to observe the effects of Brownian motion parameter

Nb on the nanoparticles concentration φ. We observe that by increasing

Brownian motion parameter φ remains almost constant. So, rate of mass

transfer constant for Nb. Fig. 3.6 indicates that concentration and the

concentration boundary layer thickness increase when thermophoretic effect

intensifies. This is not surprising since increasing thermophoretic effect gen-

erates the larger mass flux due to temperature gradient which in turn raises

the nanoparticles volume fraction φ. The concentration field is driven by the

temperature gradient and since temperature is an increasing function of Rd,

thus one would expect an increase in the concentration φ with an increase in

Rd. Fig. 3.7 shows that nanoparticles concentration decreases and concen-

tration boundary layer thins as Lewis number increase. We can also interpret

that rate of heat and mass transfer decrease with increase in Nt.
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Figure 3.5: Influence of Nb on φ (for CBC case).
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Figure 3.6: Influence of Nt on φ (for CBC case).
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Figure 3.7: Influence of Le on φ (for CBC case).
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Chapter 4

Viscous Compressible

Boundary Layer Flow on a

Moving Flat Plate in a Parallel

Free Stream

Chapter 4 is divided into the following sections.

Section 4.1 is the introduction of problem. Section 4.2 includes a discussion

on the derivation of the mathematical formulation of the boundary layer

flow with variable fluid properties on a moving flat plate in a parallel free

stream. In section 4.3 we discuss two special cases, constant fluid properties

and variable fluid properties. In section 4.4 we discuss the numerical results

with the help of graphs and tables.
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4.1 Introduction

This chapter deals with the numerical study of steady boundary layer flows

of compressible fluids. This chapter is a review work of Bachok et al [9].

In this chapter two special cases are considered: constant fluid properties

and variable fluid properties. The resulting differential equations have been

solved by shooting method and bvp4c. Numerical outcomes for the flow and

the thermal fields for both cases are obtained for various parametric values

of free stream and the prandtl number.

4.2 Problem Formulation

The steady two dimensional compressible boundary layer equation are given

as Andersson and Aarseth [10].

∂

∂x
(ρu) +

∂

∂y
(ρv) = 0, (4.2.1)

ρ(u
∂u

∂x
+ v

∂u

∂y
) =

∂

∂y
(µ
∂u

∂y
), (4.2.2)

ρcp(u
∂T

∂x
+ v

∂T

∂y
) =

∂

∂y
(k
∂T

∂y
). (4.2.3)

The relevant boundary conditions are

u = Uw, v = 0, T = Tw, at y = 0, (4.2.4)

u→ Uo, T → To, as y →∞. (4.2.5)

In above equation

ρ= fluid density

u, v= velocities in x and y directions

µ = dynamic viscosity
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k= thermal conductivity

Cp = specific heat.

We introduce now the similarity transformation and the dependent variable

f and θ are defined as, see Andersson and Aarseth [10],

η = (
U

avox
)1/2

∫
(
ρ

ρo
)dy, (4.2.6)

ψ(x, y) = ρo(aνoxU)(1/2)f(η), (4.2.7)

θ(η) =
T − To
Tw − T

. (4.2.8)

Where U = Uw+Uo, is a dimensionless constant and ψ is the stream function,

which is described as

ρu =
∂ψ

∂y
, ρv = −∂ψ

∂x
(4.2.9)

ρo, µo, ko, Cpo and νo denotes the values of fluid properties of the ambient

fluid at ambient temperature To. Now we use Eqs. (4.2.6), (4.2.7) and (4.2.9)

to find u and v.

ρu = ρo(aνoxU)1/2f ′(η)(
U

aνox
)1/2

d

dy

∫
ρ

ρo
dy

, ρu = ρo(aνoxU)1/2f ′(η)(
U

aνox
)1/2

d

dy
(
ρ

ρo
),

ρu = ρUf ′(η), (4.2.10)

ρv = [
ρo
2

(
1

aνoxU
)1/2(aνoU)f(η)+ ρo(aνoxU)1/2f ′(η)

1

2
(
aνox

U
)1/2

(
−U
aνox2

)

∫
ρ

ρo
dy],

ρv = −ρo
2

(
aνoU

x
)1/2f(η) +

U

x

ρo
2
f ′(η)

∫
ρ

ρo
dy. (4.2.11)
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Now we convert the Eqs. (4.2.2) and (4.2.3) into ODEs

∂u

∂x
= Uf ′′(η)

1

2
(
aνox

U
)1/2(− U

aνox2
)

∫
ρ

ρo
dy,

ρu
∂u

∂x
= −ρU

2

2x
f ′(η)f ′′(η)(

U

aνox
)
1
2

∫
ρ

ρo
dy, (4.2.12)

ρv
∂u

∂y
= [−ρo

2
(
aνoU

x
)1/2f(η) +

U

x

ρo
2
f ′(η)

∫
ρ

ρo
dy]Uf ′′(η)(

U

aνox
)
1
2
ρ

ρo
,

ρv
∂u

∂y
= −ρU

2

2x
f(η)f ′′(η) +

ρU2

2x
f ′(η)f ′′(η)(

U

aνox
)
1
2

∫
ρ

ρo
dy, (4.2.13)

∂

∂y
(u
∂u

∂y
) =

∂

∂y
(µUf ′′(η)(

U

aνox
)
1
2
ρ

ρo
). (4.2.14)

Use this in Eq. (4.2.14)

∂

∂y
(u
∂u

∂y
) =

∂

∂η
(µf ′′(η))(U(

U

aνox
)
1
2
ρ

ρo
)(

U

aνox
)
1
2 (
ρ

ρo
),

∂

∂y
(u
∂u

∂y
) = (µf ′′(η))′

U2

aν0x

ρ2

ρ2o
. (4.2.15)

Put Eqs. (4.2.12), (4.2.13) and (4.2.15) in Eq. (4.2.2) we get

−ρU
2

2x
f ′(η)f ′′(η)(

U

aνox
)
1
2

∫
ρ

ρo
dy − ρU2

2x
f(η)f ′′(η)+

ρU2

2x
f ′(η)f ′′(η)

(
U

aνox
)
1
2

∫
ρ

ρo
dy = (µf ′′(η))′

U2

aνox

ρ2

ρ2o
,

−ρ
2

U2

x
f(η)f ′′(η) = (µf ′′(η))′

U2

aνox

ρ2

ρ2o
,

2

a
(
ρ

ρo

µ

µo
f ′′(η))′ + f(η)f ′′(η) = 0. (4.2.16)

Now we convert Eq. (4.2.3) into ODEs From Eq. (4.2.8)

T = (Tw − To)θ(η) + To, (4.2.17)

Cp(ρu)
∂T

∂x
= Cp(ρUf

′(η))θ′(η)(
Tw − To

2
)(
aνox

U
)
1
2 (− U

aνox2
)

∫
ρ

ρo
dy,

Cp(ρu)
∂T

∂x
= −Cp(ρUf ′(η))θ′(η)(

Tw − To
2

)(
U

aνox
)
1
2

1

x

∫
ρ

ρo
dy,

Cp(ρu)
∂T

∂x
= −Cp

ρU

2x
f ′(η)θ′(η)(Tw − To)(

U

aνox
)
1
2

∫
ρ

ρo
dy, (4.2.18)

Cp(ρv)
∂T

∂y
= Cp[−

ρo
2

(
aνoU

x
)1/2f(η) +

U

x

ρo
2
f ′(η)

∫
ρ

ρo
dy](Tw − To)θ′(η)(

U

aνox
)
1
2
ρ

ρo
,
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Cp(ρv)
∂T

∂y
= −Cp

ρU

2x
(Tw − To)f(η)θ′(η) + Cp

ρU

2x
(Tw − To)

f ′(η)θ′(η)(
U

aνox
)
1
2

∫
ρ

ρo
dy, (4.2.19)

∂

∂y
(k
∂T

∂y
) =

∂

∂y
[kθ′(η)(Tw − To)(

U

aνox
)
1
2
ρ

ρo
],

∂

∂y
(k
∂T

∂y
) =

∂

∂η
(kθ′(η))(Tw − To)(

U

aνox
)
1
2
ρ

ρo
(
U

aνox
)
1
2
ρ

ρo
,

∂

∂y
(k
∂T

∂y
) = (kθ′(η))′(Tw − To)

U

ax(ρoνo)

ρ2
ρ2o
. (4.2.20)

Put Eqs. (4.2.18),(4.2.19) and (4.2.20) in Eq. (4.2.3)

−Cp
ρU

2x
f ′(η)θ′(η)(Tw − To) (

U

aνox
)
1
2

∫
ρ

ρo
dy − Cp

ρU

2x
(Tw − To)f(η)θ′(η)

+Cp
ρU

2x
(Tw − To)f ′(η)θ′(η) (

U

aνox
)
1
2

∫
ρ

ρo
dy =

(kθ′(η))′(Tw − To)
U

ax(ρoνo)

ρ2
ρ2o
, (4.2.21)

1

aµo
(k
ρ

ρo
θ′(η))′ +

Cp
2
f(η)θ′(η) = 0,

1

aµo
(k
ρ

ρo
θ′(η))′

1

2

Cp
Cpo

Cpoµo
ko

k0
µo
f(η)θ′(η) = 0,

(
k

ko

ρ

ρo
θ′(η))′ +

a

2

Cp
Cpo

Pro + f(η)θ′(η) = 0. (4.2.22)

Where Pro denotes the prandtl number of the ambient fluid and prime rep-

resent differentiation with respect to η. Now we convert boundary condition

into ODEs From Eq. (4.2.5) we know that

u = Uw,

and from Eq. (4.2.10)

u = Uf ′(η),
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compare both values when η = 0 and y = 0

given that

U = Uw + Uo, (4.2.23)

U − Uo = Uf ′(0),

1− Uo
U

= f ′(0),

1− ε = f ′(0). (4.2.24)

From Eq. (4.2.5)

v = 0 when y = 0.

From Eq. (4.2.11)

1

ρ
[−ρo

2
(
aνoU

x
)1/2f(η) +

U

x

ρo
2
f ′(η)

∫
ρ

ρo
dy],

by comparing both values of v we get

f(0) = 0. (4.2.25)

again from Eq. (4.2.5)

T = Tw, when y = 0

from Eq. (4.2.17) when η = 0

T = (Tw − To)θ(η) + To,

after comparing both values of T we get,

θ(0) = 1. (4.2.26)

From Eq. (4.2.6)
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u→ Uo when y →∞

and from Eq. (4.2.10) when η →∞ then

u = Uf ′(∞),

by comparing both values we get

Uo
U

= f ′(∞),

ε = f ′(∞). (4.2.27)

Again from Eq. (4.2.6)

T → To when y →∞

and from Eq. (4.2.17) when η = 0

T = (Tw − To)θ(η) + To,

by comparing above values we get

θ(∞) = 0. (4.2.28)

Eq. (4.2.23) to Eq. (4.2.27) are new boundary conditions subjected to Eqs.

(4.2.4) and (4.2.5)

f(0) = 0, f ′(0) = 1− ε, θ(0) = 1 η = 0, (4.2.29)

f ′(η) = ε, θ(η) = 0, as η →∞.(4.2.30)

Where ε is free stream parameter and is defined as

ε =
Uo
U

=
Uo

Uo + Uw
. (4.2.31)

In above equation ε = 1
2
, ε = 1 and ε = 0 corresponds to the different flow

regimes. For ε = 1
2

it corresponds to a free stream velocity and ε = 1 shows
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the behavior of Blasius flow and ε = 0 is for Sakiadis flow. The important

quantities of interest are shear stress and heat flux qw which are given as

τw = µw(
U3

aνox
)
1
2f ′′(0), (4.2.32)

qw = µwCpoP
−1
ro ∆T (

U

aνox
)
1
2 [−θ′(0)]. (4.2.33)

4.3 Special Cases

4.3.1 Constant Fluid Properties (Case A)

This case corresponds to the Blasius [1] flow variable.

η = (
U

aν0x
)
1
2y. (4.3.1)

In this case ρ
ρo

= 1, µ
µo

= 1, k
ko

= 1 and Cp
Cpo

= 1 so Eqs. (4.2.16) and

(4.2.22) reduces to

2

a
f ′′′(η) + f(η)f ′′(η) = 0, (4.3.2)

θ′′(η) +
a

2
Prof(η)θ(η) = 0. (4.3.3)

4.3.2 Variable Viscosity (Case B)

In this case the Eq. (4.2.16) becomes

2

a
(
µ

µo
f ′′(η)) + f(η)f ′′(η) = 0. (4.3.4)

Following the form of the variable viscosity µ(T ) proposed by Lai and Ku-

lacki, and used Andersson and Aarseth [10], we take µ(T ) as

µ(T ) =
µref

1 + γ(T − Tref )
, (4.3.5)
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in which γ is a fluid property. Generally, Viscosity depends on temperature

and it decrease with increasing temperature for liquids. For gases viscosity

increases by increasing temperature.

µ(T ) =
µo

1− T−To
(Tw−To)θref

=
µo

1− θ(η)
θref

. (4.3.6)

4.4 Results and Discussions

The nonlinear ordinary differential Equations (ODEs) given in (4.3.2) or

(4.3.4), depending on the actual case considered, along Eq. (4.3.3) subject

to the boundary conditions in Eq. (4.2.29) and Eq. (4.2.30) were solved

numerically using a shooting method and bvp4c. The author of paper [9]

have solved this problem with finite difference scheme or Keller-Box method.

We prove the same results by using shooting method and MATLAB built-in

solver bvp4c.

We just compare our results with the results reported by [9], [10]. We come

to conclude that the values of f ′′(0) and θ′(0) obtained in this study are in

very good agreement with the results reported by [9], [10].

In Table 1 and Table 2 the results for f ′′(0) and θ′(0) are taken from the

paper by Bachok et al [9].
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Table 1 (Norfifah and Anuar [9])

Value of reduced skin friction coefficient f ′′(0) and reduced heat flux θ′(0).

ε Pr a Andersson [10] Norfifah et al. [9]

f ′′ θ′ f ′′ θ′

0 0.7 1 0.4437483 0.3492365 0.4437 0.3492

0 1 1 - - 0.4437 0.4437

0 10 1 - - 0.4437 1.6803

Table 2 (Norfifah and Anuar [9])

Values of reduced skin friction coefficient f ′′(0) and reduced heat flux θ′(0).

ε Pr a Andersson [10] Norfifah et al. [9]

0 10 1 -f”(0) −θ′(0) −f ′′(0) −θ′(0)

Case A 0.443748 1.680293 0.4437 1.6803

Case B 1.300553 1.529151 1.3006 1.5292

0 1 1

Case A - - 0.4437 0.4437

Case B - - 1.0381 0.3181
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Table 3 (Current Results)

Value of reduced skin friction coefficient f ′′(0) and reduced heat flux θ′(0).

ε Pr a bvp4c Shooting Method

f ′′ θ′ f ′′ θ′

0 0.7 1 0.4437 0.3492 0.4437 0.3492

0 1 1 0.4437 0.4437 0.4437 0.4437

0 10 1 0.4437 1.6803 0.4437 1.6803

Table 4 (Current Results)

Values of reduced skin friction coefficient f ′′(0) and reduced heat flux

θ′(0).

ε Pr a bvp4c Shooting Method

0 10 1 −f ′′(0) −θ′(0) −f ′′(0) −θ′(0)

Case A 0.4437 1.6803 0.4437 1.6803

Case B 1.3006 1.5292 1.3006 1.5292

0 1 1

Case A 1.3006 1.5292 0.4437 0.4437

Case B 1.3006 1.5292 1.0381 0.3181
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In Fig. 4.1 we can see that the velocity profile f ′ have been reduced

near the surface in Case B. The viscosity is reduce due to heating of fluid by

surface. In Fig. 4.2 we show the effect of Pr on temperature in Case A and

B. We can see that the temperature decrease.
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Figure 4.1: Velocity profiles f ′(η).
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Figure 4.2: Temperature profiles θ(η) .
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Chapter 5

Conclusions and Outlook

This chapter contains an overview of the study as well as suggestions for the

future research. The research considered in this dissertation is focused on

the numerical solution for incompressible nanofluid and compressible regular

fluid.

Chapter 1 include basic definitions. In chapter 2, the governing equations

for boundary layer flow of nanofluid is presented first. Then we convert

PDEs into ODEs with the help of similarity transformation. The resulting

non-linear ODEs have been solved for the numerical solution by fifth order

Runge-Kutta method using a shooting technique and verify the results with

bvp4c. In this chapter we discussed the velocity, temperature and concen-

tration profiles for different values of parameters.

Chapter 3 is an extension of the work described in chapter 2. In this chapter

we solve the governing equations of chapter 2 with convective boundary con-

dition. The dimensionless coupled equations have been solved by fifth order

Runge-Kutta method using shooting technique. We discuss here only Biot

number effect on the temperature profile because all other effect have been

discussed in chapter 2.
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The temperature θ and thermal boundary layer thickness increase with an

increase in the Biot number. Since as B increases, the thermal resistance

of the sheet decreases and convective heat transfer to the fluid of the sheet

increases.

Chapter 4 is the review work. In chapter 4, the governing equations for

the compressible flow are given. The governing partial differential equations

are transformed using similarity transformation to a more convenient form

for numerical computation. The transformed nonlinear ordinary differential

equations were solved numerically using the Keller-Box method in the work

of work Bachok et al [9]. But we used shooting method and bvp4c. Numer-

ical results for the skin friction coefficient and the local Nusselt number as

well as the temperature profiles are illustrated in two tables and some graphs

for various parameters. Two special cases, namely constant fluid properties

and variable fluid viscosity were considered. The velocity f’ reduced near the

moving surface for case B as compared to case A.

The work on incompressible flows can be further extended for exponential

stretching sheet. We have only considered the steady flow cases but unsteady

flow can be done in future. The same is true for compressible boundary layer

flow where one can consider unsteady case. Moreover, the Keller-Box method

can be developed to solve the incompressible and compressible flows. In fu-

ture one can also use other numerical open source software chebfun.
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Appendix

Subroutines for the Shooting Method

Subroutines of shooting method used in chapter 2, 3 and 4.

Subroutine of Newton-Raphson method

function root = newtonRaphson2(func,x,tol)

if nargin == 2; tol = 1.0e4*eps; end

if size(x,1) == 1; x = x’; end

for i = 1:30

[jac,f0] = jacobian(func,x);

if sqrt(dot(f0,f0)/length(x)) < tol

root = x; return

end

dx = jac/(-f0)

x = x + dx;

if sqrt(dot(dx,dx)/length(x)) < tol*max(abs(x),1.0)

root = x; return

end

disp(i)

end

error(’Too many iterations’)

Jacobian is calculated here.

function [jac,f0] = jacobian(func,x)

h = 1.0e-4;

n = length(x);
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jac = zeros(n);

f0 = feval(func,x);

for i =1:n

temp = x(i);

x(i) = temp + h;

f1 = feval(func,x);

x(i) = temp;

jac(:,i) = (f1 - f0)/h;

end.

Here is a Subroutine of Runge-Kutta method.

function [xSol,ySol] = runKut5(dEqs,x,y,xStop,h,eTol)

if size(y,1) > 1 ; y = y’; end

if nargin < 6; eTol = 1.0e-6; end

n = length(y);

A = [0 1/5 3/10 3/5 1 7/8];

B = [ 0 0 0 0 0 1/5 0 0 0 0 3/40 9/40 0 0 0 3/10 -9/10 6/5 0 0 -11/54 5/2

-70/27 35/27 0 1631/55296 175/512 575/13824 44275/110592 253/4096];

C = [37/378 0 250/621 125/594 0 512/1771];

D = [2825/27648 0 18575/48384 13525/55296 277/14336 1/4];

xSol = zeros(2,1); ySol = zeros(2,n);

xSol(1) = x; ySol(1,:) = y;

stopper = 0; k = 1;

for p = 2:5000

K = zeros(6,n);

K(1,:) = h*feval(dEqs,x,y);
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for i = 2:6

BK = zeros(1,n);

for j = 1:i-1

BK = BK + B(i,j)*K(j,:);

end

K(i,:) = h*feval(dEqs, x + A(i)*h, y + BK);

end

dy = zeros(1,n); E = zeros(1,n);

for i = 1:6

dy = dy + C(i)*K(i,:);

E = E + (C(i) - D(i))*K(i,:);

end

e = sqrt(sum(E.*E)/n);

if e <= eTol

y = y + dy; x = x + h;

k = k + 1;

xSol(k) = x; ySol(k,:) = y;

if stopper == 1;

break

end

end

if e = 0; hNext = 0.9 ∗ h ∗ (eTol/e)0.2;

else; hNext = h; end

if (h > 0) == (x + hNext >= xStop )

hNext = xStop - x; stopper = 1;

end
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h = hNext;

end

Chapter 2 (bvp4c Codes)

This MATLAB program of chapter 2 to find the solution of the stagnation-

point flow of nanofluid through different utilization of thermal radiation effect

using bvp4c method.

For Constant Wall Temperature (CWT)

function irfan-asif-cwt-nanofluid

clc

clear all

lambda=0.5;

M=0.5;

Pr=0.71;

Le=2;

Ec=0.2;

Nb=0.3;

Nt=0.5;

Rd=0;

thetaw=1.2;

sol1 = bvpinit(linspace(0, 3, 25), [1 0 0 0 0 0 0]);

sol= bvp4c(@bvpirfan, @bcirfan, sol1);

x = sol.x;

value=deval(sol,0)
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plot(x, y(6, :),’:’)

val=y(7,1)

function res = bcirfan(y0, yinf)

res = [y0(1); y0(2) - 1; yinf(2) - lambda; y0(4) - 1; yinf(4); y0(6) - 1; yinf(6)];

end

function ysol= bvpirfan( x,y )

yy1 = −y(1) ∗ y(3) + (y(2))2 − lambda2 −M ∗ (lambda− y(2));

coef = (1 +Rd ∗ (1 + (thetaw − 1) ∗ y(4))3);

yy2 = (1/coef)∗ (−3∗Rd∗ (1 + (thetaw−1)∗ y(4))2 ∗ (thetaw−1)∗ y(5)2....

+Pr ∗ (−y(1) ∗ y(5)−Ec ∗ y(3)2 −M ∗Ec ∗ (lambda2 − 2 ∗ lambda ∗ y(2) +

y(2)2)−Nb ∗ y(5) ∗ y(7)−Nt ∗ (y(5))2));

yy3 = −Le ∗ y(1) ∗ y(7)− (Nt/Nb) ∗ yy2;

ysol = [y(2); y(3); yy1; y(5); yy2; y(7); yy3];

end

end

For Prescribed Surface Temperature (PST)

function irfan-asif-nanofluid-PST-nanofluid

clear all

close all

Pr = 7 ;

Ec = 0.2;

M = 0.5 ;

lambda = 0.5 ;

Rd = 1 ;

Nb = 0.1 ;
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Le = 0 ;

Nt = 0.3 ;

function ysol = bvpex1(x,y)

yy1 =−y(1) ∗ y(3) + (y(2))2 − lambda2 −M ∗ (lambda− y(2));

bcoef = Pr/(1 +Rd);

yy2 = (bcoef) ∗ (−y(1) ∗ y(5) + 2 ∗ y(4) ∗ y(2)−Nt ∗ y(5)2....

−Nb ∗ y(5) ∗ y(7)− Ec ∗ y(3)2 −M ∗ Ec ∗ (lambda− y(2))2);

yy3 = −Le ∗ (y(1) ∗ y(7)− 2 ∗ y(2) ∗ y(6))− (Nt/Nb) ∗ yy2;

ysol = [y(2); y(3); yy1; y(5); yy2; y(7); yy3];

end

function res = bcex1(y0, yinf)

res = [y0(1); y0(2) - 1; yinf(2) - lambda; y0(4) - 1; yinf(4); y0(6) - 1; yinf(6)];

end

sol1 = bvpinit(linspace(0,3,25), [1 0 0 0 0 0 0]);

sol = bvp4c(@bvpex1, @bcex1, sol1);

x = sol.x;

y = sol.y;

value = deval(sol, 0)

end
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Chapter 3 (bvp4c Code)

This MATLAB program of chapter 3 to find the solution of the stagnation-

point flow of nanofluid with thermal radiation effect using convective bound-

ary condition using bvp4c method.

function irfan-asif-nanofluid-cwt-convective

clc

clear all

lambda=0.5;

M=0.5;

Pr=7;

Le=1;

Ec=0.2;

Nb=0.3;

Nt=0.1;

Rd=0;

thetaw=1.2;

B=0.2;

sol1 = bvpinit(linspace(0, 3 , 25), [1 0 0 0 0 0 0]);

sol= bvp4c(@bvpirfan, @bcirfan, sol1);

x = sol.x;

y= sol.y;

value=deval(sol,0)

plot(x, y(2, :),’:’)

vpa(-value,5)

function res = bcirfan(y0, yinf)

res = [y0(1); y0(2) - 1; yinf(2) - lambda; y0(5) + B*(1-y0(4)); yinf(4); y0(6)

- 1; yinf(6)];
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end

function ysol= bvpirfan( x,y )

yy1 = −y(1) ∗ y(3) + (y(2))2 − lambda2 −M ∗ (lambda− y(2));

coef = (1 +Rd ∗ (1 + (thetaw − 1) ∗ y(4))3);

yy2 = (1/coef)∗ (−3∗Rd∗ (1 + (thetaw−1)∗ y(4))2 ∗ (thetaw−1)∗ y(5)2....

+ Pr ∗ (−y(1) ∗ y(5)−Ec ∗ y(3)2 −M ∗Ec ∗ (lambda2 − 2 ∗ lambda ∗ y(2) +

y(2)2)−Nb ∗ y(5) ∗ y(7)−Nt ∗ (y(5))2));

yy3 = −Le ∗ y(1) ∗ y(7)− (Nt/Nb) ∗ yy2;

ysol = [y(2); y(3); yy1; y(5); yy2; y(7); yy3];

end

end

Chapter 4 (bvp4c Codes)

This MATLAB program to find the solution of the boundary layer flow with

variable fluid properties on a moving flat plate in a parallel free stream pre-

sented in chapter 4 using bvp4c method. It has two cases, case A is constant

fluid properties and case B is variable viscosity. We solve both cases with

bvp4c method.

Case A

function compressibleflow

epcilon = 0;

Pr = 10;

a = 1;

sol = bvpinit(linspace(0, 19, 500), [1 0 0 0 0]);

sol1 = bvp4c(@bvpirfan, @bcirfan, sol);

eta = sol1.x;
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f = sol1.y ;

plot(eta, f(2, :))

value = deval(sol1, 0)

function res = bcirfan(f0, finf)

res = [f0(1) ; f0(2) - 1 + epcilon ; finf(2) - epcilon ; f0(4) - 1; finf(4)];

end

function fprime = bvpirfan(eta,f)

ff1 = −(a/2) ∗ (f(1) ∗ f(3));

ff2 = (−a/2) ∗ (Pr) ∗ (f(1) ∗ f(5));

fprime = [f(2) ;f(3) ;ff1 ; f(5) ;ff2];

end

end

Case B

function compressibleflowb

epcilon = 0;

Pr = 1;

a = 1;

theetaref = -0.25 ;

sol = bvpinit(linspace(0, 19 , 25), [1 0 0 0 0]);

sol1 = bvp4c(@bvpirfan, @bcirfan, sol);

eta = sol1.x;

f = sol1.y ;

value = deval(sol1, 0)

plot(eta, f(2, :))

value = deval(sol1, 0)

function res = bcirfan(f0, finf)
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res = [f0(1) ; f0(2) - 1 + epcilon ; finf(2) - epcilon ; f0(4) - 1; finf(4)];

end

function fprime = bvpirfan(eta,f)

ff1 = −(a/2)∗((theetaref−f(4))/(theetaref))∗f(1)∗f(3)−(1/(theetaref−

f(4))) ∗ f(5) ∗ f(3);

ff2 = (−a/2) ∗ (Pr) ∗ (f(1) ∗ f(5));

fprime = [f(2) ;f(3) ;ff1 ; f(5) ;ff2];

end

end
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