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Abstract

The nonclassical states of radiation field have acquired a central position in quantum

optics because of their potential applications in various areas of research such as

quantum information, quantum computation and quantum metrology. For example,

the entanglement generation between various modes of a subsystem do essentially

require the nonclassical nature of at least either of the individual modes. On the

other hand, a coherent state of radiation field is known as a quantum state that can

be regarded in many ways as being classical with quantum noise added. Therefore,

coherent states, despite of their much more other applications, cannot be used in

phenomena which require nonclassicality as a prerequisite, such as entanglement

generation.

In this thesis we review various techniques to construct nonclassical field states by

using coherent states of light and analyze their nonclassical features. A convenient

approach in this regard is to construct a linear superposition of two coherent states

which are equal in amplitude but opposite in phase. Such superpositions of (single-

degree-of-freedom) coherent states are often called Schrödinger cat states. Another,

approach is to excite a coherent state by discrete number of photons. These states

are know as excited coherent states or photon-added coherent states. These states

are obtained, mathematically, by repeated action of creation operator on continously

parameterized coherent states. Finally, we present excitations of Superposition of

coherent states. In all these cases, we analyze the signatures of nonclassicality by

means of sub-Poissonian photon counting statistics and negativity of the Wigner

function.
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Chapter 1

Introduction and Outline

The quantum-classical correspondence of a physical system is one of the most inter-

esting questions since the very binging of quantum mechanics. However, the quan-

tum world manifests a lot of phenomena which do not have analogous description in

classical world, commonly referred to as nonclassical phenomena. Such nonclassical

phenomena are essentially required to build various quantum technologies such as

quantum information, quantum computation, quantum metrology [1, 2]. Due to

their potential applications in such advanced research areas, the nonclassical states

attracted a lot of attention in the field of quantum optics. In this thesis we present

various techniques to engineer nonlcassical field states by using classical-like states

of light, namely coherent states. In the following, first we introduce briefly what we

are going to present in thesis and then present the outline of the thesis.

1.1 Nonclassical continuous-variable field states

The very well known continuous-variable quantum optical field states are coherent

states which have an important role in the description of coherent electromagnetic

field. The coherent states are regarded in many ways as being classical with quantum

noise added. Therefore, despite of their numerous applications in quantum optics

and many other areas, these states cannot be used directly to partake the quantum

information processing due to their classical-like behavior. However, we will use

the coherent states as a key ingredient to construct the nonclassical field states.
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Nevertheless, before introducing the techniques to construct nonclassical states, we

first introduce the coherent states.

1.1.1 Coherent states: classical-like states

The history of the coherent states goes back to 1926, when Erwin Schrödinger tried to

build quantum mechanical states which can exhibit dynamics analogous to classical

one. He succeeded only to construct such states for harmonic oscillator [3] and

failed to generalize the idea for other quantum systems. Using the concepts of his

wave mechanics, it was shown that centers of the Gaussian wave packets follow

the trajectories of classical harmonic oscillator, hence, providing the correspondence

between classical and quantum mechanics. Moreover, these states minimize the

uncertainty relation which remains minimum during time evolution [3].

After a dormant period of more than three decades, Roy Glauber in 1963 re-

formulated these states using the ladder operators of harmonic oscillator. He used

these quantum mechanical states to express coherent electromagnetic field [4, 5, 6].

He defined coherent states in three but equivalent ways: i) as eigenstates of anni-

hilation operator of harmonic oscillator; ii) as the displaced vacuum states; and iii)

the states that minimize the uncertainty relation. Right after the seminal work of

Glauber, these coherent states become indispensable in many areas such as, quan-

tum mechanics [7] quantum optics [8], mathematical physics [9] many other areas

[10]. The importance and usefulness of these states was acknowledged by awarding

the Physics Nobel Prize 2005 to the inventor Roy Glauber.

Because of their a lot of applications, there have been continuous efforts to

generalize the notion of coherent states for systems other than harmonic oscillator

[11]. In fact most of the generalizations were made by making use of underlying

algebras of the general systems [12, 13] (beyond the Heisenberg-Weyl in the case

of harmonic oscillator). However, some algebraic independent approaches for the

generalized coherent do also exist [14, 15]. Currently, the construction of coherent

states have been done in large variety of physical systems [16, 17, 18, 19].

In the context of quantum optics, the coherent states provide an excellent de-

scription to coherent electromagnetic field such as ideal lasers. Therefore, in many
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ways these coherent states can be regarded as classical-like state with quantum noise

added [8]. For example, the expectation value of electric field (as well as magnetic

field) evolves in time just like classical field. Moreover, it has been observed that

the coherent states are temporally stable, i.e., a coherent state remains coherent

under the time evolution. The effect of time evolution is only to rotate a coherent

state in complex plan. In addition to their classical-like behavior, these coherent

states adhere a set of mathematical properties, such as, non-orthogonality, over-

completeness, continuity of parameters and resolution of unity which make them

important from the mathematical physics’ point of view. Furthermore, the coherent

states have played an important role in the understanding of many phenomena, such

as, quantum interferometry, quantum entanglement and precision measurement [20].

1.1.2 Constructing the nonclassical states via coherent states

Despite of the fact that coherent states have numerous applications in different re-

search areas, there are phenomena (having no classical analogue therefore known

as nonclassical phenomena) of great importance which cannot be performed with

classical-like coherent states. For example, it is not possible to generate entangle-

ment, a nonclassical correlation, between the output modes of a beam splitter with

coherent states at both input modes [20]. The entanglement generation does es-

sentially require nonclassical nature, at least, of one of the subsystems [21]. There

are a lot of methods available in literature [22] to generate nonclassical field states.

However, in the following we discuss only three of them which make use of coherent

states as their key ingredient.

Superpositions of coherent states

Quantum superposition is regarded as one of the biggest mysteries of the wold which

lies in the heart of quantum mechanics [23]. For a set of quantum states represented

by {|φi〉}, the superposition state can be written, mathematically, as

|ψ〉 =
∞∑
i=0

ci|φi〉 (1.1.1)
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where |φi〉 represents the ith state of the system with ci as the corresponding prob-

ability amplitude. The probability of finding the system in state |φi〉 can then be

calculated by |ci|2. However, such superposition states can never be observed on

performing measurement. In fact, the measurement collapses the superposition and

the outcome appears as one of the eigenstates of the system.

In our work, we consider the superpositions of two coherent states with equal am-

plitude but separated in phase by 180o. Such superpositions are also known as

Schrödinger cat states [24]. The name is attributed due to their analogy (of being a

superposition of macroscopically distinguishable states) to the original paradoxical

thought experiment proposed by Erwin Schrödinger in 1935 [25]. Despite of the fact

that coherent states are classical-like states, their superpositions are highly nonclas-

sical. The idea of such superpositions has been first introduced in [26]. Later on

explicit constructions have been introduced theoretically [27, 28, 29] and realized

experimentally [30].

Excitations of coherent states

It is very well known that the energy eigenstates are also the eigenstates of photon

number operator. In that sense, the number states (the simultaneous eigenstates of

the Hamiltonian and the number operator) can also be considered as field states in

the context of quantum optics. However, these states cannot be treated as definite

states for electric field operator because its expectation values with respect to these

states do vanish. Nevertheless, in contrast to the coherent states, these states are

highly nonclassical in nature. Agarwal and Tara proposed [31], mathematically, a

new kind of field states by the repeated action of creation operator on the coherent

states and named them as exited coherent states, also named as photon added

coherent states (we will be using these two terminologies intermittently through out

the thesis).

The photon added coherent states, |α, n〉, (α being complex continuous parame-

ter and n is an integer) represent an interesting combination of classical-like coherent

states and highly nonclassical number states such that for α → 0, the state |α, n〉
reduces the Fock state and when n → 0, the state |α, n〉 reduces coherent state.
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Hence controlling the values of α and n one can control the extent of nonclassicality

of the field states. Due to their interesting features and better quantum control,

the photon added coherent states attracted considerable attention [32, 33, 34]. The

idea of photon addition was extended to large variety of quantum states, such as,

generalized photon added states [32, 33, 34] and photon-added squeezed states [35].

Excitations of coherent states superpositions

Inspired by the usefulness of Schrödinger-cat states and photon-added coherent

states, it is reasonable to construct photon-added Schrödinger-cat states or excited

superpositions of coherent states. These states can be obtained by repeated action of

creation operator on superposition of coherent states. The idea of excited even and

excited odd coherent states was proposed by Dodonov et al [36] and its nonclassi-

cal properties have been discussed. Photon-added superpositions of coherent states

provide an extra control parameter m, namely, number of photon added. These

states exhibit different behavior as far as nonclassical features are concerned. The

idea of excitation can also be extended from the superpositions of coherent states

to the superpositions of squeezed state [37].

1.2 Non-classicality criteria

As mentioned earlier, a phenomenon is known as nonclassical if its classical analogue

does not exist. In the context of quantum optics, any field state is regards as non-

classical if its characteristics behavior does not resemble in anyway to classical one.

However, it is very important question to ask how to distinguish nonclassical states

from classical ones, both qualitatively as well quantitatively. In order to answer

this question, various parameters have been proposed to analyze the nonclassicality

of quantum optical states, such as, Glauber-Sudarshan P-function, amplitude and

intensity squeezing, anti-bunching, sub-Poissonian photon statistics and negativity

of the Wigner function [22]. The choice of a particular parameter depends on the

nature of the field state under consideration. For our particular choice of field states,

we will use Wigner function and sub-Poissonian photon statistics.
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The Wigner function is defined as phase-space joint probability distribution func-

tion. According classical statistical mechanics, this function, being a probability

function, should be positive definite. However, in quantum mechanics it came out

that Wigner function may take negative values in some region of phase-phase for

some states. Such states can be regarded as nonclassical states and negativity of

Wigner function can be regarded as an indicator of nonclassicality. Secondly, the

photon counting statistics of coherent states is Poissonian. Furthermore, the pho-

ton counting statistics of all classical light sources, such as, thermal light sources or

chaotic sources is super-Poissonian (broader than Poissonian) [38]. Interestingly, any

source that has no classical analogue exhibits sub-Poissonian (narrower than Poisso-

nian) statistics[39]. In order to investigate the underlying photon counting statistics

of a given field state, a parameter, originally defined by Mandel [40], which gives the

ratio of mean photon number to its variance minus one. This actually distinguishes

whether the photon counting probability distribution is broader or narrower than

Poisson distribution.

1.3 Outline of Thesis

The thesis is organized as the following.

In the second chapter, we present a brief review regarding construction of coherent

states and their various properties. The first part is devoted to the construction of

coherent states followed by their basic properties and the second part of this chapter

is focused on the classical-like properties of these states. At the end, the concept

of phase-space probability distribution functions will be discussed, especially in the

form of Wigner functions.

The third chapter is devoted to the construction of nonclassical field states via

various operations on coherent states. First, the construction of superpositions of

coherent states, including even coherent states, odd coherent states and Yorke-Stoler

coherent states, will be presented. Secondly, the explicit construction of excited co-

herent states will be presented. Finally, we will present the excited superpositions

of coherent states.

The forth chapter is dedicated to the analysis of nonclassical properties of the con-
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structed field states. First we will present the criteria to probe the nonclassical-

ity which include the indication of either negativity of Wigner function or sub-

Poissonian photon counting statistics. Then we will discuss the computation of

Wigner function and Mandel’s parameter analytically which will be followed by

their numerical computation. Finally we will discuss the results of this chapter.

Finally, the fifth chapter is reserved for the summary of the whole work and conclu-

sions of the thesis.
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Chapter 2

Single-mode radiation field states

Before we proceed to the construction of nonclassical field states, we first intro-

duced the continuously parameterized field states, namely, coherent states. It is well

known that coherent states provide the classical-quantum correspondence of electro-

magnetic field in many ways. In this chapter, we first review the construction and

some basic properties of coherent states and then discuss various classical-like char-

acteristics. In particular, we focus on the photon counting statistic and phase-space

properties of these coherent states which will help us to analyze the nonclassical

states that we are intending to discuss in the next chapters.

The chapter is organized as fallowing. In section 2.1 we discuss the quantization of

electromagnetic radiation field and present various field operators. The construction

of coherent states and analysis of their properties has been presented in section 2.2.

Finally, we discuss classical-like characteristics in section 2.3.

2.1 Single-mode quantized field

We consider one dimensional cavity whose walls are perfectly conducting at z = 0

and z = L and radiation are confined in it such that at boundaries it become zero.

The electric field component is given as,

Ex (z, t) =

√
2ω2

εoV
q (t) sin kz, (2.1.1)
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where V is volume of the cavity, εo is permittivity of free space, k is wave vector

and ω is the frequency. Amplitude of the electric field depends on q (t) which has

dimension of length and changing with time. We can calculate the amplitude of

magnetic field component by using Maxwell equation

O×B = µoεo
∂E

∂t
, (2.1.2)

that is by putting Eq.(2.1.1) in Eq.(2.1.2) we get,

By (z, t) =
(µoεo

k

)√2ω2

V εo
p (t) cos kz, (2.1.3)

where p (t) is momentum of particle with unit mass. Energy of field is given by the

Hamiltonian as,

H =
1

2

∫ (
E2
x (z, t) εo +

1

µo
B2
y (z, t)

)
dV. (2.1.4)

Using the value of Ex (z, t) from Eq.(2.1.1) and By (z, t) from Eq.(2.1.2) in Eq.(2.1.4)

the Hamiltonian “H” takes the form,

H =
1

2

(
p2 + ω2q2

)
. (2.1.5)

It is interesting to note that Hamiltonian given in Eq.(2.1.5) of the single mode

field is identical to that of harmonic oscillator with unit mass, where electric and

magnetic fields play the role of canonical position and momentum.

For quantization we replace canonical variables, p and q, by their equivalent opera-

tors, q̂ and q̂. These operators satisfy commutation relation,

[q̂, p̂] = i~. (2.1.6)

In terms of these operators the electric field given in Eq.(2.1.1) becomes,

Êx (z, t) =

√
2ω2

εoV
q̂ (t) sin kz, (2.1.7)

and magnetic field given in Eq.(2.1.2) becomes,

B̂y (z, t) =
(µoεo

k

)√2ω2

V εo
p̂ (t) cos kz. (2.1.8)
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Similarly by using Eq.(2.1.7) and Eq.(2.1.8), quantum Hamiltonian becomes,

Ĥ =
1

2

(
p̂2 + ω2q̂2

)
. (2.1.9)

Operators q̂ and p̂, which are used to characterize the electric and magnetic field,

are Hermitian operators. We can define the non-Hermitian operators â and â† in

terms of q̂ and p̂ as,

â = (2~ω)−
1
2 (ωq̂ + ip̂)

â† = (2~ω)−
1
2 (ωq̂ − ip̂) .

(2.1.10)

The operators â and â† are known as annihilation and creation operator respectively.

Using Eq.(2.1.10) the electric and magnetic field can be written in terms of these

operators given, respectively, as,

Êx (z, t) = Eo(â+ â†) sin kz, Eo =

√
~ω
V εo

. (2.1.11)

B̂y (z, t) =
Bo

i
(â− â†) cos kz, Bo =

µo
k

√
εo~ω3

V
. (2.1.12)

Similarly the quantum Hamiltonian, in terms of these creation and annihilation

operators, is given as,

Ĥ = ~ω
(
â†â+

1

2

)
. (2.1.13)

Here â†â = n̂ is known as number operator satisfying the eigenvalue equation,

n̂|n〉 = n|n〉. (2.1.14)

where eigenvalue n = 0, 1, 2, 3.... and eigenvector |n〉 are known as number states. As

Ĥ and n̂ are Hermitian operators such that |n〉 are their simultaneous eigenstates.

2.2 Coherent states and their properties

We know that classical field oscillates sinusoidally in time at any fixed point in space.

But when we calculate expectation value of field operator for a number state it gives

〈n|Êx|n〉 = 0. Therefore we introduce another set of states, namely, the coherent

states.

10



2.2.1 Construction

Three equivalent definitions were proposed by Roy Glauber in his seminal papers

[4, 5, 6].

Eigenstate of the annihilation operator

The eigenstate of annihilation operator â is known as coherent state and given as,

â|α〉 = α|α〉. (2.2.1)

For explicit expression of coherent states we expand them in number states as,

|α〉 =
∞∑
m=0

|m〉〈m|α〉, (2.2.2)

to determine 〈m|α〉, we project 〈m| on Eq.(2.2.1) and get,

〈m|â|α〉 = α〈m|α〉. (2.2.3)

As we know that creation operator act on number state as, â†|m〉 =
√
m+ 1|m+ 1〉

and its complex conjugate is 〈m|â =
√
m+ 1〈m+1|. By using this result Eq.(2.2.3)

become,
√
m+ 1〈m+ 1|α〉 = α〈m|α〉, (2.2.4)

by replacing m+ 1 with m we get,

〈m|α〉 =
α√
m
〈m− 1|α〉,

m times repetition of this step give us,

〈m|α〉 =
αm√
m!
〈0|α〉, (2.2.5)

by using this relation Eq.(2.2.1) become,

|α〉 =
∞∑
m=0

αm√
m!
〈0|α〉|m〉, (2.2.6)

where 〈0|α〉 can be determined by normalization of above equation as,

〈α|α〉 =
∞∑
m=0

αm√
m!

∞∑
n=0

α∗n√
n!
|〈0|α〉|2〈n|m〉,

〈0|α〉 = exp(−1

2
|α|2),
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thus normalized coherent state is given as,

|α〉 = exp

(
−1

2
|α|2
) ∞∑
m=0

αm√
m!
|m〉. (2.2.7)

Displaced vacuum states

Coherent states are also obtained by applying displacement operator on vacuum

state. so,

|α〉 = D (α) |0〉. (2.2.8)

Where displacement operator D (α) is defined as,

D (α) = exp
(
αa† − α∗â

)
.

Applying this operator on vacuum state we get,

D (α) |0〉 = exp
(
αa† − α∗â

)
|0〉,

|α〉 = exp
(
αa†
)

exp (−α∗â) exp

(
−|α|2

2

)
|0〉, (2.2.9)

where,

exp (−α∗â) |0〉 =
∞∑
m=0

(−α∗â)m

m!
|0〉,

= 0, except for m = 0, (2.2.10)

and,

exp
(
αa†
)
|0〉 =

∞∑
m=0

(
αa†
)m

m!
|0〉,

when a† acts m times on vacuum state it gives,

exp
(
αa†
)
|0〉 =

∞∑
m=0

(α)m

m!

√
m!|0〉,

=
∞∑
n=0

(α)n√
n!
|m〉, (2.2.11)

Using Eq.(2.2.10) and Eq.(2.2.11) in Eq.(2.2.9) we get,

|α〉 = exp

(
−|α|2

2

) ∞∑
m=0

(α)m√
m!
|m〉, (2.2.12)
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which is the same as obtained in Eq.(2.2.7).

Minimum uncertainty states

Coherent states minimize the uncertainty relation for any given canonical variables.

We introduce dimensionless operators, also known as quadrature operators,

X̂1 =
1

2
(â+ â†), X̂2 =

1

2i
(â− â†). (2.2.13)

We can determine the uncertainty in both quadratures with respect to coherent

states |α〉 by using the following relation,

〈(4X1)2〉 = 〈X2
1 〉 − 〈X1〉2. (2.2.14)

To calculate the uncertainty we first commute the 〈X1〉 given as,

〈X1〉 =
1

2
(α + α∗), (2.2.15)

where we have used the expression â|α〉 = α|α〉, 〈α|â† = α∗〈α| and [â, â†] = 1.

Similarly we can calculate,

〈X2
1 〉 = 〈X1X1〉 =

1

4
(ââ+ â†â† + 1 + 2â†â)

=
1

4
(α2 + (α∗)2 + 1 + 2|α|2). (2.2.16)

Using Eq.(2.2.15) and Eq.(2.2.16) in Eq.(2.2.14) we get,

〈(4X1)2〉 =
1

4
(α2 + (α∗)2 + 1 + 2|α|2)− 1

4
(α + α∗)2.

After some calculations the uncertainty in X1 takes the form,

〈4X1〉 =
1

2
. (2.2.17)

Similarly uncertainty in second quadrature can be calculated by using the relation,

〈(4X2)2〉 = 〈X2
2 〉 − 〈X2〉2. (2.2.18)

We separately calculate 〈X2〉 and 〈X2
2 〉,

〈X2〉 =
1

2i
(α− α∗), (2.2.19)

〈X2
2 〉 = −1

4
(ââ+ â†â† − 1− 2â†â),

= −1

4
(α2 + (α∗)2 − 1− 2|α|2), (2.2.20)
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Putting values from Eq.(2.2.19) in Eq.(2.2.18) we get,

〈(4X2)2〉 = −1

4
(α2 + (α∗)2 − 1− 2|α|2) +

1

4
(α− α∗)2,

〈(4X2)〉 =
1

2
. (2.2.21)

By multiplying Eq.(2.2.17) and Eq.(2.2.21) we get,

4X14X2 =
1

4
, (2.2.22)

which is condition of minimum uncertainty. So coherent states are known as mini-

mum uncertainty states.

2.2.2 Physical significance of coherent state

After discussing various equivalent mathematical definitions of coherent states we are

interested to understand the physical meaning of coherent states. In that perspec-

tive, let us ask what is the physical meaning of the complex coherent state parameter

α? It can be shown (by calculating the expectation value of field operator with re-

spect to coherent states) that |α| is related to the field amplitude. Moreover, the

expectation value of the photon number operator n̂ = â†â is

n̄ = 〈n̂〉 = |α|2. (2.2.23)

Thus |α|2 gives the average number of photon in electromagnetic field.

Photon counting statistics

In a given measurement experiment for the number of photons in the coherent elec-

tromagnetic field, represented by coherent state defined in Eq.(2.2.7), the probability

of detecting n photons is given as,

Pn = |〈n|α〉|2. (2.2.24)

Using Eq.(2.2.7), we get,

〈n|α〉 = exp

(
−1

2
|α|2
) ∞∑
m=0

αm√
m!
〈n|m〉,
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and

|〈n|α〉|2 =

∣∣∣∣exp

(
−1

2
|α|2
)

αn√
n!

∣∣∣∣2 .
The probability of finding n photons takes the form,

Pn = exp
(
−|α|2

) |α|2n
n!

= e−n̄
n̄n

n!

which is a Poisson distribution with mean n̄ = |α|2.

2.2.3 Properties of coherent states

In this subsection we discuss various properties of the coherent states.

• Orthogonality

Coherent states are non-orthogonal states and inner product of states can be

used to prove this statement. Let |α〉 and |β〉 are two coherent states then,

〈β|α〉 = exp

(
−1

2
(|β|2 + |α|2)

) ∞∑
n=0

∞∑
m=0

(β∗)n αm√
n!m!

〈n|m〉.

This inner product is one only when n = m,

〈β|α〉 = exp

(
−1

2
(|β|2 + |α|2)

) ∞∑
n=0

(β∗α)n

n!
.

By writing sum in term of exponential series,

〈β|α〉 = exp

(
−1

2
(|β|2 + |α|2) + β∗α

)
,

we can write it as,

〈β|α〉 = exp

(
1

2
(β∗α− βα∗)

)
exp

(
−1

2
|β − α|2

)
,

first term is just complex phase so that,

|〈β|α〉|2 = exp

(
−1

2
|β − α|2

)
6= 0. (2.2.25)

Thus the coherent states are not orthogonal but if |β − α|2 is large, they are

nearly orthogonal.
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• Completeness

Completeness is expressed by taking integral of projection operator over com-

plex plane. Mathematical expression is given as,∫
|β〉〈β|d

2β

π
= 1, (2.2.26)

where d2β = dRe(β)dIm(β). The proof of above relation is as follows,∫
|β〉〈β|d2β =

∫
exp(−|β|2)

∞∑
n=0

∞∑
m=0

(β∗)n√
n!

βm√
m!
|n〉〈m|d2β, (2.2.27)

in poler coordinate system β = reiφ and d2β = rdrdφ,∫
|β〉〈β|d2β =

∞∑
n=0

∞∑
m=0

|n〉〈m|√
n!m!

∫ ∞
0

rm+n+1 exp(r2)dr

∫ 2π

0

e(n−m)iφdφ,

(2.2.28)

where
∫ 2π

0
e(n−m)iφdφ = 2πδnm. For simplicity substituting r2 = y, dy = 2rdr,∫

|β〉〈β|d2β = π
∞∑
m=0

|m〉〈m|
m!

∫ ∞
0

e−yymdy. (2.2.29)

Where
∫∞

0
e−yymdy = m!,∫

|β〉〈β|d2β = π
∞∑
m=0

|m〉〈m|,

by putting
∞∑
m=0

|m〉〈m| = 1 we get Eq.(2.2.26).∫
|β〉〈β|d2β = π,

which is completeness relation of coherent states.

2.3 Classical-like characteristics

A coherent state is known as a quantum state that can be regarded in many ways as

being classical with quantum noise added. In this section we discuss some classical-

like characteristics of continuous variable states. Following parameters show the

classical-like nature of coherent states.
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2.3.1 Expectation value of field operators

In section 2.1 we have introduced the operator concerning electric field Ê, given by

Eq.(2.1.12). We can calculate the expectation value of Ê as,

〈α|Ê|α〉 = 2Eo|α| sin kz cos(θ − ωt), Ê = Eo(â+ â†) sin kz,

where Eo = (~ω/εoV )
1
2 . This shows that expectation value of electric field is sinu-

soidally varying just analogous to its classical description.

2.3.2 Minimum uncertainty

While defining the coherent states in section 2.2, it has been pointed out that the

coherent states are minimum uncertainty states, i.e,

4X14X2 =
1

4
since X̂1 =

1

2
(â+ â†), X̂2 =

1

2i
(â− â†).

This implies that coherent states are quantum mechanical states which are closet to

the classical description.

2.3.3 Temporal stability

These states are temporally stable i.e coherent states remain coherent under time

evolution. Let us consider, at t = 0 coherent state is |α〉. The time evolved coherent

state can be obtained

|α, t〉 = Û(t)|α〉 (2.3.1)

where unitary time evolution operator U(t) is defined as,

Û(t) = exp

(
−itĤ
~

)
.

where coherent state |α〉 is given in Eq.(2.2.7) and Ĥ is given in Eq.(2.1.13), by

using these two Eq.(2.3.1) becomes,

|α, t〉 = e(− 1
2
|α|2)

∞∑
m=0

(α)m√
m!

e−iωt(a
†a+1/2)|m〉.
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After some calculations, the time evolved state can be written as,

|α, t〉 = e−
1
2
iωte−

1
2
|α|2

∞∑
m=0

(α)m√
m!

e−iωtm|m〉.

Let us define α
′
= αe−iωt and |α| = |α′ |,

|α, t〉 = e−
1
2
iωt

(
e−

1
2
|α′ |2

∞∑
m=0

(
α
′)m
√
m!
|m〉

)
, (2.3.2)

which is another coherent state with some phase factor e−
1
2
iωt. It mean coherent

states are temporally stable.

2.3.4 Phase-space probability distribution: Wigner func-

tion

In quantum optics various probability distribution functions are being used to an-

alyze the phase space characteristics such as Glauber Sudarshan P function, Q

function and Wigner function. However keeping in view our latter discussion on

nonclassical states here we discuss only Wigner function initially introduced by

Wigner in 1932 [41]. The Wigner function, as a phase space probability distribution

function, can be defined [41] as,

W (x, p) =

∫ −∞
−∞

exp(−iyp)〈x+
1

2
y|ρ̂|x− 1

2
y〉dy, (2.3.3)

where the vectors |x± 1
2
y〉 are the eigenvectors of the position operators and ρ̂ is the

density operator of the state in question. Various bounds on the Wigner function

have been discussed in literature [42, 43, 44, 45].

For quantum optical field states the Wigner function given in Eq.(2.3.3) can be

written [20] as,

W (β) =
1

π2

∫
exp (λ∗β − λβ∗)Cwd2λ, (2.3.4)

Cw (λ) = Tr[ρ̂D(λ)],

where ρ̂ = |ψ〉〈ψ| is the density operator and D(λ) is displacement operator, given

as,

D(λ) = exp
(
λâ† − λ∗â

)
. (2.3.5)
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The equivalence of Eq.(2.3.3) and Eq.(4.1.1) is given in Appendix A. Using the

identity (so-called disentangling theorem),

eÂ+B̂ = eÂeB̂e
−1
2

[Â,B̂]

in Eq.(2.3.5), the characteristic function Cw(λ) becomes,

Cw(λ) = e−|λ|
2/2Tr(ρ̂eλa

†
e−λ

∗â). (2.3.6)

A comprehensive discussion on the phase space in the context of quantum optics

has been given by Schleich [46].

In our later discussion we will use the characteristic function, given above in

Eq.(2.3.7), to calculate Wigner function of various continuous variable field states.

As an example, in the following we calculate Wigner function of coherent states.

Wigner function of coherent states

For pure coherent state |α〉, the density operator ρ̂ = |α〉〈α| and corresponding

characteristic function, Cw (λ), takes the form,

Cw(λ) = e−|λ|
2/2〈α|(eλa†e−λ∗â)|α〉,

= e−|λ|
2/2 exp (α∗λ) exp (−αλ∗) . (2.3.7)

Substituting the value from Eq.(2.3.7) to Eq.(4.1.1), we get the Wigner function for

coherent states,

W (β) =
1

π2

∫
exp (βλ∗ − β∗λ) exp (α∗λ) exp (−αλ∗) exp

(
−|λ|2

2

)
d2λ,

which on further simplification takes the form,

W (β) =
1

π2

∫
exp

(
(β − α)λ∗ − (β∗ − α∗)λ− |λ|

2

2

)
d2λ. (2.3.8)

It is important to note that the Wigner function for coherent state is given in terms

of an integral over complex plane. We can compute this complex integral using the

identity [47], ∫
exp

(
xλ∗ − x∗λ− z|λ|2

)
d2λ =

π

z
exp

(
−|x|2z−1

)
, (2.3.9)
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such that,

x = β − α, x∗ = β∗ − α∗, z = 1/2.

As a result the Wigner function for coherent state, given in Eq.(2.3.8), comes out

to be,

W (β) =
π

2π2
exp (−2 (β − α) (β∗ − α∗)) ,

=
2

π
exp

(
−2|β − α|2

)
. (2.3.10)

It is seen from Eq.(2.3.10) that Wigner function for the coherent states is a two-

Figure 2.1: Wigner function for coherent states. left: α = 2 and Right: α = 5

dimensional Gaussian centered at coherent state parameter α. In Fig.(2.1), we plot

W (β) as a function of β for different values ofα. It is obvious from the Eq.(2.3.10)

and Fig.(2.1) that Wigner function is the positive definite just like classical phase

space distribution function. Therefore we conclude that coherent states are quantum

mechanical states that have phase space description analogous to classical one.

20



Chapter 3

Construction of Nonclassical Field

States via Coherent States

Nonclassical states have numerous applications in quantum information and quan-

tum computation. In quantum optics non-classical states of different types were

studies. For example, generalized coherent states [48], squeezed states[49], squeezed

and displaced number states[50], Binomial states[51], odd and even coherent states[52]

and some new families in [53]. In literature, the review of experimental approaches

which may realize these states is given [54].

In previous chapter we discuss classical-like field states, the coherent states, and their

properties in detail. Despite of their many uses in quantum optics we can not use

them in the phenomena which require nonclassicality as a prerequisite. For exam-

ple, generation of entanglement, a key resource for quantum information processing,

does require nonclassicality as a pre-requisite. Here we discuss various approaches

to construct nonclassical eld states using very well known coherent states. In section

(3.1) Our first approach is to construct superpositions of coherent states and then

construct excitations of coherent states in section (3.2). At the end in section (3.3)

we discuss excitations of superpositions of coherent states.
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3.1 Construction of superpositions of coherent states

Let us take the superposition of coherent state |α〉 and | − α〉. These states have

same amplitude but separated in phase by 180o.

|ψ〉 = N(|α〉+ eiφ| − α〉), (3.1.1)

where N is normalization constant. To find this normalization constant, we have to

find inner product 〈ψ|ψ〉. By expending coherent state |α〉 in number state basis we

get,

|ψ〉 = N exp

(
−1

2
|α|2
)( ∞∑

m=0

(α)m√
m!
|m〉+ eiφ

∞∑
m=0

(−α)m√
m!
|m〉

)
.

Now multiply |ψ〉 with its complex conjugate 〈ψ| and get,

〈ψ|ψ〉 = |N |2[exp(−|α|2)
∞∑
m=0

(αα∗)m√
m!

+ eiφ exp(−|α|2)
∞∑
m=0

(−αα∗)m√
m!

+ exp(iφ) exp(−|α|2)
∞∑
m=0

(−αα∗)m√
m!

+ exp(−|α|2)
∞∑
m=0

(αα∗)m√
m!

].

After simplification and using 〈ψ|ψ〉 = 1 we get normalization constant as,

|N |2 =
1

2 + 2 cosφ exp(−2|α|2)
. (3.1.2)

By taking different values of φ we can construct different type of superposition but

here we discuss only three cases.

3.1.1 Even coherent states

If we take φ = 0 Eq.(3.1.1) becomes,

|α+〉 = Ne(|α〉+ | − α〉), exp(iφ) = 1, (3.1.3)

where Ne is constant of normalization. These states, |α+〉, are named as even

coherent state [27]. By putting φ = 0 in Eq.(3.1.2) we get,

|Ne|2 =
1

2 + 2 exp(−2|α|2)
. (3.1.4)
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By putting Eq.(3.1.3) in Eq.(3.1.4) we get,

|α+〉 =
1

2 + 2 exp(−2|α|2)
(|α〉+ | − α〉) . (3.1.5)

Photon counting statistic of even coherent states can be obtain as,

P+(n) = |〈n|α+〉|2. (3.1.6)

We start from projecting 〈n| on it as,

〈n|α+〉 = Ne(〈n|α〉+ 〈n| − α〉).

By expanding |α〉 in Fock basis we get,

〈n|α+〉 = Ne

(
exp

(
−1

2
|α|2
)

αn√
n!

+ exp

(
−1

2
|α|2
)

(−α)n√
n!

)
.

Using value of normalization constant and taking modulus square on both sides we

get,

P+(n) =
exp (−|α|2)

2(1 + exp (−2|α|2))

∣∣∣∣( αn√
n!

+
(−α)n√

n!

)∣∣∣∣2 . (3.1.7)

P+(n) have different value for different value of n.

For odd values of n,

P+(n) = 0. (3.1.8)

But for even value of n,

P+(n) =
exp (−|α|2)

2(1 + exp[−2|α|2])

∣∣∣∣( αn√
n!

+
αn√
n!

)∣∣∣∣2 ,
P+(n) =

2 exp (−|α|2)

(1 + exp[−2|α|2])

|α|2n

n!
, (3.1.9)

where |α|2 = n̄. Now by combining Eq.(3.1.8) and Eq.(3.1.9) we can write,

P+(n) =

 0 for odd n
2 exp(−|α|2)
(1+exp(−2n̄))

n̄n

n!
for even n

As probability of finding odd number of photon vanishes therefore we name these

states as “Even coherent states ”.
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3.1.2 Odd coherent states

If we take φ = π Eq.(3.1.1) become,

|α−〉 = No(|α〉 − | − α〉), exp(iφ) = −1, (3.1.10)

where No is normalization constant. These states are named as odd coherent state.

By putting φ = π in Eq.(3.1.2) we get,

|No|2 =
1

2− 2 exp(−2|α|2)
. (3.1.11)

Using Eq.(3.1.11) in Eq.(3.1.10) we get,

|α−〉 =
1

2− 2 exp(−2|α|2)
(|α〉 − | − α〉) . (3.1.12)

To calculate photon statistic of odd coherent states, Eq.(3.1.6) can be written as,

P−(n) = |〈n|α−〉|2. (3.1.13)

Now project 〈n| on odd coherent states given as in Eq.(3.1.10) as,

〈n|α−〉 = No (〈n|α〉 − 〈n| − α〉) .

After some calculations we get,

P−(n) =
exp (−|α|2)

2(1− exp[−2|α|2])

∣∣∣∣( αn√
n!
− (−αn)√

n!

)∣∣∣∣2 . (3.1.14)

Probability of finding n photon is different for different value of n.

For even n,

P−(n) = 0. (3.1.15)

But for odd value of n,

P−(n) =
exp (−|α|2)

2(1− exp[−2|α|2])

∣∣∣∣( αn√
n!

+
αn√
n!

)∣∣∣∣2 ,
P−(n) =

4 exp (−|α|2)

2(1− exp[−2|α|2])

|α|2n

n!
.
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By putting |α|2 = n̄ we get,

P−(n) =
2 exp (−|α|2)

(1− exp (−2n̄))

n̄n

n!
. (3.1.16)

By combining Eq.(3.1.15) and Eq.(3.1.16) we can write,

P−(n) =

 0 for even n
2 exp(−|α|2)
(1+exp(−2n̄))

n̄n

n!
for odd n

As probability of finding even number of photon vanishes therefore we name them

as “Odd coherent states ”.

3.1.3 Yurke-Stoler states

If we take φ = π
2
, we get special kind of states which are known as Yurke-Stoler

states, on the name of scientist[55]. With this value of φ, and Eq.(3.1.1) become,

|αys〉 = Nys(|α〉+ i| − α〉), exp(iφ) = i, (3.1.17)

Nys is normalization constant. By putting φ = π
2

in Eq.(3.1.2) we get,

|Nys|2 =
1√
2
. (3.1.18)

Using Eq.(3.1.17) in Eq.(3.1.18) we get,

|αys〉 =
1√
2

(|α〉+ i|α〉) . (3.1.19)

For this state photon counting statistic P (n) is same as for coherent states, i.e,

Poisson distribution.

3.2 Construction of excitations of coherent states

In our second approach we discuss the states whose properties are in between the

number state |m〉, pure quantum mechanical field states, and coherent states. Ini-

tially excited coherent states of light were discussed in [56, 57]. In this paper their

non-classical properties were also probe.
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3.2.1 Excited coherent states

By the n time application of the creation operator on continuous-variable field states,

coherent states, we get excited coherent states. These states are also known as

photon added coherent states.

|α, n〉 = Na†
n|α〉. (3.2.1)

We can calculate normalization constant N as,

〈α, n|α, n〉 = |N |2〈α|ana†n|α〉,

|N |2 =
1

〈α|ana†n|α〉
.

|N |2 =
1

Ln(−|α|2)n!
, Since 〈α|ana†n|α〉 = Ln(−|α|2)n!, (3.2.2)

where Ln(−|α|2) is Laguerre polynomial of order n,

|α, n〉 =
a†

n|α〉
[Ln(−|α|2)n!]

1
2

. (3.2.3)

It is interesting to note that when n −→ 0, we get coherent state and when α −→ 0

we get Fock states. Thus, we name these state as ”photon added coherent states ”.

By using Eq.(2.2.12), excited coherent states |α, n〉 can be written in term of number

states as,

|α, n〉 =

a†
n

exp
(
−1

2
|α|2
) ∞∑
m=0

αm
√
m!
|m〉

[Ln(−|α|2)n!]
1
2

, (3.2.4)

and action of creation operator is,

a†
n|m〉 =

√
(m+ n)!√
m!

|n+m〉. (3.2.5)

Putting Eq.(3.2.5) in Eq.(3.2.4) and get,

|α, n〉 =
exp

(
−1

2
|α|2
)

[Ln(−|α|2)n!]
1
2

∞∑
m=0

αn
√

(n+m)!

m!
|n+m〉. (3.2.6)

We can also calculate the scaler product 〈α, n|α,m〉 as,

〈α, n|α,m〉 = exp(−|α|2)

[Ln(−|α|2)n!]
1
2 [Lm(−|α|2)m!]

1
2

∞∑
p=0

∞∑
r=0

(α∗)pαr
√

(p+n)!(r+m)!

p!r!

〈r +m|p+ n〉,
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Let r = p+ n−m,

〈α, n|α,m〉 =
exp(−|α|2)

[Ln(−|α|2)n!Lm(−|α|2)m!]
1
2

∞∑
p=0

|α|2p(p+m)!αn−m

p!(p+ n−m)!
. (3.2.7)

Probability distribution of the field

The probability distribution in the field can be determined as,

P (m) = |〈m|α, n〉|2. (3.2.8)

We start from taking inner product and by using Eq.(3.2.6) we get,

〈m|α, n〉 =
exp

(
−1

2
|α|2
)

[Ln(−|α|2)n!]
1
2

∞∑
m=0

αm
√

(n+m)!

m!
〈m|m+ n〉.

By multiplying it with its complex conjugate we get,

P (m) =

∣∣∣∣∣ exp
(
−1

2
|α|2
)

[Ln(−|α|2)n!]
1
2

∞∑
m=0

αm
√

(m+ n)!

m!
〈m|m+ n〉

∣∣∣∣∣
2

,

Let m = m− n,

P (m) =

∣∣∣∣∣ exp
(
−1

2
|α|2
)

[Ln(−|α|2)n!]
1
2

αm−n
√

(m)!

(m− n)!

∣∣∣∣∣
2

, (3.2.9)

after simplifying we get,

P (m) =
exp (−|α|2)

[Ln(−|α|2)n!]

|α|2(m−n)(m)!

[(m− n)!]2
. (3.2.10)

which is zero for m < n. Variance of this distribution is less than that for Poisson

distribution which we calculate in next chapter.

3.3 Construction of Excitations of coherent states

superpositions

In this section we discuss the excitations of coherent state superpositions. These

states are obtain by repeated action of creation operator on coherent state superpositions[36].

when we apply creation operator on even coherent state we get excited even coherent

state and when we apply creation operator on odd coherent state we get excited odd

coherent state.
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3.3.1 Excited even coherent states

Photon added even coherent state is defined as,

|α+, n〉 = Na†
n|α+〉, (3.3.1)

where even coherent state is |α+〉 and N is normalization constant and can be

calculated as,

〈α+, n|α+, n〉 = |N |2〈α+|ana†
n|α+〉. (3.3.2)

We first calculate 〈α+|ana†
n|α+〉 by putting value of even coherent states, given in

Eq.(3.1.3), as,

〈α+|ana†
n|α+〉 =

exp (|α|2)

4 cosh |α|2
(
(〈α|+ 〈−α|)ana†n(|α〉+ | − α〉)

)
.

After simplification we get,

〈α+|ana†
n|α+〉 =

n!

2 cosh |α|2
L+
n (|α|2). (3.3.3)

Using Eq.(3.3.3) in Eq.(3.3.2) normalization constant becomes,

|N |2 =
2 cosh |α|2

n!L+
n (|α|2)

, (3.3.4)

where L+
n (|α|2) is given as,

L+
n (|α|2) = exp(|α|2)Ln(−|α|2) + exp(−|α|2)Ln(|α|2). (3.3.5)

by putting value of normalization constant Eq. (3.3.1) becomes,

|α+, n〉 =

√
2 cosh |α|2
L+
n (|α|2)n!

a†
n|α+〉. (3.3.6)

After putting value of even coherent states, given in Eq.(3.1.3), our state becomes,

|α+, n〉 =
exp

(
1
2
|α|2
)√

2L+
n (|α|2)n!

[a†
n|α〉+ a†

n| − α〉],

when creation operator, a†, act n times on coherent state |α〉 and | − α〉, our state

becomes,

|α+, n〉 =
exp

(
1
2
|α|2
)√

2L+
n (|α|2)n!

(√
n!Ln(| − α|2)|α, n〉+

√
n!Ln(| − α|2)| − α, n〉

)
.
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By taking like terms common,

|α+, n〉 =

√
exp (|α|2)Ln(| − α|2)

2L+
n (|α|2)

(|α, n〉+ | − α, n〉) , (3.3.7)

where |α+, n〉 is photon added even coherent state.

3.3.2 Excited odd coherent states

When creation operator, a†, act n time on odd coherent state we get excited odd

coherent states |α−, n〉, which is also known as photon added odd coherent state. By

following same steps as we follow for excited even coherent state we can get |α−, n〉
as,

|α−, n〉 =

√
exp (|α|2)Ln(| − α|2)

2L−n (|α|2)
(|α, n〉 − | − α, n〉) , (3.3.8)

where L−n (|α|2) is given as,

L−n (|α|2) = exp(|α|2)Ln(−|α|2)− exp(−|α|2)Ln(|α|2). (3.3.9)

In Fock basis

The photon added even/odd coherent state can be written in term of number state

as,

|α±, n〉 =
1√

2n!L±n (|α|2)

∞∑
m=0

(1± (−1)m)

m!
(αm

√
(m+ n)!|m+ n〉). (3.3.10)

By introducing the notation L±n , which is combine form of Eq.(3.3.5) and Eq.(3.3.9),

we get,

L±n (|α|2) = exp(|α|2)Ln(−|α|2)± exp(−|α|2)Ln(|α|2). (3.3.11)

Photon statistic of the excitations of coherent state superpositions

Probability distribution of excitations of coherent state superpositions is given as,

P±(m) = |〈m|α±, n〉|2. (3.3.12)
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Using excitations of coherent state superpositions in number state basis, given in

Eq.(3.3.10), we can write,

〈m|α±, n〉 =
exp(−1

2
|α|2)

[2L±n (|α|2)n!]
1
2

∞∑
m=0

αm
√

(m′ + n)!

m′ !
〈m|m′ + n〉.

Multiplying it with its complex conjugate we get,

P±(m) =

∣∣∣∣∣ (1± (−1)m
′
)

[2L±n (|α|2)n!]
1
2

∞∑
m=0

αm
′
√

(m′ + n)!

m′ !
〈m|m′ + n〉

∣∣∣∣∣
2

.

Let m
′
= m− n,

P±(m) =

∣∣∣∣∣(1± (−1)m−n)

[2L±n (|α|2)n!]
1
2

αm−n
√

(m)!

(m− n)!

∣∣∣∣∣
2

. (3.3.13)

After simplifying we get,

P±(m) =
(1± (−1)m−n)

[2L±n (|α|2)n!]

|α|2(m−n)(m)!

[(m− n)!]2
. (3.3.14)

where m ≥ n and P±(m) = 0 for m < n. This distribution have variance less than

mean. Mandel Q parameter is use to probe this.
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Chapter 4

Analyzing Nonclassicality of the

Continuous-Variable Field States

In previous chapter we discuss different approaches to construct the continuously pa-

rameterized field states, supposedly, having nonclassical features. However, for prac-

tical purposes, it is mandatory to analyze their noncassicality, quanlitatively and well

as quantitatively. There are various parameters that can be used to analyze nonclas-

sical properties of the field state in different situations, such as, Glauber-Sudarshan

P-function, Wigner function, amplitude and intensity squeezing, Anti-bunching and

sub-Poissonian photon statistics. However, in our discussion we will use Wigner

function and characterization of photon statistics via Mandel Q-parameter.

The chapter is organized as the following. In section 4.1 we discuss the non-

classical criteria by introducing the negativity of Wigner function and Mandel Q-

parameter. The section 4.2 is dedicated to the analysis of nonclassicality of our

constructed field states. Finally, in 4.3, we present the results and discussions.

4.1 Criteria of Non-classicality

As pointed out earlier, for a given field state, the occurrence of any characteristic

that has no classical analogue can used as an indicator of nonclassicality. Therefore,

various parameters that can be used to analyze nonclassical properties of the field
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state in different situations [58, 59]. However, the choice of a suitable parameter

as an indicator of nonclassicality varies depending on the physical situation of field

states. For our constructed continuous-variable field states we use the following

parameters as our criteria for probing the nonclassicality.

4.1.1 Negativity of the Winger function

As introduced in Chapter 2, the Wigner function is defined as phase-space joint prob-

ability distribution function. According classical statistical mechanics, this function,

being a probability function, should be positive definite. However, in quantum me-

chanics it came out that Wigner function may take negative values in some region

of phase-phase for some states. Such states can be regarded as nonclassical states

and negativity of Wigner function can be regarded as an indicator of nonclassicality

[60, 61].

In the context of quantum optics, we have defined the Wigner function in

Eq.(4.1.1) of Chapter 2 which we rewrite here for our convenience as

W (β) =
1

π2

∫
exp (λ∗β − λβ∗)Cwd2λ, (4.1.1)

where Cw (λ) is given as,

Cw(λ) = e−|λ|
2/2Tr(ρ̂eλa

†
e−λ

∗â).

4.1.2 Sub-Poissonian Photon Statistics

As we have seen earlier in Chapter 2, the photon counting statistics of coherent

states, classical-like states, is Poissonian. Furthermore, the photon counting statis-

tics of all classical light sources, such as, thermal light sources or chaotic sources

is super-Poissonian (broader than Poissonian) [38, 62]. Interestingly, any source

that has no classical analogue exhibits sub-Poissonian (narrower than Poissonian)

statistics[39].

In order to investigate the underlying photon counting statistics of a given field

state, a parameter, originally defined by Mandel, has been used, which is defined
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[40] as,

Q =
σ2

〈n〉
− 1, (4.1.2)

where 〈n〉 is the mean and σ2 is the variance of photon counting probability distri-

bution. According to this parameter, the distribution is:

• Super-Poissonian if Q > 0,

• Poisson if Q = 0,

• Sub-Poissonian if Q < 0.

For our later calculations, we rearrange the terms in Eq.(4.1.2), and write the Man-

del’s parameter as

Q =
〈n2〉 − 〈n〉2

〈n〉
− 1, where σ2 = 〈n2〉 − 〈n〉2. (4.1.3)

Furthermore, substituting the value of number operator n = a†â,

Q =
〈a†â〉+ 〈a†2 â2〉 − 〈a†â〉2

〈a†â〉
− 1, âa† = 1 + a†â. (4.1.4)

We will use this form of Mandel’s parameter to investigate the photon counting

statistics of our constructed field states.

4.2 Analysis of Nonclassicality

In this section we apply the nonclassicality criteria, defined above, to our constructed

field states and analyze their nonclassical properties. In particular, first we calculate

the Wigner function and then Mandel parameter as indicators of nonclassicality.

4.2.1 Wigner Function

Using the explicit form of Wigner function, given in Eq.(4.1.1), we proceed to cal-

culate the complex integral for various field states.
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Superpositions of coherent states

As discussed in previous chapter, we consider three kinds of coherent state super-

positions, for which Wigner functions are being calculated below.

• Even/odd coherent states:

As shown by Eq.(4.1.1), in order to compute the Wigner function for a given

state, one needs to have corresponding density operator. For even/odd co-

herent states, given in Eqs.(3.1.3) and (3.1.3), the density operator ρ̂ is given

as,

ρ̂ = |α±〉〈α±|.

Using this value of ρ̂, the characteristic function, given in Eq.(2.3.7), becomes,

Cw(λ) =
exp

(
−1

2
|λ|2
)

exp(−|α|2)

2(1± exp(−2|α|2))
[exp(|α|2)(exp(α∗λ− λ∗α + exp(α∗λ) + λ∗α))

± exp(−|α|2)(exp(−α∗λ− λ∗α) + exp(α∗λ+ λ∗α)).

After putting value of Cw(λ) in Eq.(4.1.1) and evaluating the integral by using

identity given in Eq.(2.3.7) we get,

W (β) =
1

π(1± exp(−2|α|2)
[exp(−2|β − α|2) + exp(−2|β + α|2)

± 2 exp(−2|β|2) cos(2i(α∗β − β∗α))].

(4.2.1)

Detail calculations are given in Appendix B. As β is complex number so by

putting β = p− iq we get,

W (p, q) =
1

π(1± exp(−2|α|2)
[exp(−2(p− α)2 − 2q2) + exp(−2(p+ α)2 − 2q2)

± 2 exp(−2(p2 + q2) cos(4qα)].

When we plot this Wigner function W (p, q), we observe two Gaussian peaks

that are always positive and between them there is interference pattern. As a

result of this interference term Wigner function become highly oscillatory, as

shown by Fig (4.1,4.2)
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Figure 4.1: Wigner function of even coherent states for different values α i.e in

α = 1, 2, 3 and 5 respectively.

• Yurke-Stoler states:

For the sake of completeness, we give the corresponding Wigner function of

the Yurke Stoler states. Using the density operator ρ̂ is given as,

ρ̂ = |αys〉〈αys|.

and Same steps are followed to get the Wigner function of Yurke-Stoler state

states.

W (β) =
1

π(1 + exp(−2|α|2)
[exp(−2|β − α|2) + exp(−2|β + α|2)

− 2 exp(−2|β|2) sin(2i(α∗β − β∗α))].

(4.2.2)
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Figure 4.2: Wigner function of odd coherent states for α = 1, 2, 4 and 5 respectively.

By putting β = p+ iq we get,

W (p, q) = 1
π
[exp(−2(p− α)2 − 2y2) + exp(−2(p+ α)2 − 2q2)

−2 exp(−2(p2 + q2) sin(4qα). (4.2.3)

Negativity of Wigner function of even/odd coherent states and Yurke-Stoler states

shows the non-classicality of these states [63].

Wigner function of excited coherent states

The definition of Wigner function, given in Eq.(4.1.1), can be calculated by using

density operator ρ̂, given as,

ρ̂ = |α, n〉〈α, n|. (4.2.4)
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Figure 4.3: Wigner function of Yurke-Stoler states for α = 1, 2, 3.5 and 5 respectively.

We calculate characteristic function Cw(λ), given in Eq.(2.3.7) and after some cal-

culations we get,

W (β) =
2(−1)nLn(|2β − α|2)

π[Ln(−|α|2)]
exp(−2|β − α|2), (4.2.5)

where β is complex number. Let β = p+ iq and α = ai + iaj and then plot Wigner

function as shown in Fig.(4.4). Negativity of Wigner function indicate nonclassical-

ity of these states.

Excitations of coherent state superpositions

The Wigner function of excitations of coherent state superpositions can be calculated
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Figure 4.4: Wigner function of photon added coherent states. First two plots are

for α = 1 and other two plots are for α = 0.5 + i0.5. In both cases we use n = 1, 5.

Excited even/odd coherent states

The general form of Wigner function is given in Eq.(4.1.1). But Wigner function of

excited even/odd coherent state |α±, n〉 can be obtained by using density operator

ρ̂, given as,

ρ̂ = |α±, n〉〈α±, n|. (4.2.6)

So Eq.(4.1.1)can be written as,

W (β) =
2

π2
exp(2|β|2)

∫
exp (λ∗β − λβ∗) 〈−λ|α±, n〉〈α±, n|λ〉d2λ. (4.2.7)
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We can calculate characteristic function, given in Eq.(2.3.7), by using ρ̂ as,

Cw(λ) = Tr(ρD(λ)),

= 〈α±, n|D(λ)|α±, n〉,

= N2 (〈α, n| ± 〈−α, n|)D(λ) (|α, n〉 ± | − α, n〉) , (4.2.8)

where N is normalization constant and given as ,

N =

√
exp (|α|2)Ln(| − α|2)

2L±n (|α|2)
.

After some calculations we get Cw and by putting its value in Eq.(4.1.1) and solving

the integral we get,

W±(β) =
(−1)n exp(|α|2)

[L±n (|α|2)]
[exp(−2|β − α|2)Ln(|2β − α|2) + exp(−2|β − α|2)

Ln(|2β − α|2)± 2 exp(−2|α|2)Re[exp(−2(β − α)(β∗ + α∗))Ln((2β − α)(2β∗ + α∗)]].

(4.2.9)

We plot W±(β) as function of β by fixing different value of α.

4.2.2 Mandel’s Q-Parameter

As mentioned above in section (4.1), the underlying photon counting statistics of a

given field state can be explored conveniently by means of Mandel’s Q-parameter

defined in Eq.(4.1.2). Here we use Eq. (4.1.4) for the calculation of Mandel’s Q-

parameter for our constructed field states.

Superpositions of coherent states

• For even/odd coherent states: To find Mandel Q parameter for even co-

herent states we use the definition which is given in Eq.(4.1.4). We start from

expectation value of operator as,

〈a†â〉 =
|α|2(1− exp(−2|α|2))

1± exp(−2|α|2)
. (4.2.10)

and

〈a†2 â2〉 = |α|4. (4.2.11)
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Figure 4.5: Wigner function of excited even coherent state for α = 2 and n = 1, 5, 10

and 15 respectively.

By putting Eq.(C.0.4) and Eq.(4.2.11) in Eq.(4.1.4) we get,

Q =
±4|α|2 exp(−2|α|2)

(1− exp(−4|α|2))
. (4.2.12)

Q > 0 indicate that Super-Poissonian statistic of even coherent states.. Detail

solution is given in Appendix C Q < 0 indicate that Sub-Poissonian statistic

of odd coherent states.

• For Yurke-Stoler states:

Now for Yurke-Stoler states, we follow same steps, starting from the calcula-
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Figure 4.6: Wigner function of excited odd coherent state by fixing the value of

α = 2 and for different n = 1, 5, 10 and 15 respectively.

tions of expectation value 〈a†â〉 = 〈ψys|a†â|ψys〉, as,

〈a†â〉 = |α|2. (4.2.13)

and

〈(a†2 â2〉 = |α|4, (4.2.14)

by putting Eq.(4.2.13) and Eq.(4.2.14) in Eq.(4.1.4) we get,

Q = 0. (4.2.15)

Which indicate the Poisson distribution of Yurke-Stoler states.
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Figure 4.7: Mandel Q parameter as a func-

tion of |α| for superpositions of coherent states.

ECS/OCS stand for even/odd coherent states re-

spectively and ys is for Yurke-Stoler states.

Excitations of coherent states

We start from expectation value of number operator in the basis of excited coherent

states as,

〈a†a〉 =
(n+ 1)!Ln+1(−|α|2)

n!Ln(−|α|2)
− 1,

=
(n+ 1)Ln+1(−|α|2)

Ln(−|α|2)
− 1. (4.2.16)

and

〈α, n|a2a†
2|α, n〉 =

(n+ 2)!Ln+2(−|α|2)

n!Ln(−|α|2)
, (4.2.17)

By using Eq.(4.2.16) and Eq.(4.2.17) Eq.(4.1.4) becomes,

Q(α, n) =
[(n+ 2)(n+ 1)Ln+2 − 4(n+ 1)Ln+1 + 2Ln)][Ln]− [(n+ 1)Ln+1 − Ln]2

[(n+ 1)!Ln+1 − Ln]Ln
.

(4.2.18)

We note that for n = 0, Q = 0. In fig(4.8) we plot Q as a function of |α|, but for

different value of n. For α = 0, Q(0, n) < 0 but for α 6= 0 Q(0, n) 6= 0 field in the

state |α, n〉 shows sub-Poissonian statistics.
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Figure 4.8: Mandel Q-parameter of photon added coherent state as a function of

|α|. we get different curves for different values of n.

Excitations of coherent state superpositions

Expectation value 〈α±, n|aa†|α±, n〉 is given as,

〈α±, n|aa†|α±, n〉 =
(n+ 1)!L±n+1(|α|2)

2 cosh |α|2
, (4.2.19)

and

〈α±, n|a2a†
2|α±, n〉 =

(n+ 2)!L±n+2(|α|2)

2 cosh |α|2
, (4.2.20)

Putting Eq.(4.2.19) and Eq.(4.2.20) in Eq.(4.1.4) we get,

Q(α±, n) =
[(n+ 2)(n+ 1)L±n+2 − 4(n+ 1)L±n+1 + 2L±n )][L±n ]− [(n+ 1)L±n+1 − L±n ]2

[(n+ 1)!L±n+1 − L±n ]L±n
.

(4.2.21)

Graph on the left side represent Mandel Q-parameter for excited even coher-

ent state and graph on the right side is for excited odd coherent states. These

graph shows that with increasing number of added photon, the negativity of states

increases.

4.3 Results and Discussion

In previous section, we have calculated the Wigner function and Mandel’s Q-parameter

analytically and plotted graphically, for three kinds of field states, constructed in
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Figure 4.9: Mandel Q parameter as a function of |α| for excitations of coherent state

superpositions. Different curves are obtain for different values of n.

the previous chapter. The analytical expressions for Wigner function are given by

Eqs. and those for Mandel Q-parameter are given by Eqs. .

The Wigner for even coherent state, odd coherent states and Yorke-Stoler coher-

ent states are given in Figs. (4.1,4.2,4.3), respectively. These plots plots indicate

similar behavior such that, there is interference in phase-space in between the two

Gaussian peaks. Due to this quantum interference, Wigner function shows negativ-

ity in phase-space which is a clear indication of nonclassicality. The Wigner function

of excited coherent states has plotted in Fig. (4.4). It can be seen from this plot

that the behavior of Wigner function of excited coherent states is different that of

Wigner function of superposition of coherent states. However, clearly the negativity

of the Wigner function can be seen in phase-space for this case as well. Finally,

the Wigner function for excited superposition has been presented in Figs. (4.5,4.6)

which again exhibit the interference and negativity in phase-space. These facts lead

us to conclude that all of our constructed field states are nonclassical.

Moreover, the Mandel’s Q-parameter for superposition coherent states has been

plotted in Fig. (4.7). In this case Mandel Q-parameter does not portray the correct

picture as far as nonclassicality is concerned because super-posionian distribution

for even coherent states and Poisson distribution for Yurke-Stoler do not suggest

nonclassicality which is in contradiction to our earlier results suggested by Wigner
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function. Futhermore, the Mandel Q-parameter for excitation of coherent states, is

given in Fig(4.8), which shows that increasing the number of added photons, the

nonclassicality of the states increases. Similar behavior can be seen in the case of

excitations of coherent state superpositions, given in in Fig(4.9), for different value

of n. Hence, we conclude that nonclassicality of the states increases by increasing

the number of added photons.
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Chapter 5

Summary and Conclusions

In this thesis we have studied, theoretically, various approaches to construct non-

classical field states using very well known continuously parameterized field states,

namely, coherent states. Such non-classical states have numerous applications in

various quantum technologies such as quantum computing, quantum information

processing and quantum metrology. For example, the implementation of these tech-

nologies does require nonclassical correlations, such as entanglement, as a key re-

source, while, the generation of entanglement does require nonclassicality of any

subsystem as a pre-requisite. Moreover, continuous parameterization of field states

carries several advantages, for instance, in the implementation of quantum logic

gates. However, it is very well known that coherent states themselves are classical-

like. Therefore, despite of their a lot of other usefulness in various areas, coherent

states cannot be used for these practical applications.

Our first approach in this regard is to construct a linear superposition of two co-

herent states which are equal in amplitude but separated in phase by 180o. Such su-

perpositions of (single- degree-of-freedom) coherent states are often called Schrödinger-

cat states. Choosing various values of the relative phase, we obtain various kinds of

superposition states. For example, we get even coherent states, odd coherent states

and Yurke-Stoler coherent states when we choose relative phase equal to 0, π and

π/2, respectively. Another, approach is to excite a coherent state by discrete number

of photons. These states are know as excited coherent states or photon-added coher-

ent states. These states are obtained, mathematically, by repeated action of creation
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operator on continously parameterized coherent states. Finally, we present excited

Schrödinger-cat states which are obtained by adding photons to the superpositions

of coherent states.

For these constructed coherent states, we analyze the signatures of nonclassical-

ity by means of various indicators such as, sub- Poissonian photon counting statistics

and negativity of the Wigner function. We calculate the Wigner function and Man-

del’s Q-parameter for our constructed field states analytically and visualize them

graphically. The plots of Wigner function show that all our constructed coherent

states exhibit some negativity in phase space which is an indicator nonclassicality.

Moreover, from Mandel Q parameter, we have shown that the non-classicality of the

constructed states increases as the number of added photons increases.
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Appendix A

Equivalence of Wigner function

W (β) =
2

π2
exp(2|β|2)

∫
exp (λ∗β − λβ∗)Cw(λ)d2λ, (A.0.1)

where characteristic function Cw(λ) is given as,

Cw(λ) = Tr(ρ̂ exp
(
λa† − λ∗a

)
.

Let us consider that

λ =
1√
2

(x+ iy), â =
1√
2

(p̂+ iq̂), d2λ = dxdy. (A.0.2)

By using these values our integral becomes,

W =
1

π2

∫
exp(−i(yq − xp)− ixy/2)Tr(ρ̂ exp(−ixp̂) exp(−iyq̂))dxdy (A.0.3)

In continuous basis, we take ”Tr ” as,

W =
1

π2

∫
exp(−i(yq−xp)−ixy/2)〈q′ | exp(−ixp̂) exp(−iyq̂)ρ̂)|q′〉dxdydq

′
(A.0.4)

After rearranging we grt,

W =
1

π2

∫
exp(−i(yq−xp)−ixy/2)〈q′| exp(−ixp̂/2) exp(−iyq̂)ρ̂) exp(−ixp̂/2)|q′〉dxdydq

′
,

(A.0.5)

where exp(−ixp̂/2) is translational operator. As a result we get,

W =
1

π2

∫
exp(−i(yq − xp)− ixy/2)〈q′ + x

2
| exp(−iyq̂)ρ̂)|q′ − x

2
〉dxdydq

′
.
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Now by the action of position operator exp(−ixq̂) we get,

W =
1

π2

∫
exp(−i(yq − xp)− ixy/2) exp(−ix(q

′
+
x

2
)y)〈q′ + x

2
|ρ̂|q′ − x

2
〉dxdydq

′
.

After simplification we get

W =
1

π2

∫
exp(ixp) exp(−iy(q − q′)〈q′ + x

2
|ρ̂|q′ − x

2
〉dxdydq

′
.

As 1
π2

∫
exp(−iy(q − q′)dy = δ(q − q′)

W =
1

π

∫
exp(ixp)δ(q − q′)〈q′ + x

2
|ρ̂|q′ − x

2
〉dxdq

′
.

W =
1

π

∫
exp(ixp)〈q′ + x

2
|ρ̂|q′ − x

2
〉dx. (A.0.6)
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Appendix B

Derivation of Wigner function

Calculation for Wigner function of superpositions of coherent states

Wigner function for even coherent states can be obtain by using this ρ̂ characteristic

function, given above in Eq.(2.3.7), becomes,

Cw(λ) = Tr(ρ̂D(λ)),

=
(〈α|+ 〈−α|)D(λ)(|α〉+ | − α〉)

2(1 + exp(−2|α|2))
.

(B.0.1)

When displacement operator act on coherent state,,

D(λ)|α〉 = D(λ)D(α)|0〉.

Using the value of Displacement operator, given above in Eq.(2.3.5), we get,

D(λ)|α〉 = exp(λa† − λ∗â) exp
(
αa† − α∗â

)
|0〉.

For simplification let us consider,

A = λa† − λ∗â and B = αa† − α∗â. (B.0.2)

With these substitutions our displacement operator becomes,

D(λ)|α〉 = exp

(
A+B +

[A,B]

2

)
|0〉, (B.0.3)

where commutation relation is given as,

1

2
[A,B] =

1

2
(AB −BA). (B.0.4)
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Putting value of A and B, given in Eq.(B.0.2), Eq.(B.0.4) become,

1

2
[A,B] =

1

2
((λa† − λ∗â)(αa† − α∗â)− (αa† − α∗â)(λa† − λ∗â)). (B.0.5)

After simplification we get,

[A,B]

2
=

1

2
(α∗λ− αλ∗),

= Im(λα∗). (B.0.6)

By substituting Eq.(B.0.6) in Eq.(B.0.3), we get,

D(λ)|α〉 = exp(a†λ− λ∗â+ a†α− α∗â) exp(Im(λα∗))|0〉.

Combining like terms of creation and annihilation operator,

D(λ)|α〉 = exp((λ+ α)a† − (λ∗ + α∗)â) exp(Im(λα∗))|0〉.

When this displacement operator act on vacuum state then we get,

D(λ)|α〉 = exp(Im(λα∗))|λ+ α〉. (B.0.7)

Similarly for coherent state | − α〉,

D(λ)| − α〉 = exp(−Im(λα∗))|λ− α〉. (B.0.8)

Using Eq.(B.0.7) and Eq.(B.0.8) in Eq.(B.0.1) we get,

Cw(λ) =
(〈α|+ 〈−α|)(exp(Im(λα∗)|λ+ α〉+ exp(−Im(λα∗))|λ− α〉))

2(1 + exp(−2|α|2))
.

After multiplication we get,

Cw(λ) =
1

2(1 + exp(−2|α|2))
[exp(Im(λα∗))〈α|λ+ α〉+ exp(−Imλα∗)

〈α|λ− α〉+ exp(Imλα∗)〈−α|λ+ α〉+ exp(−Imλα∗)〈−α|λ− α〉].
(B.0.9)

Now we calculate the inner product 〈α|λ+α〉, 〈α|λ−α〉, 〈−α|λ+α〉 and 〈−α|λ−α〉
separately. Firstly,

exp(Im(λα∗))〈α|λ+ α〉 = exp
1

2
(α∗λ− αλ∗)

∞∑
n=0

(α∗)n√
n!

exp

(
−|α|2

2

)
〈n|n〉

∞∑
n=0

(λ+ α)n√
n!

exp
−|λ+ α|2

2
.
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After solving we get,

exp(Im(λα∗))〈α|λ+α〉 = exp(α∗λ−λ∗α+ |α|2) exp(−|α|2) exp

(
−|λ|2

2

)
, (B.0.10)

Second inner product is calculated as,

exp(−Im(λα∗))〈α|λ− α〉 = exp
1

2
(−α∗λ+ αλ∗)

∞∑
n=0

(α∗)n√
n!

exp

(
−|α|2

2

)
〈n|n〉

∞∑
n=0

(λ− α)n√
n!

exp

(
−|λ− α|2

2

)
.

After simplification we get,

exp(−Im(λα∗))〈α|λ− α〉 = exp(α∗λ+ λ∗α− |α|2) exp(−|α|2) exp

(
−|λ|2

2

)
.

(B.0.11)

Inner product of third term is obtain as,

exp(Im(λα∗))〈−α|λ+ α〉 = exp
1

2
(α∗λ− αλ∗)

∞∑
n=0

(−α∗)n√
n!

exp

(
−|α|2

2

)
〈n|n〉

∞∑
n=0

(λ+ α)n√
n!

exp

(
−|λ+ α|2

2

)
,

After simplification we get,

exp(−Im(λα∗))〈−α|λ+ α〉 = exp(−α∗λ− λ∗α− |α|2) exp(−|α|2) exp

(
−|λ|2

2

)
.

(B.0.12)

Fourth term is given as,

exp(−Im(λα∗))〈−α|λ− α〉 = exp 1
2
(α∗λ− αλ∗)

∞∑
n=0

(−α∗)n√
n!

exp
(
−|α|2

2

)
〈n|n〉

∞∑
n=0

(λ−α)n√
n!

exp
(
−|λ−α|2

2

)
,

after simplification we get,

exp(−Im(λα∗))〈−α|λ− α〉 = exp(−α∗λ+ λ∗α + |α|2) exp(−|α|2) exp

(
−|λ|2

2

)
.

(B.0.13)
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By using Eq.(B.0.10), (B.0.11), (B.0.12) and (B.0.13) in Eq.(B.0.9) we get,

Cw(λ) =
exp(−|α|2) exp

(
−1

2
|λ|2
)

2(1 + exp(−2|α|2)
)[exp(α∗λ− λ∗α + |α|2) + exp(α∗λ+ λ∗α− |α|2)

+ exp(−α∗λ− λ∗α− |α|2) + exp(−α∗λ+ λ∗α + |α|2)],

Combining the exponential terms as,

Cw(λ) =
exp

(
−1

2
|λ|2
)

exp(−|α|2)

2(1 + exp(−2|α|2))
[exp(|α|2)(exp(α∗λ− λ∗α + exp(α∗λ) + λ∗α))

+ exp(−|α|2)(exp(−α∗λ− λ∗α) + exp(α∗λ+ λ∗α)).

By putting value of Cw(λ) Wigner function becomes, after simplification we get,

W (β) =
1

2π2(1 + exp(−2|α|2)
[

∫
exp(λ∗(β − α)− λ(β∗ − α∗)− |λ|

2

2
)d2λ

+

∫
exp(λ∗(β + α)− λ(β∗ + α∗)− |λ|

2

2
)d2λ

+ exp(−2|α|2)[

∫
(exp(λ∗(β + α)− λ(β∗ − α∗)− |λ|

2

2
)d2λ

+

∫
exp(λ∗(β − α)− λ(β∗ + α∗)− |λ|

2

2
)d2λ]].

We evaluate these integral by using identity given in Eq.(2.3.9) and after simplifying

we get,

W (β) =
1

π(1 + exp(−2|α|2)
[exp(−2|β − α|2) + exp(−2|β + α|2)

+ 2 exp(−2|β|2) cos(2i(α∗β − β∗α))].

(B.0.14)

Which is Wigner function of even coherent states. The first two terms are Gaussian

centered at α and the last term is due to interference between |α〉 and | − α〉.
As β is complex number so we put β = p− iq in each term separately,

exp(−2|β − α|2) = exp(−2(|α|2 + p2 + q2 − α(p− iq)− α∗(p− iq))

= exp(−2(p− α)2) exp(−2q2). (B.0.15)

Second term become,

exp(−2|β + α|2) = exp(−2(|α|2 + p2 + q2 + α(p− iq) + α∗(p− iq))

= exp(−2(p+ α)2) exp(−2q2). (B.0.16)
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Our third term is,

cos(2i(α∗β − β∗α)) = cos(2i(α∗(p+ iq)− (p− iq)α)

= cos(−4qα)). (B.0.17)

Putting Eq.(B.0.15), (B.0.16) and (B.0.17) in Eq.(B.0.14) we get,

W (p, q) =
1

π(1 + exp(−2|α|2)
[exp(−2(p− α)2 − 2q2) + exp(−2(p+ α)2 − 2q2)

+ 2 exp(−2(p2 + q2) cos(4qα)].

For excitation of coherent states

W (β) =
2

π2
exp(2|β|2)

∫
exp (λ∗β − λβ∗) 〈−λ|α, n〉〈α, n|λ〉d2λ. (B.0.18)

We first calculate 〈α, n|λ〉 and 〈−λ|α, n〉 as,

〈α, n|λ〉 =
〈α|an|λ〉

[n!Ln(−|α|2)]
1
2

=
λn

[n!Ln(−|α|2)]
1
2

exp

(
−1

2
(|α|2 + |λ|2) + α∗λ

)
,

(B.0.19)

and

〈−λ|α, n〉 =
〈−λ|a†n|α〉

[n!Ln(−|α|2)]
1
2

=
(−λ∗)n

[n!Ln(−|α|2)]
1
2

exp

(
−1

2
(|α|2 + |λ|2)− λ∗α

)
.

(B.0.20)

By substituting Eq.(B.0.19) and Eq.(B.0.20) in Eq.(B.0.18) we get,

W (β) =
2 exp(2|β|2)

π2[n!Ln(−|α|2)]

∫
(−λλ∗)n exp

(
−|α|2 − |λ|2 − λ∗α + α∗λ

)
exp (2(λ∗β − λβ∗)) d2λ.

W (z) =
2 exp(2|z|2 − |α|2)

π2[m!Lm(−|α|2)]

∫
(−ββ∗)m exp[−|β|2 + β∗(2z − α)− β(2z∗ − α∗)]d2β

(B.0.21)

Now rearrange the terms and let 2β − α = ξ,

W (β) =
2 exp(2|β|2 − |α|2)

π2[n!Ln(−|α|2)]

∫
(−λλ∗)n exp

(
−|λ|2 + λ∗ξ − λξ∗

)
d2λ.
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After simplification

W (z) =
2 exp(2|z|2 − |α|2)

π2[m!Lm(−|α|2)]

∂2m

∂(ξ∗)m∂ξm

∫
exp[−|β|2 + β∗ξ − βξ∗]d2β (B.0.22)

we will also make use of the identity

exp[−|2z|2] =
1

2π

∫
exp[−1

2
|α|2] exp[zα∗ − z∗α]d2α (B.0.23)

W (z) =
2 exp(2|z|2 − |α|2)

π[m!Lm(−|α|2)]

∂2m

∂(ξ∗)m∂ξm
exp[−|ξ|2] (B.0.24)

Now we use following identity

∂2m

∂(z∗)m∂zm
exp(−βz∗z) = (−β)m exp[−β|z|2]Lm(β|z|2) (B.0.25)

In our case β = 1 and z = ξ

∂2m

∂(ξ∗)m∂ξm
exp(−ξ∗ξ) = (−1)m exp[−|ξ|2]Lm(|ξ|2) (B.0.26)

W (β) becomes,

=
2 exp(2|β|2 − |α|2)

π[n!Ln(−|α|2)]
(−1)nn! exp

(
−|ξ|2

)
Ln(|ξ|2).

Putting the value of ξ we get,

=
2(−1)n exp (2|β|2 − |α|2)

π[n!Ln(−|α|2)]
m! exp

(
−|2β − α|2

)
Lm(|2β − α|2).

After some calculations we get, |α, n〉 is,

W (z) =
2(−1)mLm(|2z − α|2)

π[Lm(−|α|2)]
exp[−(2z − α)(2z∗ − α∗)] exp(2|z|2 − |α|2) (B.0.27)

W (z) =
2(−1)mLm(|2z − α|2)

π[Lm(−|α|2)]
exp(−(4|z|2 − 2α∗z − 2z∗α + |α|2) + 2|z|2 − |α|2)

(B.0.28)

W (z) =
2(−1)mLm(|2z − α|2)

π[Lm(−|α|2)]
exp(−2|z|2 + 2α∗z + 2z∗α− 2|α|2) (B.0.29)

the Wigner function for the state,

W (β) =
2(−1)nLn(|2β − α|2)

π[Ln(−|α|2)]
exp(−2|β − α|2), (B.0.30)
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Appendix C

Derivation of Mandel Q-Parameter

Solution of Mandel Q-parameter for even/odd coherent states

To find Mandel Q-parameter for even/odd coherent states we first calculate,

〈a†â〉 = 〈α±|a†â|α±〉, (C.0.1)

put value of |α±〉 as given in Eq.(3.1.3) and (3.1.10) ,

〈a†â〉 = N2
[
(〈α| ± 〈−α|)a†â(|α〉 ± | − α〉)

]
,

by simplifying,

〈a†â〉 = |N |2[〈α|a†â|α〉 ± 〈α|a†â| − α〉 ± 〈−α|a†â|α〉 ± 〈−α|a−†â| − α〉],

= |Ne|2[α∗α〈α|α〉 − α∗α〈α| − α〉 − α∗α〈−α|α〉+ α∗α〈−α| − α〉],

Where,

〈α|α〉 = 〈−α| − α〉 = 1, (C.0.2)

〈−α|α〉 = 〈α| − α〉 = exp(−2|α|2). (C.0.3)

Using these relations we get,

〈a†â〉 = |Ne|2[α∗α− α∗α exp[−2|α|2]− α∗α exp[−2|α|2] + α∗α],

= |Ne|2[2α∗α− 2α∗α exp(−2|α|2)],
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Putting value of normalization constant we get,

〈a†â〉 =
2α∗α− 2α∗α exp(−2|α|2)

2± 2 exp(−2|α|2)
,

Taking like term common we get,

〈a†â〉 =
|α|2(1± exp(−2|α|2))

1± exp(−2|α|2)
. (C.0.4)

Now,

〈a†2 â2〉 = 〈α±|a†
2

â2|α±〉, (C.0.5)

Putting value of even coherent state |α±〉 as,

〈a†2 â2〉 = |N |2[(〈α| ± 〈−α|)a†2 â2(|α〉 ± | − α〉)]

= |N |2[(α∗)2α2 ± (α∗)2α2〈α| − α〉 ± (α∗)2α2〈−α|α〉 ± (α∗)2α2].(C.0.6)

By using Eq.(C.0.2) and Eq.(C.0.3) we get,

〈a†2 â2〉 = |N |2[(α∗)2α2 + (α∗)2α2 exp(−2|α|2) + (α∗)2α2 exp(−2|α|2) + (α∗)2α2],

= |N |2[2(α∗)2α2 + 2(α∗)2α2 exp(−2|α|2)],

Using value of normalization constant,

〈a†2 â2〉 =
2|α|4 ± 2|α|4 exp(−2|α|2)

2± 2 exp(−2|α|2)
,

〈a†2 â2〉 = |α|4. (C.0.7)

Now by putting equation (C.0.4) and (C.0.7) in (4.1.4) we get,

Q = [|α|4+
(|α|2)(1± exp(−2|α|2))

1± exp(−2|α|2)
−(|α|4)(1± exp(−2|α|2))2

(1± exp(−2|α|2))2
][

(1± exp(−2|α|2))

(1± exp(−2|α|2))|α|2
]−1,

by solving we get,

Q =
±4|α|2 exp(−2|α|2)

(1− exp(−4|α|2))
. (C.0.8)

For Yurke-Stoler states

〈a†â〉 = 〈ψys|a†â|ψys〉, (C.0.9)
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by putting value of |ψys〉,

〈a†â〉 = |N |2[(〈α| − i〈−α|)a†â(|α〉+ i| − α〉)],

â| − α〉],

= |N |2[α∗α〈α|α〉 − iα∗α〈α| − α〉+ iα∗α〈−α|α〉+ α∗α〈−α| − α〉],

by using eq.(C.0.2) and eq.(C.0.3) we get,

= |N |2[α∗α− iα∗α exp(−2|α|2) + iα∗α exp(−2|α|2) + α∗α],

by using value of normalization constant and after solving we get,

〈a†â〉 = N2[2|α|2]

〈a†â〉 = |α|2. (C.0.10)

Now,

〈a†2 â2〉 = 〈ψys|a†
2

â2|ψys〉,

= |N |2[a†
2

α2〈α|α〉+ ia†
2

α2〈α| − α〉 − ia†2α2〈−α|α〉+ a†
2

α2〈−α| − α〉],

By using Eq.(C.0.2) and Eq.(C.0.3) we get,

〈a†2 â2〉 = |N |2[(α∗)2α2 + i(α∗)2α2 exp[−2|α|2]− i(α∗)2α2 exp(−2|α|2) + (α∗)2α2],

after simplifications we get,

〈(a†2 â2〉 = |α|4, (C.0.11)

by putting Eq.(C.0.10) and Eq.(C.0.11) in Eq.(4.1.4) we get,

Q =
|α|4 + |α|2 − |α|4

|α|2
− 1.

After simplifying we get,

Q = 0. (C.0.12)

For excitations of coherent states

Mandel Q parameter is define as in equation (4.1.3) where,

Q(α,m) =
〈(a † a)2〉 − 〈a†a〉2

〈a†a〉
− 1 (C.0.13)
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〈a†a〉 = 〈aa†〉 − 1.

By using photon added coherent state as given in equation (3.2.3) we get,

〈α, n|aa†|α, n〉 =
〈α|an(aa†)a†

n|α〉
n!Ln(−|α|2)

− 1. (C.0.14)

As we know that,

〈α, n|ama†m |α, n〉 =
〈α|am+na†

(m+n)|α〉
n!Ln(−|α|2)

,

=
(n+m)!Lm+n(−|α|2)

n!Ln(−|α|2)
, (C.0.15)

with m = 1 we get,

〈α,m|aa†|α,m〉 = 〈α|am+1a †m+1 |α〉 (C.0.16)

〈α, n|aa†|α, n〉 =
(n+ 1)!Ln+1(−|α|2)

n!Ln(−|α|2)
, (C.0.17)

by putting this value in Eq.(C.0.14) we get,

〈a†a〉 =
(n+ 1)!Ln+1(−|α|2)

n!Ln(−|α|2)
− 1,

=
(n+ 1)Ln+1(−|α|2)

Ln(−|α|2)
− 1. (C.0.18)

Now expectation value of square of number operator,

〈(a†a)2〉 = 〈(aa† − 1)2〉,

= 〈(aa†)2 + 1− 2〈aa†〉,

= 〈a(aa† − 1)a†〉+ 1− 2〈aa†〉,

= 〈a2a†
2〉 − 3〈aa†〉+ 1. (C.0.19)

To calculate this put m = 2 in Eq.(C.0.15),

〈α, n|a2a†
2|α, n〉 =

(n+ 2)!Ln+2(−|α|2)

n!Ln(−|α|2)
, (C.0.20)

〈α,m|aa † |α,m〉 =
(m+ 1)!Lm+1(−|α|2)

m!Lm(−|α|2)
(C.0.21)
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By using Eq.(C.0.18) and Eq.(C.0.20) in Eq.(C.0.13), we get, after simplification we

get,

Q(α, n) =
[ (n+2)!Ln+2

n!Ln
− 3 (n+1)!Ln+1

n!Ln
+ 1]− [ (n+1)!Ln+1

n!Ln
− 1]2

[ (n+1)!Ln+1

n!Ln
− 1]

− 1.

Let’s suppose Ln+m(−|α|2) = Ln+m and after simplification we get,

Q(α,m) =
[(m+ 2)Lm+2 − Lm+1](m+ 1)[Lm]− [(m+ 1)Lm+1]2

[(m+ 1)!Lm+1 − Lm]Lm
− 1. (C.0.22)

For excitations of coherent state superpositions

For excited even/odd coherent states, expectation value of number operator is cal-

culated as,

〈α±, n|aa†|α±, n〉 =
2 cosh |α|2〈α±|an(aa†)a†

n|α±〉
n!L+

n (|α|2)
− 1 (C.0.23)

As we know that,

〈α±,m|ana †n |α±,m〉 =
〈α±|an+m(a†)n+m|α±〉

m!L±m(|α|2)

=
(m+ n)!L±n+m(|α|2)

n!L+
n (|α|2)

. (C.0.24)

By putting m = 1 we get,

〈α±, n|aa†|α±, n〉 =
(n+ 1)!L±n+1(|α|2)

2 cosh |α|2
.

By putting this value in equation (C.0.23) we get,

〈a†a〉 =
(n+ 1)!L±n+1(|α|2)2 cosh |α|2

n!L±n (|α|2)2 cosh |α|2
− 1,

=
(n+ 1)L±n+1(|α|2)− L±n (|α|2)

L±n (|α|2)
.

As we know that,

〈(a†a)2〉 = 〈a2a†
2〉 − 3〈aa†〉+ 1. (C.0.25)

To solve this Eq.(C.0.25), put m = 2 in Eq.(C.0.24) and get,

〈α±, n|a2a†
2|α+, n〉 =

(n+ 2)!L±n+2(|α|2)

2 cosh |α|2
, (C.0.26)
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〈α±, n|aa†|α±, n〉 =
(n+ 1)!L±n+1(|α|2)

2 cosh |α|2
. (C.0.27)

By using Eq.(C.0.25), (C.0.25), (C.0.26) and Eq.(4.1.3) we get,

Q(α±,m) =
[
(m+2)!L±m+2(|α|2)

2 cosh |α|2 − 3
(m+1)!L±m+1(|α|2)

2 cosh |α|2 + 1]− [
(m+1)!L±m+1(|α|2)

m!L±m(|α|2)
− 1]2

[
(m+1)!L±m+1(|α|2)

m!L±m(|α|2)
− 1]

− 1.

Let L±m(|α|2) = L±m only to simplify our calculations,

Q(α±,m) =
[(m+ 2)(m+ 1)L±m+2 − 3(m+ 1)L+

m+1][L±m] + [L±m]2 − [(m+ 1)L±m+1 − L±m]2

[(m+ 1)!L±m+1 − L±m]L±m
−1,

Q(α±,m) =
[(m+ 2)L±m+2 − L±m+1](m+ 1)[L±m]− [(m+ 1)L±m+1]2

[(m+ 1)!L±m+1 − L±m]L±m
− 1. (C.0.28)
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