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Abstract 

 
With most of the countries using the maximum hydro power they can extract from natural 

resources, the trend has been shifting towards alternate means. Energy harnessing through 

vibrating bodies has come out as a very favourable option. Various transduction mechanisms can 

be used to convert the energy from mechanical vibrations to electrical energy. The ease with 

which one can get power through environment friendly means and an extremely small setup by 

volume and cost are the major advantages piezoelectric transduction mechanisms poses. Keeping 

in mind the changing trends of energy extracting methods, current work focuses on the potential 

and dynamics of piezoelectric energy harvesting from special class of aero-elastic vibrations 

called transverse galloping. Different nonlinear dynamics techniques including method of 

multiple scales and shooting method are used to characterize the harvester’s response and 

determine the contribution of present nonlinearities in the system’s response.  
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CHAPTER 1 

INTRODUCTION 

Power crisis overwhelming the world has pushed researchers to show their interests in using 

natural energy sources such as thermal energy, chemical energy and mechanical energy to 

generate inexhaustible electrical power. Energy harvesters have paved their ways into our life 

because of need to power the local electronic devices by using ambient energy. Energy 

harvesting is for low-power consumption devices, so its usage extends right from powering 

equipment in remote areas, to giving energy for high-tech equipment in harsh environments. 

Biomedical field has seen a revolution by inclusion of devices like pacemakers in its arena. 

Replacement of their batteries by major operations is infeasible and therefore energy harvesters 

again come into play. Energy harvesters are nowadays used to power micro-electro-mechanical 

systems (MEMS), health monitoring sensors, wireless sensors, actuators, cameras, cell phones, 

actuators, etc.  

 The mechanical energy in the vibrating body can be converted into electrical energy by 

various transduction mechanisms such as electromagnetic, electrostatic, or piezoelectric. Electric 

charge accumulates in specialized materials called piezoelectric in response to applied 

mechanical stress, and the electricity that gets generated is called piezoelectricity. Piezoelectric 

materials are most popular in MEMS devices because of their easy placement in small volumes. 

Apart from usage in places requiring small volumes such as MEMS, piezoelectric materials are 

used to harvest energy from larger mechanisms as well exhibiting sizes greater than MEMS. An 

advantage that piezoelectric materials have over other energy harnessing mechanisms is that they 

can convert vibrations into electrical energy over a wide range of frequencies.  Piezoelectric 
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energy harvesters have two modes of operation. They can work in either ݀ଷଵ mode or ݀ଷଷ mode. 

The “piezoelectric strain constant” d is the ratio of developed free strain to the applied electric 

field. The subscript dij indicates that a displacement in the j direction will produce an electric 

charge that will be collected in the i direction. In ݀ଷଵ mode applied lateral force has direction 

perpendicular to the polarization direction of the piezoelectric material whereas in ݀ଷଷ mode the 

lateral force has the same direction as that of polarization in the material. Operation of both 

modes can be seen in Figures 1(a) and 1(b). 

                   
(a)                                                                                (b) 

Figure 1: The two types of piezoelectric energy harvesters (a) d31 mode (b) d33 mode.   

  

 Energy harvesting from human movement is of great interest. The kinetic energy from a 

human body can be translated to produce electrical power that can power wearable electronics 

like watches or mp3 players, cell phones or even can be used to charge laptops. Upper human 

body produces movement with frequency around 10 Hz whereas lower body generates 

movement in the range of 10-30 Hz [1]. SEIKO was the first company to launch prototype of a 

watch powered by human movement and later successfully launched commercially available 

watches that were driven on this principle of human movement. Kymissis et al. [2] investigated 

the concept of harvesting energy from pressure applied on shoes.  Energy harvesting from 

possible backpack motions was studied by Feenstra et al. [3]. They used the piezoelectric option 

as transducer to convert mechanical energy to its electrical counterpart. They reported that it is 

possible to harvest 176 ܹߤ when considering a 40 lb load on a tread-mill. They also mentioned 

that 400 ܹߤ as a maximum average power can be obtained. In Europe, there are numerous dance 

clubs that have piezoelectric layers installed i. When people dance on the floor their motion 

                                                 
i www.artfuldodger.hubpages.com/hub/Piezoelectric-Energy-Harvesting [accessed: 18/7/2014] 
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exhibited by bluff bodies is one of those phenomena which is a viable source of energy and is the 

focus of this Master Thesis. 

 

 
Figure 3: Concept of touch pad with piezoelectric energy harvesting iii. 

 

1.1 Aeroelastic instabilities 

As already mentioned, the scope of using piezoelectric energy harvesting by aeroelastic 

instabilities is increasing. These instabilities exhibit various types: flutter of airfoil sections [12- 

14], vortex-induced vibrations (VIVs) of circular cylinders [15-17], galloping of prismatic 

structures (D-section, square, triangular, etc.) [18-23], and wake galloping [24-25]. Flutter is an 

aerodynamic instability that appears in structures when incoming wind flow increases beyond a 

critical value. The structural damping therefore becomes insufficient to damp the self-excited 

motions. Therefore, flutter often leads to catastrophic structure failure. The aircraft wings are 

designed so as to minimize or control this instability whereas this vulnerability is utilized in case 

of energy harvesting to design small and efficient energy harvesters. When it comes to VIV, it is 

entirely different from fluttering. When fluid flows past a bluff body, it produces a von Karman 

vortex street that consists of chain of vortices on both sides of the body. The alternate shedding 

                                                 
iii www.mp4nation.net/blog/2011/05/ecopad-tablet-concept-give-you-power-in-your-touch/ [accessed: 18/7/2014] 
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of these vortices produces unsteady aerodynamic loads. When the shedding frequency matches 

the natural frequency of the body, the synchronization or lock-in phenomenon takes place and 

large transverse oscillations occur. These induced vibrations of the body are referred to as 

vortex-induced vibrations (VIVs). The schematic of a piezoelectric harvester exhibiting VIV is 

shown in Figure 4. On the other hand, galloping is a large-amplitude oscillation that is exhibited 

by prismatic shape cylinders like squares, rectangles, triangles, or D-sections when incoming 

wind flow exceeds a critical value. When the aerodynamic damping becomes more important 

than the structural damping, the galloping phenomenon takes place. It should be noted that flutter 

and galloping exhibit the same dynamics except the fact that galloping oscillations can be 

obtained by a single-degree-of-freedom.  

1.2 Literature review 

Anton and Inman [26] performed experiments to investigate the potential of using wing flutter 

for piezoelectric energy harvesting. They attached piezoelectric material to the wings and 

concluded that energy harvested can be improved as the size of piezoelectric material is 

increased. Their results point to an immense potential in fluttering wings for energy harvesting. 

De Marqui et al. [14] developed a time-domain piezoaeroelastic model of a wing by using 

piezoceramics. They combined electromechanically coupled finite element model [27] with an 

unsteady vortex-lattice model [28,29] to represent the aerodynamic loads. A very low 

aerodynamic damping was observed for low wind velocities and velocities near critical flutter 

speed. They studied the performance of segmented electrodes and showed that the torsional 

motions became more effective in the overall dynamics of the system and hence had a direct 

effect in changing the flutter speed. Abdelkefi et al. [30] modeled a piezoaeroelastic system as a 

rigid wing which is allowed to move in two degrees of freedom when wind ܷ flows, as shown in 

Figure 4. They used nonlinear structural stiffness for plunge ݄ and pitch ߙ motions and examined 

the effect of the electrical load resistance ܴ (across which voltage ܸ gets generated), linear 

plunge structural stiffness ݇௛, and linear pitch structural stiffness ݇ఈ on the critical flutter speed 

௙ܷ. They also performed nonlinear analysis by deriving an analytical solution using the normal 

form of Hopf bifurcation, and compared the results with numerical predictions. They showed 
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Figure 4: Schematic of piezoelectric energy harvesting by two degree of freedom of a rigid                 

wing iv.       

 

that the nonlinear springs strongly affect the performance of the harvester as well as the type of 

instability (supercritical or subcritical). 

 When it comes to VIV, Allen et al. [31] used water tunnel to investigate the behaviour of 

a flexible membrane placed behind a flat plate. Flow stream normal to the plate created vortices 

behind the plate, which made the membrane sway from one side to another. When the natural 

frequency of the membrane matched with the vortex shedding frequency, large amplitude of 

oscillations exhibited by the membrane pointed to the phenomenon of synchronization. 

Following this, various researchers used this concept to harness energy from different structures. 

Wang and Ko [32] successfully produced an instantaneous power of 0.2 μW from an oscillating 

diaphragm to which a piezoelectric layer had been attached. The oscillating pressure of the water 

flowing beneath the piezoelectric layer had a pressure of 1.196 kpa with a frequency of 26 Hz 

that forced the membrane and the piezoelectric layer to vibrate. Abdelkefi et al. [33] discussed 

the concept of piezoelectric energy harvesting from VIV of circular cylinders, as shown in 

Figure 5. They used Skop and Griffin model to calculate the lift for the oscillating circular 

cylinder and coupled the cylinder motion with the harvested voltage by Gauss law. They 

performed a linear analysis to determine the effects of the electrical load resistance on the 

coupled frequency of the harvester and associated electromechanical damping. Based on a 

                                                 
iv Abdelkefi, A., Nayfeh, A. H., and Hajj, M. R., “Modeling and analysis of piezoaeroelastic energy harvesters,”       

    Nonlinear Dynamics, Vol. 67, 2012, pp. 925-939. 
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nonlinear analysis, they reported that a hardening behavior is appeared in the response of the 

harvester due to the aerodynamic nonlinearity. 

 

 

 
Figure 5: Concept of piezoelectric energy harvesting by vortex induced vibrations v. 

 

 Another aeroelastic phenomenon that has shown promise for harvesting energy is the 

galloping of prismatic structures. There have been studies that have proposed prismatic sections 

[18,19,34] viable for energy harvesting whereas numerous researches have discussed the effects 

of various parameters on the galloping of different structures. Sirohi and Mahadik [18] 

investigated galloping beams with a D-shaped cross section for piezoaeroelastic energy 

harvesting. Power produced by the harvester was found directly proportional to the incoming 

wind speed. A wind speed of 5.6 mph was needed to harvest energy from the device. Their 

results indicated good agreement between their analytical model and experimental data. They 

                                                 
v Abdelkefi, A., Hajj, M. R., and Nayfeh, A. H., “Phenomena and modeling of piezoelectric energy harvesting from      

   freely oscillating cylinders,” Nonlinear Dynamics. Vol. 70, 2012, pp. 1377–88. 
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reported that quasi-steady approximation for modeling the fluid forces for galloping was 

sufficient. Afterwards Sirohi and Mahadik [35] considered an equilateral triangle section 

attached to cantilever beams which had surface bonded piezoelectric sheets. They indicated that 

this harvester was able to fulfill the need of most of the commercially available wireless sensors. 

They reported that their analytical model and their experimental results had an inconsistency 

when it came to the natural frequency and the harvested power. Abdekefi et al. [21] developed a 

nonlinear distributed-parameter model for galloping-based piezoaeroelastic energy harvesters 

and validated it with the experimental measurements of Sirohi and Mahadik [35]. Den Hartog 

[36] was the first one to explain the phenomenon of galloping. He not only used quasi-steady 

hypothesis to describe the aerodynamic forces on the cylinder, but also developed a criterion for 

galloping. Barrero et al. [37] in their work have compared the amplitude of oscillations and 

energy harvesting potential of various prismatic shape cylinders for high Reynolds number 

flows. Abdelkefi et al. [34] used the Gauss law to couple square cylinder motion with voltage 

produced. They used Barrero et al. [37] cubic polynomial to analyze a system by performing 

linear and nonlinear analysis. Their linear analysis revealed a critical wind speed of 4.441m/s, 

and performed analytical solution by normal form of Hopf bifurcation that matched the 

numerical predictions. Abdelkefi et al. [19] investigated the effects of different cross-sectional 

geometries on piezoelectric energy harvesting by transverse galloping. The transducer was 

attached in the transverse degree of freedom of cylinder. They derived normal form of Hopf 

bifurcation to characterize the effects of linear and nonlinear parameters on the response of the 

harvester and to determine the type of Hopf bifurcation the system exhibits for a particular set of 

parameters. They studied the effects of cross-sectional geometries, electrical load resistance as 

well as the incoming wind speed on the initiation of galloping as well as harvested power.  In 

another study, Abdelkefi et al. [20] used Euler-Bernoulli beam assumptions to model two 

different energy harvesting systems: the first one with a tip mass prismatic structure which is 

attached with a multilayered cantilever beam, whereas the other system consists of equilateral 

triangle cross section bar that is attached with two cantilever beams. The first system has only 

aerodynamic whereas the other possesses aerodynamic as well as a structural nonlinearity 

(nonlinear torsional spring). The dependence of critical value of wind needed for initiation of 

galloping i.e. energy harvesting is analysed for both systems. The normal form is derived for 

both systems to study the performance and reliability of both harvesters. It was found that the 
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first system exhibited supercritical Hopf bifurcation for the considered parameters for two 

different considered cross-sectional geometries. They demonstrated that the electrical load 

resistance strongly affect the associated nonlinear torsional spring critical value which resulted in 

a change in the system response from supercritical to subcritical Hopf bifurcation and vice versa. 

Therefore, there is a huge potential of research when it comes to harnessing aeroelastic 

instabilities, and a continuous contribution is needed. 

1.3 Scope of the thesis 

1.3.1  Objectives 

The objective of this Master Thesis is to investigate the phenomenon of galloping for 

piezoelectric energy harvesting. We focus on a triangular cylinder galloping with piezoelectric 

transducer attached in transverse degree of freedom. The effect of structural as well as 

aerodynamic nonlinearity is studied by developing normal form and numerical predictions. The 

type of bifurcation is characterized by normal form whereas stability of electroaeroelastic system 

is analysed by deriving Floquet multipliers. 

1.3.2  Thesis contributions 

Major contributions of this research include: 

1. Developing the normal form of the Hopf bifurcation for a galloping-based energy 

harvester having both structural and aerodynamic nonlinearities. 

2. Deriving the shooting method and comparing its numerical predictions with the normal 

form of the Hopf bifurcation and Runga-Kutta numerical predictions. 

3. Using the shooting method to determine the Floquet multipliers and study the stability of 

the harvester. 

1.4 Outline of the thesis 

The thesis is organized as follows: 

1. In Chapter 2, we show the importance of method of multiple scales (MMS) and 

demonstrate its effectiveness when considering various examples. 
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2. In Chapter 3, we develop the normal form of the Hopf bifurcation for a galloping-based 

triangular cylinder harvester and validate the results with numerical predictions. We also 

discuss the effect of the cross-sectional geometry of the cylinder on the onset speed of 

galloping. 

3. In Chapter 4, we derive the shooting method of the considered harvester and discuss, in 

details, the electroaeroelastic stability of the harvester.   

4. In Chapter 5, we summarize and conclude our results. We also present recommendations 

for future work. 

1.5 Summary 

We gave an overview of piezoelectric energy harvesting when subjected to base or aeroelastic 

excitations. The fast rate with which need for localised energy harvesting is increasing is 

discussed. Different phenomena that harness aeroelastic energy in flowing wind are presented 

and discussed. A review of aeroelastic energy harvesting during the past few years was done 

with details. The shift of focus of researchers towards galloping as potential source of energy 

harvesting was elaborated. At the end, we discussed objectives, contributions, and outline of this 

Thesis.       
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CHAPTER 2 

METHOD OF MULTIPLE SCALES 

2.1 Introduction 

In the current chapter, we emphasize the importance of the method of multiple scales, a 

perturbation method used for finding the analytical solution of dynamical systems. As the name 

suggests this method scales the time as well as the variables involved in the differential equation. 

A bookkeeping parameter, generally, denoted as є is used to conserve the scaling. The usefulness 

of this method lies in the fact that besides predicting steady state solution with reasonable 

accuracy it captures the transient response of the dynamical system with good precision as well 

whereas other analytical techniques fail to get the transient portion of the response. We focus on 

the steps and methodology of this method by considering two simple nonlinear oscillators: 1) self 

excited Rayleigh oscillator and 2) Duffing oscillator. A brief overview of method of multiple 

scales, steps and examples presented in this section is discussed in length by Nayfeh vi in his 

book along with other perturbation techniques. 

2.1.1 Rayleigh oscillator 

In order to demonstrate the effectiveness of this method we consider a second order differential 

equation with a negative damping in the form of 

 

݉ ௗమ௨כ

ௗ௧כమ ൅ כݑ݇ ൌ ߤ ൤1 െ ߙ ቀௗ௨כ

ௗ௧כ ቁ
ଶ

൨ ௗ௨כ

ௗ௧כ                                            (a1) 

                                                 
vi Nayfeh, A. H., Introduction to Perturbation Techniques, Wiley, New York, NY, 1993. 
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where ݉ is the mass of the system, ݇ is the spring coefficient, and ߤ and ߙ are positive 

parameters. This equation of motion is called the Rayleigh oscillator. We introduce characteristic 

displacement as ݑ଴
כ  and linear natural frequency of the system as ߱଴ ൌ ඥ݇/݉ as the reference 

quantities and introduce the following dimensionless quantities without the asterisks 

ݑ ൌ ௨כ

௨బ
כ ݐ , ൌ ටכݐ ௞

௠
 

Then equation (a1) takes the form  

ሷݑ ൅ ݑ ൌ ߳ ൬1 െ ఈ௨బ
כ మ௞

௠
ሶݑ ଶ൰ ሶݑ                                               (a2) 

where ߳ ൌ ଴ݑߙ and put ݉݇√/ߤ
כ ଶ݇ ൌ ଵ

ଷ
݉ so that equation takes the form 

ሷݑ ൅ ݑ ൌ  ߳ ቀݑሶ െ ଵ
ଷ

ሶݑ ଷቁ                                                   (a3) 

It is important mentioning here that method of multiple scales will be used to solve this form of 

Rayleigh oscillator in the current section. The time ݐ as well as its derivatives needs to be scaled. 

The first order time derivative is scaled as shown below  

ௗ
ௗ௧

ൌ ଵܦ߳+଴ܦ ൅  (a4)                                                     ڮ

where ܦ௡ ൌ ߲/߲ ௡ܶ. So ݐ is divided into various scales like ଴ܶ ൌ ଵܶ ,ݐ ൌ ଶܶ ,ݐ߳ ൌ ߳ଶݐ which 

emphasizes the fact that ଴ܶ is a fast time scale, ଵܶ considerably slower and ଶܶ even slower than 

ଵܶ. It should be noted that value of ߳ is kept very small for all analysis of method of multiple 

scales. Applying the operator ௗ
ௗ௧

 on both sides of equation (a4) reveals 

ௗమ

ௗ௧మ ൌ ଴ܦ
ଶ ൅ ଵܦ଴ܦ2߳ ൅  (a5)                                              ڮ

The second-order time derivative used in equation (a3) is given by the above equation (a5).  

Substituting the values of equations (a4) and (a5) in (a3) gives 

଴ܦ
ଶݑ ൅ ݑଵܦ଴ܦ2߳ ൅ ݑ ൌא ቂܦ଴ݑ െ ଵ

ଷ
 ሺܦ଴ݑሻଷቃ ൅  (a6)                            ڮ
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We find a solution of ݑ in the form of  

ݑ ൌ ଴ሺݑ ଴ܶ, ଵܶሻ ൅ ଵሺݑ߳ ଴ܶ, ଵܶሻ ൅  (a7)                                    ڮ

Substituting equation (a7) into equation (a6) and separating the order of ߳ gives  

O ሺ߳଴ሻ  

଴ܦ
ଶݑ଴ ൅ ଴ݑ ൌ 0                                                              (a8) 

O ሺ߳ଵሻ 

଴ܦ
ଶݑଵ ൅ ଵݑ ൌ െ2ܦ଴ܦଵݑ଴ ൅ ଴ݑ଴ܦ െ ଵ

ଷ
ሺܦ଴ݑ଴ሻଷ                                   (a9) 

The equation (a8) gives  

଴ݑ ൌ ሺܣ ଵܶሻ݁௜ బ் ൅ ሺܣ ଵܶሻ݁ି௜ బ்                                            (a10) 

The substitution of equation (a10) into equation (a9) gives the equation  

଴ܦ
ଶݑଵ ൅ ଵݑ ൌ െ2݅ܣᇱ݁௜ బ் ൅ ᇱ݁ି௜ܣ2݅ బ் ൅ ௜݁ܣ݅ బ் െ ௜ି݁ܣ݅ బ் െ ଵ

ଷ
൫݅݁ܣ௜ బ் െ ௜ି݁ܣ݅ బ்൯

ଷ
     (a11) 

Equation (a11) can then be written as  

଴ܦ
ଶݑଵ ൅ ଵݑ ൌ െ݅൫2ܣᇱ െ ܣ ൅ ൯݁௜ܣଶܣ బ் ൅ ଵ

ଷ
ଷ݁ଷ௜ܣ݅ బ் ൅ ܿܿ                   (a12) 

where cc represents the complex conjugates of terms. 

In order to get a finite response for a dynamical system, we need to remove the secular terms. 

The removal of these terms requires the coefficient of ݁௜ బ் or ݁ି௜ బ் to be zero. From equation 

(a12), we have secular term coefficient as  

ᇱܣ2 െ ܣ ൅ ܣଶܣ ൌ 0                                                    (a13) 

The solution ܣ of above equation is written in polar form as  

ܣ ൌ ଵ
ଶ

ܽ݁௜ఉ                                                           (a14) 
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It should be noted that ܽ and ߚ are real functions of ଵܶ as evident from equation (a10). The 

expression of ܣ from equation (a14) makes equation (a10) as 

଴ݑ ൌ ଵ
ଶ

ܽ݁௜ሺ బ்ାఉሻ ൅ ଵ
ଶ

ܽ݁ି௜ሺ బ்ାఉሻ                                          (a15) 

This equation can be written in the form of 

଴ݑ ൌ ܽ cos ሺ ଴ܶ ൅  ሻ                                                           ሺa16ሻߚ

We substitute equation (a14) into equation ሺa13ሻ, one obtains 

ܽᇱ݁௜ఉ ൅ ᇱ݁௜ఉߚܽ݅ െ ଵ
ଶ

ܽ݁௜ఉ ൅ ଵ
଼

ܽଷ݁௜ఉ ൌ 0                                (a17) 

Dividing the equation (a17) by ݁௜ఉ and separating the real and imaginary parts gives  

ܽᇱ ൌ ଵ
ଶ

ܽ െ ଵ
଼

ܽଷ                                                        (a18) 

 

ᇱߚ ൌ 0                                                               (a19) 

Equation (a19) gives the solution as 

ߚ ൌ ଴ߚ ൌ constant                                                     (a20) 

For equation (a18), we seek separation of variables i.e. 

݀ ଵܶ ൌ ଼ௗ௔
ସ௔ି௔య ൌ ଼ௗ௔

௔ሺଶି௔ሻሺଶା௔ሻ
                                             (a21) 

The right hand side is represented as partial expressions to give 

݀ ଵܶ ൌ ଶௗ௔
௔

൅ ௗ௔
ሺଶି௔ሻ

െ ௗ௔
ሺଶା௔ሻ

                                                   (a22) 

The solution of equation (a22) is in the form of 

ଵܶ ൅ ܿ ൌ 2 log ܽ െ log |2 െ ܽ| െ log ሺ2 ൅ ܽሻ                                 (a23) 

The right hand side can be expressed as a single log and equation (a23) takes the following form 
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ଵܶ ൅ ܿ ൌ log ௔మ

|ସି௔మ|                                                            (a24) 

Removing the log from right hand side makes equation (a24) as  

௔మ

ସି௔మ ൌ ݁ భ்ା௖ ൌ ݁є௧ା௖                                                       (a25) 

Equation (a25) takes the form 

ܽଶ ൌ ସୣ୶୮ ሺє௧ା௖ሻ 
ଵାୣ୶୮ ሺє௧ା௖ሻ

ൌ ସ 
ଵାୣ୶୮ ሺିє௧ି௖ሻ

                                                (a26) 

Placing the values of ߚ and ܽଶ from equations (a20) and (a26), respectively, in equation (a16) 

and we get 

଴ݑ ൌ 2ሾ1 ൅ ݁ିє௧ି௖ሿିଵ/ଶ cosሺݐ ൅  ଴ሻ                                        (a27)ߚ

The expression for ݑ from equation (a7) for first order expansion becomes  

ݑ ൌ 2ൣ1 ൅ exp൫– єݐ െ ܿ൯൧
ିଵ/ଶ

cosሺݐ ൅ ଴ሻߚ ൅  (a28)                           ڮ

The initial condition for the Rayleigh oscillator i.e. equation (a3) is given by 

ሺ0ሻݑ ൌ ܽ଴, ݑሶ ሺ0ሻ ൌ 0                                                       (a29) 

Substituting equation (a29) into equation (a28) reveals  

ܽ଴ ൌ 2ሾ1 ൅ ݁ି௖ሿିଵ/ଶcos ሺߚ଴ሻ                                              (a30) 

and 

0 ൌ െ2ሾ1 ൅ ݁ି௖ሿିଵ/ଶsin ሺߚ଴ሻ ൅ Oሺєሻ                                       (a31) 

Equation (a31) gives ߚ଴ ൌ 0 ൅ Oሺєሻ which makes equation (a30) in the form  

                 ܽ଴
ଶ ൌ 4ሾ1 ൅ ݁ି௖ሿିଵ                                                   (a32) 

Value of ݁ି௖ from equation (a32) comes out to be 
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݁ି௖ ൌ ସ
௔బ

మ െ 1                                                        (a33) 

The expression of ݑ from equation (a28) becomes 

ݑ ൌ 2 ቂ1 ൅ ቀ ସ
௔బ

మ െ 1ቁ ݁ିє௧ቃ
ିଵ/ଶ

cosሺݐሻ ൅  (a34)                              ڮ

The above equation suggests that the steady state solution for equation (a34) becomes 

ݑ   ՜ 2cosݐ ൅ ܱሺєሻ                                                     (a35) 

 

 
(a) (b) 

Figure 6: Comparison between (a) numerical prediction and (b) analytical solution for 

uሺ0ሻ =0.5, ݑሶ ሺ0ሻ ൌ 0 and є = 0.1. 

 

The above value for equation (a35) indicates that as time ݐ ՜ ∞ the solution u approaches 

ሻ irrespective of the value of ܽ଴ as long as ܽ଴ݐሺ ݏ݋2ܿ ് 0. Equation (a34) shows that ݑ is not of 

the form ܽ ܿݏ݋ሺݐ ൅ βሻ where ܽ is an exponential function of time. The method of multiple scales 

splits the original differential equation into system of ordinary differential equations and permits 

enough generality in the solution to obtain an excellent result as evident from comparison with 

numerical prediction by Runge-Kutta in Figure 6.  

0 50 100 150
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

t

u

0 50 100 150
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

t

u



28 

 

2.1.2 Duffing oscillator  

The Duffing oscillator is an example of a system having a restoring force in the system. The 

equation usually called the Duffing equation or oscillator is given by 

ௗమ௨כ

ௗ௧כమ ൅ ݇ଵכݑ ൅ ݇ଷכݑଷ ൌ 0                                                  (a36) 

where the ݇ଵ ൐ 0 and the nonlinear spring coefficient ݇ଷ may be greater than or less than zero. 

We consider a characteristic length ܷכ and characteristic time ܶכ and let 

ݐ ൌ ௧כ

ݑ    כ் ൌ ௨כ

௎כ                                                           (a37) 

The chain rule gives 

ௗ
ௗ௧כ ൌ ௗ

ௗ௧
ௗ௧

ௗ௧כ ൌ ଵ
כ்

ௗ
ௗ௧

                                                        (a38) 

Applying the operator ௗ
ௗ௧כ on both sides of the equation gives 

                                                           ௗమ

ௗ௧כమ ൌ ଵ
మכ்

ௗమ

ௗ௧మ                                                          (a39) 

ௗ
ௗ௧כ and ௗమ

ௗ௧כమ are substituted in the Duffing equation (a36) to give 

ሷݑ ൅ ݇ଵ ଵܶ
ݑଶכ ൅ ݇ଷܶכଶܷכଶݑଷ ൌ 0                                         (a40) 

We choose ݇ଵ ଵܶ
ଶכ ൌ 1   and let є ൌ ݇ଷܶכଶܷכଶ ൌ ݇ଷܷכଶ/݇ଵ , and therefore equation (a40) can be 

rewritten as                                                         

ሷݑ ൅ ݑ ൅ єݑଷ ൌ 0                                                          (a41) 

Equation (a41) is the dimensionless form of the Duffing oscillator of equation (a36) and is 

solved in this section analytically by the method of multiple scales. It should be noted that є is a 

dimensionless parameter and is a criterion for the strength of nonlinearity. The initial condition 

for the problem of equation (a41) is given by  
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ሺ0ሻݑ  ൌ ሶݑ      ଴ݔ ሺ0ሻ ൌ  ሶ଴                                                   (a42)ݔ

The solution ݑ is a function of ݐ and є and is given by 

;ݐሺݑ єሻ ൌ ,ݐොሺݑ єݐ, єଶݐ, єଷݐ, … ; єሻ                                                (a43) 

;ݐሺݑ єሻ ൌ ොሺݑ ଴ܶ, ଵܶ, ଶܶ, ଷܶ, … ; єሻ                                                 (a44) 

଴ܶ ൌ ଵܶ ,ݐ ൌ єݐ,  ଶܶ ൌ єଶݐ,  ଷܶ ൌ єଷݐ, …                                         (a45) 

An inspection of equations (a44) and (a45) reveal the fact that ݐ has been divided into various 

scales. As already discussed time ଴ܶ represents a fast scale, ଵܶ shows a slow scale whereas ଶܶ is 

representative of even a slower scale. The time derivative of the original time ݐ is 

correspondingly divided into various scales as given below 

ௗ
ௗ௧

ൌ డ
డ బ்

൅ є డ
డ భ்

൅ єଶ డ
డ భ்

൅  (a46)                                                  ڮ

Applying the operator ௗ
ௗ௧

 on both sides reveals second order derivative given by 

ௗమ

ௗ௧మ ൌ డమ

డ బ்
మ ൅ 2є డమ

డ బ்డ భ்
൅ єଶ ቀ2 డమ

డ బ்డ మ்
൅ డమ

డ భ்
మቁ ൅  (a47)                                 ڮ

Substituting values of equations (a46) and (a47) in equation (a41), one obtains 

డమ௨
డ బ்

మ ൅ 2є డమ௨
డ బ்డ భ்

൅ єଶ ቀ2 డమ௨
డ బ்డ మ்

൅ డమ௨
డ భ்

మቁ ൅ ݑ ൅ єݑଷ ൅ ڮ ൌ 0                            (a48) 

We scale the non-dimensional response displacement ݑ as  

ݑ ൌ ଴ሺݑ ଴ܶ, ଵܶ, ଶܶ, … ሻ ൅ єݑଵሺ ଴ܶ, ଵܶ, ଶܶ, … ሻ ൅  (a49)                                  ڮ

Equations (a49) and (a48) give  

డమ௨బ
డ బ்

మ ൅ є డమ௨భ
డ బ்

మ ൅ 2є డమ௨బ
డ బ்డ భ்

൅ ଴ݑ ൅ єݑଵ ൅ єݑ଴
ଷ ൅ ڮ ൌ 0                            (a50) 

For different orders of bookkeeping parameters equation (a50) can be written as 



30 

 

O(߳଴) 

డమ௨బ
డ బ்

మ ൅ ଴ݑ ൌ 0                                                                 (a51) 

O(߳ଵ) 

                                                     డ
మ௨భ

డ బ்
మ ൅ ଵݑ ൌ െ2 డమ௨బ

డ బ்డ భ்
െ ଴ݑ

ଷ                                                 (a52) 

The solution of ݑ଴ from equation (a51) gives 

଴ݑ ൌ ܽሺ ଵܶ, ଶܶ, … ሻ cosሾ ଴ܶ ൅ ሺߚ ଵܶ, ଶܶ, … ሻሿ 

This equation clearly indicates that neither ܽ nor ߚ are functions of fast time scale ଴ܶ. Moreover 

as ܿݏ݋ሺθሻ ൌ ଵ
ଶ

൫݁௜஘ ൅ ݁ି௜஘൯, therefore the above equation can be written as 

଴ݑ ൌ ଵ
ଶ

ܽሾ݁௜ሺ బ்ାఉሻ ൅ ݁ି௜ሺ బ்ାఉሻሿ                                               (a53) 

ൌ
1
2 ሾܽ݁௜ሺ బ்ାఉሻ ൅ ܽ݁ି௜ሺ బ்ାఉሻሿ 

ൌ
1
2 ܽ݁௜ఉ݁௜ బ் ൅

1
2 ܽ݁ି௜ఉ݁ି௜ బ்ሿ 

଴ݑ ൌ ௜݁ܣ బ் ൅ ҧ݁ି௜ܣ బ்                                                    (a54) 

where 

ܣ ൌ ଵ
ଶ

ܽ݁௜ఉ                                                              (a55) 

The value of ݑ଴ from equation (a54) is substituted in equation (a52) to get  

డమ௨భ
డ బ்

మ ൅ ଵݑ ൌ െ2݅ డ஺
డ భ்

݁௜ బ் ൅ 2݅ డ஺ҧ

డ భ்
 ݁ି௜ బ் െ ሺ݁ܣ௜ బ் ൅ ҧ݁ି௜ܣ బ்ሻଷ                    (a56) 

which gives 

డమ௨భ
డ బ்

మ ൅ ଵݑ ൌ െ ቀ2݅ డ஺
డ భ்

൅ ҧቁܣଶܣ3 ݁௜ బ் ൅ ቀ2݅ డ஺ҧ

డ భ்
െ ቁܣଶതതതܣ3 ݁ି௜ బ் െ ଷ݁ଷ௜ܣ బ் െ ଷതതത݁ିଷ௜ܣ బ்   (a57) 
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As already discussed ݁௜ బ் and ݁ି௜ బ் produce secular terms in the system of equations and should 

be removed for a finite response to appear therefore 

2݅ డ஺
డ భ்

൅ ҧܣଶܣ3 ൌ 0                                                      (a58) 

2݅ డ஺ҧ

డ భ்
െ ܣଶതതതܣ3 ൌ 0                                                      (a59) 

Equations (a58) and (a59) are complex conjugates and considering only one of them can serve 

the purpose. Therefore, substituting equation (a55) into equation (a58), we obtain 

2݅ ቀଵ
ଶ

డ௔
డ భ்

݁௜ఉ ൅ ଵ
ଶ

ܽ݅ డఉ
డ భ்

݁௜ఉቁ ൅ 3. ௔మ

ସ
݁ଶ௜ఉ. ௔

ଶ
݁ି௜ఉ ൌ 0                                (a60) 

Simplifying the previous equation gives 

݅ డ௔
డ భ்

݁௜ఉ െ ܽ డఉ
డ భ்

݁௜ఉ ൅ ଷ
଼

ܽଷ݁௜ఉ ൌ 0                                          (a61) 

 

݅ డ௔
డ భ்

െ ܽ డఉ
డ భ்

൅ ଷ
଼

ܽଷ ൌ 0                                                       (a62) 

Separating the real and imaginary parts from equation (a62) gives  

డ௔
డ భ்

ൌ 0                                                                     (a63) 

ܽ డఉ
డ భ்

െ ଷ
଼

ܽଷ ൌ 0                                                             (a64) 

Then, the particular solution of equation (a57) is given by 

ଵݑ ൌ ଵ
ଷଶ

ܽଷcosሺ3 ଴ܶ ൅  ሻ                                                    (a65)ߚ3

and equation (a64) gives 

డఉ
డ భ்

ൌ ଷ
଼

ܽଶ                                                                 (a66) 

and ߚ comes out to be 
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ߚ ൌ ଷ
଼

ܽଶ
ଵܶ ൅ ଴ሺߚ ଶܶ, ଷܶ, … ሻ                                                      (a67) 

Equation (a63) implies that ܽ is not a function of time ଵܶ therefore we have 

ܽ ൌ ܽሺ ଶܶ, ଷܶ, … ሻ                                                             (a68) 

After substituting values of ݑ଴ and ݑଵ, the response ݑ (equation (a49)) of the Duffing oscillator 

represented by equation (a41) gets the form as shown below 

ݑ ൌ ሺݏ݋ܿܽ ଴ܶ ൅ ሻߚ ൅ ଵ
ଷଶ

єܽଷcosሺ3 ଴ܶ ൅ ሻߚ3 ൅  (a69)                             ڮ

Equations (a67), (a68), and (a69) give  

ݑ ൌ ܽሺ ଶܶ, ଷܶ, … ሻܿݏ݋ ቂ ଴ܶ ൅ ଷ
଼ ଵܶܽଶሺ ଶܶ, ଷܶ, … ሻ ൅ ଴ሺߚ ଶܶ, ଷܶ, … ሻቃ ൅ ଵ

ଷଶ
א ܽଷሺ ଶܶ, ଷܶ, … ሻcosቂ3 ଴ܶ ൅

98ܶ1ܽ2ܶ2,ܶ3,…൅33ܶ,0ܶ2ߚ,…൅… 

Putting the original time ݐ and neglecting higher powers of є, we have 

ܽሺ ଶܶ, ଷܶ, … ሻ ൌ ܽሺєଶݐ, єଷݐ, … ሻ 

ൌ ܽሺ0,0, … ሻ ൅
߲ܽ
߲ ଶܶ

єଶݐ ൅  ڮ

ൌ ොܽ ൅ ܱሺєଶݐሻ 

Similar process for ߚ଴ gives 

଴ሺߚ ଶܶ, ଷܶ, … ሻ ൌ ,ݐ଴ሺєଶߚ єଷݐ, … ሻ 

ൌ ,଴ሺ0,0ߚ … ሻ ൅
଴ߚ߲

߲ ଴ܶ
єଶݐ ൅  ڮ

ൌ መ଴ߚ ൅ ܱሺєଶݐሻ   

We get non-dimensional displacement ݑ as 

ݑ ൌ ොܽcosሺ ଴ܶ ൅ ଷ
଼ ଵܶ ොܽଶ ൅ ଴ሻߚ ൅ ଵ

ଷଶ
є ොܽଷcos  ቀ3 ଴ܶ ൅ ଽ

଼ ଵܶ ොܽଶ ൅ መ଴ቁߚ3  ൅ ܱሺєଶݐሻ 

ݑ ൌ ොܽcosሺݐ ൅ ଷ
଼

єݐ ොܽଶ ൅ መ଴ሻߚ ൅ ଵ
ଷଶ

є ොܽଷcos  ቀ3ݐ ൅ ଽ
଼

єݐ ොܽଶ ൅ መ଴ቁߚ3  ൅ ܱሺєଶݐሻ 
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ݑ ൌ ොܽcosቀݐ ൅ ଷ
଼

єݐ ොܽଶ ൅ መ଴ቁߚ ൅ ܱሺєሻ 

A comparison between analytical solution from method of multiple scales and numerical 

prediction is given for Duffing oscillator in Figure 7 and it can be seen that analytical 

approximation is in excellent agreement with numerical prediction by Runge-Kutta.  

 

 
          (a)                                                                   (b) 

Figure 7: Comparison between (a) numerical prediction and (b) analytical solution for 

 uሺ0ሻ =0, ݑሶ ሺ0ሻ ൌ 0.5 and є = 0.1. 

 

2.2   Summary 

This chapter elaborated the importance of a perturbation method when using the method of 

multiple scales for analytical prediction of dynamical systems. Two different oscillators were 

considered and analytical solutions are provided when using the method of multiple scales 

for both systems. After that, comparisons were performed between the obtained analytical 

and numerical predictions. It was observed that analytical solutions were in excellent 

agreement with the numerical predictions. 
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Chapter 3 

ENERGY HARVESTING OF A GALLOPING 

PIEZOELECTRIC ENERGY HARVESTER 

3.1   Introduction 

To operate self-powered sensors, actuators, and other electronic devices, various types of wasted 

natural energy including thermal [38,39], light [40], and kinetic energy [41,42] have been used to 

generate inexhaustible electrical energy. Such energy harvesters have been proposed to replace 

small batteries that have a finite life span or would require expensive and time consuming 

maintenance. For powering electronic devices, mechanical energy has received significant 

attention in the last decade. Harvesting mechanical energy through converting vibrations to 

electrical energy can be achieved using either electrostatic [43], electromagnetic [41,44], 

magnetostrictive [45], or piezoelectric [4,41,9] transduction mechanisms. Of these mechanisms, 

the piezoelectric option has received the most attention because of its ease of application, non-

reliance on input voltage, it can effectively be placed in small volumes, and it can harvest energy 

over a wide range of frequencies.  

 For the purpose of piezoelectric energy harvesting, two major ambient excitation 

categories have been considered which are base [4,41,9] and flow-induced [30,19,20,21,36,26] 

vibrations. To date, most of the proposed energy harvesting devices from mechanical vibrations 

have concentrated on exploiting base vibrations. More recently, several research studies have 
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focused on the concept of energy harvesting from aeroelastic or flow-induced vibrations, such as 

flutter of airfoil sections [12,14], vortex-induced vibration (VIV) of circular cylinders [15-17], 

galloping of prismatic structures [18-23], and wake galloping of parallel cylinders [24,25].  

 Due to its design simplicity compared to the flutter and VIV-based energy harvesters, 

recent research studies have focused on the concept of energy harvesting from transverse 

galloping oscillations of prismatic structures. This phenomenon occurs when the wind speed 

exceeds a critical value and hence the bluff body starts to oscillate [36]. It is well-known that the 

galloping phenomenon is accompanied by a Hopf bifurcation which can be supercritical or 

subcritical. In the supercritical case, the harvester has only stable solutions for wind speed values 

larger than the onset speed of galloping. On the other hand, unstable solutions are present in the 

subcritical cases for wind speed values smaller than the onset speed of galloping. The presence 

of these unstable solutions are dependent on the initial condition (IC) values. To characterize the 

type of instability and determine the unstable solutions, two different approaches are used, 

namely, the normal form of the Hopf bifurcation and the Floquet multipliers obtained from the 

shooting method used for the construction of periodic solutions. In this work, structural and 

aerodynamic nonlinearities are present. The aerodynamic nonlinearity is associated to the 

galloping force and is defined by the flow parameters and the properties of the prismatic 

structure. As for the structural nonlinearity, hardening or softening springs can be used. The rest 

of this chapter is organized as follows: In Section 3.2, a lumped-parameter model representing 

the dynamics of the harvester is presented. A linear stability analysis is then performed, in 

Section 3.3, to determine the onset speed of galloping of the harvester. In Section 3.4, the normal 

form of the Hopf bifurcation is derived to characterize the type of instability and determine the 

contributions of the aerodynamic and structural nonlinearities on the performance of the 

harvester. In addition, the shooting method is used to construct the periodic solutions and 

determine the Floquet multipliers to characterize their stability.     

3.2   Electro-aeroelastic model formulation 

A galloping-based aeroelastic energy harvester is considered. This harvester consists of a tip 

mass isosceles triangular section ߜ ൌ 30௢ attached to a multilayered cantilever beam, as shown 

in Figure 8. The multilayered beam is composed of substrate and piezoelectric layers. The 

piezoelectric layer is bonded by two-in-plane electrodes of negligible thicknesses connected to 
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an electrical load resistance ܴ. When subjected to an incoming flow, this harvester can undergo 

galloping oscillations in the transverse direction. The Den Hartog stability criterion [36] states 

that a section of a bluff body on a flexible support is susceptible to galloping when the linear 

term associated with the speed of the aerodynamic galloping force is positive. For the harvester 

under investigation, the onset speed of galloping is determined when the electro-mechanical 

damping of the harvester changes sign from a positive to a negative value due to the 

aerodynamic galloping force. The nonlinear term of the galloping force affects the amplitude of 

the ensuing limit-cycle oscillations and hence the level of the harvested power. 

 

 
Figure 8: Schematic of the galloping triangular cylinder ( ߜ ൌ 30o) for piezoelectric  

energy harvesting. 

 

In this work, a lumped-parameter model is used to express the governing equations 

of the coupled electro-mechanical system which are given by 

݉ ቀݕሷ  ൅ ሶݕ௡߱ߦ2   ൅  ௞
௠

ቁ ݕ – ܸߠ  ൌ ௬ܨ  ൌ 1

2
 (1)                       ݕܥܦ2ܷߩ

௣ܥ                                                    ሶܸ ൅ ௏
ோ

൅ ሶݕߠ ൌ 0                                                              (2) 

where ݕ is the cylinder displacement, ݕሶ  is the cylinder velocity, ܸ is the generated voltage across 

the electrical load resistance ܴ, ݉ is the total mass per unit length, ݇ is the system’s stiffness per 

unit length, ߦ is the mechanical damping ratio, is the cylinder natural frequency, ߠ is the electro-
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mechanical coupling coefficient, ܥ௣ is the capacitance of the piezoelectric layer, ߩ is the 

incoming fluid density, ܷ is the speed of incoming flow, ܦ is the characteristic dimension of the 

body normal to the incoming flow, ܨ௬ and ܥ௬ represent, respectively, the galloping force per unit 

length and force coefficient in the normal direction to the incoming flow. It should be noted that 

a nonlinear representation of the stiffness of the system is considered. This structural nonlinearity 

can be due to a nonlinear torsional spring in the clamped side of the harvester [18,21] or due to 

the beam’s geometric or inertia nonlinearities. 

݇ ൌ ݇଴ ൅ ݇ଶݕଶ                                (3) 

where ݇଴ is the linear spring coefficient given by ݇଴ ൌ ݉߱௡
ଶ and ݇ଶ is the nonlinear spring 

coefficient. The aerodynamic force ܨ௬ is modeled by using the quasi-steady approximation [37]. 

This assumption is justified by the fact that, in transverse galloping, the characteristic time scale 

of the structure oscillation is much larger than the characteristic time scale of the flow. In 

addition, the vortex-shedding frequency is much larger than the natural frequency of the 

harvester. The aerodynamic force per unit length ܨ௬ is directly related to the lift and drag 

coefficients ܨ௬ and ܥௗ   by 

௬ܨ ൌ െ ଵ
ଶ

ሻߙሺݏ݋௟ܿܥ] ܦଶܷߩ ൅  ሻ]                                     (4)ߙሺ݊݅ݏௗܥ

where ߙ is the angle of attack which is given by  ߙ ൌ tanିଵ ௬ሶ  
௎

. 

For applications where Reynolds number is relatively high, Barrero et al. [37] showed that the 

galloping force can be approximated by a cubic polynomial representation 

of tan ሺߙ) in the form 

௬ܨ ൌ െ ଵ
ଶ

ሻߙሺ݊ܽݐଵܽ] ܦଶܷߩ ൅ ܽଷ݊ܽݐଷሺߙሻ]                                  (5) 

 

where ܽଵ and ܽଷ are empirical coefficients that are determined by fitting Cy with a polynomial of 

ൌ ߜ ) ሻ. For the considered isosceles triangleߙሺ݊ܽݐ  30௢) the linear and nonlinear coefficients 

ܽଵand ܽଷ of the galloping force are determined by Parkinson and Smith [46] and Barrero et al. 

[37] and are equal to 2.9 and -6.2, respectively. 
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Considering  ߙ ൌ tanିଵ ௬ሶ  
௎

 the galloping force can be expressed as 

 

௬ ൌܨ ଵ
ଶ

ሾܽଵܦଶܷߩ
௬ሶ
௎

൅ ܽଷ ቀ௬ሶ  
௎

ቁ
ଷ
]                                             (6) 

  

  
In this considered harvester, we set ݉ ൌ ߦ ,݃݇ 4.4 ൌ 0.013, ߱ ൌ 6.283 rad/s, ߠ ൌ1.55ൈ 10ିଷ, 

ߩ ൌ 1.25 ݇݃/݉ଷ, ܦ ൌ 1.5 ൈ 10ିଵ ݉, ܥ௣ ൌ  1.2 ൈ 10ି଻ 

3.3   Linear stability analysis 

The galloping phenomenon takes place when the electro-mechanical damping of the harvester 

changes sign from positive to negative value due to the aerodynamic force. The wind speed at 

which the electro-mechanical damping is zero corresponds to the onset of linear instability and is 

termed the onset speed of galloping, ௚ܷ. 

To determine this onset speed of galloping and its relation to the electrical load 

resistance, a linear stability analysis is performed. To this end, we introduce the 

following state variables 

X ൌ ൥ 
ଵܺ

ܺଶ
ܺଷ

൩ ൌ ቈ
 ݕ 
ሶݕ  
 ܸ 

቉                                                          (7) 

The coupled electromechanical dynamical system is represented in state space as  

 ଵܺሶ  = ܺଶ                                                                 (8) 

 ܺଶሶ  = െ ቀ2ξ߱௡ െ ఘ௎஽௔భ
ଶ௠

ቁ ܺଶ െ   ߱ଶ
ଵܺ ൅ ఏ

௠
ܺଷ  ൅ ఘ஽௔య

ଶ௠௎
ܺଶ

ଷ െ ௞మ
௠

 ଵܺ
ଷ                   (9) 

                                                                 ܺଷሶ  = െ ଵ
ோ஼೛

ܺଷ െ  ఏ
஼೛

ܺଶ                                           (10) 

Clearly, these governing equations can be expressed in the following vector form 

ሶࢄ ൌ ࢄܤ ൅ ۱ሺ܆, ,܆  ሻ                                                      (11)܆

where 
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 = ܤ

ۏ
ێ
ێ
ۍ

0 1 0
െ߱௡

ଶ െ ቀ2ξ߱௡ െ ఘ௎஽௔భ
ଶ௠

ቁ ఏ
௠

0 െ ఏ
஼೛

െ ଵ
ோ஼೛ے

ۑ
ۑ
ې
 

The nonlinear vector ۱ሺ܆, ,܆ ሻ, it is given by ۱்܆ ൌ  ቂ0, ఘ஽௔య
ଶ௠௎೒

ܺଶ
ଷ െ ௞మ

௠ ଵܺ
ଷ, 0ቃ. It should be 

noted that the eigenvalues of the linear state space matrix B reveal the onset of                         

instability or galloping of the dynamical system. A structural galloping system usually consists 

of two eigenvalues in the form of a pair of complex conjugates λଵ ൌ λଶ. Including the 

piezoelectric effect in the transverse degree of freedom of the galloping system results in the 

presence of another eigenvalue λଷ, which is always real and negative and is independent of the 

incoming wind speed ܷ. The real part of λଵ or λଶ represents the damping coefficient and is 

dependent on the incoming wind speed, whereas the complex part represents the global 

frequency of the coupled dynamical system. Therefore, the linear stability of the trivial solution 

depends only on the real part of the first two eigenvalues. Any wind speed which is less than a 

critical threshold is insufficient to get galloping oscillations and hence a negative real part of the 

complex conjugates agrees with this fact. The wind speed that makes the real part of λଵ zero 

corresponds to the onset of instability. Likewise, wind speed larger than ௚ܷ will be sufficient to 

initiate the phenomenon of galloping which corresponds to a positive real part of the complex 

conjugates of the dynamical system. 

Inspecting matrix ܤ, it is clear that the onset speed of galloping ௚ܷ is dependent on the electrical 

load resistance value, as shown in Table 1 and Figure 9. We present, in this table, the values of 

the onset speed of galloping for various values of the electrical load resistance. Clearly, 

maximum values of the onset speed of galloping are obtained for load resistance values around 

10଺. We should mention that these maximum onset speed of galloping values are associated with 

maximum values of the electro-mechanical damping. 
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Table 1: Critical value of incoming wind velocities for various resistances 

ܴ ሺΩሻ ௚ܷ

103 2.6526

104 2.7321

105 3.5224

106 8.1915

1.5ൈ106 8.2506

107 4.0181

 
 
 

 
Figure 9: Variation of the onset of instability ௚ܷ with resistance R for triangular cylinder 

 .ൌ 30o ߜ

 

3.4   Nonlinear characterization of the system’s response 

In the present system undergoing codimension-one bifurcation, the wind speed is the control 

parameter. In addition to the conditions implying that the fixed point undergoing the bifurcation 

is a nonhyperbolic fixed point, the transversality condition is also satisfied. Because the real part 
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of ௗఒభ
ௗ௎

 is non-zero at ௚ܷ, the instability associated with the galloping phenomenon is a Hopf 

bifurcation. Clearly, the type of this Hopf bifurcation can be supercritical or subcritical. The 

supercritical type is known by the presence of stable solutions for wind speed values larger than 

the onset speed of galloping. When ܷ ൏ ௚ܷ, no oscillations are obtained. We should mention 

that the limit-cycle oscillations associated with the supercritical Hopf bifurcation are independent 

of the IC. On the other hand, the subcritical Hopf bifurcation is known by the presence of 

unstable solutions for wind speed values smaller than the onset speed of galloping. These 

unstable solutions are dependent on the IC values. In this section, a particular focus will be paid 

to characterize the type of instability and determine the unstable solutions. To this end, the 

nonlinear normal form and the shooting methods are used. The nonlinear normal form is derived 

to characterize the type of instability and to determine the influence of structural and 

aerodynamic nonlinearities on the performance of the harvester. The shooting method is used to 

construct the periodic solutions by treating the initial-value problem as a boundary-value 

problem. Thus, we determine the unstable solutions for subcritical cases by computing the 

Floquet multipliers which give a clear idea on the stability of the harvester.       

3.4.1 Nonlinear normal form 
 
The normal form of the Hopf bifurcation is derived to determine the level of the harvested power 

and its dependence to the harvester's parameters. More importantly, this nonlinear normal form is 

used to characterize the type of ensuing instability or bifurcation. To this end, the following 

perturbation term  єଶߪ௎ ௚ܷ is added to the onset speed of galloping and hence the wind speed the 

wind speed is expressed as ܷ ൌ  ௚ܷ ൅  єଶߪ௎ ௚ܷ, where ߪ௎ ൌ ௎ି௎೒

௎೒
. The presence of this 

perturbation term leads to the appearance of the secular terms at the third order approximation. 

Using this expansion, the matrix ܤሺܷሻ is rewritten as 

ሺܷሻܤ ൌ ൫ܤ  ௚ܷ൯ ൅  єଶߪ௎ܤଵሺ ௚ܷሻ 

where 
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ଵ൫ܤ ௚ܷ൯ ൌ  ൦

0 0 0

0
ߩ ௚ܷܽܦଵ

2݉ 0
0 0 0

൪ 

Equation (11) can be expressed as 

 

ሶ܆                                              ൌ ൫ܤ  ௚ܷ൯܆ ൅   єଶߪ௎ܤଵ൫ ௙ܷ൯܆ ൅ ۱ሺ܆, ,܆  ሻ                               (12)܆
 

where 

 

۱் ൌ  ቂ0 ఘ஽௔య
ଶ௠௎೒

ܺଶ
ଷ െ ௞మ

௠ ଵܺ
ଷ 0ቃ 

 

Letting ܩ be the matrix whose columns are the eigenvectors of the matrix ܤ൫ ௚ܷ൯ corresponding 

to the eigenvalues �േ ݆ ௚߱ and –  Y, equation (12)ܩ = ଷ and defining a new vector Y such that Xߤ

can be rewritten as 

ሶ܇ܩ ൌ ൫ܤ  ௙ܷ൯܇ܩ ൅  єଶߪ௎ܤଵ൫ ௙ܷ൯܇ܩ ൅ ۱ሺ܇ܩ, ,܇ܩ  ሻ                          (13)܇ܩ

Multiplying equation (13) from the left by the inverse ିܩଵ of ܩ yields 

ሶ܇ ൌ ܇ܬ  ൅   єଶߪ௎܇ܩܭ ൅ ,܇ܩଵ۱ሺିܩ ,܇ܩ  ሻ                                     (14)܇ܩ

 
where K ൌ ିܩଵܤଵ൫ ௙ܷ൯ܩ and ܬ ൌ ൫ܤଵିܩ  ௙ܷ൯ܩ is a diagonal matrix whose elements are the 

eigenvalues �േ ݆ ௚߱ and – ଷ. It is clear that Yଶߤ ൌ  Yଵതതതത Therefore, in component form, equation 

(14) can be expressed as 

 ଵܻሶ ൌ ݆߱1 ଵܻ ൅ ௎ߪ  

3
∑
1

ଵ௜ܭ ௜ܻ ൅ ଵܰሺࢅሻ                                                   (15) 

 ଷܻሶ ൌ െߤଷ ଵܻ ൅  ߪ௎

3
∑
1

ଷ௜ܭ ௜ܻ ൅ ଷܰሺࢅሻ                                                 (16) 
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where the ௜ܰሺܻሻ are tri-linear functions of the components of Y.  

 The present structural and aerodynamic nonlinearities in the equations of motion are 

cubic. Hence, the solution of  ଷܻ decays to zero and only the solution ሺ ଵܻሻ is non-decayed. To 

compute the nonlinear normal form, we follow Nayfeh and Balachandran [47] and Abdelkefi and 

Ghommem [48] and search for a third-order approximate solution of equation (15) in the 

following form 

ଵܻ ൌ є ଵܻଵሺ ଴ܶ,  ଶܶሻ ൅ єଶ
ଵܻଶሺ ଴ܶ,  ଶܶሻ ൅ єଷ

ଵܻଷሺ ଴ܶ,  ଶܶሻ ൅ ܱሺєସሻ                         (17) 

where  ௡ܶ ൌ є௡ݐ. The time derivative is expressed, in terms of the  ௜ܶ, as 

ௗ
ௗ௧

ൌ ப
ப బ்

൅ єଶ ப
ப మ்

ൌ ଴ܦ  ൅ єଶ ܦଶ                                                 (18) 

Substituting the approximated solution of  ଵܻ in equation (15), new equations have been obtained 

by satisfying the coefficients of like powers of є. Using this strategy, two different set of 

equations corresponding to є and єଷ are obtained: 

O ሺєሻ 
  

ைܦ ଵܻଵ െ ݆ ௚߱ ଵܻଵ ൌ 0                                                          (19) 

Oሺєଷሻ 
 

ைܦ ଵܻଷ െ ݆ ௚߱ ଵܻଷ ൌ െܦଶ ଵܻଵ ൅ ଵଵܭ௎ሺߪ ଵܻଵሻ ൅ ܰሺ ଵܻଵ ଵܻଵ ଵܻଵതതതതሻ ൅ ܿܿ ൅ ܰܵܶ                 (20) 
 
where NST stands for terms that do not produce secular terms and cc stands for the complex 

conjugate of the preceding terms. The solution of equation (19) can be expressed as 

ଵܻଵ ൌ ሺܣ  ଶܶሻ൫݁௝ఠ೒்ೀ൯                                                         (21) 

Then, we substitute equation (21) into equation (20) and eliminate the terms that lead to secular 

terms, we obtain the following modulation equation 

ܣଶܦ ൌ ܣߚ ൅  ҧ                                                            (22)ܣଶܣ௘ߙ
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where ߚ ൌ ߪ௎ܭଵଵ  and ߙ௘ is the effective nonlinearity which is a function of the system 

parameters, including the electrical load resistance and the linear and nonlinear coefficients ܽଵ, 

ܽଷ, and ݇ଶ. 

 Letting ܣሺ ଶܶሻ ൌ  ଵ
ଶ

ܽ݁௜ఊ ሺ మ்ሻ and separating the real and imaginary parts in equation (22), 

we obtain the normal form of the Hopf bifurcation: 

  ܽ ́ ൌ ௥ܽߚ  ൅  ଵ
ସ

 ௘௥ܽଷ                            (23)ߙ

́ ߛ        ൌ ௜ߚ   ൅ ଵ
ସ

 ௘௥ܽଷ                                                                        (24)ߙ

where ܽ is the amplitude, ߛ is the shifting angle of the periodic solution, ߚ௥ = Real (ߚ), and ߙ௘௥ 

ൌ Real (ߙ). Equation (23) has three equilibrium solutions which are given by 

ܽ ൌ 0, ܽ ൌ   േඨ
െ4ߚ௥

௘௥ߙ
 

 

Table 2: Values of the real parts of  ߚ and αer  and the critical value of the structural spring 
k2 for different values of load resistance 

ܴ ሺΩሻ ߚ௥ αୣ୰ ݇ଶ
௖௥ ሺܰ/ ݉ଷሻ 

10ଷ 0.082 ߪ௎ 3.5 ൈ 10ିଷܽଷ െ 2.65 ൈ 10ିଶଶ݇ଶ െ8.23 ൈ 10ଵଽ 

10ସ 0.084 ߪ௎ 4.8 ൈ 10ିହܽଷ ൅ 2.81 ൈ 10ିଵଷ݇ଶ 1.07 ൈ 10ଽ 

10ହ 0.109ߪ௎ 3.8 ൈ 10ି଻ܽଷ ൅ 2.81 ൈ 10ିଵଶ݇ଶ 837961 

10଺ 0.260ߪ௎ 2.65 ൈ 10ିଽܽଷ ൅ 1.79 ൈ 10ିଵଵ݇ଶ 918.39 

1.5 ൈ 10଺ 0.262ߪ௎ 1.74 ൈ 10ିଽܽଷ ൅ 1.77 ൈ 10ିଵଵ݇ଶ 603.28 

10଻ 0.124ߪ௎ 2.13 ൈ 10ିଽܽଷ ൅ 3.96 ൈ 10ିଵଶ݇ଶ 3338.27 

 

 The zero equilibrium solution ܽ ൌ 0 corresponds to the fixed point ሺ0,0ሻ. The other two 

solutions are the nontrivial ones. The origin is asymptotically stable for ߚ௥ ൏ 0 or ߚ௥ = 0 and  

௘௥ߙ ൏  0, unstable for ߚ௥ ൐  0 or ߚ௥ ൌ  0  and ߙ௘௥ ൐  0. Concerning the nontrivial solutions, 

they exist when ߚ௥ߙ௘௥ < 0. These nontrivial solutions are stable (supercritical Hopf bifurcation) 

for ߚ௥ ൐ 0 and ߙ௘௥ ൏ 0 and unstable (subcritical Hopf bifurcation) for ߚ௥ < 0 and ߙ௘௥ > 0. In 
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terms of designing efficient and reliable galloping-based aeroelastic energy harvesters, the real 

part of the effective nonlinearity ߙ௘௥ should be the closest possible to zero and negative to 

guarantee maximum values of the harvested power with a supercritical Hopf bifurcation.  

 Considering ܽଵ ൌ 2.9 for the considered isosceles triangle ሺߜ ൌ 30଴) cross-sectional 

geometry, we present in Table 2 the values of ߚ௥ and ߙ௘௥ for different values of the electrical 

load resistance. Clearly, the real part of the effective nonlinearity ሺߙ௘௥ሻ directly depends on the 

nonlinear structural and aerodynamic nonlinearities (ܽଷ and ݇ଶ). Inspecting this table, it is noted 

that a variation in the value of the load resistance is accompanied by a variation in ߚ௥ and ߙ௘௥. 

This significant dependence of the real part of the effective nonlinearity to the electrical load 

resistance results in a significant change in the critical value of nonlinear structural spring (݇ଶ
௖௥ ). 

This critical value is associated to the instability change from a subcritical Hopf bifurcation to a 

supercritical one and vice versa. This significant change in the critical value of the structural 

spring is associated to the significant dependence of the onset speed of galloping to the electrical 

load resistance, as shown in Table 1. 

  It follows from Table 1 that higher onset speed of galloping values which are for 

ܴ ൌ  10଺ ߗ and ܴ ൌ 1.5 ൈ 10଺ ߗ are accompanied with minimum values of the critical 

nonlinear structural spring (݇ଶ
௖௥ ). Furthermore, when ܴ ൌ  10ଷ ߗ, a softening nonlinear spring 

(݇ଶ < 0) is needed to change the system’s behavior from a supercritical instability (ߙ௘௥ < 0) to a 

subcritical one (ߙ௘௥ > 0). For this load resistance value, ݇ଶ has to be smaller than the critical 

value of the structural spring ݇ଶ
௖௥. For the rest considered values of the load resistance, the 

structural spring ݇ଶ has to be larger than its critical value ݇ଶ
௖௥ to change the instability from 

supercritical to subcritical one. Using the normal form of the Hopf bifurcation, the displacement 

of the triangular cylinder ݕ, generated voltage ܸ, and harvested power ܲ can be obtained as 

follows:                                  

ݕ         ൌ ܽටܩሾ1,1ሿ௥
ଶ ൅ ሾ1,1ሿ௜ܩ

ଶ                                                         ( 25) 

ܸ ൌ ܽටܩሾ3,1ሿ௥
ଶ ൅ ሾ3,1ሿ௜ܩ

ଶ                                                          ((26) 

ܲ ൌ  ௏మ

ோ
                                                                         ((27) 
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Figure 10: Transverse displacement bifurcation diagram: Comparison between  

numerical prediction and analytical solution for piezoelectric triangular system  

when ܴ ൌ103 Ω and k2 ൌ 10000 ܰ/m3. 
 

where ሾ. ሿ௥ and ሾ. ሿ௜ represent the real and imaginary parts, respectively. To check the validity of 

this nonlinear normal form solution, a comparison between the normal form predictions and 

numerical predictions of the governing equations is presented in Figures 10 for load resistances 

ܴ ൌ  10ଷ and a nonlinear structural spring ݇ଶ ൌ 10000ܰ/ ݉ଷ. Clearly, the normal form of the 

 Hopf bifurcation predicts accurately all of the amplitudes near bifurcation. Furthermore, it is 

clear that the type of instability is supercritical. This is expected because the real part of the 

effective nonlinearity ߙ௘௥ is negative. Because the normal form is applicable only near 
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bifurcation, it is noted that a relatively larger disagreement or discrepancy of all of the 

amplitudes is obtained when the wind speed is further beyond the onset speed of galloping. 

3.5   Effects of the cross-sectional geometry on the onset speed of galloping 

An important challenge in designing a galloping-based energy harvesting system is to select the 

cross-sectional geometry of the cylinder. A low ௚ܷ for onset of instability is preferred so that 

energy of low wind speeds can also be utilized. Linear analysis is therefore required to determine 

the onset speed of galloping, ௚ܷ, for various cylinder cross-section geometries. Linear part of 

equations (1)-(4) is written in state space formulation as given in equations (6)-(8). 

State space formulation of linear part of electromechanical system reveals 

ሶࢄ ൌ   ࢄܤ

where  

 = ܤ

ۏ
ێ
ێ
ۍ

0 1 0
െ߱௡

ଶ െ ቀ2ξ߱௡ െ ఘ௎஽௔భ
ଶ௠

ቁ ఏ
௠

0 െ ఏ
஼೛

െ ଵ
ோ஼೛ے

ۑ
ۑ
ې
 

  

Clearly, the cross-sectional geometry linear parameter (ܽଵ) affects the real and imaginary parts of 

the eigenvalues of matrix B. This effect is described in the plotted curves in Figure 11 which 

shows the variation of the onset speed of galloping ௚ܷ as a function of the electrical load 

resistance for four different cross-section geometries: square, isosceles triangle ሺߜ ൌ 30௢ሻ, D 

section, and isosceles triangle ሺߜ ൌ 53௢ሻ. It is observed that isosceles triangle ሺߜ ൌ 30௢ሻ results 

in a minimum wind speed ௚ܷ for all resistances amongst the four cross-sectional geometries. 

Barrero et al. [37] proposed formula for ௚ܷ in their work that came out to be ௚ܷ ൌ
ߞ4݉

2௔భܦߩ
 ܦ݊߱

without any energy harnessing transducer. They identified that high values of ܽଵ leads to low 

critical values of wind speed ௚ܷ whereas same is true vice versa. The aerodynamic force 

coefficients ܽଵ and ܽଷ for different cross-sectional geometries are given in Table 3.  

 Linear analysis results shown in Figure 11 and Table 4 are in excellent agreements with 

the results of Barrero et al. [37] which showed the isosceles triangle ሺߜ ൌ 30௢ሻ leads to a 

minimum wind to initiate galloping oscillations amongst all the other considered cross-sectional 
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geometries, because of highest value of ܽଵ. A slight difference between their results with the 

onset speed predicted by the current linear analysis is due to the presence of the piezoelectric 

 

 
Table 3: Static aerodynamics and configuration characteristics of different cross-sections  

Cross‐section ܽଵ ܽଷ

Square 2.3 ‐18

Isosceles triangle 

ሺߜ ൌ ሻ݋30

2.9 ‐6.2

D‐section 0.79 ‐0.19

Isosceles triangle 

ሺߜ ൌ 53௢ሻ

1.9 6.7

 

 

 

Figure 11: Variation of the onset speed of galloping as a function of the load resistance 

for various cross-sectional geometries. 
 

material as a transducer. Therefore, isosceles triangle ሺߜ ൌ 30௢ሻ is the best choice for 

piezoelectric energy harvesting system operating at low wind velocities. They also deduced the 

expression for maximum efficiency of power extraction which came out to be ߟ௠௔௫ ൌ െ ௔భ
మ

଺௔య
. 

Therefore, according to this formula D-section has a value of 0.54 followed by isosceles 
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ߜ) ൌ 30௢), isosceles ሺߜ ൌ 53௢) and square with values of 0.25, 0.09 and 0.05 respectively. This 

implies that although isosceles (ߜ ൌ 30௢) is the best choice for low wind speeds, it will not 

harvest as much energy as D-section at the corresponding high wind speeds.  The choice of the 

best cross-sectional geometry at particular condition is therefore of extreme importance. To this 

end, in the rest of this thesis, we have focused on the triangular isosceles (ߜ ൌ 30௢) which is an 

excellent choice for nearly all practical low wind conditions. 
 

Table 4: Variation of Ug with ܴ for different cross-sectional geometries  
ܴ ሺΩሻ ௚ܷሺ݉/ݏሻ 

Square  Isosceles triangle  

ሺߜ ൌ 30௢ሻ 

D-section Isosceles triangle  

ሺߜ ൌ 53௢ሻ 

10ଷ 3.345 2.6526 9.737 4.049 

10ସ 3.4449 2.7321 10.03 4.17 

10ହ 4.4414 3.5224 12.93 5.376 

10଺ 10.33 8.1915 30.07 12.5 

1.5 ൈ 10଺ 10.403 8.2506 30.2873 12.59 

10଻ 5.066 4.0181 14.75 6.133 

 

3.6   Summary 

An electromechanical model for galloping oscillations of a triangular cylinder with piezoelectric 

transducer was considered. A linear analysis was performed to determine the onset speed of 

galloping. It was demonstrated that this critical value is strongly dependent on both the electrical 

load resistance and the cross-sectional geometry. The normal form of the Hopf bifurcation was 

derived to identify the dependence of response on the present structural and aerodynamic 

nonlinearities in the system as well as to characterize the type of instability. It was also shown 

that there is a critical value of the nonlinear structural nonlinearity in which the harvester’s 

changes stability from subcritical to supercritical. Using the nonlinear normal form, it was 
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demonstrated that this nonlinear critical value strongly depends on the considered value of the 

electrical load resistance. 
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CHAPTER 4 

ELECTROAEROELASTIC STABILITY  
 The nonlinear normal form is a very beneficial technique to characterize the type of 

instability and determine the influence of all available nonlinearities (structural or/and 

aerodynamic) on the performance of the harvester. Also, this technique is very strong in terms of 

designing the nonlinear springs to enhance the performance and reliability of the harvester. One 

of the drawbacks of the nonlinear normal form is the prediction of the stable solution in the 

subcritical cases for wind speed values smaller than the onset speed of galloping. In addition, it 

can predict the harvester’s response only near bifurcation. In this section, the shooting method is 

used which is a very good technique that can predict all periodic solutions of autonomous and 

non-autonomous systems. Using this technique, our objective is to solve the equations of motion 

of any wind speed and any type of instability. Furthermore, we determine the eigenvalues of the 

monodromy matrix, termed as the Floquet multipliers, to study the stability of the periodic 

solutions. 

4.1   Shooting method governing equations 

The shooting method is one of time-domain approaches for determining periodic solutions of a 

system of first-order differential equations. In this approach, the initial-value problem is 

converted into a two-point boundary-value problem. Thus, one seeks an IC ࢞ሺ0ሻ  ൌ  and a ࣁ

solution ࢞ሺt;  ሻ with a minimal period ܶ such thatࣁ

࢞ሺT; ሻࣁ ൌ  (28)                                                                 ࣁ
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 The shooting method reduces any boundary value problem to find its equivalent IC 

problem. The usefulness of shooting technique resides in the fact that it takes advantage of the 

speed and adaptivity of initial-value problem solvers. In phase space, the trajectory that runs 

from ࣁ at ݐ ൌ  0 and reaches the same point at ݐ ൌ  ܶ represents the required periodic solution. 

In shooting method, an initial guess ( ଴ܶ,  and a correction is applied until (ࣁ ,ܶ) ଴ ) is made forࣁ

the correction reaches the desired tolerance. The correction for trajectory and time period are 

given ࣁߜ ൌ ࣁ െ ܶߜ , ૙ࣁ ൌ ܶ െ ଴ܶ respectively. As a by-product of the shooting method, one can 

obtain the monodromy matrix and hence determine the stability of the obtained periodic solution 

by examining its eigenvalues, i.e. Floquet multipliers. These eigenvalues can easily quantify the 

local orbital divergence or convergence along a specific direction over one period of the closed 

orbit. Following Nayfeh and Balachandran [47], we apply this shooting method to the galloping-

based energy harvester governing equations and we determine the Floquet multipliers to study 

the stability of the calculated solutions of the harvester. The governing equations (8),(9), and 

(10) of the considered energy harvester can be rewritten in the form of 

ሶ܆ ൌ ۴ሺ܆; ܷሻ                                                            (29) 

where ܆ is a 3-dimensional state vector ( ଵܺ ൌ y, ܺଶ  ൌ ሶݕ  , and  ܺଷ ൌ ܸ ), ܷ is the control 

parameter, and F for our case is given by 
 

۴ ൌ ൥
ଵܨ
ଶܨ
ଷܨ

൩ ൌ

ۏ
ێ
ێ
ۍ

0 1 0
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െ ௞మ
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൥
ଵܺ

ܺଶ
ܺଷ

൩          (30) 

 

where ܨଵ, ܨଶ and ܨଷ are the three state space equations of the considered dynamical system. 

Equation (29) can be rewritten as 

 

 డࢄ
డ்

ሺ ଴ܶ, ૙ሻࣁ ൌ ۴ሺࣁ૙; ܷሻ                                                    (31) 
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To find the periodic solution, we seek 

ࣁߜ                ൌ ࣁ െ  ૙                            (32)ࣁ

and 

ܶߜ               ൌ ܶ െ ଴ܶ                                                  (33) 

According to Nayfeh and Balachandran [47], the following convergence criterion 

ሺ܆ ଴ܶ ൅ ,ܶߜ ૙ࣁ ൅ ሻࣁߜ െ ሺࣁ૙ ൅ ሻࣁߜ ؄ 0                                       (34) 

In this analysis, the tolerance or the convergence criterion is set as ߬ ൌ 10ିଵ଴ Furthermore, the 

Newton-Raphson scheme is used to apply the correction for ࣁ૙ and ܶ, which implies               

ቂడ܆
డఎ

ሺ ଴ܶ, ૙ሻࣁ െ ۷ቃ ߟߜ ൅ డ܆
డ்

ሺ ௢ܶ , ܶߜሻ࢕ࣁ ൌ ૙ࣁ െ ሺ܆ ଴ܶ,                         ૙ሻ                        (35)ࣁ

It should be noted that equation (35) is going to be solved for ࣁߜ and ܶߜ and the procedure will 

be repeated until the condition of equation (34) is obtained. To solve the unknowns presented in 

equation (35), we differentiate equation (31) yields 

ௗ
ௗ௧

ቀడ܆
డࣁ

ቁ ൌ ;܆۴ሺࢄܦ  ሻ܃ డ܆
డࣁ

                                                 (36) 

Then, solving equation (36) for డ܆
డࣁ

 and replacing its obtained value in equation (35). Considering 

our governing ordinary-differential equations, equation (36) can 

be written as 

ௗ
ௗ௧

ቂడࢄ
డࣁ

ቃ ൌ  

ۏ
ێ
ێ
ۍ
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ቂడࢄ
డࣁ

ቃ                  (37)       

where 
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 To remove the arbitrariness in the phase associated with a periodic solution of an 

autonomous system, we consider the orthogonality condition ۴Tࣁߜ ൌ 0 such that the required 

corrections ࣁߜ are normal to the vector field F. Thus, the Newton Raphson scheme can be 

expressed as 

൥
డ܆
డఎ

ሺ ଴ܶ, ଴ሻߟ െ I ۴ሺࣁ૙; ܷሻ

;૙ࣁሺ܂۴ ܷሻ 0
൩ ቂࣁߜ

ܶߜ
ቃ ൌ ቂࣁ૙ െ ሺ܆ ଴ܶ, ૙ሻࣁ

0
ቃ                                   (38) 

 

The ICs ܆ሺ0ሻ  ൌ  which results in ࣁ is differentiated with respect to ࣁ

డ܆
డࣁ

ሺ0ሻ ൌ ۷                                                                    (39) 

 Considering this IC relation (39), డ܆
డࣁ

 can be determined from equation (37). Furthermore, 

۴ሺࣁ૙; ܷሻ is determined by solving equation (29). The corrections ࣁߜ and ܶߜ are determined from 

the above equation (39) and then we check if the convergence condition is satisfied ԡߟߜԡ ൏ ߬ 

and ԡܶߜԡ ൏ ߬. In the case when the convergence criterion is not obtained, we update the initial 

guess ( ଴ܶ, ࣁ૙) to ሺ ଴ܶ ൅ ,ܶߜ ૙ࣁ ൅  .ሻand repeat the process till getting the periodic solutionࣁߜ

 The plotted curves in Figures 12 (a) and (b) show the bifurcation diagrams of the 

transverse displacement when the nonlinear structural spring is set equal to 10000 N/݉ଷ and for 

two distinct values of the load resistance ܴ ൌ 10ସ and ܴ ൌ 10ହߗ, respectively. In these curves, 

numerical predictions based on ode45 Runga-Kutta in Matlab, shooting method, and normal 

form solutions are plotted. We note that the harvester has a supercritical instability (ߙ௘௥ ൏  0 

when ݇ଶ ൌ 10000 N/݉ଷ for both considered load resistance values) and all curves are 

independent of the used ICs. Excellent agreement is obtained between the shooting method 
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predictions and the numerical predictions based on ode45 in Matlab. On the other hand, the 

nonlinear normal form solution has a good agreement only near the onset of bifurcation which is 

expected.  

 Based on the obtained critical values of the nonlinear structural spring in Table 2, it is 

clear that considering ݇ଶ ൌ 10000 N/݉ଷ results in the presence of subcritical instabilities for 

load resistance values equal to 10଺1.5 ,ߗ ൈ 10଺ߗ, and 10଻ߗ. To this end, we plot, in Figures 13 

(a), (b), and (c), the increasing and decreasing bifurcation diagrams when using ode45 in Matlab 

and the shooting method when ݇ଶ = 10000N/݉ଷand R = 10଺ߗ,  ܴ ൌ 1.5 ൈ 10଺ߗ, and ܴ ൌ

10଻ߗ, respectively. The nonlinear normal form is not presented here because it cannot predict 

stable solutions for subcritical cases. Furthermore, the shooting method is also used to determine 

the unstable solutions and turning points. Clearly, the stable solutions and their associated 

hysteresis regions are well-predicted when using both ode45 and shooting method. However, 

ode45 Runga-Kutta cannot predict the unstable solutions and associated turning points. This 

analysis shows the importance of the shooting method to predict the whole behavior of the 

harvester (stable and unstable solutions) unlike the ode45 Runga-Kutta predictions and nonlinear 

normal form solutions. It follows from these plots that the hysteresis region is wider when the 

electrical load resistance is set equal to 1.5 ൈ 10଺ߗ. This result can be explained due to the fact 

that the difference between the nonlinear structural spring ݇ଶ and its associated critical value ݇ଶ
௖௥

 

is the largest one compared to the other cases, as shown in Table 2.  

 To investigate in details the stability of these solutions based on the shooting method, we 

assume that the system exhibits a periodic solution of ߔሺݐ; ሻ  for ICs of ܺሺ0ሻࣁ  ൌ  and a ࣁ 

periodic solution of ߔሺݐ; ࣁ ൅ ሺ0ሻ܆ ૙ሻ for a perturbed ICs ofࢊ  ൌ  ૙, then the separationࢊ ൅ ࣁ 

between the two periodic solutions at ݐ ൌ  ܶ is given by ݀ሺܶሻ  ൌ ;ሺܶ ߔ  ࣁ  ൅ ૙ሻࢊ െ ;ሺܶ  ߔ  ሻࣁ 

[32]. If the magnitude of perturbation |ࢊ૙| is small, then the separation between the two 

solutions can be approximated by ݀ሺܶሻ ൌ  డః
డࣁ

ሺܶ; ૙ࢊሻࣁ ൌ  ࡹ ૙. Clearly, the matrixࢊࡹ

determines whether the initial perturbation given to the ߔ ሺܶ;   .ሻ grows or decays with time ࣁ 

ሺ0ሻߔ  ൌ so it implies that డః ࣁ 
డࣁ

ሺ0ሻ ൌ ۷. Therefore it is concluded that డః
డࣁ

 is the solution of 

equation (37). Consequently, the monodoromy matrix for the shooting technique is given by 
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઴ ൌ డ܆
డࣁ

ሺܶ,  ሻ. The stability of the system can easily be determined by finding the eigenvalues ofࣁ

this matrix, termed as Floquet multipliers.  

 For autonomous dynamical systems, a periodic solution is known as hyperbolic, if only 

one of the Floquet multipliers is located on the unit circle in the complex plane, i.e. equal to 1. 

We end up with a stable limit cycle or periodic attractor if all other Floquet multipliers have 

magnitude less than 1, whereas if all of these multipliers have magnitude greater than 1 then this 

would force all the neighboring trajectories to move away from the periodic solution and give 

unstable limit cycle or periodic repeller. On the other hand, if two or more Floquet multipliers 

are having a value 1, then this implies that the solution is non-hyperbolic. In this situation, a 

nonlinear analysis is necessary to determine the stability of this non-hyperbolic solution by 

testing different IC configurations and check the response of the harvester. 

 The shooting method solution for the considered dynamical system gives Floquet 

multipliers shown in Tables (5-8) for load resistance values equal to ܴ ൌ 10ସ, ܴ ൌ 10଺, ܴ ൌ

1.5 ൈ 10଺ and 10଻ߗ, respectively. When ܴ ൌ 10ସߗ , the Floquet multipliers, presented in Table 

5, indicate that a non-hyperbolic solution takes place when the wind speed is equal to the onset 

speed of galloping ௚ܷ. At higher wind speed, the results indicate the presence of stable limit 

cycle hyperbolic solutions for different wind speed values. Thus, the obtained Floquet multipliers 

give a complete picture about the dynamics of the harvester. These results are in very good 

agreement with the obtained ones based on the nonlinear normal form. 

 For the subcritical configurations when ܴ ൌ 10଺, ܴ ൌ 1.5 ൈ 10଺ and 10଻ߗ, Tables (6-8) 

present the Floquet multipliers of these configurations for different values of the wind speed. For 

higher values than the onset speed of galloping, stable periodic hyperbolic solution are obtained. 

For smaller values than the onset speed of galloping (hysteresis region), it is clear that two 

possible solutions are obtained. The first one indicates the presence of a stable periodic 

hyperbolic solution. In this case, these responses correspond to the stable branch in the hysteresis 

region (decreasing branch in Figures 13(a-c)). This hysteresis behavior indicates the presence a 

stationary point as well as a stable limit cycle for wind speeds smaller than the onset speed of 

instability. In addition, a sharp jump in the responses of the harvester for these load resistance 

values are observed at the onset speed of galloping. All of these behaviors are characteristics of a 

subcritical Hopf bifurcation. The second possibility indicates the presence of a non-hyperbolic 
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solution for different set of intermediate ICs (between the stationary point and stable limit cycle 

one) which correspond to the dashed branches in Figures 13(a-c). 

 For these non-hyperbolic solutions, a nonlinear analysis using the phase portrait 

technique is used to determine the stability of a non-hyperbolic solution. To this end, various 

intermediate IC configurations are considered, as shown in Figures 14, 15, and 16. It follows 

from these plots that any value of IC less than the non-hyperbolic periodic solution forces the 

trajectories to move to the stationary solution, whereas ICs equal to or larger than the non-

hyperbolic periodic solution move to the stable limit cycle. Consequently, it is clear from these 

phase portrait analyses that the non-hyperbolic periodic solutions below the onset of instability 

are unstable and are practically impossible to achieve in reality. 

  

 

     (a)                                                                  (b) 
Figure 12: Bifurcation diagrams of the transverse displacement when using numerical  

prediction (ode45 Runga-Kutta), normal form solution, and shooting method when the  

nonlinear structural spring is set equal to k2 ൌ 10000 N/m3 and for two distinct values  

of the load resistance (a) R = 104 Ω and (b) R = 105 Ω. 
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Figure 13: Increasing/decreasing bifurcation diagrams  for piezoelectric triangular  

system with k2 ൌ 10000 ܰ/m3 (a) ܴ ൌ106 Ω  (b) ܴ ൌ 1.5 ൈ106 Ω (c) ܴ ൌ 107 Ω. 
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Table 5: Floquet multipliers from shooting method for triangular cylinder system for  
k2 ൌ 10000 N/m3 with electric load resistance R ൌ 104 Ω 

ܷ Floquet multipliers
2.7321 1, 1, 0

2.75 1, 0.9923, 0
3.3 1, 0.8599, 0
3.7 1, 0.8267, 0
4.4 1, 0.0121, 0
5.7 1, 0.0534, 0

 
 
 
Table 6:  Floquet multipliers from shooting method for triangular cylinder system for                            
 k2 ൌ 10000 N/m3 with electric load resistance R ൌ 106 Ω 

ܷ Floquet multipliers 
7.35 (hysteresis/high initial condition) 1, 0.9617, 0.0164 
7.5 (hysteresis/high initial condition) 1, 0.95, 0.0186 
7.9 (hysteresis/high initial condition) 1, 0.9181, 0.0238 

8.15 (hysteresis/high initial condition) 1, 0.9087, 0.0267 
7.0 (hysteresis/intermediate initial condition) 1,1,0 
7.3 (hysteresis/intermediate initial condition) 1,1,0 
7.6 (hysteresis/intermediate initial condition) 1,1,0 
7.8 (hysteresis/intermediate initial condition) 1,1,0 
8.0 (hysteresis/intermediate initial condition) 1,1,0 

8.15 (hysteresis/intermediate initial condition) 1,1,0 
8.1915 (onset of instability) 1, 1, 0 

8.2 1, 0.9061, 0.0274 
8.6 1, 0.8925, 0.0318 
9.4 1, 0.7645, 0.0016 

10.7 1, 0.7094, 0.0029 
11.0 1, 0.6984, 0.0032 
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Table 7: Floquet multipliers from shooting method for triangular cylinder system for  
k2 ൌ 10000 N/m3  with electric load resistance R ൌ 1.5ൈ106 Ω 

ܷ Floquet multipliers 
6.7 (hysteresis/high initial condition) 1, 0.9567, 0.0555 

7.1 (hysteresis/high initial) 1, 0.9326, 0.0703 
7.5 (hysteresis/high initial) 1, 0.9141, 0.0819 
7.9 (hysteresis/high initial) 1, 0.9007, 0.0920 

6.6 (hysteresis/intermediate initial condition) 1, 1, 0
7.0 (hysteresis/intermediate initial condition) 1, 1, 0 
7.3 (hysteresis/intermediate initial condition) 1, 1, 0 
7.6 (hysteresis/intermediate initial condition) 1, 1, 0 
7.8 (hysteresis/ intermediate initial condition) 1, 1, 0
8.0 (hysteresis/ intermediate initial condition) 1, 1, 0
8.2 (hysteresis/ intermediate initial condition) 1, 1, 0

8.2506 (onset of instability) 1,1,0 
8.4 1, 0.8800, 0.1035 
8.6 1, 0.8798, 0.1079 
10 1, 0.8476, 0.1347 
11 1, 0.8254, 0.1518 

 

 
Table 8: Floquet multipliers from shooting method for triangular cylinder system for  
k2 ൌ 10000 N/m3 with resistance R ൌ 107 Ω 

ܷ Floquet multipliers 
3.9 (hysteresis/high initial condition) 1, 0.9567, 0.0555 

3.95 (hysteresis/ high initial condition) 1, 0.9326, 0.0703 
3.99 (hysteresis/ high initial condition) 1, 0.9141, 0.0819 

3.87 (hysteresis/intermediate initial condition) 1,1,0 
3.95 (hysteresis/intermediate initial condition) 1,1,0 
4.0 (hysteresis/intermediate initial condition) 1,1,0 

4.0181 onset of instability 1, 1, 0 
4.3 1, 0.8948, 0.1002 
4.6 1, 0.9528, 0.6182 
5.4 1, 0.8800, 0.1035 
6.0 1, 0.8798, 0.1079 
6.4 1, 0.8476, 0.1347 
7 1, 0.8254, 0.1518 
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Figure 14: Phase portraits of the non-hyperbolic solutions for different intermediate  

initial conditions when  R ൌ 106 Ω  and when (a) U ൌ 7.1m/s, ሺbሻ U ൌ 7.55 m/s, and  
ሺcሻ U ൌ 8 m/s. 
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Figure 15: Phase portraits of the non-hyperbolic solutions for different intermediate 

initial conditions when Rൌ1.5ൈ106 Ω and when (a) ܷ ൌ 6.8 m/s (b) ܷ ൌ 7.5 m/s and 

(c) ܷ ൌ 8 m/s. 
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Figure 16: Phase portraits of the non-hyperbolic solutions for different intermediate initial 

conditions when R=107 Ω and when (a) ܷ ൌ  3.9 m/s (b) ܷ ൌ  3.95 m/s and  

(c) ܷ ൌ  3.99 m/s 

 

4.2   Summary 

Shooting method was used to predict the response of the considered harvester. Excellent 

agreement with numerical solution obtained by Runge Kutta was found. It was observed that 

shooting method gives the results with nearly the same accuracy as ode45 (Rung Kutta). Apart 

from the response depicted by ode45 in subcritical Hopf bifurcation a string of limit cycles for 

wind velocities less than the critical value of wind for the initiation of galloping was observed. 

Floquet multipliers were used to determine the stability of both the supercritical and subcritical 
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Hopf bifurcation responses. The former was found to be stable for all wind velocities when 

inspecting the Floquet multipliers. When it came to subcritical Hopf bifurcation, the string of 

limit cycles were identified as non-hyperbolic periodic solutions and nonlinear analysis found 

them to be unstable, physically impossible to achieve.  The hysteresis observed in subcritical 

regime as well as the response after the onset of instability was found to be stable.  
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CHAPTER 5 

CONCLUSION AND FUTURE 

RECOMMENDATIONS 

 We considered a galloping-based energy harvesting system having a piezoelectric 

transducer attached to it in the transverse degree of freedom. A quasi-steady approximation was 

used for modeling the aerodynamic lift of the cylinder whereas the Gauss law was used to couple 

the mechanical system with the transducer. A linear analysis was performed to determine the 

onset speed of galloping. It was demonstrated that this critical value is strongly dependent on 

both the electrical load resistance and the cross-sectional geometry. The normal form of Hopf 

bifurcation elaborated the dependence of response of the harvester on the aerodynamic and 

structural nonlinearities. This normal form was also used to calculate the critical value of the 

structural nonlinearity that forces the system to go from supercritical to subcritical Hopf 

bifurcation and vice versa. Using the nonlinear normal form, this critical nonlinear value was 

found to be dependent on electrical load resistance. The effects of the cross-sectional geometry 

on the onset speed of galloping were determined for four possible cylinder geometries. It was 

shown that the isosceles triangle ( ߜ ൌ 30o) is the most suitable cross-sectional geometry to 

harvest energy at low wind speed. It was also demonstrated that the D-section is the most 

efficient design in order to maximize the level of the harvested power. This is true for high wind 

speed conditions because the onset speed of galloping is too high compared to other considered 

configurations.   
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 Shooting method was used to forecast the response of the considered piezoelectric 

harvester. Excellent consistency with numerical prediction obtained by Runge Kutta was found. 

It was noted that shooting method provides the results with nearly the same correctness as ode45 

(Rung Kutta). Apart from the response demonstrated by ode45 in subcritical Hopf bifurcation, a 

succession of limit cycles for wind speeds less than the critical value of wind for the start of 

galloping was observed. Floquet multipliers were used to establish the stability of both the 

supercritical and subcritical Hopf bifurcation responses. The supercritical regime was found to 

be stable for all wind velocities when investigating the Floquet multipliers. For subcritical Hopf 

bifurcation, the streak of limit cycles were recognized as non-hyperbolic periodic solutions and 

nonlinear analysis revealed them as unstable, physically impossible to achieve.  The response of 

the system after the onset of instability and the hysteresis in the subcritical regime were found to 

be stable.  

 The current research was another step closer in identifying galloping oscillations 

exhibited by bluff bodies a vast arena for harvesting useful energy. A vast research is still needed 

in terms of the controllers that should be present for controlling the galloping vibrations if wind 

velocities reach alarming levels in case of storms. Similarly, controllers are also needed for 

prohibiting the systems from entering into hysteresis region in case of subcritical Hopf 

bifurcations. A careful fatigue life analysis is needed for practical galloping harvesters for their 

long term use. Furthermore, experiments or direct numerical simulations are needed to determine 

the linear and nonlinear coefficients of the galloping force for other cross-section geometries. In 

this way, it will be easy to determine the best cross-sectional geometry.    
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