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Abstract

Motivated by anomalies in lepton flavor universality ratios for B → D(∗)τν and B →
K(∗)µ+µ− decays which have found deviations, 2.1-2.3σ and 2.6σ, from standard model(SM)
predictions, the deviations between experimental measurements and SM prediction which
hint towards new physics(NP) effects.
In this thesis, we study exclusive semileptonic charmed B meson decay, Bc → D∗s`

+`−, with
in the SM and beyond which provides a complimentary information regarding NP. We con-
sider the simplest NP models such as, Z ′ models and model independent/Leptoquark model.
We analyze various observables such as the branching ratios, leptons forward backward
asymmetry, the longitudinal helicity fractions of the D∗s meson and lepton flavor Universal-
ity(LFU) ratios with in the SM and the above mentioned NP models. We give a combine
analysis of model independent NP scenarios and Z ′ models for above mentioned observables
which also deviate from the SM predictions and hints the NP effects in Bc → D∗s`

+`− decay.

iv



Contents

Contents 1

List of Tables 3

List of Figures 4

1 Introduction 5

2 Standard Model 7
2.1 Gauge Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 The Standard Model Lagrangian . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Gauge Symmetry Group . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.2 Fermionic Field in SM . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.3 Higgs Lagrangian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.4 Higgs Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.5 Higgs and Yukawa Terms . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 CKM matrix and Fermion masses . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Theoretical Framework for B Meson Decay 17
3.1 Effective Field Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1.1 Operator Product Expansion . . . . . . . . . . . . . . . . . . . . . . 18
3.2 Effective Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3 Model Independent Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3.1 Leptoquark Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3.2 Z ′ Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3.3 Heavy Z ′ Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3.4 Light Z ′ Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4 Analysis of Decay Bc → D∗s`
+`− Beyond SM 26

4.1 Effective Hamiltonian of decay Bc → D∗s`
+`− . . . . . . . . . . . . . . . . . 26

4.2 Matrix Element and Form Factors . . . . . . . . . . . . . . . . . . . . . . . . 28
4.3 Helicity Amplitude of B meson decay . . . . . . . . . . . . . . . . . . . . . . 28

4.3.1 Hadronic part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

1



4.3.2 Leptonic Part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.4 Differential decay rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.5 Forward Backward Asymmetry . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.6 Helicity Fraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.7 Lepton Flavor Universality Ratios . . . . . . . . . . . . . . . . . . . . . . . . 35
4.8 Phenomenological Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.8.1 Predictions for RD∗s , R
L,T
D∗s
, FL

D∗s
, AFB in Different q2 Bins . . . . . . . . 38

5 Conclusion 44

Bibliography 45

2



List of Tables

2.1 The Standard Model Bosons . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Standard Model fermions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.1 MI scenarios: WCs values in best fitting are taken from ref. [1] . . . . . . . . 22
3.2 TeV Heavy Z ′ model in best fit values of absL in fit A in Ref. [1] . . . . . . . . 24
3.3 TeV Heavy Z ′ model in best fit values of absL in fit B in Ref. [1] . . . . . . . . 25
3.4 GeV Light Z ′ model in best fit values of absL in fit A in Ref. [1] . . . . . . . . 25

4.1 Form factors of Bc → D∗s decay which are calculated by using QCD Sum
rules [2]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2 In different q2 bins: averaged values in different observables of Bc → D∗sµ
+µ−

decay in the SM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.3 The values of WCs Ci(µ) [2] at the scale µ = 4.8GeV shown in above table. . 36
4.4 Predictions in SM and NP: Lepton flavor universality ratios RD∗s in different

bin values for Bc → D∗sµ
+µ−. . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.5 Predictions in SM and NP: Lepton flavor universality ratios RL
D∗s

in different
bin values for Bc → D∗sµ

+µ−. . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.6 Predictions in SM and NP: Lepton flavor universality ratios RT

D∗s
in different

bin values for Bc → D∗sµ
+µ−. . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.7 Predictions in SM and NP: Longitudinal helicity fraction FL
D∗s

in different bin
values for Bc → D∗sµ

+µ−. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.8 Predictions in SM and NP: Forward backward asymmetry AFB in different

bins for Bc → D∗sµ
+µ− . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3



List of Figures

3.1 Left shows full theory and at Right the effective theory in c −→ sud̄ . . . . 18
3.2 Effective diagram of b→ s`+`− . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.1 Penguin diagram for Bc → D∗s`
+`− decay [3] . . . . . . . . . . . . . . . . . . 26

4.2 Branching ratio in MI Scenarios, Leptoquark Model, Heavy Z ′ Model and
Light Z ′ Model. The Gray band show the predictions in the SM, Blue,
Brown, Yellow and Magenta(dashed) bands show the predictions computed
in MI scenario I(A), I(B), II(A) and II(B) respectively. Green, Red(dashed),
Blue(dashed) and Cyan bands show the predictions computed in scenario HZ ′
I(A), HZ ′ I(B), HZ ′ II(A) and HZ ′ II(B) respectively. Purple and Orange
bands shows the predictions in scenario LZ ′ I(A), LZ ′ II(A) respectively. The
results achieved in MI scenarios II(A) and II(B) also represent the results in
leptoquark model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.3 Leptons forward backward asymmetry in MI Scenarios, LQ Model, Heavy Z ′
Model and Light Z ′ Model. The legends are same as in fig.4.2 . . . . . . . . 40

4.4 Longitudinal helicity fraction of D∗s in MI Scenarios, LQ Model, Heavy Z ′

Model and Light Z ′ Model. The legends are same as in fig.4.2 . . . . . . . . 41

4



Chapter1
Introduction

The standard model (SM) [4] was proposed by Salam, Glashow and Weinberg to unify weak
nuclear forces and electromagnetism. Many years have passed since the SM was established.
It is a miracle that it still holds the status as the ultimate theory of matter at the most funda-
mental level. The SM provides a very elegant theoretical framework and it is experimentally
well tested theory so far. Despite the successful theory of SM, it has some limitations and
some unanswered questions:

• The SM shows the neutrinos are massless, in fact experiment shows that neutrinos
have mass.

• Hierarchy problem: Electroweak scale is so small?

• The problem of strong CP violation.

• There is lack of explanation for the quark masses according to their ranges i.e. few
MeV to 100 GeV and lepton masses i.e. 0.5 MeV to 1.8 GeV.

• Why gravity is missing from SM?

These limitations and unanswered questions required more fundamental underlying theory.
Many extension of SM discussed in literature to understand these limitations and unanswered
questions of SM. These problems also hint that new physics (NP) effects may become im-
portant beyond the SM. Generally, there are two methods to find NP: First, we can rise the
energy of colliders and produce new particles, this is called a direct method. Second, there
is the indirect way to determine NP where NP effects can appear itself if we increase the
experimental precision on data of SM processes. These processes can be measured precisely
because it is rare in SM. So here flavor physics plays its important role. In such a way the
flavor changing processes are important to understand the physics beyond the SM. It implies
that such processes in the flavor sector are rare B meson decays which are mediated by flavor
changing neutral current (FCNC) [5] at loop level based on the Glashow-Iliopoulos-Maiani
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(GIM) mechanism [6]. So, rare B meson [7] decays are ideal tool to test NP due to their
intrinsic relation to the quark flavor structure of the SM Lagrangian.
B meson are bound state of (bq̄). In our dissertation, we focus on rare Bc meson, the initial
state Bc meson is the ground state of the bottom-charm bound system. Its first observation
was at the Fermilab Tevatron by the CDF Collaboration in 1998 through the cascade decay
Bc → J/ψl̄ν and J/ψ → µµ̄ [3].
In this thesis, we analyze exclusive semileptonic B meson decay Bc → D∗s

¯̀̀ [3] based on
quark level transition b → s`+`− induced by FCNC at loop level. In the Standard Model,
these transitions occur at loop level mediated by W boson and are not allowed at tree level.
Furthermore, they are also suppressed in the SM due to their dependence on weak mixing
angles of the Cabibo Kobayashi Maskawa (CKM) matrix [8]. It implies that the SM contri-
bution is greatly suppressed and, as the SM contribution is suppressed, the NP effects may
become important. This provides the most crucial framework to test the SM. As the quark
level b → s`+`− transition are very sensitive to the physics beyond the SM, so it offers a
promising place to search for NP.
We consider only those NP models where the effects of NP can be observed only through the
modification of Wilson coefficients. we consider two different NP models such as leptoquark
model, heavy and light Z ′ models, and Model independent(MI) NP scenarios.
Several observables are useful to distinguish between the various extension of SM. We deter-
mined various observables such as branching ratio, forward backward asymmetry of leptons,
longitudinal helicity fraction of D∗s meson and lepton flavor universality ratios of leptons
which show the deviations form SM predictions.
The purpose of this dissertation is to study the possibility of finding NP in MI scenarios and
in Leptoquark and Z ′ models. When more data will be available at LHC than the study of
above mentioned observables will give a precision test of SM and NP .
We organized our dissertation as given below:
In Chapter 2, we give an overview of the SM. We put our focus on the fundamental particles,
their parameters and interactions such as masses and coupling constants and we precisely
deal with the flavor structure of SM which help us to understand rare B meson decays.
In Chapter 3, we present the theoretical framework for rare B meson decays. Firstly, we
write the effective Hamiltonian which is the fundamental of this thesis than we explain how
effective field theory is important to compute said process. We compute the amplitude of
said decay in helicity basis by using effective Hamiltonian and will be able to write the
decay rate of Bc → D∗s`

+`−. In next section, we explore physics beyond SM. We wil do
combine analysis of NP models such as, leptoquark and Z ′ models, and model independent
new physics scenarios.
In Chapter 4, we determine several observables for exclusive semileptonic Bc → D∗s`

+`−

decay mode, like branching ratio, longitudinal helicity fraction of D∗s meson, forward back-
ward asymmetry and Lepton Flavor Universality(LFU) ratios which help us to understand
new physics in said process. We analyze the above mentioned physical observables in NP
model independent scenarios and in model dependent and will show that above mentioned
observables have tension with SM predictions. In last chapter, we summarize all our results
and discussions.
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Chapter2
Standard Model

The Standard Model(SM) [4] corresponds to a non-abelian gauge principle [9], it is a quantum
field theory based upon local gauge invariance. The SM consists of strong and electroweak
interactions which is based on the gauge symmetry SU(3)C ⊗ SU(2)L ⊗ U(1)Y . SU(3)C
has the symmetry group of strong interactions and SU(2)L ⊗ U(1)Y has the symmetry
group of electroweak interactions. The SM provides a basic theoretical framework and it is
experimentally well tested theory so far. Despite the successful theory of SM, it has some
limitations and some unanswered questions which we will discuss later.

2.1 Gauge Theory

Gauge principle give a tool to transform Lagrangian that is invariant with respect to global
symmetry transformation of non-abelian symmetric SU(N) group into a Lagrangian that
consists of a local symmetry invariance. Suppose a Lagrangian L(Ψ(y), ∂µΨ(y)) which is
invariant under SU(N) global transformation.

Ψ(y)→ UΨ(y), U−1 = U †. (2.1)

But our desire to develop a theory i.e. invariant with respect to local SU(N) transformation

Ψ(y)→ U(y)Ψ(y), U = eiα
a(y)Xa

(2.2)

The Lagrangian is now no more invariant under this local transformation. To preserve the
local invariance, we introduce the covariant derivative Dµ

Dµ = ∂µ − igAaµXa (2.3)

transform as

DµΨ(y)→ (DµΨ(y))′ = U(y)(DµΨ(y))

7



Where g is the arbitrary constant defined as coupling constant, Aaµ defined as a vector fields
or it is also called gauge fields and Xa are the corresponding generators that follow the
commutation algebra

[Xa, Xb] = ifabcXc

fabc define as the structure constant. To restore gauge invariance, Aµ vector field transforms
as

Aaµ → Aa
′

µ = U(y)(Aaµ +
i

g
∂µ)U †(y).

Finally, by adding the kinetic term for gauge field: Introducing locally invariant term that
depends on Aµ and its derivative. The field strength tensor F µν looks like

F µν,a = ∂µAν,a − ∂νAµ,a + gfabcAµ,bAν,c.

The product of F µν,aF a
νµ satisfies the structure of gauge theory and appears into the La-

grangian.
The new locally invariant Lagrangian takes the following form

L = L(Ψ(y),DµΨ(y))− 1

4
F µνFνµ. (2.4)

The Gauge theory principle extended a global to local symmetry and it give an information
about gauge field interactions.

2.2 The Standard Model Lagrangian

The SM Lagrangian [10] consists of the following main pieces

L = Lgauge + Lfermions + Lhiggs + Lyukawa (2.5)

Lgauge,Lfermions,Lhiggs and Lyukawa terms correspond to the gauge group SU(3)c⊗SU(2)L⊗
U(1)Y , the matter contents of fermions, the Higgs sector and the coupling of Higgs with
fermion of SM respectively.

2.2.1 Gauge Symmetry Group

The SM Lagrangian [11,12] is established on symmetry group SU(3)c⊗SU(2)L⊗U(1)Y . The
SU(3)c color symmetry group explains the strong interaction between quarks corresponding
to quantum chromodynamic (QCD) part. The SU(2)L ⊗ U(1)Y gauge group explains the
Glashow-Weinberg-Salam electroweak interaction theory. The gauge terms Lagrangian is as
follows

Lgauge = −1

4
BµνB

µν − 1

4
W i
µνW

i,µν − 1

4
Ga
µνG

a,µν (2.6)

8



The field strength tensor defined as

Bµν = ∂µBν − ∂νBµ

W i
µν = ∂µW

i
ν − ∂νW i

µ + g2ε
ijkW j

µW
k
ν

Ga
µν = ∂µG

a
ν − ∂νGa

µ + g3f
abcGb

µG
c
ν

Where W i
µ(i = 1, 2, 3) and Ga

µ(a = 1, ..., 8), and the corresponding covariant derivatives are

Dµ = ∂µ − ig1(Y )Bµ;

Dµ = ∂µ − ig2(
τ i

2
W i
µ);

Dµ = ∂µ − ig3(
λa

2
Ga
µ);

Boson Tensor Coupling constant Physical sate SU(3)C ⊗ SU(2)L ⊗ U(1)Y

Bµ Bµν g1 = e photon, Z (1,1,0)
W i
µ W i

µν g2 γ,W+,W− (1,3,0)
Ga
µ Ga

µν g3 gluons (8,1,0)

Table 2.1: The Standard Model Bosons

2.2.2 Fermionic Field in SM

Fermions have three generations. A charged lepton, neutrino and up and down type quarks
belong to each generation. Furthermore, they are split into left and right fermions. Left
handed fermions are doublet under SU(2)L while right handed are singlet under SU(2)L as
shown in Table2.2.
The fermionic field of SM explained by Dirac Lagrangian

L = ψ̄iγµ∂
µψ −mψ̄ψ

as

ψ =

(
ψL
ψR

)

Where as ψL and ψR are left and right handed Spinors respectively.
The Gell-Mann-Nishijima formula is defined as

Q = I3 +
Y

2
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The Q, I3 and Y denotes the charge, isospin and hypercharge respectively
The fermionic field Lagrangian is written as

Lfermion = il̄L /DLlL + iq̄L /DQqL + iēR /DeeR + iūR /DuuR + id̄R /DddR (2.7)

Where /D = γµDµ

Dµ
l = ∂µ − ig1YlB

µ − ig2σ
iW i,µ

Dµ
qL

= ∂µ − ig1YqLB
µ − ig2σ

iW i,µ − ig3t
aGa,µ

Dµ
e = ∂µ − ig1YeB

µ

Dµ
qR

= ∂µ − ig1YqB
µ − ig3t

aGa,µ qR = uR, dR

Here σi = τ i

2
belongs to pauli matrices are generator of SU(2), ta = λa

2
belongs to Gell-Mann

matrices are generator of SU(3).
So

Lfermion = il̄Lγ
µ
(
∂µ + ig1Bµ(−1

2
) + ig2W

i
µ

τ i

2

)
lL

+iq̄Lγ
µ
(
∂µ + ig1Bµ(

1

6
) + ig2W

i
µ

τ i

2
+ ig3G

a
µ

λa

2

)
qL

+iēRγ
µ
(
∂µ + ig1Bµ(−2

2
)
)
eR

+iūRγ
µ
(
∂µ + ig1Bµ(

2

3
) + ig3G

a
µ

λa

2

)
uR

+id̄Rγ
µ
(
∂µ + ig1Bµ(−1

3
) + ig3G

a
µ

λa

2

)
dR

Notation I3 Y Q Contents SU(3)c ⊗ SU(2)L ⊗ U(1)Y

lL
(

1/2
−1/2

)
−1

(
0
−1

) (
νeL
eL

)(
νµL
µL

)(
ντL
τL

)
(1, 2, −1

2
)

qL
(

1/2
−1/2

)
1
3

(
2/3
−1/3

) (
uL
dL

)(
cL
sL

)(
tL
bL

)
(3, 2, 1

6
)

eR 0 −2 −1 eR µR τR (1, 1, 1)
uR 0 4

3
2
3

uR cR tR (3̄, 1, −2
3

)
dR 0 −2

3
−1
3

dR sR bR (3̄, 1, 1
3
)

Table 2.2: Standard Model fermions

Charged Current

According to weak interaction theory the weak interactions only exist on left quark’s and
lepton’s doublet.

Lfermions = i(ūL, d̄L)γµ(∂µ − 1

2
igW µ

i τi)

(
uL
dL

)
= iūLγµ∂

µuL + id̄Lγµ∂
µdL −

1

2
gūLγµW

−µdL −
1

2
gd̄LγµW

+µuL

10



The pauli matrices (i = 1, 2) are used. W± gauge boson are responsible for flavor changing
from up to down and down to up as well. These kind of interactions are called charge current.

LCC = −1

2
gūLγµW

−µdL −
1

2
gd̄LγµW

+µuL (2.8)

2.2.3 Higgs Lagrangian

The Higgs sector be explained by introducing a new complex scalar doublet φ.

φ =

(
φ+

φ0

)

it transform as (
SU(3)c SU(2)L U(1)Y

1 2 1
2

)

The scalar doublet embedded in the Lagrangian as

LHiggs = |
(
∂µ + ig1Bµ(

1

2
) + ig2W

i
µ

τ i

2

)
φ|2 − m2

2
|φ|2 − λ

4
|φ|4 (2.9)

2.2.4 Higgs Mechanism

Higgs mechanism [13]is an interesting phenomena that explains how to give masses to gauge
bosons and fermions in the Standard Model(SM). Higgs mechanism is utilized to get rid
of the Goldstone theorem. According to this condition, Lagrangian is invariant under local
transformation.

φ(y) −→ φ′(y) = eigα(y)φ(y), φ∗(y) −→ φ′∗(y) = e−igα(y)φ(y)

The Lagrangian is

L = (Dµφ)†(Dµφ) +m2φ†φ− λ(φ†φ)2 − 1

4
FµνF

µν (2.10)

where Aµ is defined as massless gauge boson field, m and λ > 0 are real parameters, Fµν =
∂µAν − ∂νAµ, φ denote as complex scalar field.
Replacing ∂µ by Dµ

∂µφ −→ Dµφ, ∂µφ
† −→ (Dµφ)†

where,

Dµ = ∂µ + igAµ

11



and

Aµ −→ Aµ − ∂µα.

Considering α(x) = η(x)
V

, the gauge transform as

φ −→ φ′ = eig
η
V φ

Aµ −→ Aµ − ∂µη

Appling these transformation the L (2.10) remains same. We use φ(x) = V+h(x)√
2

in Eq(2.10),
we obtain the expression

L =
1

2
[(∂µ − igAµ)(V + h)(∂µ + igAµ)(V + h)] +

1

2
m2(V + h)2 − 1

4
λ(V + h)4

−1

4
FµνF

µν (2.11)

The interaction terms in the Lagrangian(2.11) are h3, h4, hAA and h2AA. The quadratic
terms in the Lagrangian correspond to the mass terms i-e (g

2V 2

2
AµA

µ) and (−λV h2) that
refer to the gauge boson and scalar boson mass respectively. The gauge boson Aµ eats up
the Goldstone boson and gives it a mass.

2.2.5 Higgs and Yukawa Terms

The dynamic of a spin-0 scalar field can be explained through Higgs part.

Lhiggs = (Dµφ)†Dµφ− V (φ)

The potential is

V (φ) = m2φ†φ+ λ(φ†φ)2

Where φ is a field defined as an isospin doublet

φ =

(
φ+

φ0

)
(2.12)

This field φ couples the Higgs boson with the fermion fields using Yukawa coupling. We
can further expand the lagrangian by the coupling between the fermion doublets and field
φ to introduce mass terms for the fermions. This rise the new terms, known as Yukawa
interactions, preserved by symmetries. The Yukawa terms Lagrangian is given as

Lyukawa = ψ̄LY φψR + h.c

Lyukawa = Yuq̄LφuR + Ydq̄Lφ̃dR + YLl̄Lφ̃eR + h.c (2.13)

QL and LL are defined as left handed quarks and leptons respectively.

lL = PL

(
νe
e

)
, qL = PL

(
u

d

)
12



uR, dR and eR are right handed up-type, down-type quarks and lepton respectively.
uR = PRu, dR = PRd, eR = PRe
where

PL =
(1− γ5)

2
, PR =

(1 + γ5)

2

Yu, Yd,and YL are Yukawa couplings for up-type, down-type quarks and lepton respectively.
The Yukawa coupling Yq where(q = u, d, l) are 3× 3 matrices. Local symmetry breaking can
be achieved by substituting various value for φ field in Eq(2.12).

φ =

(
φ+

φ0

)
−→ 1√

2

(
0

V + h(x)

)
(2.14)

The vacuum expectation value (VEV) is not zero and expected at V√
2
, where h(x) is a

perturbation around new VEV represented as the Higgs boson. The Yukawa terms in L will
be

Lyukawa =
V√

2
ūLYuuR +

V√
2
d̄LYddR +

V√
2
ēLYLeR + h.c (2.15)

2.3 CKM matrix and Fermion masses

The masses of gauge boson W± and Z gets through the SSB of the gauge group SU(2)L ⊗
U(1)Y . Why flavor changing neutral current is not allow at tree level in SM? How we can
generate fermions masses? We desperately required a term that couple the fermions with
Higgs doublet. They must be gauge invariant and renormalizable. These terms are called
Yukawa terms in the Lagrangian. The Lagrangian for the charge lepton corresponding to
first generation is

LLeptonsY ukawa,1 = −Yeē′φ†
(

e
νe

)′
L

+ h.c. (2.16)

For the three generations, the Lagrangian is written in the generalized form as

LLeptonsY ukawa = −(ē′R µ̄′R τ̄)Yl



φ†

(
e
νe

)′
L

φ†

(
µ
νµ

)′
L

φ†

(
τ
ντ

)′
L


+ h.c. (2.17)

13



According to Eq.(2.14) after giving VEV the LLeptonsY ukawa splits into two parts. One part explains
the interaction of leptons with physical Higgs and other part is explained by

LLeptonsMass = −(ē′R µ̄′R τ̄)Ml

 e
µ
τ


′

L

(2.18)

where,

Ml =
V√

2
Yl

In principle Ml is an arbitrary 3 complex matrix and cannot be named as mass matrix.
However the charge lepton fields are possible to transform in such fashion that Ml is defined
as diagonal matrix with positive real or zero number elements. The Lagrangian derived by
applying this type of transformation to all of its term will latter be expressed as the mass
eigenstate of the leptons. The new Lagrangian of charge current carries flavor mixing term.
All lepton fields now taking place are mass eigenstate, for distiction we use without prime
notation.
To analyze the quarks masses d ,s and b are the down type quark masses, the Yukawa
Lagrangian is same as the one in Eq.(2.17) with Y d

q Yukawa matrix. The up-type quark is a
bit different, we replace φ with iσ2φ

∗ as the SU(2)L doublet. Where σ2 is the pauli matrix

LU−quarksY ukawa = −(ū′R c̄′R t̄′R)Y u
q



iσ2φ
∗

(
u
d

)′
L

iσ2φ
∗

(
c
s

)′
L

iσ2φ
∗

(
t
b

)′
L


+ h.c. (2.19)

The Yukawa matrices are diagonalized by using the unitary transformation of the quark
fields explicity it is given as below u

c
t


′

L

= Vu

 u
c
t


L

,

 u
c
t


′

R

= Uu

 u
c
t


R d

s
b


′

L

= Vd

 d
s
b


L

,

 d
s
b


′

R

= Ud

 d
s
b


R

. (2.20)

Where Vu, Uu, Vd, Ud belong to U(3). In the lepton sector only one set exist like these ma-
trices, which diagonalize the yukawa matrices and that is the reason behind the Lagrangian
having different mass eigenstates from the weak eigenstate. The quarks mixing in different
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generation is defined by the CKM matrix known as Cabibbo-Kobayashi-Maskawa matrix
which relates weak eigenstates with mass eigenstates.

VCKM = V †uVd.

We can introduce these quarks coupling terms with W± bosons

LQuarksCC = − e

2 sin θW
(W+

µ J
µ,− +W−

µ J
µ,+) (2.21)

Where,

Jµ,− = (ū c̄ t̄)LVCKM

 d
s
b


L

(2.22)

In L(2.8) for the Charge current will become

LCC = −1

2
gūLγµW

−µdL −
1

2
gd̄LγµW

+µuL

= −1

2
gūLV

u†
L V d

LγµW
−µdL −

1

2
gd̄LV

d†
L V u

L γµW
+µuL (2.23)

The V u†
L V d

L mattrix product consisting of off-diagonal terms causes the transition of coupling
of quarks from one doublet to the other doublets involving weak transition and charged
current. This phenomena is called quark mixing and d′L defined for down type quarks consists
of mixed quark mass states.

d′L =

 d′

s′

b′

 = V u†
L V d

LdL =

 Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb


 d

s
b

 (2.24)

For instance the first element d′ is the superposition mass state of d, s and b that depends
on Vud, Vus and Vub. The V u†

L V d
L matrix product is called CKM matrix [8]. The components

are calculated by experimental analysis [14]. |Vud| ≈ 0.974 |Vus| ≈ 0.25 |Vub| ≈ 0.003
|Vcd| ≈ 0.225 |Vcs| ≈ 0.973 |Vcb| ≈ 0.04
|Vtd| ≈ 0.009 |Vts| ≈ 0.040 |Vtb| ≈ 0.999

 (2.25)

The CKM matrix explain in the following standard parametrization as [14]

VCKM =

 Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

 (2.26)

=

 C12C13 S12S13 S13e
−i∆

−S12C23 − C12S23S13e
i∆ C12S23 − S12S23S13e

i∆ S23C13

S12C23 − C12S23S13e
i∆ −S23C12 − S12C23S13e

i∆ C23C13

 (2.27)
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Here Cab = cosθab, Sab = sinθab (a, b = 1, 2, 3) and ∆ is the phase with the range 0 ≤ ∆ ≤
2π. S12 = |Vus|, S13 = |Vub|, S23 = |Vcb| and ∆. S12, S13 and S23 are four independent pa-
rameter which is obtained by tree-level decays. Numerical calculations can be done suitably
by standard parametrization.
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Chapter3
Theoretical Framework for B Meson
Decay

In this chapter we will present the theoretical framework for rare B meson decays which
is based on the effective field theory. The formalism of effective field theory can be use to
describe the weak decays. Furthermore we also briefly discuss the new physics scenarios
such as model independent/ leptoquark model and Z ′ models. The phenomenology of these
models discuss in chapter 4.

3.1 Effective Field Theory

Effective field theory(EFT) [15,16] is one of the ingredient in quantum field theory which will
use to analyze the multiscale problems. Consider a field theory whose characterstic energy
scale κ, and suppose that we want to discuss physics at some much lower scale E � κ. To
build such EFT one chooses a cutoff scale, which is slightly less then the energy scale and
integrate out the heavy degree of freedom In general, the effective Lagrangian is written as;

Leff =
∑
n≥0

Cn(µ)On (3.1)

The Lagrangian is an infinite sum over the operators On, where Cn(µ) is coupling constant
known as wilson coefficients. So one can ask about the predictability of this theory. The
answer to above question is by substituting the coupling constant Cn(µ) with dimensionless
constant cin . So the new form of Lagrangian is

Leff = L0 +
∑
n>0

∑
cin

cin
κn
Oin (3.2)

The higher dimension of operator are suppressed with the increasing power of κ. The lowest
dimensional operators is more important due to which one can cut off the series and only
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the finite couplings and number of operator will remain.
The lowest dimensional operator will be more important. However it depends on the precision
goal, where one can terminate the series and only the finite number of operators and couplings
should preserved

3.1.1 Operator Product Expansion

Operator product expansion (OPE) is one of the important tool to investigate the weak
interaction of quarks. To illustrate the phenomenon of OPE, consider a weak decay of
hadron D0 → K−π+ which at quark level occurs at c −→ sud̄ as shown in the fig.(3.1). The
full amplitude of such decay can be written by using Feynman rules for weak interaction
process and can be expressed as,

Figure 3.1: Left shows full theory and at Right the effective theory in c −→ sud̄

MFull =
g2

2

8
V ∗csVud[ūs(ps)γµ(1− γ5)uc(pc)]

gµν

k2 −m2
w

[ūu(pu)γν(1− γ5)ud(pd)]

MFull =
GF√

2
V ∗csVud[ūs(ps)γµ(1− γ5)uc(pc)]

m2
w

k2 −m2
w

[ūu(pu)γ
µ(1− γ5)ud(pd)] (3.3)

GF is Fermi constant

GF√
2

=
g2

2

8m2
w

(3.4)

Expanding the amplitude to O( k2

m2
w

)

MFull = −GF√
2
V ∗csVud[ūs(ps)γµ(1− γ5)uc(pc)][ūu(pu)γ

µ(1− γ5)ud(pd)] +O(
k2

m2
w

) (3.5)

Where k is the momentum transferred due toW propagator and its value is small as compared
to mw. We can neglect the terms O( k2

m2
w

) without any hesitation from Eq(3.5). Now the full
amplitude will be approximately equal to

MFull ≈ −
GF√

2
V ∗csVud[ūs(ps)γµ(1− γ5)uc(pc)][ūu(pu)γ

µ(1− γ5)ud(pd)] (3.6)
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The same result is obtained by the effective Hamiltonian

Heff =
GF√

2
V ∗csVud[s̄γµ(1− γ5)c][ūγµ(1− γ5)d] + higher Dim operator (3.7)

where

Q = [s̄γµ(1− γ5)c][ūγµ(1− γ5)d]

In this example the value of Wilson coefficient Ci(µ) = 1. This corresponds to the low
energy scale, where the heavier particles momenta is integrated out and the higher dimension
operator represented by the terms of order O( k2

m2
w

). The OPE idea is grasped through above
example. The significant property of OPE is to separate physics into two regime i-e the low
and high energy regime.
In this way the effective Hamiltonian is defined as the linear combination of these operators.
From the matching conditionMfull =Meff amplitude we get the Wilson coefficient Ci(µ)

Mfull =Meff =
GF√

2

∑
i

V i
CKMCi(µ) < Oi(µ) > (3.8)

< Oi(µ) > bracket denoted matrix element to the relevant operator Oi(µ). This is called
the matching condition of the full theory with effective theory. The full theory deals with
the particles having dynamical degree of freedom while in effective theory we integrate out
the heavy degree of freedom.

3.2 Effective Hamiltonian

The phenomenology of B-decays can be described by effective Hamiltonian. As mentioned
in chapter 1, the decay under consideration is Bc → D∗s`

+`−, at quark level this decay is
governed by the transition b→ s`+`− hence the effective Hamiltonian for such decay can be
expressed as

Figure 3.2: Effective diagram of b→ s`+`−

Heff = −GFV
∗
tsVtb√
2

∑
i=1

Ci(µ)Qi(µ) (3.9)
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Now we write amplitude, the initial state of meson Bc goes into D∗s which is final state
meson, can be written as

M(Bc → D∗s) = < D∗s |Heff |Bc > (3.10)

= −GFV
∗
tsVtb√
2

10∑
i=1

Ci(µ) < D∗s |Qi(µ)|Bc > (3.11)

Where V ∗tsVtb are CKM matrix elements, Qi(µ) are local quark operators and Ci(µ) are Wil-
son coefficients. The high energy physics are encoded in the WC’s Ci(µ) and low energy
physics are hidden in the local quark operators. The explicit form of these local quark op-
erators are given as follows [17];

Current-Current Operator

Q1 = (s̄icj)V−A(c̄jbi)V−A,

Q2 = (s̄c)V−A(c̄b)V−A,

Quantum Chromodynamics Penguin Operator

Q3 = (s̄b)V−A
∑
q

(q̄q)V−A,

Q4 = (s̄ibj)V−A
∑
q

(q̄jqi)V−A,

Q5 = (s̄b)V−A
∑
q

(q̄q)V+A,

Q6 = (s̄ibj)V−A
∑
q

(q̄jqi)V+A,

where q=u,d,b,s,c

Magnetic Dipole Operator

Q7 =
e

8π2
mb(s̄σ

µν(1 + γ5)b)Fµν ,

Q8 =
e

8π2
mb(s̄iσ

µν(1 + γ5)Tijbj)Gµν ,

Semileptonic electroweak penguin operator
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Q9 =
e

8π2
(s̄b)V−A(l̄l)V ,

Q10 =
e

8π2
(s̄b)V−A(l̄l)A. (3.12)

where (V±A) stands for γµ(1±γ5). Gluon and photon field are the Gµν and Fµν respectively;
Tij represents the generators of the SU(3) color group; i and j are color indices.
In rare B meson decays, several decay modes precisely discussed in literature such as B →
Xs`

+`−, B → (K,K∗)`+`− [7, 18, 19] based on quark level transitions b → s`+`− mediated
via FCNC at loop level in SM. Many models are proposed in literature such as Z ′ models,
Leptoquarks, SUSY and Universal extra dimension (UED) model which are powerful tool to
search NP in said decays.
In this thesis, we consider only those NP models where the effects of NP can be observed
only through the modification of WC’s.

New Physics Models

To investigate the NP effects via Bc → D∗s`
+`− decays, we consider two different NP models

such as heavy and light Z ′ models, Model independent/leptoquark models.

3.3 Model Independent Scenarios

In model independent scenarios all possible contributions in the form of Wilson coefficient
and operators are taken into account in effective Hamiltonian. We write effective Hamilto-
nian for quark level transition b→ sµ+µ−

Heff = −GFV
∗
tsVtbα√
2π

∑
k=9,10

(CkQk + C ′kQ
′
k) (3.13)

Q9 = [s̄γµPLb][µ̄γ
µµ] (3.14)

Q10 = [s̄γµPLb][µ̄γ
µγ5µ]

Where we can get prime operators by replacing PL → PR and primed wilson coefficient have
contributions from both SM and NP. There are a number of observables and experimental
measurements can be used to constraint on NP for transition b→ sµ+µ− to get new physics
wilson coefficient.
There are three different NP scenarios discussed in literature [20];

• (I) Cµµ
9 (NP ) < 0
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• (II) Cµµ
9 (NP ) = −Cµµ

10 (NP ) < 0

• (III) Cµµ
9 (NP ) = Cµµ

′

9 (NP ) < 0

Scenarios (I) and (II) will be taken to search the effects of NP in MI scenarios [20]. However,
scenario (III) is ignored because it disagreed with experimental measurement. Leptoquark
model could be only taken for scenario II. However, Z ′ models could be taken for both
scenarios. we add model independent NP wilson coefficient C9(NP ) and C10(NP ) in the
SM WC’s C9(SM) and C10(SM) to search NP effects in said decay.
Here, we use two types of data fit for this transition b → sµ+µ−, we analyze only CP
conserving observables in fit A and we study RK∗ in fit B [1]. Fit-A and fit-B are taken in
both the model dependent and MI analysis. The values of these WC’s couplings of fit A and
fit B taken from ref. [1] are given in table 3.1.

Scenarios fit-A fit-B
(I)Cµµ

9 (NP ) -1.20± 0.20 -1.25± 0.19
(II)Cµµ

9 (NP ) = −Cµµ
10 (NP ) -0.62± 0.14 -1.68± 0.12

(III)Cµµ
9 (NP ) = −Cµµ

′

9 (NP ) -1.10 ± 0.18 -1.11± 0.17

Table 3.1: MI scenarios: WCs values in best fitting are taken from ref. [1]

3.3.1 Leptoquark Model

It is well known that Leptoquarks are spin-0 scalar or spin-1 vector bosonic particles that
can couple to a lepton and a quark at the same time. The Leptoquark (LQ) models were
explained in Ref. [20,21]. There are only three from the ten, LQ Models which could couple
with SM particles having dimension less than or equal to 4 operators, explain b → sµ+µ−.
We consider here scalar isotriplet Leptoquarks(S3) which potentially contribute to the b →
sµ+µ− transition. The LQs transform as like SM guage symmetry SU(3)⊗ SU(2)⊗ U(1).
After integrating out the heavy scalar LQ boson, effective Hamiltonian of Heavy LQ model
can be written as [21]

Heff = −GFV
∗
tsVtbα√
2π

(CNP
9 Q′9 + CNP

10 Q′10) (3.15)

All LQ models associated with only scenario (II). Cµµ
9 (NP ) = −Cµµ

10 (NP ).

Heff = −GFV
∗
tsVtbα√
2π

CNP
9 (Q′9 −Q′10) (3.16)

We will obtain Q′9, Q′10 by flipping the projection operator PL → PR in Q9, Q10 from eq.3.12.
The WC’s of LQ Model is directly proportional to fermions coupling gbµL g

sµ
L is given in ref. [20]

Cµµ
9 (NP ) ∝

gbµL g
sµ
L

M2
LQ

(3.17)
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couplings of LQ are gbµL g
sµ
L and MLQ is the leptoquark mass. The value of WC’s is same as

for Model Independent fit, given in table 3.1.

3.3.2 Z ′ Model

The Z ′ model [22–27] is the extension of SM, addition of an extra U(1)′ guage symmetry to
the SM structure. One extra U(1)′ guage symmetry associated with a neutral gauge boson Z ′
gives off-diagonal couplings of non-universal Z ′ with fermions due to this FCNC transitions
could occur at tree level in Z ′ model [28, 29]. We write the neutral current Lagrangian in
the SM with Z ′ contribution as [30]

LNC = LZSM − gZ
′

2 J
′
µZ
′µ (3.18)

where gZ′2 is the guage coupling of Z ′ and LZSM = −eJµemAµ − gZJ
µ
ZZµ. The Z ′ current is

given as;

J ′µ =
∑
i,j

Ψ̄iγµ[(εΨL)ijPL + (εΨR)ijPR]Ψj (3.19)

where Ψ denotes weak eigenstates of SM fermions, the sum is over the fermion flavors,
PL,R ≡ (1∓ γ5)/2, and εΨL,R denote the chiral couplings. Z ′ must transform as a triplet or
singlet of SU(2)L and couples to left handed quarks. The fermion Yukawa matrices YΨ in
the weak eigenstate basis are diagonalized by the unitary matrices V Ψ

L,R ;

YdiagΨ = V Ψ
R YΨ V

Ψ†
L (3.20)

Here, VCKM = V Ψ
R V

Ψ†
L

Now, the chiral Z ′ couplings in the fermion mass eigenstate basis can be written as;

XΨL ≡ V Ψ
L εΨLV

Ψ†
L , XΨR ≡ V Ψ

R εΨRV
Ψ†
R (3.21)

Therefore, the chiral Z ′ couplings are induced by fermion mixing. Hence, FCNC occur at
tree level in Z ′ model due to off diagonal coupling of non universal Z ′.

XΨL,R =

 XΨL,R
11 0 XΨL,R

13

0 XΨL,R
11 XΨL,R

23

XΨL,R∗
13 XΨL,R∗

23 XΨL,R
33

 (3.22)

We consider two types of Z ′ models such as, Heavy and Light Z ′ models both are consistent
with b→ sµ+µ−.
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3.3.3 Heavy Z ′ Model

We have to taken important constraints form other obervables and experimental measure-
ments for transition b→ sµ+µ− to determine the properties of Z ′ accordingly, the Lagrangian
of Z ′ model can be written as;

LZ′ = J ′µZ
′ (3.23)

Jµ = −gµµLLX̄γ
µPLX + gµµR µ̄γµPRµ+ gbsL ψ̄q2γ

µPLψq3 (3.24)

so, ψqi denote as the quark doublet, and X = (νµ, µ)T .We integrated out the heavy Z ′ guage
boson [1]. Effective lagrangian containing 4-fermion operators written as;

LeffZ′ = − 1

2M2
Z′
JµJ

µ = − gbsL
M2

Z′
(s̄γµ(1− γ5)b)(µ̄γµ(gµµL PL + gµµR PR)µ) (3.25)

− (gbsL )2

2M2
Z′

(s̄γµPLb)(γ̄
µPLb)

− gµµL
M2

Z′
(µ̄γµ(gµµPL + gµµPR)µ)(ν̄µγ

µPLνµ)

Here, we consider two scenarios for the phenomenology of Z ′ models are;

• Scenario (I) gµµR = gµµL

• Scenario (II) gµµR = 0

The modified Wilson coefficient’s in TeV Z ′ are given as;

Cµµ
9 (NP ) =

[
π√

2GFαVtbV ∗ts

]
× gbsL (gµµL + gµµR )

M2
Z′

(3.26)

Cµµ
10 (NP ) = −

[
π√

2GFαVtbV ∗ts

]
× gbsL (gµµL − g

µµ
R )

M2
Z′

(3.27)

Following are the couplings of NP Wilson coefficients of Heavy Z ′ model.

gµµL Z ′(I)gbsL Z ′(II) gbsL
0.5 (-1.8± 0.3)× 10−3 (-1.9± 0.4)×10−3

Table 3.2: TeV Heavy Z ′ model in best fit values of absL in fit A in Ref. [1]

The four fermion operators required with in the scenarios are as follows;
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gµµL Z ′(I)gbsL Z ′(II)gbsL
0.5 (−1.9± 0.3)× 10−3 (−2.1± 0.4)× 10−3

Table 3.3: TeV Heavy Z ′ model in best fit values of absL in fit B in Ref. [1]

• (I) [s̄γµPLb][µ̄γ
µµ]

• (II) [s̄γµPLb][µ̄γ
µPLµ]

• (III) [s̄γµγ5b][µ̄γ
µµ]

There are two scenarios for Z ′ Model. It is natural for Z ′ guage boson to couple vectorially to
s̄LbL and µ̄µ or µ̄LµL as scenario (III) have need that Z ′ couple axial-vectorially to s̄b which
seems not natural. All things considered, we exclude scenario (III) which has disagreement
with experiments.

3.3.4 Light Z ′ Model

In Light Z ′ Model, we have two different mass ranges mZ′ > mB and mZ′ < 2mµ, first range
have implication in dark matter and second range discuss the muon measurement of g−2 and
have application for neutrino interaction. Here, we consider first range for mZ′ = 10GeV .
The modified Wilson coefficient’s for GeV Z ′ are given as;

Cµµ
9 (NP ) =

[
π√

2GFαVtbV ∗ts

]
× (absL + gbsL (q2/m2

B))(gµµL + gµµR )

q2 −M2
Z′

(3.28)

Cµµ
10 (NP ) = −

[
π√

2GFαVtbV ∗ts

]
× (absL + gbsL (q2/m2

B))(gµµL − g
µµ
R )

q2 −M2
Z′

(3.29)

Here we have the WC’s are q2 dependent in Light Z ′ model for b→ sµ+µ−.
In the GeV Light Z ′ model absL is present, so here we will unconcern gbsL . Following are the
couplings of NP wilson coefficients of Light Z ′ model.

gµµL Z ′(I) absL Z ′(II)absL
1.2 (−5.2± 1.2)× 10−6 (−7.2± 1.8)× 10−6

Table 3.4: GeV Light Z ′ model in best fit values of absL in fit A in Ref. [1]

25



Chapter4
Analysis of Decay Bc→ D∗s`

+`− Beyond
SM

4.1 Effective Hamiltonian of decay Bc → D∗s`
+`−

We calculate exclusive semileptonic B meson decay Bc → D∗s`
+`− with in SM and beyond.

The decay corresponds to penguin diagram which is also called SD diagram as shown in
Fig.4.1.
The Amplitude for Bc → D∗s `

+`− which is based on quark level transition of b → s`+`−

decay leaded by effective Hamiltonian from eq.3.9 written as follow;

MPEGN
Bc→D∗s ¯̀̀ = − GFα√

2π
VtbV

∗
ts[Ctot9 (µ) < D∗s(k, ε)|s̄γµ(1− γ5)b|Bc(p) > (l̄γµl)

+ Ctot10 < D∗s(k, ε)|(s̄γµ(1− γ5)b)|Bc(p) > (l̄γµγ5l)

− 2 Ceff7 (µ)
mb

q2
< D∗s(k, ε)|(s̄iσµνqν(1 + γ5)b)|Bc(p) > l̄γµl] (4.1)

Figure 4.1: Penguin diagram for Bc → D∗s`
+`− decay [3]
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Here, Ctot
9 = Ceff

9 (SM)+ Cµµ
9 (NP) and Ctot

10 = Ceff
10 (SM)+Cµµ

10 (NP).
We write wilson coefficient Ceff9 [17] as

Ceff9 (µ) = YSD(r, v′) + YLD(r, v′) + C9(µ) (4.2)

Ceff9 = C9 + C0{u(r, v′) +
3π

α2
∆

∑
Di=Ψ(1s),Ψ(2s)

Γ(Di → l+l−)mDi

m2Di

− q2 − imDiΓDi} (4.3)

So here,

C0 ≡ 3C5 + C6 + 3C1 + C2 + 3C3 + C4

.

YSD(r, v′) = u(r, v′)(3C1(µ) + C2(µ) + 3C3(µ) + C4(µ) + 3C5(µ) + C6(µ))

−1

2
u(1, v′)(4C3(µ) + 4C4(µ) + 3C5(µ) + C6(µ))

−1

2
u(0, v′)(C3(µ) + 3C4(µ)) +

2

9
(3C3(µ)

+C4(µ) + 3C5(µ) + C6(µ)).

u(r, v′) = −8

9
ln
mb

µ
− 8

9
ln r +

8

27
+

4

9
y

−2

9
|1− y|1/2(2 + y)

[
ln |
√

1− y + 1√
1− y − 1

| − iπ

]
for y ≡ 4r2/v′ < 1,

u(r, v′) = −8

9
ln
mb

µ
− 8

9
ln r +

8

27
+

4

9
y

−2

9
|1− y|1/2(2 + y)

[
2 arctan

1√
y − 1

]
for y ≡ 4r2/v′ > 1,

u(0, v′) =
8

27
− 8

9
ln
mb

µ
− 4

9
ln v +

4

9
iπ.

where r = mc/mB, v
′ = q2/m2

B and ∆ = 1/C0. YSD denotes the SD contributions.
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4.2 Matrix Element and Form Factors

The parameterization of matrix elements for decay Bc → D∗s are written in terms of form
factors [2] which are functions of momentum transfer [q2 = (p− k)2].

< D∗s(k, ε)|s̄γµb|Bc(p) > =
2iεµναβ

MBc +MD∗s

ε∗νpαkβAV (q2) (4.4)

< D∗s(k, ε)|s̄γµγ5b|Bc(p) > = (MBc +MD∗s )ε
∗µA0(q2)

−(ε∗.q)A+(q2)

MBc +MD∗s

(p+ k)µ

− A−(q2)

MBc +MD∗s

(ε∗.q)qµ

< D∗s(k, ε)|s̄iσµνqνb|Bc(p) > = 2iεµναβε
∗νpαkβT1(q2)

< D∗s(k, ε)|s̄iσµνqνγ5b|Bc(p) > =
[
(M2

Bc +M2
D∗s

)ε∗µ − (ε∗.q)(p+ k)µ

]
T2(q2)

+(ε∗.q)

[
qµ −

q2

(M2
Bc

+M2
D∗s)

(p+ k)µ

]
T3(q2)

where p denotes the momentum of Bc meson and , ε(k) are the polarization vector D∗s meson.

The form factors [2]AV (q2), A0(q2), A+(q2), A−(q2), T1(q2), T2(q2), T3(q2) are the non-perturbative
quantities. Form factors are calculated by using QCD sum rules [2]. We use the parameter-
ization of form factors which depends on momentum transfer (q2) can be written as; [2]

F(q2) =
F(0)

1 + α q2

MBc
+ β q4

MBc

(4.5)

where the values of F(0), α and β are given in following Table 4.1.

In order to analyze the various observables, such as the branching ratios, the longitudinal
helicity fractions, leptons forward backward asymmetry and lepton flavor Universality(LFU)
ratios, we can express the amplitude in helicity basis.

4.3 Helicity Amplitude of B meson decay

We write the amplitude of penguin diagram by substituting matrix elements in eq.4.1 and
separated out leptonic vector current and leptonic axial current.
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F(q2) F(0) α β

AV (q2) 0.54 -1.28 −0.23
A0(q2) 0.30 −0.13 −0.18
A+(q2) 0.36 −0.67 −0.066
A−(q2) −0.57 −1.11 −0.14
T1(q2) 0.31 −1.28 −0.23
T2(q2) 0.33 −0.10 −0.097
T3(q2) 0.29 −0.91 0.007

Table 4.1: Form factors of Bc → D∗s decay which are calculated by using QCD Sum rules [2].

MPEGN
Bc→D∗s `+`− = − GFα

2
√

2π
VtbV

∗
ts[T

1
µ(l̄γµl) + T 2

µ(l̄γµγ5l)] (4.6)

T 1
µ = −iεµναβε∗νpαkβF1(q2)− gµνF2(q2) + qµqνF3(q2) + PµqνF4(q2)

T 2
µ = −iεµναβε∗νpαkβF5(q2)− gµνF6(q2) + qµqνF7(q2) + PµqνF8(q2)

The functions F1 to F8 in eq. 4.7 are recognized as auxiliary functions. Auxiliary functions
contain both SD (WC’s) and LD (Form factors).
We write the auxiliary functions as follow;

F1 =
2Ceff

9 AV (q2)

MD∗s +MBc

+
4mb

q2
Ceff

7 T1(q2) (4.7)

F2 = Ceff
9 A0(q2)(MD∗s +MBc) +

2mb

q2
Ceff

7 T2(q2)(MD∗s +MBc)

F3 =
A−(q2)Ceff

9

MD∗s +MBc

+
2mb

q2
Ceff

7 T3(q2)

F4 =
A+(q2)Ceff

9

MD∗s +MBc

+
2mb

q2
(T2(q2) +

q2T3(q2)

MD∗s +MBc

)

F5 =
2Ceff

10 AV (q2)

MD∗s +MBc

F6 = Ceff
10 (MD∗s +MBc)A0(q2)

F7 =
Ceff

10 A−(q2)

MD∗s +MBc

F8 =
Ceff

10 A+(q2)

MD∗s +MBc

29



Now square of amplitude modulus is written as;

|M |2 = M †M

|M |2 =
Gfαλt

2
√

2π
[T µ1 T

|†ν
1 (l̄γµl)(l̄γνl)

† + T µ1 T
|†ν
2 (l̄γµl)(l̄γνγ5l)

† (4.8)

+ T µ2 T
†ν
1 (l̄γνγ5l)(l̄γµl)

† + T µ2 T
†ν
2 (l̄γµγ5l)(l̄γνγ5l)

†]

|M |2 =
Gfαλt

2
√

2π
[Hµµ

11 (l̄γµl)(l̄γνl)
† +Hµν

12 (l̄γµl)(l̄γνγ5l)
† (4.9)

+ Hµν
21 (l̄γνγ5l)(l̄γµl)

† +Hµµ
22 (l̄γµγ5l)(l̄γνγ5l)

†]

Where λt = VtbV
∗
ts and H

µν
ij = T µi T

ν†
j

now as,

(l̄γµl)(l̄γνl)
† = tr[γµ(pµ1 −ml)γν(p

µ
2 +ml)] (4.10)

(l̄γµl)(l̄γνγ5l)
† = tr[γµγ5(pµ1 −ml)γνγ5(pµ2 +ml)]

(l̄γνγ5l)(l̄γµl)
† = −tr[γµ(pµ1 −ml)γνγ5(pµ2 +ml)]

(l̄γµγ5l)(l̄γνγ5l)
† = −tr[γµγ5(pµ1 −ml)γν(p

µ
2 +ml)]

so therefore,

∑
pol

|M |2 = [Hµµ
11 .tr[γ

µ(�p
µ
1 −ml)γν(�p

µ
2 +ml)] (4.11)

+Hµν
22 .tr[γ

µγ5(�p
µ
1 −ml)γνγ5(�p

µ
2 +ml)]

−Hµν
12 tr[γ

µ(�p
µ
1 −ml)γνγ5(�p

µ
2 +ml)]

−Hµν
21 .tr[γ

µγ5(�p
µ
1 −ml)γν(�p

µ
2 +ml)]]

= [Hµν
11 .4(−gµν(m2

l + p1.p1) + pµ1p
ν
2 + pµ2p

ν
1) (4.12)

+Hµν
22 .4(gµν(m

2
l − p1.p1) + pµ1p

ν
2 + pµ2p

ν
1)

+Hµν
12 .4(iεµναβp

α
1p

β
2 ) +Hµν

21 .4(iεµναβp
α
1p

β
2 )]
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∑
pol

|M |2 = 4[Hµν
11 (−L(2)

µν (m2
l +

q2 − 2m2
l

2
) + L(1)

µν ) (4.13)

+Hµν
22 (L(2)

µν (m2
l +

q2 − 2m2
l

2
) + L(1)

µν )

+(Hµν
12 +Hµν

21 )L(3)
µν ]

∑
pol

|M |2 = 4[L(1)
µν (Hµν

11 +Hµν
22 )− 1

2
L(2)
µν (q2Hµν

11 + (q2 −m2
l )H

µν
22 ) (4.14)

+L(3)
µν (Hµν

12 +Hµν
21 )]

We have defined hadron and lepton tensors [17] as

L(1)
µν = p1µp2ν + p2µp1ν (4.15)

L(2)
µν = gµν

L(3)
µν = iεµναβp

α
1p

β
2

Hµν
ij = T µi T

ν†
j

We will solve these tensors in the following sections.

4.3.1 Hadronic part

The hadronic tensor in terms of helicity basis ε†µ(m) as,

H i
m = ε†µ(m)T (i)

µ (4.16)

H i
m = ε†µ(m)ε†ν(n)T (i)

µν

Where T (i)
µ = ε†ν(n)T

(i)
µν , εν is the "vector polarization" of the final state D∗s meson;

m,n = 0, ±, t, are the longitudinal, transverse and time components; and i = 1, 2;
The helicity components of polarization vector reads as;

εµ(±) =
1√
2

(0,±1, i, 0) (4.17)

εµ(0) =
1

m
(|k|, 0, 0, E)

gmn = diag(+,−,−,−)

and in the B -meson rest frame i.e

pµ = (mB, 0, 0, 0) (4.18)
kµ = (Ek, 0, 0, |k|)
qµ = (q0, 0, 0, |k|)
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the polarization vectors reads as

εµ(t) =
1√
q2

(q0, 0, 0, |k|) (4.19)

εµ(±) =
1√
2

(0,∓1, i, |k|)

εµ(0) =
1√
q2

(|k|, 0, 0, q0)

where |k| =
√
λ

2mB
; λ = m4

B +m4
D∗s

+ q4 − 2(m2
Bm

2
D∗s

+m2
D∗s
q2 +m2

Bq
2) and

ED∗s =
m2
B+m2

D∗s
−q2

2mB
, D∗s is final state meson, so using equation of Hadronic tensor we have,

H
(1)
0 =

1

mD∗s

√
q2

[2q0|k|2(q0 − ED∗s )F2 + (|k|2 + q0ED∗s )F3 (4.20)

+|k|2(q0(mB + 2ED∗s )− q
2
0 − ED∗s (mB + ED∗s ))F4]

H
(2)
0 =

1

mD∗s

√
q2

[2q0|k|2(q0 − ED∗s )F6 + (|k|2 + q0ED∗s )F7

+|k|2(q0(mB + 2ED∗s )− q
2
0 − ED∗s (mB + ED∗s ))F8]

H
(1)
+ = −i|k|mBF1 + F3

H
(2)
+ = −i|k|mBF5 + F7

H
(1)
− = i|k|mBF1 + F3

H
(2)
− = i|k|mBF5 + F7

These are the components of hadronic tensor, The subscripts ±, 0 denotes the transverse
and longitudinal helicity components, respectively. We have ignored the time component for
both leptonic and hadronic tensors.

4.3.2 Leptonic Part

For the leptonic tensors L(k)
µν in l̄l-CM frame we can write,

qµ = (
√
q2,~0) (4.21)

pµ1 = (El, |p1|sinθ, 0, |p1|cosθ)
pµ2 = (El,−|p1|sinθ, 0,−|p1|cosθ)
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with El =
√
q2/2 and |p1| =

√
q2 − 4m2

l /2 and the polarization vectors in l̄l − CM frame
are;

εµ(±) =
1√
2

(0,±1, i, 0) (4.22)

εµ(0) = (0, 0, 0, 1)

εµ(t) = (1, 0, 0, 0)

Hence by using this information of polarization of vectors and lepton kinematics, we have
calculated the following lepton tensor components;

L1
00 = −2|p1|2cos2θ (4.23)

L2
00 = −1

L3
00 = 0

L1
++ = El − |p1|2sin2θ

L2
++ = −1

L3
++ = −2El|p1|cosθ

L1
−− = E2

l

L2
−− = −1

L3
−− = 2El|p1|cosθ

Now, by using these leptonic tensor components, the hadronic tensor components, we can
write amplitudeM of saai decay in terms of helicity basis.

4.4 Differential decay rate

We write branching ratio in terms of helicity amplitude, which is:

d2Γ(Bc → D∗s`
+`−)

dq2
=

1

(2π)3

1

32M3
Bc

∫ −(q2)

+(q2)

dq2|M|2 (4.24)

d2Γ(Bc → D∗s`
+`−)

dq2dcosθ
=

G2
F

(2π)3

(
α|λt|
2π

)2 |k|
√

1− 4m2
l /q

2

8m2
l

1

2
[ L(1)

µν .(H
µν
11 +Hµν

22 ) (4.25)

−1

2
L(2)
µν (q2Hµν

11 + (q2 −m2
l )H

µν
22 ) + L(3)

µν .(H
µν
12 +Hµν

21 ) ]
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Where λt = |V †tsVtb| denotes CKM matrices, |k| denotes as momentum of vector meson given
in the rest frame of B meson. After integration over cosθ and putting the values of the
leptonic and hadronic tensor components L(k)(m,n), H ij(m,n) respectively, we get;

dΓ(B → D∗s`
+`−)

dq2
=

G2
F

(2π)3

(
α|λt|
2π

)2
λ1/2q2

48M3
B

√
1− 4m2

l /q
2[ H1H1†(1 + 4m2

l /q
2)

+H2H2†(1− 4m2
l /q

2) ] (4.26)

where ml denotes as the lepton mass, λ= M4
B + M4

D∗s
+ q4 − 2(M2

BM
2
D∗s

+ M2
D∗s
q2 + M2

Bq
2)

and we separated out transverse and longitudinal hadronic components of amplitudes.

H iH i† ≡ H i
+H

i†
+ +H i

−H
i†
− +H i

0H
i†
0

Branching ratios precisely used in literature to find NP effects. NP effects can be observe
more easily in the branching ratio of Bc → D∗s`

+`− than others observables because branch-
ing ratios are measured to be consistent with both the SM and NP.

4.5 Forward Backward Asymmetry

We determine leptons forward backward asymmetry(FBA) to analyze our said process. FBA
is an importance observables to search NP effects than the other physical observables because
its minimize the uncertainties due to form factors and the value of zero crossing of AFB gives
a more clear signal of presence of NP effects.
The FBA of leptons is defined as;

AFB =
N F −NB

N F +NB
(4.27)

where N F (NB) is the number of event in which leptons moving in forward(backward) di-
rections.
We use the double differential decay rate formula from eq. 4.26 to simplify the following
expression for forward backward asymmetries;

AFB(q2) =

∫ 1

0
dcosθ d

2Γ(q2,cosθ)
dq2dcosθ

−
∫ 0

−1
dcosθ d

2Γ(q2,cosθ)
dq2dcosθ∫ 1

0
dcosθ d

2Γ(q2,cosθ)
dq2dcosθ

+
∫ 0

−1
dcosθ d

2Γ(q2,cosθ)
dq2dcosθ

(4.28)

We write the analytical expression for forward backward Asymmetry of leptons as follow;

AFB =
3

4

√
1− 4m2

l

q2

Re(H
(1)
+ H

†(2)
+ )−Re(H(1)

− H
†(2)
− )

H(1)H†(1)(1 +
4m2

l

q2
) +H(2)H†(2)(1− 4m2

l

q2
)

(4.29)
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4.6 Helicity Fraction

Longitudinal Helicity fraction of D∗s meson in said decay which have less dependence on
input parameters and uncertainties arising because of form factors. The study of helicity
fraction will give a test for NP in said process.
We write an differential expression for longitudinal helicity fraction of D∗s meson;

FL =
dΓL(q2)/dq2

dΓ(q2)/dq2
(4.30)

where dΓL(q2)/dq2 is the longitudinal component of decay rate. Now we can easily write the
following analytical expression for longitudinal helicity fraction by using longitudinal and
total component of decay rate in eq.4.30;

FL(q2) =
H

(1)
0 H

(1)†
0 (1 +

4m2
l

q2
) +H

(2)
0 H

(2)†
0 (1− 4m2

l

q2
)

H(1)H(1)†(1 +
4m2

l

q2
) +H(2)H(2)†(1− 4m2

l

q2
)

(4.31)

The experimentally measured values of FK∗
L for the decay B → K∗`+`− based on transition

of b→ s¯̀+`− by Babar collaboration are [31]

F
[ q2≤10.24]
L = 0.51+0.22

−0.25 ± 0.08 (4.32)

F
[0.1, 8.14]
L = 0.77+0.63

−0.30 ± 0.07 (4.33)

these values have tension with SM prediction. Longitudinal helicity fraction of D∗s meson
may hint the influence of NP in said decay.

4.7 Lepton Flavor Universality Ratios

Lepton Flavor Universality ratios are the ratio of branching ratios to different lepton gen-
eration and this observable an ideal tool to test for NP in said process. We compare cross
sections or decay widths which change only in lepton flavor, like electron and muon, So lep-
ton flavor universality ratios can be represented as a function of particle masses where CKM
matrix element factors and guage factor void in ratios, although hadronic physics parameters
like as form factors and decay constants also suppress in LFU ratios.
Analytical expression for LFU ratio can be written as;

R
D

(∗)
s

=

∫ q2max
q2min

dB(Bc→D(∗)
s µ+µ−)

dq2
dq2∫ q2max

q2min

dB(Bc→D(∗)
s e+e−)

dq2
dq2

(4.34)

Deviation in LFU ratio from the SM predictions is the good sign of the presence of NP. So
experimentally measured LFU ratios at LHCb are theoretically very clean observable in the
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search of NP and the values given by LHCb are [32,33]

R
[1.1,6]
K∗ = 0.69+0.11

−0.07 ± 0.05, R
[1,6]
K = 0.745+0.090

−0.074 ± 0.036, R
[0.045,1.1]
K∗ = 0.66+0.01

−0.07 ± 0.03 (4.35)

these values have deviation with the SM values are 2.1-2.3σ, 2.6σ and 2.6σ respectively [34].
The measurements of the ratios RK∗ hint towards LFU violation. We test lepton flavor
universality ratio in rare B meson decays where interestingly large hadronic uncertainties
essentially cancel out. We will consider MI new physics scenarios and Z ′ models to deduce
NP effects by LFU ratios, so we will determine to which pattern new physics effects arises
in RD∗s .

Observables [0.045-1] [1-2] [2-3] [3-4] [4-5] [5-6] [1-6]
10−7 × B(Bc → D∗sµ

+µ−) 0.213 0.071 0.078 0.094 0.011 0.012 0.048
<RD∗s> 0.939 0.977 0.981 0.985 0.989 0.991 0.985
<FL

D∗s
> 0.177 0.617 0.564 0.469 0.397 0.345 0.458

< AFB> -0.023 -0.055 -0.022 0.003 0.020 0.031 0.001

Table 4.2: In different q2 bins: averaged values in different observables of Bc → D∗sµ
+µ−

decay in the SM.

4.8 Phenomenological Analysis

In the numerical calculation, we state all the inputs that are used for our various observables.
Renormalization scale is µ = 4.8GeV in our analysis. Mass of fermions, we use mb =
4.18GeV , mµ = 0.015GeV , mc = 1.28GeV . Mass of mesons, we use MBc = 6.23GeV ,
MD∗s = 2.112GeV . Similarly, Bc meson mean life time is τBc = 0.507 × 10−12 and GF =
1.15×10−5GeV −2 is fermi coupling constant which are given in ref. [2]. We take α−1

e = 137 for
the electromagnetic coupling constant. We use CKMmatrix element |VtbV ∗ts| = 38.5×10−3 [2].
The WC’s are taken from ref. [2] given in table4.3. For MI scenarios, we use the wilson
coefficient given in table 3.1. We take wilson coefficients of model independent scenario II to
deduce new physics effects in LQ model. For Z ′ models, we use wilson coefficients couplings
given in tables 3.2,3.3,3.4.

C1 C2 C3 C4 C5 C6 Ceff7 C8 C9 C10

-0.2632 1.0111 0.0055 -0.0806 0.0004 0.0009 -0.313 -0.15 4.0749 -4.3085

Table 4.3: The values of WCs Ci(µ) [2] at the scale µ = 4.8GeV shown in above table.

Like B → D(∗)τν and B → K(∗)µ+µ− decays which are precisely studied [32, 33], the
Bc → D∗sµ

+µ− decay also provide complimentary information regarding NP. From several
years, many observables related to the FCNC transitions b → s`+`− have shown deviation
from SM expectations. These transitions are well known to have a high sensitivity to NP
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contributions due to their suppression within the SM. We show the results achieved in Z ′

models and model independent/ leptoquark model which have deviation from corresponding
SM predictions.

• We plotted branching ratios of our said decay in model independent new physics sce-
narios and in model dependent, i.e. leptoquark and Z ′ models. In order to search NP
effects in mentioned observables discarded the c̄c resonance region because NP effects
are not clear in this region. Branching ratio shows maximum deviation from SM in
particular q2 regions 4<q2<6 and 6<q2<8. We see in 4<q2<6 q2 region. For MI sce-
narios I(A), it deviates 21% below the SM. For MI scenarios II(A), it deviates 25%
below the SM. For MI scenarios I(B), it deviates 22% below the SM. For MI scenarios
II(B), it deviates 28% below the SM. For Heavy Z ′ I(A), it deviates 35% above the
SM. For Heavy Z ′ II(A), it deviates 40% above the SM. For Heavy Z ′ I(B), it deviates
37% above the SM. For Heavy Z ′ II(B), it deviates 45% above the SM. For light Z ′
I(A), it deviates 23% above the SM. For light Z ′ II(A), it deviates 34% above the SM,
as shown in figs.4.2c4.2d.
We see in 6<q2<8 q2 region. For MI scenarios I(A), it deviates 22% below the SM. For
MI scenarios II(A), it deviates 25% below the SM. For MI scenarios I(B), it deviates
23% below the SM. For MI scenarios II(B), it deviates 28% below the SM. For Heavy
Z ′ I(A), it deviates 35% above the SM. For Heavy Z ′ II(A), it deviates 40% above the
SM. For Heavy Z ′ I(B), it deviates 37% above the SM. For Heavy Z ′ II(B), it deviates
44% above the SM. For light Z ′ I(A), it deviates 24% above the SM. For light Z ′ II(A),
it deviates 35% above the SM, as shown in figs.4.2e4.2f. Deviations from SM could
also be seen in high 12<q2<15 region as well.
Consequently, we analyze that, for model independent scenarios and leptoquark model,
the branching ratio for the decay is decreased at all q2 from SM as shown in fig.4.2a.
For Z ′ models, the branching ratio for the decay is increased at all q2 from the SM as
shown in fig.4.2b. Deviations from SM hint the influence of NP in said decay.

• We plotted leptons forward backward asymmetry of our said decay. We analyze that
the zero value of forward backward asymmetry AFB(q2) is shifted to higher values of
q2 than in the standard model for model independent scenarios and leptoquark model
as shown in fig.4.3e. For Z ′ model, the zero value of forward backward asymmetry is
shifted to lower values of q2 than in SM which we can see in region 2.4<q2<5 as shown
in fig.4.3f. We could not distinguish Z ′ models NP scenarios in 6<q2<8 q2 region
but we can distinguish in MI new physics scenarios. We see all new physics scenarios
separately in the 1.2<q2<2.4 region as shown in figs.4.3c4.3d. We also analyze that
model dependent and model independent new physics scenarios didn’t show deviation
from SM in high q2 region 12<q2<15 except model independent (I).

• We plotted longitudinal helicity fraction of the D∗s meson in model independent sce-
narios and model dependent for our said decay. Longitudinal helicity fraction have
deviation with SM values in low 0.045< q2 <1.1 q2 region. For MI scenarios I(A), it
deviates 25% below the SM. For MI scenarios II(A), it deviates 29% below the SM. For
MI scenarios I(B), it deviates 26% below the SM. For MI scenarios II(B), it deviates
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31% below the SM. For Heavy Z ′ I(A), it deviates 30% above the SM. For Heavy Z ′
II(A), it deviates 28% above the SM. For Heavy Z ′ I(B), it deviates 31% above the
SM. For Heavy Z ′ II(B), it deviates 31% above the SM. For light Z ′ I(A), it deviates
14% above the SM. For light Z ′ II(A), it deviates 23% above the SM, as shown in
figs.4.4a4.4b. Consequently, for model independent scenarios and leptoquark model,
the peak of the distribution is decreased at all q2 and it is on a small scale shifted
nearly higher value of q2 than in the SM as shown in fig.4.4c, and for Z ′ Models, the
peak of the distribution is increased at all q2 as shown in fig.4.4d. In longitudinal
helicity fraction of D∗s meson, we also analyze that all new physics scenarios didn’t
show deviation from SM in central and high q2 region.

• We calculated the values of polarized and unpolarized LFU ratios of our said decay in
the range of low, central and high q2 region given in tables4.44.54.6. The calculated
values of LFU ratios performed in different q2 bins have tension with SM predictions.
Longitudinally polarized LFU ratios deviates from SM values in low 0.045< q2 <1
average bin values that observed from experimental data and SM prediction. For MI
scenarios I(A), it deviates 7% below the SM. For MI scenarios II(A), it deviates 2%
below the SM. For MI scenarios I(B), it deviates 7% below the SM. For MI scenarios
II(B), it deviates 2% below the SM. For Heavy Z ′ I(A), it deviates 6% above the SM.
For Heavy Z ′ II(A), it deviates 7% above the SM. For Heavy Z ′ I(B), it deviates 2%
above the SM. For Heavy Z ′ II(B), it deviates 2% above the SM. For light Z ′ I(A),
it deviates 4% above the SM. For light Z ′ I(A), it deviates 6% above the SM. We
observed that for MI and leptoquark model, LFU ratios in low q2 values are smaller
than SM value and for Z ′ models, LFU ratios in low q2 bin values are greater than SM
value. In LFU ratios, we analyze that all new physics scenarios didn’t show deviation
in central and high q2 region.

4.8.1 Predictions for RD∗
s
, RL,T

D∗
s
, FL

D∗
s
, AFB in Different q2 Bins

We give a prediction of q2 average bin values of several observables in SM and in various NP
scenarios such as, the MI scenario/ LQ model and the Z ′ models. We predicts these values
in different q2 bins in the following tables.
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Figure 4.2: Branching ratio in MI Scenarios, Leptoquark Model, Heavy Z ′ Model and Light
Z ′ Model. The Gray band show the predictions in the SM, Blue, Brown, Yellow and Ma-
genta(dashed) bands show the predictions computed in MI scenario I(A), I(B), II(A) and
II(B) respectively. Green, Red(dashed), Blue(dashed) and Cyan bands show the predictions
computed in scenario HZ ′ I(A), HZ ′ I(B), HZ ′ II(A) and HZ ′ II(B) respectively. Purple and
Orange bands shows the predictions in scenario LZ ′ I(A), LZ ′ II(A) respectively. The results
achieved in MI scenarios II(A) and II(B) also represent the results in leptoquark model.
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Figure 4.3: Leptons forward backward asymmetry in MI Scenarios, LQ Model, Heavy Z ′

Model and Light Z ′ Model. The legends are same as in fig.4.2
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Figure 4.4: Longitudinal helicity fraction of D∗s in MI Scenarios, LQ Model, Heavy Z ′ Model
and Light Z ′ Model. The legends are same as in fig.4.2

Table 4.4: Predictions in SM and NP: Lepton flavor universality ratios RD∗s in different bin
values for Bc → D∗sµ

+µ−.

Scenarios low q2/GeV[0.045,1] central q2/GeV[1,6] high q2/GeV[ 14, max]
SM 0.939 ±0.001 0.985 ± 0.0001 0.996

MI, I(A) 0.941 ± 0.001 0.984 ± 0.0001 0.996
MI, LQ, II(A) 0.939 ± 0.001 0.986 ± 0.0001 0.996

MI, I(B) 0.941 ± 0.001 0.984 ± 0.0001 0.996
MI, LQ, II(A) 0.939 ± 0.001 0.986 ± 0.0001 0.996
TeV Z ′ I(A) 0.939 ± 0.001 0.987 ± 0.0001 0.997
TeV Z ′ II(A) 0.939 ± 0.001 0.987 ± 0.0001 0.997
TeV Z ′ I(B) 0.939 ± 0.001 0.985 ± 0.0001 0.997
TeV Z ′ II(B) 0.939 ± 0.001 0.985 ± 0.0001 0.997
GeV Z ′ I(A) 0.938 ± 0.002 0.987 ± 0.0001 0.997
GeV Z ′ II(A) 0.938 ± 0.002 0.987 ± 0.0001 0.997
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Table 4.5: Predictions in SM and NP: Lepton flavor universality ratios RL
D∗s

in different bin
values for Bc → D∗sµ

+µ−.

Scenarios low q2/GeV[0.045,1] central q2/GeV[1,6] high q2/GeV[ 14, max]
SM 0.752 ± 0.005 0.986 ± 0.001 0.997

MI, I(A) 0.698 ± 0.004 0.982 ± 0.0002 0.996
MI, LQ, II(A) 0.743 ± 0.004 0.986 ± 0.0002 0.997

MI, I(B) 0.696 ± 0.004 0.982 ± 0.0002 0.996
MI, LQ, II(A) 0.742 ± 0.004 0.985 ± 0.0002 0.997
TeV Z ′ I(A) 0.801 ± 0.004 0.990 ± 0.0001 0.997
TeV Z ′ II(A) 0.803 ± 0.005 0.990 ± 0.0001 0.997
TeV Z ′ I(B) 0.762 ± 0.004 0.987 ± 0.0001 0.997
TeV Z ′ II(B) 0.763 ± 0.005 0.987 ± 0.0001 0.997
GeV Z ′ I(A) 0.783 ± 0.004 0.989 ± 0.0001 0.997
GeV Z ′ II(A) 0.794 ± 0.004 0.990 ± 0.0001 0.998

Table 4.6: Predictions in SM and NP: Lepton flavor universality ratios RT
D∗s

in different bin
values for Bc → D∗sµ

+µ−.

Scenarios low q2/GeV[0.045,1] central q2/GeV[1,6] high q2/GeV [ 14, max]
SM 0.920 ± 0.002 0.983 0.996

MI, I(A) 0.920 ± 0.001 0.984 0.996
MI, LQ, II(A) 0.920 ± 0.001 0.984 0.996

MI, I(B) 0.920 ± 0.001 0.984 0.996
MI, LQ, II(A) 0.920 ± 0.001 0.984 0.996
TeV Z ′ I(A) 0.922 ± 0.002 0.983 0.997
TeV Z ′ II(A) 0.922 ± 0.002 0.983 0.997
TeV Z ′ I(B) 0.921 ± 0.002 0.982 0.996
TeV Z ′ II(B) 0.922 ± 0.002 0.982 0.996
GeV Z ′ I(A) 0.938 ± 0.002 0.983 0.997
GeV Z ′ II(A) 0.938 ± 0.002 0.983 0.997
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Table 4.7: Predictions in SM and NP: Longitudinal helicity fraction FL
D∗s

in different bin
values for Bc → D∗sµ

+µ−.

Scenarios low q2/GeV[0.045,1] central q2/GeV[1,6] high q2/GeV[ 14, max]
SM 0.177 ± 0.002 0.458 ± 0.0008 0.183

MI, I(A) 0.133 ± 0.001 0.454 ± 0.001 0.192
MI, LQ, II(A) 0.126 ± 0.001 0.460 ± 0.001 0.184

MI, I(B) 0.131 ± 0.001 0.454 ± 0.001 0.193
MI, LQ, II(A) 0.122 ± 0.001 0.460 ± 0.001 0.184
TeV Z ′ I(A) 0.229 ± 0.016 0.465 ± 0.011 0.181
TeV Z ′ II(A) 0.227 ± 0.016 0.453 ± 0.011 0.182
TeV Z ′ I(B) 0.232 ± 0.016 0.465 ± 0.011 0.181
TeV Z ′ II(B) 0.232 ± 0.016 0.452 ± 0.011 0.182
GeV Z ′ I(A) 0.202 ± 0.015 0.465 ± 0.011 0.181
GeV Z ′ II(A) 0.217 ± 0.015 0.467 ± 0.011 0.181

Table 4.8: Predictions in SM and NP: Forward backward asymmetry AFB in different bins
for Bc → D∗sµ

+µ−

Scenarios low q2/GeV[0.045,1] central q2/GeV[1,6] high q2/GeV[ 14, max]
SM -0.023 ± 0.001 0.001 0.0421 ∓ 0.001

MI, I(A) -0.024 ± 0.0002 -0.025 ∓ 0.001 0.035 ∓ 0.001
MI, LQ, II(A) -0.020 ± 0.0002 -0.011 ∓ 0.001 0.041 ∓ 0.001

MI, I(B) -0.024 ± 0.0002 -0.026 ∓ 0.001 0.034 ∓ 0.001
MI, LQ, II(B) -0.020 ± 0.0002 -0.012 ∓ 0.001 0.041 ∓ 0.001
TeV Z ′ I(A) -0.021 ± 0.0001 0.017 ∓ 0.001 0.043 ∓ 0.001
TeV Z ′ II(A) -0.025 ± 0.0001 0.010 ∓ 0.001 0.042 ∓ 0.001
TeV Z ′ I(B) -0.021 ± 0.0002 0.018 ∓ 0.001 0.043 ∓ 0.001
TeV Z ′ II(B) -0.025 ± 0.0001 0.011 ∓ 0.001 0.042 ∓ 0.001
GeV Z ′ I(A) -0.021 ± 0.0003 0.012 ∓ 0.001 0.043 ∓ 0.001
GeV Z ′ II(A) -0.021 ± 0.0003 0.016 ∓ 0.001 0.043 ∓ 0.001
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Chapter5
Conclusion

Motivated by the anomalies present in B → D(∗)τν and B → K(∗)µ+µ− decays. like
mentioned decays which are precisely discussed in literature, the decay Bc → D∗s`

+`− also
provide complimentary information regrading NP. We studied Bc → D∗s`

+`− decay based on
transition b → s`+`− at quark level. In our study, we performed in SM and beyond. We
added NP effects in said decay by the modification of wilson coefficients, used two different
approaches to search NP effects including the model independent new physics scenarios (I)
and (II), and in model dependent, we search NP effects by two different models leptoquark
model and Z ′ models which involve tree level exchange of new bosonic particle. We analyzed
several observables in said decay such as, branching ratios, longitudinal helicity fraction of
D∗s meson, forward backward asymmetry of lepton and lepton flavor universality (LFU) ratio
which hint the influence of NP in said process.
We determined that for MI new physics scenarios and leptoquark model, the branching ratio
for the decay is decreased at all q2 and for Z ′ models, the branching ratio for the said decay
is increased at all q2 from SM prediction as shown in fig.4.2.
The zero value of leptons forward backward asymmetry AFB(q2) is shifted to higher values
of q2 than in the standard model for model independent NP scenarios and leptoquark model,
and for Z ′ models, it is shifted to lower values of q2 than in SM as shown in fig.4.3.
We analyze the longitudinal helicity fraction of the D∗s meson for MI new physics scenarios
and leptoquark model, the peak of the distribution is decreased at all q2 and it is shifted
nearly higher value of q2 than in the SM, and for Z ′ Model, the peak of the distribution is
increased from SM prediction as shown in fig.4.4.
The average q2 bin values of polarized LFU ratios are performed in low 0.045<q2<1 bin
values have shown deviation from SM predictions which hint the influence of NP in said
process.
Consequently, the deviation in all above mentioned observables from SM predictions is a
good sign of the presence of NP in said decay. These predictions can be tested at the LHC
and can add information regarding NP in b→ s`+`− decay.
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