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Abstract

Wavepacket dynamics manifests several interesting features which do not have cor-

responding classical analogue, such as, phenomena of quantum wavepacket revivals

and fractional revivals. In this thesis, we study the quantum dynamics specially

engineered wavepackets, namely generalized coherent state wavepackets, by means

of quantum information entropy. For our general study, we consider a general class

of one-dimensional quantum systems, with discrete and bounded-below energy spec-

trum. As particular examples, the harmonic oscillator and the infinite square well

have been explicitly discussed through out our analysis.

The generalized coherent state wavepackets are constructed in position space

as well as in momentum space which are then used to calculate the corresponding

probability densities. These probability densities lead us to calculate the expectation

values and variances for position-momentum operators needed to express Heisenberg

uncertainty relation. Moreover, these probability densities are used to calculate the

information entropy for our constructed wavepackets. The information entropy is

then used to expressed the Heisenberg uncertainty relation which is an alternative

formalism to the conventional variance-based measurements in quantum mechanics.

Moreover, temporal evolution of these wavepackets is analyzed by means auto-

correlation function, position space probability density and momentum space prob-

ability density as a function of time. It is shown that generalized coherent state

wavepackets exhibit the phenomena of quantum revivals and fractional revivals.

The time-evolution of position space as well as momentum space probability densi-

ties manifest interesting spatio-temporal and momento-temporal patterns known as

quantum carpets. Finally, we study the phenomena of quantum revivals and frac-

tional revivals by means of information entropy which provides an elegant method

to identify the fractional revivals with greater resolution.
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Chapter 1

Introduction and outline

1.1 Introduction

The quantum theory emerged as a consequence of the inability of the classical theory

to explain several microscopic phenomena, such as, black body radiation spectrum,

photo electric effect and atomic structure. The quantum world manifests interesting

phenomena that do not have corresponding analogue in classical world. Therefore,

quantum-classical correspondence has been an area of great interest for researchers

since the very beginning of quantum theory. The precise demarcation between these

two theories has been one of the most debated philosophical issues from the very in-

ception of quantum theory. The core problem that surfaced from the very beginning:

How to envision compatibility between thoroughly deterministic macroscopic world

and completely probabilistic microscopic world. Bohr’s famous correspondence prin-

ciple was the sole solution but even that lacked the assignment of demarcation line.

Classically, the state of a dynamical system is uniquely determined by the po-

sition x(t) and momentum p(t) as a function of time t. Thus in classical physics,

the equation of motion of a particle unify position and momentum variable and de-

terministically specify these state variables over all envisionable span of space-time.

However, it is well-known that initial formulation of quantum theory in 1920s is

connected with its classical predecessor through ad-hoc quantization rules with clas-

sical variables duly replaced with algebraic operators. These operators representing

dynamical variables act upon a complex function ψ(x, t), known as quantum me-
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chanical wave function. Such wave function therefore stands for the new notion of

the state of the physical system. Moreover, the wave function ψ(x, t) has to obey

the strict imposition of uncertainty principle. Therefore, the spatial localization

of the wave packet during time evolution and its correspondence with the particle

trajectory has been the key issue. Thus under the urge of classical romanticism,

forefathers of the quantum theory tried to identify narrow wavepackets in position

space with particles and their corresponding trajectories.

The wavepacket dynamics manifests several interesting phenomena that do not

have corresponding classical analogues, such as the phenomena of quantum revivals

and fractional revivals. In this thesis we study the dynamics of specially engineered

wave packets, known as generalized coherent state wave packets, and investigate

the phenomena and quantum revivals and fractional revivals. In our study, we

use information entropy as a probe to investigate the dynamical characteristics of

generalized coherent state wave packets. In the following, we give a brief introduction

of what is being presented in the thesis.

1.1.1 The coherent states: a historical review

The history of coherent states goes back to the early days of quantum mechan-

ics while Schrödinger was developing the theory of wave mechanics. He faced the

heuristic problem of representing a well-localized particle through spatially extended

waves. The theory clearly exhibits that unitary time evolution of a free particle (i.e.,

wave packet) is deemed to spread it coherently over extended regions of space. This

coherent spreading posed a serious challenge for various approaches that aim to asso-

ciate narrowly peaked wavepackets with particles. Thus the fundamental question at

hand was: How to represent classically well-localized particles through quantum me-

chanical wave packets that tend to disperse inherently over macroscopic distances?

In an attempt to build a one-to-one correspondence between wavepackets and par-

ticles Schrödinger, in a famous 1926 paper entitled “The continuous transition from

micromechanics to macromechanics”, considered the example of simple harmonic

oscillator. He constructed a wave packet, through a particular linear superposition

of spatial solutions of the Schrödinger equation, that is not only well-localized at

time t = 0 but also remain well-localized over subsequent evolution for time t > 0.
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Its peak oscillates back and forth bearing an evident similarity with a classical point

particle [1], hence, provide the classical-quantum correspondence.

The minimum uncertainty quantum states (non-spreading minimum uncertainty

wavepackets ) remained dormant more than three decades since their early introduc-

tion. Roy Glauber in 1963 re-defined these quantum states of harmonic oscillator

in terms of the ladder operator of harmonic oscillator [2, 3, 4]. He expressed the

coherent electromagnetic field by means of these states and hence named as coher-

ent states. He defined the coherent states in three different ways as: i) an eigen

states of annihilation operator; ii) the displaced ground states of harmonic oscilla-

tor and; iii) minimum uncertainty states. These three definitions were shown to be

mutually equivalent. The coherent states have been used extensively in many areas

of quantum physics, especially in quantum optics and quantum information. The

importance of these states were acknowledged by rewarding Roy Glauber with 2005

Nobel Prize in Physics.

The coherent states exhibit a set special properties. One of the most striking fea-

tures of the coherent states is their temporal stability, which means that a coherent

state remains coherent under time evolution. Moreover, these states are nonorthog-

onal but yet hold the completeness relation which results in an other important

feature known as over-completeness, which means that any coherent state can be

represented in terms of other coherent states. Hence there are more than enough

states available to represent one coherent state in terms of others [5].

1.1.2 Generalized coherent states

The overwhelming success of the coherent states of harmonic oscillator ( Glauber

coherent states) in different areas of physics and mathematics [5], has motivated

researchers to generalized the concept of coherent states for general systems be-

yond harmonic oscillator. The most commonly used procedure in this regard was

to generalize, keeping in view a set of requirements, any one of the definitions of

the Glauber’s coherent states, i.e., the generalized coherent states should preserve

some of the properties of coherent states of harmonic oscillator. The generalization

techniques of this kind make use of the ladder operators and associated algebra of

the pertaining system to construct corresponding coherent states.
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The first step in this regard was presented by Klauder in 1963 when he devel-

oped a generalized formalism in which he described the relation between quantum

dynamics and the classical dynamics [6, 7]. Afterwards, Klauder and Sudarshan

presented the generalized coherent states based on Lie group algebra and Barut

and Girardello developed the coherent states for non compact groups [8] which are

known as Barut-Girardello coherent states. The concept was further generalized for

all kind of Lie groups by Perelomov [9] and these states are known as Perelomov

coherent states. The work on generalized coherent states was beautifully collected

and arranger by Klauder and Skagerstam in the form of a book [10]. In this work

the literature was classified on the basis of the applications of the coherent states in

different fields of physics and mathematics.

In 1996, Klauder proposed a direct method to construct the generalized coherent

states for a quantum mechanical system with degenerate spectrum [11], such as,

hydrogen atom. This approach has no explicit dependence on underlying algebra of

the system. Later on, this formalism was extended by Gazeau and Klauder for the

systems with continuous and discrete, non-degenerate spectrum which is bounded

below [12]. These states, known as Gazeau-Klauder coherent states (referred to

as GK coherent states), hold a set of special properties. This formalism received

a lot attention due to their algebraic independence. The GK coherent states were

constructed for a vast range of Hamiltonian systems, such as, the infinite square well

and Pöschl-Teller potential [13], the pseudoharmonic oscillator [14], the power-law

potentials [15, 16], the triangular well potential [17], the Morse potential[18, 19], and

single mode periodic potential systems [20]. Furthermore, another generalization

technique for constructing coherent states was introduced by R. F. Fox [21], in

which he used a Gaussian function to approximate the behavior of the coherent

states. This formalism was named as Gaussian Klauder coherent states.

In contrast to the classical-like behavior of the coherent states of harmonic os-

cillator, the generalized coherent states exhibit several characteristics which do not

have classical analogue. These properties are known as non-classical properties. The

non-classicality of coherent states plays an important role in quantum physics and

have many applications in quantum information and quantum communication such

as quantum teleportation [22], quantum computation, quantum cryptography and
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interferometric measurements [23]. In this thesis we study the construction of gen-

eralized coherent states, following Gazeau-Klauder formalism, and then construct

corresponding wave packets in position space and momentum space and analyze

their dynamical properties.

1.1.3 Quantum revivals

As pointed out by Schrödinger in his seminal paper that the wave packets of har-

monic oscillator, namely coherent state wavepackets, follow classical trajectories

during their time evolution. However, this classical-like dynamics is, generally, not

exhibited by wavepackets of general quantum systems. In general, wavepacket dy-

namics exhibits non-classical features, such as, quantum revivals and fractional re-

vivals. A quantum wave packet in its early evolution follows classical mechanics

and exhibits classical periodicity only for a short time following classical trajecto-

ries. Later on, it spreads following wave mechanics and observes a collapse during

long time evolution. However, discreteness of the quantum system leads to the re-

construction of the initial wavepacket, i.e., quantum revivals. This phenomenon is

purely quantum mechanical in nature and does not have its classical analogue. The

revival dynamics of wave packets of highly-excited states of atoms and molecules,

were discussed by Averbukh and Perelman [24] and then a general discussion by

Bluhm and Kostelecky was appeared. There have been developments in the field

since then, and many of the basic quantum mechanical concepts behind revival

behavior have also appeared in literature pedagogically [25]. Therefore it seems ap-

propriate to provide a brief review of some of the fundamental concepts behind the

phenomena.

Over the last one and a half decades the theoretical analysis, numerical prediction

and experimental verification of the occurrence of wavepacket revivals in quantum

systems has flourished a lot. An important tool used to measure the phenomena

of wave packet revivals [25] in coherent states is the autocorrelation function A(t)

which measure the overlap of time dependent coherent states with its initial one.

The maximum value of autocorrelation function is unity which occurs when time

evolved states resembles the initial state completely. However, in general it has the

value less than unity when time-evolved states are significantly out of phase from
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initial ones. We can then describe quantum revivals as a periodic recurrence of the

wave packets from its initially localized state. Apart from the complete revivals,

fractions of the initial wavepackets appear at fractional multiples of the revival time

which are known as fractional revivals.

1.1.4 Entropy of a quantum system

Entropy, introduced by Clausius in the mid 19th century, is an important concept in

thermodynamics as well as in classical statistical mechanics. This phenomenological

variable quantities the intrinsic irreversibility of a thermodynamical processes. Later

on, Boltzmann linked it with the lack of information about a system. He defined

entropy as, SB = KB ln Γ, where KB is the Boltzmann constant and Γ is the number

of microstates which have the same macroscopic properties in a system. In classical

representation of a statistical system, the microstates are defined as points in a

continuous 2-dimensional phase space, where D represents the degrees of freedom

of the system. Since these microstates cannot be counted in any meaningful sense

therefore, he took the number as the ratio between the available phase space volume

divided by the volume of a unit cell. Further, this volume of a unit cell is recognized

as ~D where ~ is the Planck constant. Now consider the volume of phase space as Ω,

the number of microstates come to be Γ = Ω/~D. Later on, the concept of entropy

has extensively been used in large variety of contexts. In the following we review

some important types of entropy.

1.1.4.1 Shannon entropy

Shannon introduced another form of entropy [26], in the context of classical informa-

tion theory of a random process. He linked the information gain from a system with

the concept of entropy. For a discrete random variable X with possible outcomes

X1, .......Xn having probability mass function P (X), the Shannon entropy is defined

as

H(X) = E[I(X)] = E[− lnP (X)]. (1.1.1)

Here E[..] represents the expected value random variable, and I(X) is the informa-

tion content of X [27]. It is important to note that I(X) itself is a random variable.
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For a finite sample, the entropy can be written as:

H(X) =
∑
i

P (xi)I(xi) = −
∑
i

P (xi) ln(xi). (1.1.2)

1.1.4.2 von Neumann entropy

The classical definition of Shannon entropy was extended to quantum mechanical

scenario by von Neumann with the help of density matrix approach. Quantum

mechanically, the concept of microstates is described by the wave function of a sys-

tem.The wave function contains all the information of the quantum system. There

are a large number of microstates in a single macrostate of a system. The most gen-

eral approach to describe a quantum mechanical system is density matrix approach.

In this approach, a quantum mechanical system is described by a density matrix

ρ. The standard definition of entropy in quantum mechanics, a generalized form of

Boltzmanns expression, is termed as von Neumann entropy and expressed [28, 29]

as

S(ρ) = −Tr(ρ ln ρ), (1.1.3)

where ρ must be diagonalizable in order to compute the von Neumann entropy. If

we consider λi as the eigenvalues of the density matrix ρ, such that, λi ≥ 0 and∑
λi = 1, then von neumann entropy is then given

S(λ) = −
∑
j

λ lnλ. (1.1.4)

The von Neumann entropy is being extensively used in different forms (condi-

tional entropies, relative entropies, etc.) in the framework of quantum information

theory [30]. Entanglement measures are based on some quantity directly related to

the von Neumann entropy. However, there have appeared in the literature several

papers dealing with the possible inadequacy of the Shannon information measure,

and consequently of the von Neumann entropy as an appropriate quantum gener-

alization of Shannon entropy. The main argument is that in classical measurement

the Shannon information measure is a natural measure of our ignorance about the

properties of a system, whose existence is independent of measurement.

Conversely, quantum measurement cannot be claimed to reveal the properties of

a system that existed before the measurement was made [31]. This controversy has
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encouraged some authors to introduce the non-additivity property of Tsallis entropy

(a generalization of the standard Boltzmann Gibbs entropy) as the main reason for

recovering a true quantal information measure in the quantum context, claiming

that non-local correlations ought to be described because of the particularity of

Tsallis entropy.

1.1.5 Differential entropy

As discussed above, the Shannon entropy is restricted to random variables with

discrete values. An analogous formula for a continuous random variable with prob-

ability density function f(x) can also be obtained as

h[f ] = E[− ln(f(x))] = −
∫
X
f(x) ln(f(x)) dx. (1.1.5)

This formula is usually referred to as the continuous entropy, or differential entropy.

We consider a finite measure as the bin size goes to zero. In the discrete case, the bin

size is the (implicit) width of each of the n (finite or infinite) bins whose probabilities

are denoted by pn. As we generalize to the continuous domain, we must make this

width explicit. To do this, start with a continuous function f discretized into bins

of size ∆. By the mean-value theorem there exists a value xi in each bin such that:

f(xi)∆ =

∫ (i+1)∆

i∆

f(x) dx, (1.1.6)

and thus the integral of the function f can be approximated by∫ ∞
−∞

f(x) dx = lim
∆→0

∞∑
i=−∞

f(xi)∆, (1.1.7)

where this limit and “bin size goes to zero” are equivalent. We will denote

H∆ := −
∞∑

i=−∞

f(xi)∆ log (f(xi)∆) , (1.1.8)

and expanding the logarithm, we have

H∆ = −
∞∑

i=−∞

f(xi)∆ log(f(xi))−
∞∑

i=−∞

f(xi)∆ log(∆). (1.1.9)
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As M→ 0, we have

∞∑
i=−∞

f(xi)∆→
∫ ∞
−∞

f(x) dx = 1, (1.1.10)

∞∑
i=−∞

f(xi)∆ log(f(xi))→
∫ ∞
−∞

f(x) log f(x) dx. (1.1.11)

But note that log(M)→ −∞ as M→ 0, therefore we need a special definition of the

differential or continuous entropy:

h[f ] = lim
∆→0

(
H∆ + log ∆

)
= −

∫ ∞
−∞

f(x) log f(x) dx, (1.1.12)

which is referred to as the differential entropy.

1.2 Thesis outline

Our thesis work is organised as follow: In chapter (2) we discuss a general class of

one-dimensional potentials with discrete energy spectrum, and as particular example

the harmonic oscillator and the infinite square well have been discussed. First we

get coherent states for harmonic oscillator by using the definition of Glauber and

generalization of coherent states. The Gazeau-klauder a special type of coherent

states is also discuss in this chapter, and we calculate GK Cs wavepackets for the

harmonic oscillator and infinite square well. At the end of the chapter generalized

coherent state wavepackets in position and momentum space calculate.

In chapter (3), we tell about the general formalism of probability densities and

expectation values in quantum mechanics. After that we discuss heisenberg’s un-

certainty relation in general. As an example, we discuss the expectation values

for infinite square well in position and momentum space, and also heisenberg un-

certainty relations calculated for this system. In next section, the introduction of

entropy in quantum mechanics. Furthermore, we discuss how to measure entropies

for generalized coherent states wavepackets and heisenberg uncertainty relation in

terms of entropies.

Our chapter (4), is dedicated to time evolution of coherent states and after that

we calculate auto correlation function for quantum systems, as an example it is
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calculated for harmonic oscillator and infinite square well. And we gives there auto-

correlation function plots for both harmonic oscillator and infinite square well. By

understanding quantum mechanics in the phase space has led to the development

of tools such as quantum carpets, the autocorrelation function. The position space

and momentum space quantum carpets for harmonic oscillator and infinite square

well as an example discuss in this chapter. And we discuss the quantum revivals by

means of entropy and our main task is the comparison of auto correlation function

with entropies. At the end of thesis, in chapter (5) we give summary and conclusions

of our thesis.
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Chapter 2

Generalized coherent state

wavepackets

2.1 Introduction

The quantum wavepackets of harmonic oscillator, constructed by Schrödinger in

1926 [1], exhibit a dynamics which is closely related to the dynamical behaviour of

classical harmonic oscillator and minimize the uncertainty relation. These specially

constructed wavepackets were reformulated by Roy Glauber, three decades later,

in terms of the ladder operators the harmonic oscillator and used them to express

quantum state of coherent electromagnetic field, hence, named as coherent states.

The coherent states of the harmonic oscillator are very useful and have played

an important role in many areas of physics. Because of their lot of applications,

it important to generalize the idea of coherent states for other dynamical systems.

Therefore, it is quite natural to inquire whether there are states that can preserve

most of the useful properties of the coherent states and be utilizable to describe

and simplify other quantum systems? In other words, how does one generalize the

concept of coherent states in order to describe other dynamical systems? In this

chapter, we discuss a formalism, proposed by Gazeau and Klauder, to generalized

the concept of coherent states for a class of one-dimensional potentials. For the

constructed generalized coherent states, quantum wavepackets are constructed in

position space as well as in momentum space.
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The Chapter is organized as follow: In section (2.2), the model of our study, gen-

erally one-dimensional potentials is discussed. The formalism of coherent states and

their generalization is presented in section (2.3). Finally, we discuss the construction

of generalized wavepackets for the coherent states of one-dimensional potentials in

section (2.4).

2.2 One-dimensional potentials

The dynamics of a particle of mass m is governed by the Hamiltonian given as

Ĥ =
p̂2

2m
+ V̂ (x), (2.2.1)

where V̂ (x) represents a large class of potentials, The eigenvalue equation corre-

sponding to above Hamiltonian is written as

Ĥ|n〉 = En|n〉; n ≥ 0, (2.2.2)

where |n〉 and En are the eigenstates and eigenenergies of the pertaining system,

respectively. The eigenenergies for the harmonic oscillator En can be obtained [32]

as

En = ~ω(n+
1

2
).

In the following, we discuss harmonic oscillator and infinite square well as par-

ticular examples of the one-dimensional potentials.

2.2.1 Harmonic Oscillator

The harmonic oscillator plays a very important role in classical and quantum me-

chanics. In this case, the Hamiltonian, given in Eq. (2.2.1) takes the form

Ĥ =
p̂2

2m
+

1

2
mω2x̂2, (2.2.3)

where the constants are adjusted such that V (x) = 1
2
mω2x̂2, with ω being the

frequency of oscillator. The Hamiltonian (2.2.3) satisfies the Schrödinger equation

Ĥ|n〉 = En|n〉, (2.2.4)
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whose solution gives the eigenenergies as

En = ~ω (n+ 1/2) , n = 0, 1, 2, .... (2.2.5)

and the position space eigenfunctions are expressed as

ψn(x) ≡ 〈x|n〉 =

√
β√
π2nn!

Hn(βx) exp
(
−β2x2/2

)
, (2.2.6)

where, Hn(βx) are the Hermite polynomials and β =
√
mω/~.

2.2.2 Infinite Square Well

The dynamics of the particle of mass m confined in the one-dimensional infinite

square well of length a is governed by the Hamiltonian

Ĥ =
p̂2

2m
+ V̂ (x), (2.2.7)

where, V̂ (x), is an infinite square well potential such that V̂ (x) = 0 for |x| < a

and V̂ (x) = ∞ otherwise. By solving the corresponding Schrödinger equation,

Ĥ|n〉 = En|n〉, the eigenenergies are obtained as

En =
n2π2~2

8ma2
, (2.2.8)

and the position space wavefunction as

ψn(x) ≡ 〈x|n〉 =

√
2

a
sin
(nπx

a

)
. (2.2.9)

2.3 Coherent states and their generalizations

Before proceeding to the discussion of generalized coherent states and correspond-

ing wavepackets, we first review the poineering work on the coherent states of har-

monic oscillator. In the following, we first present the basic concepts and necessary

mathematical details concerning these states and then present a technique, namely

Gazeau-Klauder method, to generalize the notion of coherent states for general one-

dimensional potentials.
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2.3.1 Coherent states of harmonic oscillator

Initially, the coherent states were introduced for harmonic oscillator which have

played a very important role many areas of physics. Glauber used these states in the

context of quantum optics to describe the coherent electromagnetic field quantum

mechanically. He defined these states by three different but equivalent ways. Before

we go to the formal definitions of the coherent states, we first develop the necessary

mathematical framework for the harmonic oscillator.

2.3.1.1 Algebraic structure of harmonic oscillator

The Hamiltonian of the harmonic oscillator, given in Eq. (2.2.3), can be expressed

in terms of a pair of new operators â†â as

Ĥ =
(
â†â+ 1/2

)
ω, (2.3.1)

where these new operators (â, â†) are connected with the coordinate and momentum

operators (x̂, p̂) as

â =
1√
2ω

(ωx̂+ ip̂) and â† =
1√
2ω

(ωx̂+ ip̂) . (2.3.2)

The operators â†, â and â†â = N̂ are known as creation, annihilation and number

operators [33], respectively.

The set of operators {â†, â, N̂} together with the unit operator Î obey the fol-

lowing well known commutation relations

[â, â†] = Î , [â, Î] = [â†, Î] = 0. (2.3.3)

The commutation relations of N̂ with â and â† are given as

[â, N̂ ] = â, [â†, N̂ ] = −â†. (2.3.4)

The operators {â†, â, N̂ , Î} span a Lie algebra, denoted as h4. The corresponding

Lie group is the Weyl-Heisenberg group H4 [34].
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2.3.1.2 Fock space

The Hilbert space for H4 is known as Fock space which is spanned by the number

eigenstates {|0〉, |1〉, |2〉, ...|n〉} satisfying orthonormality 〈n|ń〉 = δnń. The number

operator obeys eigenvalue equation

N̂ |n〉 = n |n〉 . (2.3.5)

Whereas the operators â†, â act upon the number eigenstates as

â† |n〉 =
√
n+ 1 |n+ 1〉 (2.3.6)

and

â |n〉 =
√
n |n− 1〉 , (2.3.7)

where the condition

â|0〉 = 0 (2.3.8)

defines the ground state |0〉 (also known as external state) of the oscillator. The

Fock space {|n〉} may be obtained by repeated application of the creation operator

â† on the vacuum state |0〉. The Fock states thus obey completeness,∑
n

|n〉 〈n| = Î , (2.3.9)

with Î being n-dimensional identity operator.

2.3.1.3 Construction of coherent states

Based on this algebra, the Glauber’s coherent states (also known as field coherent

states) can be constructed starting from any one of three but equivalent mathemat-

ical definitions [4]. In the following we briefly summarize all of the three definitions.

Definition 1: The coherent states |z〉 are the eigenstates of the harmonic oscillator

annihilation operator â, i.e.,

â |z〉 = z |z〉 , (2.3.10)

where z is a complex number.

Definition 2: They are generated by applying a displacement operator D̂ (z) on

the vacuum state |0〉 of the harmonic oscillator,

|z〉 = D̂ (z) |0〉 , (2.3.11)
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where the displacement operator D̂(z) = ezâ
†−z∗â, with â† being the harmonic oscil-

lator creation operator.

Definition 3: They are the quantum states minimizing uncertainties relationship,

i.e.,

∆x∆p =
1

2
. (2.3.12)

This is easy to show by calculating the dispersions of position and momentum op-

erators with respect to the coherent coherent states as

(∆x)2 = 〈z|x̂2|z〉 − 〈z|x̂|z〉2,

(∆p)2 = 〈z|p̂2|z〉 − 〈z|p̂|z〉2,

where the position and momentum operators x̂, p̂ are expressed in terms of â, â† as

x̂ =
1√
2

(â+ â†),

p̂ =
−i√

2
(â− â†),

respectively.

2.3.1.4 Fock space representation of coherent states

To find the states |z〉 we take the scalar product of both sides of the equation (2.3.10)

with number state, 〈n|, i.e.,

〈n|â|z〉 = z〈n|z〉. (2.3.13)

The Hermitian adjoint of equation (2.3.6) is given as,

〈n|â =
√
n+ 1〈n+ 1|, (2.3.14)

which leads to the recursion relation

√
n+ 1〈n+ 1|z〉 = z〈n|z〉 (2.3.15)

for the scalar products 〈n|z〉. We immediately note from equation (2.3.15) that

〈n|z〉 =
zn√
n!
〈0|z〉. (2.3.16)
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These scalar products appear as the expansion coefficients of the state |z〉 in terms

of Fock states, i.e.,

|z〉 =
∑
n

|n〉〈n|z〉 = 〈0|z〉
∑
n

zn√
n!
|n〉. (2.3.17)

The arbitrary phase factor 〈0|z〉 can be fixed by normalization condition, 〈z|z〉 = 1,

so that

〈0|z〉 = exp

[
−1

2
|z|2
]
. (2.3.18)

The states |z〉 therefore take the form

|z〉 = exp

[
−1

2
|z|2
]∑

n

zn√
n!
|n〉, (2.3.19)

which is well-known representation of coherent states [5].

2.3.1.5 Properties of Coherent States

There are two basic properties which are termed as the minimum set of requirements

for a set of states to be termed as coherent states, and which are in fact just the two

properties shared by all kind of coherent states. The first property is the continuity

in parameter space, and the second one is the completeness. In the following we

comment on these two basic properties and other properties based on the definitions

introduced in the previous section.

Continuity: The state vector |z〉 is a continuous function of the continuous com-

plex parameter z, that is,

z → ź ⇒ |z〉 → |ź〉 . (2.3.20)

Resolution of Unity: It can be shown that the unit operator may be expressed as

an integral of the projection operators |z〉 〈z| over the complex plane which means

that these states provide a resolution of the identity with respect to a positive

measure d2z/π defined over the complex plane, that is,

1

π

∫
|z〉 〈z| d2z =

∞∑
n=0

|n〉 〈n| = Î . (2.3.21)
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This equation can be proved by expanding |z〉 in harmonic oscillator eigenstates,

that is, using definition 3, and using the identity

1

π

∫
e−|z|

2

(z∗)n(z)md2z = n!δnm. (2.3.22)

It appears that Eq. (2.3.21) is exactly like a resolution of unity, but we will see

in the following that it differs from the conventional one, which involves mutually

orthogonal states, in that the one dimensional projection operators |z〉 〈z| are not

in general mutually orthogonal.

Non-orthogonality: One property which is made clear by the definition 3 is that

two such states are not in general orthogonal to one another. The scalar product

〈z| ź〉 can be calculated more simply as

〈z| ź〉 = e−
1
2
|z|2− 1

2
|ź|2
∑
n,m

(z∗)n(ź)m√
n!m!

〈n| m〉

= e−
1
2
|z|2− 1

2
|ź|2+z∗ź 6= 0. (2.3.23)

Note that

|〈z| ź〉|2 = exp
(
− |z − ź|2

)
, ()

which shows that the coherent states tend to become approximately orthogonal

in case z and ź recede much from one another in the complex plane. This non-

orthogonality shows that coherent states in fact provide an over complete set.

Stability Under Time Evolution: Under the dynamical evolution, a coherent state

remains in the family of coherent states but under a different label. This can be

seen as

e−iĤt |z〉 = e−
1
2
|z|2

∞∑
n=0

zn√
n!
e−inωt |n〉

= | ze−iωt〉. (2.3.24)

The term coherent reflects in fact this property that such states evolve coherently

in time. They remain non-spreading wave packets remaining localized around the

corresponding classical trajectory, thereby, minimizing the uncertainty product [5].
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2.3.2 Generalized coherent states: Gazeau-Klauder type

Gazeau and Klauder proposed the construction of coherent states for Hamiltonian H

with discrete spectrum which is bounded below and can be adjusted so that H ≥ 0,

with out any explicit dependence on group properties [12]. The eigenstates |n〉 of

H are assumed to be non-degenerate and orthonormal that satisfy

H|n〉 = En|n〉, n ≥ 0. (2.3.25)

The energy spectrum is arranged in the increasing order such that

0 = E0 < E1 < E2 < ... (2.3.26)

Moreover, En = ωen, where, en is the dimensionless real parameter for some fixed

energy scale ω > 0 and follows the sequence

0 = e0 < e1 < e2... (2.3.27)

for definiteness. We will use m = ~ = 1 through out our discussion unless otherwise

stated. The Gazeau-Klauder generalized coherent state are labelled by two real

parameters J (0 ≤ J) and θ (−∞ < θ <∞) and are described by the state

|J, θ〉 = N(J)−
1
2

∞∑
n=0

J
n
2

√
ρn

e−ienθ |n〉 , (2.3.28)

where the positive constants ρn are defined as

ρn = e1e2...en, ρ0 = 1. (2.3.29)

The normalization factor N(J) is defined as

N(J) =
∞∑
n=0

Jn

ρn

, (2.3.30)

which guarantees that

〈J, θ| J, θ〉 = 1. (2.3.31)

The domain of allowed values of J, is determined by the radius of convergence R in

the series (2.3.30) which is defined as

R = lim
n→∞

n
√
ρn , (2.3.32)
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such that 0 ≤ J < R.

The coherent states (2.3.28) are assumed to satisfy the set of conditions given as

(i) continuity: (J, θ)→ (J ′, θ′) ⇒ |J, θ〉 → | J ′, θ′〉.
(ii) Resolution of unity: 1 =

∫
dµ (J, θ) |J, θ〉 〈J, θ| .

(iii)Temporal stability: e−iĤt |J, θ〉 = | J, θ + ωt〉.
(iv)Action identity: 〈J, θ| Ĥ |J, θ〉 = ωJ.

However, we are not going to discuss the details of these properties in this the-

sis. In the following, we discuss the Gazeau-Klauder coherent states for power-law

potentials [15].

2.3.2.1 Gazeau-Klauder coherent states for one-dimensional potentials

Following the Gazeau-Klauder formalism, given above, we present generalized co-

herent states for one-dimensional potentials. The Hamiltonian is Ĥ(k), given in

Eq. (2.2.1), can be factorized as

Ĥ = ωχ̂N , (2.3.33)

where χ̂N is a dimensionless Hamiltonian and ω is a constant with dimensions of

energy. The Hamiltonian χ̂N obeys the eigenvalue equation

χ̂N |n〉 = en|n〉, (2.3.34)

where en are dimensionless eigenvalues given by

en =
En − E0

ω
. (2.3.35)

The energy spectrum en is an increasing function of n, en+1 > en, with e0 = 0.

Hence, the generalized coherent states for one-dimensional potentials take the form

as

|(J, θ)〉 =
1√
N(J)

∞∑
n=0

J
n
2 e−ienθ
√
ρn
|n〉. (2.3.36)

The quantities ρn are defined in terms of en, given by Eq. (2.3.35) , as

ρn ≡
n∏
j=1

ej. (2.3.37)
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It is important to note that the generalized coherent states for one-dimensional

potentials, given in Eq. (2.3.36), are based on eigenenergies obtained by solving the

schrodinger equations of concerning physical systems. However, in the following we

discuss the particular cases for the harmonic oscillator and the infinite square well,

respectively.

2.3.2.2 Harmonic oscillator

For harmonic oscillator, we find en = n and ρn = n!, from Eqs. (2.3.35) and (2.3.37),

respectively. Thus GK CS for the present system is obtained as,

|(J, θ)〉 =
1√
N(J)

∞∑
n=0

J
n
2 e−inθ√
n!
|n〉 , (2.3.38)

where the normalization constant N(J) is,

N(J) =
∞∑
n=0

Jn

n!
, (2.3.39)

and the weighting distribution,

|cn|2 =
1

N(J)

Jn

n!
. (2.3.40)

A transformation from (J, θ) to z, such that, z =
√
Je−iθ, introduces a com-

plete equivalence between Gazeau-Klauder coherent states of the harmonic oscilla-

tor, given by Eq. ( 2.3.38), and Glauber’s coherent states [1, 2, 4]. In this case, the

normalization factor in Eq. (2.3.39) is N(J) = e|z|
2

, and weighting distribution in

Eq. (2.3.40) is |cn|2 = |z|2ne−|z|2/n! which is Poisson distribution as for Glauber’s

coherent states.

2.3.2.3 Infinite Square Well

The infinite square well as seen from Eq. (2.2.2), as discussed above. Thus, eigenval-

ues en = n(n + 2), and the parameter ρn = n!(n + 2)!/2 are obtained, respectively,

from Eq. (2.3.35) and Eq. (2.3.37). The generalized coherent states for infinite

square well are therefore, written as
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|(J, θ)〉 =
1√
N(J)

∞∑
n=0

J
n
2 e−in(n+2)θ√
n!(n+ 2)!/2

|n〉 , (2.3.41)

with the normalization factor

N(J) = 2
∞∑
n=0

Jn

n!(n+ 2)!
,

and weighting distribution

|cn|2 =
2

N(J)

Jn

n!(n+ 2)!
.

It is important to note here that the weighting distribution of the coherent states is

not Poisson in the case of infinite square well.

2.4 Generalized coherent state wave packets

In the above sections, so far we have introduced the basic theory of coherent states

and their generalization using Gazeau-Klauder formalism. In general, the coherent

states have been considered as a special kind of linear superposition of the energy

eigenstates of corresponding systems, such that, the weighting distribution of this

superposition is continuously parameterized. However, in our later discussion we

are interested in finding the wavepackets corresponding these generalized coherent

states in some Hilbert space of continous variable, such as, position and momentum.

The quantum wavepackets corresponding to the generalized coherent states can

be obtained as

〈ζ|(J, θ)〉 =
1√
N(J)

∞∑
n=0

J
n
2 e−ienθ
√
ρn

φn(ζ), (2.4.1)

where φn(ζ) ≡ 〈ζ|n〉. Here, |ζ〉 are considered as eigenkets corresponding an ob-

servable ζ̂ with continous eigenspectrum, that is, ζ̂|ζ〉 = ζ|ζ〉, where ζ is continous

variable. In our ongoing discussion, we are interested in position space and momen-

tum space wavepackets of generalized Gezeau-Klauder coherent states.
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2.4.1 Position space wavepackets

Following Eq. (2.4.1), the position space wavepackets for generalized coherent states

can be given as

〈x|(J, θ)〉 =
1√
N(J)

∞∑
n=0

J
n
2 e−ienθ
√
ρn

un(x), (2.4.2)

where un(x) is the position space eigenfunction of the pertaining system and |x〉 are

the eigenkets of position operator X̂ satisfying X̂|x〉 = x|x〉, where x is a position

variable.

2.4.2 Momentum space wavepackets

Following the same procedure mentioned above, the momentum space wavepackets

for generalized coherent states take the form

〈p|(J, θ)〉 =
1√
N(J)

∞∑
n=0

J
n
2 e−ienθ
√
ρn

ϕn(p), (2.4.3)

where |p〉 are the eigenkets of momentum operator P̂ satisfying P̂ |p〉 = p|p〉. The

momentum space eigenfunction ϕn(p) are obtained by Fourier transform of the cor-

responding position-space wave function un(x).
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Chapter 3

Measurement uncertainty and

entropy in quantum mechanics

3.1 Introduction

In contrast to purely deterministic classical theory, the quantum theory is proba-

bilistic in nature: a physically observable quantity (referred as observable) can only

be measured probabilistically. Therefore, in order to get information about an ob-

servable, ensemble measurements are performed and then average of the measured

values, known as expectation value, is calculated. By means of these expectation

values and corresponding variances, the uncertainty associated with the measure-

ment process can be calculated. Generally, for quantum mechanical system, the

measurements concerning two different observables do not commute (The observ-

ables that satisfy this condition are known as incompatible observables). As a result,

we cannot simultaneously measure two incompatible observables precisely. The un-

certainties associated with the simultaneous measurements of these observables are

expressed by means of a principle, known as Heisenberg uncertainty principle. In

standard quantum mechanics the Heisenberg uncertainty principle is expressed in

terms of the variances based on the expectation values of observables. However,

there is an other very elegant method to express the Heisenberg uncertainty prin-

ciple, that is, in terms of entropy. In this chapter, after discussing variance-based

uncertainty principle, we will present the equivalent expressions in terms of entropy.
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In section (3.2) we describe the general formalism for the expectation values,

dispersions and Heisenberg uncertainty relation and a particular case of generalized

coherent state wavepackets is discussed in section (3.3). In this section, we first

the calculate probability densities in position and momentum space in order to

calculate the corresponding expectation values and then calculate the uncertainties

to express the Heisenberg uncertainty relation. In section (3.4) we present the

entropic measurements for generalized coherent states wavepackets and obtain the

equivalent form of Heisenberg uncertainty relation in terms of entropy.

3.2 Quantum measurements and Heisenberg un-

certainty relation

It is a very basic postulate of standard quantum mechanics, that a general state of

a physical system is represented by a vector, |ψ〉, in a Hilbert space which is known

as states vector. All the retrievable information concerning the physical system is

contained in the state vector. Moreover, an observable is represented by a self-

adjoint operator, A, on the Hilbert space. The expectation value of the observable

A is then calculated as

〈A〉 = 〈ψ|A|ψ〉, (3.2.1)

where the state vector |ψ〉 is considered normalized, i.e., 〈ψ|ψ〉 = 1. For a space of

continuous variable ζ the expectation value can be written as

〈A〉 =

∫ ∞
−∞

∫ ∞
−∞

ψ∗(ζ ′)〈ζ ′|A|ζ〉ψ(ζ)dζ ′dζ, (3.2.2)

where the set of vectors {|ζ〉} spans the complete orthonormal basis for the Hilbert

space, i.e.,
∫∞
−∞ |ζ〉〈ζ|dζ = 1, and 〈ζ ′|ζ〉 = δ(ζ − ζ ′). If |ζ〉 is an eigenket of operator

A, then Eq. (3.2.2) can be written as

〈A〉 =

∫ ∞
−∞

aζψ
∗(ζ)ψ(ζ)dζ,

=

∫ ∞
−∞

aζ |ψ(ζ)|2dζ, (3.2.3)
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where aζ is an eigenvalue of operator A, that is, A|ζ〉 = aζ |ζ〉. From Eq. (3.2.3) it

is important to note that

f(ζ) = |ψ(ζ)|2, (3.2.4)

is a probability density function, such that, f(ζ)dζ represents the probability of

measuring ζ in interval ζ + dζ. For this probability density function, the dispersion

from the measured average value (expectation value) is given as

(∆A)2 = 〈A2〉 − 〈A〉2. (3.2.5)

The quantity ∆A measures the uncertainty associated with the measurement of ob-

servable A. In general, for two observables A and B, their measurement uncertainties

are related as

∆A∆B ≥ 1

2
|〈[A,B]〉|, (3.2.6)

which is the generalized form of Heisenberg uncertainty principle. It is important to

note that the commutator [A,B] vanishes if observables A and B are compatible.

For time-independent solutions of Schrödinger equation, the expectation values

of position and momentum operators can be expressed, using Eq. (3.2.3), as

〈X〉 =

∫ ∞
−∞

xψ∗(x)ψ(x)dx =

∫ ∞
−∞

x|ψ(x)|2dx, (3.2.7)

〈P 〉 =

∫ ∞
−∞

pφ∗(p)φ(p)dp =

∫ ∞
−∞

p|φ(p)|2dp, (3.2.8)

respectively, where the eigenvalue equations X|x〉 = x|x〉 and P |p〉 = p|p〉 have been

used to obtain the above results. In this case the Heisenberg uncertainty relation

takes the form

∆X∆P ≥ ~
2
, (3.2.9)

where we have used the fact that [X,P ] = i~.

3.3 Uncertainty relation for generalized coherent

state wavepackets

The expectation value is a probabilistic measurement, it may have zero probabil-

ity to occur. We calculate the expectation values and uncertainties for position
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and momentum operators measured with respect to generalized coherent states. By

means of these uncertainties we calculate the Heisenberg uncertainty relation. As

an example we consider the case of infinite square well and calculate the analytic ex-

pressions for the expectation values and uncertainties with respect to corresponding

generalized coherent states.

3.3.1 Probability density and expectation values in position

space

As shown by Eq. (3.2.7), the expectation values can be calculated by means of

probability density function. In order to calculate the expectation value of position

operator, we need to calculate the probability densities in position space. From

Eq. (2.4.2), the probability density in position space can be calculated as

P (x, J, θ) = |〈x|(J, θ)〉|2 . (3.3.1)

The time independent probability density for the infinite square well in position

space from Eq. (2.4.2), is written as

P (x, J, θ) =

√
1

N (J)

∞∑
n=0

Jn/2e−inθ√
n!(n+ 2)!

ψn(x). (3.3.2)

Now the expectation value of in position space for generalized coherent states is,

〈x〉 =

∫
xP (x, J, θ)dx. (3.3.3)

For the infinite square well, by putting the value of probability density in the above

equation, we get

〈x〉 =
1

N∞(J)

∑
n,m

J
m+n

2 expi(m(m+2)−n(n+2))Θ√
m! (m+2)!

2
n! (n+2)!

2

[
2

L

∫ L

0

x sin(
nπx

L
) sin(

mπx

L
)dx

]
,

(3.3.4)

for m = n

〈x〉 =
1

N∞(J)

∑
n

Jn√
n! (n+2)!

2

(
π

2

)
. (3.3.5)
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Now from Eq. (2.3.2.3)

N(J) = 2
∞∑
n=0

Jn

n!(n+ 2)!
, (3.3.6)

putting Eq. (3.3.6) in Eq. (3.3.5), we have

〈x〉 =
π

2
. (3.3.7)

For n 6= m, Eq. (3.3.5) becomes

〈x〉 =
1

N(J)

∑
n,m

J
m+n

2 expi(m(m+2)−n(n+2))Θ√
m! (m+2)!

2
n! (n+2)!

2

[
4mn[(−1)m+n − 1]

π(m2 − n2)2

]
. (3.3.8)

To calculate the variance in position space we need to calculate the expectation

value for x2, and it is written as

〈x2〉 =

∫
x2P (x, J, θ)dx, (3.3.9)

〈x2〉 =
1

N(J)

∑
n,m

J
m+n

2 expi(m(m+2)−n(n+2))Θ√
m! (m+2)!

2
n! (n+2)!

2

[
2

L

∫ L

0

x2 sin(
nπx

L
) sin(

mπx

L
)dx

]
.

(3.3.10)

For m = n

〈x2〉 =
2n2π2 − 3

6n2
. (3.3.11)

The Eq. (3.3.7) and Eq. (3.3.11) are use to calculate the dispersion relation in

position space.

3.3.2 Probability density and expectation values in momen-

tum space

The probability density in momentum space, for time independent wave function is

written in general as:

P (p) = φ∗(p)φ(p). (3.3.12)

The time independent probability density in momentum space for generalized co-

herent states is from Eq. (2.4.3)

P (p, J, θ) = |〈p|(J, θ)〉|2 , (3.3.13)
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and also written as

P (p, J, θ) =

√
1

N (J)

∞∑
n=0

Jn/2e−inθ√
n!(n+ 2)!

φn(p). (3.3.14)

The expectation value in momentum space for the infinite square well is,

〈p〉 =

∫
pP (p, J, θ)dp. (3.3.15)

By applying the Fourier transform on position dependent wave function,the expec-

tation value of p is

〈p〉 =
1

N(J)

∑
n,m

J
m+n

2 expi(m(m+2)−n(n+2))Θ√
m! (m+2)!

2
n! (n+2)!

2

[
− i~

∫ L

0

sin(
mπx

L
)
d

dx
sin(

nπx

L
)dx

]
.

(3.3.16)

Now taking, m=n the expectation value is

〈p〉 = 0, (3.3.17)

and for m 6= n is

〈p〉 =
1

N(J)

∑
n,m

J
m+n

2 expi(m(m+2)−n(n+2))Θ√
m! (m+2)!

2
n! (n+2)!

2

[
2 cos[(m− n) cscπ]

(m− n)2
−2 cos[(m+ n) cscπ]

(m+ n)2

]
.

(3.3.18)

To calculate the dispersion in momentum space we need to calculate the expec-

tation values for p and p2. Now the expectation value of p2 is

〈p2〉 =

∫
p2P (p, J, θ)dp, (3.3.19)

〈p2〉 =
1

N(J)

∑
n,m

J
m+n

2 expi(m(m+2)−n(n+2))Θ√
m! (m+2)!

2
n! (n+2)!

2

[
− ~2

∫ L

0

sin(
mπx

L
)
d2

(dx)2
sin(

nπx

L
)dx

]
,

(3.3.20)
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Now the expectation value of p2 for m=n and m 6= n is

〈p2〉 =
{ n2 for m = n

0 m 6= n.
(3.3.21)

By using the Eq. (3.3.17) and Eq. (3.3.21), dispersion relation in momentum space

is calculated.

3.3.3 Variance-based uncertainty relation

The uncertainty principle, which is also known as Heisenberg’s uncertainty principle.

It is mathematical inequalities which exerts a fundamental limit to the precision on

physical properties of a known particle. As we calculate dispersions for uncertainty

relation in position and momentum space for infinite square well.

For calculating dispersion in position space we use expectation values of x and

x2

∆x =
√
〈x2〉 − 〈x〉2, (3.3.22)

now, for m = n putting values of 〈x〉 and 〈x2〉,

∆x =

√
2n2π2 − 3

6n2
− π2

4
, (3.3.23)

∆x =
1

2
√

3

√
π2 − 6

n2
. (3.3.24)

Now here we use momentum expectation values of p and p2 to calculate dispersion

in momentum space. For momentum space,

∆p =
√
〈p2〉 − 〈p〉2, (3.3.25)

For m = n, putting values of 〈p〉 and 〈p2〉 in above equation

∆p =
√
n2 − 0 = n, (3.3.26)

so, now

∆p = n. (3.3.27)
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The heisenberg uncertainty relation is now written as: for m=n,

∆x∆p =
1

2
√

3

√
π2 − 6

n2
· n,

=
1

2
√

3

√
n2π2 − 6. (3.3.28)

The uncertainty relation for the infinite square well is described in above equation.

This uncertainty relation depends only on n.

3.4 Entropic measurements for generalized coher-

ent states

From the wave packet tunneling through a barrier are investigated by means of

information entropy Sx = −
∫
P (x) lnP (x)dx, [40, 41]. We investigate entropies for

generalized coherent states in position and momentum space from the given position

space and momentum space wave packets. Now as an example we consider the

system infinite square well for to calculate the entropy in position and momentum

space.

3.4.1 Entropy in position space

To calculate the entropy in position space from the definition of information entropy

we use probability density from Eq. (3.3.1)

S(x, J, θ) = −
∫
P (x, J, θ) lnP (x, J, θ)dx. (3.4.1)

The probability density for the infinite square well is,

P (x, J, θ) =

√
1

N (J)

∞∑
n=0

Jn/2√
n!(n+ 2)!

ψn(p). (3.4.2)

By putting the value of momentum probability density from Eq. (3.4.2) to Eq. (3.4.1)

and value of J = 38.05, After integrating value of position entropy is,

S(x, 38.05, θ) = 5.71. (3.4.3)
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3.4.2 Entropy in momentum space

From the Eq. (3.3.13) we use now probability density in momentum space. Now

entropy is written as:

S(p, J, θ) = −
∫
P (p, J, θ) lnP (p, J, θ)dp. (3.4.4)

The probability density for infinite square well is,

P (p, J, θ) =

√
1

N (J)

∞∑
n=0

Jn/2√
n!(n+ 2)!

φn(p). (3.4.5)

By putting the value of momentum probability density from Eq. (3.4.5) to Eq. (3.4.4)

and value of, momentum entropy is,

S(p, 38.05, θ) = 0.15. (3.4.6)

3.4.3 Uncertainty relation in terms of entropy

The entropic uncertainty is defined as sum of the temporal and spectral Shannon

entropies. It turns out that Heisenberg’s uncertainty principle can be expressed

as a lower bound on the sum of these entropies. This is stronger than the usual

statement of the uncertainty principle in terms of the product of standard deviations.

The entropic formulation of uncertainty principle provides a lower bound on the

sum of the information entropy of two distributions. For example, for position and

momentum, there is the bound.

For infinite square well the heisenberg’s uncertainty relation is written as from

Eq. (3.4.3) and Eq. (3.4.6)

S(x) + S(p) > 1 + ln π, (3.4.7)

where,

S(x) = −
∫
P (x, J, θ) lnP (x, J, θ)dx, (3.4.8)

and

S(p) = −
∫
P (p, J, θ) lnP (p, J, θ)dp. (3.4.9)

In Eq. (3.4.8) and Eq. (3.4.9) the continuous information entropy of the distribution

of x, as given by it’s wave function and S(p) is defined as information entropy of

the distribution of p.
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Chapter 4

Coherent state wavepacket

revivals by means of entropy

4.1 Introduction

The quantum wavepacket revivals phenomenon has received much attention over

last years. It has been investigated theoretically in atomic and molecular quan-

tum systems , and observed experimentally in Rydberg wave packets in atoms and

molecules, molecular vibrational states, and Bose-Einstein condensed sates. Re-

vivals occur when a wavepacket solution of the Schrödinger equation evolves in time

and it closely reproduces its initial state [44]. Now we are focusing on the temporal

characteristics of time evolved coherent states. We explain it in next section in form

of the autocorrelation function.

In this chapter our work is organized as, in section (4.2) we explain the time

evolution of generalized coherent states. Furthermore, in section (4.2.1) autocor-

relation function and revivals of quantum also discuss. The spatio-temporal and

momento-temporal quantum carpets for harmonic oscillator and infinite square well

given in sections (4.2.2) and (4.2.3,) respectively . Finally, in section (4.3)we discuss

quantum revivals by using the entropy in both position and momentum space. We

compare the sum of both entropies in position and momentum space with autocor-

relation function.
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4.2 Time evolution of generalized coherent states

In order to investigate the temporal behavior of the generalized coherent state

wavepackets, we first study their time evolution. The time-evolved coherent states

are obtained by applying the time evolution operator on initial coherent states. The

time evolution operator for one-dimensional potentials is expressed as

Û(t) = exp
[
−iĤt

]
, (4.2.1)

where Ĥ is the Hamiltonian for one-dimensional potentials. The operator Û(t)

transforms the coherent states from the initial time t0 = 0 to any latter time, t,

such that

Û(t) |(J, θ)〉 = | (J, θ), t〉.

The time evolved coherent state wave packets can be expressed as

| (J, θ), t〉 =
1√
N(J)

∞∑
n=0

J
n
2 e−ien(θ+ωt)

√
ρn

|n〉 . (4.2.2)

It is important to note that for the special case when en ∝ n, the time evolution of

the coherent states | (J, θ)〉 reduces to a rotation in complex plane, that is,

Û(t) | (J, θ)〉 = | (J, θ)e−iωt〉.

In Eq. (4.2.3), for the harmonic oscillator we obtained as

|(J, θ), t〉 =
1√
N(J)

∞∑
n=0

J
n
2 e−in(θ+ωt)

√
n!

|n〉

= | (J, θ)e−iωt〉. (4.2.3)

Thus the time evolved coherent state, |(J, θ)(k), t〉, is the same coherent state with

a difference of constant phase [1, 2, 4] which a special characteristic of the coherent

states of harmonic oscillator. On the other hand, the Eq. (4.2.3) gives the time

evolution for the coherent states of infinite square well, expressed as

|(J, θ), t〉 =
1√
N(J)

∞∑
n=0

J
n
2 e−in(n+2)(θ+ωt)√
n!(n+ 2)!

|n〉. (4.2.4)
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Eq. (4.2.4) shows that the time evolution of the coherent states of the infinite

square well involves phases having nonlinear dependence on quantum number n.

Therefore, these coherent states may exhibit the dynamical characteristics beyond

the classical-like dynamics of the coherent states of harmonic oscillator. These char-

acteristics can be investigated by means of auto-correlation function and probability

density function in position and momentum space.

4.2.1 Autocorrelation and quantum revivals

Autocorrelation function is an important parameter that measures the behavior of

quantum states during their time evolution.

A(t) = 〈(J, θ)| e−iĤt |(J, θ)〉 . (4.2.5)

Using time evolution operator, given in Eq. (4.2.1), the autocorrelation function for

the coherent states of one-dimensional potentials can be calculated as

A(t) =
∞∑
n=0

|cn|2 e−iEnt,

where, |cn|2 is weighting distribution which depends on the coherent state parameter

J .

For generalized coherent states, initially narrowly peaked around the mean value

〈n〉 such that their spread ∆n << 〈n〉, we can expand En by Taylor expansion

around 〈n〉, expressed as

En − E〈n〉 =
∞∑
r=1

1

r!

∂rEn
∂nr

∣∣∣∣∣
n=〈n〉

(n− 〈n〉)r . (4.2.6)

Each derivative in the Eq. (4.2.6) defines a characteristic time scale [43],

T(r) = 2π

(
1

r!

∣∣∣∣∂rEn∂nr

∣∣∣∣
n=〈n〉

)−1

. (4.2.7)

The first derivative defines classical period, T(1) = Tcl, and second derivative defines

quantum revival time, T(2) = Trev, such that Tcl < Trev [43].

It is important to note that for harmonic oscillator, the quantum revival time

Trev approaches to infinity. Therefore, the coherent state wave packets for harmonic
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oscillator follow classical trajectories with a periodicity defined by Tcl with out dis-

persion. This non dispersive evolution is depicted in Fig. (4.2.1). In contrast, for

the infinite square well, Eq. (4.2.7) gives the finite value of quantum revival time

Trev = 2
π
. Hence, the coherent states of infinite square exhibit the phenomena of

quantum revivals which is shown in Fig. (4.2).

Figure 4.1: Modulus square of autocorrelation function |A(t)|2 for J=5.

4.2.2 Spatio-temporal evolution: position space quantum

carpets

The time evolution of coherent state wavepackets in position space can be charac-

terized by means of probability density as function of time, namely, spatio-temporal

evolution. In order to analyze spatio-temporal evolution of coherent states, we cal-

culate the probability density, which is defined as,

P (x, t) = |〈x| (J, θ) , t〉|2 .

Using Eq. (4.2.3), we get

P (x, t) =
1

N(J)

∞∑
n=m

Jn

ρn
|ψn(x)|2 +2Re

[
1√
N(J)

∞∑
m 6=n

J
(n+m)

2

√
ρnρm

ψn(x)ψ∗m(x)e−i(en−em)(θ+ωt)

]
.

(4.2.8)

Here, ψn(x) are the eigenstates of the system for some particular member of one-

dimensional potentials. In our analysis, we will discuss here the harmonic oscillator

and the infinite square well.
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Figure 4.2: Autocorrelation function for different values of J, (1) J = 38.05, (2)

J = 125.6 (3) J = 263.1 (4) J = 975.61.

Hence, the space-time evolution of the probability density has vital dependence

on the nature of the eigenstates ψn(x) and the structure of the energy spectrum

en of the physical system and defines the interference behavior. A constant back-

ground independent of time is obtained from the second sum of probability density

in Eq. (4.2.8).

The coherent states for harmonic oscillator are explained in chapter 2. The

probability density in position space for harmonic oscillator is, from Eq. (4.2.8) In

Fig. (4.2.2) plot shows that dispersion is not present and it gives a reconstruction

at the classical time Tcl = 2π. This time is independent on J . In Fig. (4.2.2), we

take snap shot at time t = 0 , t = Tcl, t = 3Tcl, t = Trev. At revival time(t = Trev)

we again get the localized peak same as for the time t = 0 .

Interference pattern and multiple splitting of time evolved probability density

from Eq. (4.2.8) produce quantum carpets. As shown in Fig. (4.2.2). The infinite
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Figure 4.3: The contour plot of harmonic oscillator in position space for value of

J = 5.

Figure 4.4: The position probability density plots at particular times: (a) t = 0; (b)

t = Tcl; (c) t = 3Tcl; (d) t = Trev.
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Figure 4.5: The contour plots of position probability density for different values of

J, verses time T = t/Tcl.

square well show constructive and destructive pattern of interference the reason is

time dependent term due to which interference occurs. From Fig. (4.2.2) we see

that for infinite square well the Gazeau-Klauder coherent states exhibit collapse in

later time appear as fractional revivals.

4.2.3 Momento-temporal evolution: momentum space quan-

tum carpets

In order to analyze spatio-temporal evolution of GK CSs we study as well the prob-

ability density in momentum space and time, which is defined as,

P (p, t) = |〈p| (J, θ) , t〉|2 ,
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and is obtained by Eq. (2.3.36) as

P (p, t) =
1

N(J)

∞∑
n=m

Jn

ρn
|φn(p)|2 +2Re

[
1√
N(J)

∞∑
m 6=n

J
(n+m)

2

√
ρnρm

φn(p)φ∗m(p)e−i(en−em)(θ+ωt)

]
.

(4.2.9)

Here, φn are the eigenstates for one-dimensional potentials. The dynamics of GK CS

displays constructive and destructive interference which is governed by the second

sum of probability density given in Eq. (4.2.9).

The momentum space probability density is calculated by taking the fourier of

position wave function in Eq. (4.2.9),. The fourier of position wavepackets is written

as: From Eq. (4.2.9), φn(p) is

φn(p) =
1√
2π~

∫ ∞
−∞

exp
−ip.x

~ Ψn(x)dx. (4.2.10)

Now the momentum probability density plot for the harmonic oscillator is in Fig.

(4.2.3) in Fig. (4.2.3) we see quantum carpet of the probability density φ(p, J, θ, t)

-4 0 4
0

8

16

 
p

t/Tcl

Figure 4.6: The contour plot of harmonic oscillator in momentum space for value of

J = 5.

for the harmonic oscillator in momentum space.
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For the Gazeau Klauder coherent states probability density in momentum space

for infinite square well is written as

P (p, J, θ, t) =

√
1

N (J)

∞∑
n=0

Jn/2e−in(n+2)(θ+ωt)√
n!(n+ 2)!

φn(p). (4.2.11)

The snap shot of momentum probability for different times is given in Fig. (4.7).

The complete representation for the time evolution of the probability density is

Figure 4.7: The momentum probability density at particular times: (a)t = 0; (b)t =

Tcl; (c)t = 3Tcl; (d)t = Trev.

shown in Fig. (4.8), by using the quantum carpet from the interference term in

Eq. (4.2.9).

4.3 Quantum revivals by means of entropy

Dynamics of the wavepacket in a nonlinear media exhibits revivals and fractional

revivals at specific instants of time, arising from the interference between the station-

ary states comprising the wavepacket. The revival phenomena has been investigated
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Figure 4.8: The contour plot of momentum probability density for different values

of J, verses time T = t/Tcl.

both theoretically and experimentally in a wide class of systems. An initial well lo-

calized quantum state spreads during the propagation and after certain time Trev,

the revival time, the wavepacket localizes again giving rise to quantum wavepacket

revival. Fractional revival occurs when the initial wavepacket evolves into a state

that can be described as a collection of mini packets, each of which closely resembles

the initial wave packet. The fractional revival phenomena has been observed exper-

imentally in a variety of quantum systems such as Rydberg atomic wavepackets.

The temporal evolution of wavepacket coherent states are performed by means of an

autocorrelation function and the full revival properties are investigated in the usual

time-domain analysis. This latter seems to be less useful for describing the fractional

revivals due to the complicated nature of coherent wavepacket. Fortunately the au-

tocorrelation function revels a little signature of fractional revivals at the vicinity of

quarters of the revival time Trev due to the quadratic energy spectrum and the use of

the wavelet-based time-frequency analysis of the autocorrelation function provides

an analytical and numerical observation of the fractional revivals at different orders

of the system.

Fractional revivals appear as the temporal formation of structures that are given

by a superposition of shifted and reproduced initial wavepackets[44]. It has been
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shown that the relevant time scales of wave function evolution are contained in the

coefficients of the Taylor series of the energy spectrum, En, around the energy En◦

corresponding to the peak of the initial wavepacket. More precisely, the second-

order, third, and fourth terms in this expansion are associated with, the classical

period of motion Tcl, and the quantum revival Trev, and the super-revival time. Frac-

tional revival times can be given in terms of the quantum revival by t = pTrev
q

, and

are usually analyzed using the autocorrelation function A(t), which is the overlap

between the initial and the time evolved wave packet. At certain fractional revivals,

autocorrelation function may be limited for help. The wavepacket reforms itself into

a scaled copy of its original shape, that does not coincide with its initial position.

An expectation value analysis of wavepacket evolution has been recently proposed,

but it does not tell fully about the fractional revivals. We study the wavepacket

dynamics by means of sum of information entropies which are of probability density

of the wavepacket, in both position and momentum spaces. We shall show that it

provides a framework for fractional revival phenomena. The position space informa-

tion entropy measures the particle localization uncertainty in position space, so the

lower is this entropy then the more concentrated is the wave function, the smaller

is the uncertainty, and the higher is the accuracy in predicting the localization of a

particle. Momentum space entropy measures the uncertainty in predicting momen-

tum of the particle. So, information entropy gives an account of the spreading(high

entropy values) and the regenerating (low entropy values) of initially well localized

wavepackets during time evolution

ρ(x, t) = |ψ(x, t)|2 and γ(p, t) = |φ(p, t)|2, (4.3.1)

if equations are respectively the probability densities in position and momentum

spaces (whereψ and φ are the position and momentum wavepackets), the information

entropy implies:

Sx(t) + Sp(t) = −
∫
ρ(x, t) ln ρ(x, t)dx−

∫
γ(p, t) ln γ(p, t)dp. (4.3.2)

This inequality is a generalization of the standard variance based Heisenberg

uncertainty relation. It is satisfied as a strict equality only for Gaussian wavepackets

and bounds from below the sum of the entropies to 1 + lnπ. During the evolution
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of a Gaussian wavepacket, the entropy sum decreases at the revival times to reach

the above value, which is equal to unity in the autocorrelation function.

The formation of fractional revivals of the wave function, will correspond to the

relative minima of the total entropy. And the sum of entropies that is as an indi-

cator of the fractional revivals, not either of them separately, because only the sum

describe both the configurational and the motion aspects of wavepacket dynamics.

In this we tell that the sum of entropies for the phase and photon number has been

used to study formation of macroscopic quantum superposition states from initially

coherent state interaction with a Kerr-medium[45].

For infinite square well, the sum of position space and momentum space entropies

and comparison with autocorrelation function for value of J = 38.05 is in Fig. (4.9)

and for value of J = 125.6 and = 263.1 is in Fig. (4.10), and value of J is fixed for

the graph. The autocorrelation function, as plotted in the top panel of Fig. (4.9),

fails to show the fractional revivals occurring at, for example, t
Trev

= 1
5
, 2

9
, 2

7
and 3

10
.
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Figure 4.9: Comparison of autocorrelation function and entropy revivals for value

of J = 38.05.
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Figure 4.10: Comparison of autocorrelation function and entropy revivals for value

of J = 125.6 and J = 263.1.
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Chapter 5

Summary and Conclusion

In this dissertation we focus on measurement of entropy for generalized coherent

states wavepackets. In this work, for the general study of quantum systems we in-

troduce one-dimensional potentials. We study quantum systems, the harmonic os-

cillator and the infinite square well respectively. The coherent states of the harmonic

oscillator studied and we construct generalized coherent states known as Gazeau-

Klauder coherent states by using the eigen energies and eigen states. Further, we

study how to construct generalized coherent state wavepackets, in both position and

momentum space.

For the measurement of uncertainty relation we calculated the expectation val-

ues from the probability densities for time independent position wavepacket and

for the momentum wavepacket. Firstly general formalism is described and then as

an example expectation values for the infinite square well calculated. After that,

uncertainty relation is defined as product of position dispersion and momentum dis-

persion for the infinite square well. Introduction of entropies in quantum mechanics

is studied. The entropies for time independent generalized coherent states calculated

in position and momentum space, and we write entropic uncertainty relation. This

entropic uncertainty relation is defined as the sum of entropies of position entropy

and momentum entropy.

Our main task in this thesis is to compare entropies of a dynamical system with

autocorrelation function. Where, We have calculated the autocorrelation function

for the comparison of the time evolved coherent state wavepackets with the initial

states. The time evolved generalized coherent state wavepackets calculated for the
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harmonic oscillator and the infinite square well. The autocorrelation function for

harmonic oscillator is shown, which shows that it follows the classical trajectory.

For the infinite square well potential, autocorrelation function is also shown for

different values of J in coherent state wavepackets. The contour plots of probability

densities also shown for the harmonic oscillator and the infinite square well. The

contour plots for the system the infinite square well shows quantum revivals. It is

shown that the coherent states of infinite square well follows the classical evolution

for their short time evolution. After that, quantum constructive and destructive

interference occurs due to which the states collapsed and phenomenon of quantum

revivals arises.

We discuss entropy and different types of entropy in introduction. At the end

we compare autocorrelation function with the sum of entropies in both position and

momentum space. It is shown that in the infinite square well information entropy

structure provides us a better perception of fractional revivals as compared to the

autocorrelation function. The hidden fractional revivals in autocorrelation functions

are dominant by using entropy.
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