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Abstract

Ladder operators are the mathematical operators that have numerous applications in

the �eld of quantum mechanics, considerably in the study of many-particle systems.

The ladder operator approach is a very elegant way to deal with composite systems.

The main focus in this thesis is on the quantum mechanical description of entangled bi-

fermion forming a composite boson. Its composite behavior is studied using its ladder

operators and comparing them to elementary bosonic operators. It is shown that en-

tanglement between the constituents of coboson depends on the properties of cobosonic

annihilation and creation operators. We focused on the entanglement in fermions and

extracted their composite behavior. Moreover, a method to measure the level of en-

tanglement is presented in this thesis. States of elementary particles i.e. pure, mixed

states have been given a touch to develop a basic understanding. Separability criteria

and Schmidt decomposition are also discussed. Whether the entangled bi-fermion will

resemble a pure boson, depends on the correlation between the constituent particles.

The inter-component entanglement determines the behavior of the composite boson.

The e�ect of the Pauli exclusion principle, as the constituents particles in coboson

are made of fermions, is also discussed. Having all the basic knowledge of composite

bosons and behavior of their ladder operators the coherent states of these entangled

bi-fermions are constructed. We derived coherent states as eigenstates of the annihi-

lation operator of composite bosons. Moreover, the properties of composite bosonic

operators like quadrature variance and Mendels Q-parameters are also discussed. In

the end, the research work has been concluded.
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Chapter 1

Introduction

1.1 Historical Background

What exactly is light? In classical mechanics, we say that light is a wave or at least

it behaves like a wave when we use it in certain experiments. For most of the 19th

century, it seemed like the question had been settled. Physicists agreed: LIGHT IS

A WAVE. But the new discoveries then made, started to question that. This started

getting more and more clues that light could also behave like a particle which leads

to the strange concept that light was both a particle and wave. This kick-started the

development of a new theory called "Quantum Mechanics".

Quantum mechanics attempts to explain the behavior of subatomic particles at

the nanoscopic level. It is one of the most successful branches of Physics. There are

countless examples of scienti�c experiments con�rming predictions made by the laws

of quantum mechanics. In the early 19th century it was theorized that at the sub-

atomic level energy can only be released and absorbed in discrete indivisible units

called �Quanta�. There is a famous experiment in quantum physics called �double-

slit experiment� which exposed something about particles that still surprises us today.

Particles display both particle-like and wave-like behavior.

One of the basic disparity between Quantum and Classical Mechanics is that any

physical variables which possess continuous values in classical mechanics for exam-

ple angular momentum, energy, etc, can only have discrete or �quantized� values in

quantum mechanics for example energy levels of electrons in atoms and the spin of
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elementary particles are all quantized, etc.

In the quantum world, we can not tell the characteristics of quantum particles un-

less we measure or observe them. Because before measurement or observation particles

will be in all possible available states known as superposition state unless we observe

or measure them. After measurement particle wave function collapses, as a result, we

obtain only one state from all possible states and we perceive that the particle was

present in this state already but this is not true. According to Bohr, the particle

was in a superposition state before measurement and we do not know which state will

come after measurement from all possible states. However, countless experiments have

corroborated the results predicted by Quantum Mechanics.

1.2 Types of Particles

1.2.1 Distinguishable Particles

As the name suggests, distinguishable particles can be distinguished from one another.

We can tell which is which particle in this case. They have an individualistic nature.

Two particles may be identical yet treated as distinguishable as is done in classical

statistical mechanics. Technically, such particles have thermal de Broglie wavelengths

much smaller than average interparticle separation. This is what happens in the classi-

cal world. Even if we have two identical tennis balls we can physically distinguish. The

Maxwell-Boltzmann Statistics works here. This doesn't hold in quantum mechanics.

Two identical particles in quantum mechanics are indistinguishable in the sense that

you can't tell which is which. Consider, for example, two electrons in the He atom.

We can't talk about this electron or that electron. We only talk about an electron.

There is no way to distinguish between the two electrons in the 1s orbital. Technically,

the de Broglie wavelengths are of the order or larger than interparticle separations.

Quantum statistical mechanics works here for counting distributions of systems with

indistinguishable particles.
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1.2.2 Indistinguishable (Identicle) particles

In quantum mechanics indistinguishable particles cannot be distinguished because we

cannot label the particles as we do in classical mechanics The other reason is that we are

uncertain about the particle trajectory due to Heisenberg uncertainty principle. When

N-indistinguishable particles are mixed together, then we can not tell which particle

have which coordinate. We can only specify probability of particles and that probabil-

ity remain unchanged by interchanging coordinates, which means that particles may

have symmetric or anti-symmetric wave-function under the interchange of particles.

The particles will have symmetric wavefunction if they have integral spin, on the con-

trary, the wavefunction will be anti-symmetric if they have half integral spin. On the

basis of symmetric and anti-symmetric wave-function we can divide the particles into

two main classes, i.e. Bosons (symmetric wavefunction) and fermions (anti-symmetric

wavefunction).

1.3 Statistics of the Elementary Particles and their

Operators

1.3.1 Fermi-Dirac Statistics

Fermi-Dirac statistic is the statistics of indistinguishable (identical) particles. It applies

to fermions; particles with half-integer spin, result of the half-integral spin of fermions

is that this causes a restrain on the conduct of a system containing more then one

fermion so it must obey the Pauli exclusion principle. i.e, no two fermions cannot exist

in a single quantum state but only a single particle can occupy a single energy level.

Let we have ni number of particles and they are to be �lled in E energy level then the

appropriate probability distribution for the occupation of energy state E will be:

FFD(E) =
1

exp
(E − EF )

KT
+ 1

, (1.1)

The particles which follow fermi dirac statistics includes Protons, electrons, He3+ etc,

they are collectively called fermions.
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1.3.2 Bose-Einstein Statistics

Bose-Einstein statistics also belongs to indistinguishable (identical) particles, it applies

to bosons; particles with integer spin. These are the particles which do not obey Pauli

exclusion principle, so it is possible to have inde�nate bosonic particles in same state.

It means that unlimited number of particles can condense into a single level to form

bose-einstein condensates. This behaviour gives rise to the remarkable properties of

helium-4 when it is cooled to become a super�uid. The probability that the particle

will have energy E is given by:

FBE(E) =
1

AeE/kT − 1
(1.2)

For Photons A = 1 so the occupation of very low energy states can increase without

limit. The di�erence shown in the above equation arises due to the fact that particles

are indistinguishable. Bosons includes mesons (e.g. pions), nuclei of even mass number

(e.g, Helium-4) and the particles required to embody the �eld of Quantum optics (e.g.

Photons and gluons).

Figure 1.1: Symmetric and Anti-symmetric Wavefunction
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1.3.3 Ladder operators for Bosons and Fermions

In quantum physics annihilation and creation operators, collectively called ladder op-

erators, have numerous applications, considerably in the �eld of many-body physics.

As the name suggests creation operator is used to add a particle in a system and anni-

hilation operator, also called destruction operator, annihilates the particle from a �eld

both operators are adjoint of each other.

Figure 1.2: Illustration of creation and annihilation operator.

These operators follow di�erent set of rules for di�erent types of particles, as we shall

see in the later section. The algebra of these operators for bosonic case is equal to the

algebra of simple harmonic oscillator. The commutator of these operators of the same

Boson state, equals one, all other commutators vanish. But, for the case of fermions the

mathematics is di�erent, involving anti-commutators instead of commutators. Electron

states are acted upon by ladder operators in order to raise and annihilate electrons from

the �eld.

Here we develop the concepts more generally, for both fermions and bosons. The

importance of this new formalism is that it provides us a powerful way to deal with

the symmetries of the states and also with operators for systems of many identical

particles.
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1.4 Entanglement

Entanglement is the purely quantum mechanical phenomenon and appears when we

talk about the composite systems e.g, the system which is comprised by two or more

then two subsystems. It is one of the unique aspect of quantum mechanics. The ad-

vantage of entanglement is taken in account for the purpose of quantum processing

of information, its evaluation in quantum states is vital. In quantum mechanically

entangled composite systems, the constituent subsystems have a strong correlation to

each other even when they are spatially isolated such that they do not interact. The

composite system can be regarded as a de�nite pure state, however this de�nition is

not valid for the constituent subsystems states. Making a measurement on any of the

subsystems will in�uence measurement on other sub-systems and this is the contra-

diction of local-realism, i.e. the quantum states of spatially isolated non-interacting

particles are independent.

For the �rst time, this phenomenon was discussed by Einstein, Podolsky and Rosen

in their seminal paper in 1935. They analyzed the incompatible measurements made

about one subsystem of the two-particle composite system, which interacted previously

but during measurement they are spatially separated. The contradiction pointed out

by Einstein, made a question on the completeness of quantum mechanics and this

problem was �xed in their need for local-realism. In 1960s, John S. Bell worked on the

EPR argument and showed the correlation between measurements of entangled state

predicted by quantum mechanics are out of scope for what local-realism based theo-

ries explain. The inequalities derived by Bell and others were experimentally tested

for entangled photons and put a con�rmation stamp on the predictions of quantum

mechanics.
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Figure 1.3: Illustration of Entanglement phenomena

Entanglement has been perceived as a phenomenon of no viable signi�cance since

its �rst appearance in 1935 until the mid of the 90s. With advances in quantum

information science, entanglement has been seen as a resource for quantum informa-

tion processing and communications. The applications of this vital resource include

quantum cryptography, dense coding, teleportation of a quantum state and quantum

algorithms that are faster than their classical counterparts.

1.5 Coherent/Glauber States

Coherent states are special kind of states of light. Back in 1926, Erwin Schrodinger

successfully built such quantum states that were demonstrating physical behaviour

very close to the classical one. He built such quantum mechanical states for the har-

monic oscillator in which the uncertainty relation is minimized. A direct method of

constructing generalized Glauber states for the degenerate spectrum of quantum me-

chanical systems, such as, hydrogen atom was given by Klauder in 1996 using ladder

operator algebra.

One of the procedures concerning this was to generalize, ful�lling a set of require-

ments, any one of the coherent states de�nition given by Glauber, i.e., the generaliza-

tion should preserve some properties of harmonic oscillator's coherent states. Ladder
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operators algebra is used for constructing coherent states of the system in this kind of

generalization techniques. The �rst breakthrough in this regard was the development

of a formalism relating quantum and classical dynamics, by Klauder in 1963. Klauder

and Skagerstam organized the study on generalized coherent states in the form of a

book.

1.6 Outline of the Thesis

The following chapter deals with basic concepts which provide us the necessary back-

ground for our work, this includes the discussion of Hilbert space, which is crucial in

representing quantum mechanical state of a system. Having the concept of Hilbert

space, we discussed the quantum mechanical states and its types. In the second part

of this chapter a brief description regarding composite systems and entanglement in

such systems is discussed in terms of Schmidt decomposition.

Chapter 3 deals with how fundamental particles can be added or subtracted in a

Quantum state in terms of bosonic and fermionic creation and annihilation operator

it also explains how are bosons and fermions, two fundamental type of particles, di�er

from each other. In the next part, the concept of entanglement between the constituent

particles of a entangled bi-fermionic composite system is discussed. We found that the

overall composite behavior is closely related to the quantum entanglement. With the

help of creation and annihilation operators, the bosonic attribute are presented which

will appear if the constituent particles become entangled. Basically, we showed that

the entanglement between two fermions largely ascertain the extent to which the pair

behaves like an elementary boson.

In Chapter 4, we discussed the Photonic Coherent states and its properties. In the

next part we derived the coherent states of cobosons as an eigen states of cobosonic

annihilation operator, then we estimated the resemblance between photonic coherent

states and the coherent states of entangled bi-fermionic composite bosons using the

measure of non-classicality, i.e, Quadrature Variance and Mandels Q- parameter. At
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the end our work have been concluded.
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Chapter 2

Preliminaries

2.1 Hilbert Space of Composite System

Composite system is the one which is made up of two or more subsystems. While

dealing with just one particle its state can be written by using a single particle Hilbert

space but when dealing with the composite system it involves tensor product of all the

subsystems of which the whole system is comprised. Consider a bipartite composite

system in which state of one subsystem |α〉 belongs to the hilbert space H1, similarly

state of the second subsystem |β〉 belongs to the Hilbert space H2 then the overall state

of a bipartite system is written as:

|γ〉 = |α〉 ⊗ |β〉 , (2.1)

here |γ〉 is the state of composite system belonging to Hilbert space H such that,

H = H1 ⊗ H2. (2.2)

Now, let's construct the basis of the Hilbert space of the composite system described

above. Let the basis belonging to Hilbert space H1 is {|in〉}, similerly the basis basis

which belongs to Hilbert space H2 is {|jn〉} then the basis belonging to the composite

system Hilbert space will be given by:

{|kn〉} = {|in〉} ⊗ {|jn〉}, (2.3)
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such that,

|α〉 ⊗ |β〉 = |β〉 ⊗ |α〉 . (2.4)

The inner product of the states of two composite systems is given by:

〈γ1|γ2〉 = (|α1〉 ⊗ |β1〉) . (|α2〉 ⊗ |β2〉), (2.5)

〈γ1|γ2〉 = 〈α1|α2〉 〈β1|β2〉 , (2.6)

such that,

|γ1〉 = |α1〉 ⊗ |β1〉 , (2.7)

and

|γ2〉 = |α2〉 ⊗ |β2〉 . (2.8)

2.2 Pure and Mixed States

Let's consider the state of polarization of a photon. We can write a general state of

polarization as following type of expression;

|ψ〉 = a |H〉 + b |V 〉 (2.9)

Here, |H〉 represents a horizontally polarized photon state and |V 〉 represents a verti-

cally polarized photon state. a and b are complex numbers.

Figure 2.1: Polarization of Photons
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Suppose we are going to measure the above state such that we have a source of

photons with controlled polarization as shown in the �gure 2.2 Speci�cally it's going

to produce the above polarization state and we can then use a polarizing beam splitter

that separate horizontal and vertical polarization Two di�erent outputs with di�erent

detectors with apparatus like this we can perform a quantum mechanical measurement

and put this state that we have we expect the following probabilities,

|a|2 of measuring horizontal polarization.

|b|2 of measuring vertical polarization.

Since we must have, by normalization condition;

|a|2 + |b|2 = 1 (2.10)

We can also write,

a = cos θ (2.11)

b = exp (ιδ) sin θ (2.12)

θ = 0 corresponds to linear polarization.

When θ 6= 0, the �eld is in general elliptically polarized, which is the most general

possible state of polarization. Also, δ = ±π
2

with θ = 45◦ gives right and left

circular polarization.

Figure 2.2: Polarization of Photons with a compensator
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Now to allow the passage of a photon of any speci�c polarization we will build a

polarizing �lter which is also called a compensator the �lter is built in such a way

that it can polarized in a speci�c direction 100 percent of the time. We could arrange

to delay only the horizontal polarization by a compensating amount −δ to make the

photons linearly polarized. After that the polarization apparatus will be rotated by

the angle θ so that the photons will always pass through the vertical detector. When

we make a polarization �lter or compensator so we get hundred percent of the photons

to one detector we say that photons are in pure state as shown in �gure 2.3.

All states considered so far has been pure States. A compensator could be made

to pass any particles in any one speci�c quantum mechanical state with 100 percent

e�ciency to one detector. Suppose we have a beam that is a mixture of two di�erent

independent lasers 1 and 2 as shown in �gure 2.4 we also have a non-polarizing beam

splitter, it take some portion of photon from laser 1 and some from laser 2 passes

through without changing the polarization states of either of these beams. We as-

sume that laser 1 contributes a fraction P1 of the photons and Laser 2 contributes the

fraction P2 the probability that a given Photon is from laser one is P1 and similarly

there is probability P2 that the photon is from laser 2. We also assume that these two

lasers give uncorrelated photons of two possible di�erent polarization States ψ1 and

ψ2 respectively.

Figure 2.3: Polarization of Photons with two laser beams
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There is now no single setting of the compensator that in general will pass all the

photons from both lasers to the vertical detector hence we cannot simply write this

state as some linear combination as in equation 2.9 of the two di�erent polarization

States. If you are able to do that we could construct a polarizing �lter to pass hundred

percent of the photons so the state of these photons is described di�erently as a mixed

state.

2.3 Density Operator and Density Matrix

Some systems in quantum mechanics are completely described by state vector in such

representation state vector contain all the information about the system. There is

also an alternative and more general approach analogous to the state vector approach

to describe a system, called density operator or density matrix. This is more easy

way to thinking of some commonly encountered scenarios in quantum mechanics. In

this section we will explain brie�y about general properties and applications of density

operator.

Pure States' Density Matrix

If a state of system is known exactly then it is called pure state of quantum system

and the density operator for the pure state is given by

ρ = |ψ〉 〈ψ| (2.13)

where |ψ〉 is a state of quantum system which can be represented as linear superposition

of the basis vector |n〉 as |Ψ〉=
∑

n cn |n〉. The density operator for this state is,

ρ =
∑
n

∑
m

cnc
∗
m 〈n|m〉 =

∑
n,m

ρnm 〈n|m〉 (2.14)

where ρnm = 〈n|Ψ〉 〈ψ|m〉 = 〈n|m〉 are the matrix element of density operator for

the pure state.When we perform the measurement on state |ψ〉 then the probability
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of getting the state |n〉 is |cn|2 .This provides the physical meaning to the diagonal

elements of the density operator that is diagonal elements are necessarily non negative

and hence it is positive operator.

The density matrix for the pure states have the following properties:

Tr(ρ) =
∑
n

ρnn =
∑
n

|c2n| = 1 (2.15)

Since ρ2 = |Ψ〉 〈Ψ|Ψ〉 〈Ψ| = |Ψ〉 〈Ψ| = ρ, therefore above equation becomes[3]

Tr(ρ2 = 1). (2.16)

General properties of the density operator

If the given operator satisfying the following given properties then it is said to be the

valid density operator.

� The trace of the given density operator must be one. i.e Tr(ρ) = 1.

� It is always hermitian i.e ρ† = ρ.

� For all the given state |Ψ〉, the density matrix is positive i.e |Ψ〉 ρ 〈Ψ| ≥ 0.This

follows from

〈ψ| ρ |ψ〉 =
∑
j

Pj| 〈ψ|ψj〉 |2 ≥ 0 (2.17)

We earlier said that the density operator is hermitian, it means that the eigen-

values of the given operators will be greater then or equal to zero, that's why the

given density operator is positive.

2.4 Entanglement Detection

Initially entanglement was considered as qualitative feature of quantum theory but

the development of Bell's inequalities in 1964 , made this distinction quantitative. In

early years of the development, entanglement was considered as strange phenomenon
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but nowadays it is the resource of quantum information processing, enabling tasks like

quantum cryptography, quantum computation, quantum teleportation, dense coding

etc.

2.4.1 Schmidt Decomposition

Quantum systems comprised of interacting subsystems become highly correlated and

their individual identities become entangled. This entanglement can be described using

the Schmidt decomposition, in which a pair of preferred orthonormal bases can be

constructed to emphasize the tight correlations between two quantum subsystems.

It is one of the most important tools for analyzing bipartite pure states in quantum

information theory. The Schmidt decomposition shows that it is possible to decompose

any pure bipartite state as a superposition of corresponding states.

For any pure state |ψ〉 of a bipartite system A ⊗ B there exist orthonormal sets of

states |φ〉iA and |φ〉iB for subsystems A and B respectively, such that:

|ψ〉 =
∑
i

√
λi |φ〉iA ⊗ |φ〉

i
B (2.18)

where, |φ〉iA and |φ〉iB are known as Schmidt basis belonging to system A and B respec-

tively. (for details see appendix 5.1)

The expansion coe�cients λi are non-negative real numbers known as Schmidt Coe�-

cient and for normalised state |ψ〉 we must have:∑
i

λ2i = 1

The expansion (1.1) is known as Schmidt decomposition.

Schmidt Decomposition is very important to detect the entanglement between com-

posite systems.The Schmidt coe�cients in eq(1.1) plays vital role to detect the entan-

glement.In order to calculate the Schmidt coe�cients �rst we will �nd density matrix

and then perform the partial trace on the one of sub system by �xing the other.

tr(B) = |ψ〉 〈ψ|
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The above matrix have eigenvalues λ2i .

The Schmidt number has nonzero eigenvalues λi and used to show entanglement. i.e,

If a state is separable, then the Schmidt number is 1 and if a state is entangled, then

the Schmidt number is > 1. Schmidt number only tell us that weather the state is

entangled or not and unable to answer the strength of the entanglement i.e weather it

is maximally entangled or minimum.That is why Schmidt measure is crude measure of

entanglement. Schmidt decomposition is applicable only for distinguishable particles

and provide wrong results for identical particles i.e nonzero Von Neumann entropy and

the existence of entanglement for uncorrelated fermions.
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Chapter 3

Ladder Operators and Inherent

Algebra

3.1 Introduction

In this chapter, we are primarily interested in analyzing the algebra of ladder opera-

tors for fermions, bosons and composite bosons composed of fermionic constituents. In

quantum physics annihilation and creation operators, collectively called ladder opera-

tors, have numerous applications, considerably in the �eld of many-body physics. As

the name suggests creation operator is used to add a particle in a system and annihi-

lation operator, also called destruction operator, annihilates the particle from a �eld

both operators are adjoint of each other.

These operators follow di�erent set of rules for di�erent types of particles, as we

shall see in the later section. Electron states of an acted upon by ladder operators in

order to raise and annihilate electrons from the �eld the algebra of these operators for

bosonic case is equal and to the algebra of simple harmonic oscillator. The commutator

of these operators of the same Boson state, equals one, all other commutators vanish.

But, for the case of fermions the mathematics is di�erent, involving anti-commutators

instead of commutators.

Here we develop the concepts more generally, for both fermions and bosons. The

importance of this new formalism is that it provides us a powerful way to deal with the

symmetries of the states and also with operators for systems of many identical particles.
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We will also see that how much a composite particle behaves as a pure boson depends

on the degree of entanglement between constituent particles using operator algebra. It

suggests that quantum entanglement is some how the reason for the bonding between

constituent particles. It is not necessary to have mechanical binding forces between

particles they just provides physical means to execute quantum correlations.

3.2 Elementry Bosonic Algebra

To grab the idea of creation and annihilation operators of elementry bosons let's take an

explicit example, consider we have a potential well, V(x), and single particle eigenstates

ψ0, ψ1, ... Now suppose we have a system of m (identical) bosons and all m bosons are

in the lowest level, |m〉 let this state be |m〉 and we assume that |m〉 is normalized i.e,

〈m|m〉 = 1,

where, m = 0, 1, 2, 3, ... and |0〉 is a state with no particle.

We de�ne annihilation and creation operator for bosons as,

âb |m〉 =
√
m |m− 1〉 (3.1)

â†b |m〉 =
√
m+ 1 |m+ 1〉 (3.2)

These operators are basically used to destroy or create a particle to the system, in the

state ψ0. Now consider the commutator,

[âb, â
†
b] |m〉 = (âbâ

†
b − â

†
bâb) |m〉 (3.3)

= ((m+ 1)−m) |m〉 = |m〉 (3.4)

Therefore, we can say that [âb, â
†
b] = 1. Now using these operators, we can also write

m-particle state in term of the vacuum state as,

|m〉 =
(â†b)

m

√
m!
|0〉 . (3.5)

Here, âb is a hermitian conjugate of â†b. It can be proved as following,

〈m+ 1| â†b |m〉 =
√
m+ 1, (3.6)
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therefore,

〈m+ 1| â†b =
√
m+ 1 〈m| , (3.7)

or

〈m| â†b =
√
m 〈m− 1| , (3.8)

similarly, âb also acts as a creation operator if it acts to the left side,

〈m| âb =
√
m+ 1 〈m+ 1| , (3.9)

Now consider two level system for bosons. Let two levels be ψ0 and ψ1 and the state

|m0,m1〉 have m0 bosons in ψ0 and m1 boson in ψ1 According to the above de�nition

we can write,

âb |m0,m1〉 =
√
m0 |m0 − 1,m1〉 , (3.10)

â†b |m0,m1〉 =
√
m0 + 1 |m0 + 1,m1〉 , (3.11)

and also,

âb |m0,m1〉 =
√
m1 |m0,m1 − 1〉 , (3.12)

â†b |m0,m1〉 =
√
m1 + 1 |m0,m1 + 1〉 , (3.13)

In addition to the commutation relations explained before, we can say that for di�erent

levels creation and annihilation operators commutes with each other:

[âb0, âb1] = 0, (3.14)

(3.15)

same is the case with creation operator.

We can generalize these results to spaces with an arbitrary number of single particle

states. So, let us have vector in that space. Commutation relations are given by,

[âbi, â
†
bj] = δij, (3.16)

(3.17)

[âbi, âbj] = [â†bi, â
†
bj] = 0, (3.18)
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|m0,m1, ...〉 = ...
(a†0)

m0

√
m0!

(a†1)
m1

√
m1!
|0〉 . (3.19)

Above result show the Fock space representation of single particle state for bosons.

Now we explicitly explain the formalism to add or subtract a particle in fermionic

state.

3.3 Elementry Fermionic Algebra

For fermionic particles the creation and annihilation operators are given by,

âf |1〉 = |0〉 , (3.20)

âf |0〉 = 0, (3.21)

âf
† |1〉 = 0, (3.22)

âf
† |1〉 = |1〉 . (3.23)

If we consider the anticommutators, they will be,

{âf , âf †} |1〉 = {âf âf † + âf
†âf} |1〉 = |1〉 , (3.24)

{âf , âf †} |0〉 = |0〉 . (3.25)

Therefore,

{âf , âf †} = 1, (3.26)

where,

{âf , âf} = 0, (3.27)

and

{âf †, âf †} = 0. (3.28)

For the case of fermionic two level system, we can have four possible states, which are:

|0, 0〉 , |0, 1〉 , |1, 0〉 and |1, 1〉. The ladder operators for such systems are given by,

âf0
† |0, 0〉 = |0, 0〉 , (3.29)
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âf0
† |0, 1〉 = |1, 1〉 , (3.30)

âf0
† |1, 0〉 = âf0

† |1, 1〉 = 0, (3.31)

âf0 |0, 0〉 = âf0 |0, 1〉 = 0, (3.32)

âf0 |1, 0〉 = |0, 0〉 , (3.33)

âf0 |1, 1〉 = |0, 1〉 , (3.34)

also,

âf1
† |0, 0〉 = |0, 1〉 , (3.35)

âf1
† |1, 0〉 = |1, 1〉 , (3.36)

âf1
† |0, 1〉 = âf0

† |1, 1〉 = 0, (3.37)

âf1 |1, 1〉 = |0, 1〉 , (3.38)

âf1 |0, 1〉 = |0, 1〉 , (3.39)

âf1 |1, 0〉 = âf1 |0, 1〉 = 0. (3.40)

The anticommutation relations for such two level systems is given by,

{âf0 , âf0†} = {âf1 , âf1†} = 1, (3.41)

and

{âf0 , âf1†} = {âf1 , âf0†} = 0. (3.42)

The above results can be generalized as:

{âfi , âfj †} = δij = 0, (3.43)

{âfi , âfj} = {âfi†, âfj †} = 0, (3.44)

|m0,m1, ...〉 = ...(âf1
†)m1 (âf0

†)m0 |0〉 . (3.45)

After complete understanding of how particles behave as bosons or fermions, now we

are in a position to understand the concept of composite particle.
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3.4 Bi-partite Composite System

As discussed earlier, there are two types of elementary particles, fermions and bosons.

Matter is generally composed of fermions and composite bosons, however, elementary

bosons are mostly the exchange particles of the �elds. To form a composite bi-particle

there can have three possibilities. Either its composed of two bosons, or one boson

and one fermion forming a composite fermion or it can be composed of two fermions

forming a composite boson. The composite bosons made up of two fermions exists

widely in nature like Hydrogen atom, Cooper pair etc, so we discussed bi-fermionic

composite bosons. Composite system is the one that naturally decomposes into two or

more subsystems. A composite system can be represented by:

H = H1 ⊗H2 ⊗H3 ⊗ ...⊗Hn (3.46)

We consider a bi-partite system (system having two subsystems)

H = H1 ⊗H2 (3.47)

The composite system of both subsystems can be written as a direct product of two

spaces |φi〉 ⊗ |φj〉 as:
|ψ〉 =

∑
ij

dij |φi〉 ⊗ |φj〉 (3.48)

where dij is the expansion coe�cient.

dij =
∑
ij

〈φi| ⊗ 〈φi|ψ〉 (3.49)

(For details see appendix 5.1).

Suppose a composite particle C which is made up of two elementary fermions A and

B. Let the wavefunction of two particles is ψ(mA, nB). Expressing this wave function

in terms of Schmidt decomposition:

ψ(mA, nB) =
∞∑
N=o

√
λNφN(mA).φN(mB) (3.50)

where φN(mA) and φN(nB) are schmidt modes. φN(mA) make an orthonormal complete

set for particle A. φN(mA) and λN are de�ned by eigen vectors and reduced density
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matrix eigen values of particle A. 3.50 shows the pairing structure using quantum

correlation. If A particle shows up in mode φN(mA) then B will be in mode φM(mB)

with certainty.

3.5 Measure of Entanglement

The measure of entanglement is provided by the distribution of λM . Which is generally

discussed using entanglement entropy, given by:

E = −
∑
M

λM log2λM (3.51)

Using Schmidt number κ we can have a more explicit way of measuring the entangle-

ment i.e, by counting the mean number of schmidt modes that are involved actively.

It is given by;

κ =
1∑∞

M=0 λ
2
M

(3.52)

Greater the value of κ higher will be the entanglement. If there is only one term in the

Schimdt decomposition the state would be disentangled (product), this corresponds to

κ = 1 If there are r terms (of equal weight) present in schmidt decomposition i.e

λM =
1

r

this corresponds to

κ = r

which shows the exact number of mode pairs present.

3.6 Operator Algebra for Entangled Bi-fermionic Com-

posite Boson

3.6.1 Creation/Annihilation operators

The state ψ(mA, nB) in equation 3.9 is generated when c† acts on vacuum.

c† =
∞∑

M=0

√
λMa

†
Mb
†
M (3.53)
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where a†M , b†M and c†M are the creation operators for particle A, B and C respectively.

similarly,

c =
∞∑

M=0

√
λMbMaM (3.54)

where aM , bM and cM are the annihilation operators for particleA, B and C respectively.

3.6.2 Commutation relation

Now we will �nd commutation relation between c and c†

Derivation (For details see appendix (5.2))

[c, c†] = cc† − c†c (3.55)

[c, c†] =
∞∑

M=0

(
√
λMbMaM)(

√
λMa

†
Mb
†
M)−

∞∑
M=0

(
√
λMa

†
Mb
†
M)(
√
λMbMaM)

[c, c†] = 1−4 (3.56)

where,

4 =
∞∑

M=0

λM(a†MaM + b†MbM) (3.57)

3.7 Properties of creation and annihilation operator

for Entangled Bi-fermionic Coboson

Now we will investigate the properties of annihilation and creation operators. N-particle

state for a system having two or more N-Particles is:

|M〉 = χ
1/2
M

c†M√
M !
|0〉 (3.58)

[for detailed calculations see Appendix 5.3]

〈M |M〉 = 1 (3.59)

c† |0〉 = |1〉
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The action of c on |M〉 would be:

|M〉 = αM
√
M |M − 1〉+ |εM〉 (3.60)

where |εM〉 is the correction term. c would be bosonic if it follows the following prop-

erties:

�

αM −→ 1 (3.61)

�

〈εM |εM〉 −→ 0 (3.62)

Therefore, the condition mentioned in equations 3.61 and 3.62 can be controlled by

ratio of the normalisation constant which we will discuss in the next section. [Detailed

calculations for αM and 〈εM |εM〉 see appendix 5.4]

3.8 Normalization ratios for composite systems

For fermionic constituents normalization constant comes out to be: (For detailed cal-

culations see Appendix 5.3)

χFM = M !
∑

PM>PM−1>...P2>P1

λP1 , λP2 , λP3 , ..., λPM
. (3.63)

Now we have a case of bi-particle wave function which permits exact close-form

expressions of χM . This wave function is speci�ed by the Schmidt eigenvalues:

λM = (1− x2) x2M , M = 0, 1, 2, ... (3.64)

where x is de�ned in the range 0 < x < 1.

(For detailed calculations see Appendix 5.5)

The normalization constants for fermions is,

χFM =
M ! (x)M(M−1)/2(1− x)M

(1− x)(1− x2)...(1− x)M
(For Fermion) (3.65)
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and hence the normalization ratios will be,

χFM+1

χFM
= zM

(M + 1)(1− x)

(1− x)M+1
(3.66)

The above results show that;
χFM+1

χFM
< 1 (3.67)

The di�erence between fermionic and bosonic constituents is that bosons can be to-

gether within a same state, but fermions cannot do that due to Pauli exclusion principle.

A larger number of particle would will require x ' 1 so that normailization ratio is

maintained.

3.9 Calculating Schmidt Number

Now we are in a position for making an explicit link between schmidt number and

quantum entanglement. The Schmidt eigen values are given as,

λM = (1− x) xM (3.68)

For these 3.68 eighen values the schmidt number given in 3.52 will become,

κ =
1∑∞

M=0 λ
2
M

(3.69)

=
1

(1− x)2
∑∞

M=0 x
2M

(3.70)

Applying the Power series,
∞∑

M=0

x2M =
1

(1− x)2

So, Schmidt number will take the form,

κ =
1− x2

(1− x)2
(3.71)

It is a monotonic function which increases in the range 0 < x < 1. By writing x in

terms of κ the normalization ratios given in 3.67 is explicitly connected to the degree of
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entanglement. As the schmidt number increases the normalization ratios approaches 1

for the whole range of κ. As we have discussed above, the e�ective number of schmidt

modes is given by the value of schmidt number. The particle will be considered bosonic

when the number of Schmidt modes involved is a lot higher than the total number of

over all composite particles.

3.9.1 E�ect of Pauli-Exclusion Principle on Coboson composed
of Fermionic Constituents

As discussed in the previous section the normalization ratio is very important in deter-

mining the entanglement, the explicit relation for χM ratio for fermionic constituents

is,
χM+1

χM
= 1− M

κ
. (3.72)

We can see from equation (3.72) that the χM ratio depends on the number of cobosons

and schmidt number which is also the e�ective number of schmidt modes. The χM

ratio approaches to 1 if M
κ
approaches to zero and it will only happen if the number

of cobosons are much smaller than the active number of schmidt modes. It means

that when we include more and more particles in the system, its deviation from ideal

bosonic behaviour will increase. It is understandable as the concequence of Pauli Ex-

clusion principle between fermionic constituents.

The quantum nature of composite bosons is way more subtle than the elementary

composite bosons. This intricacy lies in the fact that we cannot associate a speci�c

pair of fermions to a composite boson. That indistinguishability of fermions leads to

the exchanges between composite bosons, those exchanges produce the dimensionless

�Pauli scatterings� of the composite boson many-body formalism. The Pauli exclusion

principle invokes the �moth-eaten e�ect�, if composite boson is made up of fermionic

constituents, that speci�cally inhibit stacking up greater number of composite bosons

than the number of fermion-pair states with which the composite bosons are made of

[34]. The Pauli exclusion principle is basically quenchless due to which the moth-eaten

e�ect produced is incredibly strong and appears in all problems which includes com-

posite bosons.
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Chapter 4

Coherent States

4.1 Introduction to Coherent States

The coherent state was discovered by Schrödinger in the year 1926 and then were

restudied by Glauber, Sudarshan and Klauder at the beginning of the 1960s. When

passed from a beam splitter these states are separable and alse are pure states. The

fact that coherent states are signi�cant criterion for the study of non-classicality in

the quantum optics serves as important motivation for doing research on it. Preparing

coherent states of entangled bi-fermionic coboson will give new ideas for analyzing

composite boson statistics.

In this chapter, we will estimate the resemblance between the eigen state that we

will derive for elementary bosonic annihilation operator and the usual coherent state

of entangled bi-fermionic coboson using the measure of non-classicality i.e Quadrature

Variance and Mandels Q- parameter. Then we will show that eigen state of annihilation

operator of coboson is useful in estimating the eigen value of number operator of

composite boson.

4.2 Photonic Coherent States and its Properties

The coherent states consists of inde�nite photon number that permits their phase to be

more precise than the number state (in which case we have a completely random phase).

The uncertainty product in phase and amplitude is minimum for these states. So, we
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can say that coherent states are quantum mechanical states closest to the classical

description of the �eld. The basic properties of these states are outlined below.

Glauber states can be conveniently generated using (unitary)displacement operator,

d̂(z) = e(za
† − z∗a)

where, z is any arbitrary complex number.

Using Baker-Housdarf Formula,

eX+Y = eX eY e−[X,Y ]/2 (4.1)

we can write ˆd(z) as,

d(z) = eza
†
e−z

∗a e−|z|
2/2 (4.2)

The displacement operator d(z) has following properties;

(i) d†(z) = d−1(z) = d(−z) (4.3)

(ii) d†(z) ad(z) = a+ z (4.4)

(iii) d†(z) a†d(z) = a† + z∗ (4.5)

We can generate coherent state |z〉 by the operation of d(z) on vacuum state. i.e,

|z〉 = d(z) |0〉 (4.6)

The Glauber/coherent state is regarded as the eigen state of annihilation operator a.

It can be proved in the following way,

d†(z) a |0〉 = d†(z) ad(z) |0〉 (4.7)

d†(z) a |0〉 = (a+ z) |0〉 (4.8)

d†(z) a |0〉 = z |0〉 (4.9)

If we multiply both sides by d̂(z) we will get the following eigen value equation,

a |z〉 = z |z〉 (4.10)
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Since a is non Hermitian operator its eigenvalue z wii be complex.

One more important property which follows using 4.1 is,

d̂(z + z′) = d̂(z) d̂(z′) e(−ι Im[zz′∗]) (4.11)

Since they have inde�nite photon number, we can make this fact apparent by expanding

coherent states in fock space basis.

By taking scalar product of equation 4.10 with 〈m|, we get;√
(m+ 1) 〈m+ 1|z〉 = z 〈m|z〉 (4.12)

Then,

〈m|z〉 =
zm

(m!)1/2
〈0|z〉 (4.13)

we can expand |z〉 in terms of fock state |m〉 as follows,

|z〉 =
∑
m

|m〉 〈m|z〉 = 〈0|z〉
∑
m

zm

(m!)1/2
|m〉 (4.14)

Thus, the length squared of the vector |z〉 is,

| 〈z|z〉 |2 = | 〈0|z〉 |2
∑
m

z2m

(m!)
= | 〈0|z〉 |2 exp(|z|2) (4.15)

It can be seen that,

〈0|z〉 = 〈0| ˆd(z) |0〉 = exp(
−|z|2

2
) (4.16)

Hence,

| 〈z|z〉 |2 = 1

and we normalized the coherent states.

We can then expand the coherent state in terms of number state as,

|z〉 = exp(−|z|2/2)
∑ zm

(m!)1/2
|m〉 (4.17)

In coherent state, the probability distribution of photons is a Poisson distribution,

given by,

P (n) = | 〈m|z〉 |2 =
|z|2m exp{−|z|2}

m!
(4.18)
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such that |z|2 represents the average photon number, i.e, (m̃ = 〈z| a† a |z〉 = |z|2)
Lets take the scalar product of two coherent states,

〈z′|z〉 = 〈0| d̂†(z′) d̂(z) |0〉 (4.19)

By using equation 4.2 it becomes,

〈z′|z〉 = e(−
1
2
(|z|2+|z′|2) + zz′∗) (4.20)

The magnitude of this scalar product would be,

| 〈z′|z〉 |2 = e(−|z−z
′|2). (4.21)

From the above equation we see that coherent states are non-othogonal but in the limit

|z − z′| � 1 they become orthogonal.

These states are over-complete and they make a 2- dimensional continuum of states.

The completeness relation is given by,

1

π

∫
|z〉 〈z| d2z = 1 (4.22)

The physical signi�cance of coherent states is that they form a �eld produced by

extremely stabilized LASER operating over the threshold limit. These states form a

useful basis for expanding the optical �eld in laser physics problems and non-linear

optics.

4.2.1 Coherent states' correlation function

Consider a quantum �eld ψ for elementary boson (i.e, a photon), which has creation

operator âb
† and the commutation relation of creation and annihilation operator is,

[âb, âb
†] = 1. For this �eld, the correlation function of 2nd order is given by,

g2 =
〈ψ| âb†2âb2 |ψ〉
〈ψ|ψ〉

(
〈ψ|ψ〉

〈ψ| âb†âb |ψ〉

)2

, (4.23)

Its value can be less than 1. Lets �nd out its lowest possible value for number state

âb
†M |0〉 where |0〉 is the vacuum state.
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As discussed earlier, the ladder operators follow the following commutation rela-

tions,

[âb
†, âb

†] = 0, [âb, âb
†] = 1 (4.24)

also,

[âb, âb
†M ] = [âb, âb

†] âb
†M−1 + âb

†[âb, âb
†M−1] (4.25)

= Mâb
†M−1 (4.26)

the above equation gives,

âbâb
†M |0〉 = Mâb

†N−1 |0〉 (4.27)

which leads to,

〈0| âbM âb†M |0〉 = M ! (4.28)

also,

âb |M〉 =
√
M |M − 1〉 (4.29)

from this equation, we get,

âb
†âb |M〉 = M |M〉 (4.30)

So, the eigenstate of the number operator M̂ = âb
†âb is |M〉 with eigen value M .

âb
†2âb

2 |M〉 = M(M − 1) |M〉 (4.31)

using 4.31 on 4.23, we get,

g2 = 1 − 1

M
, (4.32)

if |ψ〉 = |M〉. Equation 4.32 gives the lowest possible g2 value for n-elementary bosons.

The n-order correlation function equal to 1 can be achieved using a linear com-

bination of number states, called coherent state, de�ned in terms of fock state as in

equation 4.17.

|z〉 = exp(−|z|2/2)
∑ zM√

M !
|M〉 (4.33)
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As discussed earlier, for elementary bosons Coherent states have poissonian distribution

over |M〉, their distribution is peaked at |z|2, as a function ofM whereM is the average

no. of composite boson i.e,

|z|2 =
〈z| âb†âb |z〉
〈z|z〉

, (4.34)

also,

|z|4 =
〈z| âb†2âb2 |z〉
〈z|z〉

, (4.35)

From equation 4.23, 4.34 and 4.35 we �nd that the correlation function of second order

for the state |z〉 is exactly equal to 1 whatever is the z, and in the same way for all the

functions of higher order.

4.3 Coherent States of Entangled Bi-fermionic Co-

bosons

Coherent state can be de�ned as the eigen state of annihilation operator, hence we can

write:

c |α〉 = α |α〉 (4.36)

where α is a complex number.

let,

|α〉 =
∞∑
m=0

Cm |m〉 (4.37)

from and we get:

α |α〉 = c |α〉 ,

α
∑

Cm |m〉 =
∞∑
n=o

Cm c |m〉 ,

α
∞∑
m=0

Cm |m〉 =
∞∑
m=0

Cm (fm |m− 1〉+ εm |m〉). (4.38)
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replacing m by (m− 1) on L.H.S of equation,

fm =

√
χm
χm−1

√
m, (4.39)

α
∞∑
m=1

Cm−1 |m− 1〉 =
∞∑
m=1

Cmfm |m− 1〉+
∞∑
m=0

Cm |εm〉 (4.40)

applying 〈m− 1| on both sides, also 〈m− 1|εm〉 = 0 and
∑∞

m=0 〈m− 1|m− 1〉 = I

Cm =
z

fm
Cm−1 (4.41)

C1 =
z

f1
C0

C2 =
z

f2
C1 =

α2

f2 f1
C0

.

.

.

Cm =
αm

fmfm−1...f1
C0

Cm =
αm

Πm
i=1fi

C0, (4.42)

so equation can be written as:

|α〉 =
∞∑
m=0

αm

Πn
i=1fi

C0 |m〉 , (4.43)

alternatively, the above equation can be written as:

|α〉 =
∞∑
m=0

αm
√
χm√

χmm!
C0 |m〉 , (4.44)

C0 is the normalization constant.

Finding the normalization constant( C0)
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In order to �nd C0 we make use of the fact that 〈α|α〉 = I

〈α|α〉 = I = |C0|2
∑
m

∑
m′

α∗mαm
′

√
m! m′!

,

|C0|2 =

[ ∞∑
m=0

|α|2m

m!

χ0

χm

]−1
,

|C0| =

[ ∞∑
m=0

|α|2m

m!

χ0

χm

]−1
2

.

now let,

M(|α|2) =
∞∑
m=0

|α|2m

m!

χ0

χm

|α〉 =
1√

M(|α|2)

∞∑
m=0

αm√
m!

√
χ0

χm
α0 |m〉

|α〉 =
1√
M

∞∑
m=0

αm

Π∞i=0fi
|m〉 (4.45)

we know that,

c† |m〉 = αm+1

√
m+ 1 |m+ 1〉 (4.46)

c† |m〉 =

√
χm+1

χm

√
m+ 1 |m+ 1〉 (4.47)

c† |m〉 = fm+1 |m+ 1〉 (4.48)

4.3.1 Action of Annihilation operator on Coherent States of
Entangled Bi-fermionic Coboson

Lets apply annihilation operator c† on Coherent State |α〉 of Composite Boson,

c† |α〉 =
1√
M

∞∑
m=0

αm

Πm
i=0 fi

c† |m〉 ,

c† |α〉 =
1√
M

∞∑
m=0

αm

Πm
i=0 fi

fm+1 |m+ 1〉 , (4.49)
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Alternatively

c† |α〉 =
1√

M(|α|2)

∞∑
m=0

αm√
m!

√
χ0

χm
c† |m〉 ,

c† |α〉 =
1√
M

∞∑
m=0

αm√
(n+ 1)!

m+ 1

χm

√
χ6 χm+1 |m+ 1〉 . (4.50)

4.3.2 Deriving the Commutator [c, c†]

Depending upon e�ective composite Boson operators property we can derive the op-

erator [c, c†], The creation and annihilation operators of composite bosons are given

by,

c =
∞∑
m=0

|m〉 〈m+ 1| fm+1, (4.51)

and,

c† =
∞∑
m=0

|m+ 1〉 〈m| fm+1, (4.52)

lets �nd the commutator,

[c, c†] = cc† − c†c, (4.53)

[c, c†] =

[ ∞∑
m=0

|m〉 〈m+ 1| fm+1

]
[
∞∑
m=0

|m+ 1〉 〈m|m+1

]
−
[ ∞∑
m=0

|m+ 1〉 〈m| fm+1

][ ∞∑
m=0

|m〉 〈m+ 1| fm+1

]
,

(4.54)

putting m− 1 = m,

[c, c†] =
∞∑
m=0

f 2
m+1 |m〉 〈m| −

∞∑
m=0

f 2
m+1 |m+ 1〉 〈m+ 1| (4.55)

[c, c†] = |f1|2 |0〉 〈0| −
∞∑
m=1

(|fm|2 − |fm+1|2) |m+ 1〉 〈m+ 1| ,

This commutator is reduced to Identity when fm =
√

For the eigen state |α〉 which is

also the coherent state, the commutator comes out to be,

〈[c, c†]〉 =
1

M
[|f1|2]−

∞∑
m=1

|α|2m

Π∞i+1|fi|2
(|fm|2 − |fm+1|2). (4.56)
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Let's consider the classical annihilation operator â as an example, in which the com-

posite particles are distinguishable, that can be de�ned by placing fM = 1 for all M .

The commutator's expectation value is equal to 〈[c, c†]〉 = 1 − |α|2 ≤ 1 because of

the relation |α| ≤ lim
m→∞

|fm| = 1.

4.4 Non-classicality Measure of Entangled Bi-fermionic

Coherent States

In this section, (i) Quadrature Variance and (ii) Mandel's Q-parmeter will be applied

to the annihilation Operator of Composite Boson and corresponding Coherent State.

These are the prominent measure of non-classicality of the Coherent States. We will

derive these properties using expectation value of the commutator 〈[c, c†]〉.

4.4.1 Quadrature Variance

We use Quadrature variance to measure the non-classicality of coherent state. In

position-momentum phase space quadrature variance is de�ned as:

(4X)2 =
〈
X̂2
〉
−
〈
X̂
〉2
, (4.57)

(4P )2 =
〈
P̂ 2
〉
−
〈
P̂
〉2
, (4.58)

where,

X̂ =
â+ â†

2
, P̂ =

â− â†
2ι

,

using the above equations we get the quadrature variance of our coherent state as:

(4X)2 = (4P )2 =
1

4
, (4.59)

using these quadrature variances the uncertainty is calculated as:

(4X)2 (4P )2 =
1

16
, (4.60)

which is the minimum uncertainty as given by Heisenberg Uncertainty principle.

Squeezed State: A state would be called as a squeezed state if it has one of the
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quadrature variance lower than 1/4. i.e,

(4X)2 <
1

4
, (4.61)

or,

(4P )2 <
1

4
. (4.62)

so any state which has quadrature variance less than
1

4
would be squeezed state. Vac-

uum state is not considered to be squeezed.

Quadrature Variance for Composite Boson operator

In this section, we calculated the variances for the e�ective co-boson annihilation op-

erator ĉ,

(4Peff )2 = (4Xeff )
2, (4.63)

also,

X̂eff =
â+ â†

2
(4.64)

Putting these values in quadrature variance equation, we get:

(4Xeff )
2 =

1

4
〈ĉ2 + ĉ†

2
+ ĉ2 ĉ†

2
+ ĉ†

2
ĉ2〉 − 1

4
〈ĉ+ ĉ†〉 (4.65)

using the identity,

ĉĉ† = ĉ†ĉ + [ĉ, ĉ†] (4.66)

and

ĉ |α〉 = α |α〉 , (4.67)

we have

(4Xeff )
2 =

1

4
(α2 + α?2 + 2|α|2 + 〈[c, c†]〉)− 1

4
(α + α?)2 (4.68)
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which comes out to be:

(4Xeff )
2 =

1

4
〈[c, c†]〉 (4.69)

from this equation we can deduce that quadrature variance of e�ective co-boson can

have the value of 1
4
at 〈[c, c†]〉 = 1.

We can see from equation (3.56) that for fermionic constituents the commutation

relation [c, c†] < 1 so the coherent states of composite bosons will have have quadrature

variance lower than 1
4
.

4.4.2 Mandel's Q-parameter

The Mandel's Q-parameter is also called �Photon Counting Statistics�. It is an e�ective

and simple measure of distinguishing classical states from non-classical states.

Considering number operator m̂ such that: m̂ = â†â, the Mandel's Q-parameter is

given by:

Q =
4m2 − 〈m〉

〈m〉
, (4.70)

(4.71)

where,

(4m)2 = 〈m̂2〉 − 〈m̂〉2.

If quantum states lie in the range −1 ≤ Q ≤ 0 then they have sub-poissonian dis-

tribution, on the other hand, states lying in the range Q ≥ 0 have poissionian or

super-poissionian distribution. Coherent States have Mandel's Q-parameter Q = 0

and they exhibit poissionian distribution. Coherent States form the standard for non-

classicality.
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Distribution Statistics for the Coherent States of Composite Bo-
son

E�ective Mandel's Q-parameter of the Glauber states of composite boson can be de-

rived as follows:

Q =
〈m̂2〉 − 〈m̂〉2 − 〈m̂〉

〈m̂〉
,

where,

〈m̂2〉 = 〈α| m̂2 |α〉 = 〈α| ĉ† ĉ ĉ† ĉ |α〉 , (4.72)

using the identity,

ĉĉ† = ĉ†ĉ + [ĉ, ĉ†] (4.73)

and

ĉ |α〉 = α |α〉 , (4.74)

we have

〈m̂2〉 = 〈α| ĉ† (ĉ†ĉ+ [ĉ, ĉ†]) ĉ |α〉 , (4.75)

= 〈α| ĉ†ĉ†ĉĉ |α〉+ 〈α| ĉ†[ĉ, ĉ†]ĉ |α〉 , (4.76)

〈m̂2〉 = |α|4 + |α|2〈[c, c†]〉. (4.77)

Also,

〈m〉2 = (〈α|m |α〉)2 = (〈α| c† c |α〉)2 = (α?α)2 = |α|4. (4.78)

using equation (4.77) and (4.78) in equation (4.72),

Q =
|α|4 + |α|2〈[c, c†]〉 − |α|4 + |α|2

|α|2
, (4.79)

Q = |α|2
[
〈[c, c†]〉 − 1

|α|2

]
, (4.80)

Q = 〈[c, c†]〉 − 1. (4.81)

The value of Q will be zero if 〈[c, c†]〉 = 1

We can see from equation (3.56) that for fermionic constituents the commutation

relation [c, c†] < 1 so the coherent states of composite bosons will have negative values

of Q which corresponds to sub-poissionion distribution.
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Chapter 5

Discussion and Conclusion

We started our work with the general introduction of Ladder operators of elementary

particles. There are two types of elementary particles, fermions and bosons. Matter

is generally composed of fermions and composite bosons, however, elementary bosons

are mostly the exchange particles of the �elds. To form a composite bi-particle there

can have three possibilities. Either its composed of two bosons, or one boson and one

fermion forming a composite fermion or it can be composed of two fermions forming

a composite boson. The composite bosons made up of two fermions exists widely in

nature like Hydrogen atom, Cooper pair etc, so we discussed bi-fermionic composite

bosons. We did a literature survey of the entanglement and the composite particles.

We laid a quantum mechanical foundation of the elementary particles and discussed

their operators and then compared them to the operators of composite particles. A

composite boson composed of two entangled fermions can behave as ideal boson. There

bosonic behavior depends on the degree of entanglement between the two entangled

fermions. We discussed the separability criterion for quantum states and found that

if |ψi〉 has only one Schmidt number, then the state will be separable. If it is greater

than 1 than the state will be entangled. Hence, it is concluded that any pure state |ψi〉
is separable i� it has only one non-zero Schmidt coe�cient.

We proceed by presenting the operators that depict bosons and fermions, before

demonstrating some known results with respect to composite particles that are frame-

works of correlated however distinguishable fermions. We likewise quickly talk about
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the evaluation of entanglement, where it is to be seen as a resource quantity, and give a

proof that entanglement permits fermion pair to have the properties of a perfect boson

operators. We have also discussed brie�y the e�ect of Pauli exclusion principle, as our

composite boson is made up of fermionic constituents, that speci�cally inhibit stacking

up greater number of composite bosons than the number of fermion-pair states with

which the composite bosons are made of.

Finally, we have analyzed systematically, the coherent states of entangled bi-fermionic

composite boson. We de�ned an e�ective composite boson annihilation operator and

then derived its commutator and eigenstate. We discussed the non-classical properties,

like Quadrature Variance and Mandels Q parameter, of these Coherent states.

The quadrature variances of coherent States of bi-fermionic composite bosons at-

tain lower value than the values for the coherent state of elementary bosons. Also

the Mandel's Q parameter in this case is sub-poissonian where as elementary bosons'

Glauber states have poissonian statistics.
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Appendix

5.1 Schmidt Decomposition

A pure state |ψ〉 in Hilbert space H can be written in terms of corresponding product

basis as:

|ψ〉 =
∑
ij

dij
∣∣φAi 〉⊗ ∣∣φBj 〉 ,

where dij are the expansion coe�cients.

dij =
∑
ij

〈
φAi
∣∣⊗ 〈φBj ∣∣ψ〉 ,

Lets now rotate the basis:

φ̃i = Û
∣∣φAi 〉 , (5.1)

φ̃j = V̂
∣∣φBj 〉 , (5.2)

where Û and V̂ are two unitary operators.

d̃ij =
〈
φ̃Ai

∣∣∣⊗ 〈φ̃Bj ∣∣∣ψ〉 ,

d̃ij =
〈
φ̃Ai

∣∣∣ Û † ⊗ 〈φ̃Bj ∣∣∣ V̂ † |ψ〉 ,
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using resolution of identity, i.e,
∑

i

∣∣φAi 〉 〈φAi ∣∣ = I and
∑

j

∣∣φBj 〉 〈φj| = I;

d̃ij =
〈
φAi
∣∣ Û † |φp〉 〈φp| ⊗ 〈φBj ∣∣ V̂ † |φq〉 〈φq|ψ〉 ,

d̃ij = [ÛdV̂ ]ij.

So the state given in rotated basis will become:

|ψ〉 =
∑
ij

[ÛdV̂ ]ij

∣∣∣φ̃Ai 〉⊗ ∣∣∣φ̃Bj 〉 ,
For every complex matrix d̂, there always exists a unitary transformation Û and V̂

such that [ÛdV̂ ] is diagonal [10]. This provides singular value decomposition of d with

real, non-negative diagonal values, Si , called singular values.

|ψ〉 =
∑
i

√
λi
∣∣φAi 〉⊗ ∣∣φBi 〉 .

This is called Schmidt Decomposition where, λi = S2
i which are called Schmidt Coe�-

cients. Schmidt Decomposition is unique as [ÛdV̂ ] is unique. If two schmidt coe�cients

are non-zero it would not be possible to write |ψ〉 in the form of separable state.
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5.2 Commutation Relation for Ladder Operators of

Cobosons

The state given in equation 3.50 can be generated when the creation operator c† acts

on vacuum, as;

ĉ† |0〉 =
∞∑

M=0

√
λM â†M |0〉 ⊗ b̂

†
M |0〉 ,

where â†M and b̂†M creats the constituent particles A and B respectively and ĉ† is the

creation operator for the composite particle.

If we compare the coe�cients

ĉ† =
∞∑

M=0

√
λM â

†
M b̂
†
M .

The state in equation (5.2) is the second quantization representation of the state given

in equation (3.50).

The hermitian conjugate of ĉ† is;

ĉ =
∞∑

M=0

√
λM b̂M âM .

Finding the commutation relation between c and c†:

[c, c†] = cc† − c†c,

[c, c†] =
∞∑

M=0

(
√
λMbMaM)(

√
λMa

†
Mb
†
M)−

∞∑
M=0

(
√
λMa

†
Mb
†
M)(
√
λMbMaM),

[c, c†] =
∞∑

M=0

(
√
λMbMaMa

†
Mb
†
M)−

∞∑
M=0

(
√
λMa

†
Mb
†
MbMaM),
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using the commutation relation for elementry bosons;

[a, a†] = 1,

aa† − a†a = 1, (5.3)

aa† = 1 + a†a. (5.4)

we get,

[c, c†] =
∞∑

M=0

√
λM(1 + b†MbM)(1 + a†MaM)−

∞∑
M=0

(
√
λMa

†
Mb
†
MbMaM),

[c, c†] =
∞∑

M=0

√
λM(1 + a†MaM + b†MbM + b†MbMa

†
MaM − a

†
Mb
†
MbMaM),

[c, c†] =
∞∑

M=0

√
λM(1 + a†MaM + b†MbM),

[c, c†] = 1 +
∞∑

M=0

√
λM(a†MaM + b†MbM),

[c, c†] = 1 + s 4 .

where,

4 =
∞∑

M=0

λM(a†MaM + b†MbM).

� s = 1 for bosons.

� s = −1 for fermions.
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5.3 Fock State ladder from Ground State for Com-

posite Boson

c† |0〉 = |1〉 .

c† |1〉 =
√

2 |2〉 .

|2〉 =
c†√

2
(c† |0〉),

|2〉 =
(c†)2√

2
|0〉 ,

when we keep applying c†,M times we get;

|M〉 =
c†M√
M !χM

|0〉 , (5.5)

Re-normalizing the state in equation (5.5);

〈M |M〉 = 1,

〈0| cMc†M |0〉 = M !χM ,

Derivation of χM :

When the creation operator of composite bosons acts on the ground state it gives,

c†M |0〉 =
∑

PM>PM−1>...

√
λP1 λP2 λP3 ...λPM

F (P1, P2, ..., PM) |P1, P2, ..., PM〉 ,

where |P 〉 denotes that the state is �lled with an A particle and a B particle in the

Schmidt mode P and F (P1, P2, ..., PM) is the weight factor for state |P1, P2, ..., PM〉 .
If all the P ′s have d same terms and all the remaining terms are di�erent then,

P1 = P2 = P3 = ... = Pd = P,

so,

c†M |0〉 =
∑

PM>PM−1>...

√
λP1 λP2 λP3 ...λPM

F (P ) |P 〉 ,
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where,

|P 〉 =
χ
−1/2
M√
M !

c†M |0〉 ,

c†M |0〉 =
∑

PM>PM−1>...

√
λP1 λP2 λP3 ...λPM

F (P )
χ
−1/2
M√
M !

c†M |0〉 ,

χ
1/2
M =

∑
PM>PM−1>...

√
λP1 λP2 λP3 ...λPM

F (P )√
M !

,

Squaring on both sides,

χM =
∑

PM>PM−1>...

λP1 λP2 λP3 ...λPM

F 2(P )

M !
,

F (P ) =
M !

d!
× d!,

and,

F (P ) = M !,

so we can write,

χBM = M !
∑

PM>PM−1>...

λP1 , λP2 , λP3 , ..., λPM
, (For Bosons) (5.6)

similarly for fermions,

χFM = M !
∑

PM>PM−1>...P2>P1

λP1 , λP2 , λP3 , ..., λPM
. (For Fermions) (5.7)
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5.4 Derivation for αM and 〈εM |εM〉

When we apply the creation operator on number state, we have;

c†M |M〉 = αM+1(M + 1)1/2 |M + 1〉 ,

the conjugate of equation 5.4 would be,

〈M | c = αM+1(M + 1)1/2 〈M + 1| , (5.8)

taking inner product of equation 5.4 and 5.8, we get;

〈M | c c† |M〉 = (αM+1)
2(M + 1) 〈M + 1|M + 1〉 ,

also, the number state |N〉 is given by,

|M〉 = χ
−1/2
M

c†M√
M !
|0〉 , (5.9)

〈M | = χ
−1/2
M

cM√
M !
〈0| , (5.10)

(5.11)

also, we have;

|M + 1〉 = χ
−1/2
M+1

c†M+1√
(M + 1)!

|0〉 ,

〈M + 1| = χ
−1/2
M+1

cM+1√
(M + 1)!

〈0| ,

(5.12)
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taking inner product, we get;

〈M + 1|M + 1〉 = χ−1M+1

〈0| cM+1 c†(M+1) |0〉
M !

,

〈M |M〉 = χ−1M
〈0| cM c c†M c† |0〉

M !
,

〈M | c†c |M〉 = χ−1M
〈0| cM+1 c†(M+1) |0〉

M !
,

〈M | c†c |M〉 = (αM+1)
2(M + 1) 〈M + 1|M + 1〉 ,

(5.13)

we can further write,

χ−1M+1

M !
〈0| c†(M+1)cM+1 |0〉 = (αM+1)

2(M + 1)
χ−1M+1

(M + 1)!
〈0| c†(M+1)cM+1 |0〉 ,

χ−1M
χ−1M+1

(M + 1)!

M !(M + 1)!
= (αM+1)

2,

now we will put M = M − 1,

χ−1M−1
χ−1M

(M)!

M(M − 1)!
= αM

2,

αM
2 =

χM
χM − 1

, (5.14)

so, αM comes out to be,

αM =

√
χM
χM−1

.
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Now, lets �nd the inner product 〈εM |εM〉,

〈M | [c, c†] |M〉 = 〈M | [cc† − c†c] |M〉 ,

c† |M〉 = αM+1

√
M + 1 |M + 1〉 ,

c 〈M | = αM+1

√
M + 1 〈M + 1| ,

〈M | cc† |M〉 = αM+1
2 (M + 1),

c |M〉 = αM .
√
M |M − 1〉 + |εM〉 ,

〈M | c†c |M〉 = αM
2 (M) + 〈εM |εM〉 .

combining above set of equations, we get;

〈M | [c, c†] |M〉 = αM+1
2 (M + 1) − αM

2 (M) + 〈εM |εM〉 .

solving for 〈εM |εM〉, we get;

〈εM |εM〉 = αM+1
2 (M + 1) − αM

2 (M) − 〈M | [c, c†] |M〉 ,

(5.15)

〈εM |εM〉 = 1 − M
χM
χM−1

+ (M − 1)
χM+1

χM
. (5.16)

For Perfect Boson:

� αM −→ 1

� 〈εM |εM〉 −→ 0
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5.5 Gaussian Wavefunction

Consider an example of double Gaussian wavefunction, let xA and xB be some contin-

uous variable of particle A and B and ψ(xA,xB) be a bipartite wavefunction.

The most general form of double gaussian wavefunction is,

ψ(xA,xB) = N exp

[
−(xA + xB)2

σ2
c

]
exp

[
(xA − xB)2

σ2
r

]
,

where, σ2
c is width along xA + xB, σ

2
c is width along xA + xB and N is normalization

constant. Now,

ψ(xA,xB) = N exp

[
σ2
cx

2
A − σ2

rx
2
A + σ2

cx
2
A − σ2

rx
2
B − 2x2Ax

2
B(σ2

c + σ2
r)

σ2
cσ

2
r

]
,

= N exp

[
(σ2

c − σ2
r)(x

2
A + x2B)− 2xAxB(σ2

c + σ2
r)

σ2
cσ

2
r

]
,

= N exp

[
−4

σcσr

(σc + σr)
2 + (σc − σr)2

(σc + σr)2 − (σc − σr)2
xAxB

]
+ [

4

σcσr

(σc + σr) + (σc − σr)
σ2
c + σ2

r + 2σcσr − σ2
c2σcσr − σ2

r

(x2A+x2B)].

let, (σc−σr
σc+σr

)2 = z Then;

ψ(xA,xB) = N exp
4

σcσr
[
−1 + x2

1− x2
xAxB +

x

1− x2
(x2A + x2B)],

�nally, we can write;

ψ(xA,xB) =
√

1− x2
∞∑
n=0

xnφAn (xA) φBn (xB),

Compairing equation 3.50 and 5.5, we get;√
λM =

√
1− x2 x2M ,

λM = (1− x2) x2M .

where, M = 0, 1, 2, 3, ...

Which is the Schmidt eigen value as given in equation 3.68
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5.6 Evaluation of Normalization ratios for fermions

and bosons

In this section we will evaluate, χBM and χFM ;

let,

P1 = qM ,

P2 = qM + qN−1,

P3 = qM + qM−1 + qM−2,

.

.

.

PM = qM + qM−1 + ...+ q1.

For M = 4,

P1 = q4,

P2 = q3 + q4,

P3 = q2 + q3 + q4,

P4 = q1 + q2 + q3 + q4.

putting N = P1 in equation 3.68,

λP1 = (1− x)q4 ,

λP2 = (1− x)q3+q4 ,

λP3 = (1− x)q2+q3+q4 ,

λP4 = (1− x)q1+q2+q3+q4 .
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so for Bosons we have,

χBM = M !
∞∑
q1=0

∞∑
q2=0

∞∑
q3=0

∞∑
q4=0

(1− x)4 xq1+2q2+3q3+4q4 ,

χBM = M !(1− x)M
∞∑
q1=0

∞∑
q2=0

∞∑
q3=0

∞∑
q4=0

...

∞∑
qM=0

xq1+2q2+3q3+...+MqM ,

(5.17)

Similarly, for fermions,

χFM = M ! (1− x)M
∞∑
q1=1

∞∑
q2=1

∞∑
q3=1

...
∞∑

qM=0

xq1+2q2+3q3+...+MqM .

(5.18)

Expanding the power series,

∞∑
q1=0

zq1 = 1 + x+ x2 + ... =
1

1− x
∞∑
q2=0

x2q2 = 1 + x2 + x4... =
1

1− x2
.

.

.
∞∑

qM=0

xMqM = 1 + xM + x2M ... =
1

1− xM
.

So we have,∑
q1

∑
q2

...
∑
qM−1

∑
qM

xq1x2q2 ... xMqM =
1

(1− x)(1− x2)...(1− xM)
,

which implies that,

χBM =
M ! (1− x)M

(1− x)(1− x2)...(1− xM)
, (5.19)

similarly for fermions,

χFM =
M ! zM(M−1)/2 (1− x)M

(1− x)(1− x2)...(1− xM)
. (5.20)
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Now we can easily �nd out the normalization ratios for fermions and bosons using 5.19

and 5.20 respectively. For Bosons,

χBM+1 =
(M + 1)(1− x)

(1− xM+1)
, (5.21)

Similarly for fermions,

χFM+1 =
xM(M + 1)(1− x)

(1− xM+1)
. (5.22)
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