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Abstract

A thorough examination of air conditioning (A/C) systems on the basis of cost

reduction and energy efficiency is required. Existing literature lacks a comprehensive anal-

ysis of A/C systems, specifically the comparison between traditional control methods with

modern approaches based on Reinforcement Learning (RL) algorithms on basis of cost and

energy. As such evaluating the performance of A/C systems, employing both traditional

and modern control techniques, assessing the effectiveness of modern RL based controllers.

For such a task a simulation environment was developed using MATLAB and SIMULINK,

which includes a Room Model, A/C Model, and Controller Model. Rigorous testing is

conducted on proposed controllers, encompassing traditional PI controller and two modern

RL based controllers based on DQN and TD3 algorithms. Additionally a TD3-based PI

controller was also developed and over three experiments were conducted for each controller

model and a comparative analysis was performed. Experimental outcomes highlight a sub-

stantial 140-150% performance differential between traditional and modern control groups.

Additionally, negligible differences are observed between DQN and TD3 algorithms in the

context of A/C systems. These insights contribute to optimizing A/C systems for enhanced

performance and thermal comfort.

Keywords: A/C Systems, MATLAB, DQN, TD3, Reinforcement Learning, PI,

Energy Conservation, Thermal Comfort
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Chapter 1

Introduction

A notable amount of energy consumption of a building in the sub-continent comes

from cooling systems. According to Pakistan Economic 2023 report, referring to table(1.1)

and figure(1.1) about 46% of total generated electrical energy is consumed by households

[1].

Additionally total energy consumption consumption over the 10 year period from

2012-2022 is also illustrated in figure(1.2) [2]. Due to higher temperatures in certain regions,

people prefer Air Conditioners (referred to as A/C systems moving forward) as a means of

higher quality comfort, and in doing so causes increasing usage of such devices. Hence it is

of importance to work on efficient energy consumption for A/C systems.

1.1 Description of Thesis

There have been various different methods researched and developed ranging from

sensor optimization to applying elaborate control strategies. Among such, control strategies

are popular and feasible to implement, as they do not require much physical components

and are economical. Even among control methods, optimizing such methods have also

been greatly researched upon and provide more cost effective solutions than their original

counter parts.
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Chapter 1: Introduction

Sector Consumption (in GWh) Share(%)
Household 39,200 46.65%
Commercial 6,576 7.83%
Industry 23,687 28.19%
Agriculture 6,906 8.22%
Others 39,200 9.12%
Total 84,033

Table 1.1: Electricity Consumption of different sectors (July-March) Fiscal Year 2023. [1]

For an A/C system, optimization depends on targeting various processes of the de-

vice. Different optimization techniques, whether physical or programmable exist separately

for the three main components of an A/C system; (1) Condenser, (2) Evaporator, and (3)

Compressor (including the Variable Frequency Drive design implemented in inverter A/C

variants).

Additionally, the core parameters of an A/C system can be targeted as well;

(1) Air Quality Index (2) Temperature (3) Humidity. The methods for developing new

optimization techniques encompasses these systems. We aim to study the different effects

of various optimization algorithms on an A/C system model using MATLAB simulations.

Figure 1.1: Electricity consumption of different sectors of Pakistan. [1]
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Chapter 1: Introduction

Figure 1.2: Aggregated Electrical Consumption from 2012-2022.[2]

1.2 Research Approach

Optimization methods are based on studying the effects of current methods and

utilizing additional mathematical techniques on an existing method or entirely new pro-

cesses utilizing the data provided by already in use approaches.

The scope of this study is limited to discussing the various algorithms being used

on an A/C system model and providing a comparative study and a cost benefit ratio be-

tween the traditional PI controller against newer controllers based on reinforcement learn-

ing algorithm. Figure[1.3] shows the basic methodology to be followed. A temperature

signal will be provided the system which consists of the controller and the plant; the air

conditioner system and the area housing the system.

A closed loop feedback system will be implemented with a temperature sensor

which provides error values and the controller will be tuned with a Reinforcement Learning

algorithm that will reduce the error given time and accuracy towards the set-point.

The Research work will be divided into the following major categories and are

explained individually in their own sections:

1. Study of Air Conditioning systems.

3



Chapter 1: Introduction

Figure 1.3: Basic Closed Loop Model of A/C Optimization Model

2. Study of worked already produced for the energy efficiency problems.

3. Study, design and implementation of:

(a) pure PI Controller model.

(b) Deep Q-Network (DQN).

(c) Twin Delayed DDPG (TD3).

(d) RL based PI controller model.

4. Simulation of all aforementioned models.

5. Comparative analysis of the aforementioned models.

All of these are explained in their individual chapters.

1.3 Problem Statement

Research showcases there is an inexhaustible list of optimization techniques avail-

able, however there is no comparative analysis and cost analysis between traditional and

modern optimization techniques, while also lacking any in modern versus modern analysis

and it would be difficult to compare all of them. As such, a select few artificial intelligence

based algorithms will be given a comparative analysis on a PI enabled A/C system.

4



Chapter 1: Introduction

1.3.1 Optimization Algorithms

This research focuses on finding a feasible, sophisticated yet generalized and energy

efficient model based on different optimization techniques. The optimization techniques

RL based, that are compared and their cost is analyzed. The inspiration for cost analysis

approach has been adopted from Yan Du et. al. [3] Following techniques have been studied

and analyzed for this air conditioners optimization model:

1. PI Controller Model

2. DQN Model

3. TD3 Model

4. RL Based PI Controller Model (based on Model Predictive Controller)

5. Machine Learning

1.4 Thesis Layout

The remaining chapters will be divided as follows:

1.4.1 Chapter 2 Literature Review

In this chapter we discussed the trend of research in the field of optimization

techniques on A/C models. Different research papers have be scrutinized to find out the

research gap.

1.4.2 Chapter 3 System Model

In this chapter brief overview of the System model is presented. The system

model is a combination of the Air Conditioning system and the housing of the system. The

5



Chapter 1: Introduction

operating principle is described and the MATLAB simulation environment is described.

Components of the system are discussed.

1.4.3 Chapter 4 PI Controller Model

In this chapter, a traditional control technique is used on the Air Conditioning

model to have a base line of comparison with other models. The efficiencies and deficiencies

of the controller are also discussed. The simulations are provided separately for this model

in this chapter.

1.4.4 Chapter 5 Simulation Environment

In this chapter, a simulation environment is proposed, that the RL based models

are to use in Chapter 6. While in-depth, some parts are omitted and included in Chapter

6 for coherency

1.4.5 Chapter 6 Reinforcement Learning based models

In this chapter, all of the modern reinforcement learning based models are dis-

cussed, this chapter is divided into several subsections for in-depth discussion of each model.

The simulations for each are provided separately for this model in this chapter

1.4.6 Chapter 7 Results

In this chapter, the results attained from the proposed techniques are mentioned

along with comparative analysis of each model.

1.4.7 Chapter 8 Conclusion

In this chapter, on the basis of Chapter 7 a complete holistic overview is provided.

6
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1.4.8 Chapter 9 Future Recommendation

In this chapter, future recommendations and way ahead with the hardware and

algorithm are discussed for researchers to look up to.

7



Chapter 2

Literature Review

Researchers have used many optimization techniques on various different parts of

an A/C system. Figure [2.1] shows a brief outline of what optimization techniques that are

being utilized on A/C systems.

Figure 2.1: Optimization Techniques presented in Literature

A hierarchical distributed MPC scheme is proposed for buildings with multiple

connected rooms and zones HVAC systems. The objective of the system is to minimize

energy while maintaining acceptable comfortable thermal values. The scheme contains two

8



Chapter 2: Literature Review

separate controllers, which provide the temperature and predictive information of every

room called the high-level controller, while the second controller optimizes efficiency and

thermal comfort. The author states 6.8 second time feasibility given that the operating

system is powerful [4].

Forecasting is another technique utilized with MPC. Forecasting is a technique

used to minimize power consumption in peak times. The load profile defined by the system

is then forecasted. A study uses this algorithm as a two-part forecaster where an exponen-

tially weighted moving average (EWMA) model is used for long trends and a second-order

regression model (AR2) is used for smaller variations. Given a thermostat schedule, HVAC

power consumption can be reduced [5].

An alternating Direction Method of Multipliers (ADMM) based distributed model

predictive control is formulated [6]. The method minimizes the sum of the total energy

cost of an HVAC system, in different zones of the university building. The proposed model

allows for scalability and provides flexible trade-offs in thermal comfort and energy cost.

In [7], a Stochastic MPC (SMPC) algorithm is proposed. The study strategizes

statistical knowledge with predefined comfort levels to minimize energy usage using er-

ror forecasting based on the building’s ambient conditions. The study promises dynamic

learning properties with 90% satisfaction levels.

Linear MPC is also used by linearizing the non-linear model of an HVAC sys-

tem. As non-linear models are generally now cost-effective and computing-intensive, the

paper provides an approximate linear model by using Feedback Linearization and Piece-

wise Linearization for an analytical model. The study deduces that the given linearization

technique structure along with the optimal control algorithm provides results approximate

to the nonlinear model [8].

Author Chanthawit et al. proposed a design for a supervisory MPC. To ensure

thermal comfort, Predicted Mean Vote (PMV) technique is utilized for acceptable set-point
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bounds. The technique uses two controllers to implement the design. One for steady-state

analysis and set point thresholds, and one for applying the MPC algorithm. This technique

allows for a 13.43% reduction in electricity consumption by an HVAC system [9].

Another MPC technique is discrete MPC. Consisting of three major components:

the predictive model implemented by radial neural networks using a genetic algorithm;

an objective function for optimizing thermal comfort and energy; and an optimization

technique, which is discrete MPC. The technique has up to 30% savings in energy usage.

[10].

On-Off control can also be optimized using optimal control laws. Using multi-

objective optimization, the controller regulates indoor temperature considering outdoor

ambient temperatures as well. Acceptable performance but the key feature is a low cost of

implementation [11].

This study compares three different on-off optimal control laws; (1) Traditional

ON/OFF control; (2) An intelligent ON/OFF control using a prediction algorithm; and

(3) designing an optimal controller utilizing the PMV technique to conform to acceptable

thermal comfort. For minimal energy consumption cases, PMV is best suited [12].

As Linear Quadratic Regulator is an optimization scheme as well as a well-known

control law, feedback linearization was applied to an HVAC system to linearize it around

the constraints (thermal comfort and CO2 control). The proposed approximated linear

model was then optimized using the LQR control scheme [13].

Optimal Control (OPC) Schemes are control techniques employing generalized

control structures with robust algorithms for optimization. Papers have utilized several

different algorithms on classic control to generate an idea of feasibility and cost efficiency.

Velimir Congradac et al. [14] in their study put forward a Genetic Algorithm for

classical control to solve non-linear problems. The study is simulation-optimization based

and the suggested method is employed on a CO2 concentration control for a standard

10
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HVAC system. Along with MATLAB Simulink, the results are co-related and verified with

Energy Software.

In 2006, an important study by K.F. Fong et al. [15] was introduced. The study

utilizes evolutionary programming for optimal control. Evolutionary algorithms are nature-

inspired algorithm that mimics natural evolutionary schemes and are population-based

metaheuristic algorithms for optimization. Newer Genetic Algorithms are a sub-set of evo-

lutionary programming. The study implements a scheme to handle constrained, discrete

and non-linear problems. The optimization effectiveness was deduced via month-wide sim-

ulation, which provided 7% savings with no added cost.

Scheduling Algorithms are techniques used for optimization based on day, weather,

and other external factors based on the model of the system the study is going for. Ac-

cordingly, a study optimizes general HVAC energy usage in Industrial processes based on

weather data. The study proposes a Binary Integer Linear Programming (BILP) approach

for scheduling. Results of the study simulate savings of up to 30%, however comments on

the impracticality of the approach for shorter periods (an hour at a time) [16].

Another study performs a global optimization model for the whole HVAC model.

The schedulable potential evaluation indexes many parameters such as peaks, valleys, cut-

ting, and capacity. These parameters are then used to develop a load profile for the model.

A simulated HVAC operation is implemented and the load profile is applied. The results

of the processes are found to be adjustments to the pumps and fan load curves [17].

Greedy scheduling is another scheme proposed by researchers. N. Chakraborty et

al. propose a multi-object optimal scheduling framework. It is based on Johnson’s elemen-

tary circuit, having the objective of continuous thermal comfort and minimizing power fluc-

tuations. The study implements a greedy algorithm based on Pareto optimization, which

utilizes the survival criterion of parameters. Efficient or chosen parameters are optimized

more heavily compared to non-optimal parameters. If chosen correctly, such optimization

schemes provide efficient optimization and good computation headroom. However, such

11
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algorithms do not provide complete and fair optimizations [18].

As HVAC systems are getting considerably complex, algorithms needed need also

to be complex. Using interconnected Neural Networks and using online functionality, the

author has used a deterministic search algorithm to optimize the three separate artificial

neural network substations (rooms). The results are then averaged and compared to provide

better training [19].

Mixed Integer Programming for Neural Networks is also used extensively. An

ANN algorithm type is an adaptive neuro-fuzzy inference system (ANFIS). A study pro-

vides a systematic approach to optimization using ANFIS via a mix-integer problem with

non-linear constraints on a genetic algorithm; by analyzing the model of the HVAC sys-

tem (consisting of cooling loads and consumption of energy by heat exchangers and other

devices) [20].

Similarly, this study optimizes new HVAC systems known as Smart Dual Fuel

Switching Systems (SDFSS) via artificial neural networks (ANN). The design requires a

rich and diverse feature set of humidity, wind speed, direction, and temperature to produce

accurate results (up to 1.3 RMSE) however can be used in IoT applications given powerful

computing [21].

In [22], a linear constraint mix-integer method is used with Deep Neural Network

(DNN). The method utilizes weather and energy prices during the day (in Detroit, MI,

USA) to forecast consecutive days’ optimization. This method imitates MPC (which works

on forecasting) and is provided as an alternative to it.

Another ANN is Long Short-Term Memory (LSTM). LSTM is an architecture

that provides the Short Term of an RNN, however on larger time steps, which RNN cannot

do. As such LSTM is good for prediction-based applications where short-term memory is

required for larger and more frequent time steps. As such Ming Li. Et al [23] uses LSTM

to predict temperatures in their experiments, providing higher prediction accuracy than

12
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multi-layer perceptron (MLP) and back propagation (BP) neural networks.

Reinforced Learning (RL) is a technique used when a scenario necessitates trial

and error more than immediate reward gains. As disturbance is an issue in any real-life

scenario, RL can be used to bias the controller toward said disturbances. As disturbances

in HVAC systems can be the outside temperature, heat from occupants, lights, etc. In

a study [24], disturbances are assumed to be immeasurable and unpredictable. As such

a model is proposed, that biases the controller using the Q-Learning framework. A Q-

Learning scheme provides an optimal control solution that allows the convergence of control

parameters without the effect of disturbances.

Similarly, another study uses ANN-based MPC to save operating costs between

6% and 53% (for best fit). The study utilizes a new algorithm called the best network after

multiple iterations (BNMI). It is a prediction-based ANN algorithm that is utilized with

MPCs [25].

Research study [26] models a DNN-based HVAC optimum control scheme. As

control settings and energy of HVAC are extremely non-linear, DNN provides robust tech-

niques of data extraction. The author provides a comparative analysis of DNN against

several state-of-the-art optimizing techniques (Particle Swarm, SVM, BPNN, and Random

Forest) and has the lowest RMSE (of 3.78) among them.

A combination of algorithms that are used to solve the same problem is dubbed

under the umbrella term of “Hybrid Algorithms”. Hybrid MPCs are considered when

traditional MPCs are used in tandem with another algorithm. A study combines an MPC

model with Neural Network along with a feedback linearization model. The nonlinearity of

the HVAC system is processed by an inverse neural network model. The model implements

three different controls, (1) Economizer Control, (2) an optimal start-stop control, and (3)

a load-shifting control. This approach provides 13% cost savings [27].

Another MPC-based scheme employs a fuzzy-optimization scheme. The study
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provides a new framework for optimization schemes involving fuzzy constraints. Fuzzy

constraints are values that are real and do not have a fixed value. As real-life works on

fuzzy constraints, a particle swarm technique (PSO) is used to solve the non-linear nature

of the model. The model provides similar performance as other schemes while employing

a completely new technique [28].

Due to HVAC systems having multiple disturbances, researchers have sought to

use stochastic models as well. A study utilizes the stochastic nature of the system which in-

corporates the Markov Occupancy Model (MOM). The model works on the Markov Model,

which is a stochastic method for systems having pseudo-randomly changing properties, but

does not depend on the past state of the system. An HVAC system has random states that

do not depend on the previous state, as such the study utilizes this notion of the model

along with building occupancy. The model is used on an online optimizer and an offline

optimizer [29].

A recent study in 2019, showcases a multi-objective genetic algorithm (MOGA)

along with ANN for optimization between thermal comfort and energy consumption. Ob-

jective variables considered by the study are passive solr design, chiller operation, thermo-

stat settings, and person dissatisfaction rate. As objective variables are more than two, a

multi-objective genetic algorithm is used [30].

Another study by Rand Talib et al. put forwards a Data-Enabled optimization

technique for selective components of an HVAC system. Three different data-driven mod-

eling techniques are employed; (1) Artificial Neural Network (ANN), (2) Support Vector

Machine (SVM), and (3) Aggregated Bootstrapping (BSA). The optimization problem is

resolved using a Genetic Algorithm to reduce simulated data error from the actual data.

The data set so used from the chilled water variable air volume (VAV) from an HVAC

system. The proposed model provides low variation between simulation and actual data,

with as low as 1.22% for the cooling coil and 9.04% for the fan [31].

This study [32] focuses on compressors of HVA/Cs. The study utilizes a Support
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Vector Machine (SVM), as a classification function. SVM is a supervised machine learning

method used for the three main Machine Learning schemes; (1) Regression, (2) Classifi-

cation, and (3) Outlier detection (also called anomaly detection). The design is used to

diagnose faults in compressors with more than 80% accuracy.

A study utilizes three different optimization models. (1) Kalman Filter, (2) Ge-

netic Algorithm, and (3) Particle Swarm. The study filters the sensors reading and passes

through both Genetic and Particle Swarm algorithms, then they have compared accord-

ingly to the baseline provided by simulation software. The study compares both algorithms

to have high optimization rates, 27.32% and 31.42% for PSO and GA respectively [33].
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System Model

In 1902, the very first modern Air Conditioning system was invented by an Amer-

ican Engineer, Willis Haviland Carrier, who was experimenting with humidity control and

concepts of mechanical refrigeration. This was later improved using a belt driven condens-

ing unit with blowers for the indoor and outdoor unit and evaporator coils. This current

design is the mechanical model of modern air cooling devices [34].

Nowadays, research is held to optimize and increase the efficiency of such systems,

ranging from optimizing compressor units which utilizes speed control and frequency control

with relatively traditional micro controller technology (PID controllers), to implementation

of advance control techniques to optimize the total working of an A/C system on current

built physical technology.

3.1 Air Conditioner Overview

A/C System consists of four major components:

• Evaporator

• Condenser
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• Expansion Valve

• Compressor

The modern air conditioning systems works on the basis of principles of refriger-

ation. The cycle is defined as follows:

1. Evaporation: As hot air rises and cool air sinks, the warm air is draw in to the

evaporator coils(that is housed on the indoor unit) containing the refrigerant coolant,

which absorbs the heat from the intake warm air, which cools the air that the blower

fan releases from the indoor unit. The refrigerant is in a low-pressure vapor state.

2. Compression: The refrigerant which is now vaporized due to the evaporator action,

is then compressed by the compressor. The process then raises the temperature and

pressure, which makes it into high-pressure/temperature gas.

3. Condenser: This unit then releases the heat to the outside from the refrigerant,

cooling it down, causing it to condense into high-pressure liquid

4. Expansion: The high-pressure liquid, is passed through the expansion valve, where

its pressure is dropped, causing it to become partially gaseous, low pressure and low

temperature.

5. Evaporation: As similar to part 1, this refrigerant cools the intake warm air again,

which is then blown outwards, causing the cycle to repeat

Figure [3.1] show cases the A/C action:

3.1.1 Indoor Unit

An air conditioner’s indoor unit, often referred to as the evaporator unit consists

of components that work together to cool and circulate air within a building. Here are the

main components typically found in an indoor unit:
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Figure 3.1: Air Conditioning Action

1. Evaporator Coil: As the evaporator coil absorbs heat from the indoor air, the

refrigerant flowing through the coil warms the indoor air passing over it, which causes

the refrigerant to evaporate, cooling the air in the process.

2. Blower Motor: The blower motor is responsible for pulling air from the room

through the evaporator coil and then pushing the cooled air.

3. Expansion Valve: Also known as the thermal expansion valve, controls the flow

of refrigerant into the evaporator coil. It regulates the refrigerant’s pressure and

temperature, allowing for efficient cooling.

4. Sensors: Sensors for temperature and humidity are integrated into the indoor unit

to monitor and adjust the cooling process for comfort and efficiency.

5. Main Controller: The main controller that governs all the processes using various

placed sensors in the indoor and outdoor unit.

3.1.2 Outdoor Unit

The Condenser or the outdoor unit, contains components that work together to

release heat from the indoor air to the outdoor environment. Here are the main components

found in an outdoor unit:
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1. Compressor: The compressor is responsible for circulating the refrigerant and in-

creasing its pressure and temperature, initiating the heat exchange process.

2. Condenser Coil: The condenser coil exchanges heat from the refrigerant flowing

from the coils of evaporator allowing the the refrigerant heat to disperse. As the hot,

high-pressure refrigerant flows through the coil, it releases heat to the outdoor air,

causing the refrigerant to condense from a gas to a liquid state.

3. Fan Motor: The fan motor drives the fan blades that draw outdoor air over the

condenser coil. This airflow helps dissipate the heat collected from indoor air.

4. Pressure and Temperature Sensors: These sensors monitor various parameters

within the outdoor unit, aiding in system control and performance optimization.

5. Suction Line and Liquid Line: These refrigerant lines connect the indoor and

outdoor units, carrying low-pressure, low-temperature refrigerant vapor back to the

compressor and the liquid line transporting high-pressure liquid refrigerant from the

condenser to the evaporator coil.

3.2 Engineering Issues in Air Conditioning Systems

There are many engineering related issues with air conditioning systems. Some of

them are listed as follows:

1. Energy Efficiency: Energy efficiency issues are majorly due to old and traditional

controlling methods (ON-OFF, or none etc), sensor wear down, fan control issues or

lack of maintenance.

2. IAQ: IAQ (Indoor Air Quality) refers to the state of the air indoors. It factors

parameters such as; temperature, humidity, and pollutants. Good IAQ is vital for

health and comfort. Air conditioners help by managing ventilation and maintaining

healthier indoor environments.
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3. Refrigerant Management: Refrigerants are a significant engineering concern in air

conditioners due to their environmental impact. Many traditional refrigerants con-

tribute to ozone depletion and global warming when released into the atmosphere.

Developing and implementing environmentally friendly refrigerants is crucial to mit-

igate these effects and ensure sustainable cooling solutions.

4. Proper Sizing and Selection: Proper sizing is very important due to the nature

of the system. If its too big for the room, the excess moisture and humidity would

frost the coils. If its too small for the room, then it would ramp up constantly and

never reach the desire set point, causing motor wear, fan wear, high power draw which

would cause energy issues.

5. Thermal Comfort and Load Calculations: Incorrect thermal comfort and load

calculations in an A/C system can lead to discomfort, energy inefficiency, uneven

temperature distribution, excessive wear on components, humidity problems, noise

issues, and higher costs for adjustments or replacements.

6. Redundant Control Technologies: Redundant and traditional control technolo-

gies cause limitations and challenges with decrease in energy efficiency. This is dis-

cussed in the next subsection.

3.2.1 Traditional Controller and Control Techniques Limitations:

Traditional control techniques in an A/C systems have limitations compared to

modern control methods. The traditional control techniques which largely are based on

speed drives, frequency drive control of compressors or PID and ON/OFF thermostatic

control of the A/C systems are not robust enough to account for the issues of a dynamic

and non-linear system.

1. Limited Adaptability: Traditional Control techniques rely on fixed temperature

set-points and parameters which do not account for variable loads, change in weather
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conditions, humidity and temperature variations. An A/C system has to be resistant

to such factors.

2. Energy Inefficiency: Traditional A/C control techniques are not optimized to-

wards energy efficiency and do not account for load occupancy, as they do not work

on predictive algorithms. This causes inefficiency and higher bills.

3. Linearity: A/C systems are complex and nonlinear systems based on dynamic

parameters such as various sensors, fans, compressors and thermostats. Traditional

control techniques such as the PID control require extensive fine tuning which does

not equate to the cost of implementation.

4. Fault Tolerance: Traditional control techniques lack fault detection capabilities

which cause them to be less robust against disturbances.

5. Limited Integration, Up-gradation Cost and Dependencies: As IoT is be-

coming increasingly popular, every device must have internet integration according

to protocols. As traditional control techniques have no such capabilities built in, it

requires additional overhead cost for their integration up-gradation. Additionally the

dependencies on old protocols make them a hurdle to work with and require expert

engineering tuning.

It can be concluded that while traditional control techniques have been used for

a long time in A/C systems. The factors mentioned above showcases the lack of precision

in traditional control techniques and are not well-suited to address the complexities and

needs of modern smart building. Energy costs increase every year and efficient machinery

is required for comfort while keeping cost minimized. Additionally adaptability is needed

in today’s A/C systems so they can be up to date with modern protocols. As such modern

control methods are required for A/C systems as they leverage advanced algorithms, real-

time data, and automation to provide more efficient and comfortable environments.
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3.3 Simulation Environment of the System:

The simulation environment is made on MATLAB Simulink platform. The en-

vironment consists of the A/C system, and is further subdivided into 3 distinct systems

called the sub-systems that simulate the air conditioner workflow, which are namely :

1. Room Model

2. Smart Controller Model

3. A/C Model

Additionally each of these systems have various parameters built in which are

imported via the code directory to make them synchronize together with the whole system.

The room and air conditioning systems are constant through out the experiments and the

smart controller model varies depending on the control technique. Further explanation are

pertaining to each of the systems are in the following sub-sections.

3.3.1 Air Conditioner Model:

The Air conditioning model is based on the heat equations (3.3.1,3.3.2, 3.3.3),

and the model is inspired by MATLAB’s heater model [35] which is transformed to an

air conditioner model by using the following heat loss equations. As it can be seen in

figure [3.2], the Smart Controller provides a state of ON and OFF which passes through

multiplication or AND gate on one input, where-as the other input contains the heat loss

equation blocks. The purpose of this methodology is to provide a switching function to our

A/C system. This signal is then passed through a low-pass filter, which allows the signal

to remove any high frequency noise. This is especially wanted for Reinforcement Learning

algorithms as the switching of an RL controller is more frequent than a PI controller. The

Energy signal is divided which is then converted to a kWh/Joule signal. This signal is only

used for the reinforcement learning model.
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Figure 3.2: A/C Model

Q̇ = (Troom − Tac) · M · cair (3.3.1)

where,

Q̇ = Heat flow from the A/C

Troom = Current Temperature inside the room

Tac = Temperature of cool air from the A/C

M = Air Mass flow rate through the A/C (kg/hr)

cair = Heat capacity of air (at constant pressure)

3.3.2 Room Model:

The Room model used for this study uses the parameters based on NUST-PNEC’s

power lab. The model of the system is developed using MATLAB’s house heating model

and the heat loss equations (3.3.1,3.3.2, 3.3.3)[35]. It can be noted from the Heat loss

equations and figure [3.3] that the model consists of two differential equations being solved

simultaneously. In a MATLAB simulink environment, it is impossible to solve ordinary

differential equations without having any prior info placed at run time and during the

process if there is an absence of storage, also to note that figure shows the cyclic nature

of the two differential equations, as such, a form storage is imperative. For this reason, an

"Integrator" block has been placed after the implementation of equation (3.3.2) to allow
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integration of time in the block environment. Additionally, it is also used to integrate the

"Ṫroom" signal for usage in the implementation of equation (3.3.3).

Figure 3.3: Room Model

Q̇losses = Tout − Troom

Req
(3.3.2)

Ṫroom = 1
Mroom · cair

· (Q̇loss − Q̇ac) (3.3.3)

where,

Q̇ = Heat flow from the A/C

Troom = Current Temperature inside the room

Mroom = Mass of Air inside the room (kg/hr)

cair = Heat capacity of air (at constant pressure)

Req = Equivalent thermal resistance of the room

CEnergy = CurrentCost − PreviousCost (3.3.4)
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Parameter Symbol Value Unit
Specific Heat Capacity of Air Cair 1005.4 J/kgC

Minimum Comfort Temperature Tmin 18 ◦C

Maximum Comfort Temperature Tmax 25 ◦C

Reference Temperature Tref 24 ◦C

Expected A/C Output Tac 24 ◦C

Air Density ρ 1.2293 kgm−3

Air Mass flow rate through the A/C Ṁ 1496.0387 kg/hr

Room Length LR 3.9624 m

Room Width WR 10.8204 m

Room Height HR 6.09 m

Window Amount NW 4 -
Window Height HW 1 m

Window Width WW 1 m

Equivalent Room Thermal Resistance Req 0.0076 ◦C
W

Wall Resistance RW a 0.0188 ◦C
W

Window Resistance RW 0.0128 ◦C
W

Mass of Air inside the room MRoom 363.9272 m

Table 3.1: Parameters of the Simulation Environment

3.3.3 Smart Controller:

The smart controller sub-system contains the controller model. This sub-section

is the variable part of our study as this changes consistently through-out because of the

discussions, simulations and results of various different controllers. As such the smart

controllers will be discussed in detail in their sections.

3.4 Parameters of Simulation Environment:

Parameters are values that define the characteristics, behavior, and conditions

of the A/C system. They influence how the air-conditioner system behaves and allows

customization, altercation to the study for various scenarios without altering the underlying

models and subsystems. Table (3.1) showcases the parameters used for our simulation

environment.
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PI Controller Model

Proportional-Integral-Derivative (PID) controller is a widely used feedback control

mechanism in engineering and industrial applications. It aims to regulate a system’s output

by adjusting its control inputs based on the error between the desired set-point and the

actual process variable. P,I and D are defined as follows.

1. Proportional (P): The controller’s output is directly proportional to the current

error. This term provides a response to changes in the error and helps reduce steady-

state error.

2. Integral (I): The integral term accumulates the past errors and generates a corrective

action that eliminates any residual steady-state error. It is particularly effective in

addressing long-term deviations from the set-point.

3. Derivative (D): The derivative term is the rate of change of the error. It provides

a dampening effect, reducing the controller’s sensitivity to rapid changes in the error

and improving stability.
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4.1 PID Algorithm

The PID algorithm is a control algorithm used in PID controllers to regulate a

system’s output based on the error between a desired set-point and the actual process

variable. It consists of three main terms: Proportional (P), Integral (I), and Derivative

(D), which are combined to calculate the controller’s output signal. The PID controller is

a "error heavy" algorithm as it works on the basis of error reduction from feedback loops.

The algorithm’s mathematical expression can be represented as follows:

u(t) = Kpet(t) + Ki

∫ t

0
et(t) dt + Kd

de(t)
dt

(4.1.1)

where,

u(t) = The Output Signal.

e(t) = The Error Signal.

Kd = The Derivative Gain.

Ki = The Integral Gain.

Kp = The Proportional Gain.

4.1.1 Omission of Derivative Controller:

In real-life scenarios the Derivative controller is often omitted due to its highly sen-

sitive nature and difficult tuning parameters. In an A/C system, a slight change of sensor

erroneous reading can deviate in a large overshoot of derivative controller action. Addi-

tionally, for thermal control of an A/C system, the high speed characteristic of Derivative

controller is not needed.

1. Sensitivity to Noise: The derivative term amplifies high-frequency noise in the

error signal, which can lead to erratic and unstable control actions. As real time sen-
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sors are subject to noise and disturbances, the derivative term can cause undesirable

output especially in mechanical and electrical systems like an A/C system

2. Difficult Tuning: The derivative term’s effect on the control action is based on

the rate of change of the error, tuning gain Kd accurately can be challenging, as it

requires an understanding of the system dynamics and error fluctuations. Incorrect

tuning of the derivative term can lead to oscillations and instability.

3. Limited Applicability: Derivative control is particularly effective in systems with

rapid changes in error. While an A/C system has rapid switching, we want to reduce

the error output caused by switching as much as possible while reducing switching

itself. As the derivative controller has abrupt changes, it can prove to lack smoothness

for mechanical and inconsistent for the electrical systems. Therefore the derivative

controller is not suitable.

Due to these challenges and considerations, A/C systems opt to use proportional-

integral (PI) controllers instead of PID controllers. This allows for less difficulty in tuning,

less abrupt switching behavior which in turn allows for smooth and consistent fan control

and more resistant to noise.

4.2 PI Model

The algorithm for a PI model is a simplified version of the full PID algorithm that

omits the derivative term. This is due to stability, efficiency and relatively high accuracy

of the PI controller due to the inherent linear properties, allowing for balanced changed in

error [36] and proves to have easier tuning than the derivative controller as mentioned in

previous section. The following is the mathematical expression for a PI controller, with the

Kp and Ki gains along with the error term et(t) which provides a linear solution.
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u(t) = Kpet(t) + Ki

∫ t

0
et(t) dt (4.2.1)

The PI Controller model tested for our system is shown in figure(4.1). The system

model discussed in Chapter 4, will be further discussed in Chapter 5. Additionally the

results of our finding will be explained in the Results Chapter.

Figure 4.1: System Model for Traditional PI controller
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Reinforcement Learning based

models

Reinforcement Learning (RL) is part of machine learning where the concern is

with how an agent can learn to make sequential decisions in an environment to maximize

a cumulative reward. It is inspired by human behavior and is designed to mimic the way

humans and animals learn by interacting with their surroundings.

In RL, an agent learns by trial and error. The agent takes actions in an envi-

ronment, receives feedback in the form of rewards or penalties, and uses this feedback to

improve its decision-making over time. The ultimate goal of the agent is to find a strategy,

called a policy, that guides its actions in a way that maximizes the expected long-term

cumulative reward.

5.1 RL Controller model:

For the application of a RL controller model, an important assertion is made

the problem to be considered as sequential time decision making process. For every time

step, the current state is studied in relation to the previous state. In the case of an A/C
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system, the current indoor temperatures relation to previous time interval only and does

not consider earlier intervals. By optimizing the RL controller reward function with respect

to designated set point, thermal comfort can be maximized and energy cost be minimized.

The RL controller scheme for an A/C system, as seen in figure(5.1) needs to have

the following elements defined:

1. State (S): A representation of the current situation or condition of the environment.

It provides the necessary information for the agent to make decisions. In some cases,

a history of previous states might be necessary for decision-making.

2. Action (a): The learner or decision-maker that interacts with the environment. The

agent’s goal is to learn an optimal policy that helps it take actions to maximize its

cumulative reward.

3. State transition probability (P (s′|s, a)): The state transition function describes

the probability distribution over next states given the current state and action.

4. Reward (R): The scalar feedback the agent receives from the environment after

taking an action. Rewards indicate the immediate benefit or cost associated with an

action and are used by the agent to learn which actions are favorable.

5. Policy (π): A strategy that maps states to actions. The policy defines how the

agent should behave in different states to achieve its goal of maximizing cumulative

reward.

6. Reward Function: A function that estimates the expected cumulative reward that

can be obtained from a given state under a certain policy. It helps the agent evaluate

the desirability of different states.

Since the state transition probability calculation is a non-trivial task to accom-

plish, this has been ignored in the formulation of this controller as the model of an A/C
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Figure 5.1: RL-Based approach for A/C system. DNN: deep neural network

system is dynamic and sensitive to slight changes in any external or internal parameters

such as sensor sensitivity, resistances of a given room, weather conditions, outdoor temper-

ature, UV radiation, electrical disturbances; and so on.

However for any controlled environment, an analytical solution can be configured

if the state transition probability function P (s′|s, a) based on system dynamics is known or

calculated before hand. However, this is not a generalized solution and we require a robust

controller for efficient A/C control. The subsequent dynamics of the air conditioner system

are discussed in Chapter 3.

Consider the action space a vector for the air conditioning agent.

A = a, a = [0, 1] (5.1.1)

Where, 0 is OFF and 1 is ON for switching. Additionally the observation or state space is

given as:

S = [Tmax, Tmin, Troom, Tout, CEnergy, Apa] (5.1.2)
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where,

1. Maximum Comfort Temperature (Tmax)

2. Minimum Comfort Temperature (Tmin)

3. Current Indoor Temperature (Troom)

4. Current Outdoor Temperature (Tout)

5. The retail per unit cost (CEnergy) in Pakistani Rupees.

6. Agent Output (Previous Action)(Apa)

5.1.1 Agent Policy:

The policy of an agent is defined as the behavior of the agent. It tells how the

agent is mapping its output from the given reward function and observation states. The

policy of an agent can either be deterministic (for quicker output) or stochastic (for larger

exploration), in the case of air conditioning system, the action state has only two plausible

outcomes, either ON or OFF, which causes it to be deterministic. This can be expressed

as:

π = max(fθ(s)) (5.1.3)

5.1.2 RL Terminology:

Reinforcement Learning has a lot of terminologies that need explanation, it is to

be noted that not all RL agents make use of all the stated terminologies, but in the case

of this study, the important terminologies are explained.
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5.1.2.1 Episode:

In RL, episode refers to the sequence of actions that the agent takes on the environ-

ment, that starts from an initial state and ends when the termination condition is reached,

whether if the Episode Reward converges or max specified episode count is achieved. The

steps of an Episode are as follows:

1. Initialization:

• The episode begins with the agent receiving an initial state from the environ-

ment.

• The agent uses its policy to select an action based on the current state.

2. Action and Transition:

• The agent takes the selected action and interacts with the environment.

• The environment transitions to a new state based on the current state and action

taken. This transition is governed by the state transition function P (s′|s, a).

• The agent receives a reward from the environment based on the reward function

R(s, a).

3. Iteration:

• The process of selecting actions, transitioning between states, and receiving

rewards is repeated in subsequent time steps. This continues till the termination

condition is met

4. Termination:

• The episode terminates when a predefined condition is reached. This condition

can vary based on the problem setting and goals. This can be if the Episode

Reward converges or max specified episode count is achieved.
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5. Policy Update:

• Based on the reward provided, the agent updates the policy for future states,

actions for further episodes.

This process is then repeated till the termination condition is achieved.

5.1.2.2 Average Episode Reward:

Average Episode Reward is a simple and robust criterion for Episode termina-

tion. It is used as a means to achieve precise measure of performance. Additionally easier

condition to achieve because of convergence. The A/C while having dynamic states, the

end action is the temperature controller based on switching principle and provides an early

stopping of the algorithm when a suitable condition is met or if its highly stable.

5.1.2.3 Learning Rate:

The learning rate in machine learning algorithms, including reinforcement learn-

ing, is a hyper-parameter that determines the step size at which the algorithm adjusts its

model parameters based on the gradient of the loss function. A small learning rate is of

1×10−3 is used for convergence, robustness to noisy data, steadiness to local minima’s and

avoidance of oscillations.

5.1.2.4 Q-Values:

Q-Value or Q-Learning is the initialization of the learning agent at the beginning

of the Episodes. They help balance between exploration and exploitation. The agent

explores different actions in various states to gather information about the environment

and it provides a benchmark to the agent to allow exploration around a given range and

maximizes learning from the environment.
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5.1.2.5 Actor-Critic Pair

An Actor-Critic pair is a fundamental strategy used in some reinforcement learning

(RL) algorithms. They are defined as follows.

1. Actor:

• The actor is responsible for learning and updating the policy. It directly interacts

with the environment by selecting actions based on the current state.

• The actor’s goal is to learn a policy that maximizes the expected cumulative

reward over time.

• The actor is the agent’s decision-maker, determining what actions to take in

different states.

2. Critic:

• The critic evaluates the actions chosen by the actor. It estimates the value or

expected cumulative reward that the agent can achieve from a particular state

while following the actor’s policy.

• The critic’s role is to provide feedback to the actor by providing information on

how good the chosen actions are in different states.

• The critic helps guide the learning process by indicating which actions are more

favorable in terms of expected reward.

The interaction between the actor and the critic forms a loop where the actor

learns to make better decisions based on the critic’s evaluations, and the critic’s evaluations

become more accurate as the actor’s policy improves over time. Some algorithms do not

use actor-critic pair and one of these is the DQN algorithm.
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5.2 Controller Models:

Controller models using the RL algorithms are "off-policy" or "no-policy" algo-

rithms. The decision of such algorithms is based on already having a data-set to train the

RL agent. It is to be noted that off-policy and no-policy are two distinct algorithm choices,

they have clear differences, but the ability of utilizing data-set on both algorithms is con-

sidered a key-point in this discussion. The feature similarities of such algorithms based on

the basis of preexisting data-set are as listed.

1. Utilizing Historical Data: Both off-policy and no-policy algorithms capitalize on

preexisting data-sets, leveraging prior interactions with the environment to guide

decision-making.

2. Optimal Reward Maximization: Both approaches aim to maximize cumulative

rewards over time by making well-informed choices based on the provided data. Refer

to section RL Terminology.

3. Framework of Reinforcement Learning: Both strategies operate within the

framework of reinforcement learning, which entails learning from interactions in an

environment.

Based on these characteristics, strictly one of each, no-policy and off-policy al-

gorithms for our controllers are chosen based on extensive research. There are (1)RL

Controller Models testing both DQN and TD3 algorithms and (2)Reinforcement Learning

based Proportional Integral (RL-PI) Controller models using only TD3 algorithm.

The objective of our control strategy is to employ a model free RL-based control

system and evaluate the performance. However before the implementation, a few things

must be considered.

1. RL is a trial and error based method.
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2. These methods must be pre-trained before employment, as they required to be trained.

3. Due to the local maxima and minima nature of RL problems, the RL system can take

random actions at its initial learning stage

5.2.0.1 The Reward Function:

The reward function of the subsequent models are based on the observation space

and the action space. This is given by R(s, a). The inputs of the reward function takes

some of the observation space, the current action, the previous action and outputs a reward.

Hence the reward function takes on the form of:

R = [Tmax, Tmin, Troom, Tout, CEnergy, A, Apa] (5.2.1)

w = −0.01 (5.2.2)

The reward function takes the above inputs and performs the following mathemat-

ical instructions. This is the reward function algorithm. The weight "w" assumes the value

of -0.01 which are negative to showcase penalization. Small weights allow stability and are

scale-able, which allows the algorithm to explore more, which in turn allows convergence.

The reward function is inspired by [37] and [3].

R = Rc + CEnergy − Ap (5.2.3)

CEnergy = UnitPrice · ElectricityConsumed (5.2.4)

Rc =


0.1 Tmin ≤ Troom ≤ Tmax

w|Troom − Tmin| Troom < Tmin

w|Troom − Tmax| Troom > Tmax

(5.2.5)
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No. Parameter Value
1 Max Episodes 150
2 Training Termination Criterion (Episode Value) 200
3 Learning Rate 0.001
4 Epsilon Greedy Decay Rate 0.0001
5 Sample Time 120
6 Max Steps Per Episode 1000
7 Use RNN True
8 Experience Buffer 100000

Table 5.1: DQN Agent Parameters

Ap =


−0.1 at ̸= at−1

0 otherwise

(5.2.6)

The next chapter discusses the results of our findings based on the explained

models.

5.2.0.2 Deep-Q Network Algorithm:

Deep-Q Network (DQN) is a no-policy RL algorithm and an amalgamation of

DNN and Q-Learning. Q-Learning agent is a value-based RL agent that trains a critic and

estimates future returns or rewards. For any given number of observations, the agent gives

an output action which estimates the greatest return. The difference between Q-Learning

and DQN is the agents usage of DNN for DQN instead of a lookup table called the Q-Table.

This generalizes the problem statement and allows robust solutions. It has a discrete action

space and is suitable for replacing on-off control scenarios.

The idea behind DQN is to build a neural network table and estimate greatest

returns and rewards on the basis of Q-Value. Higher Q-Values dictates higher returns. The

selection criteria of the Q-Values is conditioned by the neural network.
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No. Parameter Value
1 Max Episodes 150
2 Training Termination Criterion (Episode Value) 85
3 Learning Rate 0.001
4 Sample Time 120
5 Max Steps Per Episode 1000
6 L2 Regularization Factor 0.00001

Table 5.2: TD3 Agent Parameters

5.2.0.3 Twin-Delayed Deep Deterministic Policy Gradient Algorithm:

The Reinforcement Learning Twin-delayed deep deterministic policy gradient (TD3)

is a model free, off-policy algorithm which consists of actor-critic combinations to search

for optimal solution policy that maximizes an expected long-term cumulative reward.

The TD3 agent is a modification to the DDPG (Deep Deterministic Policy Gra-

dient) agent. The issues with DDPG agent is the overestimation of value functions which

provides sub-optimal solutions. As such the modifications are:

1. Consists of two critic and one actor pair. This allows for reduction of Q-Value bias

and chooses the minimum value estimate to update its policy.

2. Noise is considered to allow for unbiased policy updates.

3. Policy updates are less frequent than its critics.

4. Addresses over-estimation.

In DQN, the action space is strictly discrete. This only allows for a discrete

range of policy updates or control actions for a given set-point. Example, a range of set-

points between 24 and 28 is given as {24,25,26,27,28} and agent will only learn from those

action spaces. The TD3 agent provides a continuous action space, this allows for a fuzzy

generalized action space that can help stabilize a given strategy.
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Figure 5.2: DQN and TD3 Based Controller Model

Controllers Observation Space S Reward Function Inputs
DQN [Tmax, Tmin, Troom, Tout, CEnergy, Apa], 6 [Tmax, Tmin, Troom, CP erStep, A, Apa], 6
TD3 [Tmax, Tmin, Troom, Tout, CEnergy, Apa], 6 [Tmax, Tmin, Troom, CP erStep, A, Apa], 6
PI [Kp, Ki] ,2 [Tmax, Tmin, Troom, CP erStep, A, Apa], 6

Table 5.3: Observation and Reward Function Space for respective controllers

5.2.1 RL-PI Controller:

The RL PI controller utilizes the observation space S = [Kp, Ki] and the reward

function being shown in equation (5.2.3 - 5.2.6). The model can be seen in figure(5.3)

Figure 5.3: RL-PI based Controller Model
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Results

In figures(6.1, 6.2, 6.3) and Table(6.1) for the TD3 and DQN agent showcase

the temperature curve and the cost of each of the experiments using TD3 agent per 1440

minutes for a total of 4320 minutes. As it can be seen, the temperature response remained

inside the temperature boundaries for the entirety of the experiment. The cost of the third

experiment is only higher because of 8 more temperature added for simulation purpose.

The stopping criterion of the TD3/DQN algorithm is when the average reward reaches

85/200 respectively. The training for both algorithms stop very early at an average of 6

to 8 episodes, the rest of the experiments showcase robustness of the system as shown in

figures (6.5, 6.4).

Table (6.2) showcases the mean cost, and total difference along with percentile

difference between both algorithms. It can be seen that with a 1.06903% there is no

difference between the two algorithms and any of them can be used for air conditioner

Exp No. TD3 DQN
1 824.6003 821.2656
2 777.9522 775.6900
3 1633.05505 1633.3272
Total 3,265.60755 3230.8828

Table 6.1: TD3/DQN Agent Cost out of total 1440 minutes. Note: Third row signifies higher
cost due to positive 8 temperature added for simulation purposes.
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Figure 6.1: First experiment of DQN/TD3 agent.

Figure 6.2: Second experiment of DQN/TD3 agent
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Figure 6.3: Third experiment of DQN/TD3 agent

Figure 6.4: Episode Graph of DQN agent

problem.

Since it was concluded that there is minute difference between DQN and TD3
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Figure 6.5: Episode Graph of TD3 agent

Algorithm Mean Cost Percentile
DQN 3230.8828 -
TD3 3,265.6075 -
Difference 34.7247 1.06903%

Table 6.2: Difference between both algorithms.

Figure 6.6: Cost graph of traditional control technique.
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PI Tuning Cost
Control System Tuner 6140.8026

Reinforcement Learning 4959.1529

Table 6.3: Cost of PI Controller tuned by RL and inbuilt CST of MATLAB. The experiment is
ran for a total of 1440 minutes.

No. Controller Cost Difference Percentile Difference
1 DQN vs RL-PI 4137.8873 143.169%
2 DQN vs CST-PI 5319.537 152.815%
3 TD3 vs RL-PI 4134.5526 142.971%
4 TD3 vs CST-PI 5316.2023 152.646%

Table 6.4: Cost difference of the different controller models. Only the first experiment of each is
considered

agent (0.0107%), it was decided to implement TD3 algorithm for the the RL PI experiment.

Additionally for simplicity, comfort violation was not considered for this experiment. In

table(6.3) and figure(6.6), it can be seen that both cost curves are approximately linear,

with an accumulated cost show in table(6.3). However it can be seen from figure(6.7) that

both controllers do not achieve the desired 24◦C temperature and overshoot the response

curve and are always violating the comfort ranges, hence not provided in the tables.

The episode training graph of RL-PI method can be seen on figure(6.8). It can be

deduced that there was sufficient difficulty on the convergence of the system at the first 17

episodes. This can be due to the factors of the [Ki, Kp] parameters of the RL-PI controller

that proved difficult.

Table(6.4) showcases the cost difference the percentile difference between newer

RL based control techniques compared to traditional control techniques. It is to be noted

that only the first experiment cost of each control strategy was used to formulate this

conclusion. The differences show that for better and robust controllers, its better to use

pure DQN or TD3 based controllers without traditional controller technology.
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Figure 6.7: Temperature response of the PI controller systems using CST and RL methods.

Figure 6.8: Episode graph of RL-PI controller using TD3 agent
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Conclusion

In conclusion, this study has examined various methods and procedures of cost-

effective thermal comfort management and energy reduction. We initially posed a question

on the comparative analysis between modern control algorithms (Reinforcement Learning

based) versus traditional control algorithms (PI, PID, ON and OFF) for optimization and

through thorough investigation we have found conclusive results.

Our study has shown that modern control techniques provide a more robust solu-

tion to the A/C market compared to the traditional techniques. The simulations showcase

the efficiency of the algorithms and the efficacy they provide. As seen in this study be-

fore, there is an notable difference of about 142-143% for DQN and roughly 152% for TD3

between RL based and traditional control methodologies. Additionally it was discovered

that there is a minute difference between TD3 and DQN control techniques, which is about

1.07%. Conversely the training of such systems is not overly costly or time-consuming.

However, it is important to note the limitations of the study as well. Our research

was confined to only the temperature variable of the A/C system, additionally our study

was only simulation based, and the experiments performed were up to three only. For more

rigorous results, more experiments should be performed.

In closing, our study showcases the vital importance modern control techniques of

A/C systems. The efficiency of modern control techniques out perform traditional control

techniques in many ways, and provide more generalized integration between other tech-

nologies that IoT is a part of. As lifestyle changes and as more people pursue the usage
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of A/C systems, it imperative for A/C manufacturers to start integrating modern control

techniques for efficiency and energy saving.
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Future Recommendation

As noted in the Conclusion section, there are some limitations to this study that

researchers can work and improve upon. These are listed as follows:

• Experiment Amount: Future researchers should increase the amount of experi-

ments to highlight even more robustness of the system

• Practical Implementation: Practical implementation should be done on A/C sys-

tems to see the correlation of the theory to the practicality. This would provide even

more conclusive evidence between modern vs traditional control techniques.

• Reward Function Optimization: The reward function used in this study is quite

simple. An even more robust reward function can be developed to penalize the

Reinforcement Learning agent.

• Extension: The study can be extended to newer technologies as well. The researcher

should try to implement the physical model of the A/C system as opposed to the

mathematical model we have done in this study to showcase any difference there

might be.

While more work can be done, as the A/C and HVAC subject is very vast, these

are one of the few ways according to the author that can be worked upon for future research

based on this study.
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Reset Functions and Validation functions are taken from MATLAB examples and

can be found there.

.1 DQN Code:

disp("Loading Model...")

mdl = "A/C_LAB_MODEL";

open_system(mdl)

sample_time = 120; % seconds

PerEpisodeStep_max = 1000;

agentBlk = mdl + "/Smart Controller/RL Agent";

disp("Logging Data for Temperature...")

data = load(’temperatureMar21toApr15_2022.mat’);

temperatureData = data.temperatureData;

%Validation Data

temp_march21 = temperatureData(1:60*24,:);

temp_april15 = temperatureData(end-60*24+1:end,:);

%Training Data

temperatureData = temperatureData(60*24+1:end-60*24,:);

%% Room parameters

disp("Loading House Parameters...")

outsideTemperature = temperatureData;

max_comfort = 18;

min_comfort = 25;

Tac = 24;

rad2deg = 180/pi;

% Define the house geometry

% House length = 30 m, my room = 13 ft, lab = 16.9672-6.1976-3.81 (m)

L_House = 6.9596; %in meters

% House width = 10 m , my room = 10 ft, lab = 3.5814 + 7.239 (m)
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W_House = 10.8204; %in meters

% House height = 4 m , ,my room = 10 ft, lab = 6.09m

H_House = 6.09; %in meters

% Roof pitch = 5 deg

roof_pitch = 5/rad2deg;

% Number of windows = 6, lab = 4, og = 1

n_win = 4;

% Height of windows = 1 m

H_win = 1.3;

% Width of windows = 1 m

W_win = 1.3;

windowArea = n_win*H_win*W_win;

wallArea = 2*L_House*H_House + 2*W_House*H_House + ...

2*(1/cos(roof_pitch/2))*W_House*L_House + ...

tan(roof_pitch)*W_House - windowArea;

wall_coefficient = 0.038; % hour is the time unit

wall_density = .2;

wall_resistance = wall_density/(wall_coefficient*wallArea);

kWindow = 0.78; % hour is the time unit

LWindow = .01;

RWindow = LWindow/(kWindow*windowArea);

R_wall_eq = wall_resistance*RWindow/(wall_resistance + RWindow);

% c = cp of air (273 K) = 1005.4 J/kg-K

%c_air = 1000;

%Mdot = 2655; % hour is the time unit

Mdot = 1496.0387502928907;

c_air = 1005.4;

densAir = 1.2250;

M = (L_House*W_House*H_House+tan(roof_pitch)*W_House*L_House)*densAir;

%% Setting up specifications

obsInfo = rlNumericSpec([6,1]);

actInfo = rlFiniteSetSpec([0,1]); % (0=off,1=on)
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rng(0)

%% Create DQN Agent with LSTM Network

disp("Making Critic Agent...")

critic_options = rlOptimizerOptions( ...

LearnRate=0.001, ...

GradientThreshold=1);

agent_options = rlDQNagent_options(...

UseDoubleDQN = false, ...

TargetSmoothFactor = 1, ...

TargetUpdateFR_wall_equency = 4, ...

expBufferLength = 1e6, ...

CriticOptimizerOptions = critic_options, ...

MiniBatchSize = 64);

agent_options.EpsilonGreedyExploration.EpsilonDecay = 0.0001; %0.0001 og value

useRNN = true;

initialize_options = rlAgentInitializationOptions( ...

UseRNN=useRNN, ...

NumHiddenUnit=64);

if useRNN

agent_options.SequenceLength = 20;

end

agent = rlDQNAgent(obsInfo, actInfo, initialize_options, agent_options);

agent.sample_time = sample_time;

%% Simulink Env

disp("Simulating Env...")

env = rlSimulinkEnv(mdl,agentBlk,obsInfo,actInfo);

env.ResetFcn = @(in) hRLHeatingSystemResetFcn(in);
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validateEnvironment(env)

%% Train Agent

disp("Start Training...")

trainOpts = rlTrainingOptions(...

MaxEpisodes = 150, ...

PerEpisodeStep_max = PerEpisodeStep_max, ...

ScoreAveragingWindowLength = 5,...

Verbose = false, ...

Plots = "training-progress",...

StopTrainingCriteria = "AverageReward",...

StopTrainingValue = 200); %StopTrainingValue = 85

trainingStats = train(agent,env,trainOpts);

%% Simulate DQN Agent

disp("Showing Graphs...")

max_step= 720;

temp_validation = temp_march21;

env.ResetFcn = @(in) hRLHeatingSystemValidateResetFcn(in);

simulation_options = rlSimulationOptions(max_step = max_step);

exp1 = sim(env,agent,simulation_options);

localPlotResults(exp1, max_step, ...

max_comfort, min_comfort, sample_time,1)

% Validate agent using the data from April 15

temp_validation = temp_april15;

exp2 = sim(env,agent,simulation_options);

localPlotResults( ...

exp2, ...

max_step, ...
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max_comfort, ...

min_comfort, ...

sample_time,2)

% Validate agent using the data from April 15 - 8 degrees

temp_validation = temp_april15;

temp_validation(:,2) = temp_validation(:,2) - 8;

exp3 = sim(env,agent,simulation_options);

localPlotResults(exp3, ...

max_step, ...

max_comfort, ...

min_comfort, ...

sample_time, ...

3)

.2 TD3 Code:

disp("Loading Model...")

mdl = "rlHC";

open_system(mdl)

sample_time = 120; % seconds

PerEpisodeStep_max = 1000;

agentBlk = mdl + "/Smart Controller/RL Agent";

disp("Logging Data for Temperature...")

data = load(’temperatureMar21toApr15_2022.mat’);

temperatureData = data.temperatureData;

%Validation Data

temp_march21 = temperatureData(1:60*24,:);

temp_april15 = temperatureData(end-60*24+1:end,:);

%Training Data

temperatureData = temperatureData(60*24+1:end-60*24,:);
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%% Parameter Settings for Environment and House

disp("Loading House Parameters...")

outsideTemperature = temperatureData;

comfortMax = 18;

comfortMin = 25;

Mdot = 1496.0387502928907;

cair = 1005.4;

Tac = 24;

wallArea = 320;

wallDensity = 1920;

wallMass = 122880;

wallVolume = 64;

widHouse = 10;

widWindows = 1;

windowArea = 6;

windowDensity = 2700;

windowMass = 162;

windowVolume = 0.0600;

TinIC = 20;

pitRoof = 0.0707;

roofArea = 601.0840;

roofDensity = 32;

roofMass = 3.8469e+03;

roofVolume = 120.2168;

kRoof = 0.0380;

kWall = 0.0380;

kWindow = 0.7800;

LenHouse = 30;

LRoof = 0.2000;

LWall = LRoof;

LWindow = 0.0100;

M_air = Mdot;
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c_air = cair;

c_roof = 835;

c_wall = 835;

c_window = 840;

h_A_R = 12;

h_A_W = 24;

h_A_Wnd = 25;

h_R_Atm = 38;

h_W_Atm = 34;

h_Wnd_Atm = 32;

htHouse = 4;

htWindows = 1;

%% Create Observation Info and Action Info (Output Info)

obsInfo = rlNumericSpec([6,1]); %Each Observation value can have infinite many values

actInfo = rlNumericSpec([1 1],’LowerLimit’,[0],’UpperLimit’,[1]); %Can only be 0 or 1

rng(0) %Make seed of random number generator 0

%% Create Paths

% Observation Neural Path

obsPath = [

featureInputLayer(prod(obsInfo.Dimension),Name="obsPathIn")

fullyConnectedLayer(32)

reluLayer

fullyConnectedLayer(16,Name="obsPathOut")

];

% Output Neural path

actPath = [

featureInputLayer(prod(actInfo.Dimension),Name="actPathIn")

fullyConnectedLayer(32)

reluLayer

fullyConnectedLayer(16,Name="actPathOut")
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];

% Common Path both can take

commonPath = [

concatenationLayer(1,2,Name="concat")

reluLayer

fullyConnectedLayer(1)

];

%% Create Critic

% Add path to Critic. TD3 has two critic for Q Values

criticNet = layerGraph;

criticNet = addLayers(criticNet,obsPath);

criticNet = addLayers(criticNet,actPath);

criticNet = addLayers(criticNet,commonPath);

%Connect individual Observation and Action path to each other

criticNet = connectLayers(criticNet,"obsPathOut","concat/in1");

criticNet = connectLayers(criticNet,"actPathOut","concat/in2");

%Create Deep Learning separate weights for the two separate critics

criticNet1 = dlnetwork(criticNet);

criticNet2 = dlnetwork(criticNet);

summary(criticNet1);

summary(criticNet2);

% Using Critic Net, create individual Q Learning Functions

critic1 = rlQValueFunction(criticNet1,obsInfo,actInfo);

critic2 = rlQValueFunction(criticNet2,obsInfo,actInfo);

getValue(critic1,{rand(obsInfo.Dimension)},{rand(actInfo.Dimension)});

getValue(critic2,{rand(obsInfo.Dimension)},{rand(actInfo.Dimension)});

%% Create Actor
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% TD3 only has single actor

actor_network = [

featureInputLayer(prod(obsInfo.Dimension))

fullyConnectedLayer(400)

reluLayer

fullyConnectedLayer(300)

reluLayer

fullyConnectedLayer(prod(actInfo.Dimension))

tanhLayer

];

% Single Deep Learning Actor

actor_network = dlnetwork(actor_network);

summary(actor_network);

% Use ActorNet to create TD3 actor

actor = rlContinuousDeterministicActor(actorNet,obsInfo,actInfo);

getAction(actor,{rand(obsInfo.Dimension)});

%% Making TD3 Agent

%Options for Critic

critic_options = rlOptimizerOptions( ...

LearnRate=0.001,...

GradientThreshold=1);

%Options for Actor

actor_options = rlOptimizerOptions( ...

LearnRate=1e-3,...

GradientThreshold=1);

%L2RegularizationFactor=1e-5 ...

%Options for the TD3 Agent

agent_options = rlTD3agent_options;
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agent_options.CriticOptimizerOptions = critic_options;

agent_options.ActorOptimizerOptions = actor_options;

agent_options.SampleTime = sampleTime;

%Create Agent

agent = rlTD3Agent(actor,[critic1 critic2],agent_options);

%% Creating RL Simulink Environment and validating it. validateEnvironment

% is a MATLAB function

disp("Simulating Env...")

env = rlSimulinkEnv(mdl,agentBlk,obsInfo,actInfo);

env.ResetFcn = @(in) hRLHeatingSystemResetFcn(in);

validateEnvironment(env)

%% Train

disp("Start Training...")

trainOpts = rlTrainingOptions(...

MaxEpisodes = 150, ...

MaxStepsPerEpisode = 1000, ...

ScoreAveragingWindowLength = 5,...

Verbose = false, ...

Plots = "training-progress",...

StopTrainingCriteria = "AverageReward",...

StopTrainingValue = 85);

trainingStats = train(agent,env,trainOpts);

%% Get Results

disp("Showing Graphs...")

max_step= 720;

temp_validation = temp_march21;

env.ResetFcn = @(in) hRLHeatingSystemValidateResetFcn(in);
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simulation_options = rlSimulationOptions(max_step = max_step);

exp1 = sim(env,agent,simulation_options);

localPlotResults(exp1, max_step, ...

max_comfort, min_comfort, sample_time,1)

% Validate agent using the data from April 15

temp_validation = temp_april15;

exp2 = sim(env,agent,simulation_options);

localPlotResults( ...

exp2, ...

max_step, ...

max_comfort, ...

min_comfort, ...

sample_time,2)

% Validate agent using the data from April 15 - 8 degrees

temp_validation = temp_april15;

temp_validation(:,2) = temp_validation(:,2) - 8;

exp3 = sim(env,agent,simulation_options);

localPlotResults(exp3, ...

max_step, ...

max_comfort, ...

min_comfort, ...

sample_time, ...

3)

.3 Plot Graph:

function localPlotResults(exp, maxSteps, comfortMax, comfortMin, sampleTime, figNum)

% localPlotResults plots results of validation
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% Compute comfort temperature violation

Violated_Comfort_Minutes = ...

sum(exp.Observation.obs1.Data(1,:,1:maxSteps) > comfortMin) ...

+ sum(exp.Observation.obs1.Data(1,:,1:maxSteps) < comfortMax);

% Cost of energy

total_cost = exp.SimulationInfo(1).logsout{1}.Values;

total_cost.Time = total_cost.Time/60;

total_cost.TimeInfo.Units="minutes";

total_cost.Name = "Total Energy Cost";

final_cost = exp.SimulationInfo(1).logsout{1}.Values.Data(end);

final_cost = abs(final_cost);

% Cost of energy per step

perStepCost = exp.SimulationInfo(1).logsout{2}.Values;

perStepCost.Time = perStepCost.Time/60;

perStepCost.TimeInfo.Units="minutes";

perStepCost.Name = "Energy Cost per Step";

minutes = (0:maxSteps)*sampleTime/60;

% Plot results

fig = figure(figNum);

% Change the size of the figure

fig.Position = fig.Position + [0, 0, 0, 200];

% Temperatures

layoutResult = tiledlayout(3,1);

nexttile

plot(minutes, ...

reshape(exp.Observation.obs1.Data(1,:,:), ...

[1,length(exp.Observation.obs1.Data)]),"k")
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hold on

plot(minutes, ...

reshape(exp.Observation.obs1.Data(2,:,:), ...

[1,length(exp.Observation.obs1.Data)]),"g")

yline(comfortMin,’b’)

yline(comfortMax,’r’)

lgd = legend("T_{room}", "T_{outside}","T_{Minium Comfort}", ...

"T_{Maximum Comfort}","location","northoutside");

lgd.NumColumns = 4;

title("Temperatures")

ylabel("Temperature")

xlabel("Time (minutes)")

hold off

% Total cost

nexttile

plot(total_cost)

title("Total Cost")

ylabel("Energy cost")

% Cost per step

nexttile

plot(perStepCost)

title("Per Step Cost")

ylabel("Energy Cost")

fprintf("Comfort Temperature violation:" + ...

" %d/1440 minutes, cost: %f PKR\n", ...

Violated_Comfort_Minutes, final_cost);

end

.4 Reward Function Code:

function reward = OptRewardFcn(room_temp, perStepCost,...
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comfort_max, comfort_min, Action, prev_action)

% energy cost

energy_reward = perStepCost;

% comfort level reward

if (room_temp <= comfort_min) && (room_temp >=comfort_max)

comfort_reward = 0.1;

elseif room_temp > comfort_min

comfort_reward = -0.1*abs(room_temp - comfort_min);

elseif room_temp < comfort_max

comfort_reward = -0.1*abs(room_temp - comfort_max);

else

comfort_reward = 0;

end

% switch penalty

if prev_action ~= Action

switching_penalty = -0.01;

else

switching_penalty = 0;

end

reward = energy_reward + comfort_reward + switching_penalty;
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