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ABSTRACT

The Mei symmetries, a class of symmetries, correspond to conserved quantities just like
Noether symmetries. However, the two sets of symmetries result in different conserved

quantities.

The formulation of first-order approximate Mei symmetries of the associated per-
turbed Lagrangian is presented in this thesis. Theorems and determining equations
are given to evaluate approximate Mei symmetries, as well as approximate Mei invari-
ants relative to each symmetry of the associated Lagrangian. The stated approach is

illustrated using the linear equation of motion of a damped harmonic oscillator (DHO).

Furthermore, a method for determining approximate Mei symmetries and invariants
of the perturbed Hamiltonian is described, which can be employed in various fields of
study where approximate Hamiltonian are considered. The Legendre transformation
is used to convert Lagrangian into Hamiltonian. The results are provided as theorems
with proof. To elaborate on the method of determining these symmetries and the re-
lated Mei invariants, a basic example of DHO is presented. Moreover, a comparison of
approximate Mei symmetries with approximate Noether symmetries is provided. The
comparison indicates that both sets of symmetries have only one common symmetry.
Furthermore, the number of approximate Mei symmetries exceeds the number of ap-
proximate Noether symmetries. As a result, the remaining symmetries in the two sets
correspond to two distinct sets of conserved quantities. The Mei symmetries associated
with the Lagrangian and Hamiltonian of DHO are compared.

First-order approximate Mei symmetries of the geodesics Lagrangian are deter-
mined as an application of approximate Mei symmetries for particular classes of pp-
wave spacetimes. These classes of pp-wave spacetimes include plane wave spacetimes

in which (i).A(u) = o2(ii). A(u) = au=? (iii). A(u) = a®u™* and for pp-wave space-

il



times (iv). h = ax™ (where h is called scale factor and « is a constant). After that,

approximate Mei invariants are calculated corresponding to each case.

Keywords: Noether symmetries, Conserved quantities, Hamiltonian, Lagrangian, Damped

Harmonic Oscillator
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Chapter 1

Introduction

In mathematics, the theory of differential equations (DEs) holds a prominent place
and gives rise to numerous directions of studies. A pure analytical direction includes
series solution of DEs, theory of function spaces, and existence theorems regarding
the solutions of DEs etc. The other direction has only geometric implications and is
connected to the theory of surfaces and curves. The theory of continuous group of
transformations falls in between these two directions.

DEs play a significant role in both pure and applied mathematics. Both of these
fields are concerned with the characteristics of various types of DEs. Pure mathematics
deals with the existence and uniqueness of solutions, whereas applied mathematics
requires a strict justification of how to get solutions. They were first introduced in
the 17" century by Newton and Leibniz. Many real-world phenomena are modeled in
the form of DEs (or system of DEs). These are usually difficult to solve. There are
numerous established techniques for solving various types of DEs [1, 2]. The majority
of the developed methods, however, are for particular classes of DEs.

Since nonlinear DEs are actually difficult to solve, so one may try symmetry meth-
ods for the solutions of DEs [3]. Sophus Lie, a Norwegian mathematician, developed
symmetry methods for solving DEs in 1867. The beauty of this technique is that

it works for any type of DEs, including homogeneous, non-homogeneous, linear, non-



linear, ordinary differential equation (ODEs), and partial differential equations (PDESs)
of any order. Later, he used this technique for the linearization of nonlinear DEs, the

group classification of DEs, and for finding invariant solutions to DEs.

Symmetries offer a geometry-based shortcut for accessing some of nature’s deep-
est secrets. It is a helpful tool for solving DEs. A symmetry can be regarded as a
transformation that, when applied to a particular structure, preserves the structure’s
properties. Scientists employ symmetry as a tool to comprehend real-world problems.
The most well-known and well-established technique for determining the exact solu-

tions of DEs is the classical symmetry approach, often known as group analysis.

Symmetry methods is applicable in many fields, including mathematics, social sci-
ences, natural sciences, engineering, and so on. Now, here we try to understand what
is a symmetry? Symmetry is defined as harmonious, perfect proportion and balance
of an object. Beautiful balance and proportion are described mathematically as pat-
terned self similarity. The simplest symmetry is the reflection symmetry, often known
as line symmetry or mirror symmetry in mathematics. In reflection symmetry, one half
of the object reflects the other half. Mathematically, symmetry is formally defined as
a transformation that leaves the original object unaltered. Symmetries of functions,
DEs, integral equations, etc., are transformations of the variables that do not alter the
functions, DEs, integral equations, etc. Simple examples are provided for each case in

the table below. All the transformations given in the above Table 1.1 depend upon a

Type Examples Symmetry Transformations
Algebraic Expressions x? +y° (x,y) — (zcosd — ysind, zsind + y cos J)
Differential Equations % = f(x,y) (z,y) = (x + 1,y + d2)

Integral Equations | I = ["(« —t)y(t)dt | (z,y) — (xcosd — ysind,zsind + ycosd)

Table 1.1: Symmetries of functions, DEs and integral equations



parameter 0 € R, form groups known as Lie groups of point transformations. The Lie
group of point transformation of a DEs is a symmetry transformation that maps the
set of solutions of a system on to the set of solutions of the same DEs. Examples of
Lie point transformations include translations, rotations, and scaling [4]. The order of
DEs is reduced by one, if DEs are unchanged under one parameter Lie group of point

transformations.

The set S that contains all invertible transformations 7" that leaves an object O [5]

invariant is referred to as the symmetry group of the object O that is
T:0—= 0,

such that the set S contains identity I, the inverse transformations 7~!; for all T € S

and the composition 7175 € S of the transformations 77,7, € S.

Lie developed his group theoretic method for solving DEs using Galois’ idea of
groups. Although Lie symmetry groups contain an infinite number of transformations
that rely on continuous parameters. However, Galois groups are finite. A Lie group
of transformations uses infinitesimal generators to form a vector space that is closed
under a Lie algebra defined later in Chapter 2. Contrary to more general topological
groups, Lie groups are smooth and twice differentiable manifolds that may be studied
using differential calculus. One of the fundamental concepts in the Lie theory of groups
is the replacement of the global object, the group, with its local or linearized version,
which Lie originally referred to as its infinitesimal group and is today known as its Lie

algebra.

The Lie symmetries are the invariance of DEs under infinitesimal transformations of
a group. The Lie point symmetries that leave the action invariant for DEs arising from
a variational principle, i.e., following from a Lagrangian (difference of kinetic energy

and potential energy), are known as Noether symmetries. All Lie point symmetries



including Noether symmetries span Lie algebras. According to Noether’s theorem, each
Noether symmetry corresponds to a conservation law [6, 7, 8]. Noether symmetries are
a subclass of Lie symmetries that are used to investigate dynamical systems defined by
a point Lagrangian while keeping the action integral invariant. Different fields of study
e.g, classical mechanics, general relativity, field theory, and the study of dynamical

systems, in general, all mainly depend on the conservation laws [9, 10].

The Lie symmetry method [12, 13, 14] and the Mei symmetry method [11] are two
useful tools for investigating dynamical systems other than Noether symmetry method.
The form invariance, often referred to as Mei symmetries, was first described by Feng-
Xiang [11] in 2000. It is defined as an invariance of the equations of motion under
infinitesimal transformation of a group. The transformed dynamical functions replace
the Lagrangian, Hamiltonian, and other dynamical functions in Mei symmetries. Fur-
thermore, after performing some infinitesimal transformation of a group, the equations
of motion are satisfied. In particular, Mei symmetries preserve the form of equations

of motion.

The form invariance of the Appell equations is calculated under infinitesimal trans-
formation of a group in [15]. The Lagrangian which is obtained from the Appell
equations is used to compute the Noether symmetries. After that, Noether symmetries
are compared to form invariance, and different conserved quantities are found. Shu-
Yong and Feng-Xiang [16] studied the form invariance and the Lie symmetries of the
non-holonomic system. In [16], structure equations and form invariance are constructed
which are analogous to Lie symmetries. The Mei symmetries of the rotational relativis-
tic mass variable system are studied [18] with a focus on the connection between Mei
and Lie symmetries. Jiang et al. [19] constructed the Mei symmetries for non-material
volumes. In order to determine the conserved quantities, a non-material volume with

a single degree of freedom is used as an example. In [20, 21], the Mei symmetries



on time scale are calculated using Lagrangian and Birkhoffian system. Its connection
to the Noether symmetries is explained in detail in these papers. The Hamiltonian
canonical equations are taken into consideration as a specific case in the construction

of Mei symmetries of Birkhoffian systems.

1.1 Plan of Thesis

This thesis is arranged as follows: The detail description of manifolds along with
related concepts such as sub-manifolds, tangent bundles, tangent spaces, Lie groups,
Lie algebra, Lie derivatives, Isometries, homotheties are discussed in Chapter 2. The

Legendre transformation is then thoroughly explained.

In Chapter 3, the Lagrangian of damped harmonic oscillator (DHO) is transformed
into Hamiltonian by using Legendre transformation. The method for finding approx-
imate Mei invariants and Mei symmetries of the first order perturbed Hamiltonian
is presented. At the end, the approximate Mei symmetries for the Lagrangian and

Hamiltonian are compared.

In Chapter 4, approximate Mei symmetries and approximate Mei invariants cor-
responding to Lagrangian of linear equation of DHO are developed with the help of
theorems. At the end, approximate Mei symmetries and approximate Noether symme-

tries are compared.

In Chapter 5, first order approximate Mei symmetries of the geodesic Lagrangian
for some classes of the pp-wave spacetimes are obtained. These classes of pp-wave
spacetimes include plane wave spacetimes for metric coefficient A(u) (i). A(u) = o2(ii).
A(u) = au™? (iii). A(u) = o*u* and for pp-waves spacetimes with (iv). h(z) = az”

(where h is called scale factor and « is a constant).



Chapter 2

Preliminaries

2.1 Introduction

To study Lie groups and Lie algebras, it is required to understand the notions of man-
ifold, tangent space, tangent bundle, and so on, which are all briefly introduced here.
Manifolds, the fundamental concept in the study of differential geometry, generalize
the familiar concepts of curves and surfaces in three-dimensional space. Manifolds
are the spaces that locally look like some Euclidean space R™, and on which calculus
can be performed. Apart from Euclidean spaces, smooth plane curves like circles and
parabolas, as well as smooth surfaces like spheres, tori, paraboloids, ellipsoids, and
hyperboloids are the most familiar examples of manifolds. Graphs of smooth maps
between Euclidean spaces and the set of points in R"*! at a uniform distance from the

origin (an n-sphere) are two examples of higher-dimensional manifolds [23].

Lie groups are actually manifolds because they satisfy all criteria of the manifolds
[24]. The idea of symmetry transformations, often known as Lie symmetry transfor-
mations, gives rise to Lie groups as an algebraic abstraction. An important example of
a Lie group is the group of rotations in the plane or in the surface. Both the algebraic
group theory methods and the multi-variable calculus used in analytic geometry are

combined and substantially extended by the merging of these two seemingly differ-



ent mathematical concepts. The resulting theory, particularly infinitesimal symmetry
generator techniques, can then be applied to a variety of physical and mathematical

problems.

There are several vector fields on Lie group G that are distinguished by their in-
variance under group multiplication. The Lie algebra of G, denoted by g, is made
up of these invariant vector fields, which are precisely “infinitesimal generators” of G.
The Lie algebra of Lie group G contains all of its generators, which is fundamental
for the foundation of Lie group theory. It allows us to replace complicated nonlinear
invariance conditions under a group action with relatively simple linear conditions. It
is impossible to overestimate the efficiency of this technique; in fact, practically all Lie

group applications to DEs are based on this single construction.

Since DEs are used to formulate the mathematical models of many real-world phe-
nomena. It turns out that the general theory of DEs is one of the most significant
applications of Lie group theory. It is important to note that Sophus Lie’s first pur-
pose was to provide a way of integrating ODEs that was comparable to the Abelian
method for solving algebraic equations. In this context, he defined the group admitted
by the given system of DEs. At the present, group analysis of DEs refers to mathemat-
ical trend whose purpose is a common treatment of the Lie group of transformations

and DEs admitted by these groups [31].

In this Chapter, we focus on the manifolds, tangent bundles, tangent spaces and
sub-manifolds, Lie brackets and its properties. Definition of Lie group and Lie algebra
along with their examples are considered. After that, Lie point transformation and
their particular cases are discussed. Lie point transformation, Lie symmetry generators
for DEs and their examples are discussed with their Lie groups. At the end, Mei

symmetries and their corresponding conserved quantities are presented.



2.1.1 Manifold

A fundamental concept in mathematical physics is the manifold [24]. It locally looks
like a Euclidean space R™, and represents a space that may be curved and have a
complex topology, but (it does not mean that both have the same metric). A manifold
is divided into coordinate charts that make up an atlas in order to do calculus. Union

of these coordinate charts is the manifold.

Definition 2.1.1. An n-dimensional manifold is a non empty set U, with countable
subsets U; C U, called the coordinate chart, and one to one mapping g; : Uy — V;
onto connected subsets V; C R"™, called the local coordinate mapping which satisfy the

following conditions:

e The coordinate charts cover U; that is
Yui=v
e On the intersection of coordinate charts, U; (\U;, the composite mapping
giogy": g:(Ui(\Uy) = 9;(U:(\U;)
is smooth (infinitely differentiable).

e For distinct points p € U; and g € U; in U, there exist open subsets R C V; and

S C V;, with the property that g;(p) € R, g;(q) € S, satisfying
g (R)()g;7'(5) = ¢.
Example 1

The simplest n-dimensional manifold is the Euclidean space R™. A single coordinate

chart U = R" covers it, with local coordinate identity map provided by

g=1:R"—>R"



More generally, any open subset U of R™ is an n-dimensional manifold with a coordinate

chart given by U itself, and with local coordinate identity map
g:U—=V CR".
Sub-manifold

A sub-manifold N C U of a smooth manifold U is a subset of U if it satisfies all the
conditions of a manifold [24]. The unit circle S* = {(z,y) : 2 + y?> = 1} and unit
sphere S? = {(z,y,2): 2* +y*> + 2? = 1} are examples of one dimensional and two
dimensional sub-manifolds of R", n > 2, respectively. More specifically, we have the

definition of sub-manifold as follow

Definition 2.1.2. Let U represents the smooth manifold. A sub-manifold N C U is a

subset of U that includes a smooth one-to-one map
$:N—>NCU,

satisfying the mazimal rank condition every where, and N is another manifold where
N = (b(N). The dimension of N, in particular, is the same as that ofN and does not
exceed the dimension of U. The greatest rank of the map indicates that there are no

singularities on the manifold N .
Tangent space to a manifold

Tangent space to manifold U at point p denoted by TU|, is the collection of all tangent
vectors at point p € U to all possible curves passing through this point. If U is an n-

dimensional manifold, then T'U|, is a n-dimensional vector space with the basis vectors

0 9 0 in the local coordinates [24].

Oyt ay?" T By



Tangent bundle

The tangent bundle of a manifold U is the collection of all possible tangent spaces over

the manifold [24] i.e.

TU = TU|,.

pelU
Vector field

A tangent vector V|, is assigned to each point p € U by a vector field V on U,
where V|, varies smoothly from point to point on the manifold U. In local coordinates
y = (y',9°, ...,y"), the vector field has the following form

0

V|,= al(Y)é?_yl + on(y)aiy2 + ...+ a”(y)aiyn,
where all o are the function of y [24].
Lie bracket
For the vector fields V; and V3 on the manifold U [32], the Lie bracket is defined as
[V1,Va].0 = V1(V2.9) — V2(V1.9),
for all smooth function
¢:U— R
The Lie bracket satisfies the following properties

Bi-linearity:

For vector fields Vi, V5, V3 and V4 on any manifold with the constants ki, ko, k3, k4,

the bilinearity condition is
[k1V1 + kQVg, ]{?3V3 + k'4V4] = k?lkg [Vl, Vg] + ]{71]{?4 [Vl, V4] + 1{521{33 [VQ, Vg] + k2k4 [Vg, V4]

10



Skew symmetry
For vector fields V; and V3 on a manifold U, then the following condition
[V1, Vo] = =[V2, V4],
holds and is called skew symmetry.
Jacobi identity
If V1, V5 and V3 are vector fields on a manifold, and satisfy the condition
[V1,[Va, V3]] + [Va, [Vs, V4] + [ V3, [V, V]| =0,

which is called the Jacobi identity.

2.1.2 Lie Groups

Definition 2.1.3. An r-dimensional Lie group is defined as a group G which carries
the structure of an r-dimensional manifold in such a way that the following composition

function I and inversion function k are smooth for all elements of G

I:GxG—GaG,
I(g,h) =g.h, g,heG.
k:G— @G,

k(g)=9', geQG.

Lie groups most frequently arises as subgroups of larger groups, for example or-
thogonal group SO(2;R) of 2 x 2 matrices with unit determinant, is the subgroup of
the general linear group GL(2; R) of all invertible 2 x 2 matrices. Similarly, the orthog-
onal group SO(n;R) is a subgroup of general linear invertible matrices GL(n;R). Lie

subgroups are groups in their own right [24].

11



Examples of Lie groups

e (i). The simple example of a Lie group is G = R i.e., the set of all real numbers

which satisfy all the conditions of Lie groups under addition.

e (ii). The group G = GL(n;R) is the set of all n x n non-singular matrices with
real entries form a Lie group under matrix multiplication. The product of two
non-singular matrices is again a non-singular matrix, the inverse of each matrix
exists as it is non-singular, the identity matrix is the identity of the group and

matrix multiplication is always associative.

e (iii). The set SO(2;R) is the set of 2 x 2 special orthogonal matrices of the form
cost) —sind
sinf  cos#@
which is the rotation group in R?. These matrices form a Lie group.

2.1.3 Lie Algebra

Definition 2.1.4. An r-dimensional Lie algebra denoted by “g”, forms a vector space
corresponds to r-parameter Lie group G. It contains all the generators of r-dimensional
Lie group, satisfying the conditions of bilinearity, skew symmetry and Jacobi

tdentity defined above. This algebra is said to be abelian if [Vi; Vi = 0 for all Vi, Vj €
g [24].

2.1.4 The Lie Derivatives

Let v is a vector field on a manifold U [24]. We're often curious about how specific
geometric objects on U, such as functions, tensors, differential forms, and other vector
fields, change as the flow, exp(ev), generated by v varies. So the Lie derivative of an

object will clearly inform us about its infinitesimal change when subjected to the flow.

12



(Using our standard integration methods, we can reconstruct the variation under the
flow from this infinitesimal version.) For example, the behavior of a function f under
the flow induced by a vector field v is v(f), and called the “Lie derivative” of function
f with respect to v.

If w is another field or differential form and V is a vector field on the manifold
U, then the Lie derivative of w with respect to V at point p € U must satisfy the

following limit:

. (I)(W| expeV )_Wl
Ly(w) = V(w)|,= lim —— 00—,

For two vector fields V1 and V3, the Lie derivative of V4 with respect to V7 is in fact
the Lie bracket

[V1, Vo] =V1(Va) — Vo (V).
Killing Vectors

If the Lie derivative of the metric tensor g = g,e* ® eP, (additional structure on
the manifold which defines distances and angles) whose components ¢,, vanishes with

respect to vector field V, then V on the manifold U is Killing vectors, that is [25]
/;V(gab) = gab,cVC + gacvg + gcbvg - 07 (CL, b7 c= ]-) 27 ceey TL)
Homothetic Vectors

If the Lie derivative of the metric tensor whose components g,,, with respect to the
vector field V is equal to a constant multiple of g,,, then V on the manifold U is a

homothety that is [25]
LV (gab) = gab,cvc + gacvg + gcbVZ = C{Gab, ((Z, b7 c=, 17 27 ooy n)

where c is a constant.
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Conformal Killing Vectors

If the Lie derivative of the metric tensor whose components g.,, with respect to the
vector field V is function time gu, then V on the manifold U is a conformal Killing

vector that is [25]

LV(gab) = gab,cvc + gacvg + gcbVZ — ¢($1)9ab7 (Z, a, ba c =, ]-7 27 RS n)

2.2 Lie Point Transformation

For coordinates (x,y) where z is independent and y is dependent variable, then the
transformation of the form [32]
T ==%(z,y;0) =z + oa(z,y) + ..., (2.2.1)
Jy=19(z,y;6) =y+px,y) + ..., (2.2.2)
where the function o and 3 are defined as
ox Y
= |5 = —Z|s_ 2.2.3
a(x,y) 86‘6—07 ﬁ(x,y) 85’5—07 ( )
is known as Lie point transformation, where § is a parameter. These transformations
can be extended to the order of DE. For example if we have a DE of the form
E('I’ y? y? y? M yk:) = 07

where y* denotes k" derivative with respect to z, then the Lie point transformation

takes the form

T =I(z,y;0) =z +da(x,y) + ...,
§=1(x,y;0) =y +0B(x,y) + ...,
J=9(x,y,9:6) =9+ 68" (x,y,9) + ..,

14



gk = gk(x’ y? y? "'7yk:; 5) = yk + 55]{:(1’;7 y?:l)? ) yk) + tee
If we have n-independent variables x = (z', 22, ..., 2™) and m-dependent variables y =

L2, ...,y™) then the above transformation takes the form
Yy )

T =3z, y;0) = 2" + da(x,y) + ...,
7 = (2,9;0) =y + 06 (2, y) + ..,

ﬂfl = Qfl(x,y; 0) = y{l + (5551 (T, Y, Yiy) + -ory

Yivio,sie — Yitsio,... i (xa YsYivy ooy Yiyyin,..yirg s 5) =

J J . o .
y’il,iQ,‘..,ik + 65@,1’2,...,% (ZL‘, Yy Yivy oo y1177«27---71k) + Tt

where the subscripts denote derivatives with respect to x and superscripts denote

coordinates.

2.2.1 Some Cases of Lie Point Transformations
(i). Translation: The transformation
i’:$+51 gjzy+(52,

is called translation in x and y axis, these transformations form groups called two
parameter Lie groups of point transformation.

(ii): Rotation: The transformation of the form
T = xcosd; — ysindo, 7 = xsin 0 + y cos g,

is called rotation. The area of geometric objects remain invariant under translation
and rotation.

(iii): Scaling: The transformation

2661'7;7 y = ey,

X



is called scaling, similarity transformation or dilation. The geometric objects are ex-
panded or contracted by this kind of transformation. The expansion or contraction is

said to be uniform if 4; = d, and non-uniform otherwise.

Definition 2.2.1. Two geometrical objects are said to be similar if one is obtained

from the other by translation, rotation or scaling transformation on the plane [25].
Under specific transformation, rectangle is similar to unit square

Any rectangle {0 < Z < a,0 < g < b} is similar to the unit square: {0 <z < 1,0 <

g < 1}. We can see that the stretching

ISX
Il
ISEIRS
<
Il

)
= 2.2.4
b’ ( )

converts the rectangular region {0 < 7 < a,0 < g < b}, whose area is ab into a unit
square {0 < 7 < 1,0 < ¢ < 1}. Using the transformation given by Eq. (2.2.4), one can

find the relation between the areas of the two figures as

%ﬁlzﬁﬁab:xy.
ab ab

Area =y =

Hence, rectangle is similar to square by using Eq. (2.2.4). Similarly the ellipse

1.2 y2
2t =h

can be transformed into the unit circle
i,? + gQ — 17
by the similarity transformation given in Eq. (2.2.4) and their areas are related by

fl:ébﬁab[l:A:abﬂ:A,
a

where A = 7 is the area of the unit circle and A is the area of the ellipse.
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2.3 Lie Symmetries of Ordinary Differential Equa-
tions (ODEs)

If x and y are independent and dependent variable respectively, and underlying space
is X x Y = R? with coordinate (z,y), then corresponding jet space y* of order k for

kth-order DE is given as [32]

E(QZ, y’ y? y?"'?yk> = 07 (2.3.1)

is X x Y™ = R"2 with coordinates (x,y, ¥, i, ..., y¥) where y* is the k'"-derivative of

y with respective z. The Lie symmetry generator for the space X x Y = R? is

0

0
V= a(x7y)_ + ﬁ('ray>a_y

ox

The Lie generator for the space X x Y"1 = R"*2 for any k" order ODE is

VI = a(e.y) o + B g) o+

N ... 0

or (9@} I(xayay)_+ﬁx:€($ayayay)a—y++
9
oyk’

0y

Bx,x,...,x (I7yuy7yv"'7yk) (232)

N—~—"n—times
above expression is called k* order prolongation of the infinitesimal generator. Where
. d . d
617(‘%‘7 Y, y) - %ﬁ('xa y) - y%a(x, y)7

. d . . d
61‘$(I7y7y) - %53:(%%9) - ?JEOZ(%?J%

. d . _ d
ﬁx,l',...,l' ('xay?y’"'uyk):d_ﬁx,l’,...,l' (xayaya“'uyk 1)_Z/kd_05(x73/)7
N——~——"n—times x N—~——"n—times x
and the total derivative operator is
d 0 0 0
D= =L 4y Ly . 2.3.3
dx Oz + y@g) + yay oty oyk—1 ( )

17



Exmple (Lie symmetries of second order ODE)
Now, we find the Lie symmetries of second order ODE i.e.,
y+y=0. (2.3.4)

The jet space for this differential equation is X x Y3 = R*, its jet coordinates are

(z,y,9,%). The infinitesimal generator takes the form

0 0
V= = <
oz, y)5- + Blz, y)ay,
and the corresponding second order prolongation of symmetry generator is
0 0 0 0
Vi = = — 1+ B, Y, §) = + Baa(, 95 0, §) = 2.3.5
(@, y) 5 +B(x,y)ay +8 (x,y,y)ay +8 (%y,y,y)ay (2.3.5)

Apply the generator given by Eq. (2.3.5) to the ODE given by Eq. (2.3.1) and using

the values of 3, and ,, in terms of S we have the following system of PDEs,

Qyy = 0, gy T Oy = 0,
Oggy — 3yaa:y + 404:1: = 07 Byy - 2axy - 07
ﬁy:c + 3yay — Qggy = 07 /Bxx - yﬁy + 2y0495 + ﬂ =0.

Solution of above system is given by
a(z,y) = Aysinx + Bycosz + C'sin2z + D cos 2z + F,
B(x,y) = Ay? cosx — By*sinz + Cy cos 2z — Dy sin 2z + Fy + G'sinz + H cos z.

This solution represents eight parameter Lie group of transformation. The correspond-

ing symmetry generators are

V, :ysinx%—i-y%osxa—y, V, :ycosx%—yzsinxa—y,
0
V3 =sin 23:% + y cos Zxa—y, V4 = cos 235% — ysin Qwa—y,
0 0
V5 =cosx—, V¢ = sinz—,
Ay dy
0 0



The Lie algebra is

1 3
[V17V2] = _V17 [Vl,Vg] = —V27 [V17V5] = —§V3 _ §V7’
1 1
[Vl,VG] = —§V4 — §V8, [V1,V7] = -V, [VlaVS] = —V,,
1 1
[V27V3] - V27 [V27V4] - _V17 [V27V5] = _§V4 - §V87

3 1
[V2’V6] = _§V7 - EV& [V27 V7] = V27 [VZ; VS] = _Vla

[V37V4] == _V87 [V37V5] = _V57 [V37V6] = VG?
V3, Vg] = =2V, [V, V5] =V, [Vy, Vg = Vs,
V4, Vg] =2V3, [V5, V7] =V;5, [V5, V] = Vg,

[V@, V7] = V6 [VG, Vg] = V5 [V“ V]] = 0, otherwise.

0
The Lie group corresponding to Vg = o is calculated as
x

0 ay
6_§’5:0: ]-; 6_?; 6=0— 07
2(0) = =, 5(0) =y

The solution of above DEs gives the Lie group Gg. The other one parameter Lie groups

are (J is the parameter)

G : [m+5ysinm, %},

G : {x%—éycosx, m],

Gy [arctan(tan x. exp(20)),  yexp(d cos2z)],

Gy [arctan(tan(x — %) exp(26)) + %, yexp(—dsin 2x)],
Gs - [z, y+dcosa],

G [z, y+ dsinz],

Gr: [z, exp(dy)];

Gy : 40, yl.
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2.3.1 The Lie Symmetries of Partial Differential Equations
(PDEs)

Let x = (2!, 2%, 2%, ..., 2") be independent and z = (2!, 22, 23, ..., 2™) be dependent vari-

ables. Then the Euclidean space is x X z = R™"™ and in coordinate form (z, z), cor-

responding k" order jet space is x X z;, 4, _;, having coordinate (z,2, Zi,, .., Zi; in... in )

-----

where subscript shows the derivatives. The PDE in k" order is given below

g(xvz7zi1azi1,i27 ooy Ly ig, ..., lk) = 0.

The Lie generator for this PDE is

0 0

]
V=adast+ P

and prolongation upto k' order is

0 .0 0 0 0
(k] _ i _ - -
V &8 +/6Jaj+ Zlaj +/8le28‘7 + + 111,2 ,,,,, Zkaj

iy i i1 iz

Example 5
To illustrate the Lie point symmetries, consider one-dimensional heat equation
Oi(t, ) — Pup(t,z) = 0. (2.3.7)

It is linear second order PDE, its solution space X x & with coordinate (¢, z, ¢) and
corresponding jet space is X x ®2 having jet coordinate (¢, x, @, ¢s, dp-Gtt, Gizs Puz). The

symmetry generator for the solution space will be

V_Oé<t $,¢)a+a<t .%,(b)@ 5(t7'r7¢)£7

99
and the second order prolonged generator is
L 0 0 0 0 0 0 0
Vi =q +alo- o+ —+ + Bem o+ + Brom— + Bow—
i %86 " Pae a0, T ot e 0n T P00,

(2.3.8)
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Apply the generator given by Eq. (2.3.8) on the PDE given by Eq. (2.3.7) and using

the values of f3;, 3., in terms of B and o' we have the following system of determining

equations,
2 2 2
Q{¢ — 07 am — 0, OZ¢¢ — 07
2 1 2 1
aalmz - O[% - QBzd) = 07 Bt - ﬁw:c = 07

20} —al + a2, — B, =0.
The solution of this system is
ol = 2dit + 4dzt* + d,
CY2 = dlilf + 2d2t + 4d3$t + d5,

B = —dyxep — 2dstep — dspa® + ds + f(t, ).

(2.3.9)

(2.3.10)

Since, we have an arbitrary function f(¢,x) in the solution, therefore algebra is infinite

dimensional here. The Lie symmetry generators are

0 0 0 0
V1 —[L’@‘FQta, V2 —21:% _$¢a_¢a
B 0 5 0 9 O e
V3—4tx%+4t 5 o2t +x )8_¢’ V4_§’
0 0

V5 - 8_1'7 V6 - ¢a_¢7
Vs = f(t x)g

B — 5 8(257

where [ is an arbitrary constant. The Lie groups are

G : [exp(20)t, exp(0), ¢l
Gy : [t x + 26t, P exp(—dz — 6°t)],
Gy : ! ! o1 — ddte oz

’ 1—46t"  1+6t AT =6t )]
G4 : [t + 57 xz, ¢]7

21
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G : t, oz, exp(d9)],
Gp : [t x, o+ 0f(t,x).

2.3.2 Approximate Lie Groups and their Symmetry Genera-
tors

Sometimes physical problems admit approximation. For instance, in free fall, we disre-
gard air friction. Similar to how air friction affects simple pendulums, which lose their
motion. Friction on the surface that a body coupled to a spring is moving on, slows
down simple harmonic motion. The exact Lie group theoretic approach to the solution
of DEs is highly sensitive to very small perturbations in physical systems (in this case,
the air resistance and friction between the spring and surface on which it moves) [30].
Thus, using the Lie group technique to solve DEs in these physical problems is not
effective. The instability of the Lie group theoretic approach to the solution of DEs
was fortunately reduced by the development and application of an approximate Lie

group method [34, 35, 36].

Definition 2.3.1. An approximate transformation of order p in R"™ can be written as

[5]
ot — 3~ TH(a,0) + €2 (2, 0) 4 ... + LT (2™, 6), (2.3.12)
which obey the initial conditions

i i _
Tils=0 =%, Vi=1,2,..,n.
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Approximate symmetry group generators of order p

The generator of the approximate transformation given in equation Eq. (2.3.12) is of

the form

V = a'(x, 5)%, (2.3.13)

such that
o' (x,0) & af(x) + 60 (x) + ... + 0P (x),
. 9
ay(r) = %xﬂgzo, (2.3.14)

then the generator given in equation Eq. (2.3.13) takes the form

, . - 0
V = (o(x) + daj(x) + ... + 5pa;(x))%, (2.3.15)
where 0 is small parameter.
First order approximation
The symmetry generator of the form
. 0
V=—ao 2.3.16
& o ( )

is said to be of the first order if o = of + da’, where 4 is a small arbitrary parameter.

The generator in Eq. (2.3.15) splits into two parts as

)
VO =af—
Wi
V= aj—.
al@xl

where V is the exact and V! is the approximate part of the symmetry generator given
in Eq. (2.3.16). The corresponding approximate transformation group of point z into

T 18

o — 7~ T (2™, 6) + el (™) 6). (2.3.17)



Example 6

Now we find the approximate Lie group of first order approximate (one dimensional)

symmetry generator

0
_ 2 92.3.1
V =y +€y)ay’ (2.3.18)

has two parts as

0

0
o_,2 "~
_y 8y7

\% T —y—
yay,

\'%

where VY is the exact and V! is the approximate symmetry. Here ag = 3% and oy = y.

The corresponding approximate Lie equations are

s 9 016=0 3
dijpn .
ds Yo, U1]s=0= 0, ( )

then the solution to this system is
~ ~ 523/2
o = 0y* +, = ——+ 0y,

and

52 2
g:6y2+y+6(Ty+6y).

is the approximate Lie group of transformation.
Example 7

Now consider a two dimensional first order approximate symmetry generator

3} 0
V=(1+ ex)% - eya—y,
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which can be splits into two parts as

0

vi=_— = —
ox’ 8x+y8y’

where V is the exact and V! is the approximate symmetry. The corresponding ap-

proximate Lie equations are

d.i'o 1 ~ | dgo O ~ |
_— = l‘ _nN= l‘ —_— —NnN=
a5 ) 0]6=0 ) a5 y - Yols=0=Y,
d.i'l - ~ dgl ~
a5 o, $1|6_0 ) a5 ) ?/1|6_0 ( )
The solution of this system is
(52
i'Q:£E+5, f1:6$+3,
gO =Y, gl = 6ya
and
52
iza:—l—é—i—e(c%—k;), J=1y+dy.

are the approximate Lie groups corresponding to above system.

2.4 The Euler-Lagrange Equation

A class of Lie symmetries that correspond to conserved quantities are the Noether sym-
metries. The Noether symmetry is an invariance of action integral under infinitesimal
transformation of a group. Noether symmetries are the symmetries of a variational
problem, which represents a physical system and can be written in an integral form,
which is known as the action of problem [26]. For example, consider length of a curve

of function ¢(t); from a point (a, ¢(a)) to another point (b, ¢(b)) that is
b
S= / JIT e d, (2.4.1)
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W

where denotes differentiation with respect to t. The extremal value for S, ¢(t)
must be a straight line. In order to show that ¢(t) is a straight line, we shift ¢(¢) from

its minimum value by eu(t) that is

q(t) — q(t) + eu(t), (2.4.2)

€ is an arbitrary small parameter, and u(t) is arbitrary function satisfying u(a) =

u(b) = 0. The integral given in Eq. (2.4.1) takes the form

/ V14 (4(t) +eu(t))? dt. (2.4.3)

Taking derivative of Eq. (2.4.3) with respect to €, we have

de /\/1 ) +eu(t))? dt,

q + €t .
Ule—o dt, 24.4
/ V14 (§(t) +eu(t))? 0 ( )

:/am“

Integrating the right hand side with respect to ¢, we have
d i(t b d i(t
g 0 [l ),
de 1+ ()2 o dtL\/T+4(t)?

_ /ab % {%} udt. (2.4.5)

In order to get extremal values of S, we impose conditions on the function ¢(t) through
variation.

ds__g[ i) ]:

de” b1 (0

Since u(t) is continuous, therefore, by the fundamental theorem of calculus of variations

gives

_d {L} _o, (2.4.6)
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as a result, ¢(t) must be a straight line. If we take

L(t,q(1),4(1)) = V1 +4(1)?,
then Eq. (2.4.6) can be written as

oL d( oL
i ~ it (o) = 24D

where the function £ is called Lagrangian density, Eq. (2.4.7) is the Euler-Lagrange
equation. The calculation might be applied to any general Lagrangian in this specific
variational problem given general coordinates and derivatives of any order. The Euler-
Lagrange equation impose limitations on the variables that can be used in the action.
This equation is solved to give an extremal of action, can be obtained from the variation

in the action.

2.4.1 Geodesics

Assume that ¥ is a surface and zy and x; are two points on it. Finding curves on
>} with endpoints zy and z; having minimum arc length is the focus of the geodesics
problem. A curve with this characteristic is referred to as a geodesic. The theory of
geodesics is one of the most advanced concepts in differential geometry. The general
theory is complicated by the fact that common, simple surfaces such as the sphere
require many vector functions to represent them analytically. The sphere is a manifold

in geometry that requires at least two charts.
Geodesics on the plane

Let (zo,y0) = (0,0) and (z1,y1) = (1,1). The arc length of a curve described by y(t),

t € [0,1] is given by
J(y) = /0 VT Pde. (2.4.8)
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The geodesic problem on the plane consists of getting the function y that minimizes

the arc length. Our investigation is limited to functions in C?[0, 1] such that

y(0) =0, y(1)=1. (2.4.9)
The Euler-Lagrange equation must be satisfied if y is an extremal for J; hence,
d (0J aJ d Y
(=) - ==—"—ZL_)—-0=0 2.4.10
dt(&?)) Oy dt(\/1+y2) ’ ( )
Y

VI+

The last equation is equivalent to the condition that y = ¢;, where ¢; is a constant. As

= constant.

a result, an extremal for .J must be of the form
y(t) = At + B (2.4.11)

where B is another constant of integration. Since y(0) = 0, we see that B = 0, and
since y(1) = 1, we see that A = 1. Consequently, y(t) = ¢ which describes the line

segment from (0,0) to (1,1) in the plane, is the only extreme value of y [26].

2.5 Legendre Transformation

The contact transformations are defined by functions that depend on the derivatives
of the dependent variable. These transformation are significant in DEs and geometry
[26]. The Legendre transformation is one of the most simple and effective contact
transformations. This transformation has a remarkable property that it links Euler-

oH OH

Lagrange equations and Hamilton’s equations (P = —5:-,da = 7;,), Which also has

several remarkable characteristics. We start by thinking about the most basic Legendre

transformation with a single independent variable.

Let y : [zo, x1] — R be a smooth function, and define the new variable by
0= i) 2.5.)
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If 3(t) # 0, then Eq. (2.5.1) can be used to define the variable ¢ in terms of ¢. For

definiteness, let us suppose that
ii(t) >0, (2.5.2)

for all ¢t € [xg,21]. Inequality given in Eq. (2.5.2) implies that the curve described
by r(t) = (t,y(t)),t € [xg,x1] is strictly convex upwards in shape. The slope of the
tangent line is represented by the new variable ¢q. Geometrically, any point on a curve
is under these conditions uniquely specified by the slope of its tangent line. Suppose

that, we introduce the function
H(q) = —y(t) + qt. (2.5.3)

The transformation from the pair (¢,y(t)) to (¢, H(q)) is given by Egs. (2.5.1) and
(2.5.3). This is an example of a Legendre transformation. This transformation has its

own inverse i.e., it is an involution. For this, note that

aH  d d

)+ St
_dydt | At
“dtdg  Tag Y

dt
= -_— y t — t :t
(y< ) Q)dq )

where we have used Eq. (2.5.1). Also note that
—H(q) +tg=—(—y(t) + qt) + qt = y(?). (2.5.4)

From Egs. (2.5.3) and (2.5.4), it is clear that one can obtain the original pair (¢, y(t))
of transformation by applying the Legendre transformation to the pair (¢, H(q)).

Now, we apply Legendre transformation on the function y(t). Suppose
y(t) = —. (2.5.5)
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Then using Eq. (2.5.1)

_dy _

¢=- =t (2.5.6)

So that, ¢ = ¢3. The function # is obtained by Eq. (2.5.3)

4

t 3 4
Hig) = -7 +at = Jq°.

Taking derivative, we get

and that

w

4

—H(q) + tqg = —q + tq,

W

3
= —Zt4 +t* = y(t).

Hence proved that y(t) and H(q) are inverse of each other.

2.6 The Mei Symmetries

A technique to find the Mei symmetries of Euler Lagrange equation of the Lagrangian
was described by Zhai and Zhang [20]. The summary of the method is outlined here.

Consider the Euler Lagrange equation of the corresponding Lagrangian L£(t, x%, %),

d (0L oL
7 (8x'a> ~ e 0, (a=1,2,...,n). (2.6.1)
Writing
. d (0 0 B
E* = 7 (89’5“) ~ G (a=1,2,...,n). (2.6.2)

Eq. (2.6.1) takes the form

EY(L) =0, (@=1,2,..,n). (2.6.3)



Consider the infinitesimal group of transformations associated with a single parameter
t*=T(t,2'(t),0) =t + da(t,'(t)),
™ = X(t, 2 (t),0) = a(t) + 08°(t, 2" (1)), (a,i=1,2,...,n), (2.6.4)

corresponding generator V is given as

0 0
V=a— “ . 2.6.
e + 4 pye (2.6.5)
The Lagrangian L is replaced by a new Lagrangian £* under the transformation
da* i 4 o
Lr=Lt 2", —)=L(t+ 0o, 2" + 6%, ———— 2.6.6
(0, 2 (+a,w+ﬁ,1+5d), (2.6.6)

W

where represents the derivative with respect to independent variable ¢. After that,

we apply Taylor’s series expansion at 6 = 0 to get

LY = L(t,z% &%) + oVIL + 0(5?), (2.6.7)
where
0 0 : 0
[1] — N a a _ gas\_
V e + 3 B + (-2 a)(’)ja’ (2.6.8)

is the first extension of the infinitesimal generator [20].
Definition 2.6.1. Mathematically, Mei symmetries of the Lagrangian are defined as
E*(L*) =0, (a=1,2,...,n). (2.6.9)

When the Lagrangian L is replaced with transformed Lagrangian L£*, and Eq. (2.6.3)

remains the same, then it is referred to as the Mei symmetries of the relative Lagrangian
[20].
Definition 2.6.2. If a and p* satisfy the given condition

EoviL] =0, (a=1,2,...,n). (2.6.10)

The given invariance is called the Mei symmetry. After solving Eq. (2.6.10), we get
a system of PDEs. The solution of this system gives a and 5* which satisfy the given

criterion of Mei symmetries [20].
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2.7 Relation between Lie and Mei Symmetries

To develop the relation between Lei and Mei symmetries [16], consider VIUL

oL oL - oL
x + (5 -2 a)ax“

(2.7.1)

Now, applying Euler operator on Eq. (2.7.1), we get

P Do 0L L L 0B OL O or
_ [1] a a __ a
0 VL = oo tomar T amrom T o ne T o T T Y0

b (e — i) 2 (gf)

d a(v ) - (8@)35 < > ( > .32£ i( 82£>
dt Ok oxk oxk 8m’“8t dt \ 0zkot
Y O*L ad ( o*L ) <86“> 85“ ( > N oL {i 0
7z ozk ) Oz 3x’“ dt \ dze Oxa | dt Ox*
d
o

Otkdxe +d_
s o iy (PN oLy @ (0L o
¢ —ma>]+— i) (55 ) + = ) (55 )+ (=

otk

Ao (or
AR ARG A

and

_8_048_£+a 0°L +8ﬁa@£ L g 9*°L N 0 (B“—x“ )8£
 Oxk Ot oxkot  Oxk Oxe oxkoxe  Oxk oxa

. 0 (0L
P -d) e (aza)‘

oL oL ; oL oL
kvl ey ok k( na k(Ga _ gag k
BHVIL) = BM@) G + BH07) g + B — )+ ot (7 )

+a_0&i a_£ + 4 82[: +Ba 82£ +8ﬁ“ i oL +i(6a_l:ad)i 0L
i di\ ot ) " “oikor T dikore | dik oz ik dt \ 9o
d . ... 9 (0 o ey [OL o (or B

+E<6 T 04)@(@) + (8 a)E (833 ) BE (8xa)’ (k=1,2,..,n)

Ek(v[”m=V[2]<Ek<,c>>+zﬂ,c+a—“i(8_ﬁ>+5’5 [ ( )} b (e )

Oxk dt \ Ot Ok
d (oL
dt \ oxe )’
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where

oL oL : .. 0L
1] pr — mk k( na kipa _ an
ZV'L=F (a)—at + E¥(B )_8xa+E (B —x a)ax.a,

under infinitesimal transformation given in Eq. (2.6.4), if the equation of motions are

form invariant, and the following relations hold

da d (LN 98 [d [ 0 2n o d (OL
[1] il B et el e Y orpa _ gasy _
ZULT St ( 8t> T 9 {dt (896“)} Tl -y (aw) 0

(k=1,2,...,n),

which yields
EF(vUL) = VE(ER(L)).

The above expression shows a relation between Lie and the Mei symmetries.

2.8 Relation between Mei Symmetries and Noether
Symmetries

Jian-Hui et al. in [17] developed the criteria of finding symmetries named as Noether-
Mei symmetries of mechanical system in phase space. If we have gauge function B =

B(t,q, p), then the infinitesimal generators «y, 5§, 5¢ satisfy the given condition

OH OH : 1 [0 2
[Hozo + 50+ a—qsﬁg — s — Qs(B5 — 4sB%) — B} + [ . [VH]]
a 2
+ [ 5o [VH] - VQS} =0, (2.8.1)

then the Eq. (2.8.1) is called Noether-Mei symmetries of the mechanical system in

phase space.
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2.9 Mei Conserved Quantities corresponding to La-
grangian

The Mei conserved quantities induced by Mei symmetries can be obtained by Theorem

2.9.1 and Theorem 2.9.2.

Theorem 2.9.1. There exists Mei conserved quantity

o(vliL)
O

corresponding to the Mei symmetry generator VI, that satisfies the condition

I=(VUL)a+ (B — 29) + B, (2.9.1)

(VilL)a+ vVl + B =0, (2.9.2)
where B = B(t,z% &%) is a gauge function [22].

Proof. Taking derivative of I with respect to 't’, we have

ar  fovig)y  ovicg) - o(vlr) W, dOVILN L,
%—< By +a e T T )Oé+(V E)a—l—a(—ajja )(6 — %)

OVHL)N ., :
+(W)(ﬂ — %@ — i%a) + B,

(1] (1] (1] (1]
dr _ <a<v L), LOVIL) 0V £>>&+(Vm£)mi<8<v L))(ﬁa_iaaa)

dt ot Ox? oz dt oz

+ (B2) - i - o) - (P - o D5 - (A522)

oz ot Ox?
. (1]
- (e (A5,

using Eq. (2.6.10), we get

= B (VML) (" — %),

ar
dt

0,
hence proved that [ is a conserved quantity. O
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Theorem 2.9.2. There exists Mei conserved quantity
mpe_ a9 i
[I=VYL -z 8_V L+ B, (2.9.3)
$a

corresponding to the Mei symmetry generator VU, that satisfies the condition

o )
aVML +B=0, (2.9.4)

where B = B(t,x% &%) is a gauge function [22].

Proof. Taking derivative of I with respect to 't’, we get

dr (VUL VUL VUL d (oviey L ovie
da  \ ot dxe die dt\ i die ’

using Eq. (2.9.3), we get

dI. _[_d(ovlLy oviL)

d | dt\ 0i° O ’

dl

— = BVl

= E(VIg)i

dl

— =0

dt ’
this completes the proof. O]
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Chapter 3

Approximate Mei Symmetries and
Invariants of the Hamiltonian

3.1 Introduction

This chapter presents a procedure for determining approximate Mei symmetries and
invariants of perturbed Hamiltonian that can be applied in a variety of disciplines of
study where approximate Hamiltonian are of interest. This Hamiltonian is calculated
from the Lagrangian of DHO which is given in [33]. The Legendre transformations are
used to convert the Lagrangian to Hamiltonian. The results are provided as theorems,
accompanied with proofs in Section 3.2 and Section 3.4. To elaborate the method of
determining these symmetries and the associated Mei invariants, a basic example of
mechanics is presented in Section 3.3. Finally, a comparison of approximate Mei and
approximate Noether symmetries is provided. The comparison reveals that both sets of
symmetries have only one common symmetry. As a result, the remaining symmetries
in the two sets correspond to two distinct sets of conserved quantities.

The applications of symmetry methods and conserved quantities are significant in a
wide range of academic fields, including mathematics, social sciences, natural sciences,
engineering, etc. In her well-known theorem presented in 1918, Noether [8] connected

symmetry with conservation laws. In addition, an action integral of a functional (La-
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grangian) is invariant under a infinitesimal transformations of a group. This set of
transformations is known as Noether symmetries. Feng-Xiang [11], introduced Mei
symmetries in 2000 (also known as form invariance), which are equations of motion
under infinitesimal transformation of a group. However, in approximate Mei sym-
metries dynamical functions such as perturbed Lagrangian, perturbed Hamiltonian
etc., are replaced by transformed dynamical functions. Furthermore, after performing
some infinitesimal transformation of a group, the equations of motion are satisfied. The

approximate Mei symmetries, in particular, preserve the form of equations of motion.

It is well known that there is a conserved quantity associated with each Noether
symmetry. Similarly, Mei symmetries are another class of symmetries that corresponds
to conserved quantities. Therefore, the conserved quantities may differ between the two

sets of symmetries.

DEs with small parameters, known as the approzimate/perturbed term, emerge
frequently as mathematical models of real-world problems. In general, the param-
eter refers to some kind of error or correction. To solve equations including per-
turbed /approximate terms, various approaches have been proposed, including the ho-
motopy perturbation method, the A-domain decomposition method, the inverse scat-
tering transformation method, and the approximate symmetry method. The approxi-
mate groups for perturbed DEs were initially studied by Baikov et al. [34], who also
developed theory based on approximate groups. A method to determine the approxi-
mate symmetries of perturbed DEs is also provided by the approximate Lie theorem.
Gazizov [37] developed an approach to determine the approximate invariants and de-

fined some properties of approximate symmetries.

The approximate symmetry generators and invariants of the perturbed ODEs were
used by Feroze and Kara [38] to construct the Lagrangians. The similar method was

used by Johnpillai and Kara [39] to create approximate Lagrangians for perturbed
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PDEs. The approximate symmetries and conserved quantities of a system of DEs
are discussed in [40]. For the perturbed K-dV equation, approximate symmetries are
determined, and a one-dimensional subalgebra of an optimal system is constructed in
[41]. Third order approximate Noether symmetries for Bardeen spacetime are presented
by Camci [42], who has also created some new approximate Noether gauge symmetry

relations for perturbed Lagrangians.

3.2 Mei Symmetries of Approximate Hamiltonian

The unperturbed Hamiltonian system has been discussed in terms of the Mei sym-
metries and their related first integrals in [18]. Here, we present approximate Mei
symmetries and invariants corresponding to perturbed Hamiltonian in the following

theorems.

Theorem 3.2.1. Let V. = V° + V! be approzimate symmetry generator and L =

Lo+ €Ly be the first order perturbed Lagrangian, where VO = Oéo% + B35 620 and V1 =
041% + ﬁ?a%a, then
EY(VU ) =0, (a=1,2,...n). (3.2.1)
BVl + VI =0, (a=1,2,...,n). (3.2.2)

Here E® is called the Euler operator defined in Eq. (2.6.2), VU and VU are first-

order prolongation of symmetry generator and approximate symmetry generator.

Proof. The Legendre transformation which forms the bridge between Lagrangian and

Hamiltonian as

: : : oL
H(t,z% z%) = pax® — L(t, 2%, 29), Pa= 5 (3.2.3)
xa
applying VI on Eq. (3.2.3), we get
VIUH = (VU 4 eV (paaa — (Lo + €Ly)), (3.2.4)
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where

0
DPa = %(['0 + 6ﬁl)v

then Eq. (3.2.4) becomes

VI = (V4 V) g (ot ) = 0]
xa
oL oL
A — (ol 1] 0 _ et
VHH = (VP 4 eV )[(pa B £0> + €(pa B El)},

VUHE = (VU VI (Hy + eHy),

To prove the above relations, Eqs. (3.2.1)-(3.2.2), apply first order prolongation of V
ie. VI = Vol 4 ¢Vl on H = Hy + €H; to have

VUH = (VU 1+ eV (H, + eH)Y), (3.2.5)
neglecting the higher order terms in € yields
VUH = (VU HY) + (VO H, + VI HY). (3.2.6)

Applying operator E%, given in Eq. (2.6.2), on Eq. (4.1.3) and requiring the invariance
E4(VIUH) =0, we have

EY(VUHY) 4+ (VO H, + VI H) =0, (3.2.7)

comparing the coefficients of different powers of € leads to Egs. (3.2.1) and (3.2.2).
This completes the proof. n

3.3 Mei Symmetries of Approximate Hamiltonian
of DHO

The linear equation of motion of DHO is taken as an example. The Hamiltonian

of DHO is obtained by using Legendre transformations defined in Eq. (3.2.3) using
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Lagrangian of DHO given in Eq. (4.2.2) in Chapter 4.

where

‘Cl = t(y2 - y2)7
after solving Eq. (3.3.1), we get
Loy 22
Ho+ ety = (5" +y°) + et + y7).
Now, writing H by separating the powers of €, we obtain

1 .
Hy = §(y2 + ),

Hy = t(* + ¢%).
Applying VI on Eq. (3.3.3a), we get
VO Hy = 980 + 97 Bo, — §P a0 — 5oy + ybo.
Now Eq. (3.2.1) (for a = 1), for the above Eq. (3.3.4), gives
EY (VU Hy) = 0.
Alternatively,
d (VU H, OVUHy\ _
dt oy dy B

The above Eq. (3.3.6) gives the following expression

(3.3.1)

(3.3.2)

(3.3.3a)

(3.3.3b)

(3.3.4)

(3.3.5)

(3.3.6)

BO,tt + 2?)250,ty + 2@50,3; - 2?Jao,t + 925O,yy - 23)040,1% - 492040,153; - G@QOéo,y - ngao,yy

— Bo — yBoy = 0,
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since first-order prolongation of symmetry generator is used therefore, we used j—y = 0

in Eq. (3.3.7), we get

/Bo,tt + 2@50,@ + 2y60,y - 2yOéo,t + 9250,yy — 2y — 492040,@ - 699040,3; - 293040,%

- 50 — yﬁoﬂ = 0. (338)

The coefficients of different powers of y provide the following system of PDEs

Bott — Bo + yBoy — 2yan: = 0, (3.3.9)
Boty — o, — Yy = 0, (3.3.10)
Boyy — daogy =0, (3.3.11)
) (3.3.12)

Eq. (3.3.11) and Eq. (3.3.12) respectively imply

ao(t,y) = yf(t) +g(b), (3.3.13)

Bolt,y) = L fo+yo() +7(2). (3.3.14)

Using Egs. (3.3.13) and (3.3.14) in Egs. (3.3.9) and (3.3.10), we obtain the following

system

Jur =0, dun — 294 =0, (3.3.15)

Vit — W(t) =0, 5,t —gu=0.

Solving the above system given in Eq. (3.3.15) and substituting the solution in Egs.
(3.3.13) and (3.3.14) yields

ap = Cy 4 V2 Cy + e V(s

Bo = yv/2e¥*Cy — yv/2e™VCy + ¢ 7'Cy + €' Cs + yC. (3.3.16)
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Eq. (3.3.16) provides the following list of Mei symmetries viz.,

%)
O —
Vi=o (3.3.17)
o) o)
0_ vetY Vet Yo
Va=e'io + yV/2e 5y (3.3.18)
%) o)
0 _ —v2t Y e~ V2t 2 1
Vi=eio YV 2e i (3.3.19)
, 0
Vg =€ ta—y, (3320)
V? e'f2 (3.3.21)
5 ay’
Vi) = yﬁ (3.3.22)
6‘ ay. . .

Approximate Mei symmetries are calculated using the above exact symmetries given
by Eqs. (3.3.17-3.3.22). For this, we consider V3, to illustrate the method, where
VO H, + VIIUH, is expressed as

VOUH, + VI Hy = 9B, + 9781y — 1Pane — PPany + ybr + 9Pe V' + y2e ™V + 2v212
eV 4 Atye V2 (3.3.23)

Now using Eq. (3.3.23) in Eq. (3.2.2), we have

d (VO H, + VI Hy) - OV H, + VI H) 0
dt oy oy -

(3.3.24)

or

Bt + 29P1ey + 2P,y — 2§01y + ?)251,yy — 2y — 492041,@ — 6yyoy — 293041,yy

— B — yBry — 2V 2he YV 4 dye vV = 0. (3.3.25)

Using standard procedure of comparing the coefficients of different powers of g, the

obtained system is

Biae — B +yBiy — 2yan s + 4y€_\/§t =0, (3.3.26)

Bity — 01 — 3y y — \/ie_ﬁt =0, (3.3.27)
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ﬁl,yy - 4CV1,ty = 07 (3328)

a1 yy = 0. (3.3.29)
Eq. (3.3.28) and Eq. (3.3.29) respectively imply

ai(t,y) = yf(t) +g(t), (3.3.30)

Bulty) = % Fa+ys(t) + (1), (3.3.31)

Using Eqgs. (3.3.30) and (3.3.31) in Egs. (3.3.26) and (3.3.27), we obtain the following

system

Jue =0, O — 29 + de™V2 = 0, (3.3.32)

Vit — ’Y(t) =0, 5,t — G4t — \/ﬁe_ﬁt = 0.

Solving the above system given in Eq. (3.3.32) and substituting the solution in Egs.
(3.3.30) and (3.3.31) yields

1
ay = Oy + eV Cy + e V204 — §te_‘/§t, (3.3.33)

3 1
51 = y\/ﬁe‘/ﬁtC’g - yﬂe*ﬁth + 67t04 + €tC5 + yC’6 — iye*‘/it + Eyteﬁt.

Now assigning value of any constant equal to one, say C'5 = 1, and remaining constants

equal to zero, we obtain the generator V9 given in Eq. (3.3.19). Then, Vi can be

written as

1 0 3 1 0
1 = _ ¢ —\/Qt_ = —\/§t —ut —\/§t - 3 4
% 5te 8t+< SYe +\/§ye 3y (3.3.34)

The nontrivial approximate Mei symmetry of Eq. (3.2.2) has the form

0 0 1 0 3
Vs =VI4eVi= (e‘ﬁta — y\/ﬁe_ﬁta—y) + 6< — 5256_\@& + ( — §ye_*/§t

1 0
+ Eyteﬁt) a_y)' (3.3.35)
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In a similar way, the remaining approximate Mei symmetries are obtained as

o) %)
0 1 _
Vi =V)+evy =5~ gy (3.3.36)
o) 0 1 0 3
V,=Vy+eV, = ( Vo +yfe‘”ay) +e<—§te‘/§t&+ <—§yeﬁt
1 o)
V2t
_ Z), 3.3.37
N )39) ( )
Vy=V)+eV) = e_tg - ete—’f3 (3.3.38)
4 4 4 8y Gy’ 9.
\Y% V0+€V1—€2—6t63 (3.3.39)
o dy oy’ o
Voo VO vl =y 0 gy (3.3.40)
6 6 6 8y ay- 9.

3.4 Approximate Mei Invariants corresponding to
Hamiltonian

The approximate Mei invariants are formulated in Theorem 3.4.1, Theorem 3.4.2

and Theorem 3.4.3.

Theorem 3.4.1. There exist Mei conserved quantities

VO H,
[0 = Oéo(VO[l]Ho) + (68 - i“ao)% + B(), (341)
Vol g
[ = aO<VO[1]H + Vl[l HO) + CYl(VO[l HO) + (B —x al)% + (ﬁg — i’aOéQ)
Vo, + v g
o Lt )y p, (3.4.2)

oxe

corresponding to the Mei symmetry generators VO = a()% + Bgaia and V1 = 041% +

B2 5.0, that satisfy the conditions

ao (VO Hy) + VOVl ) + By = 0, (3.4.3)
o (VU H, + VI ) + 6y (VI Hy) + VO (VO - VI HGY - VITT(VOlT )

+ B, =0, (3.4.4)
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where By = By(t, %, z%) and By = Bi(t,z% z%) are the gauge functions and H =

Hy + €H, is first-order perturbed Hamiltonian.

Proof. First, we have to show that dd—[: = 0 to ensure that [ is a conserved quantity.

dI° OV HY)  O(VWMHy) . o(VOIHY)
%_( ot T o T g,

d (OVWH)N, ., OV H) d
E(TW} ~ #a0) + (a—)a

dI° 6(V0mHo) .aa(VO[”Ho) .,GG(VOU]H()) ol _
E‘( ot T o U T g )O‘OHV Ho)do

) Qo + (VO[I} H())do

+ (B85 — 2%ap) + By,

d (O(VOHO)N o .a OVOMHO)N s o
"—%(T)(ﬂo — X Oéo)+ <T>(ﬁo — X g — X Ck(])

. oVl g, OV H, L [O(VOUH,
- (VA - aa T ) = (PG ) (g - v (),
dI° d (O(VUHy) OV Hy) 0w
- [ (25) - (5 o
dI°

o

To establish the aforementioned statement, we consider Eq. (3.4.1). Taking perturbed
invariant up to the first order of ei.e. I%4-€l', V = V'4-eV!, By+eB, and H = Hy+eH,

we have

I° 4 eI' = (ag + eay)[(VOW 4 e VI (Hy + eH)] + [(B2 + €8%) — % + €ay)]
(Vo + evill)
oz

(Hg + GHl) + (Bo + 631)7 (345)
rearranging the above expression as

19+ eI' = ap (VO Hy) + e[ag(VOI Hy + VI HY) + 0q (VO HY) + (52 — %)

OV Hy) W .. LO(VOIUH) W . OV H VI
B2 G ) di
+ (Bo + €By), (3.4.6)
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separating powers of € up to first order, we obtain the expressions given in Eq. (3.4.2).

Now, we need to prove the dd—I: = (0. Taking the derivative of I', we get

drt
dt

0 .
— aO(VO[”H + Vl[”Ho) + al(VO[ ]Ho) + ap [at(vo[ﬂHl + V1[1]HO) + ga 80
ma

d 0
(VO VI HG) + o~ o (VO H, 4+ v HO)} + ay {—

o (VO Hp) + o aa (VO HY)

a0 (Vo) |+ (51 - o) ‘ ( O (Vo +V1[1]H0)) + (B8 — 29y — o)

Oxo Oxe
0 d( 0 . . . 0
%(VOMHl + (VI Hg) + (8 — 35“041)dt <8 a(Vl[l H, )) + (Bf — zay — 56“041)(%&
. ) 0 o,
(VO[I]H()) — OéO(VO[l]Hl + VI[I]H()) — Oél(VO[l]Ho) — Oéoa(vo[l]Hl + Vl[l]Ho) — BO a{L‘a
: ... 0 0 . 0
(VU - VI HG) — (B8 — x“ao)%(Vom Hy +VIUm) — ala(VO[l]Ho) — Bl
(VoM Ho) — (87 — xaal)%(vo[l]ffo),
d[1 d( 0 0 )
= (5t = )| 5 (e (V) ) — o (VG )| (3 = o
d 0_ ol 1] 0 ol 10y
— 895'“(V H, + V'Y Hy) —%(V H,+V'YHy) ||,
dll a(x70[1] : 0[] 1[1)
= (87 — %) E*(VPWHy) 4 (85 — x%a) E* (VW H, + VI Hy),
d11
— =0
dt ’
this completes the proof. O

To elaborate the results found in Theorem 3.4.1 and Theorem 3.4.2, we find Mei

invariants corresponding to symmetry generator V9.

0

0 0
Vg[l] — e—ﬂta . y\/§ —V2t ay7

2 —\[t
8y+ ye

and

Vg[I]HO = —\/Qte"/it + ng)e"/it.
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Using Eq. (3.4.3)
o (VO Hy) + VOVl o) + By = 0,
which gives By
= 6v2yge 2V — 12922V (3.4.7)
Using Eq. (3.4.1)
19 = —3v2y2e V% 4 B, (3.4.8)

for conserved quantity, we need to show dcﬁ) =0

drd
—>= 12y2 —2v/2t 6\/_yy6 2ft+B

putting By, we get the require result i.e.,
dI

7 =0.

Consider Vém

1 0 3 1 0
Vil = —éte"/ﬁt& + < — §ye*\/§t + Eyteﬁt) a5+ < — eV pye V2

+ 2\/§y6_\/§t) i,
dy

and

VO, Vil gy = YoV 20V 4 Spyie V2 4 0Dy v

3
2 /2
VI H, = —V2te V2 4 2yge V2.
Also
Vgh](Vg[l]Hl —i—VémHo) _ 4\/53/2672\/57& 1 15ty%e” 2v2 6\/_tyye 2v/2 — Syge” 2\/§t’
Vi (VI Hy) = 7v2i2e 7Y% — btyPemV? 4 2v/2tyje Y — 5yy‘e*mt,

(V3 W+ V3 gy, 0) = o2V 4 3ty’e —2vat 3\/_tyye 4yye_2*/t

\/5

2
dl(Vg[l]HU) _ %ezﬁt _ ty2672\/§t _ ﬂtyye*%@t _ yye*Q‘/ﬁt.
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By Eq. (3.4.4), we get By
By = —12v2y2e 2% — 12ty%e V% 1 6v/2tyge 2V + 15y5e 2V, (3.4.9)
Then I3 takes the form

15
Il = _73,2@—2@ — 3V2tyPe 2V 4 B, (3.4.10)

and

Ik :
d—; = 12v/2y%e 22 4 12ty 72V — 6V 2tyge 2V — 15yje 2V + By,

after plugging Bg, we get

dI}
Rt )
dt

Theorem 3.4.2. There exists Mei conserved quantity

.0
19 = VU Hy — o= VO Hy + By, (3.4.11)
corresponding to Mei symmetry generator VO = 040% + Bga%, that satisfies the condi-
tion
0 yyon] ;
aV Hy+ By =0, (3.4.12)

where By = By(t,x%, %) is gauge function.

Proof. Taking derivative of Iy with respect to ', we get

ar’— (ov°liH, L g OVl H, s OV H)\ d (OVUUHY . . OVOUH, LB
dt ot O dra dt\  Oze dra 0
ar® . [ d(9VH, N OVl H,

dt dt Ox ore |’

ar .

himp——y 08 VAULND 25

dt ( O)a

dI°

— =0

dt ’

this completes the proof. OJ
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Theorem 3.4.3. There exists Mei conserved quantity

‘a

corresponding to Mei symmetry generator V! = 041% + B¢ aia , that satisfies the condi-
tion

0 .

a(VO[”H1 + VI H) + B, =0, (3.4.14)
where By = By(t,z%, &%) is gauge function.

Proof. Differentiating I' with respect to t, we get

+ ¢

drt (a(VO[HH1 + VI Hy) OV H, + VI Hy) g OV H, + VHHHO)>

dt ot D dre
d 0[] 1[1] . . 0[1] 1[1] i

- — OV Hy + V) ¢ — 3@ OV H, + VT H) + By,
dt ox® Ox?

dl, d (O(VUH, + VI H) N OV H, + VI Hy)

B _ e

dt dt Ox® ox® ’

dr’ o THPTANE

E = Ea((V Hl + A\Y4 HO))IL‘Q,

dIt

— =0

dt ’

this completes the proof. O]

Concluding Remarks:

The approximate Mei symmetries of DHO corresponding to Hamiltonian are calcu-
lated. These approximate Mei symmetries are more than the approximate Noether
symmetries. Their comparison showed that V! is common in both sets, whereas the
remaining Mei symmetries differ from Noether symmetries resulting in new conserved

quantities.
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Chapter 4

Approximate Mei Symmetries
Corresponding to the Lagrangian

This chapter presents the formulation of first order approximate Mei symmetries and
Mei invariants of the associated Lagrangian. Theorems and determining equations are
provided for determining approximate Mei symmetries and approximate first integrals
corresponding to each symmetry of the related Lagrangian, which are given in Section
4.1 and Section 4.3. The linear equation of motion of the DHO is used to explain the
method in Section 4.2. The Mei symmetries that correspond to the Lagrangian and

Hamiltonian of the DHO are compared.

4.1 Approximate Mei Symmetries

Here, approximate Mei symmetries of DHO corresponding to perturbed Lagrangian

are formulated in Theorem 4.1.1 respectively.

Theorem 4.1.1. Let V = VO + V% is an approzimate symmetry generator and £ =
Lo + €Ly is the first order approzimate Lagrangian, where VO = 040% + ﬁga% and

V=2 + B{5%. Then

%)



Ev(VULy) =0, a=1,2..,n. (4.1.1)

EYVOL, +Villg,) =o, a=1,2,..,n. (4.1.2)
Proof. With V =V? +eV! and £ = Ly + €£;, we have
VUL = VUL, + (VL + VLY + O(2), (4.1.3)
neglecting higher powers of €, we get
VL = VO, + (VoL + Vi), (4.1.4)
applying Euler operator E%, we get
E VL) = Ba(VOIL)) + eBo(VOll L, + VIlLy), (4.1.5)

comparing powers of €, we get Egs. (4.1.1) and (4.1.2). This completes the proof. [

4.2 Example

Consider DHO equation, which is linear in this case
y+ 2ey+y=0. (4.2.1)

The Lagrangian of DHO is £ = 1e*(y? — y?) is given in [33], with £ = Ly + €Ly, then

L takes the following form
L. .
L=5"=y)+ely’ —y). (4.2.2)

Now, writing £ by separating the powers of ¢, we obtain

1 .
Ly = §(y2 — ), (4.2.3a)

L1 =t — 7). (4.2.3b)
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4.2.1 The Mei Symmetries of DHO

To find Mei symmetries, we take first order prolonged infinitesimal generator given in

Eq. (2.6.8), is applied to first order perturbed Lagrangian given in Eq. (4.2.3a), yields

VL) = —yBo + 9Bos + 57 Boy — FPaos — PPony. (4.2.4)

Then, applying Euler operator E* for a = 1 on Eq. (4.2.4), gives

EY (VLY = 0. (4.2.5)
Or,
o[1] o[1]
A (OV L) _ (OV Lo _ (4.2.6)
dt oy dy

Eq. (4.2.6) gives the following expression

Bout + 29 Bo,ty + 2950y — 2ycvos + ?)250,343; — 2y — 43]2040,@ — 6yyog,y — 21)3040,yy

+ Bo + yboy = 0. (4.2.7)

Substituting 3 + y = 0 in above Eq. (4.2.7), we obtain

Bot + 2950ty — YBo,y + 2y + ygﬁo,yy — 2y — 492040,@ + 6yyoo,y — 2?)3040,yy

+ fo = 0. (4.2.8)

Comparing the coefficients of different powers of 7, we obtain a system of PDEs

Bo,ee + Bo — yBo,y + 2y = 0, (4.2.9)
Boty — ot + 3yagy = 0, (4.2.10)
Boyy — 4ay = 0, (4.2.11)
gy = 0. (4.2.12)

57



Solving Eqs. (4.2.9-4.2.12), we get

Qp = Cl + sin \/§t02 + cos \/§t03,
Bo = —\/§y sin \/§th + \/Ey cos \/§th + costCy + sintCs + Cgy,

corresponding Mei symmetries are listed below

9
ot’
0 0 0
V, =sin V2= + /2y cos V2t —,
ot dy

Vo=

0 , 0
V3§ = cos \@15& —V2ysin \/ﬁta—y,

0
V9= costa—y,

Vg:Sil’lta—y,
0
V0 =y—.
6 y@y

4.2.2 Approximate Mei Symmetries of DHO

(4.2.13)

(4.2.14)

(4.2.15)
(4.2.16)
(4.2.17)
(4.2.18)

(4.2.19)

Now, we calculate the approximate Mei symmetries up to first order of ¢ by using the

exact symmetries given in Eqs. (4.2.14)-(4.2.19). First of all taking V9 = sin v/2t2 +

V/2y cos \/575%, where VO£, + VL) is expressed as

VOlg, + VL, = —yp + U1 + 9By — VPans — §Par, + 7 sin V2t — y? sin V2t

— 2v/24%t cos V2t — 4tyy sin V2t

Now using Eq. (4.2.20) in Eq. (4.1.2), we have

d OV L, + VL) O(VOlL, + VL))
— . — = 0.
dt ay dy

Putting Eq. (4.2.3a) and (4.2.3b) into Eq. (4.1.2), we get

(4.2.20)

(4.2.21)

Bt + 2Py + 20961,y — 2§14 + ?J251,yy — 2y 4 — 43)2041,ty — 6yyoy — 21)3041,yy

+ By + Yy + 20 sin V2t + 2v/2 cos V2t — 2y sin V2t = 0.
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After plugging 4 +y = 0, we get

Bt + 2yBrey — YP1,y + 2yo s + 9251,% — 2y g — 4?)2041,ty + 6yyoy — Q?Jgal,yy

+ B1 + 22y cos V2t — 2y sin V2t = 0. (4.2.23)

Again using standard procedure of comparing coefficients of different powers of g, the

obtained system of PDEs is

Brat + Br — yPuy + 2yan, — dysin V2t = 0, (4.2.24)
Bray — 1 + 3yao, + V2 cos V2t = 0, (4.2.25)
Bryy — 4oy =0, (4.2.26)
gy = 0. (4.2.27)

Solving above system yields

1 1
o = (] + sin \/§th + cos \/57503 — ﬁ cos V2t — §t sin \/§t,

1
B = —V2ysin vV2tCy + /2y cos V2t Cy + cos tCy + sin tCs + yC Ety cos V2t — ysin v/2t.

Substituting any constant equal to one say, Co = 1, and all the remaining constants

equal to zero gives V3, and V1 is given below

Vv, = (— ﬁcosﬁt— %tsin\/it)% —|—€(— %tycosﬁ—ysinﬁt)%.

The nontrivial approximate Mei symmetry of Eq. (4.1.2) have the form

0 0 1 1 0
_ o 1o _ Tt
Vo=V, 4+ €V, = (sm\/itat +\/§yc08\/§tay) —i—e[( 2\/§COS\/§t 2tsm\/§t> BT

- ( - %ty cos V2t — ysin \/§t> 8%] : (4.2.28)

The remaining approximate Mei symmetries are obtained in a similar way as described

above. The list of symmetries are given as

V1:V$+6V}:2— 0
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9, 0 1 1 0
_ o 1 _ _ : _ ;
V3 =V;+eV3 = (COS\/ﬁt \/iysm\/itay)—i—e{( 2tCOS\/§t+\/§Sln\/§t>at

N (Ety sin V2 — Sycos \/_t) } (4.2.30)

V,=V)+eV) = sint% — et Sint%, (4.2.31)
V5=V +eVi= cost2 — et cost— 0 (4.2.32)
dy Oy’
Vo= Vg +eVy = y2 — thyﬁ. (4.2.33)
dy dy

4.3 Mei Invariants of DHO

To calculate the approximate Mei invariants corresponding to the above symmetries,

consider Theorem 4.3.1 and Theorem 4.3.2.

Theorem 4.3.1. There exist Mei conserved quantities

AVOLIL,)
oo

Il = Oéo(Vomﬁl + Vlmﬁo) + Otl(Vom,Co) + (ﬁf - :taozl)

A(VOIL, + V1lLy)
D

IO = aO(VO[l}EO) + (ﬁg — .j]aOéo) + Bo, (431)

o(veolig Y
% + (85 — o)

+ By, (4.3.2)

corresponding to Mei symmetry generator VO = ag < 8t + 60 5oa and Vi = al@t + 32 5d

that satisfy the conditions

ag (VO Lo) + VOVl L)) + By =0, (4.3.3)
(VO Ly + VI L) 4 6y (VO L) + VORI (VO L) vl £g) + VI VOl £g)
+ By =0, (4.3.4)

where By = By(t,x% x%) and By = By(t,x% 1) are gauge functions.

Proof. To prove the above expression, consider the Mei invariant given in Eq. (2.9.1).

Introducing first-order perturbed invariant by taking I = I°+el*, VI = VOl 4 ey,
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B = By+e€eBy and L = Lo+ €L, in Eq. (2.9.1), we obtain

I° 4 eI' = (g + ea))[(VOM 4 e VI (Lo + €£))] + [(BF + €69) — &% + €ay)]

O(VOl vy
oz

after simplifying the above Eq. (4.3.5), we get

(,C(] + €£1) + (B() + EBl), (435)

0 1 0[1 0[1 11 0[1 . a(‘fo[l]ﬁo)
I + el = Oéo(V [ }ﬁo) + E[Oéo(V [ ]El + VvV [ ]ﬁo) + Oél(V [ ]ﬁo)] + (Bg - x“ao)T—l—

o(VOlLy) VoL, +ViLy)
gin B —#a0) D

el (B — 1%aq) + (Bo + €By),

(4.3.6)
comparing powers of € up-to first order and neglecting higher powers give Eq. (4.3.2)
(VL)

Il — OéO(VO[ﬂEl + Vl[l]ﬁo) + Oél(VO[l}ﬁ()) (/61 T O(l) aj’,‘a

A(VOIL, + V1ltLy)
D

+ (85 — %)

+ B;.

Smce = 0 is proved in Theorem 2.9.1 of Chapter 1. Now, we need to prove that

‘U _ = . Taklng derivative of I' with respect to ¢, we get

d[ !
dt

0 .0
- OZO(VDMEl + Vlmﬁo) + o (VOMEO) + oo {@“jomﬁl + Vlmﬁo) +xt Ox?

(VoL 4 VLY 4 g aa (Vg 4 V””Eo)} + ay {%(VO[”L‘ ) + a@ aa (VO Le)

+ x@

0
Ox®

0 d({ 0 . . .
S (VIIL) | + (B — aa0) ( (VL + V””ﬁ@) T (Bg - dedy — dag)
0

d
— (VL 4+ VI L) 4 (B8 — & al)dt <8 -~

. . . 0
(VL) ) + (5 = s = o) 5
0

(VO Lo) — ag(VO Ly 4+ VI £g) — ay (VORI L) — @08—(\70[1151 + Villlgy) — pe

0
L oxa

0 . ... 0 0
o (VUL 4 VINLG) = (= o) e (VUL + VL) — a5 (VOUILg) — 5

0
(VL) — (¢ — aciy) 835“(V0[1]£0)’

P( 0 (VO + vz, )) %(Vo[l]ﬁl—i—Vmﬁo))},

dt \ Oz
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It . :
(B¢ — z2a1 ) E(VOU L) + (B8 — z200) B4V L, + VI Ly,

dt
dIt
= 0
dt ’
this completes the proof. O

First we calculate Mei invariant corresponding to V9 using Eqs. (4.3.1) and (4.3.3).

Consider
(VO = ( cos \/it2 —V2ysin \/itg — 2y cos \/51%2
2 ot dy oy )’
1
and Ly = 5(3/2 — y?), then
(V) £y = v/2y% sin v/2t — 2y cos V2,
using Eq. (4.3.3), we get By
By = 6y sin® V2t — 6v/2yg cos V2t sin V2t — 6y cos /2t cos V2, (4.3.7)

we calculate the Mei invariant using Eq. (4.3.1), we obtain
19 = 3v/2y? cos V2t sin V2t + By. (4.3.8)

To prove that Eq. (4.3.8) is a conserved quantity, we need to show that dd—I: = 0. Taking
derivative of IY with respect to ¢, we get

ais .
d_t2 = —6y?sin® V2t + 6\/§yy cos V2t sin V2t + 612 cos V2t cos V2t + By,

substituting By from Eq. (4.3.7), we get

Ay
22 .
dt

Again using Theorem 4.3.1, approximate Mei invariants are calculated with the help

of Egs. (4.3.2) and (4.3.4). Consider

1 1 0 1 1 0
1 f— _— — 1 — — ] —_— —
Vy = K 2tcos V2t + \/§SIH \/ﬁt) : + (ﬂty81n\/2t 29003\/515) 9y1’
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and

2 3 2
(ngﬁl + V%mﬁo) = —‘% cos V2t + EyQt sin V2t + ﬁyy sin V2t — 3tyy cos V2,

(VO Ly = v/2y% sin v/2t — 2y cos V/2t.
Now using Eq. (4.3.4) to calculate By, where

2
ng (Vg[l]ﬁl + V;m Ly) = ng sin v/2t cos V2t — yy cos® V2t + 6v/2tyy sin v/2t cos V2t
— 2y sin? Vot — 6ty? sin? V2t + 9ty? cos? \/515,
V%m (ngﬁo) = —2V/ 2ty sin V2t cos V2t + 2y sin® V2t + yi cos? V2t — 3ty? cos® V2t

+ 2ty? sin? \/Et,

1
dO(Vg[l]Cl + V;[l]ﬁo) = EyQ sin v/2t cos V2t — 3ty? sin? V2t — 2u1) sin? V2t + 3\/§tyy'
sin v/2t cos \/ﬁt,
1
aq (ngﬁo) = Ey2 sin v/2¢ cos V2t + ty? sin’ V2t — Yy cos? V2ot — \/Etyy sin v/2t cos V2t

substituting above expressions in Eq. (4.3.4), we get
B, = —2\/§y2 sin V2t cos V2t + Y1) cos? V2t — 6\/§tyy sin v/2t cos V2t + 2y1) sin® V2t
+ 6ty? sin® V2t — 6ty? cos® V2. (4.3.9)
Using Eq. (4.3.2), we get
I = _y; cos? V't — y? sin? vVt + 3v/2ty? sin V2t cos V2t + By, (4.3.10)

. . di}
to prove Eq. (4.3.10) is a conserved quantity, we need to show that —2 = 0

dl}
d_t2 = 2\/§y2 sin v/2t cos V2t — Y1) cos® V2t + 6\/§tyg) sin v/2t cos V2t — 2y sin? V2t
— 6ty sin? V2t + 6ty* cos® V2t + Bl,

plugging B, into above expression, we get

dI
E —_— 0.

63



(1°¢'p) "PH Sumsn QH( jJo sywerreau] B ) SR,

4
7,800 — 7 Uls = Og

. — 9 .
| fifig = {1 M@uw\w
Nt — St =g
fi
0 4 3so0quts — = gf 2 1500 = A
. Q O
‘7,800 + 7 uls — = O0g
fi
0] +gs00quis = IT .%tﬁn oA

1

fi
O + g N U g NS00 fig Ae— = [T . A%wm\/ 800 fig A + |©wm\/ Emv = A
Qm\/ S0 wm\« S0 mmw + e
17\ WIS 1g N 500 m@m\/m + g N s 19— = 0g
: fig 0
0 + 1N WIS 1 N 800 mmm\,m = I Amﬁm\/ Emmm\/ — Mwm\, woov =CA
dm\/ 02 9g \ S00 mm@ —
17/\ WIS I A S00 gm\/@ — g\ s 19 = om
0="0g°'0=(1 .%nw.\/

: uei3ueiser] o} Surpuodsariod OH( JO SjurLIBAUL BN : ueigueiser] 0} Surpuodsariod OH(J JO SOLIOWWAS 9]\ :

64



(z'ey) by Suisn uwerdueider] og Surpuodsor1od OH(J Jo sjueLreau] oy ojewxoiddy :z'F o[qel,

f
g + fig — fifigy— = {1 %37 = 1A
Ly — gy + fifig = g
f
TG+ 3,800 — =1 %BSTH?
pusgsoog— = 'g
f
s = T s = A

‘quisgsong = g

4
g + 9 NS00 9g A TS m@m\/m — N s fig + NS00 maml =fr

9T N 809 119 + g N WIS figg — gg N uis fify —
17 /N SO0 97 N TS m\&m\/w + 9 ;809 fifig + 13/\ 800 I A IS mmm\/wl =1Ig

Tlmﬁwm\égllm\/woo@@ |V +
S]]

v—1~3

(¢
T+ g N SOOI N WS S NG+ N WIS Sl — QA 500 Nlm.l =7
%m\/ 509 mmww AR mmww + g Qs fifig +
wm\( S0 wm\/ urs @@w@\x@ - wm\/ mmoo @m + wm\/ S0D wm\/ urs N@W\/N| T

2 (gpnt - %Rv

MAM@,E@% im\/moim |z =°A

HﬂmnonﬂN

e
M\MHH.\/

OHJ{ Jo sjuerreAu] oA 2rewrxoxddy

OH( JO serrjewuiAs )\ 9rewrxoxddy

65



Theorem 4.3.2. There exist Mei conserved quantities

O(VOLy)
o

= (Vg + villlggy —

10 = (VO Ly) — ga + By, (4.3.11)
a(vo[1 L+ VL)

01°

+ By, (4.3.12)

corresponding to Mei symmetry generators VO = a2 5 T 50 5oa and V=2 8t + ﬁl Bpd

that satisfy the conditions

0

o — (VL)) + By =0, (4.3.13)
0 .
a—(vo[”c1 + VLY + B, =0, (4.3.14)
where By = By(t,x*, &%) and By = Bi(t,x% &%) are gauge functions.

Proof. To prove the above expressions, consider the Mei invariant given in Eq. (2.9.3).
Introducing first-order perturbed invariant by taking I = I%+eI', VI = VOl eV,
B = By+e€By and L = L+ €L, in Eq. (2.9.3), we obtain

104 eI = (VO 4 eV (Lo + eLy)] — 2@ 88 (VO 4 eV (Lo 4 eLy)]
z?

+ (Bo + €By), (4.3.15)
after simplifying the above Eq. (4.3.15), we get

a(VOl L, + VILy)
i

]0 —+ 6]1 = [(Vo[l]ﬁo) + 6[(V0[1]£1 + Vl[l][,o)] — + (B() + EBl),

(4.3.16)

comparing powers of € up-to first order and neglecting higher powers, give Egs. (4.3.11)
and (4.3.12). This completes the proof. O

Since I° is a conserved quantity proved in Theorem 2.9.2 of Chapter 1. Now we

need to show that I' is a conserved quantity. For this, taking derivative of I' with
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respect to ', we get

dI ((‘9(V0[”£1 + VL) N x.aa(vo[l]cl + VL)) g o(VollL, + V””EO))

E - 8t axa ama
d 8(V0[1}£1 + Vl[l}ﬁo) ) . 8(V0[1]£1 + Vlmﬁo) .

- 4 g a _ ra i B
dt ( &U‘l )x x axa + 1,

dah _|_d A(VOL, + VL) N O(VOl L, + VL)) .

adt | dt Dz B ,

ar’ o1] 171] :

o= E((VPHLy 4+ VIELy))xe,

drt

— =0

dt ’

hence I! is a conserved quantity.

Now, we calculate Mei invariant corresponding to V9 using Eqs. (4.3.11) and (4.3.13).

0 0 0
0[] — _- _ i _- _ _
(V3) (cosx/it ; V2y sin V2t ” 2y cos V2t g))’

and £y = %(y2 —y?), then
(VO Ly = v2y% sin V2t — 2y5 cos V2L,
using Eq. (4.3.13), we get By
By = =22y sin V2t — 2% cos V/2t, (4.3.17)
we calculate the Mei invariant using Eq. (4.3.11), we obtain
19 = V24 sin V2t + B,. (4.3.18)

. . dI?
To prove that Eq. (4.3.18) is a conserved quantity, we need to show that —2 = 0.

d]o .
d_1€2 = 2y* cos? V2t + 2\/§yy sin V2t + By,

substituting By from Eq. (4.3.17), we get

e
P
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Now, we calculate approximate Mei invariants by using Eqs. (4.3.12) and (4.3.14).

Consider

Vi = {(— %tcosﬁtJr%sinﬁt)%—f— (%tysin\/%— %ycosﬁt)%},

and

2 3 2
(ngﬁl + V%mﬁo) = —% cos V2t + EyQt sin V2t + ﬁyy sin V2t — 3tyy cos V2t

Now for By, we consider Eq. (4.3.13)

: 3
B, = Eyz cos V2t — 3ty? sin V2t + 32ty cos V2,
then I} takes the form
I} = —igf cos V2t + By.
2 \/5
Now we need to prove dd—? = 0. Taking derivative of I with respect to t, we obtain
dly 3 9 2 . ;
— = ———=y~ cos V2t + 3ty” sin V2t — 3\/§tyy cos V2t + By,
dt V2
substituting By, we get
ais;
-2 _.
dt
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4.3.1 Comparison between Mei Symmetries of the Hamilto-
nian and the Lagrangian

The Mei symmetries relating to the Hamiltonian and Lagrangian of DHO are compared
in Table 4.5. The approximate Mei symmetries corresponding to Hamiltonian are
discussed in detail in Section 3.3 of Chapter 3. Both sets of symmetries give rise to
different conserved quantities. The number of Mei symmetries corresponding to both
Hamiltonian and the Lagrangian is the same. In the two sets of symmetries, V; is
common, approximate part of Vjy is slightly different, whereas other Mei symmetries

i.e., V3, V4, V5 and Vg are completely different.
Concluding Remarks:

The approximate Mei symmetries and invariants corresponding to Lagrangian of DHO
are constructed in this chapter. The Mei symmetries corresponding to Lagrangian and

Hamiltonian are compared. In both sets, the number of Mei symmetries is equal.
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Chapter 5

Approximate Mei Symmetries of
pp-Waves Spacetime

The approximate Mei symmetries are constructed for DHO in previous chapters. Here
we discuss an application of approximate Mei symmetries of pp-waves spacetime from
general theory of relativity in Section 5.1 and Section 5.2. The line element of the

pp-waves spacetimes have the following form [43]
ds* = —2h(u, z,y)du® — 2dudv + dz* + dy?, (5.0.1)

where h is called the metric function. Eq. (5.0.1) is called vacuum pp-waves if
Nz + hyy = 0 and it is called conformally flat if h,, = h,, and h,, = 0. These space-
times are known as plane-fronted gravitational waves with parallel rays (pp-waves),
and discovered by Brinkmann [44].

If h has the form

2h(u, z,y) = 2 A(u) + 22B(u)y + y*C(u), (5.0.2)

then Eq. (5.0.2) is called the plane wave spacetimes. A conformal Killing vector (CKV)

field V produces a group of conformal motions that is defined by [46]
EVgab - 2\I[gab — gab,cVC + gacvg + gcbVZ = Q\IJgaba (503>
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where Ly is called Lie derivative operator along the direction of vector field V and
U = U(z*) is known as conformal factor. The CKV field is said to be proper if ¥.,;, # 0.
If U, = 0, then vector field V is called special conformal Killing vector (SCKV), V is
called homothetic vector (HV) field if ¥, = 0 and Killing vector (KV) field if ¥ = 0.

Keane and Tupper [47], determined the conformal symmetry classes of the pp-waves
spacetimes given in Eq. (5.0.3). According to their classification, the following plane

waves spacetime
ds® = —2A(u)x?du’® — 2dudv + dr* + dy?, (5.0.4)

is a special case of a plane wave spacetime. This spacetime admits a 6-dimensional

homothetic Lie algebra for arbitrary A(u). The five KVs are

) o 0
V1 = %, V2 = I(U)% +1 (U)ZL’%,
o 0 o 0
Vg—K(u)%—FK(u)xa , V4—y%+ua—y,
0
V5 a_y7

where I(u) and K (u) are independent solutions of the differential equation
H"(u) + A(u)k(u) = 0,
and HV is

0 0 9,

For a (1+3)-dimensional pp-waves spacetime, Carot et al [48] find that the only choices
for A(u) leading to an additional symmetry are (i). A(u) = o?(ii). A(u) = au™?
(iii). A(u) = a?u™*. The pp-waves spacetimes with those A(u) are the plane wave

spacetimes.

Furthermore, Carot et al [48] consider another pp-waves spacetime

ds® = —2h(z)du® — 2dudv + dz® + dy?, (5.0.6)
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This spacetime admits four-dimensional Killing algebra with basis

0 0
A Vv, = 2
Yo T
0 0 0
A V= y— 4 u
3= oy 1= Y5 tu ay
An additional HV is obtained by considering (iv). h(z) = 2™ as a special case of
pp-waves spacetimes, where n is any constant
1 0o 1 9, 0 0
Vi = —u(2 = n)— + =02 = n)— + 2~ +y—.
> 2u( ”)au + ZU( ”)av +xax +y8y

Therefore, this special pp-waves spacetime admits a 5-dimensional Homothetic algebra.

Ehlers and Kundt in [49], provided the symmetry classes of vacuum plane fronted
gravitational waves with parallel-ray also known as pp-waves, that satisfy the vac-
uum field equations of general relativity. Podolsky and Vesely in [50], used rigorous
analytical and numerical techniques to investigate the chaotic behavior of geodesics
in non-homogeneous vacuum pp-waves spacetimes. Keane and Tupper in [47], exam-
ined the conformal symmetry classes of the pp-waves spacetimes and reviewed Sippel
and Goenners’ isometry classification. Camci found the Noether gauge symmetries of
the geodetic Lagrangian in [51]. He discovered that, conformally flat pp-waves space-
times admit ten Noether gauge symmetry, while type N pp-waves spacetimes admit
three. Jamal and Shabbir in [45], used pp-waves spacetimes to calculate the Noether
symmetry algebra, which is admitted by the wave equation. Moreover, they proposed
another metric function to be the generator of the wave equation. In this chapter, Mei
and approximate Mei symmetries of pp-waves spacetimes corresponding to Lagrangian

are calculated [55].
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5.1 Mei Symmetries of pp-Waves Spacetimes

The Lagrangian of the pp-waves spacetimes, expressed in Eq. (5.0.1), is given as

1

Lo = —h(u,z,y)u* — ud + 5(1-2 + 7). (5.1.1)
Consider the symmetry generator
0 0 0 0 0
VO =agy=—+ B+ 8+ + 85—+ B 5.1.2
aOaS+ﬁ08u+5081}+ﬁ08x+608y7 ( )

where g, 88, B2, 83, 85 depend upon s, u, v, z,y. The first prolongation of V° is given

as
. B, B B
o] — /0 1Y 2 Y 3 Y 4 9
where
'i_dﬁé_-idO‘O 1,2 .3 4\ _
By = F (x5, 2%, 27, 2%) = (u,v,z,y)), (5.1.4)

d
and total differential operator 75 is defined as
s

Q00 0 L0 0 o
ds  Os ou v ox y@y' o

The symmetry generator given in Eq. (5.1.2) is called the Mei symmetry of the
Lagrangian L(s,u,v,z,y,u,0,%,7y), defined in Eq. (2.6.2). Now, we calculate the
Mei symmetries of the Lagrangian Eq. (5.1.1) by considering the cases [51, 52] (i).
Alu) = o? (ii). A(u) = au? (iii). A(u) = o*u=* and for pp-wave spacetimes (iv).

h(z) = ax™.
5.1.1 Case (i): A(u) =a?
Consider the line element of plane pp-waves spacetimes
ds®> = —2A(u)z?du® — 2dudv + da* + dy*. (5.1.6)
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The Lagrangian for A(u) = o?, takes the form

1
Lo = —a’2%0* — ) + 5(:32 +7%). (5.1.7)

The corresponding geodesics equations are given by

i = 0, b+ 4a’zid = 0,
i+ 2a’zu® =0, i =0.
Now applying V! on Eq. (5.1.7), yields
VL) = —2022208) — 2020?63 — Blo — B2a+ 263 + 450 (5.1.8)
Now substituting B&, ﬁg, Bg’, 561 from Eq. (5.1.4) into Eq. (5.1.8), we get
VOlLy = —20%20° B — 20203 , — 20%2%0° By, — 200 Wi B}, — 20°a Uiy,
— 2a2x2ay,837y + 2a2x2u2a075 + 2a21:2u3a0,u + 2042:132112{)%71) + 2a2332u2:ta07x
+ 202820 Yoy — 0B), — WPy, — V7B, — VBB, — VB, + 20 4 20 0,
. .9 ) .92 H9 ) ) )
+ 200"y + 2UvE g + 200y, — Uy, — 0Py, — w0 by, — wify, — uwypby,

2

. 3 .. ~3 .. 13 .92 n3 . . n3 .9 . .9 .. .3
+ :1750’8 + umﬁoﬁu + Ufﬂo,y + 2z 60,x + :Eyﬁovy — 3 ap s — UL Qqy — VI Q. — T 4

— @*gao,y + 9B s + Wby + 098y, + T8y, + U By — U0 — o, — 09 a0,

— 290, — PPao,. (5.1.9)
Now, applying Euler operator for a = 1 defined in Eq. (2.6.2) on Eq. (5.1.9), we get
EYVOILy) =0, (5.1.10)

above expression can also be written as

d (8(V°[”Eo)) _ovtiLy) (5.1.11)

ds o o

7



After applying Eq. (5.1.11) on Eq. (5.1.9), we get the following expression

- ﬁé,ss - 2uﬁ(l),su - 2xﬁ[1),sx - QQﬁé,sy - u253,uu - 2uyﬁé,uy + 4a2xu$6&,v

. - nl
- 21}6(1),1)5 - 27“)50,1“1

. . .0l . .nl 2 9251 .01
— vzﬁ&w - 2vmﬂ0’m - QUyﬁoyvy + 20U 50@ - 2ux507ux

.29l . o0l .2 1l .9 .9 .. ..
— 7By pe = 2298y 2wy — U Boyy T 207055 + 4070 5 + 2U00 5y + 40T 5o

.. .0 .. . 3 .. .9 .
+ duyag gy + 2070 g, + AUYOY gy + 2070 ey + AUV e + AUTTOY s

.9 . . .9 .2
+ AU Yoy + 20070 gy + AUVT O 4y + AUVY O 1y + 287U g + AUTY g 4y

+ 205%g,y, = 0.

(5.1.12)

Comparing coefficients of different powers of w, ¥, &, 1, yield the system of PDEs

constant :
T

U2

UL -

uv

VL

R

1
60,53 - 07

1
60,3:1: - 07

1 201
ﬂO,uu - 4a075U — 2« /80,1 = 07

1 2,91 _
Boue — 200,52 — 20725, = 0,

1
/BO,U’U — (0,0,

53,112: =0,
ﬂé,xw =0,
Bogy = 0,
Qo .y = Oa
Qo uy = 07
Qo oy = 07
Qo yr = 07

1
/BO,S’U, - aO,ss - 07

ﬂ(l),sy = 07
5(1),1)3 =0,
/B(l),uy - 2a0,sy = 07
ﬁ(l),vv =0,
ﬁé,vy =0,
By = 0,
Qo uu = Oa
Qo uz = 07
Qo vz = 07
Qo = 07
Qo yy = 0.

Again applying Euler operator for a = 2 defined on Eq. (5.1.9), we get

E2(VOliLy) = o,
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above expression can also be written as

A4 (VUL A(VIILy)
ds ot ou

= 0. (5.1.14)
The above Eq. (5.1.14) gives the following expression

— doPuify — 4o’z — 4oPxi’fy, — daPrui By, — dazui Sy, — 4wy By,

— 4042951’53,3 — 20423:265733 — 20(2562?}56’81) — 204256292:63,533 — 2a2x2yﬁé7sy — 404%&92:6&7“
— do?z*ufy , — 207070 By, — 2072700, ,, — 40’2y, — 207270y, ,,

— 2022083}, + 8ot aui By, — 207520y, — 20°T70UBY , — 2072707 By

— 2022208 3) 4, — 207270y, — 8P wi?B), + 4t TPiP B, — 20707 E 0,

— 20°0°08 3]y — 20708787 ) 4 — 2070 1y + A0PUE S, — 207070,

— da’ziy By, — 200578y, — 207U B] y — 2075209, — 207057 By,

— B3 s = WBY g — B g — 200055, — 2035, — WY, + APTEUST

— 0B 05 = V208 po — 28008y — 20083, + 2072035y, — 265, — 29365,

— B sy — B4y = 0. (5.1.15)

From the above expression, we obtain the system of PDEs as

i - 20283 + 2023, + 202y, + 20202 By + BR e — 40PT5BS
- 20%z 35, = 0,
w: 2072y 4 20757 By s + B3 0 = 0,
constant : 2042262@%,88 + ﬁass =0,
u? 4042:13537” + QQ%B&W — 2a2$ﬁ§,u — 404396255,;,; + BS,W =0,
E 20723, + 20°2° B 4y + By = 0,
wy 20726y, + 20722 B] 1y + By = 0,
R 20727850, + B350 = 0,

79



2052'%26(%,830 + Bg,sm + 20'/2'2:66,5 = O’

2,21 2
20[ X /80781/ + BO,sy = O,

2 1 2 _2n1 2
2a $/80,U + 207z 50,1& - ﬁo,vx = 0’

2 2n1 2
20%x 60,1}1} + 60,117) = 07

2 2,1 2
20 50,1@ + ﬁwy =0,

2 1 2 2 2
40[ J"/B(),z + T /BO,JJJJ + Bo,mz = 07

2a2x26&$y + 2a2xﬂé,y + Bg’zy =0,

20%2% 5, + B3 4y = 0.

Again, applying Euler operator for a = 3 on Eq. (5.1.9), we get

Alternatively,

As a result, we obtain the following equation

a4
ds

(

E3(VLy) =0,

o(VOLy)

ox

)_awwmw

ox

=0.

Bo.ss + 204 g + 2084 o + 2085 ) + U BY g + 20054 1 + 20554 4,

—4&mﬁ@m+ﬁﬁm+2Mﬁ&f+%wﬁw—QJmﬁ%m+Zw&x

+ 20y + BB e + 289BY 4, + 2070 B + 9P By, + AdPwui ), = 0.

The corresponding system of PDEs are

constant :

0%
uy

VL

Boss =0,
Bowo =0,
By =0,
Bowe = 0,
Bose =0,

VY

U

80

B su =0,
Bouu — 20%2 05, + 20253 = 0,
Bows =0,
Bowy =0,

3 2 3
ﬁo,xu —2a mBO,U =0,

(5.1.16)

(5.1.17)

(5.1.18)

(5.1.19)



) 3 e 3
T4 BO,xw =0, Ty Bﬂ,zy =0,
-2 3 - 3

Yy BO,yy = 07 uv . ﬁ(),uv = 07

Y B =0.
Again, applying Euler operator for a =4 on Eq. (5.1.9), we get
EYViLy) =o, (5.1.20)

Alternatively,

i(a(vo[l}ﬁo)) B A(VOLy) o (5.1.21)

ds ay dy

As a result, we obtain the following equation

Bo.ss 1 25 g, + 2085 g, + 2854 o + 20085 5, + U By + 20005, + 20855,
+ 203y, — AP wud By, + 07 By 4 + 20805, + 20955, — 20700755,

+ 7B e + 28980 0y + 57804y = 0 (5.1.22)

The system of PDEs is given by

constant : B{iss =0, (T Béjsu =0,
0 Py =0, i B =0,
0 B =0, &9 Boay =0,
7 Boy =0, g By =0,
W By, — 20°0% 6, = 0, W B =0,
Wi By —20°6y, +20%05, =0, g B, =0,
0 P =0, 0 Bouy =0,
B =0.
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Solving system of PDEs simultaneously for £}, 82, 33, 35, and ag with the help of
MAPLE package PDE, we get

ag = A,

By = B,

B2 = Cy — DV2ax sin(v2au) + EvV2ax cos(V2au) + Fs + Hu + G,
B8 = FE'sin(v2au) 4+ D cos(vV2awu),

By =1Iu+ Rs+ K.

The set of the Mei symmetries are given below

vie g vi- 2

Vs = y%’ Vi = —V2az sin(ﬁ@u)% n cos(\/iau)a%,
V8 = V2ax cos(\/iau>% N Sm(ﬂau)% Vo _ S%’

Vi = a%’ Vo u(%,

Vicsg Vi= 2

Ve = ul

5.2 Approximate Mei Symmetries of pp-Waves Space-
times

The approximate Mei symmetries and related conserved quantities of Lagrangian up
to first order € are formulated in [54]. The approximate Mei symmetries determining

equations are given as

EY(VIULy + VUL =0, (a=1,2,3,4). (5.2.1)
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The first order perturbed part of the Lagrangian is given by
Ly = —2a22%u%s — 2uis + i°s + §°s. (5.2.2)

The first prolongation of the perturbed symmetry generator is given below

0

o (5.2.3)

.0 .0 . 0 )
1] _ /1 1 2 3 4
A\Y% Vv +ﬁl_au+51_av+5l_aj:+5l

Now, we calculate the approximate Mei symmetries up to first order of ¢ by using exact

symmetry V§ = ua%.

VUL, + VUL, = —20%0d®B) — 20%0%0B1  — 20°0%W® B, — 20%0%00p],

2,22

— 2a2x2um'5117z — 2a2x211y6117y + 202 2%1Pay , + 2% 720 oy, + 2022700

1.}0[171}
2 2.2. 2 2.2 . 1 . . 1 .2 1 . . 1 . . 1
+ 207w 0 ko, + 207 T Uy — 0P o — uvfy,, — 070, — Py, — VYBy,
.. .9 . .9 . 92 .92 »2 )
+ 2Ub0 s + 2070 4, + 200700, + 200T 0 5 + 200y, — WP — U BT, — 0BT,
Y ) . n3 . . n3 .. 13 .23 . .3 2 . .9
B uxﬁlﬁ - uyﬁl,y + xﬁl,s + uxﬁl,u + Uxﬁl,v +a 61,1 + 'ryﬁl,y — T 01 s — UL gy
) .3 .92 . o ..ol .o nd .ol .92 nd
— 0T, — 3P0, — ETYony + YO8y + uyBy, +0ybt, +2YB, + U760,

— PPars — Wlan, — V9P, — 2P, — PPan, + 251 (5.2.4)

The Eq. (5.2.1) for a = 1, takes the form

p < AV £y 4+ Vol 51)) VL, + VL) (5.2.5)

ds ot ou
Applying Eq. (5.2.5) on Eq. (5.2.4), we obtain
— 4020z — 4a2xuﬁis — 40[21:1125?# — 40z2$1’wﬁiv — 4a2xax'ﬂiz — 4a2$uyﬁiy
— 4&%9’361175 - 2042552511,35 — 2a2x22}51178v — 20421‘23'36117%, - 2a2x2951178y — 4a2xa$'611,u
—do’z*upy ,, — 2072707 By, — 2072000, — 207 0E 6], — 20770y,
— 2072081, + 8ot s ui ], — 20720 ,, — 207 TV, — 207707 By,

2.2 01 2.2 01 2 :201 4,32 01 22 11
= 20°70L Py 4, — 207 270Y Py, — APy, + 40T xW By, — 2070710,
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- 22*0%0i B, — 2022707 B) ,, — 2837, + ddPwii Y, — 20%2%gap
—dotziyfy, — 20007y B ,, — 2072w BL,, — 207820y, — 2007 B,

— B — B, — 0°BL,, — 20067, — 20ifY,, — aypt,, + 4lziufy,

— 0B} g — VBT — 20007, — 29007, + 20700 BT, — 267, — 29i 57,

— 9B, — 9B, + 29 =0. (5.2.6)

The obtain system of PDEs is given by

i : 20°63 + 2026}, + 2072 By, + 20°0°BY 4y + B e

— 4042:1035%’7] — 2a2xﬁiv =0,

U : 2a2xﬁis + 2a2x2ﬁius + Bisu =0,
constant : 2a2x2511785 + ﬂiss =0,
u? 4a2xﬁiu + 20421:611% — 20421:6%@ — 4043]32511’1 + Biuu =0,
i : 2072}, + 20°2% B 4y + Brauy =0,
uy 2a2xﬁiy + 20421:2511’% + ﬁiuy =0,
E 20%2 83, +20°02B1 1y + By = 0,
o 20%2°B) 5, + B 5 = 0,
Bi 20%%0L, + B, + 20%B), =,
g 207273 gy + Bl — 1 =0,
e 20201, +20%2%B 4y — B e = 0,
0% 20%2% By + B = 0,
VY 2a2x26117vy + Bivy =0,
% 404%611@ + a2$251,m + Bim =0,
Ty 2a2x26i$y + 2&2265%71/ + Biwy =0,
ek 20%2%B1 ,, + B1,, = 0. (5.2.7)
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Again, repeating the same process, by applying E? (for a = 2), yields

a4
ds

00

(mvmmm+vwmg>_¢xvmmm+vwwg

The following expression is obtained

ov

(5.2.8)

- 611,55 - 2u611,su - 2x5117sa: - 2yﬂll,sy - u2611,uu - Quyﬁll,uy + 40{23:1‘1"1":611,1)

. o1 .ol -2 51 .. 5l -l 2 .92 ,1 .ol
- 2Uﬁl,vs - 2u’U61,uv -v 51,1}1} - 2vx/61,fuz - QUyBI,vy + 2a”zu Bl,x - 2ux61,uz

.2 51 .ol .92 51 .9 .9 .. ..
—z BLM - Qxyﬁmy -y Bl,yy + 20y 55 + AU gy + 20000 5 + AUT O oy

+ AUy o) + 200 g + AU 5y + 20P O gy + AUV + AUPTQ g + AUPY 4y

+ 2002011y + AUDTQY 1 + AUDY 4y + 252000 4 + AUTY O 4y + 20771y, = 0.

The obtained system of PDEs is given by

constant :

T

-2

U
UL
U

VT

w2y

i

1
Bl,ss = O’
1
/BI,S:E = 07
1 21l
Bl,uu - 40[175u — 2 61,33 =0,

1 2.1 _
Bl,um - 20(1’(% —2a ‘rﬂl,v =0,

Bllﬂw — 01 5p = O)
ﬁll,vac =0,
Bll,xw =0,
ﬁll,yy =0,
a1 40 = 07
A1 uy = Oa
A1y = 07
a1y = 07
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(5.2.9)

Bo . — 01,65 = 0,
Bisy =0,
Biws =0,
511,14, — 20,4y = 0,

1
ﬂl,vv - 07

Bll,vy =0,
Bll,xy =0,
a1 yu = 07
A yg = 07
a1z = 07
A gp = Oa

ary, =0.  (5.2.10)



Now, applying E? (for a = 3), on Eq. (5.2.4)

d 8(V1[1]£0 + VO[”El) 8(V1[1]£0 + VD[”El)
3 ' - = 0.
ds 0% ox

(5.2.11)
Then we get the following expression

Biss + QU/B%,S’U, + Qi)ﬂisv + QQﬁf,sy + QQﬁiuu + QUU/B%MU + ZU’yBiuy - 40[21'”&1‘/6?71]
+ 0235y + 20867, + 20905, — 207207 B] , + 28087, + 208 0] . + 205 s

+ 2i90; ,, + 20706 + 7B, = 0. (5.2.12)

The corresponding system is given below

constant : 5%,55 =0, U : Bisu =0,
il B =0, 2 o, — 20006, + 20767 = 0,
e By =0, i B =0,
0 ; Blew=0,  0y: Broy =0,
T 5%,595 =0, ux - ﬁiw — 2042:105?71) =0,
i Bloe=0, &y Biay =0,
Tl By =0, wo B =0,
E B =0. (5.2.13)

After applying E* on Eq. (5.2.4), we get

d (a(Vl[l]/Jo + Vo[l]»Cl)) — O(VHIL, +VOlLy) =0 (5.2.14)

ds ay dy

Then the following expression is obtained

Bt s + 2087 g + 208 o + 2861 o + 2081y + 0By + 20081 + 20867,
+ QUyﬂiuy - 40'/2‘@7:1’1"’5;{1) + bQBil,vv + QUxﬁil,vx + Zvyﬂivy - 20‘/21‘@2/8;1@ + j:2ﬁil,:vx

+ 28981 ,, + V7B, T Ad’Tuif], + 20 = 0. (5.2.15)
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After comparing the coefficients of ., v, &, 7, the following system of PDEs is obtained

constant : 511,35 =0, (T Bl +1=0,
0: o Bl =0, i Bl =0,
i B, =0, 2y Bl =0
7 Bl =0, g Bl =0,
u? Bl — 20°3° 61, = 0, U : Bt s =0,
Wi Bl —20°81, + 2%, =0, ag: B, =0,
vk Bl =0, 0 Bl =0,
i Bl =0. (5.2.16)

Solving system of PDEs, (Egs. ((5.2.7),(5.2.10),(5.2.13),(5.2.16))) with the help of
MAPLE, we get

ap = A,

5= B,

3% = sy + Cy — DV2ax sin(v2au) + EvV2ax cos(vV2au) + Fs + Hu + G,
B3 = Esin(v2au) + D cos(vV2aw),

B} = —su+ Tu+ Rs + K.

Now assigning value of any constant equal to one, say I = 1, and the remaining

constants equal to zero, we obtain the generator V2. Then V] can be written as

Vi = sy% - suagy. (5.2.17)

The nontrivial approximate Mei symmetry of Eq. (5.2.6) has the form

0 0 0
0 1_ — su—
Vi +€eVg = uay —i—e(syav suay). (5.2.18)
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[T Vs || Ve || Vs || V| Vi
vViTolo oo o
viTolof ol o] o
vifTo ool ol o
vifTo ool ol o
viT ol oo/ ol o

Table 5.1: The commutator relations of approximate Mei symmetries for case (i).
A(u) = o?

In a similar way, the remaining approximate Mei symmetries are obtain as

V(l)—f—EV% = 8_7

s

0
Vg—’—EV% = 8_7

u

0 0 0
VI +eVi= Y5y + e(—sy% + sua—y),

Vi+eVy = —V2ax sin(x/ﬁom)g + cos(\/_ )g

Vo +eVi = \/_owccos(\/_au) +sm(\/_0zu)§

0 5 0
0 6 _ Y9 279
Vg +€Vy =55 €s? 90
0
Vg‘i‘EV’? = %,
0 0 0
Vg +eVg = ua—y + e<sy% - Su(?_y)
Vo +eVg = S% — 682%
VO, + v, = 2
10 10 = (9y’
0 0
V), +eVy = Us- = e2su%

The Lie algebra of Mei symmetry generators is given in Table 5.2, approximate Mei

symmetries up to first order of precision is given in Table 5.1.

88



20 = ()} (1) 958D 10J SOLIOWWAS O\ JO SUOIR[OL I0JRINTWOD O], :g'G O[(R],

0 0 0 0 0 0 0 0 GA— 0 “A
0 0 0 0 0 0 0 GA 0 0 %A
0 0 0 0 0 0 0 oA 0 %A~ || 6A
0 0 0 0 0 0 0 SA %A 0 oA
0 0 0 0 0 0 0 0 0 0 GA
0 0 0 0 0 0 0 0 0 GA— || A
0 0 0 0 0 GAPTA—= || 0 || gAPTA= || 0 oA
0 0 0 0 GAOT 0 0 | ¢APgN 0 oA
0 || sA— || 0A— || "6A— 0 0 0 0 0 SA
GA || 0 0 %A OAPZN || GAPZA— || 0 0 0 SA
0 0 O0A 0 0 0 0 0 0 oA
7 N [ N O N N oA oA A SA oA | L]
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For Vg, Mei and approximate Mei invariants are calculated.

0 0 0
0 1_ 9 Y _ .Y
V8+€v8_u6y+€<syav Su&y)’

and
V'L, = i,
VL, + VI Ly = —iy — ug.
Then gauge functions By is given by
(VO Lo) + VOI(VO Ly + By = 0,
04 4%+ By = 0,
By = —i?.
and Bl is
(VO Ly + VI L)) + 6y (VO £o) + VO (VO L) - vl 2oy - VIT(VOl £o) 4+ By = 0,
0+0—3uit— su® + By =0,
By = 3ui + si®.

Then corresponding Mei invariant is given below

Ig = UU —+ Bo,
arg ., dIy
ds u”+ bo, ds

and approximate invariant is

Ii = —sut —u* + By,
drI} :
—8 — _3ut — st + By,
ds

drI}

—2 0.

ds

The remaining approximate Mei invariants corresponding to approximate Mei symme-

tries are given in Table 5.3.
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Mei/Approximate Mei Invariants of pp-waves spacetimes
10+ el 1Y=0,By=0.
I9 +ell I =0,B, =0.
I3+ el} I)=0,By =0,
I} = —sut + By, By = wi + si’.

I +el} I = s+ By, By = —1,

Ii = —82 + Bl,Bl = 2s.
I? +el} I{ =0,By = 0.
IQ +el} I§ =0,B, =0,

I} =0,B, =0.
19 + eI} I = By =0.
I + el Iy = uti + By, By = —1/%,
I} = —sut, — u? + By, By = 3ut + su’.

19 + el} I§ = s+ By, By = —1,

]91 =52+ Bl,Bl = 2s.
[?04’5[110 I?OI();BO:O-

Table 5.3: Mei Invariants of case (i): A(u) = o?
5.2.1 Case (ii). A(u) = au?
The Lagrangian of the pp-wave spacetimes for A(u) = au™? is given by

1
Lo = —ou2z?0® —u + 5(:1:2 +9°),

The first order perturbed part of the Lagrangian is given below

22207 — 2500 + (s + s7?).

L1 = —2sau”
The geodesics equations are
i =0, b+ 2au"32x%u? — dau?zui = 0,

¥+ dou%zi® =0, ij = 0.
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The approximate Mei symmetries for this case, viz.

0 0 0
0 0 0
Vg + GVé = Sa—y — 6828—3/, VAOL + EV}L = a—y,
0 0 0
Vg+€v; :S%—€S2%, Vg‘I’EVé: %

The vanishing and non-vanishing Lie algebra of case (ii). A(u) = au™? is given in

Table 5.4.

JT VO TVST Ve vy [velvy
1 2 3 5 6

Vil o [[o | VI o [[vI]o
VIl o [0 =Vl =Vl 0 [0
VI T=VI VI o 0 [0 0
VOl o [VI] o 0 [[0 | 0
VI[=VI o | o 0 [[0 | 0
Vil o [[o ] o 0 |00

Table 5.4: The commutator relations of Mei symmetries for case (ii). A(u) = au™?

Mei/Approximate Mei Invariants of pp-waves spacetimes

I +el} I =0,B, = 0.
I9+el} 19=0,B, = 0.
I§+d§ [:?:O,BO:O,

I3 =0,B,=0.
10+ el} I =0,By, = 0.
19 +el} I =0,By =0,

I} =0,B,=0.
IR +el} I§ =0,By = 0.

Table 5.5: Mei Invariants of case (ii): A(u) = au™?
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5.2.2 Case (iii). A(u) = o?u™!

The Lagrangian of the pp-waves spacetimes for A(u) = a?u~* is given by

Lo = —au*2?0? — o + = (2% + 97),

5
The first order perturbed part of the Lagrangian is given below

L1 = —2sa’u"*w*u? — 2su0 + (si? + s77).

The geodesics equations are

5 2

=0, b — 4o’u” 2+ 40Putrud = 0,

—4

¥+ 20%uzi? =0, i = 0.

The following list consist of approximate Mei symmetries viz.

0 0
V(l) + GV% = S%, Vg + EV% = a,

0 5 0 0 0
0 _ Y 29 _ _sy— il
VI+eVy = S50 es? 50’ V)4 eV, = Y50 +e( syav+sua

0 0 9,

0 1_ 9 0 1_ 9 g _ .9
V5+6V5—8U, Vi + eV u8y+€(syﬁv 8u8y)

0 0 0 0
Vg + €V7 = Sa—y - 6828_y Vg + GVé = ’ya— — 628y8—y,

0 9, 0
Vg—{—eVé:u%—eZsu%, V9 + eV = — oy

5.2.3 Case (iv) h(z) = az”
The Lagrangian of the pp-waves spacetimes for h(x) = az™ is given by

1
Lo = —ax™i® — 0 + 5(92:2 + ),
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LI VS [ Vi [ Ve | Vi | Ve | Vg
vilTofolof ol o]fo
vilTo oo ol o]o
vilTo oo ol o]o
vilTo oo ol o]o
vilTo oo ol oo
vilTo oo ol o]o

Table 5.6: The commutator relations of approximate Mei symmetries for case (iii).
Au) = o®u™

The first order perturbed part of the Lagrangian is given below
L1 = —2sax™i* — 2500 + (si? + s7?).
The geodesics equations are

i = 0, b+ 2oma™ tud = 0,

&4 ana™ M =0, ij = 0.

The approximate Mei symmetries of Lagrangian for this case is given as follows

V?+6V%:%, Vg~|—eV%:%,

Vi +€eV, :u%%—e(sy%—su%), Vi +eVy :s(%—eszagy,
V§+eV§,:8%, V8+€Vé=%,

V94 eVi = yé% - ery%, VI+ eV = ué% - eru%,

Vi +eVy = S% - 682%, Vi + €V, = y% + 6(—sy% + suaﬁy)

The Lie algebra of Mei and approximate Mei symmetry generators are given in Table

5.9 and Table 5.10 respectively.
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LI VR | Ve [ Vs VR Ve[ Ve || Vi | Vi || Vo Vi
Vi o VI VIT ool o VZ] oo 0
VIT=VI[ 0o [[Vi[of ol o [V, o [[o 0
VI T=VIl =vi ool o] o 0 0 |0 0
Vi o0 0 00 o [ =VI[l=VvI[=Vvi[ o0 || =V°
Vi o 0 oo o] o 0 0 |0 0
VI o 0 0 [[Vil ol o 0 || VI [0 0
VO[TV =Vvo o [ VI o | o 0 | VZ [0 0
Vi o 0 0 VI o [[=v2] o 0 [0 || =V,
Vi o 0 oo o] o 0 0 |0 0
Vo, 0 0 0 [[VZ o o 0 || V9 [0 0

Table 5.7: The commutator relations of Mei symmetries for case (iii). A(u) = «
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Mei/Approximate Mei Invariants of pp-waves spacetimes

I +el} I} =0,By =0.
I9 +ell I =0,B, =0.
I + el Iy =0,B, =0,

I3 =0,B, = 0.
I + el I} =0,By =0,

Ii = —sul + Bl,Bl = ut + su’.
I? +el} I{ =0,By = 0.
19 +el} I = uit + By, By = —1?,
[é = —sut —u® + By, Bl = 3ut + su’.

19 +ell 19 =0,B, =0,

I} =0,B,=0.
I +elg I = 2yy + By, By = —29°,

I} = —4syy — 2y° + By, By = 8yy + 4sy°.

19+ eld 18 =0,By =0,

I3 =0,B, = 0.
I + ell, I}y =0,By =0,

I}, =0,B, =0.

Table 5.8: Mei Invariants of case (iii): A(u) = o?u™*
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W0 = ()Y (A1) 9SBD I0J SOLIOWUIAS O]\ JO SUOIJR[I I0JRINUITIOD dY ], :6'G d[(R],

0 O A— A= | A= 8A—| © 0 || %A
0 0 0 0 0 0 [ 0A— [ SA
0 0 0 0 0 A= 0 [ SA
%A 0 A= L A= 6A—| O 0 || 6A
0 0 0 0 0 0 0 oA
oA EA 0 0 0 0 0 || SA
oA oA 0 0 0 0 || A= || A
6A SA 0 0 0 [[eA—1[ 0 [ A
0 0 0 0 oA 0 0 A
0 0 0 oA 0 0 0 oA
A 7o N 5 O 9 7 O 7 N 7 N I
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L1 Vs || V| Vi | Vs | Vg | Vig
vViTof[of ol ool o
vVilTo ool ool o
vVifTof[ofol ool o
vViTolofofofolo
vViTolofofofolo
Vil ol oo ool o

Table 5.10: The commutator relations of approximate Mei symmetries for case (iv).
h(z) = ax™

Concluding Remarks:

Mei symmetries/approximate Mei symmetries of geodetic Lagrangian of pp-waves space-
times are calculated for various classes in this chapter. The different cases include plane

4 and

wave spacetimes in which (i). A(u) = o?(ii). A(u) = au™? (iii). A(u) = o*u~
for pp-wave spacetimes (iv). h(x) = ax™. We obtained eleven Mei symmetries for case

(i), ten for case (iii) and case (iv) and five for (ii).
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H Mei/Approximate Mei Invariants of pp-waves spacetimes H

I +el} I =0,By = 0.
9+ el; I3 =0,By = 0.
9+ elf I§ = wit+ By, By = —i,
[; = —suu — u® + Bl,Bl = 3ut + su’.

I +el} I =0,By =0,

I}=0,B,=0
2 +el} I{ =0,B, =0.
I+ el} Is =0,Bp =0,

I} =0,B, =0.
I7 + el I7 = 2yj + Bo, Bo = —2¢°,

I3 = —4syy — 2y + By, By = Syy + 4s5”.

19+ eI} I =0,By =0,

I} =0,B, =0.
19+ el} 19 =10,By =0,

I3 =0,B, = 0.
I, + eI, ]?OZO,BOZOa

I, = —suit+ By, By = ut + st

Table 5.11: Mei Invariants of case (iv): h(z) = ax”
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Chapter 6

Conclusions

In this thesis, approximate Mei symmetries and related Mei invariants corresponding to
the approximate Hamiltonian are studied using [53]. Formulae of obtaining these sym-
metries of approximate Hamiltonian are given in Theorems 3.2.1 and Mei invariants
are given in Theorem 3.4.1, Theorem 3.4.2 and Theorem 3.4.3 respectively. The
given example of DHO demonstrates the developed procedure in detail. A comparison
of approximate Noether and approximate Mei symmetries for DHO is given in Table

3.5 that shows:

e the number of approximate Mei symmetries is more than the number of approx-

imate Noether symmetries;
e the Mei symmetry V is also contained in the set of Noether symmetries;

e the other Mei symmetries, Vo, V3, V4, V5, and Vg are different from the Noether

symmetries, therefore, there are new corresponding conserved quantities.

Further, approximate Mei symmetries and invariants corresponding to the Lagrangian
are formulated. First of all, definition and criterion to develop the Mei symmetries are
explained [11, 20]. Then, these exact Mei symmetries are used to construct approximate

Mei symmetries and invariants, which are discussed in Theorem 4.1.1, Theorem
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4.3.1, Theorem 4.3.2. At the end, approximate Mei symmetries and invariants of
Lagrangian of DHO are obtained as an example. A comparison of approximate Mei
symmetries corresponding to the Lagrangian and Hamiltonian are given in Table 4.5.

From this comparison, it is noticed that

e V, is common in both i.e., related to the Hamiltonian and the Lagrangian
e a minor difference in approximate part of Vs is noted

e Mei symmetries V3, V4, V5, and Vi of both sets are completely different from
each other. These new Mei symmetries related to the Lagrangian lead to new

Mei invariants of DHO

After that, an application from general theory of relativity is taken. Mei symme-
tries/approximate Mei symmetries of geodetic Lagrangian of pp-waves spacetimes are
obtained for several classes that are listed in [51, 52]. The different cases include plane
wave spacetimes in which (i). A(u) = o2(ii). A(u) = au™? (iii). A(u) = o?u~* and

for pp-wave spacetimes (iv). h(x) = az™.

We obtained eleven Mei symmetries for
case (i), ten for case (iii) and case (iv) and five for (ii). For the cases (i)-(iv), Noether
gauge symmetries (NGS) are also known [52]. From the comparison of NGS and Mei

symmetries of pp-waves, following result are drawn

e For case (i), V9, V2, V3 V) are the proper Mei symmetries, i.e., other than NGS.
According to [47], for arbitrary A(u), V9, V2, V2 VY, are Killing vectors (KVs).

e For case (ii), V9, V3, V2 are proper Mei symmetries while the other develop a

equivalence relation with NGS. In addition, V9, VQ are KVs.

e For case (iii), V9, V2, V2 VQ are the proper Mei symmetries and V9, V9, are

Noether symmetries as well as KVs.
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e For case (iv), symmetry generators V3, V], V2 V2 VI VY are the proper Mei
symmetries, while V9, V9 V9 V2 VU satify the NGS conditions. Also, we have

two Killing vectors i.e., V2 and VY.

e In case (iv), a non-Homothetic affine collination (AC) vector V§ = u-2 is obtained

[56].

e The first order approximate Mei symmetries of perturbed Lagrangian of all the
above mentioned cases are also calculated using the method developed in [54].
In case (i) we have obtained five dimensional approximate symmetries up to first

order of ¢, two for case (ii), five for (iii) and six for case (iv).
Future Work

The Mei symmetry of several dynamical systems has been discussed in the literature.
The approximate Mei symmetries of the perturbed Lagrangian and perturbed Hamil-
tonian, that correspond to some spacetimes, such as the Friedman-Robertson-Walker
(FRW) spacetime, the Bardeen spacetime, etc., have not yet been studied. Future stud-
ies will also take into account the maximum dimension of approximate Mei symmetries

and the approximate Mei symmetries of PDEs.
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