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Abstract

The propagation of ordinary waves in different plasma environments is studied by

using the plasma kinetic theory. The non-degenerate and the degenerate plasmas

are focussed. The non-degenerate plasma environment is studied by employing

the ultra-relativistic Maxwellian distribution function in different magnetic field

limits i.e., the strong and weak field. However, the degenerate plasma is studied by

employing the Fermi-Dirac distribution function. The non-relativistic degenerate

and the ultra-relativistic degenerate cases are also presented. For this purpose a

generalized expression for the conductivity tensor in spherical polar coordinates is

derived by employing the relativistic Vlasov-Maxwell equations. In the strong field

limit it is observed that with increase in the strength of the ambient magnetic field

the damping is reduced whereas in the weak field limit, due to negligible effects of

the magnetic field, the dispersion diagram is same like the ordinary waves prop-

agating in the non-relativistic plasma. In the degenerate case the cut-off points

are shifted to the lower values of the frequency due to the relativistic effects. The

magnetic field effects that are not observed in the fluid approximation becomes

significant when studied by the plasma kinetic theory.



Chapter 1

Introduction

1.1 What is a plasma?

A plasma is an ionized gas consisting of large number of positive and negative
charged particles but as a whole it is electrically neutral and exhibits “collective
behavior”. However, a plasma is not so neutral that all the interesting electromag-
netic phenomena vanish because the local concentration of positive and negative
charged particles can give rise to the electric field. As long range coulombic inter-
action exist between the charged particles so the motions are influenced not only
by the local concentration of the particles but also due to the particles at large
distances, this is called the collective behavior.

Figure 1.1: States of matter.

In the laboratory different methods are used to create the plasma. The most

1
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common methods for the plasma production are the gas discharge and photoion-
ization. In the first (gas discharge) method, the free electrons of an ionized gas
are accelerated by applying an electric field. These free electrons collide with the
other atoms and ionize them. The electric field again accelerates these charged
particles (ions and electrons) which produce further ionization. An example of the
plasma produced by the gas discharge is the neon signs.

In the second (photoionization) method, high energy photons are incident on
the gas atoms and ionize them. The photon’s excess energy is converted to the
kinetic energy of electron ion pairs formed [3]. A natural example of a photoionized
plasma is the aurora borealis.

1.1.1 Various plasma environments

In the universe most of the matter visible to us is in the plasma state. A plasma can
be described by the temperature T (in eV) and density n0 (number of particles per
unit volume) that have wide range of variation. A plasma can be found in various
environments due to this variation.

Figure 1.2: Various plasma environments.

1.2 Plasma characteristics

In order to understand the plasma behavior completely, we define some terms that
are frequently used in describing plasma dynamics.
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1.2.1 Plasma frequency (ωp)

An important property of a plasma is its tendency to restore charge neutrality.
Consider that the electrons and ions are uniformly distributed in a plasma. If the
electrons are displaced from their equilibrium positions due to any external effect,
extra ions will be left behind. As a result there will be a deficiency of the negative
charge in that region. The ions will pull the electrons back to their respective
equilibrium positions but due to inertia, the electrons will not stop exactly at their
equilibrium positions and will overshoot. Again there will be a charge separation
that will give rise to an electric field that pulls the electrons back to their initial
positions. So the electrons will oscillate about their equilibrium positions. The
frequency of these oscillations is called the electron plasma frequency [2].

ωp =

√
4πn0e2

m
, (1.2.1)

where e is the charge and m is the mass of the electron. As the ions are more
massive (at least 1836 times) than the electrons, so they respond very slowly. The
same force acts on the electrons and ions but the acceleration of the ions is at least
1836 times less than that of the electron. As such they move slowly compared to
time scale of our interest. That’s why we take the ions to be stationary.

1.2.2 Debye shielding

The fundamental property of a plasma is its ability to minimize the effect of the
applied electric fields. Consider a homogeneous (no density gradient (∇n0 = 0))
plasma consisting of the positive ions and electrons. If we introduce a positive test
charge QT it will attract the electrons and repel the ions. We assume that the
density of the ions will remain unchanged i.e., ni = n0 (as before the introduction
of QT ). The electron density will increase near QT and a charge cloud will be
formed. The electric field of these electrons will shield out the electric field of QT .
Outside this region (cloud) there will be no electric field. If we assume that there is
no thermal motion of the electrons then the electric field of QT will be completely
screened. If the charged particles that are at the edge of the cloud (region of
weak electric field), have thermal energy larger than the potential energy (that
binds oppositely charged particle), then the shielding will not be perfect. The
radius of this charge cloud is called the Debye length λde and this process is called
Debye shielding. Consider that the electrons and ions in a plasma are in thermal
equilibrium then according to the Maxwell Boltzmann law the electron number
density is given by

ne = n0 exp(eφ/kBT ),
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Figure 1.3: Comparison of Debye shielding at (a) temperature T = 0 and (b)
temperature T .

where φ is the electrostatic potential. In order to find the expression for the
electrostatic potential (φ) we will use the Poisson equation, given by

∇ · E = 4πρ, (1.2.2)

where the charge density ρ is given by

ρ = e(ni − ne).

Now substituting E = −∇φ in Eq. (1.2.2), we get

∇2φ = 4πe(ne − n0). (1.2.3)

We assume that the electrostatic potential is weak i.e., eφ � kBT . So the Eq.
(1.2.3) for the one dimensional case becomes

d2φ

dx2
=

4πn0e
2

kBT
φ. (1.2.4)

We now take

λde =
( kBT

4πn0e2

) 1
2
, (1.2.5)

where kB is the Boltzmann constant and T is the electron temperature [1]. The
solution of the Eq. (1.2.4) (where φ→ 0 for x→∞) is given by

φ = φ0 exp
(−x
λde

)
. (1.2.6)
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So the potential of QT will fall off exponentially outside the Debye length (x > λde)
and the charges will feel the potential of QT inside λde (i.e., x < λde). From the
Eq. (1.2.5), it is clear that if the density is small or temperature is high then λde
will be large. This means that the electric field of the test charge will be screened
at a large distance. The Debye length is different in different plasma environments
e.g., the Debye length for the interstellar medium is 107m, whereas for the solar
corona it is 0.07m. The Debye length is related to the plasma frequency by the
following expression (using Eq. 1.2.5)

λde =
vth√
2ωp

, (1.2.7)

where vth =
√

2kBT/m is the thermal velocity of the electrons. If Debye length
λde is smaller than the scale length L of our system i.e., λde < L then upon intro-
duction of any test charge (or potential) in a plasma, it will be screened within the
dimension of the system. So bulk of the plasma will be free from electric potentials.
The number of particles inside a Debye sphere is given by

Nde =
4

3
n0πλ

3
de,

this concept will be valid only if there is a large number of charged particles in the
Debye sphere [2].

1.2.3 Collisionless plasma

In a plasma the charged particles interact with each other through the long range
Coulomb force whereas gas atoms interact when they collide. So the collisions in a
plasma are different from those in an ordinary gas. The following conditions must
be satisfied for a collisionless plasma:
1. λm � L, where λm is the mean free path;
2. The collision frequency must be smaller than the plasma frequency, ωp, i.e.

ωpτ > 1,

where τ is the time between successive collisions. It means that in a collisionless
plasma we are interested in those processes that are fast compared to the collision
time.

1.2.4 Plasma criteria and parameters

An ionized gas can be called a plasma, if it satisfies the following conditions [2]:
(i) λde � L;
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Figure 1.4: Comparison of an ordinary gas and a plasma.

(ii) Nde ≫ 1;
(iii) ωpτ > 1;
and it is characterized by the following parameters [4]:
1. Density (n0 = N/V );
2. Temperature T .
Consider that the particles in a gas are constrained to move in one direction. The
Maxwellian distribution for such a one dimensional case is given by

f(v) = A exp
(−mv2

2kBT

)
, (1.2.8)

where A is the normalization constant and v is the velocity of particles.
Now we can write ∫ ∞

−∞
f(v)dv = 1, (1.2.9)

where f(v)dv is the number of gas particles having velocities in the range between
v and v + dv. For the Maxwellian distribution function, we get

A

∫ ∞
−∞

exp
(−mv2

2kBT

)
dv = 1.
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In order to solve the above integral, we will use∫ ∞
−∞

exp(−a2x2)dx =

√
π

a
.

Hence

A =
( m

2πkBT

) 1
2
.

Now we calculate the average kinetic energy of all the particles present in this
distribution.

Eaverage =

∫∞
−∞

1
2
mv2f(v)dv∫∞

−∞ f(v)dv
, (1.2.10)

using the Maxwellian distribution function, we obtain

Eaverage =
1

2
kBT.

Thus the average kinetic energy is kBT/2.

1.3 Different theoretical approaches

In order to understand various plasma processes different theoretical models are
used. Depending on the process of interest, one can choose any model. Here we
will discuss the fluid approximation and the kinetic theory of a plasma.

1.3.1 The fluid approximation and the kinetic theory of a
plasma

In a plasma, there is a collection of charged particles and it is difficult to track the
motion of each particle. The most common way to describe such a bulk behavior is
the fluid approach that solves these problems by taking the average over collection
of particles. In this approximation the individual particle identity is neglected and
the collective properties (i.e., average velocity, density, temperature) are taken
into account. This approach considers the fluid as a continuous medium, so all the
quantities are functions of time, t, and position, r. The fluid approximation gives
the simplest plasma description and can explain most of the plasma phenomena but
it has some limitations e.g., the information related to the distribution of particle
velocities is lost in a fluid description because the fluid variables are not functions
of the velocity [2]. So we define the velocity and position of the charged particles by
using a distribution function. The plasma theory that is based on the description
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of the distribution function is known as the plasma kinetic theory. The kinetic
theory of the plasma describes the variation of the distribution function with the
time and it provides more information as compared to the fluid approximation.
The probability of finding the particles at a time, t, in a volume element, d3r,
having the velocity in the range between v and v +dv is given by f(r,v, t)d3rd3v.
If we integrate it over all the possible velocities, we will get the density.

n(r, t) =

∫ ∞
−∞

f(r,v, t)d3v. (1.3.1)

The distribution function do not give the information of the exact location and
the velocity of any single charged particle but (it gives information) in a velocity
range [2].

Now we will define the phase space which is described by the position and the
velocity coordinates i.e., x, y, z, vx, vy, vz (six coordinates). We take a small volume
element d3r = dxdydz in the configuration space. When we say that a particle is
inside the volume element d3r, it means that the position coordinate is between x
and x+dx, y and y+dy, z and z+dz. Similarly we can take a small volume element
d3v = dvxdvydvz in the velocity space. So the volume element in the phase space
is represented by d3rd3v = dxdydzdvxdvydvz. The distribution function gives

Figure 1.5: Volume elements in (a) Configuration space (b) Velocity space.

the density of the points (charged particles) in the phase space. Homogeneous
plasmas are characterized by a position independent distribution function whereas
in the inhomogeneous plasmas, the distribution function depends on the position
of the particle. The distribution function in an isotropic plasma is independent of
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the direction of the particle velocity (v) but an anisotropic distribution function
depends on the orientation of the velocity.

1.3.2 Examples of different distribution functions

There can be different distribution functions (isotropic, anisotropic, homogeneous,
inhomogeneous) corresponding to various plasma environments. Here we will study
the Maxwellian, the Fermi-Dirac and the Bose-Einstein distribution functions.

In a classical plasma, the inter-particle distance becomes greater than the de-
Broglie’s wavelength of the charged particles, so the energy distribution of the
charged particles (in thermal equilibrium) is described by the Maxwell Boltzmann
energy distribution function.

f0(E) = n0

( m

2πkBT

) 3
2

exp
(−mv2

2kBT

)
.

The Maxwellian distribution function is a uniform, isotropic and it is independent
of the time. This classical distribution is applicable when the temperature is high
or the particle density is low. There is no limit on the number of particles in any
energy state. Any number of particles can be found in any state [5]. An example
of the Maxwellian distribution is the distribution of the particles velocities at the

room temperature. For the relativistic case m = γm0, where γ = 1/
√

1− v2

c2
,

where c is the speed of light. For the ultra-relativistic case, when the thermal
energy dominates the rest mass energy we get the following distribution.

f0(E) =
n0c

3

8π(kBT )3
exp

(
− cp

kBT

)
. (1.3.2)

In an environment with a high density and a low temperature the de-Broglie
wavelength of the charged particles becomes greater than or comparable to the
inter-particle distance. So the quantum effects become important and we cannot
use the Maxwell Boltzmann distribution. According to the Pauli Exclusion prin-
ciple, no two identical Fermions can occupy the same quantum state. The energy
of the highest occupied level is called the Fermi energy. Such a system in which
all the energy states below the Fermi energy are filled is called degenerate. So
we use the Fermi-Dirac distribution which is applicable to the Fermions, the spin
1/2 particles, that obey the Pauli Exclusion principle [6]. In the thermal equilib-
rium, the energy distribution of the Fermions at temperature (T ) is defined by the
Fermi-Dirac distribution function.

f0(E) =
1

e
E−µ
kBT + 1

,
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where µ is the chemical potential i.e., energy required to add a particle in the
system. At absolute zero temperature (T = 0), the chemical potential is known as
Fermi energy.

Figure 1.6: Fermi-Dirac distribution function at different temperatures.

when T → 0 f0(E) =
{ 1 E < EF

0 E > EF .
(1.3.3)

This means that all the energy levels with E < EF (energy less than the Fermi
energy) are filled and all above the Fermi energy E > EF are empty. At a high
temperature, the Fermions lose quantum mechanical character and the Fermi dis-
tribution is reduced to the Maxwellian distribution [5].

The particles that have integer spin obey the Bose-Einstein statistics and are
known as Bosons. Unlike the Fermions, the Bosons can accumulate in the same
energy state as they do not obey the Pauli Exclusion principle. The Bose-Einstein
distribution function is given by

f0(E) =
1

e
E−µ
kBT − 1

,

When T → 0, the bosons move to the lowest energy state called the Bose-Einstein
Condensate. With the increase in temperature the bosons will start to leave the



11

lowest energy state and at a temperature Tc, there will be no particle in the lowest
energy state. At a higher temperature the Bose-Einstein distribution function is
reduced to the Maxwellian distribution function.

1.4 Examples of the relativistic plasma environ-

ments

When the thermal energy of the plasma particles becomes equivalent to their rest
mass energy (mc2 ∼ kBT ) then the plasma is said to be relativistic. Here we will
discuss some environments where the relativistic plasma can be found.

1.4.1 Jupiter

The magnetic field of the Jupiter is 0.42Gauss which is 14 times stronger than the
magnetic field of the Earth. So the magnetosphere of the Jupiter covers a large
space as compared to the magnetosphere of the Earth. In Jupiter’s magnetosphere,
sulfur dioxide ejected by the moon of the Jupiter “Io” becomes ionized and forms a
gaseous torous along the orbit of the Io. This ionized material (plasma) co-rotates
with the Jupiter. It has been confirmed by measurements that the electrons having
energies up to 20MeV exist in the Jupiter (high energy) radiation belts. Due to
interaction with the plasma waves these electrons are accelerated and get energy
from the waves [19].

1.4.2 Pulsar

A pulsar is a strongly magnetized neutron star. The magnetosphere of a pulsar
provides a natural laboratory for examining the properties of a plasma immersed
in a very strong magnetic field. So rotation of the pulsar along with the mag-
netospheric plasma takes place that results in the generation of an electric field,
having a component in the direction of the magnetic field. This electric field ejects
the charged particles from the surface of the pulsar. We have assumed here that
these charged particles are the electrons. The electric field accelerates these elec-
trons to the relativistic velocities. As the magnetic field lines of the pulsar are
curved, so the electrons that are moving along the curved field lines radiate γ rays
that will further convert into an electron positron pair (if its energy is two times
greater than the rest mass energy of the electron), which will be accelerated by
the electric field. This process continues and the pulsar’s magnetosphere is filled
with the relativistic electron positron plasma. It has two regions, a region with
the open field lines and a region with the close field lines. In the first region, the
plasma particles escape from the pulsar magnetosphere by following the open field
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lines. In the second region, the plasma cannot escape from the magnetosphere,
the magnetic field confines it [14].

Figure 1.7: Pulsar.

1.4.3 White dwarf

A white dwarf is the best example of a relativistic partially degenerate plasma
environment. Stars (like our Sun) spend maximum part of their lives by fusing
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Figure 1.8: Stellar evolution.

hydrogen into helium in their core. Due to this fusion process heat and the thermal
pressure is produced. This pressure is balanced by the gravitational attraction
generated by the stellar mass. When nearly all the fuel i.e., hydrogen is burnt
then the fusion reaction slows down and the thermal pressure will decrease. As
a result, the gravitational attraction will dominate the thermal pressure and the
gravitational collapse takes place. Due to the gravitational collapse the density
becomes extremely high and the degeneracy effect becomes dominant. So collapse
could not continue due to the introduction of the degeneracy pressure, which is a
consequence of Pauli’s exclusion principle. During this condensation process the
star will heat up and its outer layers start to expand outward forming a star named
as “red giant”. If the mass of the star is greater than 1.44 times the solar mass
then it can further convert helium into heavy elements (e.g., carbon). As a result
the neutron star is formed. On the other hand, if the mass of the star is less than
1.44 times the solar mass then it will eject the outer layers, only a core will be left
behind. It is the same core that forms the remanent white dwarf. Mass of a white
dwarf is comparable to the mass of the Sun but its size is comparable to the size
of the Earth. As it is a highly dense environment so the plasma found there will
be partially degenerate [13,15,16,20].
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1.5 Waves in a plasma

In the presence of an ambient magnetic field B0 both the electromagnetic and the
electrostatic waves can propagate in a plasma. For the high frequency electromag-
netic waves (radio waves, light waves) it is assumed that the ions (being massive)
remain in the background, so they do not participate in the dynamics and only the
electrons will contribute. In an electromagnetic wave both the oscillating electric
and magnetic fields (E1 6= 0,B1 6= 0) are present, so k must be perpendicular to
E1 i.e., k ⊥ E1 [2]. For the electromagnetic waves we use the following Maxwell
equations.

∇× E1 = −1

c

∂B1

∂t
, (1.5.1)

∇×B1 =
4πJ1

c
+

1

c

∂E1

∂t
, (1.5.2)

where J1 is the current density. In an electrostatic wave the oscillating electric
field (E1 6= 0) is present but the oscillating magnetic field (B1 = 0) is zero, so
k ‖ E1. The relevant Maxwell equation for an electrostatic wave is

∇ · E1 = 4πρ,

where ρ is the charge density.

1.5.1 Ordinary waves

Ordinary waves are the high frequency electromagnetic waves that propagate per-
pendicular to the ambient magnetic field (B0).

Figure 1.9: Geometry of the ordinary wave.
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When frequency of the ordinary wave matches with the plasma frequency, the
wave may encounter a cut-off. At the cut-off point, the wave propagation ceases.

These cut-offs are important for space and radio communication because they
are directly related with the density of the plasma, so for the radio-communication
(around earth), we send a wave with the frequency less than the plasma frequency.
Such a wave will not penetrate the ionosphere and will be reflected. For the
space-communication we send a wave having frequency greater than the plasma
frequency, so that it can penetrate through the ionosphere [2].

1.6 Theoretical Background

Now we will derive a generalized expression for the conductivity tensor by using
the (relativistic) Vlasov-Maxwell equations. We derive the dispersion relation
from the expression of the conductivity tensor, which is important in studying the
properties of different waves.

1.6.1 The Boltzmann and Vlasov equations

The Boltzmann equation is used when we are interested in the motion of the
distribution of particles instead of the individual particles [31]. The distribution
function, f(r,v, t), depends on the position, r, velocity, v, and time, t, where,

r = xî+ yĵ + zk̂, (1.6.1)

and
v = vxî+ vy ĵ + vzk̂. (1.6.2)

By taking the derivative of the distribution function, f(x, y, z, vx, vy, vz, t), with
respect to time, we get

df

dt
=
∂f

∂t
+
∂f

∂x

dx

dt
+
∂f

∂y

dy

dt
+
∂f

∂z

dz

dt
+
∂f

∂vx

dvx
dt

+
∂f

∂vy

dvy
dt

+
∂f

∂vz

dvz
dt
. (1.6.3)

If there are collisions then the variation of the distribution function, f(r,v, t), with
the time (t) is given by the Boltzmann equation

df

dt
=
∂f

∂t
+ v · ∇f + a · ∂f

∂v
=
(∂f
∂t

)
coll
, (1.6.4)

where,

∇ = î
∂

∂x
+ ĵ

∂

∂y
+ k̂

∂

∂z
, (1.6.5)
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∂

∂v
= î

∂

∂vx
+ ĵ

∂

∂vy
+ k̂

∂

∂vz
, (1.6.6)

and (∂f/∂t)coll in Eq. (1.6.4) represents the collision term. The acceleration, a, is
given by

a =
F

m
,

where F can be any force. As in the present case we are dealing with the charged
particles, so F will be the Lorentz force, given by

F = e
(
E +

v ×B

c

)
, (1.6.7)

where v is the velocity, bold face symbols represent vector quantities.
As the charged particles are moving with different velocities and they interact

through the long range Coulomb forces, their velocities get changed. For exam-
ple in a short time interval, dt, due to the interaction (with the other charged
particles), a charged particle that was initially inside a volume element within a
particular velocity range (vx, vy etc) can come to another velocity range as it leaves
that volume element. The collision term represents the gain or loss of the charged
particles due to the interaction [2].

If we ignore the collision term in the Boltzmann equation, we get the Vlasov
equation (collisionless Boltzmann equation)

df

dt
=
∂f

∂t
+ v · ∇f + a · ∂f

∂v
= 0. (1.6.8)

This equation is used when we are interested in those processes that are rapid as
compared to the collision time, τ > 1

ν
, or the mean free path is large as compared

to the dimension of our system. Consider a small element, dx′dv′, described by
a distribution function, f(x′,v′, t′), in the phase space. At a time, t′, all the
particles (with in this element) are located between x′ and x′ + dx′ and have
the velocity between v′ and v′ + dv′. After some time, t, the particles will go
to different positions and their velocities will also be slightly different (from the
initial velocities) due to the Lorentz forces. The total number of particles will not
change, that’s why we say that if there are no collisions then the density in the
phase space will remain constant [2], which is the Liouville’s theorem i.e.,

f(x′,v′, t′) = f(x,v, t).
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Figure 1.10: Movement of a group of particles.

1.6.2 The linearized Vlasov equation

If we use the electromagnetic force in the Eq. (1.6.8), we will get

∂f

∂t
+ v · ∇f +

e

m

(
E +

v ×B

c

)
· ∂f
∂v

= 0. (1.6.9)

Maxwell equations are given by

∇ · E = 4π
∑

e

∫
fd3v,

∇×B =
4π

c

∑
e

∫
vfd3v +

1

c

∂E

∂t
,

∇× E = −1

c

∂B

∂t
.

Since the electric field, E, and the magnetic field, B, depend on the distribution
function (f), so the Vlasov equation is a non-linear (partial differential) equation in
f [32,33,35]. The last term in the Vlasov equation is a non-linear term. To linearize
the Vlasov equation we assume that the amplitude of the perturbed quantities is
small so we neglect the higher order perturbations. We consider a uniform plasma
with an equilibrium distribution function f0(v) and a small perturbation in it [23].
To linearize the Vlasov equation, we consider

f = f0 + f1,

B = B0 + B1,

E = E0 + E1,
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where the electric field, E, and the magnetic field, B, are functions of f . The
zeroth order term represents the unperturbed part of the variable and the first
order term represents the perturbed part of the variable. The linearized Vlasov
equation will be

∂f1
∂t

+ v · ∇f1 +
e

m

[
E0 +

v ×B0

c

]
· ∂f1
∂v

+
e

m

[
E1 +

v ×B1

c

]
· ∂f0
∂v

= 0. (1.6.10)

In our case, the equilibrium electric field is zero and the equilibrium magnetic field
is along the z-direction i.e.,

E0 = 0, B0 = B0ẑ.

∂f1
∂t

+ v · ∂f1
∂x

+
e

m

[v ×B0

c

]
· ∂f1
∂v

+
e

m

[
E1 +

v ×B1

c

]
· ∂f0
∂v

= 0. (1.6.11)

In order to study the plasma dynamics, we have to solve the Maxwell equations
along with the linearized Vlasov equation for the perturbed quantities (E1,B1).
The charge and current density in terms of the perturbation is given as

ρ = e

∫
f1d

3p, (1.6.12)

J = e

∫
vf1d

3p, (1.6.13)

∂f1
∂t

+ v · ∂f1
∂x

+ Ω
(
p× ẑ

)
· ∂f1
∂p

+ e
[
E1 +

v ×B1

c

]
· ∂f0
∂p

= 0, (1.6.14)

where v = p/γm and Ω = eB0/γmc is called the relativistic cyclotron frequency
and the relativistic factor is given by γ = 1/

√
1− v2/c2 .

In order to solve the above (differential) equation we introduce the cylindrical
coordinate system, the parallel and perpendicular components of the momentum,
p, are given by

px = p⊥ cosφ,

py = p⊥ sinφ,

pz = p‖.

Using the values of px, py and pz in the scalar triple product given below, we get

(p× ẑ) · ∂f1
∂p

=

∣∣∣∣∣∣
px py pz
0 0 1
∂f1
∂px

∂f1
∂py

∂f1
∂pz

∣∣∣∣∣∣ ,
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(p× ẑ) · ∂f1
∂p

= py
∂f1
∂px
− px

∂f1
∂py

. (1.6.15)

In order to solve the above equation we use the chain rule

∂f1
∂px

=
∂f1
∂p⊥

∂p⊥
∂px

+
∂f1
∂φ

∂φ

∂px
+
∂f1
∂p‖

∂p‖
∂px

,

substituting the values of ∂p⊥/∂px, ∂φ/∂px and ∂p‖/∂px, we get

∂f1
∂px

=
∂f1
∂p⊥

(cosφ) +
∂f1
∂φ

(− sinφ

p⊥

)
.

Similarly,
∂f1
∂py

=
∂f1
∂p⊥

∂p⊥
∂py

+
∂f1
∂φ

∂φ

∂py
+
∂f1
∂p‖

∂p‖
∂py

,

∂f1
∂py

=
∂f1
∂p⊥

(sinφ) +
∂f1
∂φ

(cosφ

p⊥

)
.

Using the values of px, py, ∂f1/∂px and ∂f1/∂py in Eq. (1.6.15), we get

(p× ẑ) · ∂f1
∂p

= −∂f1
∂φ

.

Substituting values in Eq. (1.6.14), we get

∂f1
∂t

+ v · ∂f1
∂x
− Ω

∂f1
∂φ

+ e
[
E1 +

v ×B1

c

]
· ∂f0
∂p

= 0, (1.6.16)

∂f1
∂φ
− 1

Ω

(∂f1
∂t

+ v · ∂f1
∂x

)
=
e

Ω

[
E1 +

v ×B1

c

]
· ∂f0
∂p

. (1.6.17)

Applying the Fourier transform in space and the Laplace transform in time, we
get

∂f1
∂φ
− 1

Ω

(
− iω + ik · v

)
f1 =

e

Ω

(
E1 +

v ×B1

c

)
· ∂f0
∂p

, (1.6.18)

where we have used

(E,B, f) =

∫ ∞
0

dt exp(−st)
∫ ∞
−∞

d3x

(2π)3/2
exp(−ik · x)(E1,B1, f1),

where s = −iω and Re(s) > 0. Eq. (1.6.18) is a 1st order inhomogeneous partial
differential equation. Now we introduce a primed notation i.e.,

v′ = v⊥ cosφ′̂i+ v⊥ sinφ′ĵ + v‖k̂.
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We first find the solution of the homogeneous differential equation

∂G

∂φ
− 1

Ω

(
− iω + ik · v

)
G = 0, (1.6.19)

the solution of the above equation is

G = exp
[ 1

Ω

∫ φ

φ′
(−iω + ik · v′′)dφ′′

]
. (1.6.20)

Now we can write the solution of the inhomogeneous equation as (the lower inte-
gration limit in the equation given below shows that there is no perturbation in
the very beginning)

f1 =
1

Ω

∫ φ

−∞
Φ(φ′)Gdφ′, (1.6.21)

where

Φ(φ′) = e
(
E1 +

v′ ×B1

c

)
. (1.6.22)

As the particles are rotating about the z-axis, so φ′ will be evolved with the time.
The variable φ′ is related to the time, t′, by φ′ = Ωt′/γ. As t′ → −∞, this means
we go back in infinite past where there is no perturbation, so lower integration
limit must be φ′ = ±∞ [28]. If e < 0 then f1 will converge at φ′ → −∞ and vice
versa. As f1 is periodic in φ so its limits of integration should be independent of φ,
which can be easily seen by replacing (φ−φ′) by a new variable in the integrand of
equation (1.6.21). Now by applying the Fourier Laplace transform on Eq. (1.6.10),
we get

B1 =
c(k× E1)

ω
. (1.6.23)

Solving Eqs (1.6.10) and (1.6.10), we get

ω2E1 − c2k2E1 + c2k(k · E1) = −4πiωJ1, (1.6.24)

ω2Eα − c2k2Eα + c2kα(kβEβ) = −4πiωJα, (1.6.25)

by Ohm’s law
J = σ · E,

where σ is the conductivity. The Greek index notation represents the vector quan-
tities. We can write in components form

Jα = σαβEβ, (1.6.26)

where α, β = x, y, z. We have used the Einstein summation convention that re-
peated indices are summed over and are using the Cartesian tensor, so that we
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do not need to distinguish between covariant and contravariant indices. Using Eq.
(1.6.25)

[(ω2 − c2k2)δαβ + c2kαkβ + 4πiωσαβ]Eβ := RαβEβ = 0. (1.6.27)

The current density and number density is given by

J = nev,

n =

∫
f1d

3p,

Jα = e

∫
vαf1d

3p. (1.6.28)

Using the value of f1, we get

Jα = e

∫
vα
Ω

∫ φ

−∞
Φ(φ′)Gdφ′d3p,

= e

∫
vα
Ω

∫ φ

−∞
dφ′ exp

[ 1

Ω

∫ φ

φ′
(−iω + ik · v′′)dφ′′

][
e(E1 +

v′ ×B1

c
) · ∂f0
∂p′

]
d3p.

Substituting value of B1 from Eq. (1.6.23), we get[
(E1 +

v′ ×B1

c
) · ∂f0
∂p′

]
= E1 ·

∂f0
∂p′

+
1

ω

[
k(v′ · E1)− E1(k · v′)

]
· ∂f0
∂p′

,

= E1 ·
∂f0
∂p′

+
1

ω
(v′ · E1)

(
k · ∂f0

∂p′

)
− 1

ω

(
E1 ·

∂f0
∂p′

)
(k · v′),

[
(E1 +

v′ ×B1

c
) · ∂f0
∂p′

]
= Eβ

∂f0
∂p′β

+
1

ω
(v′βEβ)

(
k · ∂f0

∂p′

)
− 1

ω

(
Eβ

∂f0
∂p′β

)
(k · v′),

=
[∂f0
∂p′β

+
v′β
ω

(
k · ∂f0

∂p′

)
− 1

ω

∂f0
∂p′β

(k · v′)
]
Eβ.

Using this value in expression of Jα, we get

Jα = e2
∫
vα
Ω

∫ φ

−∞
dφ′ exp

[ 1

Ω

∫ φ

φ′
(−iω+ik · v′′)dφ′′

][∂f0
∂p′β

+
v′β
ω

(
k·∂f0
∂p′

)
− 1

ω

∂f0
∂p′β

(k · v′)
]
Eβd

3p.

So we can write

σαβ =
e2

ω

∫
vα
Ω

∫ φ

−∞
dφ′ exp

[ 1

Ω

∫ φ

φ′
(−iω + ik · v′′)dφ′′

][
(ω − k · v′)δβl + v′βkl

]∂f0
∂p′l

d3p.
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This is a general expression for the conductivity tensor for any kind of distribution
and for any coordinate system. Now we are going to use the spherical polar
coordinates, so the volume element is given by

d3p = p2dp sin θdθdφ. (1.6.29)

So,

σαβ =
e2

ω

∫ ∞
0

∫ π

0

∫ 2π

0

p2 sin θdpdθdφ
vα
Ω

∫ φ

−∞
dφ′ exp

[ 1

Ω

∫ φ

φ′
(−iω + ik · v′′)dφ′′

]
[
(ω − k · v′)δβl + v′βkl

]∂f0
∂p′l

. (1.6.30)

In our case we are focussing on the ordinary waves for which E1 = E1ẑ and
k = kxx̂. As we are interested in perpendicular propagation so we are left with σzz
component of the conductivity tensor which specifies the dynamics of the ordinary
wave [21].

The zz component of the conductivity tensor (σzz) is given by

σzz =
e2

ω

∫ ∞
0

∫ π

0

∫ 2π

0

p2 sin θdpdθdφ
vz
Ω

∫ φ

−∞
dφ′ exp

[ 1

Ω

∫ φ

φ′
(−iω + ik · v′′)dφ′′

]
[
(ω − k · v′)δzl + v′zkl

]∂f0
∂p′l

. (1.6.31)

We can take the wave vector, k, as

k = (kx, 0, kz),

and the velocity v in the spherical coordinate system can be written as

v = (v sin θ cosφ, v sin θ sinφ, v cos θ). (1.6.32)

Now by substituting the value of vz and simplifying Eq. (1.6.31), we get

σzz =
e2

ω

∫ ∞
0

∫ π

0

∫ 2π

0

p2 sin θdpdθdφ
v cos θ

Ω∫ φ

−∞
dφ′ exp

[−i
Ω

(ω − kxv sin θ(sinφ− sinφ′)− kzv cos θ(φ− φ′)
]

[
(ω − kxv sin θ cosφ′ − kzv cos θ) cos θ

∂f0
∂p

+ v cos θ(kx sin θ cosφ′ + kz cos θ)
∂f0
∂p

]
.
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As f1 is periodic in φ, so we substitute φ−φ′ = α, such that the integration limits
become independent of φ.

Put φ− φ′ = α

dφ′ = −dα

σzz = e2
∫ ∞
0

p2
∂f0
∂p

dp

∫ π

0

v sin θ cos2 θdθ

Ω

∫ 2π

0

exp
[ikxv sin θ

Ω
[sinφ− sin(φ− α)]

]
dφ∫ ∞

0

exp
[−i

Ω
(ω − kzv cos θ)α

]
dα.

In order to solve the above φ integration we will use the following identity.∫ 2π

0

exp
[
iξ(sinφ−sin(φ−α))

]
dφ = 2π

∑
n

exp[inα]J2
n(ξ), where ξ =

(
kxv sin θ/Ω

)
.

After performing φ integration, we get

σzz = 2πe2
∫ ∞
0

p2
∂f0
∂p

dp

∫ π

0

v sin θ cos2 θdθ

Ω

∑
n

J2
n

(kxv sin θ

Ω

)
∫ ∞
0

exp
[−i

Ω
(ω − nΩ− kzv cos θ)α

]
dα.

Now integrating over α, we get

σzz = −2πie2
∫ ∞
0

p2
∂f0
∂p

dp

∫ π

0

v sin θ cos2 θ
∑
n

J2
n

(kxv sin θ

Ω

) dθ

(ω − kzv cos θ − nΩ)
.

(1.6.33)
We will use the above equation in the next chapter and will take kz = 0 to find
the dispersion relation of the ordinary waves.



Chapter 2

Propagation of ordinary waves in
the non-degenerate and
degenerate plasmas

In this chapter the propagation of the ordinary waves in the non-degenerate and
degenerate plasmas has been studied. In section 2, the dispersion relation of the
ordinary waves is derived by using the ultra-relativistic Maxwellian distribution
function considering the strong and the weak magnetic field limits. In section 3,
the dispersion relation of the ordinary waves in the relativistic degenerate electron
plasma is derived by using the Fermi-Dirac distribution function.

2.1 Introduction

Consider the propagation of transverse (k ⊥ E1) electromagnetic waves passing
through a plasma. As we are interested in the perpendicular propagating waves
so we have two options i.e., E1 ⊥ B0 or E1 ‖ B0. For the ordinary waves our
coordinate system will be E1 = E1ẑ, k = kxx̂ and B0 = B0ẑ. We will take kz = 0
in Eq. (1.6.24) for the ordinary (perpendicular propagating) waves. So

ω2 − c2k2x = −4πiωJ1. (2.1.1)

The ion’s dynamics can be ignored for the high frequency waves, so we get the
current due to the motion of electrons.

J1 = −n0ev1. (2.1.2)

As we know that the linearized equation of motion for the electrons is

m
∂v1

∂t
= −eE1. (2.1.3)

24
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The above equation can be written as

v1 =
eE1

imω
. (2.1.4)

Using Eqs. (2.1.2, 2.1.4) in Eq. (2.1.1), we get

ω2 = ω2
p + c2k2x, (2.1.5)

where ω2
p = 4πn0e

2/m is the plasma frequency and k is the magnitude of the wave
vector. The phase velocity (vφ = ω/k) of the ordinary waves is given by

vφ =
c√

1− ω2
p

ω2

. (2.1.6)

In the fluid approximation, these waves remain unaffected by the ambient magnetic
field, that’s why these are named as the ordinary waves [2].

2.2 The non-degenerate ultra-relativistic Maxwellian

electron plasma

When the thermal energy of the plasma particles becomes much greater than their
rest mass energy (m0c

2 � kBT ) then the plasma is said to be ultra-relativistic. At
a low density and a high temperature, the thermal effects dominate in a plasma and
the plasma is said to be non-degenerate when the inter-particle distance becomes
greater than the de-Broglie’s wavelength of the charged particles [5].

Now we will focus on the propagation of the ordinary waves in the (non-
degenerate) ultra-relativistic Maxwellian electron plasma by taking the strong and
the weak magnetic field limits in a non-degenerate plasma.

2.2.1 The ultra-relativistic Maxwellian electron plasma in
a strong magnetic field

A plasma is said to be strongly magnetized when the cyclotron frequency dom-
inates on the plasma frequency. There are some plasma environments in nature
with the low density and a strong magnetic field. In such environments the ratio
of the cyclotron frequency to the plasma frequency is given by

ωc/ωp > 1, (2.2.1)

the density (ωp) is high but when we compare it with the magnetic field (ωc =
eB0/mc) its value is small. That’s why we call it the strong field limit.



26

Consider the propagation of the ordinary waves through a plasma immersed
in a strong magnetic field. Such plasma environment can be found in the mag-
netosphere of the pulsar, which is a natural laboratory (for studying the plasma)
having a strong magnetic field of the order of 1012 Gauss [14]. The dispersion
relation of the ordinary waves can be obtained by using Eq. (1.6.33) [21–23].

σzz = −2πie2
∫ ∞
0

p2
∂f0
∂p

dp

∫ π

0

v sin θ cos2 θ
∑
n

J2
n(ζ)

dθ

(ω − nΩ)
. (2.2.2)

As we are considering that the magnetic field is very strong so for the relativis-
tic case ζ = ckx sin θ/Ω � 1. Under this assumption we can use the asymptotic
value of the Bessel function i.e.,

Jn(ζ) ≈ 1

Γ(n+ 1)

(ζ
2

)n
, (2.2.3)

where Γ is the Gamma function given by

Γ(n) = (n− 1)!.

In order to perform θ integration, we will use the following result.∫ π

0

sin2n+1 θ cos2 θdθ = Γ(n+ 1)
[22n+3Γ(n+ 3)

Γ(2n+ 4)
−

√
π

Γ(n+ 3
2
)

]
. (2.2.4)

So, we can write the Eq. (2.2.2) as

σzz = −2πie2
∫ ∞
0

p2
∂f0
∂p

dp
[ 2v

3ω
+
∞∑
n=1

(kx
Ω

)2n
v2n+1 4(n+ 1)

Γ(2n+ 4)

{ 1

ω − nΩ
+

1

ω + nΩ

}]
.

(2.2.5)
In the relativistic case, we can write

E2 = p2c2 +m0
2c4, (2.2.6)

and

Ω =
eB0√

p2 +m2
0c

2
. (2.2.7)

When we consider the ultra-relativistic plasma then the rest mass energy of the
plasma particles becomes so small as compared to the thermal energy that it can
be neglected and we get E = pc. The velocity and the cyclotron frequency for the
ultra-relativistic plasma is

v = c and Ω = eB0/p. (2.2.8)
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The ultra-relativistic Maxwellian distribution function for the electron plasma
is [30]

f0 =
n0c

3 exp (−cp/T )

8πT 3
, (2.2.9)

∂f0
∂p

= −n0c
4 exp (−cp/T )

8πT 4
, (2.2.10)

using Eq. (2.2.8) and Eq. (2.2.10) in Eq. (2.2.5), we get

σzz =
in0e

2c4

4T 4

∫ ∞
0

p2 exp
(−cp
T

)[ 2c

3ω
+
∞∑
n=1

(ckxp
eB0

)2n 4(n+ 1)c

Γ(2n+ 4)

{ 1

ω − neB0

p

+
1

ω + neB0

p

}]
dp,

σzz =
in0e

2c5

4ωT 4

[2T 2

3c2

∫ ∞
0

c2p2

T 2
exp

(−cp
T

)
dp+

∞∑
n=1

4(n+ 1)T 2n+2

Γ(2n+ 4)c2n+4

( ckx
eB0

)2n
{∫ ∞

0

( cp
T

)2n+3 exp(−cp
T

)dp

( cp
T

) + nB0c
ωT

+

∫ ∞
0

( cp
T

)2n+3 exp(−cp
T

)dp

( cp
T

)− nB0c
ωT

}]
,

on performing integration, we get

σzz =
in0e

2c2

4ωT

[4

3
+
∞∑
n=1

4(n+ 1)

Γ(2n+ 4)

(ckxT
ceB0

)2n{
exp

(nceB0

ωT

)
E2n+4(nceB0

ωT

)
Γ(2n+ 4) + exp

(−nceB0

ωT

)
E2n+4

(−nceB0

ωT

)
Γ(2n+ 4)

+iπ exp
(−nceB0

ωT

)(nceB0

ωT

)2n+3}]
. (2.2.11)

We have used these two integrals in order to solve the above calculation.∫ ∞
0

y2n+3 exp(−y)

y − nb
dy = exp(−nb){E2n+4(−nb)Γ(2n+ 4) + iπ(nb)2n+3},

and ∫ ∞
0

y2n+3 exp(−y)

y + nb
dy = exp(nb){E2n+4(nb)Γ(2n+ 4) + iπ(nb)2n+3},
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where E2n+4 is the Exponential integral defined as

En(x) =

∫ ∞
1

e−txdt

tn
.

In order to solve the momentum integration we have not used any approxima-
tion [24]. Substituting α = β = z in Eq. (1.6.27), we get

Rzz = ω2 − c2k2x + 4πiωσzz, (2.2.12)

by substituting Rzz = 0 in the Eq. (2.2.12), we get

ω2 = c2k2x + 4πiωσzz, (2.2.13)

substituting Eq. (2.2.11) in the Eq. (2.2.12), we get

Rzz = ω2 − c2k2x − ωp2 − 3ωp
2

∞∑
n=1

(n+ 1)
(ckx
ωc

)2n{
exp

(nωc
ω

)
E2n+4

(nωc
ω

)
+ exp

(
− nωc

ω

)
E2n+4

(
− nωc

ω

)
− iπ

Γ(2n+ 4)
exp

(
− nωc

ω

)(nωc
ω

)2n+3}
,

(2.2.14)

where the cyclotron frequency and the plasma frequency for the ultra-relativistic
plasma are

ωc =
eB0c

T
, (2.2.15)

and

ω2
p =

4πn0e
2c2

3T
, (2.2.16)

by substituting Rzz = 0 in the Eq. (2.2.14), we get the real and imaginary parts
of the dispersion relation, given by

ωr
2 = c2k2x + ωp

2 + 3ωp
2

∞∑
n=1

(n+ 1)
(ckx
ωc

)2n{
exp

(nωc
ωr

)
E2n+4

(nωc
ωr

)
+ exp

(
− nωc

ωr

)
E2n+4

(
− nωc

ωr

)}
. (2.2.17)

γ0 = −
3ω2

p

2ωr

∞∑
n=1

(n+ 1)
(ckx
ωc

)2n π

Γ(2n+ 4)
exp

(
− nωc

ωr

)(nωc
ωr

)2n+3

. (2.2.18)
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The complex part is not observed in the dispersion relation for the non-relativistic
plasmas, but here due to the relativistic variation of the mass, the cyclotron fre-
quency becomes momentum dependent, this gives an imaginary term in the dis-
persion relation.

2.2.2 The ultra-relativistic Maxwellian electron plasma in
a weak magnetic field

A plasma is said to be weakly magnetized when the plasma frequency (ωp) dom-
inates on the cyclotron frequency (ωc). There are some plasma environments in
nature with the high density and a strong magnetic field. The strength of the
magnetic field is although very high but when we take the ratio of the cyclotron
frequency to the plasma frequency, we get

ωc/ωp < 1, (2.2.19)

so the effects of magnetic field will become negligible and we can treat such a
magnetic field as the weak field [26, 27].

In order to study the wave propagation through such an environment, we de-
velop the following mathematical formalism. Using Eq. (1.6.20)

G(φ′) = exp
[ 1

Ω
(−iω + ivkz cos θ)(φ− φ′) + ivkx sin θ(sinφ− sinφ′)

]
,

from the above equation, we can write

G(φ′) =
−iΩ

ω − k · v′
∂G(φ′)

∂φ′
,

using the above equation in Eq. (1.6.21) and integrating we get

f1 = −i Φ(φ)

ω − k · v
+ i

∫ φ

−∞
G(φ′)

∂

∂φ′
Φ(φ′)

(ω − k · v′)
dφ′, (2.2.20)

where

Φ(φ) = e
[
E1 ·

∂f0
∂p

+
(v · E1)

(ω − k · v)
k · ∂f0

∂p

]
. (2.2.21)

We have used here

G(φ′) = 1 for φ′ = φ,

G(φ′) = 0 for φ′ → −∞,
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after performing integration by parts of Eq. (2.2.20), we get

f1 = −i Φ(φ)

(ω − k · v)
− iΩ

(ω − k · v)

∂

∂φ

Φ(φ)

(ω − k · v)
− iΩ

(ω − k · v)

∂

∂φ

iΩ

(ω − k · v)

∂

∂φ

Φ(φ)

(ω − k · v)

+O(Ω3).

As the ambient magnetic field B0 is weak, so we will retain Ω up to the second
order (ω > Ω) [23]. Now by substituting the value of Φ(φ) from Eq. (2.2.21), we get

f1 = −ie
ω

[
1+

iΩ

(ω − k · v)

∂

∂φ
+

iΩ

(ω − k.v)

∂

∂φ

iΩ

(ω − k · v)

∂

∂φ

]
×
[
E1·

∂f0
∂p

+
(v · E1)

(ω − k · v)
k·∂f0
∂p

]
.

(2.2.22)

Substituting the above Eq. in Eq. (1.6.28), we get the expression for the current
density

Jα = −ie
2

ω

∫
d3pvα

[(
1 +

iΩ

(ω − k · v)

∂

∂φ
+

iΩ

(ω − k · v)

∂

∂φ

iΩ

(ω − k · v)

∂

∂φ

)]
×
[
E1 ·

∂f0
∂p

+
(v · E1)

(ω − k · v)
k · ∂f0

∂p

]
,

on simplification, we get

Jα = −ie
2

ω

∫
d3pvα

[(
1 +

iΩ

(ω − k · v)

∂

∂φ
+

iΩ

(ω − k · v)

∂

∂φ

iΩ

(ω − k · v)

∂

∂φ

)]
×
[ klvβ

(ω − k · v)
+ δlβ

]∂f0
∂pl

Eβ = σαβEβ,

from the above expression we can write

4πiωσαβ = 4πe2
∫
d3pvα

[(
1 +

iΩ

(ω − k · v)

∂

∂φ
+

iΩ

(ω − k · v)

∂

∂φ

iΩ

(ω − k · v)

∂

∂φ

)]
×
[ klvβ

(ω − k · v)
+ δlβ

]∂f0
∂pl

. (2.2.23)

If we consider an isotropic distribution function [23] then

∂f0
∂pβ

=
∂f0
∂p

vβ
v
, where β = x, y, z. (2.2.24)
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We can write [ klvβ
(ω − k · v)

+ δlβ

]∂f0
∂pl

=
∂f0
∂p

vβ
v

[ ω

(ω − k · v)

]
. (2.2.25)

Using the above value in Eq. (2.2.23), we get

4πiωσαβ = 4πe2ω

∫
1

v

∂f0
∂p

d3pvα

[(
1 +

iΩ

(ω − k · v)

∂

∂φ
+

iΩ

(ω − k · v)

∂

∂φ

iΩ

(ω − k · v)

∂

∂φ

)]
×
[ vβ

(ω − k · v)

]
,

which is a general expression for the conductivity tensor. Now by using spherical
coordinates, we have p = (p sin θ cosφ, p sin θ sinφ, p cos θ).

4πiωσαβ = 4πe2ω

∫ ∞
0

p2

v

∂f0
∂p

dp

∫ π

0

∫ 2π

0

sin θdθdφvα ×
[(

1 +
iΩ

(ω − k · v)

∂

∂φ
+

iΩ

(ω − k · v)

∂

∂φ

iΩ

(ω − k · v)

∂

∂φ

)]
×
( vβ

(ω − k · v)

)
.

Now we can write

4πiωσαβ = 4πiω(σαβ)NM + 4πiω(σαβ)M + 4πiω(σαβ)2M ,

(where NM stands for non-magnetized, M for first order magnetized and 2M for
second order magnetized plasma), where

4πiω(σαβ)NM = 4πe2ω

∫ ∞
0

p2

v

∂f0
∂p

dp

∫ π

0

∫ 2π

0

sin θdθdφvα ×
( vβ

(ω − k · v)

)
,

(2.2.26)

4πiω(σαβ)M = 4πe2ω

∫ ∞
0

p2

v

∂f0
∂p

dp

∫ π

0

∫ 2π

0

sin θdθdφvα ×
iΩ

(ω − k · v)

∂

∂φ
× vβ

(ω − k · v)
,

(2.2.27)

4πiω(σαβ)2M = 4πe2ω

∫ ∞
0

p2

v

∂f0
∂p

dp

∫ π

0

∫ 2π

0

sin θdθdφvα ×

iΩ

(ω − k · v)

∂

∂φ

iΩ

(ω − k · v)

∂

∂φ

]
×
( vβ

(ω − k · v)

)
. (2.2.28)

To derive the dispersion relation of the ordinary wave we substitute α = β = z,
k = (kx, 0, 0) and vz = v cos θ and after performing φ integration of Eq. (2.2.26),
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we get

4πiω(σzz)
NM = 4πe2ω

∫ ∞
0

vp2
∂f0
∂p

dp

∫ π

0

2π sin θ cos2 θdθ√
ω2 − k2xv2 sin2 θ

,

in order to solve the above integral, we have used∫ 2π

0

dx

(a+ (−b) cosx)n+1
=

2π√
a2 − b2

.

After performing θ integration

4πiω(σzz)
NM =

16π2e2ω2

k2x

∫ ∞
0

p2

v

∂f0
∂p

dp
[
1− (ω2 − k2xv2)

2kxvω
log

(ω + kxv)

(ω − kxv)

]
, (2.2.29)

on performing φ integration of Eq. (2.2.27), we get

4πiω(σzz)
M = 0,

after φ integration of Eq. (2.2.28), we get

4πiω(σzz)
2M = 4π2ie2k2xω

∫ ∞
0

Ω2v3p2
∂f0
∂p

dp

∫ π

0

sin3θ cos2 θdθ× (4ω2 + k2xv
2sin2θ)

4(−ω2 + kx
2v2sin2θ)

7
2

,

after performing θ integration,

4πiω(σzz)
2M = −4π2e2ω2

6kx
2

∫ ∞
0

Ω2p
2

v

∂f0
∂p

dp×
[(3ω2 − 5kx

2v2)

(ω2 − k2xv2)2
− 3

2ωkxv
log
(ω + kxv

ω − kxv

)]
.

(2.2.30)
In order to solve the Eqs. (2.2.29, 2.2.30), we first perform the momentum

integration. Using Eq. (2.2.10) and taking v = c, we get

16π2e2
∫ ∞
0

p2
∂f0
∂p

dp = −3

c
ω2
p, (2.2.31)

16π2e2
∫ ∞
0

p2Ω
∂f0
∂p

dp = − 3

2c
ωcω

2
p, (2.2.32)

16π2e2
∫ ∞
0

p2Ω2∂f0
∂p

dp = − 3

2c
ωc

2ω2
p, (2.2.33)

where ω2
p =

4πn0e
2c2

3T
and ωc =

eB0c

T
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is the plasma and the cyclotron frequency in the ultra-relativistic regime. In order
to solve Eqs. (2.2.31, 2.2.32, 2.2.33), we have used∫ ∞

0

xne−µx =
n!

(µ)n+1
.

Now using value of Eq. (2.2.31, 2.2.33), in Eq. (2.2.29, 2.2.30), we get

4πiω(σzz)
NM =

−3ωp
2ω2

c2k2x

[
1− (ω2 − c2kx2)

2ckxω
log

(ω + ckx)

(ω − ckx)

]
, (2.2.34)

4πiω(σzz)
2M =

ωc
2ωp

2ω2

16c2k2x

[ 3ω2 − 5c2k2x
(ω2 − c2k2x)2

− 3

2ωckx
log

(ω + ckx)

(ω − ckx)

]
, (2.2.35)

using value of Eq. (2.2.34) and Eq. (2.2.35) in Eq. (2.2.13), we get the dispersion
relation for the ordinary wave

ω2 = c2k2x +
3ωp

2ω2

2c2k2x

[
1− (ω2 − c2kx2)

2ckxω
log

(ω + ckx)

(ω − ckx)

]
−ωc

2ωp
2ω2

16c2k2x

[ 3ω2 − 5c2k2x
(ω2 − c2k2x)2

− 3

2ωckx
log

(ω + ckx)

(ω − ckx)

]
, (2.2.36)

so when ω � ckx this implies ω → ωp, so we will expand logarithmic expression
and retain terms up to order c2k2x/ω

2.
The dispersion relation of the ordinary wave in a weakly magnetized ultra-

relativistic Maxwellian electron plasma is given by

ω2 = ω2
p +

6

5
c2k2x +

ω2
c

10ωp2
c2k2x. (2.2.37)

In order to solve the above logarithmic expression we have used

log
(1 + x

1− x

)
= 2x+

2

3
x3 +

2

7
x7 + ....

No contribution from ωc (1st order magnetic field) is observed, only ω2
c (2nd order

magnetic field) contributes in the dispersion relation [25].

2.3 The relativistic degenerate electron plasma

The degeneracy effects must be taken into account when the de Broglie’s wave-
length (λ) of the plasma constituents become greater than or equal to the inter-
particle distance. In a degenerate plasma the Fermi energy of the plasma particles
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becomes much greater than their thermal energy (EF � kBT ) where the Fermi

energy is given by EF = (3π2n0)
2
3~2/2m, it depends only on the density and is

not effected by the temperature variation [7–12]. A degenerate plasma may lie in
the non-relativistic (pF/m0c� 1), relativistic (pF/m0c > 1) and ultra-relativistic
(pF/m0c� 1) regime, where pF is the Fermi momentum.

By using the Fermi Dirac distribution function for the electrons, Chandrasekhar
gave a mathematical criteria [17,18]. According to this criteria one can consider a
white dwarf as completely degenerate, but we know that it is not true because a
white dwarf has partially degenerate interior. Still we can assume that the temper-
ature of the plasma particles is finite but it is very less than the Fermi temperature.
This assumption simplifies our problem and holds for many astrophysical environ-
ments. Now for a degenerate plasma, we use the Fermi-Dirac distribution function
given by

f0 (E) =

(
1 + exp

[
E − EF
kBT

])−1
, (2.3.1)

where E is the relativistic energy, T is the thermal temperature, kB is the Boltz-
mann constant and EF is the Fermi energy. When T → 0, the derivative of the
above distribution function becomes the step function, it means that all energy
states above the Fermi energy are vacant and all those below are filled [28].

∂f0
∂E

=
−2

(2π~)3
δ (E − EF ) , (2.3.2)

where ~ is the Planck’s constant and δ is the Dirac delta function [7]. In order to
get the dispersion relation of the ordinary waves we use Eq. (1.6.33), we get

σzz = −2πie2
∫ ∞
0

vp2
∂f0
∂p

dp

∫ π

0

sin θ cos2 θdθ ×[
J2
0 (ζ sin θ)

ω
+
∞∑
n=1

{
J2
n(ζ sin θ)

ω − nΩ
+
J2
n(ζ sin θ)

ω + nΩ

}]
, (2.3.3)

where ζ = kxv/Ω. In order to solve the above calculation, we have used the
following integrals.∫ π

0

sin θ cos2 θJ2
n(ζ sin θ)dθ =

2ζ2n

(2n+ 3)Γ(2n+ 2)
×

1F2

[{
1

2
+ n

}
;

{
5

2
+ n, 1 + 2n

}
;−ζ2

]
,∫ π

0

sin θ cos2 θJ2
0 (ζ sin θ)dθ =

2

3
× 1F2

[{
1

2

}
;

{
5

2
, 1

}
;−ζ2

]
,
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where pFq [{a1, ....ap} ; {b1, ....bq} ;x] is a generalized Hypergeometric function [34].

Using Eq. (2.3.2) in Eq. (2.3.3) and simplifying, we get

σzz = −4πie2

3ω

∫ ∞
m0c2

(E2 −m2
0c

4)
3
2

cE

∂f0
∂E

dE × 1F2

[{
1

2

}
;

{
5

2
, 1

}
;−k

2
x (E2 −m2

0c
4)

e2B2
0

]
−4πie2

∫ ∞
m0c2

(
E2 −m2

0c
4
) 3

2
∂f0
∂E

dE
∞∑
n=1

(E2 −m2
0c

4)
n

cE(2n+ 3)Γ(2n+ 2)

(
kx
eB0

)2n

× 1F2

[{
1

2
+ n

}
;

{
5

2
+ n, 1 + 2n

}
;−k

2
x (E2 −m2

0c
4)

e2B2
0

]
×

{
1

ω − neB0c
E

+
1

ω + neB0c
E

}
. (2.3.4)

σzz =
8πie2

3ω (2π~)3
p3F
γm0

× 1F2

[{
1

2

}
;

{
5

2
, 1

}
;−c

2k2x
ω2
c

p2F
m2

0c
2

]
+

8πie2

(2π~)3

∞∑
n=1

p3F
(2n+ 3)Γ(2n+ 2)

(
ckx
ωc

)2n(
pF
m0c

)2n

× 1F2

[{
1

2
+ n

}
;

{
5

2
+ n, 1 + 2n

}
;−c

2k2x
ω2
c

p2F
m2

0c
2

]

× 1

ωm0

 1(√
1 +

p2F
m2

0c
2 − nωc

ω

) +
1(√

1 +
p2F
m2

0c
2 + nωc

ω

)
 ,

where ωc is the non-relativistic cyclotron frequency and the (equilibrium) number
density in given by

n0 =
p3F

3π2~3
.
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Using the above value, we get

σzz = − n0ie
2

ωm0

√
1 +

p2F
m0c2

× 1F2

[{
1

2

}
;

{
5

2
, 1

}
;−c

2k2x
ω2
c

p2F
m2

0c
2

]

+
3n0ie

2

ωm0

∞∑
n=1

1

(2n+ 3)Γ(2n+ 2)

(
ckx
ωc

)2n(
pF
m0c

)2n

× 1F2

[{
1

2
+ n

}
;

{
5

2
+ n, 1 + 2n

}
;−c

2k2x
ω2
c

p2F
m2

0c
2

]

×

 1(√
1 +

p2F
m2

0c
2 − nωc

ω

) +
1(√

1 +
p2F
m2

0c
2 + nωc

ω

)
 . (2.3.5)

Substituting Eq. (2.3.5) in the Eq. (2.2.12), we get

Rzz = ω2 − c2k2x −
ω2
p√

1 +
p2F
m2

0c
2

× 1F2

[{
1

2

}
;

{
5

2
, 1

}
;−c

2k2x
ω2
c

p2F
m2

0c
2

]

−3ω2
p

∞∑
n=1

(
ckx
ωc

)2n(
pF
m0c

)2n
1

(2n+ 3)Γ(2n+ 2)

× 1F2

[{
1

2
+ n

}
;

{
5

2
+ n, 1 + 2n

}
;−c

2k2x
ω2
c

p2F
m2

0c
2

]

×

 1(√
1 +

p2F
m2

0c
2 − nωc

ω

) +
1(√

1 +
p2F
m2

0c
2 + nωc

ω

)
 . (2.3.6)

The dispersion relation of the ordinary waves in the relativistic degenerate
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electron plasma can be obtained by using Eq. (2.2.13).
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)
 . (2.3.7)

From the above equation, two special cases i.e., the non-relativistic and the ultra-
relativistic degenerate case can be discussed.

2.3.1 The non-relativistic degenerate elecron plasma

As in the non-relativistic case (pF/m0c� 1), so can write the dispersion relation
of the ordinary waves for the non-relativistic degenerate electron plasma as

ω2 = ω2
p × 1F2

[{
1

2

}
;

{
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2
, 1

}
;−v

2
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2
x
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+ c2k2x
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∞∑
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(
vFkx
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)2n
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× 1F2
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1

2
+ n
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;
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5

2
+ n, 1 + 2n

}
;−v

2
Fk

2
x

ω2
c

]
×

{
1(

1− nωc
ω

) +
1(

1 + nωc
ω

)} , (2.3.8)

where vF is the Fermi velocity.
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2.3.2 The ultra-relativistic degenerate electron plasma

As in the ultra-relativistic case pF/m0c� 1, so we can write the dispersion relation
of the ordinary waves for the ultra-relativistic degenerate electron plasma as

ω2 = ω2
pF × 1F2

[{
1

2

}
;

{
5

2
, 1

}
;−c

2k2x
ω2
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]
+ c2k2x

+3ω2
pF
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n=1

(
ckx
ωcF

)2n
1

(2n+ 3)Γ(2n+ 2)

× 1F2

[{
1

2
+ n

}
;

{
5

2
+ n, 1 + 2n

}
;−c

2k2x
ω2
cF

]
×

{
1(

1− nωcF
ω

) +
1(

1 + nωcF
ω

)} , (2.3.9)

where ωpF =
√

4πn0e2c/pF and ωcF = eB0/pF are the plasma frequency and the
cyclotron frequency for the ultra-relativistic degenerate electron plasma.



Chapter 3

Results and discussion

In this dissertation the propagation of ordinary waves in different plasma environ-
ments have been studied by using the plasma kinetic theory. We have derived the
generalized expression for the conductivity tensor (σαβ) in spherical coordinates
by using the linearized relativistic Vlasov-Maxwell equations. Ignoring dynamics
of the ion, we have particulary focussed on the electron plasma.

So from the generalized expression we require only σzz component of the con-
ductivity tensor which specifies the dynamics of the ordinary waves. Using different
distribution functions (ultra-relativistic Maxwellian and relativistic Fermi-Dirac)
we have studied the propagation characteristics of the ordinary waves in differ-
ent (degenerate and non-degenerate) plasma environments. The non-degenerate
plasma environment is further studied in a strong and a weak magnetic field limit.
Now we will present the graphs of the ordinary waves in different plasma environ-
ments and discuss the results.

In Sec. 1 and 2, the propagation of the ordinary waves in the ultra-relativistic
Maxwellian electron plasma is studied in a strong and a weak magnetic field limits.
In Sec. 3, 4 and 5, the propagation of the ordinary waves in the non-relativistic,
relativistic and ultra-relativistic degenerate cases has been studied by presenting
graphs.

3.1 Non-degenerate ultra-relativistic Maxwellian

electron plasma in the strong field limit

The dispersion characteristics of the ordinary waves in the non-degenerate ultra-
relativistic electron plasma in a strong field limit can be studied by using the Eq.
(2.2.17), given by

39
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ω2
r = c2k2x + ωp

2 + 3ωp
2

∞∑
n=1

(n+ 1)
(ckx
ωc

)2n{
exp

(nωc
ωr

)
E2n+4

(nωc
ωr

)
+ exp

(
− nωc

ωr

)
E2n+4

(
− nωc

ωr

)}
.

One can understand the analytical results by choosing the values of ckx/ωp and
ωc/ωp. The summation is kept over all values of n.

In order to get a graph for the real part we plot ω2
r/c

2kx
2 versus ω/ωp. The

graph in the Fig. 3.1 is the same as we get in the non-relativistic case [2]. In Fig.
3.1 it can be seen that unlike the non-relativistic case, the cut-off point is shifted
to higher values of frequency due to the magnetic field effects. At this cut-off point
the square of refractive index becomes zero. Beyond the cut-off point the wave
cannot propagate further, so the wave will start propagating for ωr > 44ωp.
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Figure 3.1: Graph for the ordinary wave in the strong field limit (ωr
2/c2kx

2 versus
ωr/ωp).

In order to a get graph for the imaginary part, we use Eq. (2.2.18), given by

γo = −
3ω2

p

ωr

∞∑
n=1

(n+ 1)
(ckx
ωc

)2n π

Γ(2n+ 4)
exp

(
− nωc

ω

)(nωc
ω

)2n+3

.
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We plot γo/ωp versus ckx/ωp, for this purpose we have used the first term i.e.,
ω = ckx from the real part of the dispersion relation. It was noticed that with
the increase in strength of the ambient magnetic field B0, the damping is reduced.
Further for the limit c2kx

2 � ωp
2, the damping is significantly reduced and with

further increase it vanishes.
The damping results from the wave-particle interaction. The perturbed mag-

netic field component B1 and parallel component of the electron velocity generate
an electric field component E1 that is perpendicular to the ambient magnetic field
B0 [29]. This perpendicular electric field will try to accelerate the gyrating par-
ticles in its own direction. The competition between the magnetic field (which
gyrates the particles) and the electric field (which accelerate the particles) will
give rise to the damping of wave. With the increase in strength of the magnetic
field the damping reduces because the particles get more tightly bound with the
magnetic field and the electric field cannot accelerate them in its own direction.

Ωc

Ωp
=2.38

Ωc

Ωp
=1.38

Ωc

Ωp
=3.38

0 1 2 3 4 5 6 7

-6

-4

-2

0

ckx

Ωp

Γo

Ωp

Figure 3.2: Graph for the ordinary wave in the strong field limit (γo/ωp versus
c2kx

2/ω2
p).
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3.2 Non-degenerate ultra-relativistic Maxwellian

electron plasma in the weak field limit

In order to study the propagation of the ordinary waves in the non-degenerate
electron plasma in a weak magnetic field, we use the Eq. (2.2.37), given by

ω2 = ω2
p +

6

5
c2k2x +

ω2
c

10ωp2
c2k2x.

In the present case we are interested in the weak magnetic field environment, so
we have taken ωc < ωp i.e., the ωc = 0.1ωp.

In Fig. 3.3, it can be seen that at the higher values of ω and k, the dispersion
curve approaches the wave propagating through the free space (asymptote at ω =
ck). Physically, at very high frequencies, it become difficult for the electrons to
respond at such a short time due to their inertia. Therefore, the electrons cannot
affect the wave propagation. So we can say that the plasma influence goes on
decreasing, as the frequency of the wave (ω) increases.

Ωc

Ωp
=0.05

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.5

1.0

1.5

2.0

ckx

Ωp

Ω

Ωp

Figure 3.3: Graph for the ordinary wave in the weak field limit (ω/ωp versus
ckx/ωp).

In Fig. 3.4, we represent a plot between ω2/c2kx
2 versus ω/ωp. As the strength

of the magnetic field is very weak so we get the result like the ordinary wave
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propagating in the non-relativistic plasma. In Fig. 3.4, it can be seen that if
frequency of the wave is less than plasma frequency (i.e., ω < ωp), the wave will
not propagate. For ω < ωp, the electrons respond quickly and neutralize the effect
of applied field. So the wave amplitude starts to decrease, that results in the wave
damping. When frequency of the wave matches the plasma frequency i.e., ω = ωp,
a cut-off point will occur. At this point (ω = ωp), k → 0 and the refractive index
becomes zero. When frequency of the wave exceeds the plasma frequency the wave
will start propagating.

No contribution from ωc (1st order magnetic field) was observed, it was noticed
that only ω2

c (2nd order magnetic field) contributes in the dispersion relation.
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Figure 3.4: Graph for the ordinary wave in the weak field limit (ω2/c2kx
2 versus

ω/ωp).
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3.3 Non-relativistic degenerate electron plasma

In order to study the propagation of the ordinary waves in the non-relativistic
degenerate electron plasma, we use Eq. (2.3.8), given by

ω2 = ω2
p × 1F2

[{
1

2

}
;

{
5

2
, 1

}
;−v

2
Fk

2
x

ω2
c

]
+ c2k2x

+3ω2
p

∞∑
n=1

(
vFkx
ωc

)2n
1

(2n+ 3)Γ(2n+ 2)

× 1F2

[{
1

2
+ n

}
;

{
5

2
+ n, 1 + 2n

}
;−v
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2
x

ω2
c

]
×

{
1(

1− nωc
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) +
1(
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)} .
The ordinary waves remain unaffected by the magnetic field in the fluid ap-

n0=2´1026cm-3
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Figure 3.5: The ordinary wave in the non-relativistic degenerate plasma.

proximation. So to observe the fluid theory effects we neglect the contribution of
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the higher order harmonics and take n = 0 in Eq. (2.3.8). Taking B0 = 109Gauss
and n0 = 2× 1026cm−3 we got the dispersion diagram (Fig. 3.5). In the Fig. 3.5,
it can be seen that the ordinary wave in a non-relativistic degenerate plasma is
propagating at a higher frequency.

In order to observe the kinetic theory effects we take the contribution of the
higher order harmonics. The resulting cyclotron harmonic structure (for n0 =
2 × 1027cm−3 − 2 × 1028cm−3 and B0 = 109Gauss) is shown in the Fig. 3.6. In
the Fig. 3.6, it can be seen that the ordinary wave is propagating at the exact
harmonics of the electron cyclotron frequency.
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Figure 3.6: Harmonic structure of the ordinary wave in the non-relativistic degen-
erate plasma.

The dispersion diagram (Fig. 3.7) is same as for the non-degenerate plasma [2].
But when we reduce the range of the normalized frequency we get the resonances
as shown in the Fig. 3.8. The points where sharp peaks are occurring cannot be
treated as cut-offs i.e., k = 0 (because ω2/c2k2x is not approaching infinity).
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n0=2´1026cm-3
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Figure 3.7: Plot between ω2/c2k2x and ω/ωp (the ordinary wave in the non-
relativistic degenerate plasma).
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Figure 3.8: Plot between ω2/c2k2x and ω/ωp (the ordinary wave in the non-
relativistic degenerate plasma).
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3.4 Relativistic degenerate electron plasma

In order to study the propagation of the ordinary waves in the relativistic degen-
erate electron plasma, we use Eq. (2.3.7), given by
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1(√
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)
 .

For the weakly-relativistic, relativistic and the strongly relativistic cases we
have chosen n0 = 2× 1029 − 2× 1031cm−3 and B0 = 1010Gauss.

Unlike non-relativistic degenerate case, in the relativistic case there is a shift
in the harmonic structure. In moving from the weakly relativistic to the strongly
relativistic regime the harmonic structure is shifted downward due to the increase

in the gamma factor
(
γ =

√
1 +

p2F
m2

0c
2

)
. Further, with the increase in ωp/ωc the

propagation regime is reduced as shown in Figs. 3.9, 3.10.
In Figs. 3.11, 3.13, 3.15, we have used ckx/ωc = 4.5, 2.2, 0.9. The increase in

the plasma density results in considerable shift of the cut-off points to the lower
frequency values because the refractive index depends on ωp as shown in Figs.
3.11, 3.13, 3.15.

When we reduce the range of normalized frequency in Figs. 3.11, 3.13, 3.15,
we get the resonances as shown in Figs. 3.12, 3.14, 3.16. Unlike non-relativistic
degenerate case, the relativistic variation of the mass results in spreading and
shifting the resonance points to the lower frequency values as shown in Figs. 3.12,
3.14, 3.16.
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n0=2´1029cm-3
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Figure 3.9: Harmonic structure of the ordinary wave in the weakly relativistic
degenerate plasma.
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n0=2´1030cm-3
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Figure 3.10: Harmonic structure of the ordinary wave in the relativistic and
strongly relativistic degenerate plasma.
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n0=2´1029cm-3
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Figure 3.11: Plot between ω2/c2k2x and ω/ωp (the ordinary wave in the weakly
relativistic degenerate plasma).
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Figure 3.12: Plot between ω2/c2k2x and ω/ωp (the ordinary wave in the weakly
relativistic degenerate plasma).
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n0=2´1030cm-3
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Figure 3.13: Plot between ω2/c2k2x and ω/ωp (the ordinary wave in the relativistic
degenerate plasma).
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Figure 3.14: Plot between ω2/c2k2x and ω/ωp (the ordinary wave in the relativistic
degenerate plasma).
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n0=2´1031cm-3
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Figure 3.15: Plot between ω2/c2k2x and ω/ωp (the ordinary wave in the strongly
relativistic degenerate plasma).
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Figure 3.16: Plot between ω2/c2k2x and ω/ωp (the ordinary wave in the strongly
relativistic degenerate plasma).
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3.5 Ultra-relativistic degenerate electron plasma

The dispersion relation of the ordinary waves in the ultra-relativistic degenerate
electron plasma can be studied by using the Eq. (2.3.9), given by
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Figure 3.17: Harmonic structure of the ordinary wave in the ultra-relativistic
degenerate plasma.
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n0=2´1032cm-3
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Figure 3.18: Plot between ω2/c2k2x and ω/ωpF (ordinary wave in the ultra-
relativistic degenerate plasma).
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For the ultra-relativistic case we have chosen n0 = 2 × 1032cm−3 − 2 × 1034cm−3

and B0 = 1012 Gauss. It can be seen from the Fig. 3.17 that the dispersion curve
for the ultra-relativistic degenerate electron plasma is exactly the same as for
non-relativistic degenerate electron plasma (the dispersion curves occur at exact
harmonics of cyclotron frequency) but in the present case we have normalized it
with a different parameter.

In Fig. 3.18, it can be observed that when ω exceeds ωpF , the wave will propa-
gate. There is a cut point at ω = ωpF , beyond the cut off there is no propagation
of the wave. The dispersion diagram for the ultra-relativistic degenerate case (Fig.
3.18) is also the same as presented for the non-relativistic degenerate case.
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Figure 3.19: Plot between ω2/c2k2x and ω/ωpF (ordinary wave in the ultra-
relativistic degenerate plasma).
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