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Abstract

After the discovery of neutrino, its mass has been an unanswered question for so long.

Neutrino oscillation experiments proved the neutrinos to be massive. Theoretical

way of predicting mass of neutrinos is by so-called seesaw mechanism.

In this dissertation we have examined the neutrino mass problem in detail. By

adding a right handed neutrino to the standard model of particle physics (SM) gives

unnaturally small coupling. So we needed a way that explains the tiny mass of

neutrinos as compared to the other fermions. The seesaw physics played a role to

answer smallness of neutrinos very well.

There are three types of seesaw mechanism (Type I, II and III). We have dis-

cussed Type I and II in detail. These two types of seesaw are the extensions of

the SM with right-handed neutrino and an SU(2)L Higgs triplet with hypercharge

Y = 2 respectively.

Neutrino oscillation experiments gave a proof of massive neutrinos. The experimen-

tal results for the neutrino oscillation, specifically results from Super-Kamiokande

(SK) are discused.

The neutrino mass parameters plays an important role on Higgs mass bounds.

We have analyzed the effect of Type II seesaw on the Higgs mass bounds. By

choosing the Plank scale (Λ = 1.2× 1019 GeV) as cut-off energy scale has given us

the vacuum stability bound on Higgs mass about 126.3 GeV and the perturbativity

bound as 169.4 GeV .



Contents

1 Introduction 1

1.1 Spontaneous symmetry breaking (SSB);A toy model . . . . . . . . . . 2

1.2 An overview of SM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 The gauge group (SU(2)L ⊗ U(1)Y ) of electroweak interactions . . . 9

1.3.1 Gauge group SU(2)L . . . . . . . . . . . . . . . . . . . . . . . 9

1.3.2 Gauge group U(1)Y . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3.3 Gauging SU(2)L ⊗ U(1)Y . . . . . . . . . . . . . . . . . . . . 14

1.4 Higgs field and spontaneous symmetry breaking . . . . . . . . . . . . 16

1.4.1 Boson Masses . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.4.2 Fermion masses . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.5 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2 Neutrino Mass Generation 24

2.1 Dirac and Majorana mass terms . . . . . . . . . . . . . . . . . . . . . 26

2.1.1 Majorana spinors . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.2 The seesaw mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.2.1 Type I seesaw . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.2.2 Type II seesaw . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.3 Neutrino oscillations . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.3.1 Neutrino oscillations in vacuum . . . . . . . . . . . . . . . . . 36

2.3.2 Two flavor oscillation probability . . . . . . . . . . . . . . . . 38

2.4 Long base line experiments (LBL) . . . . . . . . . . . . . . . . . . . . 40

2.5 Super-kamiokande: Super-Kamioka neutrino detection experiment . . 41



2.5.1 Neutrino Beam . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.5.2 KEK Beam . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.5.3 Neutrino detection . . . . . . . . . . . . . . . . . . . . . . . . 43

3 Higgs boson mass bounds using Type II seesaw model 45

3.1 Type II SeeSaw . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2 Triplet scalar and the Higgs boson mass . . . . . . . . . . . . . . . . 46

3.3 Constraints on Higgs boson mass . . . . . . . . . . . . . . . . . . . . 50

3.3.1 Vacuum stability bound . . . . . . . . . . . . . . . . . . . . . 50

3.3.2 Perturbativity bound . . . . . . . . . . . . . . . . . . . . . . . 51

3.4 Contribution of non-SM parameters in our analysis . . . . . . . . . . 52

3.5 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.5.1 Vacuum stability and perturbativity bound on Higgs mass . . 52

3.5.2 Higgs boson mass bounds for varying λ6 . . . . . . . . . . . . 53

3.5.3 Higgs boson mass bounds for varying λ5 . . . . . . . . . . . . 55

3.6 Comment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4 Concluding Remarks 60

Bibliography 62



Chapter 1

Introduction

Standard Model of particle physics (SM) [1, 2, 3, 4] is the most successful theory of

modern physics which describes all the known fundamental particles of nature and

the interactions between them.

Almost all the pieces of the SM puzzle had been identified with the discovery

of the top quark (mt ' 176 ± 8 GeV [5])1 by 1995. The only missing piece was the

Higgs boson, the existence of which had been suspected since at least the 1960’s

[6, 7, 8]. In 2012, ATLAS (A Toroidal LHC ApparatuS) and CMS (Compact Muon

Solenoid) at the Large Hadron Collider (CERN) finally announced the signature of

a new particle with a mass of about 126 GeV [9, 10]. This particle was consistent

with the SM Higgs boson. It took another year of data to claim the discovery with

mass of 125.2± 0.3 GeV [11, 12].

Although the SM has been remarkably successful theory over the last centuary

in making quantitative as well as qualitative prediction in nature, which have been

experimentally verified. Despite this achievement, there ware still few unanswered

questions out of which neutrino mass was one of them.

The story of the neutrino started with the process of β-decay experiment. By the

1920’s, physicists were confused about the phenomenon of β-decay (in which an

electron is emitted from the atomic nucleus) which seemed to violate conservation

laws (energy and momentum conservation laws). If beta decay was only the emis-

1We have used natural units with c2 = 1 throughout this thesis.
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sion of electron as assumed at that time, then the energy emission should not be a

continuous spectrum but must have a specific value. But the energy spectrum of

the electrons, or β-rays, was continuous. if energy is conserved, another variable or

amount of energy must somehow leave the system. In 1927, Ellis and Wooster tried

and failed to capture and measure that missing energy[13].

Pauli had devised an explanation of conservation laws in beta decay in terms of

another, undetected, particle being emitted by the nucleus by 1930 which was dis-

covered by Chadwick in 1932 [14]; Fermi called it ‘the neutrino’. The existance of

the neutrino was proved in 1956 by Reines and Cowan [15]. Uptil the mid of 1990’s

there was no experimental evidence of neutrino mass. However, in 1998 the ques-

tion of whether the neutrinos had mass or not been answered by neutrino oscillation

experiments [16].

As neutrinos were thought to be massless so in the minimal SM we do not have

massive neutrinos but now after the proof of neutrino mass, we must have some

way to accomodate masses of neutrinos in the SM. If we simply add a right-handed

neutrino singlet (which is an SU(2)L ⊗U(1)Y as the other terms in the SM are) we

can get a neutrino mass term in the SM as well. However, this approach leads to

unnaturally small couplings (∼ 10−13). To solve this problem we need to go beyond

the SM and the most general way of introducing the neutrino mass in the SM is the

so-called seesaw mechanism[17].

With the help of seesaw mechanism, we can construct the correlation between

the Higgs boson mass and neutrino mass parameters and this is the purpose of our

thesis.

In this thesis, we have investigated the effect of neutrino mass parameters on the

Higgs mass bounds (vacuum stability and the perturbativity bound).

1.1 Spontaneous symmetry breaking (SSB);A toy

model

The symmetry of a system is said to be spontaneouly broken when the Lagrangian

of the system is invariant under the symmetry but the ground state of the system
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is not.

In order to understand the basic idea of SSB, let us start with a complex scalar

field φ ( φ = 1√
2
(φ1 + iφ2)) and the Lagrangian of this complex scalar field is,

L = ∂µφ
∗∂µφ− V (φ), (1.1.1)

where,

V (φ) =
1

2
µ2|φ|2 +

1

4
λ|φ|4, (1.1.2)

with the condition λ > 0 to ensure the stability of the theory.

The Lagrangian (1.1.1) is invariant under U(1) global phase transformation φ
′ →

eiαφ. The Lagrangian can also be written in the form of the real and imaginary

parts (φ1andφ2) of φ as,

L =
1

2
[(∂µφ1)(∂µφ1) + (∂µφ2)(∂µφ2)]− V (φ2

1 + φ2
2),

V (Φ2) =
1

2
µ2(Φ2) +

1

4
λ(Φ2)2, (1.1.3)

where Φ = (φ1, φ2) and Φ2 = φ2
1 + φ2

2. The above mentioned potential acquires two

distinct cases: µ2 > 0 and µ2 < 0. Let’s investigate the Lagrangian under small

perturb ations around its minimum.

A) For µ2 > 0, the unique minimum of the potential occcurs at Φ = (0, 0)T . The

potential is schemetically shown in Fig.(1.1).

B) In the case of µ2 < 0, the Lagrangian does not contain a minimum at Φ = (0, 0)T .

Instead, there is a continuum of vacua satisfying, (also illustrated in Fig.(1.2))

υ2 =
−µ2

λ
. (1.1.4)

We arbitrarily choose (0, υ)T to be the vacuum state which then signals spontaneous

symmetry breaking. We expand Φ about the minimum as Φ′0 = (ζ, η)T with,

Φ′ ≡ Φ− Φ0,(
ζ

η

)
≡

(
φ1

φ2

)
−

(
0

υ

)
. (1.1.5)

Kinetic and the potential terms of the Lagrangian in terms of shifted field can be

written as,

3



Figure 1.1: Potential with a unique minima at Φ = 0

using φ1 = ζ, φ2 = (υ + η), and µ2 = −λυ2,

L(ζ, η) =
1

2
((∂µζ) (∂µζ) +

1

2

(
(∂µη) (∂µη)− 2λυ2η2

)
+

(
−1

4
µ2υ2 − µ

√
λη3

+
1

4
λη4 +

1

4
λζ4 +

√
ληµζ2 +

1

2
λη2ζ2

)
,

=
1

2
((∂µζ) (∂µζ) +

1

2

(
(∂µη) (∂µη)− 2λυ2η2

)
+

(
−1

4
λυ4 + λη3υ

+
1

4
λη4 +

1

4
λζ4 + ληυζ2 +

1

2
λη2ζ2

)
. (1.1.6)

The scalar field ζ is massless, while the other field η acquires mass mη =
√
−2µ2.

In general, the appearance of massless particles as a result of continuous symmetry

breaking is known as the Goldstone′s theorem. Goldstone’s theorem states that

for every spontaneously broken continuous symmetry, the theory must contain a

massless particle [20, 3].

The number of produced Goldstone Bosons depends on the number of broken gener-
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Figure 1.2: Potential with degenerate vacuum showing spontaneous symmetry

breaking.

ators of the symmetry. For example if the theory breaks down from SU(3) to SU(2)

by vacuum expectation value (vev), so 8 − 3 broken generators and 5 Goldstone

Bosons appear.

Coupling the scalar field φ to a massless guage field Aµ by introducing the co-

variant derivative D, the Lagrangian can be made invariant under the local U(1)

transformation,

φ′ → eiqα(χ)φ. (1.1.7)

The U(1) covariant Lagrangian is,

L = (DµΦ)∗(DµΦ)− V (Φ)− 1

4
F µνFµν . (1.1.8)

with potential,

V (Φ) = µ2Φ∗Φ + λ(Φ∗Φ)2 (1.1.9)

5



where,

Φ =
φ1 ± iφ2√

2
,

and the covariant derivative,

Dµ ≡ ∂µ + iqAµ. (1.1.10)

Fµν in the kinetic term (−1

4
F µνFµν) for the gauge field is,

Fµν ≡ ∂νAµ − ∂µAν . (1.1.11)

Rewriting the Lagrangian in terms of the shifted fields η and ζ (as earlier),

L(ζ, η) =
1

2
((∂µζ) (∂µζ) +

1

2

(
(∂µη) (∂µη)− 2λυ2η2

)
+

(
−1

4
FµυF

µυ − q2µ2

2λ
AµAµ

)
+

(
−1

4
λυ4 + λη3υ +

1

4
λη4 +

1

4
λζ4 + ληυζ2 +

1

2
λη2ζ2

)
+q2AµA

µ

(
1

2
(η2 + ζ2) + υη

)
+ qAµ (ζ∂µη − η∂µζ)

−qAµ (υ∂µζ) . (1.1.12)

The first two terms represent massive scalar particle (η) and massless particle (ζ)

while the third term seems to represent that after local U(I) symmetry breaking,

the gauge field (Aµ) acquires a mass m2
A =

q2υ2

2
. However, there is another term

−qAµ(υ∂µζ) which shows the gauge field Aµ is mixed up with the semingly massless

field. By choosing a suitable gauge will help to interpret it easily. Rewriting the

terms involving Aµ and ζ as,

1

2
(∂µζ) (∂µζ)− qAµ (υ∂µζ) +

q2υ2

2
AµAµ =

q2υ2

2

(
Aµ +

1

qυ
∂µζ

)(
Aµ − 1

qυ
∂µζ

)
,

=
1

2
q2υ2(A′µ)2. (1.1.13)

which shows a form for the gauge transformation,

Aµ → A′µ =

(
Aµ +

1

qυ
∂µζ

)
.

The rest of the terms are representing different types of interactions between the η,

ζ and Aµ. For example the term λη3υ represents three point interaction of η field

with υ and
1

2
λη2ζ2 is representing interaction between η and ζ fields etc.
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1.2 An overview of SM

The SM is based on the gauge symmetry group SU(3)C ⊗ SU(2)L ⊗ U(1)Y which

is broken down to a lower symmetry group SU(3)C ⊗ U(1)EM by an electroweak

symmetry breaking. SU(3)C represents the strong interaction which is mediated by

eight gluons, where C refers to quantum chromodynamics which is the theory of

strong interactions. SU(2)L ⊗ U(1)Y part describes the electroweak interactions. L

refers to the fact that it is a chiral theory, i.e only the left-handed particles (when

the directions of spin and motion of the particle are opposite) participate in weak

interactions where as the right-handed ones (when the direction of spin is the same

as the direction of motion of the particle) do not (that is why we put the subscript

L) and Y refers to the weak hypercharge (a quantum number related to the electric

charge and third component of weak isospin). The electric charge generator is the

combination of I3 (third component of isospin) from SU(2) and the hypercharge Y

(corresponding to the gauge symmetry U(1)).

Q = I3 +
Y

2
.

There are two kinds of particles in the SM: fermions (spin 1/2) and the bosons(integer

spin), which are the elemntary particles that make-up the universe. Another particle

which is recently found is the Higgs with spin zero and is responsible for the mass

of paticles in the SM.

fermions There are two families of fermions known as leptons and quarks. The

fermions in the SM are lised in Table. 1.1. Leptons include electrically charged

electron (e) and its counterparts (which are heavier than the electron), muon (µ)

and the tau particle(τ), as well as their electrically neutral neutrinos (νe, νµ, ντ ).

Quarks come in six different flavors: up(u), down(d), charm(c), strange(s), top(t)

and bottom(b) and the corresponding antiquarks (which are given by bar above the

symbol). Each quark and anti-quark comes in three different colors. The subscript L

and R refer to the left-handed and the right-handed fermions. Left-handed fermions

are the doublet while right-handed ones are singlet under SU(2)L. This is why

left-handed fermions are written in vector form.

7



Symbol Particle

Quarks qiL

(
u

d

)
L

(
t

b

)
L

(
c

s

)
L

qiR uR tR cR

diR dR bR sR

Leptons liL

(
νe

e

)
L

(
νµ

µ

)
L

(
ντ

τ

)
L

eiR eR µR τR

Table 1.1: Table representing fermions in the SM

Gauge boson Symbol

Electromagnetic interactions photon γ

Weak interactions W boson Z boson W± Z

Strong interactions gluon g

Table 1.2: Table representing gauge bosons in the SM

Bosons Bosons are force-mediating particles, which mediate the interaction be-

tween fermions of the SM. These bosons are listed in Table. 1.2. Bosons include 8

gluons(Ga, a = 1−8), photon(γ), three weak gauge bosons (W±andZ bosons). Out

of these particles photons and gluons are massless and are resposible for the elec-

tromagnetic and the strong interactions respectively while the weak force is carried

by the weak gauge bosons (massive W±andZ bosons). The 8 gluons come from the

SU(3)C gauge symmetry, weak gauge bosons from SU(2)L and the hypercharge in-

teractions mediated by one gauge boson is the generator of U(1)Y symmetry group.

Higgs Boson The lattest particle of the SM which is discovered in 2012 is the

Higgs boson which is an SU(2) doublet. It is responsible to give masses to the

particles in the SM.
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1.3 The gauge group (SU(2)L ⊗ U(1)Y ) of elec-

troweak interactions

In this section, we study the gauge groups SU(2)L and U(1)Y in detail. Then we

will see the gauge group SU(2)L ⊗ U(1)Y . While studying these gauges, we will

study the local invariance of these groups and see how gauging the group SU(2)L ⊗
U(1)Y gives massless W and Z bosons and the photon Aµ.

1.3.1 Gauge group SU(2)L

The electron Dirac field operator can be split into ‘right-handed’ and ‘left-handed’

parts by setting,

e = eL + eR, (1.3.1)

where

eL =
1

2
(1− γ5)e, (1.3.2)

eR =
1

2
(1 + γ5)e,

where eL is left-handed while eR is right-handed chiral state.

The matrix γ5 is defined as γ5 = iγ0γ1γ2γ3 (see section 2.1 for details). In the chiral

basis γ5 is given as,

γ5 =

(
−I2 0

0 I2

)
.

Helicity and chirality The helicity of a particle is handedness of a particle.

Mathematically we can say that helicity is the projection of the spin vector onto the

momentum vector. Helicity is right-handed if the direction of its spin is the same as

the direction of its motion and is left-handed when the direction of spin and motion

are opposite.

Chirality is very closely related to helicity. Chirality is related to if the particle is

transformed in a right or left-handed representation of a group.

As the Dirac field representation is not an irreducible representation. It actually

splits into two irreducible representations. Their behaviour is similar under rotation

9



while behave differently under boost. We can split the representation into two

irreducible representations out of which one is called left-handed (eL) while the

other one is known as right-handed (eR).

The eL and eR are doublet and singlet respectively under SU(2)L.

The Dirac mass term for fermions is of the type −mf ψ̄ψ, but such terms are not

allowed in the Lagrangian as are not invariant under SU(2)L. To see it is covariant

we need to go to the eigenbasis,

−mf ψ̄ψ = −mf (ēL + ēR)(eL + eR),

= −mf (ēLeR + ēReL) . (since ēLeL = ēReR = 0) (1.3.3)

Since eL is left-handed doublet (vector) and eR right-handed singlet (scalar) so both

behave differently under transformation which results the mass term transformation

not to be a scalar. So this type of term is not invariant in the Lagrangian. So we

can not add this type of term in the Lagrangian by hand

We have so far seen the left-handed neurino in the experiments. The Lagrange

density for the three fields (νeL, eL) (left-handed electron neutrino) and eR is,

L0 = ¯̀
Liγ

µ∂µ`+ ēRiγ
µ∂µeR,

=
(
ν̄eL ēL

)
(iγµ∂µ)

(
νeL

eL

)
+ ēRiγ

µ∂µeR. (1.3.4)

The Lagrange density (1.3.4) is invariant under global SU(2) transformations but

is not invariant under local SU(2) transformations,(
νeL

eL

)
→ U(x)

(
νeL

eL

)
,

where U(x) ∈ SU(2). This Lagrangian can be made invariant by replacing ∂µ by the

covariant derivative Dµ. This introduces three vector fields, one for each generator

of SU(2). The covariant derivative for SU(2) is,

Dµ = ∂µ + ig
τaW µ

a

2
, (1.3.5)

where W µ
a (a = 1, 2, 3) are the three vector fields introduced for the sake of invariance

and τa are the Pauli spin matrices. g is the gauge coupling constant.

10



It is customary to define,

Wµ =
W a
µ τa

2
.

which is a 2× 2 hermitian matrix with zero trace.

We now form the field strength tensor,

Wµν = ∂µWν − ∂νWµ + ig[Wµ,Wν ],

=
W a
µντa

2
. (1.3.6)

Using [τa, τb] =
i

2
εabcτ

c, where εabc are the structure constants for SU(2), we get,

W a
µν = ∂µW

a
ν − ∂νW a

µ − gεabcW b
µW

c
ν .

We are now ready to write down the full Lagrangian. The Lagrangian density for

the neutrino, W-fields and the electron would be,

L =
1

2
Tr(Wµν)(W

µν)+
(
ν̄eL ēL

)
iγµ
(
∂µ + ig

τaW
a
µ

2

)(
νeL

eL

)
+ ēRiγ

µ∂µeR. (1.3.7)

The Lagrange density (1.3.7) is invariant under local SU(2) transformations,(
νeL

eL

)
→ U(x)

(
νeL

eL

)
,

eR → eR,

Wµ → U(x)WµU
†(x)− i

g
U(x)∂µU

†(x), (1.3.8)

where U(x) ∈ SU(2)L is a local gauge transformation. The gauge group Wµ (that

we have introduced) is the weak isospin group and the fields νeL and eL form a weak

doublet; whereas eR is singlet under SU(2)L.

The process to gauge the global SU(2)L symmetry introduces not only vector

fields, but also an interaction. The structure of the interaction can be read from Eq.
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(1.3.7) as,

LeνW = −g
(
ν̄eL ēL

)
γµ
W a
µ τa

2

(
νeL

eL

)
,

= −g
(
ν̄eL ēL

)
γµ

1

2

((
0 W 1

µ

W 1
µ 0

)
+

(
0 −iW 2

µ

iW 2
µ 0

)

+

(
W 3
µ 0

0 −W 3
µ

))(
νeL

eL

)
. (1.3.9)

We may define,

W±
µ =

1√
2

(
W 1
µ ∓ iW 2

µ

)
, (1.3.10)

W+
µ = (W−

µ )†,

withW± being creation/annihilation operators for the electrically chargedW bosons.

Which gives the result,

LeνW = −g
(
ν̄eL ēL

)
γµ

1

2

(
W 3
µ

√
2W+

µ√
2W−

µ −W 3
µ

)(
νeL

eL

)
,

= −g
2

(
W 3
µ(ν̄eLγ

µνeL − ēLγµeL)

+
√

2W+
µ ν̄eLγ

µeL +
√

2W−
µ ēLγ

µνeL

)
. (1.3.11)

The coupling (given in Eq.(1.3.11)) describes the neutrino transformation into an

electron with absorption of W− particle. It also decribes that W 3
µ -boson couples

with left-handed electron (eL) and to the left-handed neutrino (νeL), but not with

eR, showing that W 3
µ can not be identified as photon field. The photon couples to

the left and right-handed electron and not to the neutrino.

1.3.2 Gauge group U(1)Y

Now, let see the Lagrange density L0 (1.3.4) under U(1) transformations. Again, L0

is invariant under global U(1) transformation (where θ, θ′ are the constant phases

for right-handed and left-handed parts respectively),(
νeL

eL

)
→ eiθ

′

(
νeL

eL

)
,

12



Figure 1.3: Feynman diagram representing coupling between e−, νe and W boson

as given in Eq.(1.3.11)

eR → eiθeR. (1.3.12)

Gauging these two U(1) groups in analogy with Weyl approach in QED would yield

to massless gauge bosons. Which would lead to two photon like bosons in theory

(that is a contradiction to the experiment). Gauging special combination of the

U(1) transformations of the form,(
νeL

eL

)
→ eiYLχ

(
νeL

eL

)
,

eR → eiYRχeR. (1.3.13)

The operators generating the above mentioned group (yL and yR) would be reffered

to as weak hypercharge Y . Where hypercharge yL is given to the fields νeL and eL

while yR to eR, then the transformation of U(1) hypercharge group is,
νeL

eL

eR

→ eiχY


νeL

eL

eR

 , (1.3.14)

with

Y =


YL 0 0

0 YL 0

0 0 YR

 . (1.3.15)
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Again introducing the real vector field Bµ and gauge coupling constant g′ (for U(1)

gauge group), the field strength tensor is,

Bµν = ∂µBν − ∂νBµ.

1.3.3 Gauging SU(2)L ⊗ U(1)Y

The Lagrange density for SU(2)L ⊗ U(1)Y is given by,

L = −1

2
Tr(Wµν)(W

µν)− 1

4
BµνB

µν + ψ̄iγµDµψ, (1.3.16)

where covariant derivative for the gauge group SU(2)L ⊗ U(1)Y is,

Dµ = ∂µ + igW a
µTa +

i

2
g′BµY,

with

Ta =

(
1
2
τa 02×1

01×2 01×1

)
.

where the matrix for hypercharge Y is the same as it is given in Eq. (1.3.15).

The Lie algebra corresponding to SU(2)L ⊗ U(1)Y clearly is,

[Ta, Tb] = iεabcT
c,

[Ta, Y ] = 0.

It is instructive to look at the interaction term Lint, in Eq. (1.3.16).

Lint = −ψ̄γµ(gW a
µTa + g′BµY )ψ,

= − g√
2

(W+
µ ν̄eLγ

µeL +W−
µ ēLγ

µνeL)

−1

2

(
gW 3

µ + 2YLg
′Bµ

)
ν̄eLγ

µνeL

+
1

2

(
gW 3

µ − 2YLg
′Bµ

)
ēLγ

µeL − YRg′BµēRγ
µeR, (1.3.17)

where

ψ =


νeL

eL

eR


14



As YL and YR are constants, one of these constants can be chosen freely because

we already have another free parameter g′ ([34]). Let us conventionally choose

YL = −1

2
.

W 3
µ and Bµ both are electrically neutral and massless so far, which means both

are on an equal footing. Let’s choose these two linear combinations and see what

happens,

Zµ =
1√

g2 + g′2

(
gW 3

µ − g′Bµ

)
. (1.3.18)

The gauge field orthogonal to Zµ is,

Aµ =
1√

g2 + g′2

(
g′W 3

µ + gBµ

)
. (1.3.19)

Definig the weak mixing angle θw (Glashow 1961),

cos θw =
g′√

g2 + g′2
. (1.3.20)

and

sin θw =
g√

g2 + g′2
.

Eqs. (1.3.18) and (1.3.19) can be rewritten as,

Zµ = cos θwW
3
µ − sin θwBµ, (1.3.21)

Aµ = sin θwW
3
µ + cos θwBµ.

The interaction term in Eq.(1.3.17) becomes,

L′ = − g√
2

(
W+
µ ν̄eLγ

µeL +W−
µ ēLγ

µνeL
)

(1.3.22)

−
√
g2 + g′2Zµ

(
1

2
ν̄eLγ

µνeL −
1

2
ēLγ

µeL − sin2 θw (−ēLγµeL + yRēRγ
µeR)

)
− gg′√

g2 + g′2
Aµ (−ēLγµeL + yRēRγ

µeR) .

Now it has become obvious that one of the combination is coupling with the electrons

and not with the neutrinos so we can identify that as a photon (the last term in

above expression).
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It is clear from the above discussion that gauging the group SU(2)L ⊗ U(1)Y

gives massless W and Z bosons and the photon field Aµ. The linear combinations

of W 3
µ and Bµ give the neutral Z boson and the photon field Aµ. W 3

µ and Bµ

fields are the isospin partners of the charged W±
µ fields and the gauge field of the

hypercharge transformation [34]. The value of weak mixing angle θw (free perameter

in the theory) is determined from experiments.

To make the above theory realistic, we have to give masses to the bosons W± and

Z and to the electrons. A possible solution was presented by Weinberg (1967) and

Salam (1968) which is the Spontaneous symmetry breaking. The general process is

given in previous section.

Let us see the effect of spontaneous symmetry breaking in SU(2)L ⊗ U(1)Y .

1.4 Higgs field and spontaneous symmetry break-

ing

In order to get the similar type of Lagrangian (as in the previous section) in which

we already have an SU(2)L doublet. The simplest way is to add another doublet

(Higgs doublet φ) . So that doublet⊗ doublet gives us 3⊕ 1 theory. The introduced

complex scalar field φ such that φ1 and φ2 being the complex scalar parts is,

φ =

(
φ1

φ2

)
.

This introduced field is a Lorentz scalar SU(2)L doublet. Looking for a Lagrange

density Lφ that is invariant under local SU(2)L transformations.

We consider a scalar potential similar to Eq. (1.1.9) that is ameanable to spon-

taneous symmetry breaking. The Lagrange density would be of the form,

Lφ = (∂µφ
†)(∂µφ)− V (φ), V (φ) = κ(φ†φ) + λ(φ†φ)2. (1.4.1)

with the conditions,

κ = −µ2 < 0 , λ > 0.

16



The potential V (φ) is same as that of illustrated in Fig. (1.2),

V (φ) =
1

2
µ2ρ2 +

1

4
λρ4.

so ρ = φ0 =
√
−µ2
λ

corresponds to minimum of the potential. The field configuration

φ =

(
0,

1√
2
ρ0

)T
is not invariant under local SU(2)L transformation U(x) (with

U(x) ∈ SU(2)). The ground state of the gauge group SU(2)L has been broken

spontaneously. Choosing the Higgs field’s neutral part as nonvanishing vev,

〈0|φ(x)|0〉 = 〈φ(x)〉0 =

(
0

1√
2
ρ0

)
. (1.4.2)

As the symmetry of the system has been broken spontaneously, which means that

the field has also been shifted, let the new shifted field is φ′,

φ′(x) = φ(x)− 〈0|φ(x)|0〉. (1.4.3)

It is obvious that coupling should hold gauge invariance under SU(2)L ⊗ U(1)Y

group of the weak hypercharge and isospin. To do so, add isospin invariant cou-

pling between Higgs field (φ), right-handed singlet (eR) and the left-handed doublet

(νeL, eL)T .

Now let see the effect of Higgs field interaction with fermions and the gauge bosons.

Thus adding this term in the Lagrange density, the Yukawa interaction is given by,

Lyuk = −yēRφ†
(
νeL

eL

)
+ h.c, (1.4.4)

= y
(
φ†1ēRνeL + φ†2ēReL

)
+ h.c,

where y is the coupling constant. We assign a suitable hypercharge YH to the Higgs

field in order to fulfil the demand of coupling to be invariant under the hypercharge

transformation. For example,

eL → eR + φ2. (1.4.5)

is describing one of the interaction vertex of Eq.(1.4.4).

Eq.(1.4.5) should conserve the hypercharge as well (for that, as we’ve taken YL = −1
2
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and YR = −1 in previous section) so,

YH = YL − YR =
1

2
. (1.4.6)

Let us write the full SU(2)L⊗U(1) invariant Lagrangian. The Covariant derivative

for the Higgs field is,

∂µφ→ Dµφ = (∂µ + igW a
µ

τa
2

+ ig′BµYH)φ. (1.4.7)

The total Lagrange density is,

L = −1

2
Tr(Wµν)(W

µν)− 1

4
BµνB

µν +
(
ν̄eL ēL

)
(iγµDµ)

(
νeL

eL

)

+ēRiγ
µDµeR − yēRφ†

(
νeL

eL

)
− h.c+ (Dµφ)†(Dµφ)− V (φ). (1.4.8)

In above Lagrange density, 3rd and 4th terms are SU(2) doublet and U(1) singlet

respectively, while 5th and 6th terms are the yukawa terms (note that only yukawa

term contains coupled right-handed and left-handed fermi fields) and the last terms

are for the Higgs field (with φ as Higgs doublet).

The Lagrange density (1.4.8) is invariant under SU(2)L ⊗ U(1)Y group of gauge

transformations.

SU(2) gauge transformations are,

Wµ → U(x)WµU
†(x)− i

g
U(x)∂µU

†(x),

Bµ → Bµ,

eR → eR,(
νeL

eL

)
→ U(x)

(
νeL

eL

)
, (1.4.9)

(
φ1

φ2

)
→ U(x)

(
φ1

φ2

)
,

where U(x) ∈ SU(2)L, given by,

U(x) = ei(
τa
2
ϕa(x)), (1.4.10)
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where τa being 2× 2 pauli spin matricles with (a = 1, 2, 3) and ϕa(x) is an arbitrary

function of x.

U(1) gauge transformations are given as,

Wµ → Wµ,

Bµ → Bµ −
1

g′
∂µχ(x),(

νeL

eL

)
→ eiYLχ(x)

(
νeL

eL

)
, (1.4.11)

eR → eiYRχ(x)eR,

φ(x)→ eiYHχ(x)φ(x),

with χ(x) being an arbitrary real function of x for U(1) transformation group.

We can have rotation of the Higgs field (φ) in any direction in isospin space by

means of gauge transformation.

U(x)φ(x) =

(
0

1√
2
ρ(x)

)
, (1.4.12)

where ρ(x) = φ0 =
√
−µ2
λ

.

Now the vev (vacuum expectation value) of the Higgs field is given by minimizing

the potential, which is,

〈0|ρ(x)|0〉 = 〈ρ(x)〉0 = ρ0,

〈0|ρ(x)|0〉 =

(
0

1√
2
ρ0

)
. (1.4.13)

The problem with the above mentioned vev is that it is not invariant under full
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SU(2)L ⊗ U(1)Y group i.e,

SU(2)L : τ1ρ0 =

(
0 1

1 0

)
1√
2

(
0

ρ0

)
=

1√
2

(
ρ0

0

)
6= 0 broken,

τ2ρ0 =

(
0 −i
i 0

)
1√
2

(
0

ρ0

)
=
−i√

2

(
ρ0

0

)
6= 0 broken,

τ3ρ0 =

(
1 0

0 −1

)
1√
2

(
0

ρ0

)
=
−1√

2

(
ρ0

0

)
6= 0 broken,

U(1)Y : Y ρ0 = YH
1√
2

(
0

ρ0

)
6= 0 broken, (sinceYH = +1), (1.4.14)

This choice of vev breaks the SU(2)L ⊗ U(1)Y and leaves U(1)EM (generated by

T3 + YH) invariant. That is,

U(1)EM : Qρ0 = (
τ3

2
+ YH)ρ0 =

(
1 0

0 0

)
1√
2

(
0

ρ0

)
= 0, unbroken(1.4.15)

which means,

eiχ(x)(
τ3
2

+YH)

(
0

1√
2
ρ0

)
=

(
0

1√
2
ρ0

)
, (1.4.16)

this subgroup corresponds to the gauge group of electromegnatism.

1.4.1 Boson Masses

The next step of spontaneous symmetry breaking is to shift the field ρ(x) by vev.

Chosing the shifted field (ρ′(x)) as done in Eq.(1.1.5) , such that,

ρ′(x) = ρ(x)− ρ0(x). (1.4.17)

Before using this shifted field to get the Higgs mass from Eq. (1.4.8), let’s apply vev

to the term (Dµφ)†(Dµφ) (without considering ∂µ part of the covariant derivative)
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given in Eq. (1.4.8),

(Dµφ
†)(Dµφ) = 〈φ†〉0(−igW

µaτa
2
− ig′BµYH)(ig

W a
µ τa

2
+ ig′BµYH)〈φ〉0,

=

(
0

1√
2
ρ0

)
2gg′Aµ + (g2 − g′2)Zµ

2
√
g2 + g′2

g√
2
W+
µ

g√
2
W−
µ −

√
g2 + g′2

2
Zµ




2gg′Aµ + (g2 − g′2)Zµ

2
√
g2 + g′2

g√
2
W+µ

g√
2
W−µ −

√
g2 + g′2

2
Zµ


 0

1√
2
ρ0

 ,

=
g2ρ2

0

4
W−
µ W

µ+ +
(g2 + g′2)ρ2

0

8
ZµZ

µ. (1.4.18)

It is clear from the above expression that W± and Z boson have become massive,

while the Photon Aµ is massless. From Eq. (1.4.18) boson masses are,

mW =
1

2
gρ0, (1.4.19)

mZ =
1

2
ρ0

√
g2 + g′2,

which shows that vev of the Higgs field is directly propotional to the W and Z boson

masses.

1.4.2 Fermion masses

Let us see at the question of fermion masses. The Yukawa coupling in the Lagrange

density (1.4.8) is,

−ye

(
ēR〈φ†〉0

(
νeL

eL

)
+
(
ν̄eL ēL

)
〈φ〉0eR

)
= −ye

1√
2
ρ0 (ēReL + ēLeR) ,

= −ye
ρ0√

2
ēe. (1.4.20)

The fermion has acquired standard mass terms with,

me =
1√
2
yeρ0. (1.4.21)
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Now the Lagrange density in terms of new shifted field (1.4.3) is,

L = −1

2
Tr(Wµν)(W

µν)− 1

4
BµνB

µν + ν̄eLiγ
µ∂µνeL + ēiγµ∂µe

+m2
WW

−
µ W

µ+

(
1 +

ρ′

ρ0

)2

+
1

2
m2
ZZµZ

µ

(
1 +

ρ′

ρ0

)2

−meēe

(
1 +

ρ′

ρ0

)
+

1

2
∂µρ

′∂µρ′ − 1

2
m2
ρ′ρ
′2

(
1 +

ρ′

ρ0

+
1

4

(
ρ′

ρ0

)2
)

+ L′, (1.4.22)

where L′ represents the coupling between the vector bosons and the fermions. The

term mρ′ is,

mρ′ =
√

2λ〈φ〉0. (1.4.23)

According to Eq.(1.4.22), we can say that the Higgs mechanism has generated the

masses for all the fermions and weak bosons (W±, Z). The gauge symmetries

(SU(2)L ⊗ U(1)Y ) are broken spontaneously, while the electromegnatic symmetry

U(1)EM are unbroken. We can say that the symmetry group of the SM (SU(3)C ⊗
SU(2)L⊗U(1)Y ) has broken down to a lower symmetry group of SU(3)C⊗U(1)EM .

The theory has given us the masses of the particles in the SM which include three

massive vector bosons (W±, Z)), a massive fermion (electron) and a massive, spin

zero, neutral boson with mass mρ′ (the Higgs particle). While vector boson (photon

with field Aµ) remains massless. We have also got a left-handed fermion with zero

mass (neutrino).

This can be extended for other fermion families.

1.5 Thesis outline

In chapter 2, we discuss the main idea of how do we get the neutrino masses by

seesaw mechanisms. We discuss the neutrino mass problem. Then to solve that

problem, we discuss the seesaw mechanisms (including different types of seesaw

mechanisms) in detail. The seesaw mechanism gives the small masses to the neu-

trinos by introducing very heavy Majorana neutrino, typically of the order of some

higher energy scale (the scale of grand unification).

We also discuss the experimental evidence of the neutrino masses i.e neutrino oscil-

lations. We hav outlined the long base line experiments, mainly super-kamiokande
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(SK) neutrino detection experiment in order to understand the neutrino osillations.

We have given some experimental results of the SK neutrino detector.

Chapter 3 is dedicated to find the Higgs mass bounds using one of the seesaw

mechanisms (Type II seesaw). Considering the energy scale in the range of Z-

pole (MZ) and the Plank scale (Mpl) along with the known RGEs (Renormalization

Group Equations) for the gauge couplings, the Yukawa coupling and the quartic

coupling, we have found the vacuum stability as well as the perturbativity bound

of the Higgs mass. The seesaw scale for Type II is taken as 1012GeV (due to the

reason that in SM the quartic coupling goes negative at about this scale) and after

this seesaw scale, there are some changes in the RGEs, which also give some new

(non-SM) parameters.

We basically have analyzed the contribution of these non-SM parameters in de-

terminig the vacuum stability and the perturbativity bounds. We have observed

that these non-SM parameters play an important role in predicting the Higgs mass

bounds.

As the coupling parameters of a theory are not constants and depends on the en-

ergy scale. Their relation with the energy scale is therefore given by renormalizartion

group equations(RGEs) also known as beta functions. After the new seesaw physics,

RGEs are modified, which means we have got the correlations between neutrino mass

parameters and the Higgs parameters and by knowing one, we can say something

about the other. As we know the Higgs mass now so we should be able to limit the

bounds on the neutrino mass parametrs.

We conclude our discussion in chapter 4.
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Chapter 2

Neutrino Mass Generation

One of the fundamental particles which makes up the universe is the electrically

neutral neutrino with spin 1/2. It was postulated by Pauli in 1930 as an explanation

of conservation of angular momentum and energy in the radio-active beta decays.

Neutrinos come in three flavors called νe, νµ, ντ . Each flavor is related to a

charged particle(lepton) e−, µ−, τ−. Unlike the charged lepton, all the detected neu-

trinos are left-handed while all anti-neutrinos are right-handed [4]. These particles,

being electrically neutral, do not interact with the electromagnetic field but only

exhibit weak interactions.

Physicists thought neutrinos weighed nothing (for dacades) but in 1998 neutrino

oscillation experiments [16] showed that the neutrinos do have very small but non-

zero masses. It is not known yet if the anti-neutrino is identical to the neutrino, in

which case the neutrino would be described by a Majorana field as opposed to the

Dirac field of electrons, etc.

Since we have not seen the right-handed neutrino experimentally, the simplest

way of introducing mass is to posit that there is a right-handed neutrino. Then the

SU(2)L ⊗ U(1)Y gauge invariant Yukawa interaction term in the Lagrangian would

be,

Lnew = LSM − yD l̄Liσ2φνR + h.c, (2.0.1)

where the second term is representing interaction of right-handed neutrino with the

lepton and the Higgs doublet. νR is the right-handed singlet while lL and φ are the
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doublet under SU(2)L with,

lL =

(
νe

e

)
L

,

and φ is the same Higgs field as discussed in chapter 1, which after symetry breaking

gives us the mass term,

LDiracmass = −yD l̄Liσ2〈φ〉0νR + h.c, (2.0.2)

leading to the Dirac mass

mD(ν) = yD〈φ〉0, (2.0.3)

Looking at Eq. (2.0.3), mD(ν) represents the neutrino Dirac mass and we know

that it is of the order of eV and 〈φ〉0 = 246.2 GeV, which gives the Yukawa coupling

yD ≤ (10−13 − 10−12). That is unnaturally very small as compared to the other

charged fermions (e.g for the electron the coupling is of the order of 10−6).

The problem with above mentioned approach is that it gives us unnaturally small

coupling and does not explain the reason.

One of the most attractive ways of introducing neutrino masses is through the

so-called seesaw mechanism. It can give the small masses to the neutrinos by intro-

ducing very heavy Majorana neutrino, typically of the order of some higher energy

scale (the scale of grand unification ≈ 1014GeV ). If such heavy neutrinos exist and

are affected by the Higgs mechanism in a way as the other fermions do then this will

give masses to the neutrinos, which are suppressed by the ratio of the mass scale of

the very heavy Majorana neutrinos and of mass scale of other fermions. Thus, this

model would naturally describe the small neutrino masses that we observe in nature.

That is why we use seesaw mechanism to estimate the neutrino mass because it also

explains the smallnes of the neutrino masses.

In this chapter, we are going to explain the neutrino mass generation by using

seesaw physics. Then we will discuss the neutrino oscillation. We are also going

to highlight the experimental status of neutrino oscillation experiments. We will

basically discuss the long base line experiments. Out of which we will study the

experimental results of super-kamiokande neutrino detection experiment.
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2.1 Dirac and Majorana mass terms

Dirac field is not an irreducible representation. It contains two irreducible represen-

tations of the Lorentz group. These two irredicble parts can transform differently

under an internal symmetry. We have so far considered the Dirac field Lagrangian.

We can construct smaller representations out of the Dirac field which are simpler

and transform differently.

Considering the irreducible spin 1/2 representations of Lorentz group as two com-

ponents right and left-handed chiral fermions Weyl fields (uL, uR), which transform

as,

uL,R → ΛL,RuL,R, (2.1.1)

under Lorentz group, where the transformations are given as,

ΛL ≡ ei
~σ
2

(~θ+i~ω) , ΛR ≡ ei
~σ
2

(~θ−i~ω), (2.1.2)

with ~θ being the three Euler angles (rotations) and ~ω show the boosts.

Transformations given in Eq. (2.1.2) show that the left-handed spinor (ψL) and the

right-handed spinor (ψR) transform in same manner under rotations, while under

boosts these spinors transform in an opposite manner.

The following bilinear combinations are Lorentz invariant,

(M) uTLiσ2uL and uTRiσ2uR

(D) u†LuR and u†RuL (2.1.3)

In above bilinear combinations, former is in case of Majorana type, while the later

one is the Dirac type.

The Dirac algebra for four-compopnents fermions is given as under,

{γµ, γν} = 2ηµν , with ηµν = diag(+,−,−,−). (2.1.4)

The matrix γ5 is defined as,

γ5 = iγ0γ1γ2γ3.

Two useful representations of the γ matrices algebra are,

γ0 =

(
0 I2

I2 0

)
, γi =

(
0 σi

−σi 0

)
, γ5 =

(
−I2 0

0 I2

)
, (2.1.5)
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which is called the Weyl or Chiral representation,

and

γ0 =

(
I2 0

0 −I2

)
, γi =

(
0 σi

−σi 0

)
, γ5 =

(
0 I2

−I2 0

)
, (2.1.6)

is called the standard or ordinary representation with σi as the Pauli matrices.

We are going to use the chiral representation throughout our thesis.

We also define,

σµν =
i

2
[γµ, γν ], (2.1.7)

which generate Lorentz algebra with the properties of γ5 given as,

(γ5)† = γ5, (γ5)2 = I2 , [γ5, σµν ] = 0 , {γ5, γµ} = 0. (2.1.8)

Left and right projection operators are defined as,

PL,R ≡
1∓ γ5

2
. (2.1.9)

The four component spinor ψ transforms as ψ → Λψ under Lorentz transformations.

Where the transformation Λ is given as,

Λ ≡ eiσµνθ
µν

. (2.1.10)

ψ ≡ ψL + ψR,

where

ψL =
1− γ5

2
ψ , ψR =

1 + γ5

2
ψ. (2.1.11)

The charge conjugation for the Dirac field is defined as,

CTγµC = −γTµ , CT = −C, (2.1.12)

with

C = −iγ2γ0.

The Majorana mass term is written as,

mM(ψTLCψL + h.c), (2.1.13)
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and the Dirac mass term is,

mD(ψ̄LψR + ψ̄RψL) ≡ mDψ̄DψD , where ψD ≡ ψL + ψR. (2.1.14)

Writing the dirac spinor ψD as,

ψD =

(
uL

uR

)
with ψL =

(
uL

0

)
and ψR =

(
0

uR

)
. (2.1.15)

The left-handed antiparticle under charge conjugation behaves as,

(ψC)L ≡ Cψ̄RT . (2.1.16)

2.1.1 Majorana spinors

Majoran fermion is the one which is its own antiparticle(ψM = ψCM). This term

is used in opposite to the Dirac fermion which is not its own antiparticle. In a

Majorana spinor, ψL and ψR are dependent, i.e,

ψR = iσ2ψ
∗
L,

with σ2 given as,

σ2 =

(
0 −i
i 0

)
.

The Lagrangian for the two components spinor, with left-handed chirality is,

LM = iψ̄Lγ
µ∂µψL − (

mM

2
ψTLCψL + h.c). (2.1.17)

The subscript M is indicating the Majorana type of the mass term throughout the

dissertation.

Introducing the Majorana spinor ,

ψM ≡ ψL + Cψ̄TL or ψM =

(
uL

iσ2u
∗
L

)
. (2.1.18)

In original Majorana representation,

From

ψ̄Mγ
µ∂µψM = 2ψ̄Lγ

µ∂µψL, (2.1.19)
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and

ψ̄MψM = ψTLCψL + h.c, (2.1.20)

we can get the Majorana Lagranian as,

LM =
1

2
[iψ̄Mγ

µ∂µψM −mM ψ̄MψM ]. (2.1.21)

ψM is having the Majorana mass mM .

2.2 The seesaw mechanism

One of the simplest and attractive ways to introduce neutrino masses in the SM is

by the seesaw mechanism [31, 32, 35]. This mechanism makes the experimentally

seen left-handed neutrinos light compared with an associated heavy particle that is

irrelevent for low energy physics. Hence the name seesaw mechanism, one heavy

object lifts the lighter one to a smaller mass.

There are three types of seesaw mechanism.

2.2.1 Type I seesaw

The simplest way is by introducing a right-handed neutrino νR field per family of

fermions (which is an SU(2)L ⊗ U(1)Y gauge singlet). Then we can write the new

renormalizable Yukawa interaction as,

LY = −yD l̄Liσ2φνR −
MR

2
νTRCνR − h.c, (2.2.1)

where the second term is the Majorana mass term for the right-handed neutrino

(which is an SM singlet).

Introducing the Majorana spinors for the left and right-handed nutrinos (in order

to bridge the gap between Dirac and Majoran fields) respectively as,

νM ≡ νL + Cν̄TL , NM ≡ νR + Cν̄TR . (2.2.2)

Simplifying for Eq. (2.2.1) in terms of above mentioned spinors with σ2 given as,

σ2 =

(
0 −i
i 0

)
,
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using ν̄MNM ≡ N̄MνM , we get,

LY =
1

2
(iν̄Mγ

µ∂µνM+iN̄Mγ
µ∂µNM)+

1

2
mD(ν̄MNM+N̄MνM)+

MR

2
N̄MNM , (2.2.3)

with mD ≡ yDρ0 and ρ0 = 〈φ〉0 (which is the vev of the Higgs scalar field φ). The

first two terms in Eq. (2.2.3) are the Kinetic terms of the Lagrangian while the

second and third terms are the mass terms and can be represented in terms of mass

matrix as follow,

1

2

(
νM NM

)( 0 mD

mT
D MR

)(
ν̄M

N̄M

)
, (2.2.4)

with the condition MR ' mD, we would have a messy combination of Dirac and

Majorana neutrinos. In the limit MR � mD, neutrinos would primarily be the Dirac

particles. Whereas for the case of MR � mD (called seesaw limit), neutrinos are

principally be the Majorana particles.

In the seesaw limit MR � mD, the eigen values of the mass matrix come out to

be,

mν ' m1 ' −
m2
D

MR

or ' −mT
D

mD

MR

, (2.2.5)

mN ' m2 'MR,

with the correspnding eigenstates

(
NM

νM

)
as,

ν ≡ ν1 ' νM +
mD

MR

NM , (2.2.6)

N ≡ ν2 ' NM −
mD

MR

νM .

The above calculations show that the case MR � mD gives approximately N (right-

handed eigen states) with the mass mN ≡MR and ν with the tiny mass,

mν = −mT
D

1

MR

mD, (2.2.7)

which is the original seesaw formula [31, 33] (now a days known as Type I seesaw

mechanism). Here MR and mD are the right-handed and the Dirac neutrino masses
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respectively. It is assumed that the Dirac mass is much less than or of the order of

the electroweak scale [21].

If we look at the Eq. (2.2.7), it is clear that MR is of the GUT scale (i.e of the order

of 1014 Gev). This is the reason, why this mechanism is called seesaw as one of the

mass (MR) is much higher as compared to the other mass (mD).

Figure 2.1: Diagrammatic representation of Type I seesaw

The diagramatic representation of Type I seesaw [35] is represented in Fig. (2.1)

which is showing that the introduced right-handed neutrinos interact with the Higgs

field (as other fermions do in the SM) and gives masses to the neutrinos. Seesaw

results are obtained by heavy neutrino propagators.

2.2.2 Type II seesaw

Unlike Type I seesaw, we do not have to introduce any right-handed neutrinos in

the SM for the Type II seesaw.

Type II seesaw includes the extension of SM by a charged Higgs triplet ∆ with
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hypercharge Y = 2. Its matrix representation is,

∆ ≡ ~∆.~σ =
σi√

2
∆i,

∆ =

(
∆+
√

2
∆++

∆0 −∆+
√

2

)
. (2.2.8)

An SU(2)L⊗U(1)Y gauge invariant renormalizable Lagrangian in most general form

is given by,

L = LSM + L∆,

where,

L∆ = tr(Dµ∆†)(Dµ∆)− V (∆, φ)− yij∆`
T
i Cσ2∆`j + h.c. (2.2.9)

φ is the Higgs field.

The scalar potential involving both the SM Higgs doublet and the Higgs triplet is

[21]

V (∆, φ) =V (φ) +M2
∆Tr∆

†∆ +
λ1

2

(
Tr∆†∆

)2

+
λ2

2

[
(Tr∆†∆)2 − Tr

(
∆†∆∆†∆

)]
+ λ4φ

†φTr(∆†∆) + λ5φ
†[∆†,∆]φ

+
[
Λ6φ

Tσ2∆∗φ+ h.c
]
.

The new Yukawa interaction expression is,

∆L = yij∆`
T
i Cσ2∆`j + h.c. (2.2.10)

The Higgs triplet contains the Yukawa coupling with `i (lepton doublets with gen-

eration index i)[21, 35], the term yij∆ is denoting the elements of the Yukawa matrix

with i, j = 1....N , the generations counts. While C is the charge conjugate matrix.

With the triplet scalar’s vev 〈∆〉, the neutrinos get their masses,

mν = y∆〈∆〉. (2.2.11)

The renormalizable terms in the potential are [35]; The vev of the triplet scalar 〈∆〉
comes from the cubic scalar interaction,

V (∆, φ) = λ6φ
Tσ2∆∗φ+M2

∆Tr∆
†∆ + .... (2.2.12)

32



The above potential does not have the minima at ∆ = 0, but at real vev for ∆0 as,

〈∆〉 ' Λ6〈φ〉20
M2

∆

,

here Λ6 as the coupling constant with dimension one. In Type II seesaw, the scalar

triplet ∆ is introduced in a way that the neutrinos get Majorana masses via tha

vev of introduced scalar triplet. In other words, ∆0 couples with neutrino, when

it has non-zero vev. It leads to Majorana mass for the neutrinos. The vev of the

introduced triplet scalar is,

〈∆〉0 =

(
0 0

ν∆ 0

)
. (2.2.13)

The Higgs triplet effective potential becomes (after the electroweak symmetry break-

ing, by chosing ∆0 as non zero vev),

V (∆, φ) = M2
∆(|∆++|2 + |∆+|2 + |∆0|2)− Λ6〈φ〉20Re∆0, (2.2.14)

〈φ〉0 (given in chapter 1 in eq (1.4.2)) is the nonvanishing vev of the Higgs field

〈φ〉 = (0 ,
ρ0√

2
)T . By inserting this vev in Eq. (2.2.11), the neutrino mass comes

out to be,

mν = y∆
λ6〈φ〉20
M∆

, (2.2.15)

where we have defined a new dimensionless parameter λ6 =
Λ6

M∆

. We assume that Λ6

and M∆ are of the same order, then the type II seeasaw gives the neutrino massses

of the order of
〈φ〉20
M∆

. If 〈φ〉0 �M∆, the neutrinos are light naturally.

The diagrammatic representation is given in Fig. (2.2) for the neutrino mass gener-

ation by Type II seesaw [35]. The figure is representing that the introduced charged

triplet field interacts with the Higgs field φ and gives neutrinos the mass with the

mass matrix elements yij∆.

2.3 Neutrino oscillations

Neutrino oscillations refer to the phenomenon of the change in flavor of a neutrino as

it propagates. In other words, during its propagation from the point of production
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Figure 2.2: Diagrammatic representation of TypeII seesaw

to the point of detection, the generation of the neutrino may change.

Actually flavor eigen states of the neutrinos are different from their mass eigen states.

Particles are always detected as mass eigen states while are produced in flavor eigen

states. That is why oscillations happen. The probability of one generation oscillation

to another generation can be calculated and is dependent on the difference of the

squares of the neutrinos masses [4]. A direct implication of this is that the neutrinos

should be massive.

Different neutrino experiments using atmospheric, solar, reactor and accelerator

neutrinos have demonstrated that neutrinos change flavor as they travel from the

source to the detector. Neutrino oscillation is a natural consequence of the neutrinos

that have finite mass and flavor eigenstates that are superpositions of the mass

eigenstates. The phenomenon is referred to as oscillation because of the survival

probability of a given flavor. If neutrinos have a non-zero mass, then the probability

that a neutrino of energy Eν produced in a weak flavor eigenstate να will be observed
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in another eigenstate νβ after traveling a distance L through the vacuum is given

by [43],

P (να → νβ) = 1− sin2 2θ sin2

(
1.27∆m2(eV 2)L(km)

Eν(GeV )

)
, (2.3.1)

where ∆m2 is the difference of the squared mass eigenvalues, and θ is the mixing

angle between flavor and mass states. This equation is true in vacuum for all the

cases, is true in matter for νµ ←→ ντ [42]. Eq. (2.3.1) is also true in matter for

νµ ←→ ντ , but may be modified for oscillation involving νe which travel through

matter [43].

Neutrino oscillations have been in focus since the first experiments were observed

in 1998 the by Super-Kamiokande collaboration. In that observation atmospheric

neutrinos were produced as decay products in hadronic showers resulting from col-

lisions of cosmic rays with nuclei in the upper atmosphere. Production of electron

and muon neutrinos were dominated by the processes

π+ → µ+ + νµ,

followed by ,

µ+ → e+ + ν̄µ + νe,

(and their charge conjugates) giving an expected ratio (≡ νµ/νe) of the flux of νµ+ν̄µ

to the flux of νe + ν̄e of about 2. The νµ/νe ratio was calculated in detail with an

uncertainty of less than 5% over a broad range of energies from 0.1 to 10 GeV [38].

There has been a lot of evidence regarding neutrino oscillations coming from a

number of sources. Solar neutrino experiments have proved that the electrons com-

ing from Sun turns into other neutrino forms [40]. In addition to the solar neutrino

experiments, neutrino oscillations pattern has been observed for the neutrinos com-

ing from the nuclear process in reactor [44].

Atmospheric neutrinos are produced from the decays of particles resulting from in-

teractions of cosmic rays with Earths atmosphere. νµ ←→ ντ is considered to be

dominant in atmospheric neutrino oscillations [42].
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2.3.1 Neutrino oscillations in vacuum

Let the neutrino mass eigenstates be denoted as νi, (i = 1, 2, 3). These are distinct

from the neutrino flavor eigenstates νw(w = e, µ, τ). The two basis sets {|νi〉} and

{|νw〉} are connected via a unitary transformation,

|νw〉 =
∑
i

Uwi|νi〉, (2.3.2)

where U is the unitary mixing matrix with,∑
w

UiwU
∗
jw = δij, (2.3.3)

where δij is the Kronecker delta in three dimensions.

As the neutrino mass eigenstates |νi〉 have some definite mass mi and energy Ei, so

they evolve in time as plane waves so,

H(~p)|νi(t)〉 = Ei|νi(t)〉, (2.3.4)

where H is the Hamiltonian operator.

Since we have assumed that the all the mass eigenstates have the same momentum p.

The detectable neutrinos are ultrarelativistic 1. We have taken the ultra relativistic

limit (since p� mi). At time t, the state |νi(t)〉 satisfies the Schrödinger equation,

i
∂

∂t
|νi(t)〉 = H|νi(t)〉, (2.3.5)

where the ultra relativistic nature of neutrinos allow us to expand Ei as,

Ei =
(
p2 +m2

i

)1/2
,

≈ p+
m2
i

2p
+ p O

(
m4
i

p4

)
. (2.3.6)

Since the neutrino mass eigenstates are the states with definite energy E2 = p2 +m2
i ,

so their time evolution is given as,

|νi(t)〉 = e−iEit|νi(0)〉 = e−iEit|νi〉. (2.3.7)

1Neutrinos are detected at energies greater than 100KeV and as the neutrino mass is around

less than 1eV , so ultra relativistic approximations are applied.
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Equation (2.3.2) becomes,

|νw(t)〉 =
∑
i

Uwie
−iEit|νi〉. (2.3.8)

The probability amplitude of finding the neutrino of flavor |νw〉 in some other flavor

eigenstate |νw′〉 at time t is given by,

〈νw′|νw〉t =
∑
i

Uwie
−iEit〈νw′|νi〉 =

∑
i

UwiU
∗
w′ie

−iEit. (2.3.9)

Thus we can find the amplitude of νw → νw′ transitions at time t as,

Pνw→νw′ = |〈νw′|νw〉t|2,

=
∑
i,j

UwiU
∗
w′iUwjU

∗
w′je

−i(Ei−Ej)t.

Since we have assumed ultra relativistic limit neutrinos with energy given in Eq.

(2.3.6) so,

Ei =
√
~p2 +m2

i ' E +
m2
i

2E
,=⇒ Ei − Ej =

∆m2
ij

2E
, (2.3.10)

where E ≡ |~p| is neutrino energy in massless approximation, and ∆m2
ij ≡ m2

i −m2
j .

To measure the flavor transition probability , we need to convert the time t, which

is not measured in neutrino oscillation experiments, in the known source-detector

distance L [36] (using the relation L = ct). We get the standard formula for the

oscillation probability,

Pνw→νw′ (L) =
∑
i,j

UwiU
∗
w′iUwjU

∗
w′j exp(−i

∆m2
ijL

2E
), (2.3.11)

which is used in analyzing the experimental data on the nutrino oscillations in vac-

uum. The mixing matrix U with elements Uwi, normally called PMNS(Pontecorvo-

Maki-Nakagawa-Sakata) is [37],

U = U23U13U12,

=


1 0 0

0 c23 s23

0 −s23 c23




c13 0 s13e
−iδ

0 1 0

−s13e
−iδ 0 c13




c12 s12 0

−s12 c12 0

0 0 1

 . (2.3.12)
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δ is the CP violating Dirac phase. In case of Majorana neutrinos, the mixing matrix

is multiplied by Iφ, with Iφ = diag(1, eiφ1 , eiφ2) being diagonal matrix of Majorana

CP-violating phases [4].

The measurement of different mixing angles have been performed by different meth-

ods. One of the lattest result showed the new measurement of mixing angle θ13 via

neutron capture on hydrogen at Daya Bay which is sin2 2θ13 = 0.071± 0.011 in the

three-neutrino-oscillation framework [45].

2.3.2 Two flavor oscillation probability

Considering two flavor eigenstates (νe, νµ) with mass eigenstates ν1, ν2 with masses

m1 and m2 respectively. Considering both with the momentum p (as before). The

flavor states are related to the mass states by mixing matrix U as,(
νe

νµ

)
= U

(
ν1

ν2

)
, (2.3.13)

where U is given as,

U =

(
cos θ sin θ

− sin θ cos θ

)
, (2.3.14)

with θ being the mixing angle. Eq. (2.3.13) becomes,(
νe

νµ

)
=

(
cos θ sin θ

− sin θ cos θ

)(
ν1

ν2

)
. (2.3.15)

The two states |νe〉 and |νµ〉 at time t = 0 can be written as,

|νe〉 = cos θ|ν1〉+ sin θ|ν2〉

|νµ〉 = − sin θ|ν1〉+ cos θ|ν2〉 (2.3.16)

The weak eigen states are rotated by an angle θ with respect to the mass eigen

states (ν1, ν2) in order to alow oscillations between νe and νµ. After time t, the time

38



evolution of νµ state is given as,

|νµ(t)〉 = − sin θ|ν1〉 exp

(
−iE1t

h

)
+ cos θ|ν2〉 exp

(
−iE2t

h

)
,

= − sin θ|ν1〉 exp

−i
(
p+

m2
1

2p

)
t

h



+ cos θ|ν2〉 exp

−i
(
p+

m2
2

2p

)
t

h

 , (2.3.17)

where we have used the approximation of the neutrinos to be relativistic i.e,

E1 =
√
p2 +m2

1 and E2 =
√
p2 +m2

2, (2.3.18)

so

|νµ(t)〉 = e
−i

p+m2
1

2p

t
− sin θ|ν1〉+ cos θ|ν2〉e

+i

m2
1 −m2

2

2p

t
 . (2.3.19)

Now the probability for νe → νµ is given as,

Pνe→νµ = |〈νe|νµ〉(t)|2,

〈νe|νµ〉(t) = e−iz

− sin θ cos θ = sin θ cos θe

i∆m2

2p

L
 , (2.3.20)

where 〈νe| is given as (from Eq. (2.3.16)),

〈νe| = cos θ〈ν1|+ sin θ〈ν1|,

and we have used ∆m2 = m2
1−m2

2, L = ct and e−iz = e
−i

p+m2
1

2p
t


and 〈νi|νj〉 = δij.

So the probability becomes,

Pνe→νµ = e+ize−iz sin2 θ cos2 θ

−1 + e

i∆m2

2p

L

−1 + e

−i∆m2

2p

L
 .(2.3.21)
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As the neutrinos are relativistic, so we can say that: p = Eν . Using the trigonometric

relations,

cos θ =
1

2

(
e−iβ + e+iβ

)
,

sin 2β = 2 sin β cos β,

sin2 β =
(1− cos 2β)

2
,

we get,

Pνe→νµ = e+ize−iz sin2 θ cos2 θ

−1 + e

i∆m2

2Eν

L

−1 + e

−i∆m2

2Eν

L
 ,

= sin2 θ cos2 θ

(
2− 2 cos

∆m2L

2Eν

)
,

= 2 sin2 θ cos2 θ

(
1− cos

∆m2L

2Eν

)
,

=
1

2
sin2 2θ

(
1− cos

∆m2L

2Eν

)
,

= sin2 2θ sin2

(
∆m2L

4Eν

)
. (2.3.22)

By using suitable experimental numerical values we get the probability in more

perticular form,

Pνe→νµ = 1− sin2 2θ sin2

(
1.27∆m2 L

Eν

)
, (2.3.23)

where θ is the mixing angle representing the amount of mixing between two mass

eigen states, E is the energy of neutrino produced from the source, L is length of

source from the detector.

2.4 Long base line experiments (LBL)

Neutrino oscillation experiments are either short-baseline or long-baseline. Long-

baseline means
Eν
L
' ∆m2 ∼ 2.5× 10−3eV 2 [46] for the experiments include accel-

erator neutrinos as a source (with Eν as the neutrino energy while L being the flight
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distance).

Conventional method is used to produce neutrino beams for the LBL experiments

where a target is hit by a high energy proton beam resulting in pion production

which then decays during the flight to give muon neutrino(νµ). Typically, the en-

ergy of produced neutrino is 0.5 − 10 GeV which sets the required distance to a

neutrino detector to be of several hundreds of km which enables the investigation

of ∆m2 ∼ 2.5 × 10−3eV 2 neutrino oscillation. Different types of neutrino beams

and their associated experiments are included in LBL experiments, few of them are

KEK to Kamioka (K2K), Neutrinos at the Main Injector (NuMI), CERN to Gran

Sasso (CNGS), and J-PARC (Japan Proton Accelerator Research Complex).

First generation LBL experiments were performed to confirm muon to tau neu-

trino oscillation. Kamiokande observed a deficit of νµ coming through the Earth,

that could have been interpreted as muon to tau neutrino oscillation (νµ � ντ ) [38].

The goal of K2K experiment (used the beam with neutrino energy of few-GeV)

was to detect the muon neutrino disappearance (because the energy of neutrinos was

rarely high enough to make tau neutrino). On the other hand OPERA is optimized

for the detection of ντ appearance and CNGS experiments make use of high energy

neutrino beam (∼ 20 GeV).

2.5 Super-kamiokande: Super-Kamioka neutrino

detection experiment

Study of atmospheric neutrinos in 1998 provided the evidence of neutrino oscilla-

tions. To study this phenomena, an accelerator based experiment was sarted in 1999

(called the KEK to kamioka long baseline neutrino oscillations experiment (K2K)),

where using proton accelerator (at KEK) artificially generate the neutrinos and are

observed in Super-K detectror, located far away from KEK (e.g at about 250 km).

That experiment completed in 2004 which result 112 neutrinos events in Super-

Kamiokande. The expected number of events was 158 (without oscillations). This

deficit of observed neutrinos gave the confirmation to the prediction of neutrino oscil-

lations discovered by observation of atmospheric neutrinos. The Super-Kamiokande
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detector is a water Cherenkov detector (50ktons cylindrical) which is located at

Kamioka neurino Observatory (250 km from KEK).

2.5.1 Neutrino Beam

It is important to consider both the detector as well as the beam in understanding

the performance and design of the experiments (as the detector and beam both are

strongly coupled in an experiment).

Neutrino beams contain an interesting feature that without major effect on the

beam itself, multiple detectors can be introduced to the same individual beam.

This feature helps specially when there are multiple experiments running in the

same underground laboratory.

2.5.2 KEK Beam

First LBL experiment K2K in Japan was in operation from 1999 to 2004 [53]. The

proton beam was extracted in a single turn from the proton sychrotron (PS) with

a 2.2s cycle time. The produced spill was 1.1µs in length and consisted of nine

bunches. The beam intensity reached about 6× 1012 proton per pulse which corre-

sponds to 5 kW of beam power. The target was 66 cm long and 2 cm in diameter

Aluminum rod buth then (in November 1999) was replaced by 3 cm wider rod.

Two electromagnetic Horns focus the secondary positive pions.

Using the pion monitor, momenta and the angular distribution of secondary pion

N(pπ, θπ) were measured. The detector used was Ćerenkov gas detector normally

placed at the second horn (in the target section).

The expected neutrino spectra at SK are plotted in Fig. (2.3) (experimental results

taken from [47]). Fig. (2.3) is representing the energy spectra of each type of neu-

trino at SK estimated by the beam Monte Carlo simulation. About 97.3% (97.9%) of

neutrinos at SK are the muon neutrinos, which are decayed from positive pions, and

the beam is contaminated with a small fraction of neutrinos other than muon neu-

trinos; νe/ν ∼ 0.013(0.009), ν̄µ/νµ ∼ 0.015(0.012), and νe/νµ ∼ 1.8× 104(2.2× 104)

at SK .The neutrino energy was 1.3 GeV (average), the electron neutrino νe con-

tamination to be 1.3% and the purity of muon neutrino νµ in beam was estimated
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Figure 2.3: The expected neutrino flux of K2K beam[47]

to be 98.2%. The K2K experiment started taking date in June 1999 and finished in

November 2004. Total number of delivered protons on target(POT) was 1.049×1020,

out of which 0.922× 1020 POT were used in final physics analysis [46].

2.5.3 Neutrino detection

Neutrino detector is physics apparatus designed to study the neutrinos. As neutri-

nos only interact weakly with other particles of matter, so neutrino detector must

be very large in order to detect a significant numbers of neutrinos.

Neutrio detector is normally built underground to isolate from cosmic rays and othe

background radiations.

Presence of neutrino is detected if it interacts with other particles of matter. Neu-

trinos interact in two ways;
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Charged current interaction Where the neutrino converts into an equivalent

charged lepton (an electron, muon or tau, or their antiparticles, depending on the

type of neutrino). In this case the detector detects the charged lepton. Although

the neutrino is electrically neutral but the lepton it converts into is not.

Neutral current interaction Neutrino remains neutrino in this case but trans-

fers its energy and momentum to whatever it reacts with. In this case the detector

detects the energy transfer, either becaause the target recoils or becuase it breaks

up into other particle.

Different detection methods are used according to different experiments. For ex-

ample, SK detector is a large volume of ultra pure water surrounded by photo-tubes

that watch the cherenkov radiations emitted when an incoming neutrino creates an

electron or muon in water. Cherenkov radiations are the electromagnetic radiations

emitted when charged particle pass through a dielectric medium at a very high speed

through that medium.
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Chapter 3

Higgs boson mass bounds using

Type II seesaw model

After the discovery of the Higgs [9, 10] the mass of the discovered particle was the

question to be answered. Which was answered in 2012 (mH = 125.2 ± 0.3 GeV)

[11, 12].

Before the discovery of exact mass of the Higgs, there were different predictions

about it. In this chapter we are going to discuss the Higgs mass bounds (vacuum

stability and the perturbativity bound) by using Type II seesaw model with energy

scale (µ) between Z-pole and the Plank scale (i.e MZ ≤ µ ≤ Mpl), where MZ is

taken to be equal to 91.1876 GeV and the Plank scale to be 1.2× 1019GeV [21].

3.1 Type II SeeSaw

In Type II SeeSaw, the SM is extended with SU(2)L triplet scalar field ∆ carrying

hypercharge Y = 2 (for detail see section 2.2.2) which is,

∆ =
σi√

2
∆i,

∆ =

(
∆+
√

2
∆++

∆0 −∆+
√

2

)
. (3.1.1)
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The scalar potential for the above given triplet scalar would include both the SM

Higgs doublet as well as the Higgs triplet (defined above). The full potential is given

as [21],

V (∆, φ) = −m2
φ(φ†φ) +

λ

2
(φ†φ)2 +M2

∆tr(∆
†∆) +

λ1

2
(tr∆†∆)2

+
λ2

2

(
(tr∆†∆)2 − tr

(
∆†∆∆†∆

))
+ λ4φ

†φtr(∆†∆)

+λ5φ
†[∆†,∆]φ+ [

Λ6√
2
φT iσ2∆†φ+ h.c], (3.1.2)

where λi are taken to be real. A dimensionless parameter λ6 ≡
Λ6

M∆

is defined here.

3.2 Triplet scalar and the Higgs boson mass

Assuming that MZ �M∆ and integrating the heavy higgs triplet, low energy effec-

tive potential for the SM doublet is,

V (φ)eff = −m2
φ

(
φ†φ
)

+
1

2

(
λ− λ2

6)(φ†φ
)2
. (3.2.1)

At low energy scale (MZ �M∆), the Higgs quartic coupling is [23],

λSM = λ− λ2
6. (3.2.2)

MZ is the Z-pole and M∆ is the seesaw scale (M∆ is chosen to be 1012 GeV for our

analysis). For the energy scale µ > M∆, the Higgs triplet contributes to one-loop

RGEs (that means type II seesaw is applied at this energy scale).

For a suitable value of the given λ6 (which is a dimesionless parameter defined in

the potential λ6 ≡
Λ6

M∆

). Higgs quartic coupling at matching condition µ = M∆

is lowered by λ2
6, resulting in the Higgs boson mass being lowered (we are going to

show this in this chapter).

We have considered the known RGEs (renormalization group equations).

For the SM gauge coupling RGEs are given as [29],

dgi
d lnµ

=
bi

16π2
g3
i +

g3
i

(16π2)
2

3∑
j=1

bijg
2
j , (3.2.3)
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where gi are the gauge couplings with (i = 1, 2, 3),

gi =
√

4παi

and αi are given as (α1, α2, α3)=(0.01681, 0.03354, 0.1176) [21] and,

bi =
(

41
10
−19

6
−7
)
, bij =


199
50

27
10

44
5

9
10

35
6

12
11
10

9
2
−26

 . (3.2.4)

To solve Eq. (3.2.3), the top quark pole mass is taken at the central value i.e

Mt = 170.9 GeV (we have used the value given in [21]) at Z-pole, which is MZ =

91.1876 GeV .

For the Top quark Yukawa coupling yt, the RGE is given as [24],

dyt
dlnµ

= yt

(
1

16π2
β

(1)
t +

1

(16π2)2β
(2)
t

)
, (3.2.5)

where the one and two-loop beta functions are,

β
(1)
t =

9

2
y2
t −

(
17

20
g2

1 +
9

4
g2

2 + 8g2
3

)
, (3.2.6)

and

β
(2)
t = −12y4

t +

(
393

80
g2

1 +
252

16
g2

2 + 36g2
3

)
y2
t

+
1187

600
g4

1 −
9

20
g2

1g
2
2 +

19

15
g2

1g
2
3 −

23

4
g4

2 + 9g2
2g

2
3

−108g4
3 +

3

2
λ2 − 6λy2

t . (3.2.7)

Initial top Yukawa coupling at top quark pole mass (µ = Mt) is determined by using

the relation between Pole mass and running Yukawa coupling [25, 26, 27] given as,

yt (Mt) =

√
2mt (Mt)

ν
,

with

Mt ' mt (Mt)

(
1 +

4

3

α3 (Mt)

π
+ 11

(
α3 (Mt)

π

)2

−
(
mt(Mt)

2πυ

)2
)
, (3.2.8)
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where ρ0 = 246.2 GeV is vev(i.e. vacuum expectation value). In Eq. (3.2.8), the

second and third terms are corresponding to one-loop and two-loop QCD corrections

respectively and fourth term is electroweak correction at one-loop. The numerical

values coming from second and third terms are approximately equal, with opposite

signs. The two-loop electroweak correction and three-loop QCD corrections are

ignored(as are of comparable and sufficiently small magnitude). In solving Eq.

(3.2.8), the value of Top quark pole mass is taken as Mt = 170.9 GeV , which

gives the value of mt, eventually giving the initial condition to solve RGE of gauge

coupling (given in Eq.(3.2.5)).

RGE for the Higgs quartic coupling is given as [24],

dλ

d lnµ
=

1

16π2
β

(1)
λ +

1

(16π2)2β
(2)
λ , (3.2.9)

with one and two-loop beta functions,

β
(1)
λ = 12λ2 −

(
9

5
g2

1 + 9g2
2

)
λ+

9

4

(
3

25
g4

1 +
2

5
g2

1g
2
2 + g4

2

)
+ 12y2

t λ− 12y2
t , (3.2.10)

and

β
(2)
λ = −78λ3 + 18

(
3

5
g2

1 + 3g2
2

)
λ2 −

(
73

8
g4

2 −
117

20
g2

1g
2
2 +

2661

100
g4

1

)
λ

−3λy4
t +

305

8
g6

1 −
289

40
g2

1g
2
2 −

1677

200
g4

1g
2
2 −

3411

1000
g6

1 − 64g2
3y

4
t

−16

5
g2

1y
4
t −

9

2
g4

2y
2
t + 10λ

(
17

20
g2

1 +
9

4
g2

2 + g2
3

)
y2
t

−3

5
g2

1

(
57

10
g2

1 − 21g2
2

)
y2
t − 72λ2y2

t + 60y6
t . (3.2.11)

The initial condition for the running Higgs quartic coupling can be evaluated by us-

ing the relation between running Higgs quartic coupling through one-loop matching

condition [28],

λ(MH) υ2 = M2
H (1 + ∆h(MH)) , (3.2.12)

with the matching correction ∆h(MH) given by,

∆h(MH) =
GF√

2

M2
Z

16π2

(
M2

H

M2
Z

f1

(
M2

H

M2
Z

)
+ f0

(
M2

H

M2
Z

)
+
M2

Z

M2
H

f−1

(
M2

H

M2
Z

))
, (3.2.13)
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where each of the functions fi (i = 1, 0,−1) is defined as ( with ξ ≡ M2
H

M2
Z

) ,

f1(ξ) =
3

2
ln ξ − 1

2
Z

(
1

ξ

)
− 1

2
Z

(
1

ξ

)
− Z

(
c2
w

ξ

)
− ln c2

w +
9

2

(
25

9
− π√

3

)
,

f0(ξ) = −6 ln
M2

H

M2
Z

(
1 + 2c2

w − 2
M2

t

M2
Z

)
+

3c2
wξ

ξ − c2
w

ln
ξ

c2
w

+ 2Z

(
1

ξ

)
+ 4c2

wZ

(
c2
w

ξ

)
+

(
3c2
w

s2
w

+ 12c2
w

)
− 15

2

(
1 + 2c2

w

)
− 3

M2
t

M2
Z

(
2Z

M2
t

M2
Zξ

+ 4 ln
M2

t

M2
Z

− 5

)
,

f−1(ξ) = 6 ln
M2

H

M2
Z

(
1 + 2c4

w − 4
M4

t

Z4

)
− 6

1

ξ
− 12c4

wZ

(
c2
w

ξ

)
− 12c4

w ln c2
w

+8
(
1 + 2c4

w

)
+ 24

M2
t

M4
Z

(
ln
M2

t

M2
Z

− 2 + Z

(
M2

t

M2
Zξ

))
. (3.2.14)

The parameters used in functions fi are, s2
w = sin2 θW , c2

w = cos2 θW , where θW is

the weak mixing angle (s2
w = 0.23126) [22] and Z(z) is given as,

Z(z) =


2A arctan

(
1

A

) (
z <

1

4

)
A ln

(1 + A)

(1− A)

(
z >

1

4

)
,

(3.2.15)

where A =
√
|1− 4z|.

For energy Scale µ ≥ M∆, the triplet Higgs contributes to one-loop RGEs (so

we have used one-loop RGE beyond cut-off/seesaw scale M∆). As the Higgs triplet

contributes for the scale µ ≥M∆, the parameters bi used in Eq. (3.2.3) are replaced

by,

bi =

(
47

10
−5

2
−7

)
. (3.2.16)

The RGE for the top yukawa coupling does not change. There are some new pa-

rameters procured by RGE of Higgs quartic coupling in Eq. (3.2.10),

β
(1)
λ → β

(1)
λ + 6λ2

4 + 4λ2
5. (3.2.17)

The positive contribution of λ4 and λ5 in Eq. (3.2.17) is dicisive in lowering both

vacuum stability and the perturbativiy bound of Higgs mass in type II seesaw.

RGEs of these non-SM parameters λi (i=1,2,4,5) are given as, (only one-loop RGEs

are given, as for energy Scale µ ≥ M∆, the triplet Higgs contributes to one-loop
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RGEs ),

16π2 dλ1

d lnµ
= −

(
36

5
g2

1 + 24g2
2

)
λ1 +

108

25
g4

1 + 18g4
2 +

72

5
g2

1g
2
2 + 14λ2

1

+4λ1λ2 + 2λ2
2 + 4λ2

4 + 4λ2
5 + 4tr (S∆)λ1 − 8tr

(
S2

∆

)
, (3.2.18)

16π2 dλ2

d lnµ
= −

(
36

5
g2

1 + 24g2
2

)
λ2 + 12g4

2 −
144

5
g2

1g
2
2 + 3λ2

2 + 12λ1λ2

−2λ2
5 + 4tr (S∆)λ2 + 8tr

(
S2

∆

)
, (3.2.19)

16π2 dλ4

d lnµ
= −

(
9

2
g2

1 +
33

2
g2

2

)
λ4 +

27

25
g4

1 + 6g4
2 + 8λ2

5 − 4tr
(
S2

∆

)
+
(
8λ1 + 2λ2 + 6λ+ 4λ4 + 6y2

t + 2tr
(
S2

∆

))
λ4, (3.2.20)

16π2 dλ5

d lnµ
= −9

2
g2

1λ5 −
33

2
g2

2λ5 −
18

5
g2

1g
2
2 + 4tr

(
S2

∆

)
+
(
2λ1 − 2λ2 + 2λ+ 8λ4 + 6y2

t + 2tr
(
S2

∆

))
λ5, (3.2.21)

where Y∆ is the yukawa matrix, S∆ = Y †∆Y∆ and the corresponding RGE is given

by,

16π2 dS∆

d lnµ
= 6S2

∆ − 3(
3

5
g2

1 + 3g2
1)S∆ + 2tr[S∆]S∆. (3.2.22)

3.3 Constraints on Higgs boson mass

The mass of the Higgs is a known parameter in SM [12]. However, there are few

constraints on the Higgs mass bounds. We are mentionaning the constraints relevent

to our research.

3.3.1 Vacuum stability bound

As seen in section of Higgs mechanism, if the value of quartic coupling λ in effective

Higgs potential is negative, the vacuum is not stable from below (since it has no

minima). To keep the potential bounded from below, the value of quartic coupling

should remain positive upto the cut-off scale (Mpl), that gives a lower bound on
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Higgs mass. We have chosen Plank scale (Λ = 1.2 × 1019 GeV) as cut-off energy

scale which gives us vacuum stability bound on Higgs mass of about 126.3 GeV

(which is not exactly equal to world average but quite close to that). This is called

vacuum stability bound.

Figure 3.1: The running quartic coupling

In the above figure, we have ploted quartic coupling vs the energy upto the Plank

sclae. Which shows a upper and lower bound on the value of quartic coupling in

order to keep the vacuum stable as well as the theory perturbative.

3.3.2 Perturbativity bound

In order to keep the theory perturbative, there should be a limit on the quartic

couling at cut-off (λ(Λ)) as well. The perturbative bound on Higgs Boson mass

can be calculated by using the condition on running Higgs quartic coupling, which

satisfies the condition λ(Λ) ≤
√

4π ([21]). This is called perturbativity bound. By

choosing Plank scale as cut-off, we have found the perturbativity bound on Higgs

mass of about 169.4 GeV .
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3.4 Contribution of non-SM parameters in our

analysis

We next analyze the two loop RGEs numerically and show vacuum stability and

perturbativity bound on Higgs mass can be predicted.

As we are taking one loop RGEs for λi, (i = 1, 2, 4, 5) and at one loop level, λ6 is

decoupled with other RGEs, so we are not considering the contribution of λ6 in our

analysis though, like other couplings, it remains in perturbative region throughout

our analysis (upto Plank scale Mpl). λ6 plays an important role in anlyzing the

matching condition between high and low energy scale at µ = M∆. The effective

Higgs quartic coupling at low energy has already been defined in Eq. (3.2.2). For

a suitable value of λ6, the Higgs quatric coupling is shifted down to SM quartic

coupling by λ2
6 through matching condition at µ = M∆, resulting in lowering of the

Higgs boson mass.

In addition, since the contribution of λ4,5 are positive to one loop beta function (as

clear from Eq. 3.2.17). This works, so as to reduce the Higgs quartic coupling at

low energies. Subsequently, we can expect the resultant Higgs boson mass to be

reduced due to contribution of non-SM parameters λ6 and λ4,5 in type II SeeSaw.

Although λ1,2 and Y∆ are not directly contributing to the Higgs quartic coupling

RGE they still effect through RGEs of λ4,5 (as the RGEs of non-SM parameters are

all coupled).

3.5 Analysis

3.5.1 Vacuum stability and perturbativity bound on Higgs

mass

Let us anlyze the RGEs and analyze how the vacuum stability and the perturbativity

bounds on higgs mass can be altered using the neutrino mass parameters of Type

II seeasw.

By chosing cutoff to be the Plank scale (Mpl = 1.2×1019 GeV ), we define vacuum
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stability bound to be the lowest Higgs boson mass obtained by the running Higgs

quartic coupling with the condition λ(µ) ≥ 0 for any scale between MH ≤ µ ≤Mpl.

On the other hand, perturbativity bound is defined as the highest Higgs boson mass

obtained by the running Higgs quartic coupling with the the condition λ(µ) ≤
√

4π

for any scale between MH ≤ µ ≤Mpl.

3.5.2 Higgs boson mass bounds for varying λ6

Let us first investigate the Higgs boson mass bound by varying the value of λ6,

keeping the other non-SM parameters fixed.

In Fig. (3.2), we show evolution of running Higgs boson mass, defined as

mH(µ) =
√
λ(µ)〈φ〉0 for vacuum stability bound for a fixed seesaw scale M∆ =

1012 GeV , for various values of λ6. The other non-SM inputs at Mpl are taken as

λ1 =
√

4π, λ2 = −1,λ4 = λ5 = 0 and Y∆ = 0[21]. We have observed that the allowed

values λ6 for vacuum stability bound on running Higgs mass does not exceed than

0.118 (in our calculations, this maximum value of λ6 is 0.1182) for M∆ = 1012 GeV.

This shows that only specific values of λ6 are allowed for a fixed seesaw scale for

vacuum stability bound on Higgs mass.

In paper[21] (that we’ve reviewed), they have used λ6 = 0, 0.07, 0.1 and 0.118

that gives the higgs mass vacuum stability bound as 127 GeV. In our analysis, We

have used λ6 = 0, 0.07, 0.1 and 0.1182 which gives vacuum stability bound on Higgs

mass as 126.368 GeV (that is much closer to the recent value of Higgs mass of

125.3± 0.3 GeV [12]).

In Fig. (3.3), we show evolution of running Higgs boson mass, defined as

mH(µ) =
√
λ(µ)〈φ〉0 for perturbativity bound for a fixed aeesaw scale M∆ =

1012GeV , for various values of λ6. The other non-SM parameters at Mpl are same

as for Fig (3.2).

In Fig (3.3) we have used the same values of λ6 (as given in paper [21], except

for the maximum value of λ6 that we have taken as λ6 = 0.8549. We have observed

that for larger values of λ6, vacuum stability and the perturbativity bounds on higgs

mass become almost equal (e.g in Fig(3.2), we have found that for λ6 = 0.1182

vacuum stability bound on Higgs mass comes as mH(µ) = 126.368 GeV and in
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Figure 3.2: Running Higgs Boson mass (mH(µ) =
√
λ(µ)〈φ〉0) corresponding to

vacuum stability bound for allowed values of λ6 for M∆ = 1012 GeV . Each plot

corresponds to λ6 = 0, 0.07, 0.1, and 0.1182 (from top to bottom).

Fig. (3.3), forλ6 = 0.8549, perturbativity bound is 126.38 GeV ). Which shows

that vacuum stability and perturbativity bounds merge by increasing the value of

λ6. Consequently the Higgs mass coincides with the vacuum stability bound for SM

Higgs mass obtained with a cutoff scale of Λ = M∆.

In other words, by increasing the value of λ6 for a sufficiently large value, the

Higgs mass bound can be more accurately predicted (as the vacuum stability and

perturbativity bounds are close for higher value of λ6).

In Fig. (3.4) we are showing that for higher values of λ6, the vacuum stability and

the perturbativity bounds coincide, resulting in Higgs boson mass between vacuum

stability and perturbativity bound becoming narrow.

Fig. (3.4) is showing vacuum stability (dotted line) and the perturbativity

bounds (solid line) on Higgs pole mass MH versus λ6 for different seesaw scales (M∆).

Each dashed and solid line is corresponding to M∆ = 1014, 1012, 109, 1.14× 107 and
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Figure 3.3: Running Higgs Boson mass (mH(µ) =
√
λ(µ)〈φ〉0) corresponding to

perturbativity bound for allowed values of λ6 for M∆ = 1012 GeV . Each plot

corresponds to λ6 = 0, 0.6, 0.8, and 0.8549 (from top to bottom). The horizontal

line is representing MH = (4π)
1
4 〈φ〉0 = 464 GeV .

103GeV . For appropriate values of λ6 and M∆, values for MH close to LEP2 bounds

are realized (i.e 114.4GeV ). Also for M∆ of the order of TeV, the lower bound is

close to 120 GeV (our lower bound for M∆ = 103 GeV is coming as 122.6 GeV),

that is quite below than standard value of 127 GeV in absence of type II sessaw (as

the higgs is discovered now i.e 125.2± 0.3 GeV[12], the observed result is still below

that the lattest value).

3.5.3 Higgs boson mass bounds for varying λ5

In Fig. (3.5), evolution of running Higgs boson mass, defined asmH(µ) =
√
λ(µ)〈φ〉0

for vacuum stability bound for a fixed seesaw scale M∆ = 1012 GeV , for various

values of λ5 are shown. The other non-SM inputs at Mpl are taken as λ1 =
√

4π,

λ2 = −1,λ4 = λ6 = 0 and Y∆ = 0. By using the above mentioned conditions on
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Figure 3.4: The vacuum stability (dotted line) and the perturbativity (solid line)

bounds on Higgs boson pole mass MH vs λ6. Each line correspond to differnt

values of M∆ = 1014, 1012, 109, 1.14 × 107 and 103 GeV, from top to bottom. For

M∆ = 1TeV are given for λ6 ≤ 0.1. The horizontal line is representing LEP2 bound

(i.e MH = 114.4GeV )

non-SM parameters and by varying λ5, vacuum stability bound on Higgs mass comes

as 126.3 GeV (in our analysis)

Fig. (3.6) shows the evolution of running Higgs boson mass defined as mH(µ) =√
λ(µ)〈φ〉0 (for perturbativity bound) for a fixed SeeSaw scale M∆ = 1012GeV for

various values of λ5. The other non-SM inputs at Mpl are taken same as for Fig.

(3.5).

We have found that vacuum stability and perturbativity bounds merge for higher

values of λ5 and the corresponding Higgs mass coincides with vacuum stability bound

with cutoff scale M∆.(i.e we have found that for λ5 = 0.3, vacuum stability bound

is mH = 126.348 GeV (3.5) and for λ5 = 0.1351, perturbativity bound is 126.339
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Figure 3.5: Running Higgs Boson mass (mH(µ) =
√
λ(µ)〈φ〉0) corresponding to vac-

uum stability bound for various values of λ5 with sesaw scale ofM∆ = 1012 GeV .Each

plot corresponds to λ5 = 0.3, 0.22, 0.2, 0.15 and 0 at Plank scale (from top to bot-

tom).

GeV. Both the vacuum stability and the perturbativity bound on Higgs mass are

close for the larger values of λ5, as for the case of λ6). Eventually, for a sufficiently

large value of λ5,Higgs boson mass between vacuum and perturbativity bound is

close and become more easier to be calculated. Which shows that λ5 also plays an

important role in finding the Higgs mass bounds. We have also observed that for

λ5 close to 0.1 and M∆ = 1TeV , the vacuum stability bound for MH coincides with

LEP2 bound (i.e 114.4 GeV).

57



Figure 3.6: Running Higgs Boson mass (mH(µ) =
√
λ(µ)〈φ〉0) corresponding to

perturbativity bound for various values of λ5 with seesaw scale of M∆ = 1012 GeV .

Each plot is corresponding to λ5 = 0, 1.0, 1.25 and 1.35 (from top to bottom). The

horizontal black line is representing MH = (4π)
1
4 〈φ〉0 = 464GeV

3.6 Comment

We have used a set of input parameters (as given in paper [21]) to keep our analysis

in perturbative region for the energy scale of M∆ ≤ µ ≤ Mpl. We have basically

considered the potential impact of Type II seesaw on vacuum stability and pertur-

bativity bounds on Higgs boson mass in the SM.

We have considered two main effects (as given in paper [21]). One is the tree-level

matching condition given in Eq.(3.2.12) for the SM higgs quartic coupling, which is

induced by λ6 at seesaw scale (triplet mass). The SM Higgs mass is then studied by

using known RGEs.

In second set of examples we have considered the other coupling( λ5) which plays

an important role in predicting the Higgs boson mass bounds. In both cases, we have

identified the regions in parameter space for which the Higgs boson mass bounds
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Figure 3.7: The vacuum stability (dotted line) and the perturbativity (solid line)

bounds on Higgs boson pole mass MH vs λ5. Each line corresponds to differnt values

of M∆ (i.e. M∆ = 1014, 1012, 109, 1.14×107 and 103 GeV ), from top to bottom. The

horizontal line is representing LEP2 bound (i.e MH = 114.4GeV )

lie quite below than 127 GeV (the value obtained in absence of type II seesaw).

Perhaps quite an interesting result from our set of parameter space is that Higgs

boson mass can be as low as LEP 2 bound of 114.4 GeV, with the type II seesaw.
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Chapter 4

Concluding Remarks

In this dissertattion, we have demonstrated how the Higgs mass bounds (both vac-

uum stability as well as perturbativity bounds) get affected by neutrino mass pa-

rameters. We have analyzed the effect of Type II seesaw on the Higgs mass bounds

in detail.

We have started our thesis with the Higgs mechanism which is basically based on

spontaneous symmetry breaking. We have taken a toy model to represent the basic

idea of spontaneous symmetry breaking. Then we took gauge theory SU(2)L⊗U(1)Y

to compile the Higgs mechanism. We have added the Higgs field and studied the

spontaneous symmetry breaking of the introduced Higgs field which gave masses to

the particles in the SM, including the expected Higgs mass in the theory.

In second chapter, we have discussed the neutrino mass generation problem in

detail. We have seen that the Higgs mechanism does not give neutrino mass as the

neutrinos were considered massles before the neutrino oscillation experiments. We

have discussed an easy and the most suitable way to introduce the neutrino masses

by extending the SM with different gauge groups. The possible extensions of the

SM called seesaw mechanisms including Type I and II are discussed in detail .

We have also discussed the neutrino oscillations in our presented dissertation as

it is the main experimental evidence that the neutrinos are massive.

In third chapter, we have presented the Higgs mass bounds by using Type II

seesaw. By taking the Plank scale to be our upper energy bound, keeping our theory

in the perturbative region for the energy scale of MZ ≤ µ ≤Mpl and considering the
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known RGEs for gauge couplings and the quartic coupling, we have solved all of the

possible known RGEs to measure the vacuum stability bound on Higgs mass, which

came out to be 126.348 GeV according to our analysis and we have also found the

perturbative bound on the Higgs mass which is about 169.4 GeV (according to our

analysis).
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