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Abstract

The wave packet dynamics in a bounded one-dimensional system exhibits fasci-

nating phenomena of quantum revivals and fractional revivals which is a manifesta-

tion of self-interference of the wave packet. An initially well-localized wave packet in

a bounded system follows classical evolution in its short time dynamics and displays

reconstruction after a classical period. However, after many classical periods phase

difference between constituent wavelets leads to destructive interference and results

a collapse when the phase difference is maximum. Later, constructive interference

dominates and supports quantum revivals and fractional revivals.

In this thesis, different measures on the phenomena of quantum recurrences,

namely full revivals and fractional revivals, are investigated. In particular, we cal-

culate the classical periodicity, quantum revival and super-revival times for general

one-dimensional systems by means of autocorrelation function. The autocorrelation

function is plotted, to display the structure of full revivals and fractional revivals,

for some model systems such as infinite square well, harmonic oscillator, quantum

bouncer and Rydberg atom. We extend our discussion to visualize these periodic-

ities by means of quantum carpets which are self-interference patterns formed by

temporal evolution of position-space and momentum-space probability densities. Fi-

nally we investigate the phenomena of quantum revivals and fractional revivals by

means of information entropy and compare the results with the temporal evolu-

tion of variance-based uncertainty product. We found that information entropy is a

better measure for the identification of fractional revivals.
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Chapter 1

Introduction

The Quantum world shows very interesting phenomena which do not have corre-

sponding analogue in classical world. The agreement between quantum physics and

classical physics has been intensively studied in a variety of systems by the quantum-

classical correspondence [1]. Therefore the precise distinction between these two

theories is one of the philosophical question from the very binging of quantum the-

ory. How we can visualize the computability between a microscopic probabilistic

world and deterministic macroscopic world is the most debated philosophical ques-

tion. Bohr correspondence principle provides a cornerstone for the philosophical

interpretation between the classical theory and the quantum theory. According to

Bohr correspondence principle the predictions of quantum theory must corresponds

to the predictions of classical theory.

In classical mechanics, the position and momentum of a particle at particular

instant of time t is marked by some point x(t) and p(t) respectively. The equation of

motion of the particle are used to describe the position and momentum variable and

these variables are used to determine the state of the system. In quantum mechanics,

to study the dynamical behaviour of a wave packet ψ(x, t) we need to construct

its wave function, which describes the position and momentum of a particle. A

localized wave packet ψ(x, t) can be produced in many physical system. A localized

wave packet is the result of the superposition of quantum mechanical eigenstates

of the system. The time evolution and dynamics of wave packet are the subject of

current research in molecular, atomic, chemical and condensed matter physics [2].
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This wave packet ψ(x, t) displays a variety of non-classical effects. These effects can

be observed through several interesting phenomena like revivals, fractional revivals

and super-revivals of the wave packet at some particular instant of time.

The wave packet dynamics manifests several interesting phenomena that do not

have corresponding classical analogous, such as quantum revival and fractional re-

vivals. In this thesis we study the dynamics of wave packet for different model

systems. We investigate the revivals and fractional revivals of a wave packet by

means of different theoretical tools. In our study, we use autocorrelation function,

quantum carpets and information entropy to investigate the dynamical behaviour

of quantum wave packet. In the following, we give a brief introduction of what we

are going to present in thesis.

1.1 Quantum revivals

The revival phenomena [2] can be understand by the precise nature of the transition

from quantum to classical dynamics and the deviation from classical predictions that

are displayed during the long- term time evolution of wave packet [3]. According

to Bohr correspondence principle, for high quantum numbers n→∞ the quantum

theory reproduce classical mechanics. However, the harmonic oscillator violates the

Bohr correspondence principle [7]. The quantum-to-classical transition can be also

studied by decoherence in quantum wave packet. The time evolution of a wave

packet and interactions with some hard boundaries destroy the coherence of wave

packet and the quantum system collapse to a classical world. The Rydberg wave

packets are also used to prob the correspondence between quantum and classical

mechanics [12] because initially the motion of wave packet is periodic with the same

classical period Tcl as the motion of the charged particle in coulomb field. This

periodicity is lost after few cycle due to the quantum interference effect, the wave

packet collapses and then undergoes a sequence of revivals and fractional revivals.

Schrodinger said that “the wave groups can be constructed which move round

highly quantized Kepler ellipses and are the representations by wave mechanics of

the hydrogen electron”[5]. From the early investigation it is found that such disper-

sion [15] was a natural features of wave packet for coulomb potential. To calculate
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the semiclassical solution of wave packet for coulomb potential under schrodinger

suggestion leads to many theoretical results. The time development of such wave

packet leads to the prediction of quantum wave packet revival. For the first time,

Parker and Stroud [21] study the revival behaviour in numerical studies of Rydberg

atoms, while Yeazell and Stroud [19, 38] experimentally confirmed their prediction.

Averbukh and Perelman [37] discussed the dynamics of wave packets of highly ex-

cited states of atoms, and also discussed the revival and fractional revivals of these

highly excited state atoms. While Kostelecký and Bluhm [2] have discussed the

general revival structure of a localized wave packets.

The experimental realization of quantum wave packet revival is first found in

Rydberg atom [36]. The study of the quantum revivals in atoms has focused on the

excitation of Rydberg wave packets [44]. The coherent superposition of Rydberg

atomic states is possible by the interaction of ultrashort laser pulses. Excitation of

Rydberg atom from its ground state by the interaction of short laser pulse produces

a superposition of the state which are centered on a mean value n̄ and this mean

value depends on the frequency of the laser pulse. The periodicity of the wave packet

is directly determined by the energy of the Rydberg atoms.

Over the past few years the theoretical analysis and numerical predictions of

quantum wave packet revival phenomenon has been developed in a rigorous way.

We can study the characteristic of quantum revival of a wave packet by means of

initially localized wave packet which have a short term time evolution and also have a

significant spreads over a several orbits [4]. For shot term time evolution, the spread

of wave packet reverse itself and the wave packet relocalize. The relocalization of

the wave packet is called revival of the wave packet. There is also a possibility of

smaller copies of initial wave packet or clones of initial wave packet, this give rise to

the fractional revival of the initial wave packet.

The revival phenomenon arises because of self interference of a time evolved wave

packet. The systems which are exhibiting revival behaviour are important for the

fundamental realization of the time-independent interference for bound state system

[4], with quantized energy. The revival phenomenon has a wide use in chemistry

and physics to study the dynamical behaviour of a system.
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1.2 Autocorrelation function

To study the revival behaviour we have different theoretical tools, one of them is

autocorrelation function. The autocorrelation function is use to compare the wave

packet with time delayed version of itself. In statistics the autocorrelation of a

random process is described by the correlation between different values at different

times. The statistical definition of autocorrelation function is given as,

R(T, t) =
E[(Xt − µt)(XT − µT )]

σtσT
,

where, E is the expected value operator. In quantum mechanics, Nauenberg intro-

duce the autocorrelation function and is use to investigate the revival and fractional

of a wave packet during its sort-term and long-term time evolution. The autocor-

relation function is basically the overlap of a initial wave packet with time evolved

wave packet and it is given as,

A(t) = 〈ψ(0)|ψ(t)〉. (1.2.1)

or,

A(t) =

∫ ∞
−∞

ψ∗(x, t)ψ(x, 0)dx. (1.2.2)

In momentum space,

A(t) =

∫ ∞
−∞

φ∗(p, t)φ(p, 0)dp. (1.2.3)

At t = Trev, the ψ(t) completely relocalize itself and at that time we have a maximum

value of autocorrelation function. Trev is the revival time of the wave packet and it

is defined in terms of the second derivative of the eigenenergy of the system.

If t = pTrev
q

, the wave packet ψ(t) relocalize itself with some fraction of initial

wave packet, is called the fractional revival. Where p and q are the correlated

numbers with common deviser one. At fractional revival, we have clone of initial

wave packet. At fractional revival time the autocorrelation function also does not

have its maximum value.

1.2.1 Expectation value analysis

The analysis of quantum wave packet revival during short-term and long-term time

evolution by using the autocorrelation function is directly comparable with the ex-
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perimental observable. But the visualization of quantum wave packet evolution

through their time dependent expectation values in position space as well as in

momentum space is also a very valuable tool for the understanding of quantum

mechanical effects [4].

For the infinitely large number of particles, the expectation value in position

space is defined as,

〈x(t)〉 =

∫ ∞
−∞

xP (x, t)dx =

∫ ∞
−∞

x|ψ(x, t)|2dx, (1.2.4)

and the uncertainty in the position of the particle is given as,

(∆x)2 = 〈x2〉t − 〈x〉2t . (1.2.5)

As we know the Heisenberg uncertainty principle,

∆x∆p ≥ ~
2
,

is use to distinguish regimes of classical and non-classical behavior of wave packet [4].

The expectation values are use to determine the uncertainty. Smaller the uncertainty

, larger the probability of wave packet relocalization.

1.3 Quantum carpets

The measurement and controlled preparation of wave packets has emerged as a ex-

tremely active field of research [13]. The quantum carpet can be constructed by

means of space-time probability density. Highly regular spatiotemporal or mul-

tidimensional pattrens in the quantum mechanical probability can appear due to

interference of a wave packet and the regular pattern drawn by the spatiotemporal

probability density is called the quantum carpets. Quantum carpets is the result

of self interference of wave packet. The quantum carpets are characterized by the

regular net of ridges, maximum probability area and canals, minimum probability

areas and it varies along a straight lines in space-time (x, t).

Quantum carpets appear in many fields of wave physics ranging from quantum

mechanics, with application in Boss-Einstein condensation [22] and nuclear physics
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[23] to electromagnetic waves and wave guide [25]. The quantum carpets is also

use to express the quasi-probability distribution which is expressed by the Wigner

function. Wigner function was introduced by Eugene Wigner in 1932 and it is use

to study the quantum corrections to classical statistical mechanics.

1.4 Wigner distribution function

The Wigner distribution function is a quasi-probability distribution function which

is introduced by Eugene Wigner in 1932. The Wigner finction is use to study the

quantum corrections for classical statistical mechanics [6]. The Wigner function is

a joint probability distribution function in phase space. In 1927, Hermann Weyl

introduced the quantum classical correspondence by the average value of real phase-

space and Hermitian operator. Latter on the Wigner-Weyl transformation provides

a realization of operator in phase space.

In 1949, José Enrique Moyal use the demostration of Weyl to calculate the expec-

tation value of observable in phase space. Their is also many other quasi-probability

distribution in quantum mechanics, like P-representation which is introduced by

Glauber and Sudarshan [9]. The phase space distribution function with application

is also explained by Hai-woong Lee [11].

The Wigner function is use to study the classical limit of a system. As we know

in classical mechanics the particle has a definite position and momentum and it can

be represented by a point in phase space. But in quantum mechanics, the position

and momentum of any particle can not be exactly known simultaneously because of

the Hesienberg uncertainty principle, if the position of a particle is exactly known

then its momentum is totaly uncertain. The Wigner function provides a comparison

of classical and quantum dynamics in phase space.

1.5 Information entropy for quantum system

In early 1850s, Rudolf Clausius introduced the entropy which plays a very important

role in thermodynamics and in classical statistical mechanics. Clausius introduced
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an extensive thermodynamics variable, which is used to measure the entropy of

an isolated system in thermodynamics. Later on, in 1870s the Ludwig Boltzman

introduced the entropy,

SB = KBlnΩ, (1.5.1)

and he linked entropy with the lack of information about the system.

In statistical mechanics, entropy is related with the measure of uncertainty of

macroscopic properties of a system, such as, pressure, temperature, and volume.

The statistical entropy measure the probability of the spread of the system over

different possible microstate [29].

After Boltzman theorem, Shannon introduce the entropy [30] which is defined in

terms of the discrete random variable X have possible values {x1, x2, ..........., xn},
and its is given as,

H(X) = E[
1

X
] = E[−lnPX ], (1.5.2)

where, E is the expected value operator and 1
X

is the information content of X [31].

The entropy for a finite system can be express as,

H(X) = −
n∑
i=1

P (xi)lnP (xi), (1.5.3)

where, P (xi) is the probability of the system.

The quantum correspondence of classical definition of Shannon’s entropy was

provided by the Jhon Von Neumann. He described the collapse of wave packet are

irreversible process. As in classical mechanics the state of a system is described by

the microstate, similarly the quantum mechanical state of a system described by the

wave function which contains all the information of the system. Von Neumann in-

troduced the classical statistical entropy in quantum domain. Von Neumann defined

the entropy [27],

S(ρ) = −Tr(ρlnρ), (1.5.4)

where ρ is the density matrix and it is defined as,

ρ =
∑
j

ηj|j〈〉j|,
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by using the value of ρ we have,

S(ρ) = −
∑
j

ηjlnηj. (1.5.5)

Rényi introduced the generalization of Shannon’s entropy in quantum informa-

tion theory. Rényi entropy is very important in quantum information, where it is

used to measure the entanglement of the systems. The Rényi entropy as a function

of α is given as,

Hα(X) =
1

1− α
log
( n∑
i=1

Pα
i

)
, (1.5.6)

where α ≥ 0 and α 6= 1 and X is a discrete random variable.

In quantum information theory, Ronald Fisher introduced a quantity called

Fisher information [28] which is used to measure the information of a random vari-

able X carries about an unknown parameter θ, and it is defined as,

IF (fx;θ) =

∫
fx;θ(X)

(∂lnfx;θ(X)

∂θk

)2
dk, (1.5.7)

where fx;θ = fx;θ(X) is the density function and θ is the parameter which use to

defined the density function. From the defination, it is clear that IF (fx;θ)θk ≥ 0 and

if fX does not depend on θk, then IF (fx;θ)θk = 0 [24].

The revival and fractional revival of a wave packet can be also observed by using

the information entropy. Fractional revival usually observed by using the autocorre-

lation function, but at ceratin fractional revivals, the autocorrelation function may

not be helpful because the wave packet relocalize in a location does not generally

coincide with initial position [58]. The information entropy is use to fully detect

the fractional revivals. As we know, the fractional revival is a relevant feature in

long-time evolution of a time evolved wave packet. The entropy is defined in terms

of probability as,

Sγ = −
∫ ∞
−∞

P (x)lnP (x)dx, (1.5.8)

and in momentum space,

Sρ = −
∫ ∞
−∞

P (p)lnP (p)dp. (1.5.9)
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The entropy is related with the uncertainty in the position or momentum of the

particle. If the particle is more uncertain in position in some particular region, it

will have a low probability and the particle will have the large value of entropy in

that particular region. If the particle has the large value of entropy, it will have more

uncertainty in the relocalization of wave packet. Thus, the information entropy gives

an account of the spreading, high entropy values and the regenerating , low entropy

values of initially well localized wave packets during the time evolution [58]. The

sum of information entropies in conjugate space provides a relative minima at the

fractional revival times. So we can easily detect the fractional revival by sum of

entropies which are difficult to observe by means of autocorrelation function. The

description of fractional revival in terms of information entropies complements the

usual method in terms of autocorrelation function.

1.6 Thesis Outline

The work in this dissertation is organized as: In second chapter we discuss the

general construction of a wave packet, wave packet is given by the superposition of

all possible eigenstate of the system,

ψ(x) =
∑
n

cnun(x), (1.6.1)

cn is the probability amplitude and un(x) is the energy eigenstate of the system.

We observe the behaviour of that wave packet under time evolution operator and

discuss the different periodicities of wave packet like classical , quantum revival and

super-revival. We also discuss the different theoretical tools like autocorrelation

function, space-time probability density and information entropy, which are use to

observe the revival behaviour of the time evolved wave packet.

In third chapter, we will see the application of general formulism which is con-

structed in chapter two by applying on different model system like infinite potential

well, harmonic oscillator, the quantum bouncer and on a one dimensional Rydberg

atom. We will construct their wave packet and will observe its behaviour under

time evolution operator. Then we discuss the revival behaviour of wave packet by
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means of autocorrelation function which is the overlap of initial wave packet and

time evolved wave packet. We also discussed the quantum carpets of infinite square

well, harmonic oscillator and the quantum bouncer in third chapter. The quan-

tum carpets woven by the space-time representation of the probability density [18].

We have discuss the quantum carpets woven by the position space-time probability

and momentum-space probability density. We can observe the revival behaviour by

ridges and valleys in quantum carpets.

In fourth chapter we study the revival behaviour by means of entropy and time

dependent expectation values in position space and momentum space. We have

also discussed the relation between information entropy and uncertainty in the wave

packet relocalization. We have shown, at certain fractional revival time the auto-

correlation function may not be helpful because the wave packet might be relocalize

itself at the scale where the location does not generally conside with its initial posi-

tion [58], so at that position we can detect the fractional revival of the wave packet

by means of information entropy. At maximum value of entropy we have low proba-

bility of wave packet relocalization and at smaller value of entropy we have maximum

probability of wave packet relocalization. At the end we conclude the whole work.
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Chapter 2

Wave packet evolution and

quantum recurrences

The wave packet revival phenomenon can be observed in many experiments. This

phenomenon arises when a localized wave packet is produced by superposition of dif-

ferent wavelength and initially this wave packet exhibits a short term time evolution

with classical periodicity Tcl. The spread of wave packet is significant after a number

of orbits. After an initial excitation the wave packet relocalizes with much longer

time (Trev > Tcl) called quantum revival time. However, in many experiments, the

wave packet revival has been observed with smaller periodicities found at fractional

revival time pTrev/q [37]. These wave packet shows periodicities at Tcl/q with p = 1.

Fractional revival has been observed in many atomic [38] and molecular system [39].

To understand the revival behaviour we have different theoretical tools like auto-

correlation function, space-time probability density and information entropy of the

system. These tools are required to under stand many aspect of revival behaviour

during short and long-term time evolution.

In this chapter we are going to discuss the general methods which are required

for understanding the revival behaviour. We will start our discussion with time

evolution of a wave packet. In this section we will see how a wave packet evolves

with time and see the action of a time evolution operator on a time independent

wave packet. We have also talked about the different periodicities, like quantum

revival, fractional revival and super-revival of wave packet. Then we discussed the
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different theoretical tools like, autocorrelation function which is the overlap of initial

wave packet and time evolved wave packet, space time probability of time evolved

wave packet and information entropy of the system.

2.1 Time evolution and revival structure of quan-

tum wave packet

In quantum mechanics, the Hamiltonian of a particle of mass is defined as

Ĥ =
P̂

2m
+ V,

and corresponding time dependent Schrodinger equation is given as,

Ĥ|ψ(t)〉 = i~
∂|ψ(t)〉
∂t

,

and the time dependent quantum state of particles in any system is described by

wave function which is given as,

ψ(x, t) =
∑
n

cnun(x)e−iEnt/~. (2.1.1)

where, cn is the probability amplitude and En is the energy of the system. The

probability amplitude cn is use to describe the behaviour of the system and it is also

provide a relationship between a quantum state and the result of the observations

of that system. If the initial wave packet and the energy eigenstate of the system is

known then the probability amplitude is defined as,

cn =

∫ ∞
−∞

ψ(x, 0)u∗n(x)dx,

where, ψ(x, 0) is the initial wave packet. In general we consider the initial wave

packet as a Gaussian,

ψ(x, 0) =
1

(σπ2)1/4
e−(x−x0)

2/2σ2

eip0x/~,

where, p0 is the initial momentum.
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The time dependence of time dependent wave packet Eq.(2.1.1) can be complex.

However, if a wave packet is excited with energy which has a tight spread around

central value of quantum number n0 and n0 � ∆n� 1. For an initial wave packet

which is narrowly peaked around the central quantum number n0 with spread ∆n,

we can expand the individual eigenvalues of energy by using Taylor expansion about

this value, and it is given as,

En = En0 +
∞∑
r=1

1

r!

∂rEn
∂nr

∣∣∣∣
n=n0

(n− n0)
r . (2.1.2)

Each term in the series defined a characteristic time scale of periodicity for the wave

packet and it is defined as,

T(r) = 2π

(
1

r!

∂rEn
∂nr

∣∣∣∣
n=n0

)−1
.

Here, in the above equation the first order is associated with the classical period,

the second derivative is associated with the revival time of the wave packet and they

are defined as,

Tcl =
2π~∣∣∣dEndn ∣∣∣ , (2.1.3)

Trev =
2π~∣∣∣d2Endn2 /2!

∣∣∣ , (2.1.4)

and

Tsr =
2π~∣∣∣d3Endn3 /3!

∣∣∣ , (2.1.5)

we have,

ψ(t) =
∞∑
n=0

anunexp
(
− 2πi(n−n0)

t

Tcl
− 2πi(n−n0)

2 t

Trev
− 2πi(n−n0)

3 t

Tsr
+ .....

)
.

(2.1.6)

Here, Tcl is the classical period, Trev revival period and Tsr super revival period.

The term −iω0 in above equation is not important because it is just like a time

dependent phase in the solution of stationary state and this term does not induce

any interference in the spectrum. The second term is associated with the classical
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period of the wave packet motion in bound state. From Eq.(2.1.6) we can see the

time dependence of the wave packet require three time scales which are controlled

by the dependence of the energy on the quantum number n [2]. For very small value

of t, the first term in Eq.(2.1.6) which depends on classical period Tcl is dominant

and during this interval the wave packet shows classical periodicity.

As time t increases the term which depends on Trev becomes prominent and this

term gives rise to spread and collapse of wave packet. However at t = Trev the phase

of wave packet is approximately equal to −2πi, which is irrelevant to the motion

of wave packet because of first term in Eq.(2.1.6) and the wave packet regains its

initial shape and its motion is periodic with the classical period Tcl. This is called

a full revival [2]. When the time is equal to some rational fraction of Trev, the

wave packet regains into a series of mini wave packet called fractional revival. The

classical component of the wave packet is defined as,

ψcl(t) =
∞∑
n=0

anune
−2πi(n−n0)E′nt/~,

ψcl(t) =
∞∑
n=0

anune
−2πikt/Tcl , (2.1.7)

here k = (n− n0). This component is helpful in discussing fractional revivals. The

time is associated with the quantum revival. This time scale is responsible for the

spreading of wave packet in same way. The anharmonic oscillator gives revival time

which is related with a system which can be physically realizable such as vibrational

motion of molecules. The different periodicity can be observed during the evolution

of the wave packet, i.e., quantum revival, fractional revival and super-revival. In

quantum mechanics, the quantum revival phenomena is mostly observed in wave

packets which are well localized at the beginning of the time evolution. During time

evolution, the wave packet regain its initial form called revival of wave packet, and

the time at which wave packet re-localize is called revival time, Trev. The Eq.(2.1.7),

at time t = Trev,

ψ(t ≈ Trev) =
∑
n

cnune
− i2πkt

Tcl e−2πik
2

. (2.1.8)

The additional phase in above equation is equal to unity and the wave packet is said
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to be relocalized [4].

ψ(t ≈ Trev) = ψcl(t), (2.1.9)

so we can say at revival time the wave packet regain its initial position.

During the time evolution when the wave packet relocalize with some fraction

of initial wave packet, is called fractional revival. The wave packet revival has been

observed with smaller periodicity at fractional revival time pTrev
q

[37]. Fractional

revival has been observed in many atomic [38] and molecular system [39]. At half

revival time t = Trev
2

, the Eq.(2.1.7) is,

ψ(t ≈ Trev/2) =
∑
n

cnune
− i2πkt

Tcl e−4πik
2

, (2.1.10)

At time, t = t+ Tcl/2,

ψ(t+ Tcl/2) =
∑
n

cnune
− i2πk(t+Tcl/2)

Tcl ,

ψ(t+ Tcl/2) =
∑
n

cnune
− i2πkt

Tcl e−iπk, (2.1.11)

So we can say,

ψ(t ≈ Trev/2) = ψ(t+ Tcl/2), (2.1.12)

the wave packet relocalize near half revival time. From the above equation we can

see that at half revival time the wave packet is not completely relocalizing itself and

we can observe the collapse of the classical periods during the time evolution of the

wave packet.

The quantum revival and fractional revival can only be observed in a system

which has quadratic dependence of energy on a single quantum number [4], such as

infinite square well. But super-revival can be observed in a system which has higher

order dependence of energy on a single quantum number.

Bluhm and Kostelecký [53] have observed long term time evolution and revival

in a Rydberg atom. They found a new patterns of revival and observed the similar

structure like auto-correlation function plots at t > Trev and t < Trev.

At super-revival time Tsr the wave packet behaviour is similar to the fractional

revival behaviour observed on Trev scale.
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2.2 Tools to probe the revival structure

In quantum mechanics, there are many theoretical tools which are use to investigate

the revival structure of a time evolved quantum wave packet, i.e, autocorrelation

function, expectation value of the wave packet, spatiotemporal probability density,

information entropy and Wigner distribution function. In this section we have given

a brief overview of few of them.

2.2.1 Autocorrelation function

The projection of time dependent state |ψ(t)〉 on the initial state |ψ0〉 referred to as

autocorrelation function and can be express as,

A(t) = 〈ψ(t)|ψ0〉 =

∫ +∞

−∞
ψ∗(x, t)ψ(x, 0)dx, (2.2.1)

The position space representation of wave packet ψ(x, t) Eq.(2.1.1) is given as,

ψ(x, t) =
∞∑
n=0

cnun(x)e−iEnt/~, (2.2.2)

here, un(x) is the energy eigenfunction and En is the quantized energy eigenvalue.

The useful form of the autocorrelation function [40] is given as,

A(t) =
∞∑
n=0

|cn|2eiEnt/~. (2.2.3)

The autocorrelation function is important because it is directly related with the

study of revival behaviour in the pump-probe type experiment [19].

2.2.2 Expectation value analysis

The visualization of quantum wave packet evolution through their time dependent

expectation value is a very valuable tool for the understanding of quantum mechani-

cal effects [4]. The solution of time evolution of wave packet for bound state systems

are discussed with increasing frequency in the pedagogical literature [10]. by using

different methods, one of them is expectation value analysis.
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The expectation value of position variable is given as,

〈x(t)〉 =

∫ ∞
−∞

ψ∗(x, t)x̂ψ(x, t)dx,

and the expectation value for momentum variable is given as,

〈p(t)〉 =

∫ ∞
−∞

ψ∗(x, t)p̂ψ(x, t)dx.

Also we know that the expectation value is associated with the uncertainty as,

(∆x)t =
√
〈x2〉t − 〈x〉2t .

During long-term evolution of wave packet the uncertainties in position and mo-

mentum variable gives the information of collapsed phase and several revivals. At

different fractional revival time, the uncertainty of wave packet relocalization is

greater then the probability of wave packet relocalization, but at the complete re-

vival time when the wave packet is regain its initial shape the probability of wave

packet relocalization is maximum and the uncertainty has its minimum value.

2.2.3 Quantum carpets

The quantum carpets are a regular pattern drawn by the probability density which

is represented in space-time. The space-time probability density is defined as,

P (x, t) = |ψ(x, t)|2 =
∑
n

∑
m

c∗ncmu
∗
n(x)um(x)e

i(En−Em)t
~ . (2.2.4)

From quantum carpet, we can study the revival and fractional revival of the

time evolved wave packet. As the quantum carpet is the result of self interference of

wave packet during its interaction with some reflecting boundaries. When the wave

packet evolves with time and interact with the boundaries of the system and it will

bounce back. The decoherence appears because of self-interference of wave packet.

By the ridges and valleys of quantum carpets we can identify the fractional revival.

From the Eq.(2.2.4) we can observed the interference terms at m 6= n and because

of these interference terms we can observe fractional revival by means of space-time

probability density.
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The quantum carpet can be also constructed in momentum space by calculating

momentum space probability density. The momentum space wave packet can be

calculated by taking the Fourier transform of Eq.(2.2.2),

φn(p) =
1√
2π~

∫ ∞
−∞

un(x)e−
ipx
~ dx, (2.2.5)

and the probability density in momentum space is given as,

P (p, t) = |ψ(p, t)|2 =
∑
n

∑
m

c∗ncmφ
∗
n(p)φm(p)e

i(En−Em)t
~ . (2.2.6)

The temporal evolution of these probabilities undergoes a series of constructive and

destructive interference which leads to the formation of regular interference patterns

and from these interference terms we can identify revival and fractional revival in

the system.

2.2.4 Information entropy

Entropy is the central concept of classical statistical mechanics and thermodynam-

ics which is introduced by the Clausius in mid century. This is a phenomenological

variable which quantifies the intrinsic irreversibility of thermodynamics process. In

quantum mechanics, the probability distribution is use to described the complete

information of a wave function in position as well in momentum space. The infor-

mation by the position space probability density P (x) is defined as,

Sx = −
∫
P (x) lnP (x)dx.

The information entropy measures the uncertainty in the localization of a evolved

wave packet. When the uncertainty in the localization of wave pacekt os minimum,

the entropy is also minimum and the we can say that the wave packet os well local-

ized. When the wave packet spread in space, the uncertainty in the position of wave

packet is increases which implies that the information entropy will also increase.

Thus the information entropy gives the information of spreading and relocaliza-

tion of an initial well localized wave packet during its time evolution. Similarly in

momentum space, the entropy is defined as,

Sp = −
∫
P (p) lnP (p)dp.
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The entropic uncertainty relation by using the position space entropy and momen-

tum space entropy is defined as,

Sx + Sp ≥ 1 + ln π, (2.2.7)

this inequality is a generalization of the variance based Heisenberg uncertainty rela-

tion. As we know that, at fractional revival time the uncertainty has its maximum

value, so we can say that entropy might be a better tool to identify fractional revival

because entropy is related withe uncertainty of the wave packet relocalization.
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Chapter 3

Quantum wave packet revivals in

one-dimensional model systems

As in previous chapter, we have talked about the time evolution of wave packet

and revival of a wave packet. We can observed a full revival of a wave packet by

means of autocorrelation function and quantum carpets. When the inner product

of time evolved state and initial state is equal to one, we have a maximum value

of autocorrelation function and a full revival of wave packet can be observed at

that time. The fractional revival can be observe when the time evolved state is not

exactly equal to the initial state but some fraction of initial state and at fractional

revival time the autocorrelation is also not at its maximum value.

Quantum carpet is a regular pattern drawn by the probability density which

is represented in space-time. Quantum carpet is the result of self interference of

wave packet during its interaction with some reflecting boundaries. For example,

when an intially localized Gaussian wave packet inside an infinite potential well

starts spreading in the center of the well, different pieces of wave packet starts

to interfere with each other after reflecting from the boundaries of infinite potential

well. Quantum carpets are used to study the dechorence of wave packet. In quantum

mechanics, when probability of a particle is represented in space-time, it displays

a characteristic ridges and valleys [56]. The valleys and ridges do not follow any

classical trajectories. They follow the world line which is created by the interference

and the design of the carpets are purely an effect of interference and sensitive to
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dechorence [57]. The quantum fractional revival can be determined by the structure

of quantum carpets.

In this chapter, we will study the revival structure in different one dimensional

model system i.e. infinite square well, harmonic oscillator, a quantum bouncer, and

one dimensional Rydberg atom. We will discuss the quantum wave packet revival

in all system by means of autocorrelation function and quantum carpets.

3.1 Harmonic oscillator

The harmonic oscillator is a most useful example which provides a straight forward

solution of wave packet of a bound state system. The Hamiltonian of a particle with

mass m, oscillating under the influence of one dimensional harmonic potential with

angular frequency ω is,

Ĥ =
P̂ 2

2m
+

1

2
mωX̂2. (3.1.1)

The hamiltonian for this system can be solve by using two methods, one is ana-

lytic method and other is ladder or algebraic method. We have solved the time-

independent schrodinger equation analytically to find the eigenstate and energy

eigenvalues of hamiltonian eq.(3.1.1). In algebraic method we deal with the ladder

operators.

The analytic method

Consider the one dimensional time-independent schrodinger equation,

− ~2

2m

d2ψn(x)

dx2
+

1

2
mω2x2ψn(x) = Enψn(x),

or,
d2ψn(x)

dx2
+
(2mEn

~2
− x2

x40

)
ψn(x) = 0, (3.1.2)

where,

x0 =

√
~
mω

,

is a constant and has the dimension of length [8]. Now consider,

u =
x

x0
,
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and,

ε =
2En
~ω

,

after using the above values and rearranging we have,

d2ψn
du2

= (u2 − ε)ψ. (3.1.3)

This differential equation is not easy to solve, we can solve this equation by consid-

ering asymptotic analysis. The asymptotic result of the above equation is,

ψn(x) =
1√√
π2nn!x0

e−x
2/2x20Hn

( x
x0

)
, (3.1.4)

where, Hn

(
x
x0

)
is the Hermite polynomial and its defined as,

Hn(y) = (−1)ney
2 dn

dyn
e−y

2

.

The energy eigenvalues for the harmonic oscillator is given as,

En =
(
n+

1

4

)
~ω.

For the gaussian type probability amplitude the time dependent wave packet Eq.(2.2.2)

for harmonic oscillator is given as,

Ψ(x, t) =
∑
n

cn
1√√
π2nn!x0

e−x
2/2x20Hn

( x
x0

)
e−iEnt/~.

Where, cn is the Gaussian type probability amplitude is,

cn =
1

σ
√
π
e−(n−n0)2/2σ2

,

centered at the n0 central quantum number and σ is the width of the wave packet

which is centered at n0. The momentum space wave packet can be calculated by

taking the Fourier transform of above equation or by solving the momentum space

Schrodinger equation. The Schrodinger equation for harmonic oscillator in momen-

tum space has the form,

p2

2m
ϕn(p)− ~2mω2

2

d2ϕn(p)

dp2
= Enϕn(p), (3.1.5)
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and we know,

p̂ = −i~ ∂
∂x

x̂ = i~
∂

∂p
.

The solution of above equation is,

ϕn(p) =
( 1

n!2n
√
mω~π

)
e−q

2/2Hn(q), (3.1.6)

where,

q =
p√
mω~

,

The momentum space wave packet of harmonic oscillator is given as,

Ψ(p, t) =
∑
n

cn

( 1

n!2n
√
mω~π

)
e−q

2/2Hn(q)e−iEnt/~. (3.1.7)

The classical period of the harmonic oscillator is,

Tcl =
2π

ω
,

depends on the angular frequency of the oscillating particle. If we plot the au-

Figure 3.1: Plot of autocorrelation function |A(t)|2 over the 20 classical period for

particle oscillating in harmonic oscillator. The wave packet is centered at n0 = 5,

with σ = 1.

tocorrelation function Eq.(2.2.3) for the harmonic oscillator, we can see from the

Fig.(3.1), the wave packet relocalize itself after every classical period and we have

the maximum value of the autocorrelation function.
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Here we can see from the figure the harmonic oscillator showing a classical like

behaviour, after every classical period the system goes to its initial state and relo-

calize itself.

3.1.1 Spatiotemporal probability density

Temporal evolution of position space probability density

The probability density Eq.(2.2.4) for harmonic oscillator is,

P (x, t) =
∑
m

∑
n

cnc
∗
mun(x)u∗me

−i(En−Em)t
~ , (3.1.8)

where,

un(x) =
1√√
π2nn!x0

e−x
2/2x20Hn

( x
x0

)
.

If we plot the probability density eq.(3.1.9) as a function of position and time,

from Fig.(3.2) we can see the classical behaviour of harmonic oscillator because we

know the energy of harmonic oscillator has linear dependence on principle quantum

number, so over the classical period the wave packet has maximum probability. In

figure we have ridges with maximum probability of wave packet and valleys with

minimum probability. Similarly the momentum space probability density is given

as,

P (p, t) =
∑
k

∑
n

cnc
∗
mϕn(p)ϕ∗m(p)e

−i(En−Ek)t
~ , (3.1.9)

where,

ϕn(p) =
( 1

n!2n
√
mω~π

)
e−q

2/2Hn(q).

3.2 The infinite square well

The infinite square well is frequently used as an example for bound state system.

In this system many aspects of wave packet propagation and particularly quantum

revival have been studied [2, 50].
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Figure 3.2: The quantum carpet for linear harmonic oscillator with central quantum

number n0.

Consider a particle of mass m moving in the potential,

V (x) =

{
0, 0 < x < L

∞, otherwise

The energy eigenvalue is given as,

En =
p2n
2m

=
n2π2~2

2mL2
, (3.2.1)

where, pn = n~π
L

, and energy eigenfunction is given as,

un(x) =

√
2

L
sin
(nπx
L

)
. (3.2.2)

The classical period is defined as,

Tcl =
2mL2

nπ~
,

Tcl =
2L

(nπ~/L)/m
=

2L

vn
,
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Figure 3.3: The quantum carpet for linear harmonic oscillator in momentum space

which is centered at n0 = 5.

here, vn = pn
m

= nπ~/L
m

, is the classical speed. The revival time is given as,

Trev =
4mL2

π~
= 2nTcl,

for n� 1, Trev � Tcl.

3.2.1 Gaussian wave packet

At time t = 0 the Gaussian wave packet is given in position or initial momentum-

space as,

ψG(x, 0) =
1√
b
√
π
e−

(x−x0)
2

2b2 eip0(x−x0)/~. (3.2.3)

where, b = α~. Consider this wave packet is contained within the well and neglect

the overlap with the region outside of the walls. The expansion coefficient [49] is
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given as,

cn ≈
∫ ∞
−∞

un(x)ψG(x, 0)dx

cn ≈
∫ ∞
−∞

√
2

L
sin(

nπx

L
)

1√
b
√
π
e−

(x−x0)
2

2b2 eip0(x−x0)/~,

by using the identity, ∫ ∞
−∞

e−ax
2−bx =

√
π

a
eb

2/4a,

we have,

cn =
1

2i

√
4bπ

L
√
π

(
einπx0/Le−b

2(p0+nπ~/L)2/2~2 − e−inπx0/Le−b2(p0−nπ~/L)2/2~2
)
, (3.2.4)

here,

sin(
nπx

L
) =

1

2i

(
einπx/L−e

−inπx/L
)
.

This expression of cn is very important for the evaluation of A(t). For (x0, L−x0 �
b), the energy expectation value and normalization condition is given as,

∞∑
n=1

|cn|2 = 1,

and,
∞∑
n=1

cn|2En = 〈En〉 =
1

2m

(
p20 +

~2

2b2

)
.

For, p0 = 0 the Eq.(3.2.4) becomes,

cn =
1

2i

√
4bπ

L
√
π

(
einπx0/Le

−b2n2π2~2
L2 /2~2 − e−inπx0/Le

−b2n2π2~2
L2 /2~2

)
,

or,

cn =

√
4bπ

L
√
π
e
−b2n2π2~2

L2 /2~2 sin
(nπx0

L

)
. (3.2.5)

The above equation shows that the expansion coefficient vanish for several values of

x0.
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3.2.2 Short-term time evolution

As from the Fig.(3.1), the harmonic oscillator shows classical like behaviour over a

few classical period. But for the infinite square well, if we plot the autocorrelation

function over the few classical period, we observe the wave packet do not have

classical like behaviour. As we can see from the Fig.(3.4) during the time evolution

Figure 3.4: The modulus of autocorrelation function |A(t)|2 for the particle inside

the infinite potential well is plotted over few classical period.

of the wave packet, first the wave packet collapse and then undergoes to the revival

of wave packet but after every classical period the wave packet never gain its initial

position. It is because of the higher periodicity Trev can be observe for a particle

oscillating in infinite square well. This higher periodicity comes from the quadratic

dependence of energy on quantum number. The classical behaviour of wave packet

can be observe for a long-term time evolution.

3.2.3 Structure of quantum revival and fractional revival

As we know the probability amplitude cn Eq.(3.2.4) is very important for the evo-

lution of autocorrelation function A(t) and depends on the initial momentum of the

particle inside the well. The probability amplitude is used to describe the behaviour

of system. The Fig.(3.5) is the plot for the modulus of the autocorrelation function

|A(t)|2 for the Gaussian wave packet with different values of initial momentum p0
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Figure 3.5: The |A(t)|2 is plotted over revival time for the different values of initial

momentum, for p0 = 5π, 10π, 30π, 60π, where the horizontal axis is rescaled by

classical period such that t/Tcl.

are plotted for one revival time, where the horizontal axis is rescaled by the classical

period such that t = t/Tcl. It is obvious from the plots that the quantum wave

packet occurs after larger number classical periods as the value of p0 decreased or

increased. This is due to the fact that Trev/Tcl = 2n0. The initial momentum of the

particle,

p0 =
nπ~
L

,

depends on the quantum number n and L is the length of the well. If we increase the

value of initial momentum the corresponding value of principle quantum number also

increases. If we plot the autocorrelation function of the particle inside the potential

well, we can see the behaviour of wave packet evolution for the different values of

initial momentum.

As we can see from Fig.(3.6) with the increase in initial momentum the number

of periodicities of wave packet is also increases. It’s because the classical period,

Tcl =
2mL2

nπ~
,
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Figure 3.6: The |A(t)|2 is plotted over revival time for the different values of initial

momentum, for p0 = 100π, 150π, 200π, 250π, where the horizontal axis is rescaled

by classical period such that t/Tcl.

has the inverse relation with the quantum number, with the increase in n the dura-

tion of classical period Tc is decreases and we have more mini wave packets in long

time evolution of wave packet.

3.2.4 Quantum carpets for Infinite potential well

Position space probability density

The probability of density of the particle is given as,

P (x, t) =
2

L

∑
m

∑
n

cnc
∗
m sin

(nπx
L

)
sin
(mπx

L

)
e
−i(En−Em)t

~ , (3.2.6)

If we plot this probability for initial momentum p0 = 30π over different fractional

revival and over complete half revival period, we can observe the decoherence in

wave packet with time. During time evolution of wave packet the decoherence

appear in wave packet after interacting with a reflecting boundaries. As we can

see from Fig.(3.7), the wave packet starts its evolution and we can see the wave
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Figure 3.7: The quantum carpet woven for the particle inside infinite potential well

has the value of initial momentum p0 = 30π indicating the classical-like short time

evolution which experiences collapse during its evolution and relocalize itself with

fractional copies od different order.

packet splits into many peaks when it interact with the reflecting boundaries. But

in second graph, the decoherence appear in wave packet due to self interference of

wave packet. And if we plot the probability density over a complete revival period,

we can observe a pattern of self interference of mini wave packets. From Fig.(3.7), we

can observe the evolution of wave packet at 2Tcl more clearly and with the increase

in time the revival structure becomes more dense. It is obvious from the plot that

a well localized single peaked probability density of the wave packet evolves quasi-

classically during its early time evolution and splits in to multiple sub-peaks after

successive bounces with the walls of the infinite potential well. These multiple peaks

evolve with time with their own phases and undergoes a series of constructive and

destructive interference.

During the time evolution the fractional copies of original wave packet also ap-

pear at time t = pTrev/q, where p and q are mutually prime numbers. From Fig.(3.8),
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Figure 3.8: The probability density P (x, t) is plotted over different fractional revival

time t = Trev/4, 3Trev/8, Trev/2, 30π.

we can observed different fractional revival for infinite potential well the first graph

the plotted for the t = 0 to Trev
4

, second is plotted for the t = 1
8
to 3Trev

8
and the last

one is plotted for the t = 1
4
to Trev

2
.

If we plot the probability density as a function of x and t for the different values

of momentum , the carpet woven by a particle inside a infinite potential well for the

different values of initial momentum p0 is shown. As we can see from the figure by

increasing the value of initial momentum we have a more dense pattern of probability

density. With the increase in the value of initial momentum the corresponding value

of classical period decreases, we have more mini wave packets for one revival period.

The dark areas in the carpet correspond to the low probability whereas the brighter

areas have high probability. From Fig.(3.9) we can see, the fractional revivals are

more prominent for very small value of initial momentum, i.e., p0 = 5π and 10π,

but for the high value of initial momentum p0 = 20π and 30π, its hard to clearly

identify the fractional revival.
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Figure 3.9: The quantum carpet for the particle inside infinite potential well for

different values of initial momentum, p0 = 5π, 10π, 20π, 30π.

Momentum space quantum carpets

The probability in momentum space can be calculated by taking the fourier trans-

form of position space eigen function. Let’s consider,

ϕn(p) =
1√
2π~

∫ ∞
−∞

e−ipx/~ψn(x)dx, (3.2.7)

ϕn(p) =
1√
2π~

∫ L

0

e−ipx/~ sin
(nπx
L

)
(x)dx,

ϕn(p) =

√
~
πL

pn
p2 − p2n

[(−1)neipL/~ − 1]. (3.2.8)

and the momentum space probability is given as,

P (p, t) =
~
πL

∑
m

∑
n

cnc
∗
m

( pn
p2 − p2n

[(−1)neipL/~ − 1]
)

( pm
p2 − p2m

[(−1)ne−ipL/~ − 1]
)
e
−i(En−Em)t

~ .

(3.2.9)

33



If we plot momentum space-time probability over a different fractional revival time,

Figure 3.10: Time evolution of the momentum space probability density P (p, t) for

an initial gaussian wave packet with initial momentum p0 = 15π.

The Fig.(3.10) is plotted for the different fractional revival in a time window equal

to t = Trev/2, for this Fig.(3.10) we can see that the fractional revival structure

is not as prominent as for the position space quantum carpets, but somehow we

can identify some fractional revival from the momentum space carpet as well. The

quantum carpets drawn by the momentum space probability for the different value

of initial momentum is shown in Fig.(3.11). As we can see for the very small value

of initial momentum, p0 = 5π, the particle is peaked at zero but with the increase

in initial momentum, we have zero probability at zero.

As we can see from figure, the momentum space probability density of the particle

shows two peaks in momentum centered on the classical values of probability density

Pcl = 1/L. It is because the momentum of the particle,

p2n = 2mEn,

or

pn = ±
√

2mEn,
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Figure 3.11: The quantum carpet for values of initial momentum is shown, p0 =

5π, 10π, 15π, 20π

the momentum changes its sign when the particle reverse its direction. For high

value of quantum number the quantum momentum space probability approaches to

classical probability density.

3.3 The quantum bouncer

The quantum bouncer is considered as a point mass m which is fallen under the

influence of gravity on a perfectly elastic surface and bounce back with no loss of

kinetic energy, the potential energy of this bouncing mass is given as [41],

V (x) =

{
mgx, x > 0

∞, x < 0

The development of different techniques to manipulate and cool the atoms with

high precision has made the experimental realization of quantum bouncer possible
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[41]. The schematic diagram is shown.Initially the atoms are trapped and cooled in

Figure 3.12: The Schematic diagram of the quantum bouncer

magneto-optical trap (MOT) and are dropped from a height of few millimeters on

the atomic mirror. Atomic mirror is a device which can reflect atoms and it can be

made of electric or magnetic field. The atomic mirror is formed by the interaction of

laser pulse with the concave glass prism and after interaction the laser pulse reflect

at some angle. The atoms moves under the influence of gravity and reflect back

when they interact with the evanescent field [35].

The quantum bouncer gives a clear correspondence between classical and quan-

tum limits because the classical motion of a bouncing ball is periodic and its quantum

motion is aperiodic. The quantum motion of a bouncing ball exhibits the collapses

and revival of the oscillations. To understand its classical motion consider a ball is

dropped on a perfectly elastic and reflecting surface. The ball will bounce back to

its initial height because there is no loss of energy, the classical motion of the ball

is shown in Fig.(3.13), which is equally probable.

In quantum mechanics, due to the Heisenberg uncertainty principle the position

and velocity of the particle is not well defined at any instant of time. To study the

dynamics of a bouncing ball in quantum mechanics, we need to solve the schrodinger

equation for the quantum bouncer and it is given as,

− ~2

2m

d2ψn(x)

dx2
+mgxψn(x) = Enψn(x), (3.3.1)
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Figure 3.13: The classical motion of a bouncing ball

with the boundary condition,

ψn(0) = 0.

To solve the above equation we need to rescale the position and energy variable.

Consider,

lg =
( ~2

2gm2

)1/3
, (3.3.2)

lg is the gravitational length.

Let x′ = x/lg and E ′n = En/(mglg), or,

E ′n = En

( 2

~2mg2
)1/3

. (3.3.3)

By using Eq.(3.3.3) and Eq.(3.3.2) in Eq.(3.3.1) and rearranging the equation, we

have,
d2ψn
dx′2

− (x′ − E ′n)ψ = 0. (3.3.4)

The solution of this equation is given by Airy function, Ai or Bi, of the variable

(x′ − E ′) . The Airy function Bi is not acceptable here because it goes to infinity

as the argument grows [41]. From the boundary condition ψ(0) = 0, we can say

Ai(−E ′) = 0. If the zeros of airy is denoted by −xn with n = 1, 2, 3......., the solution

of abve equation is written as,

ψn(x′) = NnAi(x
′ − xn), (3.3.5)
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where, Nn is the normalization constant. The zeros of airy xn is define as,

xn =
[3π

2

(
n− 1

4

)]2/3
. (3.3.6)

For normalization constant, we have not found any approximate expression in liter-

ature because for normalization constant we need to solve,

Nn '
[ ∫ ∞

0

Ai2(x− xn)dx
]−1/2

, (3.3.7)

for large value of n and by using the asymptotic expansion of Airy function we have,

Nn '
( π
√
xn

)1/2
'
( 2π2

3(n− 1/4)

)1/6
. (3.3.8)

To calculate the probability amplitude cn, consider an initial gaussian function with

zero initial momentum given as,

Ψ(x, 0) =
( 2

πσ2

)1/4
e−(x−x0)

2/σ2

, (3.3.9)

where, σ is the full width of the wave packet.

The probability amplitude cn is given as,

cn = Nn

( 2

πσ2

)1/4 ∫ ∞
0

Ai(x− xn)e−(x−x0)
2/σ2

dx,

the approximate expression for cn is given as,

cn ' Nn

( 2

πσ2

)1/4(
1− 4

x0 − xn
σ4

+
8

3

(x0 − xn)3

σ6

)
e−(x0−xn)

2/σ2

. (3.3.10)

The time evolved wave packet is given as,

Ψ(x, t) =
∑
n

cnNnAi(x
′ − xn)e−

iEnt
~ ,

where, En is the energy of the bouncing ball and it is given as,

En = xn

(~2mg2
2

)1/3
. (3.3.11)

The energy of quantum bouncer can associate with the central value of n0 in the

eigenstate expansion with the initial value x0 [4]. The autocorrelation function
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Figure 3.14: The mod square of autocorrelation function |A(t)|2 is plotted for the

different value of initial height x0 = 20, 40, 60 and 100.

Eq.(2.2.3) for quantum bouncer is, The classical period of the bouncing ball is given

as,

Tcl =
2π~
|E ′(n)|

=
3π~(n+ 3/4)

E(n)
, (3.3.12)

and revival time is,

Trev =
16mx20
π~

. (3.3.13)

From the Fig.(3.14) we can observe collapse of revival with the increase in time. The

above figure is plotted for the different value of initial height, from this figure we

can see that the structure of fractional revival becomes prominent with the increase

in initial height. This is because their is high periodicity ”super revival” exists in

quantum bouncer. As we can see from the figure even at t = Trev the time evolved

wave packet is not exactly equal to its initial wave packet and with the increase in

time the collapse of wave packet relocalization becomes more prominent.
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3.3.1 Super-revival in quantum bouncer

As we know the energy eigenvalue of the quantum bouncer,

En =
(3π

2
(n− 1

4
)
)2/3

mglg,

is not have the linear dependence on quantum number. As in the previous section we

observed revival and fractional revival for long time evolution of wave packet. Due to

the fractional dependence of energy on quantum number we can even observe super-

revival in quantum bouncer. As we know the revival time for quantum bouncer is

given as,

Trev =
2π~
|E ′′n/2!|

,

for m = g = ~ = lg = 1

Trev =
4~
(

3π
2

(
n− 1

4
)
)4/3

π
,

As we know the super-revival is defined as,

Tsr =
2π~
|E ′′′n /3!|

,

d3En
dn3

= π3
(3π

2
(n− 1

4
)
)−7/3

.

Using E ′′′n , we have,

Tsr =
12~
(

3π
2

(n− 1
4
)
)7/3

π2
, (3.3.14)

Tsr =
9

2

(
n− 1

4

)
Trev. (3.3.15)

As we can see for a very long-term time evolution we can observe super-revival in

quantum bouncer. The Fig.(3.16) is plotted for the different revival time, we can see

from this figure the wave packet is not completely relocalize itself even after 5Trev,

it is because of the higher periodicity exists in quantum bouncer, it refers that we

may observe a full revival at super revival time and which is a very high time.
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Figure 3.15: The mod square of autocorrelation function |A(t)|2 is plotted over,

2Trev, 3Trev, 4Trev, and 5Trev.

3.3.2 Position space quantum carpets

The probability density Eq.(2.2.4) can be expressed for quantum bouncer as,

P (x, t) = |ψ(x, t)|2 =
∑
n

∑
m

c∗ncmN
∗
nAi

∗(x′ − xn)NmAi(x
′ − xm)e

i(En−Em)t
~ .

If we plot this probability density as a function of position and time we have a

structure of quantum carpet shown in Fig.(3.16), these plots are for the different

fractional revival time. As we can see from the Fig.(3.16), initially when the wave

packet interact with the hard boundary of the gravitational cavity the wave packet

collapse and split into multiple peaks but regain its initial form when interact with

the soft boundary of the cavity. But with the increase in time the wave packet

continuously interact with the hard boundary of the triangular well and complectly

collapse and we can observe a number of mini wave packets. Even at time t = Trev,

we do not have the maximum probability of the time evolved wave packet. It is

because of the higher periodicity, super revival exists for quantum bouncer. We
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Figure 3.16: The quantum carpet of a bouncing ball for the initial height x0 = 20.

may observe a collapse of revival in the wave packet of quantum bouncer, like in

infinite potential well we have observed the collapse of classical period during wave

packet evolution. The wave packet of quantum bouncer may be completely relocalize

itself at time t = Tsr and we can observed the maximum probability of wave packet

relocalization at time t = Tsr.
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Chapter 4

Wave packet revivals through

variance-based uncertainty and

information entropy

The information and entropy of the system can be considered as measure of un-

certainty of probability distribution. There are many relationships established [60]

between entropy and probability density on the basis of the properties of entropy.

The information entropy is related with the evolution and relocalization of a initially

well localized wave packet. As we know that the probability density in position and

momentum space use to describe the time evolution of a quantum system. Position

and momentum space probability density together define the phase space of the sys-

tem. The phase space probability density is helped to develop different measuring

tool, such as, quantum carpets, Wigner function and information entropy.

In this chapter we discuss the revival of wave packet by means of information

entropy. If we measure the information entropy in position space, we can also

measure the uncertainty in the localization of the particle in that space [58]. If

the entropy is small then we have a higher accuracy of predicting the localization

of the particle in particular region of the space. Similarly in momentum space, the

momentum space entropy gives the uncertainty in the momentum of the particle. In

this chapter we are going to discuss the revival behaviour by means of information
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entropy for the infinite square well.

4.1 The information entropy and uncertainty prin-

ciple

Wehrl and Shannon were the first who describe the information entropy of a quan-

tum mechanical state in terms of its probability distributions [64]. The information

entropy is also compaitable with the Heisenberg uncertainty principle. Mathemati-

cally the uncertainty principle is express as,

∆A∆B ≥ 1

2
|〈[A,B]〉|, (4.1.1)

where, A and B are the operators and,

[A,B] = AB −BA,

and ∆A is the standard deviation in operator A, given as,

(∆A)2 = 〈A2〉 − 〈A〉2. (4.1.2)

In 1956, Brillouin was shown that their is some relation exists between the uncer-

tainty principle and information entropy. In quantum mechanics, Partovi [59] and

Deutsch [61] was introduce the uncertainty relation which can be expressed in terms

of information entropy [65]. The entropic uncertainty relation is given as,

H(X) +H(P ) ≥ log(
e

2
), (4.1.3)

where,

H(X) = −
∫
|ψ(x)|2log|ψ(x)|2dx,

or,

H = −
∑
i

PilogPi,

is the information entropy in position space and Pi is the probability of the system.

The information entropy may use as precise measurements of uncertainty. The
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information entropy is a better measure of uncertainty than the standard deviation

in many ways. The confirmation of entropy as a natural measure of uncertainty is

found in experimental psychology.

In 1955, Hyman establish as experiment in which he purpose that the reaction

time of a human as a function of stimulus uncertainty is proportional to entropy

H. In this experiment a person were asked to react in a certain specified way to

each pattern [65]. The result of this experiment that the reaction time is a linear

function of entropy.

In physics, the entropy is important for the physical application to account the

disorder in the system. Entropy is first introduce by Clausius in mid 19th century.

It is an important concept in thermodynamics and in classical statistical mechanics.

Later on the Boltzman defined entropy as,

SB = KblnΩ,

where KB is the Boltzman constant and Ω is the number of microstate. Shanon’s

construct the entropy by using the idea of information obtaind from a system with

a large vagueness has been highly profitable and Shanon’s entropy is useful for the

discrete probability theory. He introduce the entropy measuring the amount of

information of the state of a system and mutual entropy [62] both represents the

correct amount of information which transmitted from initial to final system through

a channel.

Shannon’s entropy is basically use for the measure of uncertainty in the system.

Let’s consider a random variable Y , which have the discrete finite number of possible

values y1, y2, ........, yn with probabilities p1, p2, ......, pn, and total probability,∑
i

pi = 1.

The entropy by the position space probability density is defined as,

Sρ = −
∫
P (x) lnP (x)dx, (4.1.4)

where,

P (x) = |ψ(x)|2,
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The momentum space entropy is,

Sγ = −
∫
P (p) lnP (p)dp, (4.1.5)

where,

P (p) = |ϕ(p)|2,

is the momentum space probability density. The uncertainty relation for the infor-

mation entropy is,

Sρ + Sγ ≥ 1 + ln π. (4.1.6)

4.1.1 Uncertainty and expectation value analysis

As from the Eq.(4.1.2) the uncertainty in position space can be express as,

(∆x)2 = 〈x2〉 − 〈x〉2,

and in momentum space,

(∆p)2 = 〈p2〉 − 〈p〉2.

To calculate the uncertainties in position and momentum space, we need to calculate

the expectation value in position space as well as in momentum space. The time

dependent expectation value in position space is given as,

〈x〉t =

∫ L

0

ψ∗(x, t)xψ(x, t)dx,

as we know ψ(x, t) is,

ψ(x, t) =

√
2

L

∑
n

cn sin
(nπx
L

)
e−iEnt/~,

For m = n, the matrix element is

〈x〉t =
2

L

∑
n

|cn|2
∫ L

0

x sin2
(nπx
L

)
dx, (4.1.7)

〈x〉t =
∑
n

|cn|2
π

2
. (4.1.8)
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The cross-matrix element of the expectation value can be express as,

〈n|x|m〉t =
2

L

∑
n

∑
m

|cn||cm|e−i(En−Em)t/~
∫ L

0

x sin
(nπx
L

)
sin
(mπx

L

)
dx, (4.1.9)

by using the trigonometric identity,

sin(u) sin(v) =
1

2
(cos(u− v)− cos(u+ v)), (4.1.10)

〈n|x|m〉t =
1

L

∑
n

∑
m

|cn||cm|e−i(En−Em)t/~
[ ∫ L

0

x

×
(

cos
((m− n)πx

L

)
− cos

((m+ n)πx

L

))
.

After computing this integral we have,

〈n|x|m〉t =
1

L

∑
n

∑
m

|cn||cm|e−i(En−Em)t/~ × 4mn[(−1)m+n − 1]

π(m2 − n2)2
(4.1.11)

〈n|x|m〉 =

{ π
2
, m = n

4mn[(−1)(m+n)−1]
π(m2−n2)2

, m 6= n
(4.1.12)

Similarly for 〈n|x2|m〉, we have,

〈n|x2|m〉 =

{ 2n2π2−3
6nn

, m = n
2 cos[(m−n)π]

(m−n)2 − 2 cos[(m+n)π]
(m+n)2

, m 6= n
(4.1.13)

The uncertainty in position space is given as,

(∆x)2 = 〈x2〉 − 〈x〉2, (4.1.14)

As we know the momentum in terms of position is express as,

p̂ = −i~ ∂
∂x
,

by using the position representation of momentum, we obtain the matrix of the

momentum p as,

〈n|p|m〉t = −i~
∫ L

0

ψ∗(x, t)
∂

∂x
ψ(x, t)dx,
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Figure 4.1: The plot for the 〈x2〉 and 〈x〉 over t = Trev

Figure 4.2: The uncertainty in position space is plotted as function of time.

〈n|p|m〉 =

{
0, m = n
i2mn[1−(−1)(m+n)]

π(m2−n2)2
, m 6= n

(4.1.15)

Similarly for p2, we have,

〈n|p2|m〉 =

{
n2, m = n

0, m 6= n
(4.1.16)

The uncertainty in momentum space is given as,

(∆p)2 = 〈p2〉 − 〈p〉2, (4.1.17)
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Figure 4.3: The 〈p2〉 and 〈p〉 is plotted over t = Trev

Figure 4.4: The uncertainty in momentum space is plotted as function of time.

The product of the position space uncertainty and momentum space uncertainty

∆x∆p is shown in figure as,
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Figure 4.5: The uncertainty in momentum space and in position space is plotted as

function of time.

4.1.2 Investigation of revivals and fractional revivals by in-

formation entropy

The information entropy is defined as,

S(t) = −
∫
P (x, t) lnP (x, t)dx−

∫
P (p, t) lnP (p, t)dp. (4.1.18)

S(t) = Sρ(t) + Sγ(t).

The Eq.(4.1.18) is the sum of the position space entropy Sρ(t) and momentum space

entropy Sγ(t). The information entropy is used to probe the fractional revival which

are are hard to identify through autocorrelation function.

A localize wave packet with high probability density around its mean position

in position space have smaller unceratnity and leads to smaller value of entropy.

As the wave packet evolve with time in position space, it will interfere construc-

tively/destructively with itself during short-term time evolution. The related un-

certainty in position increases which implies an increase in information entropy [32].

Thus during time evolution, the information entropy gives order and disorder of an

initially localized wave packet.
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The entropic uncertainty [33] is defined as,

Sρ + Sγ ≥ 1 + ln π. (4.1.19)

This inequality is a generalization of variance based Heisenberg uncertainty relation.

We can understand the revivals and fractional revivals during long time evolution

of an initial localize wave packet by means of information entropy. If the sum of

the entropies in conjugate space has a minimum value at some particular time, we

have a maximum information of wave packet relocalization at this particular time.

For larger vale of entropic sum. we have smaller information about wave packet

relocalization. The maxima and minima of sum of entropies in conjugate space is

opposite to the autocorrelation function, because the autocorrelation function has

its maximum value in case of revival and zero in case of collapse.

To identify the revival and fractional revival of a particle moving inside the infi-

nite potential well [58], we will calculate the position space entropy and momentum

space entropy. The time-dependent wave packet for the particle moving inside the

infinite potential well is,

ψ(x, t) =
∑
n

cn

√
2

L
sin
(nπx
L

)
e−iEnt/~,

is the superposition of all the possible eigenstate of the system.

The information entropy is,

Sρ(t) = −
∫
P (x, t)lnP (x, t)dx, (4.1.20)

where, P (x, t) is the position space probability density Eq.(3.2.6).

The entropy for the momentum space probability is given as,

Sγ(t) =

∫
P (p, t)lnP (p, t)dp, (4.1.21)

where, P (p, t) is the momentum space probability density Eq.(3.2.9).

The sum of the position and momentum space entropy is given as,

S(t) = Sρ(t) + Sγ(t). (4.1.22)
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For long time evolution, a large amplitude modulation is superimposed on the

quasi-periodic oscillation [58]. During the time evolution, the initial wave packet

evolve with time and delocalize and gives a sequence of fractional revivals. If we

plot the Eq.(4.1.20), Eq.(4.1.21) and Eq.(4.1.22) and by comparing it with the au-

tocorrelation function, we found that the sum of entropies indicate the fractional

revival, but either of them separately not helpful. It is because the sum of the

entropies in both configurational space provides a complete information of wave

packet dynamics in position and momentum space. from above Fig.(4.6) we observe

at the fractional revival time the sum of entropies reaches a relative minimum value

and the modulus square of autocorrelation function is at a relation maximum value.

Even for the higher value of quantum number, the fractional revivals are difficult

to detect by autocorrelation function we can easily identify them by means of sum

of entropies in conjugate space. The sum of entropies shows a relative minima at

the fractional revival time and it provide a very useful tool to observe the fractional

revival even for high value of initial momentum [58]. These minima in the plot of

sum of entropies is because of the mini wave packet appear independently during

the time evolution of the wave packet. From the Fig.(4.6) we can see, only the sum

of entropies can indicate the fractional revivals, not by either of them separately be-

cause the sum of entropies have the information of momentum and position of the

wave packet. So we can say only the sum of entropies in conjugate space have the

importance over the autocorrelation function to study the behaviour of fractional

revivals of quantum wave packet.
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Figure 4.6: The plot for the initial momentum p0 = 20π, 30π, the yellow line is the

position space probability entropy, the green line is the momentum space probability

entropy, red line is the sum of entropies in conjugate space and blue line is the

modulus of autocorrelation function.
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Figure 4.7: The plot for the initial momentum p0 = 40π, 60π, the yellow line is the

position space probability entropy, the green line is the momentum space probability

entropy, red line is the sum of entropies in conjugate space and blue line is the

modulus of autocorrelation function.
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Chapter 5

Summary and conclusion

In this thesis we have studied the dynamics of wave packet in context of wave

packet revival. In our work, we have studied the general construction of localized

wave packet, a localized wave packet is the superposition of all possible eigenstate

of the system. We study the time evolution of these states and analyze their tem-

poral characteristics. The time evolved state is the result of the interaction of time

evolution operator on the initial state of the system. The characteristic of quantum

revival of a wave packet can be studied by means of initially localized wave packet

which has a short term time evolution. During the short time evolution the spread of

wave packet reverse itself and relocalize. The relocalization of wave packet is called

the revival of wave packet. Full revival, fractional revival and super-revival can be

identify by the autocorrelation function. We studied the autocorrelation function

which is equal to the overlap of time evolved state with initial state. If the autocorre-

lation function has its maximum value, then we can say the wave packet complectly

relocalize itself. The fractional revival appears if the wave packet relocalize into a

number of smaller copies of initial wave packet.

Furthermore, we studied the model system including the infinite square well,

harmonic oscillator and quantum bouncer by applying that general formalism. We

study the revival and fractional revival behaviour by constructing the autocorrela-

tion function. Then we constructed the probability density as a function of space

and time for all model system and we extended our work to momentum space quan-

tum carpet for the infinite potential well. The time evolution of these probability
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density results in the constructive and destructive interference. The time evolved

probability densities lead to the formation of quantum carpets.

Furthermore, we constructed the time dependent expectation value for the in-

finite potential well in position space as well as in momentum space. We have

discussed the relation between information entropy and uncertainty of the wave

packet relocalization during time evolution. We have also calculated the informa-

tion entropy by using the position space probability density and momentum space

probability density. The information entropy is basically used for the measure of

uncertainty in the system. We have shown, the uncertainty in wave packet relocal-

ization by means of information entropy. By comparing the uncertainty in position

and momentum space with the information entropy we have seen that, the entropy

also has its maximum value when the uncertainty of wave packet relocalization is

maximum. We studied that by calculating the sum of position space and momentum

space information entropies, we can clearly identify the fractional revival which can

not be easily distinguished by means of autocorrelation function.
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