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Abstract

We have used the traditional SU(3) group theoretical approach to study the
quantum interferometry by using the bi-photon pulses. For this purpose, we have
reviewed research articles focusing on the quantum interferometry of three photon
by injecting single-photon in each of the input port of the six channel passive
quantum optical interferometer (three input and three output channels) using
SU(3) group theoretical approach. The investigation of the symmetries in the
different coincidence landscapes by using the SU(3) plus the permutation group
theory and the study of the relation between the immanants, Wigner D functions
and distinguishability. Where these Wigner d functions also shows some properties
like permutational symmetry partially. The observation of the permutational
symmetries in the different kind of the output coincidence with multi-photon
quantum interferometry (with the injection of combinations of bi-photon and
single photon input pulses). These of all techniques are extensions of the general
Hong-Ou-Mandel dip analysis of the two photon quantum interferometry to the
multi-photon quantum interferometry.

We have used the same traditional SU(3) group theoretical approach to study
the quantum interferometry by the injecting bi-photon input pulses at input ports
of the 6-channel passive quantum optical interferometer. We have also calculated
the coincidence probabilities for all possible output coincidence patterns and then
plotted these coincidence probabilities against the time-delay τ introduced between
the arrivals of these photons at input ports to study different properties of the
SU(3) transission matrix and the scattering matrix. We have developed special
condition to maximize the probability of getting desired output coincidence pattern
to study different properties of the SU(3) transition matrix and the scattering
matrix. We have also observed the peaks and the dips for different coincidences
with different occurrences of the photons at output ports.
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1

Introduction

Theory that laid the foundation of the quantum theory, was not the part of the
main aspects or theories of the atomic physics. When any matter is being heated,
it changes its color, first it turns red at comparatively low temperature and then
turns white at comparatively high temperature. Material’s surface was not really
thing on which this change of the color depends and especially for the black bodies,
the main reason behind is temperature. So the absorption and emission of the
radiations at comparatively high temperature from black body became the hot
topic for the researchers of that time. It should had been easy for the researcher
to give an suitable explanation on the basis of the known laws of physics related
to the heat and radiation. An attempt was made at the end of 19th century by
Jeans and Rayleigh but they failed. They faced some serious difficulties. Those
difficulties are not really relevant, so we move towards the actual explanation. It
should be enough to say that the explanation in terms of the known laws of the
physics, did not provide us with the required results.

In 1895, Plank was also researching in this field of the heat and radiation, so he
tried to explain this phenomenon by shifting the focus from radiation prospective
towards the radiating atom prospective. But this shift served him as he expected
and failed to explain. He could not remove the difficulties present in previous
explanation, but one thing productive happened was the simplification of the
interpretation of the observed facts about the black body radiation. At the same
time in beginning of the 19th century a very impressive work was done by Rubens
and Curlbaum. They gave us almost perfect spectrum of the heat radiation. Plank
started the development of the mathematical relation for this astonishing spectrum
of the heat radiations as soon as he came to know about those spectrum. His result
was quite similar with the results he got while developing his theory on the relation
between radiations and heat. This relation afterward became the mild-stone of
Plank’s radiation law discovery.

Plank’s suggested results for the spectrum was in complete agreement with
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10 1. INTRODUCTION

result that Rubens found recently, which they discussed with each over a tea
at Plank’s house. This was the meeting that laid the foundation of the Plank’s
discovery of the radiation law. After the development of the Plank’s formula, some
very astonishing facts were come out. these results were going to astonish and
stumble the world of known physics. It was very easy for the Plank to give his
formula a suitable state-mental form on the basis of the theory he developed earlier.
As he elaborated his formula for a radiating atom (Later known as the oscillator).
He found something so unbelievable and astonishing that an oscillator (radiating
atom) can only have discrete values of the energy (known as quanta). This was the
fact that can not be comprehended by the known classical physics at that time. For
a while Plank himself could not accept these results and refused to believe them to
be true. It was the time when development in this field was happening intensively.
In summer of same year 1900, he thought that there is no way of running away
from these results and conclusions.

Plank thought that he had made the life-time discovery of so importance that
his theory is somewhat of the same rank of the discoveries of the Newton. During
a talk Plank’s son reveled this and told that during a walk his father shared his
new ideas about his discovery on the road of Grunewald. Grunewald is a German
famous forest which is on the western-side of the Berlin. This shows that Plank was
well aware of the consequences that his theory is going to touch the foundational
description of the nature. And he also believed that due to his discovery the
foundational description is going to discover new horizons of the knowledge that
are unknown to human race. He made his publication in last month of the same
year 1900 on his discovery, even though he was conservative in his nature and was
well aware of the aftereffects of his discovery. When he received the criticism and
contradiction, he ignored these things by saying that his interpretation is some
thing that is mush ahead of his time.

Planks interpretation of energy quantization, the emission and absorption of
the energy from a material can only happen in discrete values of energy. This new
theory can not be comprehended by all known laws physics at that time. When
Plank himself tried to interpret his results in terms of the classical theory, he failed
dramatically because he was missing all necessary points. It took almost five years
to make any progress in this new direction. Plank’s assumption influenced many
new researchers to think out of the box. One of them was young dynamic genius
Albert Einstein. He was the kind of researcher who was not afraid of rejecting
old ways and accepting new ideas. When he read about Plank’s interpretation, he
had two problems in his mind in which he could use that. One problem he had in
his mind was the emission of electrons from surface of metal when suitable light
is thrown on it. It was the famous photoelectric effect. It had already be shown
that this emission of electrons is independent of intensity of light and depends on
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frequency of light by Lenard in experiments. It was almost impossible to explain
this effect by using classical theory of radiations but can be explained by Plank’s
energy quantization theory. So this is what Einstein did, he said that light is a
form of energy so light is also quantized and light is made-up small energy packets
known as photons. And this photon can only have value given by the product of
wavelength of the light and Plank’s constant. The second thing Einstein had in his
mind was the specific heat energy of solids, which is suitable to discuss here [1, 2].

Now we move forward towards interaction between this quantized light and
matter which is known as quantum optics.

Along with development of the photon statistics theory, the researchers started
their search for the coherence in the interaction between the light and the matter
particles(Atoms and molecules)[3]. In the period of the Ramsey, Rabi and the other
well known scientists were very active in this newly developed field of quantum
optics, with there study spectroscopy (Radio-frequency) with atomic beam has
already been begun. Brossel, series, Koestler, Dodd and well known scientists in
the era of 1950s and 1960s developed the interaction of the light and atoms using
the sensitive optical pumping probes [3].
Now we should move towards the main problem of this thesis, which is one of most
important application of the quantum optics is quantum interferometry.

1.1 Quantum Interferometry

Passive optical interferometer is a device, which is comprised of elements like beam-
splitter, phase-shifter and mirrors and is used for the scattering of light coherently.
It works quantum mechanically and shows the quantum mechanical effects when
we inject non-classical light at its input ports and observe the coincidence or count
the number of photons on each of its output ports. From those outputs we can
predict the results or do the post-selection for the rest of the output states. This
post-selection of the output states is very important for the function of the quantum
commutations and quantum-gates [4–6].

One of the most important application of the quantum passive optical interfer-
ometer is the Hong-Ou-Mandel-dip. The Hong-Ou-Mandel-dip is a phenomenon in
which we shine two identical-photons at the two input ports of a 4-port (2-Inputs
and 2-Output ports) passive quantum optical interferometer with adjustable time-
delays between the arrival of the both of these photons. These two photons have
two ways to leave the output ports either they can leave from the same output
port or they can leave from the separate output ports. These two possibilities
can be distinguished by the coincidence-dip measurement of these two photons.
We can calculate the coincidence measurement by just taking the product of the
number of the clicks, we are having on each the output-port. Such that if both
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these photons leave the same output-port it yields the coincidence zero(0) because
both photons are leaving from one output-port and nothing from the other output
port so, according to defined rule for the coincidence measurement ”2 ∗ 0 = 0”. On
the other hand, if both these photons leave from the different output-ports yield
the coincidence one(1) according to the same rule ”1 ∗ 1 = 1”. Measurement of
the coincidence of the two photon leaving the output-ports of a passive quantum
optical interferometer covers most of the field of quantum interferometry. The
word passive refers to that there are no active components like parametric or linear
amplifiers involved in the operation of the quantum interferometry [4, 7, 8].

The Hong-Ou-Mandel dip actually deals with the decrease in the rate of the
coincidence of the two photons at nearly zero time-delay between the arrival of
the two identical single-photons at the ports of a 50/50 beam-splitter. The Hong-
Ou-Mandel coincidence dip can be extended and generalized for the coincidence
at more than two number of channels and we can extend it to the case where we
inject single-photons and the vacuum states in different ports of the interferometer
instead of entering the single-photons on each port of the passive quantum optical
interferometer. One can also observe the Hong-Ou-Mandel coincidence dip for more
than two number of photons at more than two number of the input ports. Suppose
we have the 8-port quantum interferometer with 4-input ports and 4-output ports,
with ’a’, ’b’, ’c’ and ’d’ be the 4-output ports and we shine 4 single-identical-photons
on input ports and the detectors attached to each of the output ports click. Four
photons Ba, Bb, Bc and Bd are detected at each of the output port for this the
coincidence is defined as: ∏

i∈(a,b,c,d)

Bi

We can have the coincidence
∏

i∈(a,b,c,d)Bi, this shows that we shall get 1 only for
the case where all the detectors click once and 0 for all rest of the cases, where
more than one photon can be detected at any of the output ports and nothing
on the other. Which means, we can only have the non-zero coincidence for the
case where we get the click on each of the output detector. The total number
of the photons detected at output detectors are

∑
i∈(a,b,c,d)Bi ≤ 4, one can easily

understand why this inequality sign is placed in the expression. In the process of
the interferometry any of the photons can be lost in the system. Similarly, we can
generalized the Hong-Ou-Mandel coincidence dip for the higher order cases, where
multiple photons can be placed on multiple input ports [4].

The recent problem of boson-sampling (Boson-sampling is a simplified model
for quantum computing that may hold the key to implementing the first ever post-
classical quantum computer) is one of the inportant application of the quantum
interferometry and Hong-Ou-Mandel effect. Boson-sampling is a non-universal
quantum computer that is significantly more straightforward to build than any
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universal quantum computer proposed so far [9]. The Hong-Ou-Mandel dip was the
top priority of the researchers. This problem of the boson-sampling requires the case
where we inject vacuum-states and single photon states at the different input-ports
of the quantum interferometer. The computation of the such coincidence dip is very
difficult to do classically but with the help of the optical quantum interferometer
this can be done conveniently (with the some assumptions about the scalability
and conjectures) [10]. The Boson-sampling problem made the theoretical and
experimental verification of the Hong-Ou-Mandel dip, on the basis of which many
successful experiment have been done [11–18].

In general the Hong-Ou-Mandel dip deals with the arrival of the single identical
photons at the input ports simultaneously. When the arbitrary time-delays are
introduced between the arrival of the single identical photons, the Hilbert-space
become very large. Due to the introduction of the time delays between the arrival
of the photons, the Hilbert-space deals with single-mode of each photon which
gives us the continuum of infinite-many temporal-states for every input photon.
In Hong-Ou-Mandel dip (generalized), there is another complication that is the
number of the output ports (m) become much larger than the total number of
the photons(n) arriving [4]. For this generalized case the dimension of the Hilbert-
space can be written as dimH =mn. When there are no time-delays between the
arrival of the photons, there is no need to treat each of the photons separately
every photon now can be treated in Hilbert-space within a single-mode framework
and under any exchange, the collection of all photons remains symmetric. This
forms a subspace within the complete Hilbert-space whose support (i.e. the largest
subspace which gives non-zero value when the single photon subspace overlaps
with the multi-photon subspace) is not zero. This is the only subspace within the
Hilbert-space that remains completely symmetric when frequencies of the photons
being permuted. This is also the largest subspace which gives non-zero value
when the single photon subspace overlaps with the multi-photon subspace. Such
Hilbert-space also has the much smaller dimensions,[

m+ n− 1
n

]
.

From this one can observe that how different these types of the Hong-Ou-Mandel
dips are, one with the adjustable delays between the arrival of the single identical
photons and the other with the simultaneous arrival of the photons at the input
ports. The adjustable time-delays(τ) between the arrival of the photons at the
input-ports is very important for the verification of the dip that it is giving us
the expected results and also for the calibration of the coincidence dips with the
coincidence rates [4]. Recently this dip is also been observed for the bi-photons
arrival at the input-ports of the beam-splitters. It has also been shown that at the
input states the complete permutation symmetric can broken with non-simultaneity.
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Figure 1.1:

It has also been observed that at output state the coincidence-rate depends on
the immanants of the transition matrix, when there is no permutation symmetry
present. We shall discuss that what these immanants are in this coming sections.

1.1.0.1 Beam Splitter

In this section, I shall discus the quantum mechanical properties of the beam-splitter.
If we use the classical approach of the beam-splitter for the level, where we are
dealing with the single photon or a very few number of photons it will mislead us to
the false results [3]. First of all, we shall try to explain how the classical approach
mislead us to the false result. Consider a very simple example where a classical
light is injected into the loss-less beam-splitter as showm in Fig.1.1(a) and the
beam-splitter splits the beam into reflected beam and transmitted beam. Let’s say
E1, E2 and E3 be the complex amplitudes of the incident, reflected and transmitted
beams respectively. The complex amplitudes of the reflected and transmitted
beams can be written in terms of the complex amplitude of the incident beam as

E2 = rE1 and E3 = tE1. (1.1)

where r and t be the coefficients of reflection and transmission respectively and
for the balanced beam-splitter have the values |r| = |t| = 1/

√
2. The sum of

the intensities of the reflected and the transmitted beams should be equal to the
intensity of the incident beam, because we are using the lossless beam-splitter

|E1|2 = |E2|2 + |E3|2, (1.2)

which can eventually be written as

1 = |r|2 + |t|2. (1.3)
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When we treat the beam quantum mechanically, the complex amplitudes should
be replaced with the annihilation operators as shown in Fig.1.1(b). Let â1 be
the annihilation operator of the incident beam, so â2 and â3, are the annihilation
operators for the reflected and the transmitted beam can be written as

â2 = râ1 and â3 = tâ1. (1.4)

These operators should satisfy the commutation relations

[âm, â
†
n] = δmn,

[âm, ân] = 0 = [â†m, â
†
n], (1.5)

such that, (m,n = 1, 2, 3) The annihilation operators defined above do not satisfy
the commutation relations:

[â2, â
†
2] = |r|2[â1, â†1] = |r|2, [â3, â

†
3] = |t|2[â1, â†1] = |t|2, and [â2, â

†
3] = rt∗ 6= 0.

(1.6)

So from this, one can easily see that the classical approach cannot give us the
results for the quantum mechanical effects of the beam-splitter [3].
When we deal classically with beam-splitter and incident a photons state at one
ports of the beam-splitter(say beam-splitter have two input ports) and nothing on
the other port, then classically there will be no effect of the empty port on the
output. But quantum mechanically this empty port is also containing a vacuum
state. As we know the vacuum fluctuation gives birth to many quantum mechanical
phenomena. The vacuum state effects are no exception for the beam-splitters. Now
we inject another photon state at the empty port of the beam-splitter having, the
annihilation operator â0 as shown in Fig.1.1(c). The transformation equations for
the case can be written as

â2 = t′â0 + râ1 and â2 = r′â0 + tâ1 (1.7)

and in matrix form can be written as(
â2
â3

)
=

(
t′ r
r′ t

)(
â0
â1

)
. (1.8)

From this one can easily see under mentioned conditions these operators satisfy
the commutation relations

|r| = |r′|, |t′| = |t|, |t|2 + |r|2 = 1, t′r∗ + t∗r′ = 0, and t′∗r′ + tr∗ = 0.
(1.9)
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These conditions are also known as the reciprocity relations [3].
We have used the passive quantum optical interferometer with 6-ports (3-input

ports and 3-output ports) and injected two bi-photon input pulses on any of the
two input ports. To distinguish the photons from each other, a frequency profile is
given to them and introduced the time-delays between the arrivals of the photons.
I shall discuss this how we achieved this purpose in the later sections. I have
calculated the coincidence probabilities for different possible output for the given
inputs and then plotted these coincidence probabilities against the time-delays
introduced between the arrivals of the photons.

1.2 Hong-Ou-Mandel Effect

Hong -Ou-Mandel dip is a phenomenon, when two distinguishable photons enter
the input ports of a four port 50 : 50 beam splitter (two input ports and two output
ports), one photon in each input port. The photons can be detected at output
ports in four ways such as shown in Fig.(1.2),

Figure 1.2: This diagram shows that if two distinguishable photons enter the input
ports of a beam splitter, they can exit the output ports or detected at output ports
in four different ways. (a) they can be detected on the same side as they entered,
(b) they can be detected on the opposite sides as they entered, (c) both of them
can be detected on one output port or (d) both of them can be detected on other
output port.

This case represents the situation where photons are distinguishable as shown
Fig.(1.2). So the final output will be superposition of the four types of the output
patterns as mentioned above. As we know the photons are indistinguishable
generally. Then for the case where the photons are indistinguishable, the first two
output states will collapse and cancel each other because they have negative sign
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between them as we can see in Fig.(1.2). So, we will be left with the patterns where
both of the photons are detected at either of the output port Fig.(1.3).

Figure 1.3: The diagram represents the situation where the photons are indistin-
guishable at output ports. As we can see in this diagram that first two patterns
are the same under this situation. They will collapse and cancel each other out
because they have a negative sign between them and we will be left with the last
two patterns.

So when each photon leaves at different output ports, the states interfere
destructively, that means each of the photon must be detected either on the one
output port or the other. This effect is known as the Hong-Ou-Mandel effect. So
when plot the coincidence probability of such case we get a dip for indistinguishable
photons as shown in Fig.(2.2) [7].

We can analyze photon interferometry by using group theoretical approach. In
the next section, I shall introduce this group theoretical approach.
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Figure 1.4: Coincidence probability plot against the time delay τ introduced
introduced between the arrival of the photons at input ports of the case where
we have injected a single photon at each input port of the four passive quantum
optical interferometer with two input ports and two output ports. Observed the
coincidence probability of having single photon click at each of the output ports
with time delay τ introduced between the arrival of these photons at input ports.

1.3 Group Theory

Here, I discuss the essentials of the group theory. Consider a group A, a set of the
operations, ai,

A = (a1, a2, a3, ......, an).

Such that i varies from 1 to n. There are two type of groups, finite ones and infinite
ones. For the finite groups, order of the group is the number of the elements n in
the group. For better understanding, let us consider S3 permutation group of three
objects. Let these three objects be X, Y and Z. We can arrange these three objects
in six ways. We can define different operations as the elements of the group by
shuffling the arrangements of these three objects. Let us now write the elements
of the S3 permutation group A in the form of the operators from which one can
easily understand how they will permute these three objects.

a1 = I = [123], a2 = [231], a3 = [312],

a4 = [132], a5 = [213] and a6 = [321]. (1.10)

Now, we will explain how these elements(i.e. operations) will act on the arrange-
ments of these three objects X, Y and Z.

a1(XY Z) = [123](XY Z) = (XY Z), a2(XY Z) = [231](XY Z) = (Y ZX),
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a3(XY Z) = [312](XY Z) = (ZXY ), a4(XY Z) = [132](XY Z) = (XZY ),

a5(XY Z) = [213](XY Z) = (Y XZ) and a6(XY Z) = [321](XY Z) = ZY X,
(1.11)

which shows, as a1 is an identity element when there in no permutation of the
objects, in a2 operation second object changes its place with first object, third
object with the second object and first with the third object, in a3 operation
third object changes its place with first object, first with second object and second
with third object, in a4 operation first remains at its place and other two objects
interchange their places, in a5 operation third object remains at its place and other
two objects interchange their places and in a6 operation second object remains
at its position and other two objects interchange their places. This is how, there
elements(operations) of the S3 permutation group operate as defined in Eq.(1.11).
Just the set of these operations does not constitute a group, but a group must
satisfy a certain definition of the product, that is when more then one operation is
applied on arrangements of the objects simultaneously. The resultant arrangement
must be within the arrangements defined by any other element of this group A. Let
us check this property of the group A by applying two operation simultaneously on
the arrangement of the objects X, Y and Z i.e.

a2(a3(XY Z)) = [231]([312](XY Z)) = [231](ZXY )

= (XY Z) = I(XY Z) = [123](XY Z)

= a1(XY Z). (1.12)

From this one can conclude that when we apply more than one operation
simultaneously on an arrangement, we get an arrangement which is already defined
by another operation within this group. So, one can write the product of the
operations from the above Eq.(1.12) as,

a2o(a3(XY Z)) = a2oa3(XY Z) = a1(XY Z), (1.13)

a2oa3 = a1, (1.14)

[231]o[312] = [123]. (1.15)

We have used a symbol ’o’ between the two elements in above Eq.(1.14) for the
product, which just means that the product of the group elements must be defined
in such a way that result of the such product must be a element of the group. In
Table1.1, we have defined all possible product of the group elements and this table
is known as the multiplication table of the group A.
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Table 1.1: Multiplication table of S3 permutation group

o [123] [231] [312] [132] [213] [321]
[123] [123] [231] [312] [132] [213] [321]
[231] [231] [312] [123] [321] [132] [213]
[312] [312] [123] [231] [213] [321] [132]
[132] [132] [213] [321] [123] [231] [312]
[213] [213] [321] [132] [312] [123] [231]
[321] [321] [132] [213] [231] [312] [123]

A group under the defined product for its elements must satisfy the properties
mentioned below:

1. Must satisfy the associative property under the defined product.

(aioaj)oak = aio(ajoak) (1.16)

2. It must contain the identity element(operation) under the defined product.

a1 = I = [123] i.e. a1(XY Z) = [123](XY Z) = (XY Z) (1.17)

3. There must exist the inverse elements for each of element of the group.

aoa−1 = a−1oa = I, (1.18)

such that I = I−1,

a2oa3 = a3oa2 = I = [231][312] = [312][231] = [123]. (1.19)

4. Cleasure property, that is if ai and aj are the elements of the set A, then
aioaj must be the element of the set A.

One can find the inverse element for each element of the group A in the multiplication
table(1.1). There are some elements present which are their own inverses and the
commutation property do not hold for every group. Such group for whom the
commutation property exists are known as the Abelian groups.

1.3.1 Special Unitary SU(2) Group

Let us consider, we have two vectors x and y in 2-dimensional vector space which
is defined over the complex numbers field [19]. When we apply the rotational
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transformation on these vectors x and y their linear transformation equations can
be written as

x′ = ax+ by, v′ = cx+ dy;

or

[x′, y′] = [x, y]

(
a c
b d

)
, (1.20)

where a, b, c, d are the transformation coefficients(complex numbers) and hence
there are 8-parameters involved in the transformation matrix. For the case, where
we only consider such rotations which leaves xx∗ + yy∗ = |x|2 + |y|2invariant, we
can see that the above matrix defined in Eq.(1.20) is a unitary matrix. Specifically,
if we want that |x′|2 + |y′|2 = |x|2 + |y|2, we can get the conditions from Eq.(1.20)

a∗a+ c∗c = 1, b∗b+ d∗d = 1, b∗a+ d∗c = 0. (1.21)

As these scalars are complex and Eq.(1.21) is the sum of the two conditions. The
condition defined in Eq.(1.21) reduces the 8 parameters defined in Eq.(1.20) to
four parameters. Now by using these all conditions defined in Eq.(1.21) we can
defined a unitary matrix(most general) containing these real four parameters of
order-2 and such matrix can written as(

cos(θ)eiα sin(θ)eiγ

− sin(θ)ei(β−γ) cos(θ)ei(β−α)

)
, (1.22)

with eiβ the determinant of this matrix. Here α, β, γ and θ be the 4-real parameters.
All those conditions or transformation equation defined in Eq.(1.21) are from a

U(2) group which is similar to the group which is made up of all second order unitary
matrices. Precisely saying, this group is a compact, four-parameter, continuous,
Lie group.

U(2) group has a subgroup which contains all second order matrices with
determinant 1, is the group in which physics and specifically our work is interested.
A general element for this group is written in form given below:(

s −t∗
t s∗

)
with ss∗ + tt∗ = 1. (1.23)

This group which contains only the second order matrices is known as the unitary
uni-modular group or known as special unitary group and is symbolized by SU(2).
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1.3.2 Generator of U(n) and SU(n)

A group which contains all unitary matrices of order-n is known as the unitary group
and is denoted by U(n). On the other hand, such group which contains all unitary
matrices with determinant 1 is known as the special unitary group and is denoted by
SU(n). One can clearly see that SU(n) is a subgroup of U(n) group. As there are n2

elements in a unitary matrix of order n, so it is a n2 parameters, connected, compact,
continuous, Lie group. There is one additional property to satisfy for the special
unitary group(SU(n)), that is it has the unitary matrices whose determinants are
1, so special unitary group is a (n2− 1) parameter, continuous, compact, connected,
Lie group. The generators of the U(n) are comparatively easy to obtain. The term
eiH represent a unitary matrix, when H is a hermitian matrix. We can also see
this in another way, if U is a unitary matrix we can represent this in the form

U = eiH , (1.24)

where H is a hermitian matrix. Linear combination of any number of hermitian
matrices which contain the real coefficients is also a hermitian matrix. The number
of the hermitian matrices(independent) of order n can never exceed the number n2.
Let us say we have H1, H2, ......, HN hermitian matrices of order n, where we are
assuming N ≡ n2 for our convenience. Let us say, we have n2 aj(1 ≤ j ≤ N) real
independent parameters. Now any unitary matrix of order n can be written as

U = ei
∑N
j=1 ajHj , (1.25)

or we can say now any element of the unitary group can be written by using the
expression given in Eq.(1.25), just by putting the suitable values of the n real
independent parameter aj. So, we can say these n hermitian matrices are the
generators of the U(n) unitary group and obviously they are not unique because
for any n, the generator of U(n) unitary group can be the linear combination of
these hermitian matrices.

Consider a square matrix B, we can written an expression for this matrix i.e.

det(eB) = etraceB. (1.26)

By using the Eq.(1.24) we can see that

det(U) = det(eiH) = eitraceH . (1.27)

As we known all of the diagonal element of these hermitain matrices are real, so
we can write that traceH ≡ β which is a real number.

Turning our attention towards the SU(n), we take into account the very fact
that elements of the this group have their determinants equal to 1. Therefore, if
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an element of SU(n) is represented by U0 = eiH0 , then the condition det(U0) = 1
demands the trace of H0 to be equal to 0. We have seen before that the maximum
number of the independent trace-less hermitian matrices of order-n is n2 − 1. Also
a convenient choice of these matrices can be made to be the generators of SU(n)
having n2 − 1 real independent parameters. It is easy to choose n2 − 1 generators
initially and add to this set of the unit matrices of order-n afterwards in order to
get n2 generators of U(n).

As an example, we know that the three generators of SU(2) serve to be the
Pauli spin matrices,

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
and

(
1 0
0 −1

)
. (1.28)

Which make a set of three independent trace-less hermitian matrices of order-2.
For the generators of U(2) one can choose the set (E, σx, σy, σz) where E is the
unit matrix of order-2.

1.3.3 Special Unitary SU(3) Group

It is clear from the name that SU(3) is the group of all unitary matrices of the
order-3 having determinant equal to 1. The SU(3) group has n2 − 1 = 32 − 1 = 8
generators. These 8 generators can be represented as λ1, λ2, λ3, ......., λ8. Although
there are many ways one can choose, the generators of SU(3) group and the
following trace-less matrices are used as the generators of SU(3) conventionally,

λ1 =

0 1 0
1 0 0
0 0 0

 , λ2 =

0 −i 0
i 0 0
0 0 0

 , λ3 =

1 0 0
0 −1 0
0 0 0

 ,

λ4 =

0 0 1
0 0 0
1 0 0

 , λ5 =

0 0 −i
0 0 0
i 0 0

 , λ6 =

0 0 0
0 0 1
0 1 0

 ,

λ7 =

0 0 0
0 0 −i
0 i 0

 , λ8 =
1√
3

1 0 0
0 1 0
0 0 −2

 . (1.29)

The commutators of these generators can be found out to be,

[λj, λk] = 2i
∑
l

fjklλl, (1.30)
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where the only non-vanishing components of the fjkl are

f123 = 1,

f147 = f516 = f246 = f257 = f345 = f537 =
1

2
,

f458 = f678 =

√
3

2
, (1.31)

and all the permutations with proper signs. One must have the realization that
these structures constants happen to be a characteristic property of the SU(3) and
they do not depend on the particular representation chosen in Eq.(1.29). It can be
seen from Eq.(1.29) that λ3 and λ8 are diagonal matrices and hence they commute
with each other. It can be verified that no other matrix commute with both λ3
and λ8. Therefore the rank of the SU(3) is 2. Therefore, the group SU(3) has two
Casimir operators. One is the quadratic combination of generators.

Cl =
8∑
i=1

λ2i . (1.32)

Without difficulty it can be shown that C2 commutes with all other generators
i.e. [C2, λi] = 0. The other Casimir operators come out as a complex tri-linear
combination of the generators.

One can use two running indices to label the eigen values of the two Casimir
operators of SU(3). The irreducible representations can than be denoted by (p, q),
where p and q can have all non-negative integral values. The dimensions of this
irreducible representation come out to be,

d = (1 + p)(1 + q)(2 + p+ q)/2. (1.33)

As a convention, an irreducible representation can be denoted merely by its di-
mension. This means that instead of (p, q), an irreducible representation can be
denoted by d and d∗ depending upon p < q or p > q. when p = q, there exist
only one irreducible representation of the corresponding dimension denoted by
d. Therefore p = q = 0 or (0, 0) ≡ 1 corresponds to the lowest order irreducible
representation. Some other irreducible representation are (0, 1) ≡ 3, (1, 0) ≡ 3∗,
(0, 2) ≡ 6, (2, 0) ≡ 6∗, (1, 1) ≡ 8, (0, 3) ≡ 10, etc.

The direction product of these irreducible representation can be taken and it
can also be reduced in terms of the irreducible representations. we provide a few
specific cases of the decomposition without going into details,

3⊗ 3 = 6⊕ 3∗,

3⊗ 3∗ = 8⊕ 1,

3⊗ 3⊗ 3 = 10⊕ 8⊕ 8⊕ 1. (1.34)
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and many other.
Grou theoretical concepts are useful in understanding scattering operation of

Sn matrix and the distribution of photons at the input and output ports under
permutation group Sn.

1.4 Outline of thesis

Now in the coming sections, we have discussed the quantum interferometry using
the above-mentioned formalism and have discussed different cases with different
input patterns and then we have observed coincidence counts for each type of the
input pattern.

In chapter 2, We have reviewed SU(2) and S(3) quantum interferometry. In
Sec.2.1 we have discussed the SU(2) quantum interferometry using a four-port
quantum interferometer(two input ports and two output ports) by shining single
photon input pulse on each of the two input port and then observed the coincidence
for the single click on each of the output port. Then we have plotted the coincidence
probability against the time delays introduced between the arrivals of the photons
at input ports and observed how the coincidence probability varies with the length
of the time delays.

In the Sec.2.2, we have discussed the SU(3) quantum interferometry using
six port quantum interferometer(three input ports and three output ports) by
shining single photon input pulse on each of the input port and then observed the
coincidence probability for a single click on each of the output port. Then plotted
this coincidence probability against the time delays introduced between the arrival
of the photons at input ports and observed the variation in the output coincidence
probability with the change in the length of the time delays.

In chapter 3, we have discussed the SU(3) quantum interferometry using six
port quantum interferometer(three input ports and three output ports) by shining
bi-photon input pulse on any two input ports and then observed the coincidence
probability for all possible output coincidence patterns. For example, we have
injected a bi-photon input pulse in the input port-1 and one in input port-2 and
then observed coincidence probability for all possible output coincidence patterns.
In the Sec.3.5, we have generated a special condition for the which we got the
maximum probability for single type output pattern by adjusting the values of
octuples Ω(α1, α2, α3, β1, β2, β3, γ1γ2) of the transformation matrix in Eq.(2.13). We
have observed that by using the created condition we get the maximum probability
of getting a tetra-photon click at one of the output port.

In the Sec.3.4, we have discussed the comparison between the same kind of
output patterns and their plots of coincidence probabilities against the time delays
introduced between the arrival of the photons at input ports for a different type of
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input pulses. Also, we have observed the variation and the similarities between
these plots to predict a pattern.

In the Sec.3.6, we have discussed the permanents of the scattering matrix and
the formation of the scattering matrix [20]. Where the permanent is a special
case of the square matrix which is similar to the determinant of a matrix, both
these determinants and permanents are the polynomials of the entries of the
square matrix, but in permanents all signs in between the terms are positive [21].
Permanent is discussed thoroughly in the Sec.3.6. It is observed that in the plots of
the coincidence probabilities against the time delays introduced between the arrival
of the photons at input ports that value of the coincidence probability we get, when
there are no time delays between the arrival of the photons or when the photon
enters simultaneously the input ports of the passive quantum optical interferometer
is equal to the value permanent of the adjacent scattering matrix. The formation
that that scattering matrix is also discussed thoroughly in the Sec.3.6.

In the last chapter 4, we have concluded our work.



2

Quantum Interferometry with
Single-Photon Input Pulses

In this section we shall see the action of the four port beam splitter two input
ports and two output ports on two monochromatic photons. We have shinned
a single-photon on each input port and then counted the number of stricks on
each output port. The single-photon state is written as |1(ω)) = â†i (ω) |0〉, with i
representing the input port number(i=1,2.) and the rounded bra-ket here represents
the frequency-explicit states and â†1(ω) is the creation operator [4, 5].

[â†i (ωa), â
†
j(ωb)] = δijδ(ωa − ωb)1, (2.1)

where i and j represent the input port numbers and vary from 1 to 3. The
single-photon state can also be written as,

|1(ωa)) =

∫ ∞
−∞

φ(ωa)â
†(ωa) |0〉 dωa, (2.2)

with, ∫ ∞
−∞
|φ(ωa)|2dωa = 1, (2.3)

For convenience, we have taken the normalized Gaussian distribution function,

φ(ω) =
1

[2πσ2
0]

1
4

exp
−[ω − ω0]

2

4σ2
0

. (2.4)

where φ(ω) is a probability density function (with ω0, σ0 and σ2
0 as the mean value,

standard deviation and variance of the distribution function respectively.) of the
Gaussian distribution which is also known as the normal distribution. Normal
distribution is one of the very well known continuous distribution of random
variables [5, 22].

27
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2.1 SU(2)Quantum Interferometry with Single-

Photon Input Pulses

In this case, we have taken the four port passive quantum optical interferometer(2-
input ports and 2-output ports) and injection two single photons at two input ports
of this passive quantum optical interferometer as shown in Fig.(2.1). For this case
the transformation matrix of the beam-splitter action is defined as,

Figure 2.1: This diagram shows the simplest case where we have injected a single
photon at each input port of the four passive quantum optical interferometer with
two input ports and two output ports. Observed the coincidence probability of
having single photon click at each of the output ports with time delay τ introduced
between the arrival of these photons at input ports.

U = R(Ω)

(
e

−iφ
2 0

0 e
−iφ
2

)
, (2.5)

To ensure the photon number conservation the transformation matrix of the beam-
splitter is to be taken as the unitary matrix (such that UU † = U †U = 1). Here
R(Ω) is the special unitary matrix with Ω contains α, β and γ. As R(Ω) ∈
SU(2) the reason behind, why we have used the group SU(2) as the beam-splitter
transformation matrix is because, we are using the loss-less passive quantum optical
interferometer. The loss-less passive quantum optical interferometer conserves the
total number of the photons that are entering the system through input ports and
leaving the system through output ports [4]. The R(Ω) is define as,

R(Ω) =

(
e−i(α+γ)/2 cos(β/2) −e−i(α−γ)/2 sin(β/2)
ei(α−γ)/2 sin(β/2) ei(α+γ)/2 cos(β/2)

)
. (2.6)
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We have injected two photons with frequencies ωa at time τ1 and ωb at time
τ2 in input port 1 and 2 of the 50/50 beam-splitter respectively and calculated
the coincidence probability for the single click on each of the output ports. The
coincidence probability is defined as,

P11,11 = 〈11|s U †Π1 ⊗ Π2U |11〉s , (2.7)

here P11,11 shows we have injected single photon on each of the input port and the
collected single photon at each output port[20]. Where Πi are the single-photon
output detection operators with,

Π1 =

∫ ∞
−∞

â†1(ωc) |0〉 〈0| â1(ωc)dωc (2.8)

and

Π2 =

∫ ∞
−∞

â†2(ωd) |0〉 〈0| â2(ωd)dωd. (2.9)

The action of the beam splitter is defined as,

Uâ†1in(ωa)â
†
2in(ωb) |00〉 = Aâ†1out(ωa)â

†
2out(ωb) |00〉+Bâ†2out(ωa)â

†
1out(ωb) |00〉 ,

(2.10)
where A and B are the probability coefficients such that,

A = U11U22, and B = U21U12. (2.11)

The coincidence probability for the dip where both of the output ports click
is(forτ1 = 0, τ2 = τ and σ0 = 0.1)

P11,11 = −2 sin2

(
β

2

)
cos2

(
β

2

)
e−σ

2τ2 + sin4

(
β

2

)
+ cos4

(
β

2

)
. (2.12)

As the coincidence is symmetric under the permutation of the frequencies, we can
set β = π/2.
The coincidence probability plot for the case when both of the output ports click once
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Figure 2.2: Coincidence probability plot against the time delay τ introduced
introduced between the arrival of the photons at input ports of the case where
we have injected a single photon at each input port of the four passive quantum
optical interferometer with two input ports and two output ports. Observed the
coincidence probability of having single photon click at each of the output ports
with time delay τ introduced between the arrival of these photons at input ports.

This plot in Fig.(2.2) shows, how the coincidence probability of having the
single photon on each of the two output ports. As we can see the coincidence
probability have the least value when there is no time delay between the arrival
of the photons but it increases when we introduce the time interval between the
arrival of the single photons. This means when there is no time delay between the
arrival of the photon at input ports, the photons are identical in every manner. So,
the probability that both photons will exit the different output port become zero,
because they perfectly interfere destructively in time. Which means either both of
the photons will exit one output port or the other and this effect is known as the
Hong-Ou-mandel effect.

2.2 SU(3)Quantum Interferometry with Single-

Photon Input Pulses

In this case, we have taken a six-port passive quantum optical interferometer (three-
input ports and three-output ports) and injected three identical single-photons,
one in each of the input ports with three different frequencies and separate them
by introducing three time delays between the their arrival as shown in Fig.(2.3).
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For this purpose the beam-splitter transformation matrix is

Figure 2.3: This diagram shows, we have injected three single photon one at each
input port of the beam splitter and attached different frequency profile to each
photon and then collected one photon at each output port with no specific frequency
profile, which shows we are not interested in path of any photon.

U = R(Ω)

e
−iζ
3 0 0

0 e
−iζ
3 0

0 0 e
−iζ
3

 , (2.13)

to conserve the total number of photons, the U matrix is taken to the unitary
matrix. Here R(Ω) is the special unitary matrix with Ω as the 8-tuple of angles [4].
The R(Ω) matrix is as a product

R(Ω) = T23(α1, β1,−α1)T12(α2, β2,−α2)T23(α3, β3,−α3)Φ(γ1, γ2), (2.14)

with
Ω := Ω(α1, α2, α3, β1, β2, β3, γ1γ2). (2.15)

The Tij(α, β, γ) matrix can be written as,

T12(α, β, γ) =

e−i(α+γ)/2 cos(β/2) −e−i(α−γ)/2 sin(β/2) 0
ei(α−γ)/2 sin(β/2) ei(α+γ)/2 cos(β/2) 0

0 0 1

 , (2.16)

which is the beam-splitter between the port-1 and port-2.

T23(α, β, γ) =

1 0 0
0 e−i(α+γ)/2 cos(β/2) −e−i(α−γ)/2 sin(β/2)
0 ei(α−γ)/2 sin(β/2) ei(α+γ)/2 cos(β/2)

 (2.17)
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which is the beam-splitter between the port-2 and port-3 and

Φ(γ1, γ2) =

e−2iγ1 0 0
0 ei(γ1−γ2/2) 0
0 0 ei(γ1+γ2/2)

 . (2.18)

is the phase shifter. Thus SU(3) operations are the phase shifter operations followed
by the beam-splitters. The coincidence probability for case when each of the output
detectors clicks once is,

P111,111 = 〈111|s U †Π1 ⊗ Π2 ⊗ Π3U |111〉s , (2.19)

and represents that we have injected single photon at each input port and collected
single photon at each output ports. Here Πi are the single photon output detection
operators and defined as,

Π1 =

∫ ∞
−∞

â†1(ω4) |0〉 〈0| â1(ω4)dω4, (2.20)

Π2 =

∫ ∞
−∞

â†2(ω5) |0〉 〈0| â2(ω5)dω5 (2.21)

and

Π3 =

∫ ∞
−∞

â†3(ω6) |0〉 〈0| â3(ω6)dω6. (2.22)

The input state is

|111〉s =

∫ ∞
−∞

φ(ω1)φ(ω2)φ(ω3) exp (−iω1τ1) exp (−iω2τ2) exp (−iω3τ3)

â†1(ω1)â
†
2(ω2)â

†
3(ω3) |000〉 dω1dω2dω3, (2.23)

so,

P111,111 =X1 (X2)
∗e−σ

2τ2 +X1 (X3)
∗e−σ

2τ2 +X1 (X4)
∗e−3σ

2τ2 +X1 (X5)
∗e−3σ

2τ2+

X1 (X6)
∗e−4σ

2τ2 +X2 (X1)
∗e−σ

2τ2 +X2 (X3)
∗e−3σ

2τ2 +X2 (X4)
∗e−4σ

2τ2+

X2 (X5)
∗e−σ

2τ2 +X2 (X6)
∗e−3σ

2τ2 +X3 (X1)
∗e−σ

2τ2 +X3 (X2)
∗e−3σ

2τ2+

X3 (X4)
∗e−σ

2τ2 +X3 (X5)
∗e−4σ

2τ2 +X3 (X6)
∗e−3σ

2τ2 +X4 (X1)
∗e−3σ

2τ2+

X4 (X2)
∗e−4σ

2τ2 +X4 (X3)
∗e−σ

2τ2 +X4 (X5)
∗e−3σ

2τ2 +X4 (X6)
∗e−σ

2τ2+

X5 (X1)
∗e−3σ

2τ2 +X5 (X2)
∗e−σ

2τ2 +X5 (X3)
∗e−4σ

2τ2 +X5 (X4)
∗e−3σ

2τ2+

X5 (X6)
∗e−σ

2τ2 +X6 (X1)
∗e−4σ

2τ2 +X6 (X2)
∗e−3σ

2τ2 +X6 (X3)
∗e−3σ

2τ2+

X6 (X4)
∗e−σ

2τ2 +X6 (X5)
∗e−σ

2τ2 +X1 (X1)
∗ +X2 (X2)

∗ +X3 (X3)
∗+

X4 (X4)
∗ +X5 (X5)

∗ +X6 (X6)
∗ (2.24)
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where X’s are the probability coefficients

X1 = U11U22U33; X2 = U11U23U32; X3 = U12U21U33;

X4 = U12U23U31; X5 = U13U21U32; X6 = U13U22U31 (2.25)

Figure 2.4: (with τ(τ1, τ2, τ3) = τ(−τ, 0, τ), σo = 0.1 and
Ω(α1, α2, α3, β1, β2, β3, γ1γ2) = Ω(0, 0, 0, π/2, π/2, π/2, 0, 0))

The plot in Fig.(2.4) shows, how the coincidence probability of having the single
photon on each of the three output ports varies with time-delay τ . Here each of
the input pulse is delayed with respect to next one by time τ . As we can see the
coincidence probability have the least value when there is no time delay between
the arrival of the photons but it increases when we introduce the time interval
between the arrival of the single photons and again decreases when the time delay
exceeds a certain limit.
In this section, we have discussed the quantum interferometry for the case, where
we injected single photon at each input port then calculated and plotted the
coincidence probability rate against the time-delays introduced between the arrival
of the photons at input ports. Now in the next chapter, we shall discuss the
quantum interferometry with bi-photon input pulses at two of the three input ports
of a six channel beam splitter with three input ports and three output ports and
then discuss the coincidence probabilities for all possible output form one by one.



3

Quantum Interferometry with
Bi-Photon Input Pulses

The calculation of the coincidence probability for the case, where single photon
input pulses have injected at input ports of four-port passive quantum optical
interferometer (with 2 input ports and 2 output ports) and six-port passive quan-
tum optical interferometer (with 3 input ports and 3 output ports) and observing
single photon clicks at output ports have already been done [4, 5]. The coincidence
probability for the case where a combination of single photon input pulses and
bi-photon pulses have injected at input ports of six port passive quantum optical
interferometer (with 3 input ports and 3 output ports) and observed the output
coincidence patterns in which we got bi-photon clicks at output ports have already
been done [20].

We have regenerated the results for the single photon pulses at input ports of
four port passive quantum optical interferometer and six port passive quantum
optical interferometer. We have discussed the regenerated results in chapter 2.

We have calculated the coincidence probabilities for the cases where we have
injected bi-photon input pulses at any two input ports of the six-port passive
quantum optical interferometer and observed all possible output coincidence pat-
terns. And then analyzed these coincidence probabilities against the time delays τ
introduced between the arrival of the photons at input ports.

34
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3.1 Bi-Photon Input pulses at Input-1 and Input-

2

In this case, we have taken conventional 6-port beam splitter and injected four
photons with different frequency profiles, two in each of the input-1 and input-2
(nothing at input-3) as shown in Fig.(3.1) and introduced a time delay τ between the
arrival of each of the photon at the input ports. Here we shall discuss the coincidence
probabilities for different possible outputs and see how these coincidences vary with
the change in the length of the time-delays introduced between the arrival of the
photons at input ports.

3.1.1 Bi-Photon Clicks on Output-1 and Output-2

In this section, we have injected four photons at input ports such that two at
each of the input port-1 and input port-2. To create distinguishibility, we have
introduced a time-delay τ between the arrival of each of the photon ai input ports
and then calculated the coincidence probability for the output coincidence pattern
where we have a bi-photon clicks at output port-1 and output port-2 as shown in
Fig.(3.1). The coincidence probability for such problem can be written as,

Figure 3.1: This diagram shows we have injected two bi-photon input pulses, one
at input port-1 and one at input port-2 and then collected two bi-photon pulses at
any of the two output ports as shown above.

P220,220 = 〈1111|s U †Π1 ⊗ Π2U |1111〉s , (3.1)

the output operators for the cases where we get the bi-photon click on any of the
two output ports are defined as

Π1 =

∫ ∞
−∞

â†1(ω5)â
†
1(ω8) |00〉 〈00| â1(ω5)â1(ω8)dω5dω8, (3.2)
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Π2 =

∫ ∞
−∞

â†2(ω6)â
†
2(ω9) |00〉 〈00| â2(ω6)â2(ω9)dω6dω9, (3.3)

and

Π3 =

∫ ∞
−∞

â†3(ω7)â
†
3(ω10) |00〉 〈00| â3(ω7)â3(ω10)dω7dω10, (3.4)

the output operators used for this specific case are defined in Eq.(3.2) and Eq.(3.3)
and the input state is define as

|1111〉s =

∫ ∞
−∞

φ(ω1)φ(ω2)φ(ω3)φ(ω4) exp (−iω1τ1) exp (−iω2τ2) exp (−iω3τ3)

exp (−iω4τ4)â
†
1(ω1)â

†
1(ω2)â

†
2(ω3)â

†
2(ω4) |0000〉 dω1dω2dω3dω4, (3.5)

so,

P220,220 =A1 (A2)
∗e−σ

2τ2 + A1 (A3)
∗e−3σ

2τ2 + A1 (A4)
∗e−3σ

2τ2 + A1 (A5)
∗e−5σ

2τ2+

A1 (A6)
∗e−8σ

2τ2 + A2 (A1)
∗e−σ

2τ2 + A2 (A3)
∗e−σ

2τ2 + A2 (A4)
∗e−σ

2τ2+

A2 (A5)
∗e−2σ

2τ2 + A2 (A6)
∗e−5σ

2τ2 + A3 (A1)
∗e−3σ

2τ2 + A3 (A2)
∗e−σ

2τ2+

A3 (A4)
∗e−2σ

2τ2 + A3 (A5)
∗e−σ

2τ2 + A3 (A6)
∗e−3σ

2τ2 + A4 (A1)
∗e−3σ

2τ2+

A4 (A2)
∗e−σ

2τ2 + A4 (A3)
∗e−2σ

2τ2 + A4 (A5)
∗e−σ

2τ2 + A4 (A6)
∗e−3σ

2τ2+

A5 (A1)
∗e−5σ

2τ2 + A5 (A2)
∗e−2σ

2τ2 + A5 (A3)
∗e−σ

2τ2 + A5 (A4)
∗e−σ

2τ2+

A5 (A6)
∗e−σ

2τ2 + A6 (A1)
∗e−8σ

2τ2 + A6 (A2)
∗e−5σ

2τ2 + A6 (A3)
∗e−3σ

2τ2+

A6 (A4)
∗e−3σ

2τ2 + A6 (A5)
∗e−σ

2τ2 + A1 (A1)
∗ + A2 (A2)

∗ + A3 (A3)
∗+

A4 (A4)
∗ + A5 (A5)

∗ + A6 (A6)
∗. (3.6)

Where the A’s are the probability coefficients and are defined as

A1 = U2
11U

2
22; A2 = U11U21U12U22; A3 = U11U21U22U12;A4 = U21U11U12U22;

A5 = U21U11U22U12; A6 = U2
21U

2
12; A7 = U2

11U
2
32; A8 = U11U31U12U22;

A9 = U11U31U32U12; A10 = U31U11U12U32; A11 = U31U11U32U12; A12 = U2
31U

2
12;

A13 = U2
21U

2
32; A14 = U21U31U22U32; A15 = U21U31U32U22; A16 = U31U21U22U32;

A17 = U31U21U32U22; A18 = U2
31U

2
22; (3.7)

The plot of the coincidence probability against the time delays introduced between
the arrival of the photons at input ports is shown in the Fig.(3.2). This plot shows
that we get the maximum probability of having the desired the output when there
is no time-delays between the arrival of the photons at input ports and this value of
the coincidence probability for this case with zero time delay is equal to the value
of the permanent of the adjacent scattering matrix. The probability of having the
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desired output starts decreasing as the length of time delays between the arrival of
the photons at input ports start increasing as shown in Fig.(3.2). Rest of the cases
as mentioned in Fig.(3.1) are discussed in Appendix(A.1,A.2.)

Figure 3.2: (with T (τ1, τ2, τ3, τ4) = T (−τ, 0, τ, 2τ), σo = 0.1 and
Ω(α1, α2, α3, β1, β2, β3, γ1γ2) = Ω(0, 0, 0, π/2, π/2, π/2, 0, 0))

3.1.2 Bi-Photon Click on Output-1 and Single-Photon Click
on Output-2 and Output-3

Figure 3.3: The input pattern is the same as before but in this case the output
coincidence pattern is such that a bi-photon click on any of the one output ports
and a single-photon click on each rest of the output ports.



38 3. QUANTUM INTERFEROMETRY WITH BI-PHOTON INPUT PULSES

In this case, we shall discuss the coincidence probability for a bi-photon click
on the output port-1 and a single-photon click on output port-2 and output port-3
for the same input state, in which we inject bi-photon input pulse in input port-1
and input port-2 with time-delay between every arrival of the photons at input
ports as shown in Fig.(3.3). The input state for this case is the same as defined
before in the Eq.(3.5). The output operators for this case are defined as

Π1 =

∫ ∞
−∞

â†1(ω5)â
†
1(ω8) |00〉 〈00| â1(ω5)â1(ω8)dω5dω8, (3.8)

Π2 =

∫ ∞
−∞

â†2(ω6) |0〉 〈0| â2(ω6)dω6, (3.9)

and

Π3 =

∫ ∞
−∞

â†3(ω7) |0〉 〈0| â3(ω7)dω7, (3.10)

the coincidence probability for this case is defined as

P220,211 = 〈1111|s U †Π1 ⊗ Π2 ⊗ Π3U |1111〉s , (3.11)

The probability coefficients for this case are defined as,

L1 = U2
11U22U32; L2 = U2

11U22U32; L3 = U11U12U21U32; L4 = U11U12U22U31;

L5 = U11U12U21U32; L6 = U11U12U22U31; L7 = U11U12U21U32; L8 = U11U12U22U31;

L9 = U11U12U21U32; L10 = U11U12U22U31; L11 = U2
12U21U31; L12 = U2

12U21U31;
(3.12)

so the coincidence probability for this case is,

P220,211 = (L1)
∗L1 + e−σ

2τ2 (L2)
∗L1 + e−σ

2τ2 (L3)
∗L1 + e−3σ

2τ2 (L4)
∗L1+

e−3σ
2τ2 (L5)

∗L1 + e−4σ
2τ2 (L6)

∗L1 + e−3σ
2τ2 (L7)

∗L1 + e−6σ
2τ2 (L8)

∗L1+

e−5σ
2τ2 (L9)

∗L1 + e−7σ
2τ2 (L10)

∗L1 + e−8σ
2τ2 (L11)

∗L1 + e−9σ
2τ2 (L12)

∗L1+

e−σ
2τ2 (L1)

∗L2 + (L2)
∗L2 + e−3σ

2τ2 (L3)
∗L2 + e−σ

2τ2 (L4)
∗L2+

e−4σ
2τ2 (L5)

∗L2 + e−3σ
2τ2 (L6)

∗L2 + e−6σ
2τ2 (L7)

∗L2 + e−3σ
2τ2 (L8)

∗L2+

e−7σ
2τ2 (L9)

∗L2 + e−5σ
2τ2 (L10)

∗L2 + e−9σ
2τ2 (L11)

∗L2 + e−8σ
2τ2 (L12)

∗L2+

e−σ
2τ2 (L1)

∗L3 + e−3σ
2τ2 (L2)

∗L3 + (L3)
∗L3 + e−4σ

2τ2 (L4)
∗L3+

e−σ
2τ2 (L5)

∗L3 + e−3σ
2τ2 (L6)

∗L3 + e−σ
2τ2 (L7)

∗L3 + e−7σ
2τ2 (L8)

∗L3+

e−2σ
2τ2 (L9)

∗L3 + e−6σ
2τ2 (L10)

∗L3 + e−5σ
2τ2 (L11)

∗L3 + e−7σ
2τ2 (L12)

∗L3+

e−3σ
2τ2 (L1)

∗L4 + e−σ
2τ2 (L2)

∗L4 + e−4σ
2τ2 (L3)

∗L4 + (L4)
∗L4+



3.1. BI-PHOTON INPUT PULSES AT INPUT-1 AND INPUT-2 39

e−3σ
2τ2 (L5)

∗L4 + e−σ
2τ2 (L6)

∗L4 + e−7σ
2τ2 (L7)

∗L4 + e−σ
2τ2 (L8)

∗L4+

e−6σ
2τ2 (L9)

∗L4 + e−2σ
2τ2 (L10)

∗L4 + e−7σ
2τ2 (L11)

∗L4 + e−5σ
2τ2 (L12)

∗L4+

e−3σ
2τ2 (L1)

∗L5 + e−4σ
2τ2 (L2)

∗L5 + e−σ
2τ2 (L3)

∗L5 + e−3σ
2τ2 (L4)

∗L5+

(L5)
∗L5 + e−σ

2τ2 (L6)
∗L5 + e−2σ

2τ2 (L7)
∗L5 + e−5σ

2τ2 (L8)
∗L5+

e−σ
2τ2 (L9)

∗L5 + e−3σ
2τ2 (L10)

∗L5 + e−3σ
2τ2 (L11)

∗L5 + e−4σ
2τ2 (L12)

∗L5+

e−4σ
2τ2 (L1)

∗L6 + e−3σ
2τ2 (L2)

∗L6 + e−3σ
2τ2 (L3)

∗L6 + e−σ
2τ2 (L4)

∗L6+

e−σ
2τ2 (L5)

∗L6 + (L6)
∗L6 + e−5σ

2τ2 (L7)
∗L6 + e−2σ

2τ2 (L8)
∗L6+

e−3σ
2τ2 (L9)

∗L6 + e−σ
2τ2 (L10)

∗L6 + e−4σ
2τ2 (L11)

∗L6 + e−3σ
2τ2 (L12)

∗L6+

e−3σ
2τ2 (L1)

∗L7 + e−6σ
2τ2 (L2)

∗L7 + e−σ
2τ2 (L3)

∗L7 + e−7σ
2τ2 (L4)

∗L7+

e−2σ
2τ2 (L5)

∗L7 + e−5σ
2τ2 (L6)

∗L7 + (L7)
∗L7 + e−9σ

2τ2 (L8)
∗L7+

e−σ
2τ2 (L9)

∗L7 + e−7σ
2τ2 (L10)

∗L7 + e−3σ
2τ2 (L11)

∗L7 + e−6σ
2τ2 (L12)

∗L7+

e−6σ
2τ2 (L1)

∗L8 + e−3σ
2τ2 (L2)

∗L8 + e−7σ
2τ2 (L3)

∗L8 + e−σ
2τ2 (L4)

∗L8+

e−5σ
2τ2 (L5)

∗L8 + e−2σ
2τ2 (L6)

∗L8 + e−9σ
2τ2 (L7)

∗L8 + (L8)
∗L8+

e−7σ
2τ2 (L9)

∗L8 + e−σ
2τ2 (L10)

∗L8 + e−6σ
2τ2 (L11)

∗L8 + e−3σ
2τ2 (L12)

∗L8+

e−5σ
2τ2 (L1)

∗L9 + e−7σ
2τ2 (L2)

∗L9 + e−2σ
2τ2 (L3)

∗L9 + e−6σ
2τ2 (L4)

∗L9+

e−σ
2τ2 (L5)

∗L9 + e−3σ
2τ2 (L6)

∗L9 + e−σ
2τ2 (L7)

∗L9 + e−7σ
2τ2 (L8)

∗L9+

(L9)
∗L9 + e−4σ

2τ2 (L10)
∗L9 + e−σ

2τ2 (L11)
∗L9 + e−3σ

2τ2 (L12)
∗L9+

e−7σ
2τ2 (L1)

∗L10 + e−5σ
2τ2 (L2)

∗L10 + e−6σ
2τ2 (L3)

∗L10 + e−2σ
2τ2 (L4)

∗L10+

e−3σ
2τ2 (L5)

∗L10 + e−σ
2τ2 (L6)

∗L10 + e−7σ
2τ2 (L7)

∗L10 + e−σ
2τ2 (L8)

∗L10+

e−4σ
2τ2 (L9)

∗L10 + (L10)
∗L10 + e−3σ

2τ2 (L11)
∗L10+

e−σ
2τ2 (L12)

∗L10 + e−8σ
2τ2 (L1)

∗L11 + e−9σ
2τ2 (L2)

∗L11 + e−5σ
2τ2 (L3)

∗L11+

e−7σ
2τ2 (L4)

∗L11 + e−3σ
2τ2 (L5)

∗L11 + e−4σ
2τ2 (L6)

∗L11 + e−3σ
2τ2 (L7)

∗L11+

e−6σ
2τ2 (L8)

∗L11 + e−σ
2τ2 (L9)

∗L11 + e−3σ
2τ2 (L10)

∗L11 + (L11)
∗L11+

e−σ
2τ2 (L12)

∗L11 + e−9σ
2τ2 (L1)

∗L12 + e−8σ
2τ2 (L2)

∗L12 + e−7σ
2τ2 (L3)

∗L12+

e−5σ
2τ2 (L4)

∗L12 + e−4σ
2τ2 (L5)

∗L12 + e−3σ
2τ2 (L6)

∗L12 + e−6σ
2τ2 (L7)

∗L12+

e−3σ
2τ2 (L8)

∗L12 + e−3σ
2τ2 (L9)

∗L12 + e−σ
2τ2 (L10)

∗L12 + e−σ
2τ2 (L11)

∗L12+

(L12)
∗L12. (3.13)

The plot of the coincidence probability against the time delays introduced between
the arrival of the photons at input ports is shown in Fig.(3.4).This plot shows that
the probability of having the desired output pattern is comparatively high, when
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there is no time delays τ between the arrival of the photon at input ports and this
value of the coincidence probability with zero time delay is equal to the value of
the permanent of the adjacent scattering matrix for this specific case. Afterwards
it slightly increases with increase in the length of the time delay τ and we two
adjacent peaks and then we get a sharp drop with further increase in the length
of the time delays. Rest of the cases as mentioned in Fig.(3.1) are discussed in
Appendix(A.3,A.4).

Figure 3.4: (with T (τ1, τ2, τ3, τ4) = T (−τ, 0, τ, 2τ), σo = 0.1 and
Ω(α1, α2, α3, β1, β2, β3, γ1γ2) = Ω(0, 0, 0, π/2, π/2, π/2, 0, 0))

3.1.3 Tri-Photon Click on Output-1, Single-Photon Click
on Output-2 and no click on Output-3

In this section, we shall discuss the coincidence probability for the case when we
get a tri-photon click and a single photon click simultaneously for the incidence of
bi-photon clicks on input port-1 and input port-2 with time-delay τ is introduced
between the arrival of photons at input ports. As we can see from the Fig.(3.5).
For this specific case, we shall discuss first output in above Fig.(3.5). in which we
get a tri-photon click at output port-1 and a single photon click at output port-2.
The Input state will be same as we defined in Eq.(3.5) and the output operators
for this case are defined as,

Π1 =

∫ ∞
−∞

â†1(ω5)â
†
1(ω8)â

†
1(ω11) |000〉 〈000| â1(ω5)â1(ω8)â1(ω11)dω5dω8dω11, (3.14)
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Figure 3.5: As we can see the input state is same but this time the output pattern
is different in which we have observed the coincidence probabilities for the cases
where we get a tri-photon click at one of the output ports, a single-photon click at
another of output ports and one remains in click-less.

and

Π2 =

∫ ∞
−∞

â†2(ω6) |0〉 〈0| â†2(ω6)dω6, (3.15)

the coincidence probability for this case ca be written as

P220,310 = s 〈1111|U †Π1 ⊗ Π2U |1111〉s , (3.16)

the probability coefficients for this case are defined as

D1 = U2
11U12U22; D2 = U2

11U12U22; D3 = U11U
2
12U21; D4 = U11U

2
12U21;

D5 = U11U21U
2
22; D6 = U11U21U

2
22; D7 = U12U

2
21U22; D8 = U12U

2
21U22;

D9 = U2
11U12U32; D10 = U2

11U12U32; D11 = U11U
2
12U31; D12 = U11U

2
12U31;

D13 = U2
21U22U32; D14 = U2

21U22U32; ; D15 = U21U
2
22U31; D16 = U21U

2
22U31;

D17 = U11U31U
2
32; D18 = U11U31U

2
32; D19 = U12U

2
31U32; D20 = U12U

2
31U32;

D21 = U21U31U
2
32; D22 = U21U31U

2
32; D23 = U22U

2
31U32; D24 = U22U

2
31U32;

(3.17)

so the Coincidence probability for this case is

P220,310 =D1 (D2)
∗e−σ

2τ2 +D1 (D3)
∗e−3σ

2τ2 +D1 (D4)
∗e−6σ

2τ2 +D2 (D1)
∗e−σ

2τ2+
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D2 (D3)
∗e−σ

2τ2 +D2 (D4)
∗e−3σ

2τ2 +D3 (D1)
∗e−3σ

2τ2 +D3 (D2)
∗e−σ

2τ2+

D3 (D4)
∗e−σ

2τ2 +D4 (D1)
∗e−6σ

2τ2 +D4 (D2)
∗e−3σ

2τ2 +D4 (D3)
∗e−σ

2τ2+

D1 (D1)
∗ +D2 (D2)

∗ +D3 (D3)
∗ +D4 (D4)

∗. (3.18)

The plot for the coincidence probability against the time-delay introduced between
the arrival of the photons at input ports is shown in Fig.(3.6). This plot shows that
the coincidence probability of having the a tri-photon click at output port-1 and a
single-photon click at the output port-2 for the case when we inject a bi-photon
pulse in the input port-1 and input port-2 of the balanced beam splitter such there
is a time-delay τ between the arrival of the each photon is maximum, when there
is no time delay τ introduced between the arrival of the input photons and is equal
to the value of the permanent of the adjacent scattering matrix. the coincidence
probability starts gradually decreasing as the length of the time delay τ increases.
Rest of the cases as mentioned in Fig.(3.1) are discussed in Appendix(A.5,...,A.9).

Figure 3.6: (with T (τ1, τ2, τ3, τ4) = T (−τ, 0, τ, 2τ), σo = 0.1 and
Ω(α1, α2, α3, β1, β2, β3, γ1γ2) = Ω(0, 0, 0, π/2, π/2, π/2, 0, 0))

3.1.4 Tetra-Photon Click on Output-1 and no Click on
Output-2 and Output-3

In this section, we shall discuss the coincidence probability of having a tetra-photon
click on any of the three output ports, when we inject bi-photon pulses at input
port-1 and input port-2 of a balanced beam-splitter. Which can be visualized from
Fig.(3.7) First of all, we shall discuss the coincidence probability for the first output
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Figure 3.7

in Fig.(3.7), which shows that we get a tetra-photon pulse at output port-1 and no
clicks on output port-2 and output port-3. The input state for this case is same as
defined in Eq.(3.5) and the output operator for this specific case is define as,

Π1 =

∫ ∞
−∞

â†1(ω5)â
†
1(ω8)â

†
1(ω11)â

†
1(ω14) |0000〉 〈0000| â1(ω5)â1(ω8)â1(ω11)â1(ω14)dω5dω8dω11dω14,

(3.19)
the coincidence probability for this case can be written as,

P220,400 = s 〈1111|U †Π1U |1111〉s , (3.20)

and the probability coefficient for this case are defined as,

V1 = U2
11U

2
12; , (3.21)

so, coincidence probability for this case is

P220,400 = V1 (V1)
∗. (3.22)

We can clearly see. the coincidence probability for this specific case does not depend
on the time delay introduced between the arrival of the photons at input ports of a
balanced beam splitter. Rest of the cases as mentioned in Fig.(3.1) are discussed
in Appendix(A.10,A.11).

3.2 Bi-Photon Input pulses at Input-1 and Input-

3

In this section, we shall discuss the coincidence probabilities for all possible output
coincidence patterns for the case, where we have injected a bi-photon pulses in
input port-1 and in input port-3 but the input port-2 remains in dark. After
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calculating these coincidence probabilities, we shall plot them against the time-
delays introduced between the arrivals of these input photons at input ports and
shall see how these coincidence probabilities varies with the increase and decease
in lengths of the time-delays ”τ” introduced between the arrival of the photons at
input ports.

3.2.1 Bi-Photon Click on Output-1 and Output-2 and no
Click on Output-3

In this case, we shall discuss the coincidence probability for one of the possible
output coincidence pattern such that we have a bi-photon click at output port-1
and at output port-2. For this kind of the output we have taken the same input
pattern in which, we have injected a bi-photon pulse in input port-1 and in input
port-3 as shown in Fig.(3.8). The output operators for this specific case are the
same as defined in Eq.(3.2) and Eq.(3.3) and the input state is defined as

Figure 3.8

|1111〉s =

∫ ∞
−∞

φ(ω1)φ(ω2)φ(ω3)φ(ω4) exp (−iω1τ1) exp (−iω2τ2) exp (−iω3τ3)

exp (−iω4τ4)â
†
1(ω1)â

†
1(ω2)â

†
3(ω3)â

†
3(ω4) |0000〉 dω1dω2dω3dω4,

(3.23)

the coincidence probability for this case is defined as

P202,220 = s 〈1111|U †Π1 ⊗ Π2U |1111〉s , (3.24)

the probability coefficients defined for the cases where we get bi-photon pulses at
output ports are defined as

B1 = U2
11U

2
23; B2 = U11U21U13U23; B3 = U11U21U23U13; B4 = U21U11U13U23;

B5 = U21U11U23U13; B6 = U2
21U

2
13; B7 = U2

11U
2
33; B8 = U11U31U13U33;
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B9 = U11U31U33U13; B10 = U31U11U13U33; B11 = U31U11U33U13; B12 = U2
31U

2
13;

B13 = U2
21U

2
33; B14 = U21U31U23U33; B15 = U21U31U33U23; B16 = U31U21U23U33;

B17 = U31U21U33U23; B18 = U2
31U

2
23; (3.25)

so,

P202,220 =B1 (B2)
∗e−σ

2τ2 +B1 (B3)
∗e−3σ

2τ2 +B1 (B4)
∗e−3σ

2τ2 +B1 (B5)
∗e−5σ

2τ2+

B1 (B6)
∗e−8σ

2τ2 +B2 (B1)
∗e−σ

2τ2 +B2 (B3)
∗e−σ

2τ2 +B2 (B4)
∗e−σ

2τ2+

B2 (B5)
∗e−2σ

2τ2 +B2 (B6)
∗e−5σ

2τ2 +B3 (B1)
∗e−3σ

2τ2 +B3 (B2)
∗e−σ

2τ2+

B3 (B4)
∗e−2σ

2τ2 +B3 (B5)
∗e−σ

2τ2 +B3 (B6)
∗e−3σ

2τ2 +B4 (B1)
∗e−3σ

2τ2+

B4 (B2)
∗e−σ

2τ2 +B4 (B3)
∗e−2σ

2τ2 +B4 (B5)
∗e−σ

2τ2 +B4 (B6)
∗e−3σ

2τ2+

B5 (B1)
∗e−5σ

2τ2 +B5 (B2)
∗e−2σ

2τ2 +B5 (B3)
∗e−σ

2τ2 +B5 (B4)
∗e−σ

2τ2+

B5 (B6)
∗e−σ

2τ2 +B6 (B1)
∗e−8σ

2τ2 +B6 (B2)
∗e−5σ

2τ2 +B6 (B3)
∗e−3σ

2τ2+

B6 (B4)
∗e−3σ

2τ2 +B6 (B5)
∗e−σ

2τ2 +B1 (B1)
∗ +B2 (B2)

∗ +B3 (B3)
∗+

B4 (B4)
∗ +B5 (B5)

∗ +B6 (B6)
∗. (3.26)

The plot of the coincidence probability against the time-delays introduced
between the arrivals of the photons at input ports of a balanced beam-splitter is
shown in Fig.(3.9). This plot shows that the coincidence probability of getting a
bi-photon click at output port-1 and output port-2 is minimum but not zero when
there is no time-delay introduced between the arrival of the photons at input ports
and is equal to the value of the permanent of the adjacent scattering matrix. The
coincidence probability of having this output increases with the increase in length
of the time-delay τ between the arrival of the photons at input ports but at specific
point it again starts decreasing. Rest of the cases as mentioned in Fig.(3.1) are
discussed in Appendix(B.1,B.2).

3.2.2 Bi-Photon Click on Output-1 and Single-Photon Click
on Output-2 and Output-3

In this section, we shall discuss one of the possible output coincidence pattern such
that each of the output detectors clicks. As we have four incident photons these
four photons are distributed over the output ports in such way that one of the
output port clicks twice and rest of the two output port click once. Such output
can be observed in three different ways which can be visualized from Fig.(3.10).
First of all, we discuss the first output state from the left, which shows the output
port-1 clicks twice but output port-2 and output port-3 click once. The input state
for this case has already been defined in Eq.(3.23) and the output operators are
defined as
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Figure 3.9: (with T (τ1, τ2, τ3, τ4) = T (−τ, 0, τ, 2τ), σo = 0.1 and
Ω(α1, α2, α3, β1, β2, β3, γ1γ2) = Ω(0, 0, 0, π/2, π/2, π/2, 0, 0))

Figure 3.10

Π1 =

∫ ∞
−∞

â†1(ω5)â
†
1(ω8) |00〉 〈00| â1(ω5)â1(ω8)dω5dω8, (3.27)

Π2 =

∫ ∞
−∞

â†2(ω6) |0〉 〈0| â2(ω6)dω6, (3.28)

and

Π3 =

∫ ∞
−∞

â†3(ω7) |0〉 〈0| â3(ω7)dω7, (3.29)

the coincidence probability for this case is defined as

P202,211 = 〈1111|s U †Π1 ⊗ Π2 ⊗ Π3U |1111〉s , (3.30)

so the coincidence probability for this case is,
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P202,211 = (O1)
∗O1 + e−σ

2τ2 (O2)
∗O1 + e−σ

2τ2 (O3)
∗O1 + e−3σ

2τ2 (O4)
∗O1+

e−3σ
2τ2 (O5)

∗O1 + e−4σ
2τ2 (O6)

∗O1 + e−3σ
2τ2 (O7)

∗O1 + e−6σ
2τ2 (O8)

∗O1+

e−5σ
2τ2 (O9)

∗O1 + e−7σ
2τ2 (O10)

∗O1 + e−8σ
2τ2 (O11)

∗O1 + e−9σ
2τ2 (O12)

∗O1+

e−σ
2τ2 (O1)

∗O2 + (O2)
∗O2 + e−3σ

2τ2 (O3)
∗O2 + e−σ

2τ2 (O4)
∗O2+

e−4σ
2τ2 (O5)

∗O2 + e−3σ
2τ2 (O6)

∗O2 + e−6σ
2τ2 (O7)

∗O2 + e−3σ
2τ2 (O8)

∗O2+

e−7σ
2τ2 (O9)

∗O2 + e−5σ
2τ2 (O10)

∗O2 + e−9σ
2τ2 (O11)

∗O2 + e−8σ
2τ2 (O12)

∗O2+

e−σ
2τ2 (O1)

∗O3 + e−3σ
2τ2 (O2)

∗O3 + (O3)
∗O3 + e−4σ

2τ2 (O4)
∗O3+

e−σ
2τ2 (O5)

∗O3 + e−3σ
2τ2 (O6)

∗O3 + e−σ
2τ2 (O7)

∗O3 + e−7σ
2τ2 (O8)

∗O3+

e−2σ
2τ2 (O9)

∗O3 + e−6σ
2τ2 (O10)

∗O3 + e−5σ
2τ2 (O11)

∗O3 + e−7σ
2τ2 (O12)

∗O3+

e−3σ
2τ2 (O1)

∗O4 + e−σ
2τ2 (O2)

∗O4 + e−4σ
2τ2 (O3)

∗O4 + (O4)
∗O4+

e−3σ
2τ2 (O5)

∗O4 + e−σ
2τ2 (O6)

∗O4 + e−7σ
2τ2 (O7)

∗O4 + e−σ
2τ2 (O8)

∗O4+

e−6σ
2τ2 (O9)

∗O4 + e−2σ
2τ2 (O10)

∗O4 + e−7σ
2τ2 (O11)

∗O4 + e−5σ
2τ2 (O12)

∗O4+

e−3σ
2τ2 (O1)

∗O5 + e−4σ
2τ2 (O2)

∗O5 + e−σ
2τ2 (O3)

∗O5 + e−3σ
2τ2 (O4)

∗O5+

(O5)
∗O5 + e−σ

2τ2 (O6)
∗O5 + e−2σ

2τ2 (O7)
∗O5 + e−5σ

2τ2 (O8)
∗O5+

e−σ
2τ2 (O9)

∗O5 + e−3σ
2τ2 (O10)

∗O5 + e−3σ
2τ2 (O11)

∗O5 + e−4σ
2τ2 (O12)

∗O5+

e−4σ
2τ2 (O1)

∗O6 + e−3σ
2τ2 (O2)

∗O6 + e−3σ
2τ2 (O3)

∗O6 + e−σ
2τ2 (O4)

∗O6+

e−σ
2τ2 (O5)

∗O6 + (O6)
∗O6 + e−5σ

2τ2 (O7)
∗O6 + e−2σ

2τ2 (O8)
∗O6+

e−3σ
2τ2 (O9)

∗O6 + e−σ
2τ2 (O10)

∗O6 + e−4σ
2τ2 (O11)

∗O6 + e−3σ
2τ2 (O12)

∗O6+

e−3σ
2τ2 (O1)

∗O7 + e−6σ
2τ2 (O2)

∗O7 + e−σ
2τ2 (O3)

∗O7 + e−7σ
2τ2 (O4)

∗O7+

e−2σ
2τ2 (O5)

∗O7 + e−5σ
2τ2 (O6)

∗O7 + (O7)
∗O7 + e−9σ

2τ2 (O8)
∗O7+

e−σ
2τ2 (O9)

∗O7 + e−7σ
2τ2 (O10)

∗O7 + e−3σ
2τ2 (O11)

∗O7 + e−6σ
2τ2 (O12)

∗O7+

e−6σ
2τ2 (O1)

∗O8 + e−3σ
2τ2 (O2)

∗O8 + e−7σ
2τ2 (O3)

∗O8 + e−σ
2τ2 (O4)

∗O8+

e−5σ
2τ2 (O5)

∗O8 + e−2σ
2τ2 (O6)

∗O8 + e−9σ
2τ2 (O7)

∗O8 + (O8)
∗O8+

e−7σ
2τ2 (O9)

∗O8 + e−σ
2τ2 (O10)

∗O8 + e−6σ
2τ2 (O11)

∗O8 + e−3σ
2τ2 (O12)

∗O8+

e−5σ
2τ2 (O1)

∗O9 + e−7σ
2τ2 (O2)

∗O9 + e−2σ
2τ2 (O3)

∗O9 + e−6σ
2τ2 (O4)

∗O9+

e−σ
2τ2 (O5)

∗O9 + e−3σ
2τ2 (O6)

∗O9 + e−σ
2τ2 (O7)

∗O9 + e−7σ
2τ2 (O8)

∗O9+

(O9)
∗O9 + e−4σ

2τ2 (O10)
∗O9 + e−σ

2τ2 (O11)
∗O9 + e−3σ

2τ2 (O12)
∗O9+

e−7σ
2τ2 (O1)

∗O10 + e−5σ
2τ2 (O2)

∗O10 + e−6σ
2τ2 (O3)

∗O10 + e−2σ
2τ2 (O4)

∗O10+

e−3σ
2τ2 (O5)

∗O10 + e−σ
2τ2 (O6)

∗O10 + e−7σ
2τ2 (O7)

∗O10 + e−σ
2τ2 (O8)

∗O10+
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e−4σ
2τ2 (O9)

∗O10 + (O10)
∗O10 + e−3σ

2τ2 (O11)
∗O10 + e−σ

2τ2 (O12)
∗O10+

e−8σ
2τ2 (O1)

∗O11 + e−9σ
2τ2 (O2)

∗O11 + e−5σ
2τ2 (O3)

∗O11 + e−7σ
2τ2 (O4)

∗O11+

e−3σ
2τ2 (O5)

∗O11 + e−4σ
2τ2 (O6)

∗O11 + e−3σ
2τ2 (O7)

∗O11 + e−6σ
2τ2 (O8)

∗O11+

e−σ
2τ2 (O9)

∗O11 + e−3σ
2τ2 (O10)

∗O11 + (O11)
∗O11 + e−σ

2τ2 (O12)
∗O11+

e−9σ
2τ2 (O1)

∗O12 + e−8σ
2τ2 (O2)

∗O12 + e−7σ
2τ2 (O3)

∗O12 + e−5σ
2τ2 (O4)

∗O12+

e−4σ
2τ2 (O5)

∗O12 + e−3σ
2τ2 (O6)

∗O12 + e−6σ
2τ2 (O7)

∗O12 + e−3σ
2τ2 (O8)

∗O12+

e−3σ
2τ2 (O9)

∗O12 + e−σ
2τ2 (O10)

∗O12 + e−σ
2τ2 (O11)

∗O12 + (O12)
∗O12.

(3.31)

Where O’s are the probability coefficients and are given as

O1 = U2
11U23U33; O2 = U2

11U23U33; O3 = U11U13U21U33; O4 = U11U13U23U31;

O5 = U11U13U21U33; O6 = U11U13U23U31; O7 = U11U13U21U33; O8 = U11U13U23U31;

O9 = U11U13U21U33; O10 = U11U13U23U31; O11 = U2
13U21U31; O12 = U2

13U21U31; .
(3.32)

The coincidence probability plot for the case when we have above defined output
coincidence pattern against time-delays τ introduced between the arrival photons at
input ports is shown in Fig.(3.11). The plot shows that the coincidence probability
of having the above defined output coincidence pattern is relatively high and equal
to the value of the permanent of the adjacent scattering matrix, when time-delays
τ introduced between the arrival of the incident photons is zero. As the length
of the time-delays τ introduced between the arrival of the photon at input ports
increases we get a slightly increase in the value of the coincidence probability and
we get two relative maximas. With further increase in the length of the time-delays
we get a sharp decrease in the value of the coincidence probability. Rest of the
cases as mentioned in Fig.(3.1) are discussed in Appendix(B.3,B.4).

3.2.3 Tri-Photon Click on Output-1, Single-Photon Click
on Output-2 and no click on Output-3

In this section, we shall discuss the coincidence probability for the case when we
get a tri-photon click at one output port and a single photon click one the other
output port simultaneously for the incidence of bi-photon pulse at input port-1
and input port-3 with time-delay τ introduced between arrival of the photons at
input ports. The input state has already been defined in Eq.(3.23). This kind of
input and output pattern can be visualized from Fig.(3.12). For this specific case,
we shall discuss the coincidence probability of first output coincidence pattern as
shown in Fig.(3.12), in which we have a tri-photon click at output port-1 and a
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Figure 3.11: (with T (τ1, τ2, τ3, τ4) = T (−τ, 0, τ, 2τ), σo = 0.1 and
Ω(α1, α2, α3, β1, β2, β3, γ1γ2) = Ω(0, 0, 0, π/2, π/2, π/2, 0, 0))

single-photon click at output port-2. The output operators for this case are defined
as

Π1 =

∫ ∞
−∞

â†1(ω5)â
†
1(ω8)â

†
1(ω11) |000〉 〈000| â1(ω5)â1(ω8)â1(ω11)dω5dω8dω11, (3.33)

and

Π2 =

∫ ∞
−∞

â†2(ω6) |0〉 〈0| â†2(ω6)dω6, (3.34)

the coincidence probability for this case ca be written as

P202,310 = s 〈1111|U †Π1 ⊗ Π2U |1111〉s , (3.35)

so the coincidence probability is

P202,310 =F9 (F10)
∗e−σ

2τ2 + F9 (F11)
∗e−3σ

2τ2 + F9 (F12)
∗e−6σ

2τ2+

F10 (F9)
∗e−σ

2τ2 + F10 (F11)
∗e−σ

2τ2 + F10 (F12)
∗e−3σ

2τ2+

F11 (F9)
∗e−3σ

2τ2 + F11 (F10)
∗e−σ

2τ2 + F11 (F12)
∗e−σ

2τ2+

F12 (F9)
∗e−6σ

2τ2 + F12 (F10)
∗e−3σ

2τ2 + F12 (F11)
∗e−σ

2τ2+

F9 (F9)
∗ + F10 (F10)

∗ + F11 (F11)
∗ + F12 (F12)

∗ (3.36)

Where F’s are the probability coefficients and are given as

F1 = U2
11U13U33; F2 = U2

11U13U33; F3 = U11U
2
13U31; F4 = U11U

2
13U31;
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Figure 3.12

F5 = U11U31U
2
33; F6 = U11U31U

2
33; F7 = U13U

2
31U33; F8 = U13U

2
31U33;

F9 = U2
11U13U23; F10 = U2

11U13U23; F11 = U11U
2
13U21; F12 = U11U

2
13U21;

F13 = U11U21U
2
23; F14 = U11U21U

2
23; F15 = U13U

2
21U23; F16 = U13U

2
21U23;

F17 = U2
21U23U33; F18 = U2

21U23U33; F19 = U21U
2
23U31; F20 = U21U

2
23U31;

F21 = U21U31U
2
33; F22 = U21U31U

2
33; F23 = U23U

2
31U33; F24 = U23U

2
31U33;

(3.37)

The coincidence probability plot against the time-delays introduced between the
arrival of the photons at input ports of the balanced beam-splitter is shown in
Fig.(3.13). This Coincidence probability plot shows that the probability of having
the above defined output coincidence pattern is minimum and is equal to the value
of the permanent of the adjacent scattering matrix, when there is no time-delays
introduced between the arrival of the photon at the input ports. This Coincidence
probability increases with the increase in the length of the time-delays introduced
between the arrival of the photons till specific point and then again starts decreasing.
Rest of the cases as mentioned in Fig.(3.1) are discussed in Appendix(B.5,...,B.9).

3.2.4 Tetra-Photon Click on Output-1 and no Click on
Output-2 and Output-3

In this section, we shall discuss the coincidence probability of having a tetra-photon
click on any of the three output ports when we inject bi-photon pulses at input
port-1 and at input port-3 of a balanced beam-splitter. Which can be visualized
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Figure 3.13: (with T (τ1, τ2, τ3, τ4) = T (−τ, 0, τ, 2τ), σo = 0.1 and
Ω(α1, α2, α3, β1, β2, β3, γ1γ2) = Ω(0, 0, 0, π/2, π/2, π/2, 0, 0))

from Fig.(3.14) First of all, we shall discuss the coincidence probability for the first

Figure 3.14

output coincidence pattern in Fig.(3.14) which shows that we get a tetra-photon
click at output port-1 and no clicks on output port-2 and output port-3. The input
state for this case is same as defined in Eq.(3.23) and the output operator is define
as,

Π1 =

∫ ∞
−∞

â†1(ω5)â
†
1(ω8)â

†
1(ω11)â

†
1(ω14) |0000〉 〈0000| â1(ω5)â1(ω8)â1(ω11)â1(ω14)dω5dω8dω11dω14,

(3.38)
the coincidence probability for this case can be written as,

P202,400 = s 〈1111|U †Π1U |1111〉s , (3.39)
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the probability coefficient for this case are defined as,

V4 = U2
11U

2
13 (3.40)

so,

P202,400 = V4 (V4)
∗. (3.41)

One can clearly see from this relation, the coincidence probability for this case
does not depend of the time-delays τ introduced between the arrival of the photons
at input ports of the balanced beam-splitter. Rest of the cases as mentioned in
Fig.(3.1) are discussed in Appendix(B.10,B.11).

3.3 Bi-Photon Input pulses at Input-2 and Input-

3

In this section, we shall discuss the possible output coincidence patterns for the
case, where we inject a bi-photon pulses in input port-2 and input port-3 but the
input port-1 remains in dark and shall calculate the coincidence probabilities for
these possible output coincidence patterns. After calculating these coincidence
probabilities, we shall plot them against the time-delays τ introduced between the
arrivals of these input photons at input ports and shall see how these coincidence
probabilities varies with the increase and decease in the length of the time-delays
”τ” introduced between the arrival of the photons at input ports.

3.3.0.1 Bi-Photon Click on Output-1 and Output-2 and no Click on
Output-3

In this case, we shall discuss one of the possible output coincidence pattern, in
which we get a bi-photon click at output port-1 and output port-2 for the case
where we have injected a bi-photon pulse in input port-2 and port-3 as shown in
Fig.(3.15). The output operators for this specific case are the same as defined in
Eq.(3.2) and Eq.(3.3) and the input state is defined as

|1111〉s =

∫ ∞
−∞

φ(ω1)φ(ω2)φ(ω3)φ(ω4) exp (−iω1τ1) exp (−iω2τ2) exp (−iω3τ3)

exp (−iω4τ4)â
†
2(ω1)â

†
2(ω2)â

†
3(ω3)â

†
3(ω4) |0000〉 dω1dω2dω3dω4,

(3.42)

the coincidence probability for this case is defined as

P022,220 = s 〈1111|U †Π1 ⊗ Π2U |1111〉s , (3.43)
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Figure 3.15

the probability coefficients defined for the cases where we get bi-photon pulses at
output ports are defined as

C1 = U2
12U

2
23; C2 = U12U22U13U23; C3 = U12U22U23U13; C4 = U22U12U13U23;

C5 = U22U12U23U13; C6 = U2
22U

2
13; C7 = U2

12U
2
33; C8 = U12U32U13U33;

C9 = U12U32U33U13; C10 = U32U12U13U33; C11 = U32U12U33U13; C12 = U2
32U

2
13;

C13 = U2
22U

2
33; C14 = U22U32U23U33; C15 = U22U32U33U23; C16 = U32U22U23U33;

C17 = U32U22U33U23; C18 = U2
32U

2
23; (3.44)

so the coincidence probability is

P022,220 =C1 (C2)
∗e−σ

2τ2 + C1 (C3)
∗e−3σ

2τ2 + C1 (C4)
∗e−3σ

2τ2 + C1 (C5)
∗e−5σ

2τ2+

C1 (C6)
∗e−8σ

2τ2 + C2 (C1)
∗e−σ

2τ2 + C2 (C3)
∗e−σ

2τ2 + C2 (C4)
∗e−σ

2τ2+

C2 (C5)
∗e−2σ

2τ2 + C2 (C6)
∗e−5σ

2τ2 + C3 (C1)
∗e−3σ

2τ2 + C3 (C2)
∗e−σ

2τ2+

C3 (C4)
∗e−2σ

2τ2 + C3 (C5)
∗e−σ

2τ2 + C3 (C6)
∗e−3σ

2τ2 + C4 (C1)
∗e−3σ

2τ2+

C4 (C2)
∗e−σ

2τ2 + C4 (C3)
∗e−2σ

2τ2 + C4 (C5)
∗e−σ

2τ2 + C4 (C6)
∗e−3σ

2τ2+

C5 (C1)
∗e−5σ

2τ2 + C5 (C2)
∗e−2σ

2τ2 + C5 (C3)
∗e−σ

2τ2 + C5 (C4)
∗e−σ

2τ2+

C5 (C6)
∗e−σ

2τ2 + C6 (C1)
∗e−8σ

2τ2 + C6 (C2)
∗e−5σ

2τ2 + C6 (C3)
∗e−3σ

2τ2+

C6 (C4)
∗e−3σ

2τ2 + C6 (C5)
∗e−σ

2τ2 + C1 (C1)
∗ + C2 (C2)

∗ + C3 (C3)
∗+

C4 (C4)
∗ + C5 (C5)

∗ + C6 (C6)
∗. (3.45)

The plot of the coincidence probability against the time-delays τ introduced between
the arrivals of the photons at input ports of a balanced beam-splitter is shown in
Fig.(3.16). This plot shows that the coincidence probability of getting a bi-photon
click at output port-1 and output port-2 is minimum and is equal to the value
of the permanent of the adjacent scattering matrix but not zero when there is
no time-delay introduced between the arrival of the photons at input ports. The
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coincidence probability of having this desired output increases with the increase
in length of the time-delay τ but at specific point it gradually becomes constant.
Rest of the cases as mentioned in Fig.(3.1) are discussed in Appendix(C.1,C.2).

Figure 3.16: (with T (τ1, τ2, τ3, τ4) = T (−τ, 0, τ, 2τ), σo = 0.1 and
Ω(α1, α2, α3, β1, β2, β3, γ1γ2) = Ω(0, 0, 0, π/2, π/2, π/2, 0, 0))

3.3.1 Bi-Photon Click on Output-1 and Single-Photon Click
on Output-2 and Output-3

Figure 3.17

In this section, we shall discuss the case where we get a bi-photon click at one
output port and single-photon clicks at other output ports. Four photons can be
distributed in this pattern in three ways which can be visualized from Fig.(3.17).
First of all, we shall discuss the first output coincidence pattern from the left in
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Fig.(??), which shows the output port-1 clicks twice and port-2 and port-3 click
once. The input state for this case is already been defined in Eq.(3.42) and the
output operators are defined as

Π1 =

∫ ∞
−∞

â†1(ω5)â
†
1(ω8) |00〉 〈00| â1(ω5)â1(ω8)dω5dω8, (3.46)

Π2 =

∫ ∞
−∞

â†2(ω6) |0〉 〈0| â2(ω6)dω6, (3.47)

and

Π3 =

∫ ∞
−∞

â†3(ω7) |0〉 〈0| â3(ω7)dω7, (3.48)

the coincidence probability for this case is defined as

P022,211 = 〈1111|s U †Π1 ⊗ Π2 ⊗ Π3U |1111〉s , (3.49)

so the coincidence probability for this case is,

P022,211 = (R1)
∗R1 + e−σ

2τ2 (R2)
∗R1 + e−σ

2τ2 (R3)
∗R1 + e−3σ

2τ2 (R4)
∗R1+

e−3σ
2τ2 (R5)

∗R1 + e−4σ
2τ2 (R6)

∗R1 + e−3σ
2τ2 (R7)

∗R1 + e−6σ
2τ2 (R8)

∗R1+

e−5σ
2τ2 (R9)

∗R1 + e−7σ
2τ2 (R10)

∗R1 + e−8σ
2τ2 (R11)

∗R1 + e−9σ
2τ2 (R12)

∗R1+

e−σ
2τ2 (R1)

∗R2 + (R2)
∗R2 + e−3σ

2τ2 (R3)
∗R2 + e−σ

2τ2 (R4)
∗R2+

e−4σ
2τ2 (R5)

∗R2 + e−3σ
2τ2 (R6)

∗R2 + e−6σ
2τ2 (R7)

∗R2 + e−3σ
2τ2 (R8)

∗R2+

e−7σ
2τ2 (R9)

∗R2 + e−5σ
2τ2 (R10)

∗R2 + e−9σ
2τ2 (R11)

∗R2 + e−8σ
2τ2 (R12)

∗R2+

e−σ
2τ2 (R1)

∗R3 + e−3σ
2τ2 (R2)

∗R3 + (R3)
∗R3 + e−4σ

2τ2 (R4)
∗R3+

e−σ
2τ2 (R5)

∗R3 + e−3σ
2τ2 (R6)

∗R3 + e−σ
2τ2 (R7)

∗R3 + e−7σ
2τ2 (R8)

∗R3+

e−2σ
2τ2 (R9)

∗R3 + e−6σ
2τ2 (R10)

∗R3 + e−5σ
2τ2 (R11)

∗R3 + e−7σ
2τ2 (R12)

∗R3+

e−3σ
2τ2 (R1)

∗R4 + e−σ
2τ2 (R2)

∗R4 + e−4σ
2τ2 (R3)

∗R4 + (R4)
∗R4+

e−3σ
2τ2 (R5)

∗R4 + e−σ
2τ2 (R6)

∗R4 + e−7σ
2τ2 (R7)

∗R4 + e−σ
2τ2 (R8)

∗R4+

e−6σ
2τ2 (R9)

∗R4 + e−2σ
2τ2 (R10)

∗R4 + e−7σ
2τ2 (R11)

∗R4 + e−5σ
2τ2 (R12)

∗R4+

e−3σ
2τ2 (R1)

∗R5 + e−4σ
2τ2 (R2)

∗R5 + e−σ
2τ2 (R3)

∗R5 + e−3σ
2τ2 (R4)

∗R5+

(R5)
∗R5 + e−σ

2τ2 (R6)
∗R5 + e−2σ

2τ2 (R7)
∗R5 + e−5σ

2τ2 (R8)
∗R5+

e−σ
2τ2 (R9)

∗R5 + e−3σ
2τ2 (R10)

∗R5 + e−3σ
2τ2 (R11)

∗R5 + e−4σ
2τ2 (R12)

∗R5+

e−4σ
2τ2 (R1)

∗R6 + e−3σ
2τ2 (R2)

∗R6 + e−3σ
2τ2 (R3)

∗R6 + e−σ
2τ2 (R4)

∗R6+

e−σ
2τ2 (R5)

∗R6 + (R6)
∗R6 + e−5σ

2τ2 (R7)
∗R6 + e−2σ

2τ2 (R8)
∗R6+
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e−3σ
2τ2 (R9)

∗R6 + e−σ
2τ2 (R10)

∗R6 + e−4σ
2τ2 (R11)

∗R6 + e−3σ
2τ2 (R12)

∗R6+

e−3σ
2τ2 (R1)

∗R7 + e−6σ
2τ2 (R2)

∗R7 + e−σ
2τ2 (R3)

∗R7 + e−7σ
2τ2 (R4)

∗R7+

e−2σ
2τ2 (R5)

∗R7 + e−5σ
2τ2 (R6)

∗R7 + (R7)
∗R7 + e−9σ

2τ2 (R8)
∗R7+

e−σ
2τ2 (R9)

∗R7 + e−7σ
2τ2 (R10)

∗R7 + e−3σ
2τ2 (R11)

∗R7 + e−6σ
2τ2 (R12)

∗R7+

e−6σ
2τ2 (R1)

∗R8 + e−3σ
2τ2 (R2)

∗R8 + e−7σ
2τ2 (R3)

∗R8 + e−σ
2τ2 (R4)

∗R8+

e−5σ
2τ2 (R5)

∗R8 + e−2σ
2τ2 (R6)

∗R8 + e−9σ
2τ2 (R7)

∗R8 + (R8)
∗R8+

e−7σ
2τ2 (R9)

∗R8 + e−σ
2τ2 (R10)

∗R8 + e−6σ
2τ2 (R11)

∗R8 + e−3σ
2τ2 (R12)

∗R8+

e−5σ
2τ2 (R1)

∗R9 + e−7σ
2τ2 (R2)

∗R9 + e−2σ
2τ2 (R3)

∗R9 + e−6σ
2τ2 (R4)

∗R9+

e−σ
2τ2 (R5)

∗R9 + e−3σ
2τ2 (R6)

∗R9 + e−σ
2τ2 (R7)

∗R9 + e−7σ
2τ2 (R8)

∗R9+

(R9)
∗R9 + e−4σ

2τ2 (R10)
∗R9 + e−σ

2τ2 (R11)
∗R9 + e−3σ

2τ2 (R12)
∗R9+

e−7σ
2τ2 (R1)

∗R10 + e−5σ
2τ2 (R2)

∗R10 + e−6σ
2τ2 (R3)

∗R10 + e−2σ
2τ2 (R4)

∗R10+

e−3σ
2τ2 (R5)

∗R10 + e−σ
2τ2 (R6)

∗R10 + e−7σ
2τ2 (R7)

∗R10 + e−σ
2τ2 (R8)

∗R10+

e−4σ
2τ2 (R9)

∗R10 + (R10)
∗R10 + e−3σ

2τ2 (R11)
∗R10 + e−σ

2τ2 (R12)
∗R10+

e−8σ
2τ2 (R1)

∗R11 + e−9σ
2τ2 (R2)

∗R11 + e−5σ
2τ2 (R3)

∗R11 + e−7σ
2τ2 (R4)

∗R11+

e−3σ
2τ2 (R5)

∗R11 + e−4σ
2τ2 (R6)

∗R11 + e−3σ
2τ2 (R7)

∗R11 + e−6σ
2τ2 (R8)

∗R11+

e−σ
2τ2 (R9)

∗R11 + e−3σ
2τ2 (R10)

∗R11 + (R11)
∗R11 + e−σ

2τ2 (R12)
∗R11+

e−9σ
2τ2 (R1)

∗R12 + e−8σ
2τ2 (R2)

∗R12 + e−7σ
2τ2 (R3)

∗R12 + e−5σ
2τ2 (R4)

∗R12+

e−4σ
2τ2 (R5)

∗R12 + e−3σ
2τ2 (R6)

∗R12 + e−6σ
2τ2 (R7)

∗R12 + e−3σ
2τ2 (R8)

∗R12+

e−3σ
2τ2 (R9)

∗R12 + e−σ
2τ2 (R10)

∗R12 + e−σ
2τ2 (R11)

∗R12 + (R12)
∗R12.

(3.50)

Where R’s are the probability coefficients and are defined as

R1 = U2
12U23U33; R2 = U2

12U23U33; R3 = U12U13U22U33; R4 = U12U13U23U32;

R5 = U12U13U22U33; R6 = U12U13U23U32; R7 = U12U13U22U33; R8 = U12U13U23U32;

R9 = U12U13U22U33; R10 = U12U13U23U32; R11 = U2
13U22U32; R12 = U2

13U22U32;
(3.51)

The plot of coincidence probability against time-delays τ introduced between the
incident photons at input ports of a balanced beam-splittre is shown in Fig.(3.18).
The plot shows the coincidence probability of having the above-mentioned output
coincidence pettern is maximum and is equal to the value of the permanent of
the adjacent scattering matrix when time-delays τ introduced between the arrival
of the incident photons is zero. The coincidence probability decreases with the
increase in the length of the time-delays introduced between the arrival of the
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photons at input ports of the balanced beam-splitter and eventually becomes zero
at a specific value of the time-delay. Rest of the cases as mentioned in Fig.(3.1)
are discussed in Appendix(C.3,C.4).

Figure 3.18: (with T (τ1, τ2, τ3, τ4) = T (−τ, 0, τ, 2τ), σo = 0.1 and
Ω(α1, α2, α3, β1, β2, β3, γ1γ2) = Ω(0, 0, 0, π/2, π/2, π/2, 0, 0))

3.3.2 Tri-Photon Click on Output-1, Single-Photon Click
on Output-2 and no click on Output-3

In this section, we shall discuss the coincidence probability for the case when we
get a tri-photon click at one output port, a single photon click at other output port
and one output port remains click-less as show in Fig.(3.19) for the incidence of
bi-photon clicks on input port-2 and input port-3 with time-delay τ is introduced
between their arrival at input ports. The input state has already been defined in
Eq.(3.42). The probability coefficients for this kind of output coincidence pattern
are defined as,

G1 = U2
22U23U33; G2 = U2

22U23U33; G3 = U22U
2
23U32; G4 = U22U

2
23U32

G5 = U22U32U
2
33; G6 = U22U32U

2
33; G7 = U23U

2
32U33; G8 = U23U

2
32U33;

G9 = U2
12U13U23; G10 = U2

12U13U23; G11 = U12U
2
13U22; G12 = U12U

2
13U22;

G13 = U2
12U13U33; G14 = U2

12U13U33; G15 = U12U
2
13U32; G16 = U12U

2
13U32;

G17 = U12U22U
2
23; G18 = U12U22U

2
23; G19 = U13U

2
22U23; G20 = U13U

2
22U23;

G21 = U12U32U
2
33; G22 = U12U32U

2
33; G23 = U13U

2
32U33; G24 = U13U

2
32U33;

(3.52)
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Figure 3.19

For this specific case, we shall discuss coincidence probability of the first output
coincidence pattern as shown in Fig.(3.19, in which we get a tri-photon click at
output port-1, a single-photon click at output port-2 and no click at output port-3.
The Input state will be the same as we defined in Eq.(3.42) and the output operators
for this case are defined as,

Π1 =

∫ ∞
−∞

â†1(ω5)â
†
1(ω8)â

†
1(ω11) |000〉 〈000| â1(ω5)â1(ω8)â1(ω11)dω5dω8dω11, (3.53)

and

Π2 =

∫ ∞
−∞

â†2(ω6) |0〉 〈0| â†2(ω6)dω6, (3.54)

the coincidence probability for this case ca be written as

P202,310 = s 〈1111|U †Π1 ⊗ Π2U |1111〉s , (3.55)

so the coincidence probability is

P202,310 =G9 (G10)
∗e−σ

2τ2 +G9 (G11)
∗e−3σ

2τ2 +G9 (G12)
∗e−6σ

2τ2+

G10 (G9)
∗e−σ

2τ2 +G10 (G11)
∗e−σ

2τ2 +G10 (G12)
∗e−3σ

2τ2+

G11 (G9)
∗e−3σ

2τ2 +G11 (G10)
∗e−σ

2τ2 +G11 (G12)
∗e−σ

2τ2+

G12 (G9)
∗e−6σ

2τ2 +G12 (G10)
∗e−3σ

2τ2 +G12 (G11)
∗e−σ

2τ2+

G9 (G9)
∗ +G10 (G10)

∗ +G11 (G11)
∗ +G12 (G12)

∗. (3.56)
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The plot of coincidence probability against the time-delays introduced between
the arrival of the photons at input ports of the balanced beam-splitter is shown in
Fig.(3.20). This plot shows that the probability of having the desired output is
relatively high and is equal to the value of the permanent of the adjacent scattering
matrix when the time-delays τ introduced between the arrival of the photon at
inputs of the beam-splitter is zero. The coincidence probability slightly increases
with the increase in the length of the time-delays τ and then gradually decreases
to zero with further increase in the length of the time-delays τ . Rest of the cases
as mentioned in Fig.(3.1) are discussed in Appendix(C.5,...,C.9).

Figure 3.20: (with T (τ1, τ2, τ3, τ4) = T (−τ, 0, τ, 2τ), σo = 0.1 and
Ω(α1, α2, α3, β1, β2, β3, γ1γ2) = Ω(0, 0, 0, π/2, π/2, π/2, 0, 0))

3.3.3 Tetra-Photon Click on Output-1 and no Click on
Output-2 and Output-3

In this section, we shall discuss the coincidence probability of having a tetra-photon
click on any of the three output ports when we inject bi-photon pulses at input
port-2 and at input port-3 of a balanced beam-splitter. Which can be visualized
from Fig.(3.21)

First of all, we shall discuss the coincidence probability of the first output
coincidence pattern as shown Fig.(3.21) which shows that we get a tetra-photon
pulse at output port-1 and no clicks at output-2 and at output-3. The input state
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Figure 3.21

for this case is same as defined in Eq.(3.42) and the output operator is define as,

Π1 =

∫ ∞
−∞

â†1(ω5)â
†
1(ω8)â

†
1(ω11)â

†
1(ω14) |0000〉 〈0000| â1(ω5)â1(ω8)â1(ω11)â1(ω14)

dω5dω8dω11dω14, (3.57)

the coincidence probability for this case can be written as,

P022,400 = s 〈1111|U †Π1U |1111〉s , (3.58)

the probability coefficient for this case are defined as,

V7 = U2
12U

2
13; (3.59)

so the coincidence probability is

P202,400 = V7 (V7)
∗. (3.60)

One can clearly see from this relation, the coincidence probability for this case
does not depend on the time-delays introduced between the arrival of the photons
at input ports of the balanced beam-splitter. Rest of the cases as mentioned in
Fig.(3.1) are discussed in Appendix(C.10,C.11).
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3.4 Comparison between the Coincidence Prob-

ability Plots

Here in the section we have compiled the coincidence probability plots to conclude
our work. We have compared the plots for the three type of input modes, we
discussed in earlier sections and divided them in three different types based on
the output modes. First mode in which two bi-photon clicks at any two output
ports(one on each) are observed, the second output mode is in which a bi-photon
click at one output port and two single-photon clicks at other two output port are
observed and the third output mode is in which a tri-photon click at one output
port, single-photon click at other output port and one output port remains click-less
are observed as shown in Fig.(3.1), Fig.(3.3) and Fig.(3.5) respectively and there
coincidence plot comparisons are shown in Fig.(3.22), Fig.(3.23) and Fig.(3.24)
respectively.

Figure 3.22: Comparison of the coincidence plots for the output mode when two
bi-photon clicks are observed at the output ports.
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Figure 3.23: Comparison of the coincidence plots for the output mode when a
bi-photon click and two single-photon clicks at output ports are observed.

Figure 3.24: Comparison of the coincidence plots for the output mode when a
tri-photon click and a single-photon click at any of the three output ports are
observed.
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3.5 Maximizing the Probabilities of the Outputs

We have generated a condition by varying the value of octuples Ω(α1, α2, α3, β1, β2, β3, γ1, γ2)
to reach a point where the distribution of the photon entering from input ports at
output port of a balanced beam-splitter breaks and we get the maximum probability
for one type of the output coincidence pattern and minimum for the other type of
output coincidence patterns. The condition is defined as,

Ω(α1, α2, α3, β1, β2, β3, γ1γ2) = Ω(0, 0, 0, π, π, π, 0, 0)), (3.61)

for this condition, we get the matrix form such as

R(Ω) =

0 0 1
0 −1 0
1 0 0

 . (3.62)

By using this condition for first kind of the input state in which we have injected a
bi-photon pulse at input port-1 and port-2, we get maximum probability of having
a bi-photon click at output port-2 and port-3 and minimum for all rest of the
output coincidence patterns,

P220,022 = 1,

P220,220 = P220,202 = P220,211 = P220,121 = P220,112 = P220,310 = P220,301 =

P220,130 = P220,031 = P220,103 = P220,013 = P220,400 = P220,040 = P220,004 = 0. (3.63)

For second kind of the input state in which we have injected a bi-photon pulse at
input port-1 and port-3, we get maximum probability of having a bi-photon click
at output port-1 and port-3 and minimum for all rest of the output coincidence
patterns,

P202,202 = 1,

P202,220 = P202,022 = P202,211 = P202,121 = P202,112 = P202,310 = P202,301 =

P202,130 = P202,031 = P202,103 = P202,013 = P202,400 = P202,040 = P202,004 = 0. (3.64)

For third kind of the input state in which we have injected a bi-photon pulse at
input port-2 and port-3, we get maximum probability of having a bi-photon click
at output port-1 and port-2 and minimum for all rest of the output coincidence
patterns,

P022,220 = 1,

P022,202 = P022,022 = P022,211 = P022,121 = P022,112 = P022,310 = P022,301 =

P022,130 = P022,031 = P022,103 = P022,013 = P022,400 = P022,040 = P022,004 = 0. (3.65)

We can maximize the probability of having any other kind of the output coincidence
by just adjusting the values of the octuples.
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3.6 Permanents and the Scattering Matrices

In this section we shall discuss, the permanents of matrices, the scattering matrices
and their formation.

3.6.1 Permanents

For a square matrix of any order, the permanents are similar kind of the function
to the determinants of the matrices. Both determinants and the permanents are
polynomials of the elements of the matrices. There is one function which more
general then the determinant and the permanent of a matrix is known as the
immanent of a matrix [21]. For a n × n matrix T = (tij) the permanent can be
written as

Perm(T ) =
∑
σ∈Sn

n∏
i=1

ti,σ(i). (3.66)

Where we can see that summation in above equation is over all elements σ of the Sn
symmetric group. Which covers all the numbers 1,2,3.....n and their permutations.
So the permanent of a 2× 2 matrix can written as,

Perm

(
t11 t12
t21 t22

)
= t11t22 + t12t21, (3.67)

now the permanent of a 3× 3 matrix,

Perm

t11 t12 t13
t21 t22 t23
t31 t32 t33

 =t11t22t33 + t11t23t32 + t12t21t33 + t12t23t311

+ t13t21t32 + t13t22t31. (3.68)

We can see the permanents are similar to the determinant, the only difference is
that in a permanent all signs between term are positive. That means all sign that
comes with permutations of the elements of the matrix T are ignored.

3.6.2 Scattering Matrices

The scattering matrix in reference to the combination of single photon pulses
and bi-photon pulses has been studied for the case where a bi-photon pulse and
two single photon pulses have injected at three input ports of a six port passive
quantum optical interferometer (with three input ports and three output ports)
and observed two bi-photon click at output ports [20]. We are using the same
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concept to calculate the scattering matrix for our work. The scattering matrix is
defined as

Tij := Uai,bj . (3.69)

Where ai and bj show the number of clicks at input ports and at output ports
respectively. For example, for a case where we have injected a bi-photon pulse at
input port-1 and at input port-2 which can be written as a(220). Then observed
a bi-photon click at output port-1 and at output port-2 which can be written as
b(220). The scattering matrix for this case can be written as,

T220,220 =


U11 U11 U12 U12

U11 U11 U12 U12

U21 U21 U22 U22

U21 U21 U22 U22

 , (3.70)

permanent of this matrix is

T220,220 = 4U2
12U

2
21 + 16U11U12U22U21 + 4U2

11U
2
22. (3.71)

Now for the case where we have the same input pattern but observed a bi-photon
click at output port-1 and single-photon click at output port-2 and at output port-3.
The scattering matrix for this case can be written as,

T220,211 =


U11 U11 U12 U13

U11 U11 U12 U13

U21 U21 U22 U23

U21 U21 U22 U23

 , (3.72)

permanent of this matrix is

T220,211 = 4U22U23U
2
11 + 8U13U21U22U11 + 8U12U21U23U11 + 4U12U13U

2
21. (3.73)

Now for the case where we have the same input pattern but observed a tri-
photon click at output port-1, single-photon click at output port-2 and output
port-3 remains click-less. The scattering matrix for this case can be written as,

T220,310 =


U11 U11 U11 U12

U11 U11 U11 U12

U21 U21 U21 U22

U21 U21 U21 U22

 , (3.74)

permanent of this matrix is

T220,310 = 12U21U22U
2
11 + 12U12U

2
21U11. (3.75)

Similarly, we can form the scattering matrices for all rest of the cases and can also
calculate the permanent of those matrices.
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Conclusion

We have studied SU(3) quantum photon interferometry using four photons with
bi-photon input pulses at each input port (at any two of three input ports) of the
6-channel passive optical quantum interferometer (three input and three output
channels).

We have observed all possible output coincidence patterns at output ports,
calculated their coincidence probabilities and plotted them against the time-delay τ
introduced between the arrival of the photons at input ports of the passive optical
quantum interferometer. For the ground knowledge of the quantum interferometry
and for the related knowledge of our problem, we have reviewed three research
papers. We have reviewed single-photon quantum interferometry by using the
SU(3) group theoretical approach and their coincidence landscape [4, 5] and the
quantum interferometry with multiple channel quantum interferometer and multiple
photons observing the permutational symmetries present in them [20].

We have then extensively studied various patterns in SU(3) quantum interferom-
etry with bi-photon injections, with time-delay τ between the arrival of the photons
at input ports. We have observed the peaks and dips for different coincidence for
different occurrences of the output photons at output ports of a six-channel passive
quantum optical interferometer with same input states. These dips and the peaks
are occurring due to the different combinations of the transmissions and reflections
of the input photons at interferometer. These dips and the peaks of the coincidence
plots are equal to the value of the permanents of the adjacent scattering matrices
related to the different output coincidence patterns.

We got three different kind of the plots, dips, peaks and bi-model distributions.
According to Hong-Ou-Mandel effect when the photons reach the output ports
after combination of reflections and transmissions, they form a specific output
coincidence pattern. We get a dip in output coincidence probability plot when
the photons reaches the output ports after specific combination of reflections and
transmissions with zero time delay τ between the arrival of the photons at input
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ports, destructively interfere at output ports to form a dip in coincidence pattern.
Similarly, we get a peak in output coincidence probability plot when the photons
reaches the output ports after specific combination of reflections and transmissions
with zero time delay τ between the arrival of the photons at input ports, construc-
tively interfere at output ports to form a specific output coincidence pattern. We
get a bi-model distribution in coincidence probability plot when the photons reach
the output ports after specific combination of the transmissions and reflection
to form a specific output coincidence pattern, interfere constructively and equal
interfere destructively at output ports. We have also observed a pattern in the
occurrences of the dips and the peaks. According to that pattern, we get a peak
when the photons leave the output ports in the way that they entered the input
ports. Which mean we get a peak when the photons enter the input port-1 and
input port-2 and leave the output port-1 and output port-2 irrespective of the
arrangements of the clicks. In some cases we get a divergence from the pattern.

We have observed that by just adjusting the value of the octuples
Ω(α1, α2, α3, β1, β2, β3, γ1γ2), we can break the superposition between different out-
put coincidence patterns and can create condition to get maximum probability of
having the desired output coincidence pattern which can be helpful in many prob-
lems. By using this theory developed in our analysis, we can study the properties
of the SU(3) transition matrix.
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Appendix

A Rest of the Cases of Section 3.1

In this case, we have injected a bi-photon input pulse at input port 1, input port 2
and nothing input port 3 of a six port passive quantum optical interferometer and
then calculate and plotted the coincidence probabilities of all output coincidence
patterns as shown in Fig.3.1, Fig.3.3,Fig.3.5 and Fig.3.7.

A.1 Bi-Photon Clicks on Output-1 and Output-3

In this section, we shall discuss the coincidence probability for the case, where we
get a bi-photon clicks on the output port-1 and output port-3 and shall see how the
coincidence probability varies with the change in length of time-delays τ between
the arrival of the photons at input ports as shown in Fig.(3.1). The coincidence
probability for this case is define as,

P220,202 = 〈1111|s U †Π1 ⊗ Π3U |1111〉s , (A.1)

the output operators used for this specific case are already been defined in Eq.(3.2)
and Eq.(3.4) and the input state will be the same as before in Eq.(3.5). We
are discussing the different output for the same input state. The Coincidence
probability is defined as,

P220,202 =A7 (A8)
∗e−σ

2τ2 + A7 (A9)
∗e−3σ

2τ2 + A7 (A10)
∗e−3σ

2τ2 + A7 (A11)
∗e−5σ

2τ2

+ A7 (A12)
∗e−8σ

2τ2 + A8 (A7)
∗e−σ

2τ2 + A8 (A9)
∗e−σ

2τ2 + A8 (A10)
∗e−σ

2τ2+

A8 (A11)
∗e−2σ

2τ2 + A8 (A12)
∗e−5σ

2τ2 + A9 (A7)
∗e−3σ

2τ2 + A9 (A8)
∗e−σ

2τ2+

A9 (A10)
∗e−2σ

2τ2 + A9 (A11)
∗e−σ

2τ2 + A9 (A12)
∗e−3σ

2τ2 + A10 (A7)
∗e−3σ

2τ2+

A10 (A8)
∗e−σ

2τ2 + A10 (A9)
∗e−2σ

2τ2 + A10 (A11)
∗e−σ

2τ2 + A10 (A12)
∗e−3σ

2τ2+
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A11 (A7)
∗e−5σ

2τ2 + A11 (A8)
∗e−2σ

2τ2 + A11 (A9)
∗e−σ

2τ2 + A11 (A10)
∗e−σ

2τ2+

A11 (A12)
∗e−σ

2τ2 + A12 (A7)
∗e−8σ

2τ2 + A12 (A8)
∗e−5σ

2τ2 + A12 (A9)
∗e−3σ

2τ2+

A12 (A10)
∗e−3σ

2τ2 + A12 (A11)
∗e−σ

2τ2 + A7 (A7)
∗ + A8 (A8)

∗ + A9 (A9)
∗+

A10 (A10)
∗ + A11 (A11)

∗ + A12 (A12)
∗. (A.2)

The probability coefficients are defined in Eq.(3.7) and the plot of the coincidence
probability against the time delay τ introduced between the arrival of the photons
at input ports is shown in Fig.(A.1). This plot shows that the probability of
having the desired output is least when there is no time delay τ introduced between
the arrival of the photons and this value of the coincidence probability with zero
time delay is equal to the permanent of adjacent scattering matrix and it starts
increasing as the length of the time-delay increases and at specific limit it again
starts decreasing as shown in Fig.(A.1).

Figure A.1: (with T (τ1, τ2, τ3, τ4) = T (−τ, 0, τ, 2τ), σo = 0.1 and
Ω(α1, α2, α3, β1, β2, β3, γ1γ2) = Ω(0, 0, 0, π/2, π/2, π/2, 0, 0))

A.2 Bi-Photon Clicks on Output-2 and Output-3

In this section, we shall discuss the coincidence probability for the case, where we
get a bi-photon clicks on the output port-2 and output port-3 and shall see how
the coincidence probability changes with change in the length of the time-delays
τ between the arrival of the photons at input ports as shown in Fig.(3.1). The
coincidence probability for this case is defined as,

P220,022 = 〈1111|s U †Π2 ⊗ Π3U |1111〉s , (A.3)
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the output operators used for this specific case are are already been defined in
Eq.(3.3) and Eq.(3.4) but the input state will remain the same as defined before in
Eq.(3.5). We are discussing the different output pattern for the same input state.
The coincidence probability is,

P220,022 =A13 (A14)
∗e−σ

2τ2 + A13 (A15)
∗e−3σ

2τ2 + A13 (A16)
∗e−3σ

2τ2+

A13 (A17)
∗e−5σ

2τ2 + A13 (A18)
∗e−8σ

2τ2 + A14 (A13)
∗e−σ

2τ2+

A14 (A15)
∗e−σ

2τ2 + A14 (A16)
∗e−σ

2τ2 + A14 (A17)
∗e−2σ

2τ2+

A14 (A18)
∗e−5σ

2τ2 + A15 (A13)
∗e−3σ

2τ2 + A15 (A14)
∗e−σ

2τ2+

A15 (A16)
∗e−2σ

2τ2 + A15 (A17)
∗e−σ

2τ2 + A15 (A18)
∗e−3σ

2τ2+

A16 (A13)
∗e−3σ

2τ2 + A16 (A14)
∗e−σ

2τ2 + A16 (A15)
∗e−2σ

2τ2+

A16 (A17)
∗e−σ

2τ2 + A16 (A18)
∗e−3σ

2τ2 + A17 (A13)
∗e−5σ

2τ2+

A17 (A14)
∗e−2σ

2τ2 + A17 (A15)
∗e−σ

2τ2 + A17 (A16)
∗e−σ

2τ2+

A17 (A18)
∗e−σ

2τ2 + A18 (A13)
∗e−8σ

2τ2 + A18 (A14)
∗e−5σ

2τ2+

A18 (A15)
∗e−3σ

2τ2 + A18 (A16)
∗e−3σ

2τ2 + A18 (A17)
∗e−σ

2τ2+

A13 (A13)
∗ + A14 (A14)

∗ + A15 (A15)
∗ + A16 (A16)

∗+

A17 (A17)
∗ + A18 (A18)

∗ (A.4)

where the probability coefficients are defined in Eq.(3.7) and the coincidence plot
against the time-delay τ between the arrival of the photons at the input ports of
beam-splitter is shown in Fig.(A.2). This plot shows that the probability of having
the desired output is least when there is no time-delays between the arrival of the
photons at input ports and this value of the coincidence probability with no time
delay between the arrival of the photons at input ports is equal to the value of
the permanent of the adjacent scattering matrix. It starts increasing as the length
of the time-delay introduced between the arrival of the photons at input ports
increases as shown in Fig.(A.2).

A.3 Bi-Photon Click on Output-2 and Single-Photon Click
on Output-1 and Output-3

In this case, we shall discuss the coincidence probability for the bi-photon click on
the output port-2 and a single-photon click on output port-1 and output port-3
for the same input state in which we inject bi-photon pulse in input port-1 and
input port-2 with time-delay τ between every arrival pf the photon at input ports
as shown in Fig.(3.3). The input state for this case is the same as defined before in
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Figure A.2: (with T (τ1, τ2, τ3, τ4) = T (−τ, 0, τ, 2τ), σo = 0.1 and
Ω(α1, α2, α3, β1, β2, β3, γ1γ2) = Ω(0, 0, 0, π/2, π/2, π/2, 0, 0))

the Eq.(3.5). The output operators for this case are defined as,

Π1 =

∫ ∞
−∞

â†1(ω5) |0〉 〈0| â1(ω5)dω5, (A.5)

Π2 =

∫ ∞
−∞

â†2(ω6)â
†
2(ω9) |00〉 〈00| â2(ω6)â2(ω9)dω6dω9, (A.6)

and

Π3 =

∫ ∞
−∞

â†3(ω7) |0〉 〈0| â3(ω7)dω7, (A.7)

the coincidence probability for this case is defined as

P220,121 = 〈1111|s U †Π1 ⊗ Π2 ⊗ Π3U |1111〉s , (A.8)

The probability coefficients for this case are defined as,

M1 = U12U
2
21U32; M2 = U12U

2
21U32; M3 = U11U21U22U32; M4 = U12U21U22U31;

M5 = U11U21U22U32; M6 = U12U21U22U31; M7 = U11U21U22U32; M8 = U12U21U22U31;

M9 = U11U21U22U32; M10 = U12U21U22U31; M11 = U11U
2
22U31; M12 = U11U

2
22U31;

(A.9)

so the coincidence probability for this case is

P220,121 = (M1)
∗M1 + e−σ

2τ2 (M2)
∗M1 + e−σ

2τ2 (M3)
∗M1 + e−3σ

2τ2 (M4)
∗M1+
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e−3σ
2τ2 (M5)

∗M1 + e−4σ
2τ2 (M6)

∗M1 + e−3σ
2τ2 (M7)

∗M1 + e−6σ
2τ2 (M8)

∗M1+

e−5σ
2τ2 (M9)

∗M1 + e−7σ
2τ2 (M10)

∗M1 + e−8σ
2τ2 (M11)

∗M1 + e−9σ
2τ2 (M12)

∗M1+

e−σ
2τ2 (M1)

∗M2 + (M2)
∗M2 + e−3σ

2τ2 (M3)
∗M2 + e−σ

2τ2 (M4)
∗M2+

e−4σ
2τ2 (M5)

∗M2 + e−3σ
2τ2 (M6)

∗M2 + e−6σ
2τ2 (M7)

∗M2 + e−3σ
2τ2 (M8)

∗M2+

e−7σ
2τ2 (M9)

∗M2 + e−5σ
2τ2 (M10)

∗M2 + e−9σ
2τ2 (M11)

∗M2 + e−8σ
2τ2 (M12)

∗M2+

e−σ
2τ2 (M1)

∗M3 + e−3σ
2τ2 (M2)

∗M3 + (M3)
∗M3 + e−4σ

2τ2 (M4)
∗M3+

e−σ
2τ2 (M5)

∗M3 + e−3σ
2τ2 (M6)

∗M3 + e−σ
2τ2 (M7)

∗M3 + e−7σ
2τ2 (M8)

∗M3+

e−2σ
2τ2 (M9)

∗M3 + e−6σ
2τ2 (M10)

∗M3 + e−5σ
2τ2 (M11)

∗M3 + e−7σ
2τ2 (M12)

∗M3+

e−3σ
2τ2 (M1)

∗M4 + e−σ
2τ2 (M2)

∗M4 + e−4σ
2τ2 (M3)

∗M4 + (M4)
∗M4+

e−3σ
2τ2 (M5)

∗M4 + e−σ
2τ2 (M6)

∗M4 + e−7σ
2τ2 (M7)

∗M4 + e−σ
2τ2 (M8)

∗M4+

e−6σ
2τ2 (M9)

∗M4 + e−2σ
2τ2 (M10)

∗M4 + e−7σ
2τ2 (M11)

∗M4 + e−5σ
2τ2 (M12)

∗M4+

e−3σ
2τ2 (M1)

∗M5 + e−4σ
2τ2 (M2)

∗M5 + e−σ
2τ2 (M3)

∗M5 + e−3σ
2τ2 (M4)

∗M5+

(M5)
∗M5 + e−σ

2τ2 (M6)
∗M5 + e−2σ

2τ2 (M7)
∗M5 + e−5σ

2τ2 (M8)
∗M5+

e−σ
2τ2 (M9)

∗M5 + e−3σ
2τ2 (M10)

∗M5 + e−3σ
2τ2 (M11)

∗M5 + e−4σ
2τ2 (M12)

∗M5+

e−4σ
2τ2 (M1)

∗M6 + e−3σ
2τ2 (M2)

∗M6 + e−3σ
2τ2 (M3)

∗M6 + e−σ
2τ2 (M4)

∗M6+

e−σ
2τ2 (M5)

∗M6 + (M6)
∗M6 + e−5σ

2τ2 (M7)
∗M6 + e−2σ

2τ2 (M8)
∗M6+

e−3σ
2τ2 (M9)

∗M6 + e−σ
2τ2 (M10)

∗M6 + e−4σ
2τ2 (M11)

∗M6 + e−3σ
2τ2 (M12)

∗M6+

e−3σ
2τ2 (M1)

∗M7 + e−6σ
2τ2 (M2)

∗M7 + e−σ
2τ2 (M3)

∗M7 + e−7σ
2τ2 (M4)

∗M7+

e−2σ
2τ2 (M5)

∗M7 + e−5σ
2τ2 (M6)

∗M7 + (M7)
∗M7 + e−9σ

2τ2 (M8)
∗M7+

e−σ
2τ2 (M9)

∗M7 + e−7σ
2τ2 (M10)

∗M7 + e−3σ
2τ2 (M11)

∗M7 + e−6σ
2τ2 (M12)

∗M7+

e−6σ
2τ2 (M1)

∗M8 + e−3σ
2τ2 (M2)

∗M8 + e−7σ
2τ2 (M3)

∗M8 + e−σ
2τ2 (M4)

∗M8+

e−5σ
2τ2 (M5)

∗M8 + e−2σ
2τ2 (M6)

∗M8 + e−9σ
2τ2 (M7)

∗M8 + (M8)
∗M8+

e−7σ
2τ2 (M9)

∗M8 + e−σ
2τ2 (M10)

∗M8 + e−6σ
2τ2 (M11)

∗M8 + e−3σ
2τ2 (M12)

∗M8+

e−5σ
2τ2 (M1)

∗M9 + e−7σ
2τ2 (M2)

∗M9 + e−2σ
2τ2 (M3)

∗M9 + e−6σ
2τ2 (M4)

∗M9+

e−σ
2τ2 (M5)

∗M9 + e−3σ
2τ2 (M6)

∗M9 + e−σ
2τ2 (M7)

∗M9 + e−7σ
2τ2 (M8)

∗M9+

(M9)
∗M9 + e−4σ

2τ2 (M10)
∗M9 + e−σ

2τ2 (M11)
∗M9 + e−3σ

2τ2 (M12)
∗M9+

e−7σ
2τ2 (M1)

∗M10 + e−5σ
2τ2 (M2)

∗M10 + e−6σ
2τ2 (M3)

∗M10 + e−2σ
2τ2 (M4)

∗M10+

e−3σ
2τ2 (M5)

∗M10 + e−σ
2τ2 (M6)

∗M10 + e−7σ
2τ2 (M7)

∗M10 + e−σ
2τ2 (M8)

∗M10+

e−4σ
2τ2 (M9)

∗M10 + (M10)
∗M10 + e−3σ

2τ2 (M11)
∗M10 + e−σ

2τ2 (M12)
∗M10+
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e−8σ
2τ2 (M1)

∗M11 + e−9σ
2τ2 (M2)

∗M11 + e−5σ
2τ2 (M3)

∗M11 + e−7σ
2τ2 (M4)

∗M11+

e−3σ
2τ2 (M5)

∗M11 + e−4σ
2τ2 (M6)

∗M11 + e−3σ
2τ2 (M7)

∗M11 + e−6σ
2τ2 (M8)

∗M11+

e−σ
2τ2 (M9)

∗M11 + e−3σ
2τ2 (M10)

∗M11 + (M11)
∗M11 + e−σ

2τ2 (M12)
∗M11+

e−9σ
2τ2 (M1)

∗M12 + e−8σ
2τ2 (M2)

∗M12 + e−7σ
2τ2 (M3)

∗M12 + e−5σ
2τ2 (M4)

∗M12+

e−4σ
2τ2 (M5)

∗M12 + e−3σ
2τ2 (M6)

∗M12 + e−6σ
2τ2 (M7)

∗M12 + e−3σ
2τ2 (M8)

∗M12+

e−3σ
2τ2 (M9)

∗M12 + e−σ
2τ2 (M10)

∗M12 + e−σ
2τ2 (M11)

∗M12 + (M12)
∗M12.

(A.10)

The plot of coincidence probability against the time-delays between the arrival of
the photons at input ports is shown Fig.(A.3). This plot shows, the coincidence
probability of having desired output pattern is maximum when the time-delays
between the arrival of the photons at input ports is zero and this value of the
coincidence probability with no time delay is equal to the value of the permanent
of the adjacent scattering matrix. Then coincidence probability gradually starts
decreasing as the length of the time-delays increases between the arrival of the
photons at the input ports, which can be visualized from Fig.(A.3)

Figure A.3: (with T (τ1, τ2, τ3, τ4) = T (−τ, 0, τ, 2τ), σo = 0.1 and
Ω(α1, α2, α3, β1, β2, β3, γ1γ2) = Ω(0, 0, 0, π/2, π/2, π/2, 0, 0))
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A.4 Bi-Photon Click on Output-3 and Single-Photon Click
on Output-1 and Output-2

In this case, we shall discuss the coincidence probability of a bi-photon click on
the output port-3 and a single-photon click on output port-1 and output port-2,
for the same input state with a bi-photon click on input port-1 and input port-2
with time-delay between arrival of every the photon as shown in Fig.(3.3). The
input state for this case is the same as defined before in the Eq.(3.5). The output
operators for this case are defined as,

Π1 =

∫ ∞
−∞

â†1(ω5) |0〉 〈0| â1(ω5)dω5, (A.11)

Π2 =

∫ ∞
−∞

â†2(ω6) |0〉 〈0| â2(ω6)dω6, (A.12)

and

Π3 =

∫ ∞
−∞

â†3(ω7)â
†
3(ω10) |00〉 〈00| â3(ω7)â3(ω10)dω7dω10, (A.13)

the coincidence probability for this case is defined as,

P220,112 = 〈1111|s U †Π1 ⊗ Π2 ⊗ Π3U |1111〉s , (A.14)

and the probability coefficients for this case are,

N1 = U12U22U
2
31; N2 = U12U22U

2
31; N3 = U11U22U31U32; N4 = U12U21U31U32;

N5 = U11U22U31U32; N6 = U12U21U31U32; N7 = U11U22U31U32; N8 = U12U21U31U32;

N9 = U11U22U31U32; N10 = U12U21U31U32; N11 = U11U21U
2
32; N12 = U11U21U

2
32;

(A.15)

so the coincidence probability is

P220,112 = (N1)
∗N1 + e−σ

2τ2 (N2)
∗N1 + e−σ

2τ2 (N3)
∗N1 + e−3σ

2τ2 (N4)
∗N1+

e−3σ
2τ2 (N5)

∗N1 + e−4σ
2τ2 (N6)

∗N1 + e−3σ
2τ2 (N7)

∗N1 + e−6σ
2τ2 (N8)

∗N1+

e−5σ
2τ2 (N9)

∗N1 + e−7σ
2τ2 (N10)

∗N1 + e−8σ
2τ2 (N11)

∗N1 + e−9σ
2τ2 (N12)

∗N1+

e−σ
2τ2 (N1)

∗N2 + (N2)
∗N2 + e−3σ

2τ2 (N3)
∗N2 + e−σ

2τ2 (N4)
∗N2+

e−4σ
2τ2 (N5)

∗N2 + e−3σ
2τ2 (N6)

∗N2 + e−6σ
2τ2 (N7)

∗N2 + e−3σ
2τ2 (N8)

∗N2+

e−7σ
2τ2 (N9)

∗N2 + e−5σ
2τ2 (N10)

∗N2 + e−9σ
2τ2 (N11)

∗N2 + e−8σ
2τ2 (N12)

∗N2+

e−σ
2τ2 (N1)

∗N3 + e−3σ
2τ2 (N2)

∗N3 + (N3)
∗N3 + e−4σ

2τ2 (N4)
∗N3+

e−σ
2τ2 (N5)

∗N3 + e−3σ
2τ2 (N6)

∗N3 + e−σ
2τ2 (N7)

∗N3 + e−7σ
2τ2 (N8)

∗N3+
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e−2σ
2τ2 (N9)

∗N3 + e−6σ
2τ2 (N10)

∗N3 + e−5σ
2τ2 (N11)

∗N3 + e−7σ
2τ2 (N12)

∗N3+

e−3σ
2τ2 (N1)

∗N4 + e−σ
2τ2 (N2)

∗N4 + e−4σ
2τ2 (N3)

∗N4 + (N4)
∗N4+

e−3σ
2τ2 (N5)

∗N4 + e−σ
2τ2 (N6)

∗N4 + e−7σ
2τ2 (N7)

∗N4 + e−σ
2τ2 (N8)

∗N4+

e−6σ
2τ2 (N9)

∗N4 + e−2σ
2τ2 (N10)

∗N4 + e−7σ
2τ2 (N11)

∗N4 + e−5σ
2τ2 (N12)

∗N4+

e−3σ
2τ2 (N1)

∗N5 + e−4σ
2τ2 (N2)

∗N5 + e−σ
2τ2 (N3)

∗N5 + e−3σ
2τ2 (N4)

∗N5+

(N5)
∗N5 + e−σ

2τ2 (N6)
∗N5 + e−2σ

2τ2 (N7)
∗N5 + e−5σ

2τ2 (N8)
∗N5+

e−σ
2τ2 (N9)

∗N5 + e−3σ
2τ2 (N10)

∗N5 + e−3σ
2τ2 (N11)

∗N5 + e−4σ
2τ2 (N12)

∗N5+

e−4σ
2τ2 (N1)

∗N6 + e−3σ
2τ2 (N2)

∗N6 + e−3σ
2τ2 (N3)

∗N6 + e−σ
2τ2 (N4)

∗N6+

e−σ
2τ2 (N5)

∗N6 + (N6)
∗N6 + e−5σ

2τ2 (N7)
∗N6 + e−2σ

2τ2 (N8)
∗N6+

e−3σ
2τ2 (N9)

∗N6 + e−σ
2τ2 (N10)

∗N6 + e−4σ
2τ2 (N11)

∗N6 + e−3σ
2τ2 (N12)

∗N6+

e−3σ
2τ2 (N1)

∗N7 + e−6σ
2τ2 (N2)

∗N7 + e−σ
2τ2 (N3)

∗N7 + e−7σ
2τ2 (N4)

∗N7+

e−2σ
2τ2 (N5)

∗N7 + e−5σ
2τ2 (N6)

∗N7 + (N7)
∗N7 + e−9σ

2τ2 (N8)
∗N7+

e−σ
2τ2 (N9)

∗N7 + e−7σ
2τ2 (N10)

∗N7 + e−3σ
2τ2 (N11)

∗N7 + e−6σ
2τ2 (N12)

∗N7+

e−6σ
2τ2 (N1)

∗N8 + e−3σ
2τ2 (N2)

∗N8 + e−7σ
2τ2 (N3)

∗N8 + e−σ
2τ2 (N4)

∗N8+

e−5σ
2τ2 (N5)

∗N8 + e−2σ
2τ2 (N6)

∗N8 + e−9σ
2τ2 (N7)

∗N8 + (N8)
∗N8+

e−7σ
2τ2 (N9)

∗N8 + e−σ
2τ2 (N10)

∗N8 + e−6σ
2τ2 (N11)

∗N8 + e−3σ
2τ2 (N12)

∗N8+

e−5σ
2τ2 (N1)

∗N9 + e−7σ
2τ2 (N2)

∗N9 + e−2σ
2τ2 (N3)

∗N9 + e−6σ
2τ2 (N4)

∗N9+

e−σ
2τ2 (N5)

∗N9 + e−3σ
2τ2 (N6)

∗N9 + e−σ
2τ2 (N7)

∗N9 + e−7σ
2τ2 (N8)

∗N9+

(N9)
∗N9 + e−4σ

2τ2 (N10)
∗N9 + e−σ

2τ2 (N11)
∗N9 + e−3σ

2τ2 (N12)
∗N9+

e−7σ
2τ2 (N1)

∗N10 + e−5σ
2τ2 (N2)

∗N10 + e−6σ
2τ2 (N3)

∗N10 + e−2σ
2τ2 (N4)

∗N10+

e−3σ
2τ2 (N5)

∗N10 + e−σ
2τ2 (N6)

∗N10 + e−7σ
2τ2 (N7)

∗N10 + e−σ
2τ2 (N8)

∗N10+

e−4σ
2τ2 (N9)

∗N10 + (N10)
∗N10 + e−3σ

2τ2 (N11)
∗N10 + e−σ

2τ2 (N12)
∗N10+

e−8σ
2τ2 (N1)

∗N11 + e−9σ
2τ2 (N2)

∗N11 + e−5σ
2τ2 (N3)

∗N11 + e−7σ
2τ2 (N4)

∗N11+

e−3σ
2τ2 (N5)

∗N11 + e−4σ
2τ2 (N6)

∗N11 + e−3σ
2τ2 (N7)

∗N11 + e−6σ
2τ2 (N8)

∗N11+

e−σ
2τ2 (N9)

∗N11 + e−3σ
2τ2 (N10)

∗N11 + (N11)
∗N11 + e−σ

2τ2 (N12)
∗N11+

e−9σ
2τ2 (N1)

∗N12 + e−8σ
2τ2 (N2)

∗N12 + e−7σ
2τ2 (N3)

∗N12 + e−5σ
2τ2 (N4)

∗N12+

e−4σ
2τ2 (N5)

∗N12 + e−3σ
2τ2 (N6)

∗N12 + e−6σ
2τ2 (N7)

∗N12 + e−3σ
2τ2 (N8)

∗N12+

e−3σ
2τ2 (N9)

∗N12 + e−σ
2τ2 (N10)

∗N12 + e−σ
2τ2 (N11)

∗N12 + (N12)
∗N12.

(A.16)
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The plot of the coincidence probability against the time-delay τ between the arrival
of the photons at input ports is shown in Fig.(A.4). This plot shows that the
coincidence probability of having a bi-photon click at output port-1 and a single-
photon click at the output port-1 and output port-2 simultaneously, for the case
when we incident a bi-photon pulse at input port-1 and input port-2 such that
there is a time delay τ is introduced between the arrival of the each photon at input
port is minimum when there is no time delay between the arrival of the photons
which is equal to the value of the permanent of the adjacent scattering matrix, The
coincidence probability starts gradually increasing as the length of the time delay
τ between the arrival of the photons at input ports of the balanced beam splitter
increases and after a specific increase in the length of the time-delay τ it again
starts decreasing. As we can see from Fig.(A.4)

Figure A.4: (with T (τ1, τ2, τ3, τ4) = T (−τ, 0, τ, 2τ), σo = 0.1 and
Ω(α1, α2, α3, β1, β2, β3, γ1γ2) = Ω(0, 0, 0, π/2, π/2, π/2, 0, 0))

A.5 Tri-Photon Click on Output-1, Single-Photon Click on
Output-3 and no click on Output-2

Now we shall discuss the coincidence probability for the output pattern, where we
get a tri-photon click at output port-1 and a single-photon click on output port-3
for the same input state as defined in Eq.(3.5). For this case the output operators
are defined as,
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Π1 =

∫ ∞
−∞

â†1(ω5)â
†
1(ω8)â

†
1(ω11) |000〉 〈000| â†1(ω5)â

†
1(ω8)â

†
1(ω11)dω5dω8dω11,

(A.17)
and

Π3 =

∫ ∞
−∞

â†3(ω7) |0〉 〈0| â3(ω7)dω7, (A.18)

the coincidence probability for this case can be written as

P220,301 = s 〈1111|U †Π1 ⊗ Π3U |1111〉s , (A.19)

so, the coincidence probability for this case is

P220,301 =D9 (D10)
∗e−σ

2τ2 +D9 (D11)
∗e−3σ

2τ2 +D9 (D12)
∗e−6σ

2τ2+

D10 (D9)
∗e−σ

2τ2 +D10 (D11)
∗e−σ

2τ2 +D10 (D12)
∗e−3σ

2τ2+

D11 (D9)
∗e−3σ

2τ2 +D11 (D10)
∗e−σ

2τ2 +D11 (D12)
∗e−σ

2τ2+

D12 (D9)
∗e−6σ

2τ2 +D12 (D10)
∗e−3σ

2τ2 +D12 (D11)
∗e−σ

2τ2+

D9 (D9)
∗ +D10 (D10)

∗ +D11 (D11)
∗ +D12 (D12)

∗ (A.20)

The plot of the coincidence probability for this specific output pattern against the
time-delays τ between the arrival of the photons at input port of the balanced
beam-splitter is shown in the Fig.(A.5). This plot in shows that the coincidence
probability of having the desired output pattern, where we get a tri-photon click
at output port-1 and a single-photon click at output port-3 is minimum but not
zero, when the time-delay introduced between the arrival of the photons at the
input ports of the balanced beam-splitter is zero and is equal to the value of
the permanent of the adjacent scattering matrix. The coincidence probability
starts gradually increasing as the length of the time-delay τ increases, as we see in
Fig.(A.5).

A.6 Tri-Photon Click on Output-2, Single-Photon Click on
Output-1 and no click on Output-3

Now we shall discuss the output state, when we get a tri-photon click at output
port-2 and a single-photon click at output port-1 for the input state as defined in
Eq.(3.5). For this case the output operators are defined as,

Π1 =

∫ ∞
−∞

â†1(ω5) |0〉 〈0| â†1(ω5)dω5, (A.21)
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Figure A.5: (with T (τ1, τ2, τ3, τ4) = T (−τ, 0, τ, 2τ), σo = 0.1 and
Ω(α1, α2, α3, β1, β2, β3, γ1γ2) = Ω(0, 0, 0, π/2, π/2, π/2, 0, 0))

and

Π2 =

∫ ∞
−∞

â†2(ω6)â
†
2(ω9)â

†
2(ω12) |000〉 〈000| â2(ω6)â2(ω9)â2(ω12)dω6dω9dω12,

(A.22)
the coincidence probability for this case can be written as

P220,130 = s 〈1111|U †Π1 ⊗ Π2U |1111〉s , (A.23)

so, the coincidence probability for this case is

P220,130 =D5 (D6)
∗e−σ

2τ2 +D5 (D7)
∗e−3σ

2τ2 +D5 (D8)
∗e−6σ

2τ2 +D6 (D5)
∗e−σ

2τ2+

D6 (D7)
∗e−σ

2τ2 +D6 (D8)
∗e−3σ

2τ2 +D7 (D5)
∗e−3σ

2τ2 +D7 (D6)
∗e−σ

2τ2+

D7 (D8)
∗e−σ

2τ2 +D8 (D5)
∗e−6σ

2τ2 +D8 (D6)
∗e−3σ

2τ2 +D8 (D7)
∗e−σ

2τ2+

D5 (D5)
∗ +D6 (D6)

∗ +D7 (D7)
∗ +D8 (D8)

∗. (A.24)

The plot of the coincidence probability for this specific case against the time-delay
introduced between the arrival of the photons at input port of the balanced beam-
splitter is shown in the Fig.(A.6). This plot shows that the coincidence probability
of having the desired output pattern, where we get a tri-photon click at output
port-2 and a single-photon click at output port-1 is maximum when the length of
the time delay introduced between the arrival of the photons at the input ports of
the balanced beam-splitter is zero and is equal to the value of the permanent of
adjacent scattering matrix. The coincidence probability starts gradually decreasing
as the length of the time-delay τ increases.
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Figure A.6: (with T (τ1, τ2, τ3, τ4) = T (−τ, 0, τ, 2τ), σo = 0.1 and
Ω(α1, α2, α3, β1, β2, β3, γ1γ2) = Ω(0, 0, 0, π/2, π/2, π/2, 0, 0))

A.7 Tri-Photon Click on Output-2, Single-Photon Click on
Output-3 and no click on Output-1

Now we shall discuss the coincidence probability for output pattern, where we get a
tri-photon click at output port-2 and a single-photon click on output port-3 for the
input state as defined in Wq(3.5). For this case the output operators are defined
as,

Π2 =

∫ ∞
−∞

â†2(ω6)â
†
2(ω9)â

†
2(ω12) |000〉 〈000| â2(ω6)â2(ω9)â2(ω12)dω6dω9dω12,

(A.25)
and

Π3 =

∫ ∞
−∞

â†3(ω7) |0〉 〈0| â3(ω7)dω7, (A.26)

the coincidence probability for this case can be written as

P220,031 = s 〈1111|U †Π2 ⊗ Π3U |1111〉s , (A.27)

so, the coincidence probability for this case is

P220,031 =D13 (D14)
∗e−σ

2τ2 +D13 (D15)
∗e−3σ

2τ2 +D13 (D16)
∗e−6σ

2τ2+

D14 (D13)
∗e−σ

2τ2 +D14 (D15)
∗e−σ

2τ2 +D14 (D16)
∗e−3σ

2τ2+

D15 (D13)
∗e−3σ

2τ2 +D15 (D14)
∗e−σ

2τ2 +D15 (D16)
∗e−σ

2τ2+



80 APPENDIX A. APPENDIX

D16 (D13)
∗e−6σ

2τ2 +D16 (D14)
∗e−3σ

2τ2 +D16 (D15)
∗e−σ

2τ2+

D13 (D13)
∗ +D14 (D14)

∗ +D15 (D15)
∗ +D16 (D16)

∗ (A.28)

The plot of the coincidence probability against the time delay τ between the arrival
of the photons at input port of the balanced beam splitter is shown in the Fig.(A.7).
This plot shows that the probability of having the desired output is greater when
we introduce the time-delays between the arrival of the photon at input ports
of the beam splitter and is equal to the value of the permanent of the adjacent
scattering matrix. It slightly increases with the increase in the length of the time
delay and then gradually decreases to zero with further increase in the length of
the time-delay τ introduced.

Figure A.7: (with T (τ1, τ2, τ3, τ4) = T (−τ, 0, τ, 2τ), σo = 0.1 and
Ω(α1, α2, α3, β1, β2, β3, γ1γ2) = Ω(0, 0, 0, π/2, π/2, π/2, 0, 0))

A.8 Tri-Photon Click on Output-3, Single-Photon Click on
Output-1 and no click on Output-2

Now we shall discuss the coincidence probability of output pattern, where we get a
tri-photon click at output port-3 and a single-photon click on output port-1, for the
input state as defined in Eq.(3.5). For this case the output operators are defined
as,

Π1 =

∫ ∞
−∞

â†1(ω5) |0〉 〈0| â†1(ω5)dω5, (A.29)
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and

Π3 =

∫ ∞
−∞

â†3(ω7)â
†
3(ω10)â

†
3(ω13) |000〉 〈000| â3(ω7)â3(ω10)â3(ω13)dω7dω10dω13,

(A.30)
the coincidence probability for this case can be written as

P220,103 = s 〈1111|U †Π1 ⊗ Π3U |1111〉s , (A.31)

so, the coincidence probability for this case is

P220,103 =D17 (D18)
∗e−σ

2τ2 +D17 (D19)
∗e−3σ

2τ2 +D17 (D20)
∗e−6σ

2τ2+

D18 (D17)
∗e−σ

2τ2 +D18 (D19)
∗e−σ

2τ2 +D18 (D20)
∗e−3σ

2τ2+

D19 (D17)
∗e−3σ

2τ2 +D19 (D18)
∗e−σ

2τ2 +D19 (D20)
∗e−σ

2τ2+

D20 (D17)
∗e−6σ

2τ2 +D20 (D18)
∗e−3σ

2τ2 +D20 (D19)
∗e−σ

2τ2+

D17 (D17)
∗ +D18 (D18)

∗ +D19 (D19)
∗ +D20 (D20)

∗ (A.32)

The plot of the coincidence probability against the time-delays between the arrival
of the photons at input port of the balanced beam-splitter is shown in the Fig.(A.8).
This plot shows that the coincidence probability of having tri-photon click at
output port-3 and a single-photon pulse at output port-1 is minimum, when the
time-delays introduced between the arrival of the photons at the input ports of the
balanced beam-splitter are zero and is equal to the value of the permanent of the
adjacent scattering matrix. The coincidence probability starts gradually increasing
as the length of time-delays τ increases and then again decreases when the length
of the time-delays reaches a specific point.

A.9 Tri-Photon Click on Output-3, Single-Photon Click on
Output-2 and no click on Output-1

Now we shall discuss the coincidence probability of output pattern, where we get a
tri-photon click at output port-3 and a single-photon click on output port-2, for the
input state as defined in Eq.(3.5). For this case the output operators are defined
as,

Π2 =

∫ ∞
−∞

â†2(ω6) |0〉 〈0| â2(ω6)dω6, (A.33)

and

Π3 =

∫ ∞
−∞

â†3(ω7)â
†
3(ω10)â

†
3(ω13) |000〉 〈000| â3(ω7)â3(ω10)â3(ω13)dω7dω10dω13,

(A.34)
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Figure A.8: (with T (τ1, τ2, τ3, τ4) = T (−τ, 0, τ, 2τ), σo = 0.1 and
Ω(α1, α2, α3, β1, β2, β3, γ1γ2) = Ω(0, 0, 0, π/2, π/2, π/2, 0, 0))

the coincidence probability for this case can be written as

P220,013 = s 〈1111|U †Π2 ⊗ Π3U |1111〉s , (A.35)

so, the coincidence probability for this case is

P220,013 =D21 (D22)
∗e−σ

2τ2 +D21 (D23)
∗e−3σ

2τ2 +D21 (D24)
∗e−6σ

2τ2+

D22 (D21)
∗e−σ

2τ2 +D22 (D23)
∗e−σ

2τ2 +D22 (D24)
∗e−3σ

2τ2+

D23 (D21)
∗e−3σ

2τ2 +D23 (D22)
∗e−σ

2τ2 +D23 (D24)
∗e−σ

2τ2+

D24 (D21)
∗e−6σ

2τ2 +D24 (D22)
∗e−3σ

2τ2 +D24 (D23)
∗e−σ

2τ2+

D21 (D21)
∗ +D22 (D22)

∗ +D23 (D23)
∗ +D24 (D24)

∗ (A.36)

The plot of the coincidence probability against the time delay τ between the arrival
of the photons at input port of the balanced beam splitter is shown in the Fig.(A.9).
This plot shows that the probability of having the desire output is greater when
we introduce the time-delay between the arrival of the photon at input ports
of the balanced beam splitter and is equal to the value of the permanent of the
adjacent scattering matrix for this specific caes. The coincidence probability slightly
increases with the increase in the length of the time delay τ and then gradually
decreases to zero with further increase in the length of the time delay introduced.
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Figure A.9: (with T (τ1, τ2, τ3, τ4) = T (−τ, 0, τ, 2τ), σo = 0.1 and
Ω(α1, α2, α3, β1, β2, β3, γ1γ2) = Ω(0, 0, 0, π/2, π/2, π/2, 0, 0))

A.10 Tetra-Photon Click on Output-2 and no Click on
Output-1 and Output-3

In this case, we shall discuss the coincidence probability for the case when we get
a tetra-photon pulse at output port-2 and no click at output port-1 and output
port-3. For this case the input state will same as defined in Eq.(3.5) and the output
operators are defined as,

Π2 =

∫ ∞
−∞

â†2(ω6)â
†
2(ω9)â

†
2(ω12)â

†
1(ω15) |0000〉 〈0000|

â2(ω6)â2(ω9)â2(ω12)â2(ω15)dω6dω9dω12dω15, (A.37)

the coincidence probability for this case can be written as,

P220,040 = s 〈1111|U †Π2U |1111〉s , (A.38)

and the probability coefficient for this case are defined as,

V2 = U2
21U

2
22; (A.39)

so, the coincidence probability for this case is

P220,040 = V2 (V2)
∗. (A.40)

We can clearly see. the coincidence probability for this specific case does not depend
on the time delay introduced between the arrival of the photons at input ports of a
balanced beam splitter.
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A.11 Tetra-Photon Click on Output-3 and no Click on
Output-1 and Output-2

In this case, we shall discuss the coincidence probability for the case when we get
a tetra-photon pulse at output port-3 and no click at output port-1 and output
port-2. For this case the input state will same as defined in Eq.(3.5) and the output
operators are defined as,

Π3 =

∫ ∞
−∞

â†3(ω7)â
†
3(ω10)â

†
3(ω13)â

†
3(ω16) |0000〉 〈0000|

â3(ω7)â3(ω10)â3(ω13)â3(ω16)dω7dω10dω13dω16, (A.41)

the coincidence probability for this case can be written as,

P220,004 = s 〈1111|U †Π3U |1111〉s , (A.42)

and the probability coefficient for this case are defined as,

V3 = U2
31U

2
32 (A.43)

so, the coincidence probability for this case is

P220,004 = V3 (V3)
∗. (A.44)

We can clearly see. the coincidence probability for this specific case does not depend
on the time delay introduced between the arrival of the photons at input ports of a
balanced beam splitter.

B Rest of the Cases of Section 3.2

In this case, we have injected a bi-photon input pulse at input port 1, input port 3
and nothing input port 2 of a six port passive quantum optical interferometer and
then calculate and plotted the coincidence probabilities of all output coincidence
patterns as shown in Fig.3.8, Fig.3.10,Fig.3.12 and Fig.3.14.

B.1 Bi-Photon Click on Output-1 and Output-3 and no
Click on Output-2

In this case, we shall discuss the coincidence probability for one of the possible
output coincidence pattern such that we have a bi-photon click at output port-1
and at output port-3. For this kind of the output we have taken the same input
pattern in which, we have injected a bi-photon pulse in input port-1 and in input
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port-3 as shown in Fig.(3.8). The output operators for this specific case are the
same as defined in Eq.(3.2) and Eq.(3.4), the input state is same as defined in
Eq.(3.23) and the coincidence probability for this case can be written as,

P202,202 = s 〈1111|U †Π1 ⊗ Π3U |1111〉s , (B.1)

so, the coincidence probability is

P202,202 =B7 (B8)
∗e−σ

2τ2 +B7 (B9)
∗e−3σ

2τ2 +B7 (B10)
∗e−3σ

2τ2 +B7 (B11)
∗e−5σ

2τ2+

B7 (B12)
∗e−8σ

2τ2 +B8 (B7)
∗e−σ

2τ2 +B8 (B9)
∗e−σ

2τ2 +B8 (B10)
∗e−σ

2τ2+

B8 (B11)
∗e−2σ

2τ2 +B8 (B12)
∗e−5σ

2τ2 +B9 (B7)
∗e−3σ

2τ2 +B9 (B8)
∗e−σ

2τ2+

B9 (B10)
∗e−2σ

2τ2 +B9 (B11)
∗e−σ

2τ2 +B9 (B12)
∗e−3σ

2τ2 +B10 (B7)
∗e−3σ

2τ2+

B10 (B8)
∗e−σ

2τ2 +B10 (B9)
∗e−2σ

2τ2 +B10 (B11)
∗e−σ

2τ2 +B10 (B12)
∗e−3σ

2τ2+

B11 (B7)
∗e−5σ

2τ2 +B11 (B8)
∗e−2σ

2τ2 +B11 (B9)
∗e−σ

2τ2 +B11 (B10)
∗e−σ

2τ2+

B11 (B12)
∗e−σ

2τ2 +B12 (B7)
∗e−8σ

2τ2 +B12 (B8)
∗e−5σ

2τ2 +B12 (B9)
∗e−3σ

2τ2+

B12 (B10)
∗e−3σ

2τ2 +B12 (B11)
∗e−σ

2τ2 +B7 (B7)
∗ +B8 (B8)

∗ +B9 (B9)
∗+

B10 (B10)
∗ +B11 (B11)

∗ +B12 (B12)
∗. (B.2)

Where B’s are the probability coefficients and already been defined in the Eq.(3.25).
The plot of the coincidence probability against the time-delay τ introduced between
the arrival of the photons at input ports is shown in Fig.(B.1). The plot shows
that the coincidence probability of having the output coincidence pattern such that
we get a bi-photon click on output port-1 and output port-2 is maximum, when
the time delay τ introduced between the arrival of the photon at input ports is
maximum and equal to the value of the permanent of adjacent scattering matrix.
This coincidence probability starts decreasing as the length of the time-delay
introduced between the arrival of the photons at input ports increases and there is
a point when the probability of having such output coincidence become zero.

B.2 Bi-Photon Click on Output-2 and Output-3 and no
Click on Output-1

In this section, we shall discuss the output coincidence pattern where have a
bi-photon click at output port-2 and at output port-3 and no click at output port-1,
for the input state as define in Eq.(3.23). The output operators for this case are
defined in Eq.(3.3) and Eq.(3.4) and the coincidence probability for this case can
be written as,

P202,022 = s 〈1111|U †Π2 ⊗ Π3U |1111〉s , (B.3)
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Figure B.1: (with T (τ1, τ2, τ3, τ4) = T (−τ, 0, τ, 2τ), σo = 0.1 and
Ω(α1, α2, α3, β1, β2, β3, γ1γ2) = Ω(0, 0, 0, π/2, π/2, π/2, 0, 0))

where B’s are the probability coefficients and already been defined in the Eq.(3.25).
The coincidence probability is

P202,022 =B13 (B14)
∗e−σ

2τ2 +B13 (B15)
∗e−3σ

2τ2 +B13 (B16)
∗e−3σ

2τ2 +B13 (B17)
∗e−5σ

2τ2+

B13 (B18)
∗e−8σ

2τ2 +B14 (B13)
∗e−σ

2τ2 +B14 (B15)
∗e−σ

2τ2 +B14 (B16)
∗e−σ

2τ2+

B14 (B17)
∗e−2σ

2τ2 +B14 (B18)
∗e−5σ

2τ2 +B15 (B13)
∗e−3σ

2τ2 +B15 (B14)
∗e−σ

2τ2+

B15 (B16)
∗e−2σ

2τ2 +B15 (B17)
∗e−σ

2τ2 +B15 (B18)
∗e−3σ

2τ2 +B16 (B13)
∗e−3σ

2τ2+

B16 (B14)
∗e−σ

2τ2 +B16 (B15)
∗e−2σ

2τ2 +B16 (B17)
∗e−σ

2τ2 +B16 (B18)
∗e−3σ

2τ2+

B17 (B13)
∗e−5σ

2τ2 +B17 (B14)
∗e−2σ

2τ2 +B17 (B15)
∗e−σ

2τ2 +B17 (B16)
∗e−σ

2τ2+

B17 (B18)
∗e−σ

2τ2 +B18 (B13)
∗e−8σ

2τ2 +B18 (B14)
∗e−5σ

2τ2 +B18 (B15)
∗e−3σ

2τ2+

B18 (B16)
∗e−3σ

2τ2 +B18 (B17)
∗e−σ

2τ2 +B13 (B13)
∗ +B14 (B14)

∗ +B15 (B15)
∗+

B16 (B16)
∗ +B17 (B17)

∗ +B18 (B18)
∗. (B.4)

The coincidence probability plot against the time-delays introduced between the
arrival of the photons at input ports of the balanced beam-splitter is shown in
Fig.(B.2). The plot shows that the coincidence probability of having a bi-photon
click at output port-2 and output port-3, when we have injection a bi-photon
click at input port-1 and input port-3 is minimum and equal to the value of
the permanent of the adjacent scattering matrix when there are no time-delays
τ introduced between the arrival of the photon at input ports of the balanced
beam-splitter. The coincidence probability starts increasing when the length of
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time-delays introduced between the arrival of the photons at input ports increases,
first sharply the slowly and after a specific increase in the length of the time-delay
the coincidence probability becomes constant.

Figure B.2: (with T (τ1, τ2, τ3, τ4) = T (−τ, 0, τ, 2τ), σo = 0.1 and
Ω(α1, α2, α3, β1, β2, β3, γ1γ2) = Ω(0, 0, 0, π/2, π/2, π/2, 0, 0))

B.3 Bi-Photon Click on Output-2 and Single-Photon Click
on Output-1 and Output-3

In the section, we shall discuss the coincidence probability for the second output
pattern shown in Fig.(3.10). In this case we get a bi-photon click at output port-2
and single-photon clicks at output port-1 and output port-3. Input state has
already been defined in Eq.(3.23) and output operators are defined as

Π1 =

∫ ∞
−∞

â†1(ω5) |0〉 〈0| â1(ω5)dω5, (B.5)

Π2 =

∫ ∞
−∞

â†2(ω6)â
†
2(ω9) |00〉 〈00| â2(ω6)â2(ω9)dω6dω9, (B.6)

and

Π3 =

∫ ∞
−∞

â†3(ω7) |0〉 〈0| â3(ω7)dω7, (B.7)

the coincidence probability for this case can be written as

P202,121 = 〈1111|s U †Π1 ⊗ Π2 ⊗ Π3U |1111〉s , (B.8)
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so the coincidence probability is,

P202,121 = (P1)
∗P1 + e−σ

2τ2 (P2)
∗P1 + e−σ

2τ2 (P3)
∗P1 + e−3σ

2τ2 (P4)
∗P1+

e−3σ
2τ2 (P5)

∗P1 + e−4σ
2τ2 (P6)

∗P1 + e−3σ
2τ2 (P7)

∗P1 + e−6σ
2τ2 (P8)

∗P1+

e−5σ
2τ2 (P9)

∗P1 + e−7σ
2τ2 (P10)

∗P1 + e−8σ
2τ2 (P11)

∗P1 + e−9σ
2τ2 (P12)

∗P1+

e−σ
2τ2 (P1)

∗P2 + (P2)
∗P2 + e−3σ

2τ2 (P3)
∗P2 + e−σ

2τ2 (P4)
∗P2+

e−4σ
2τ2 (P5)

∗P2 + e−3σ
2τ2 (P6)

∗P2 + e−6σ
2τ2 (P7)

∗P2 + e−3σ
2τ2 (P8)

∗P2+

e−7σ
2τ2 (P9)

∗P2 + e−5σ
2τ2 (P10)

∗P2 + e−9σ
2τ2 (P11)

∗P2 + e−8σ
2τ2 (P12)

∗P2+

e−σ
2τ2 (P1)

∗P3 + e−3σ
2τ2 (P2)

∗P3 + (P3)
∗P3 + e−4σ

2τ2 (P4)
∗P3+

e−σ
2τ2 (P5)

∗P3 + e−3σ
2τ2 (P6)

∗P3 + e−σ
2τ2 (P7)

∗P3 + e−7σ
2τ2 (P8)

∗P3+

e−2σ
2τ2 (P9)

∗P3 + e−6σ
2τ2 (P10)

∗P3 + e−5σ
2τ2 (P11)

∗P3 + e−7σ
2τ2 (P12)

∗P3+

e−3σ
2τ2 (P1)

∗P4 + e−σ
2τ2 (P2)

∗P4 + e−4σ
2τ2 (P3)

∗P4 + (P4)
∗P4+

e−3σ
2τ2 (P5)

∗P4 + e−σ
2τ2 (P6)

∗P4 + e−7σ
2τ2 (P7)

∗P4 + e−σ
2τ2 (P8)

∗P4+

e−6σ
2τ2 (P9)

∗P4 + e−2σ
2τ2 (P10)

∗P4 + e−7σ
2τ2 (P11)

∗P4 + e−5σ
2τ2 (P12)

∗P4+

e−3σ
2τ2 (P1)

∗P5 + e−4σ
2τ2 (P2)

∗P5 + e−σ
2τ2 (P3)

∗P5 + e−3σ
2τ2 (P4)

∗P5+

(P5)
∗P5 + e−σ

2τ2 (P6)
∗P5 + e−2σ

2τ2 (P7)
∗P5 + e−5σ

2τ2 (P8)
∗P5+

e−σ
2τ2 (P9)

∗P5 + e−3σ
2τ2 (P10)

∗P5 + e−3σ
2τ2 (P11)

∗P5 + e−4σ
2τ2 (P12)

∗P5+

e−4σ
2τ2 (P1)

∗P6 + e−3σ
2τ2 (P2)

∗P6 + e−3σ
2τ2 (P3)

∗P6 + e−σ
2τ2 (P4)

∗P6+

e−σ
2τ2 (P5)

∗P6 + (P6)
∗P6 + e−5σ

2τ2 (P7)
∗P6 + e−2σ

2τ2 (P8)
∗P6+

e−3σ
2τ2 (P9)

∗P6 + e−σ
2τ2 (P10)

∗P6 + e−4σ
2τ2 (P11)

∗P6 + e−3σ
2τ2 (P12)

∗P6+

e−3σ
2τ2 (P1)

∗P7 + e−6σ
2τ2 (P2)

∗P7 + e−σ
2τ2 (P3)

∗P7 + e−7σ
2τ2 (P4)

∗P7+

e−2σ
2τ2 (P5)

∗P7 + e−5σ
2τ2 (P6)

∗P7 + (P7)
∗P7 + e−9σ

2τ2 (P8)
∗P7+

e−σ
2τ2 (P9)

∗P7 + e−7σ
2τ2 (P10)

∗P7 + e−3σ
2τ2 (P11)

∗P7 + e−6σ
2τ2 (P12)

∗P7+

e−6σ
2τ2 (P1)

∗P8 + e−3σ
2τ2 (P2)

∗P8 + e−7σ
2τ2 (P3)

∗P8 + e−σ
2τ2 (P4)

∗P8+

e−5σ
2τ2 (P5)

∗P8 + e−2σ
2τ2 (P6)

∗P8 + e−9σ
2τ2 (P7)

∗P8 + (P8)
∗P8+

e−7σ
2τ2 (P9)

∗P8 + e−σ
2τ2 (P10)

∗P8 + e−6σ
2τ2 (P11)

∗P8 + e−3σ
2τ2 (P12)

∗P8+

e−5σ
2τ2 (P1)

∗P9 + e−7σ
2τ2 (P2)

∗P9 + e−2σ
2τ2 (P3)

∗P9 + e−6σ
2τ2 (P4)

∗P9+

e−σ
2τ2 (P5)

∗P9 + e−3σ
2τ2 (P6)

∗P9 + e−σ
2τ2 (P7)

∗P9 + e−7σ
2τ2 (P8)

∗P9+

(P9)
∗P9 + e−4σ

2τ2 (P10)
∗P9 + e−σ

2τ2 (P11)
∗P9 + e−3σ

2τ2 (P12)
∗P9+

e−7σ
2τ2 (P1)

∗P10 + e−5σ
2τ2 (P2)

∗P10 + e−6σ
2τ2 (P3)

∗P10 + e−2σ
2τ2 (P4)

∗P10+



B. REST OF THE CASES OF SECTION 3.2 89

e−3σ
2τ2 (P5)

∗P10 + e−σ
2τ2 (P6)

∗P10 + e−7σ
2τ2 (P7)

∗P10 + e−σ
2τ2 (P8)

∗P10+

e−4σ
2τ2 (P9)

∗P10 + (P10)
∗P10 + e−3σ

2τ2 (P11)
∗P10 + e−σ

2τ2 (P12)
∗P10+

e−8σ
2τ2 (P1)

∗P11 + e−9σ
2τ2 (P2)

∗P11 + e−5σ
2τ2 (P3)

∗P11 + e−7σ
2τ2 (P4)

∗P11+

e−3σ
2τ2 (P5)

∗P11 + e−4σ
2τ2 (P6)

∗P11 + e−3σ
2τ2 (P7)

∗P11 + e−6σ
2τ2 (P8)

∗P11+

e−σ
2τ2 (P9)

∗P11 + e−3σ
2τ2 (P10)

∗P11 + (P11)
∗P11 + e−σ

2τ2 (P12)
∗P11+

e−9σ
2τ2 (P1)

∗P12 + e−8σ
2τ2 (P2)

∗P12 + e−7σ
2τ2 (P3)

∗P12 + e−5σ
2τ2 (P4)

∗P12+

e−4σ
2τ2 (P5)

∗P12 + e−3σ
2τ2 (P6)

∗P12 + e−6σ
2τ2 (P7)

∗P12 + e−3σ
2τ2 (P8)

∗P12+

e−3σ
2τ2 (P9)

∗P12 + e−σ
2τ2 (P10)

∗P12 + e−σ
2τ2 (P11)

∗P12 + (P12)
∗P12.

(B.9)

Where P’s are the probability coefficients and are given as

P1 = U13U
2
21U33; P2 = U13U

2
21U33; P3 = U11U21U23U33; P4 = U13U21U23U31;

P5 = U11U21U23U33; P6 = U13U21U23U31; P7 = U11U21U23U33; P8 = U13U21U23U31;

P9 = U11U21U23U33; P10 = U13U21U23U31; P11 = U11U
2
23U31; P12 = U11U

2
23U31.
(B.10)

The coincidence probability plot against the time-delays introduced between
the arrival of the photons at the input of the balanced beam-splitter is shown
in Fig.(B.3). This Coincidence probability plot shows that the probability of
having the above defined output coincidence patter is minimum when there is no
time-delays introduced between the arrival of the photon at the input ports and is
equal the value of the permanent of the adjacent scattering matrix. The value of
the coincidence probability starts increases with the increase in the length of the
time-delays introduced between the arrival of the photons till specific point and
then again starts decreasing.

B.4 Bi-Photon Click on Output-3 and Single-Photon Click
on Output-1 and Output-2

In the section, we shall discuss the coincidence probability of the third output
coincidence pattern shown in Fig.(3.10). In this case we get a bi-photon click at
output port-3 and single-photon clicks at output port-1 and output port-2. Input
state has already been defined in Eq.(3.23) and output operators are defined as

Π1 =

∫ ∞
−∞

â†1(ω5) |0〉 〈0| â1(ω5)dω5, (B.11)

Π2 =

∫ ∞
−∞

â†2(ω6)â
†
2(ω9) |00〉 〈00| â2(ω6)â2(ω9)dω6dω9, (B.12)
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Figure B.3: (with T (τ1, τ2, τ3, τ4) = T (−τ, 0, τ, 2τ), σo = 0.1 and
Ω(α1, α2, α3, β1, β2, β3, γ1γ2) = Ω(0, 0, 0, π/2, π/2, π/2, 0, 0))

and

Π3 =

∫ ∞
−∞

â†3(ω7)â
†
3(ω10) |00〉 〈00| â3(ω7)â3(ω10)dω7dω10, (B.13)

the coincidence probability for this case can be written as

P202,112 = 〈1111|s U †Π1 ⊗ Π2 ⊗ Π3U |1111〉s , (B.14)

so the coincidence probability for this case is,

P202,112 = (Q1)
∗Q1 + e−σ

2τ2 (Q2)
∗Q1 + e−σ

2τ2 (Q3)
∗Q1 + e−3σ

2τ2 (Q4)
∗Q1+

e−3σ
2τ2 (Q5)

∗Q1 + e−4σ
2τ2 (Q6)

∗Q1 + e−3σ
2τ2 (Q7)

∗Q1 + e−6σ
2τ2 (Q8)

∗Q1+

e−5σ
2τ2 (Q9)

∗Q1 + e−7σ
2τ2 (Q10)

∗Q1 + e−8σ
2τ2 (Q11)

∗Q1 + e−9σ
2τ2 (Q12)

∗Q1+

e−σ
2τ2 (Q1)

∗Q2 + (Q2)
∗Q2 + e−3σ

2τ2 (Q3)
∗Q2 + e−σ

2τ2 (Q4)
∗Q2+

e−4σ
2τ2 (Q5)

∗Q2 + e−3σ
2τ2 (Q6)

∗Q2 + e−6σ
2τ2 (Q7)

∗Q2 + e−3σ
2τ2 (Q8)

∗Q2+

e−7σ
2τ2 (Q9)

∗Q2 + e−5σ
2τ2 (Q10)

∗Q2 + e−9σ
2τ2 (Q11)

∗Q2 + e−8σ
2τ2 (Q12)

∗Q2+

e−σ
2τ2 (Q1)

∗Q3 + e−3σ
2τ2 (Q2)

∗Q3 + (Q3)
∗Q3 + e−4σ

2τ2 (Q4)
∗Q3+

e−σ
2τ2 (Q5)

∗Q3 + e−3σ
2τ2 (Q6)

∗Q3 + e−σ
2τ2 (Q7)

∗Q3 + e−7σ
2τ2 (Q8)

∗Q3+

e−2σ
2τ2 (Q9)

∗Q3 + e−6σ
2τ2 (Q10)

∗Q3 + e−5σ
2τ2 (Q11)

∗Q3 + e−7σ
2τ2 (Q12)

∗Q3+

e−3σ
2τ2 (Q1)

∗Q4 + e−σ
2τ2 (Q2)

∗Q4 + e−4σ
2τ2 (Q3)

∗Q4 + (Q4)
∗Q4+

e−3σ
2τ2 (Q5)

∗Q4 + e−σ
2τ2 (Q6)

∗Q4 + e−7σ
2τ2 (Q7)

∗Q4 + e−σ
2τ2 (Q8)

∗Q4+
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e−6σ
2τ2 (Q9)

∗Q4 + e−2σ
2τ2 (Q10)

∗Q4 + e−7σ
2τ2 (Q11)

∗Q4 + e−5σ
2τ2 (Q12)

∗Q4+

e−3σ
2τ2 (Q1)

∗Q5 + e−4σ
2τ2 (Q2)

∗Q5 + e−σ
2τ2 (Q3)

∗Q5 + e−3σ
2τ2 (Q4)

∗Q5+

(Q5)
∗Q5 + e−σ

2τ2 (Q6)
∗Q5 + e−2σ

2τ2 (Q7)
∗Q5 + e−5σ

2τ2 (Q8)
∗Q5+

e−σ
2τ2 (Q9)

∗Q5 + e−3σ
2τ2 (Q10)

∗Q5 + e−3σ
2τ2 (Q11)

∗Q5 + e−4σ
2τ2 (Q12)

∗Q5+

e−4σ
2τ2 (Q1)

∗Q6 + e−3σ
2τ2 (Q2)

∗Q6 + e−3σ
2τ2 (Q3)

∗Q6 + e−σ
2τ2 (Q4)

∗Q6+

e−σ
2τ2 (Q5)

∗Q6 + (Q6)
∗Q6 + e−5σ

2τ2 (Q7)
∗Q6 + e−2σ

2τ2 (Q8)
∗Q6+

e−3σ
2τ2 (Q9)

∗Q6 + e−σ
2τ2 (Q10)

∗Q6 + e−4σ
2τ2 (Q11)

∗Q6 + e−3σ
2τ2 (Q12)

∗Q6+

e−3σ
2τ2 (Q1)

∗Q7 + e−6σ
2τ2 (Q2)

∗Q7 + e−σ
2τ2 (Q3)

∗Q7 + e−7σ
2τ2 (Q4)

∗Q7+

e−2σ
2τ2 (Q5)

∗Q7 + e−5σ
2τ2 (Q6)

∗Q7 + (Q7)
∗Q7 + e−9σ

2τ2 (Q8)
∗Q7+

e−σ
2τ2 (Q9)

∗Q7 + e−7σ
2τ2 (Q10)

∗Q7 + e−3σ
2τ2 (Q11)

∗Q7 + e−6σ
2τ2 (Q12)

∗Q7+

e−6σ
2τ2 (Q1)

∗Q8 + e−3σ
2τ2 (Q2)

∗Q8 + e−7σ
2τ2 (Q3)

∗Q8 + e−σ
2τ2 (Q4)

∗Q8+

e−5σ
2τ2 (Q5)

∗Q8 + e−2σ
2τ2 (Q6)

∗Q8 + e−9σ
2τ2 (Q7)

∗Q8 + (Q8)
∗Q8+

e−7σ
2τ2 (Q9)

∗Q8 + e−σ
2τ2 (Q10)

∗Q8 + e−6σ
2τ2 (Q11)

∗Q8 + e−3σ
2τ2 (Q12)

∗Q8+

e−5σ
2τ2 (Q1)

∗Q9 + e−7σ
2τ2 (Q2)

∗Q9 + e−2σ
2τ2 (Q3)

∗Q9 + e−6σ
2τ2 (Q4)

∗Q9+

e−σ
2τ2 (Q5)

∗Q9 + e−3σ
2τ2 (Q6)

∗Q9 + e−σ
2τ2 (Q7)

∗Q9 + e−7σ
2τ2 (Q8)

∗Q9+

(Q9)
∗Q9 + e−4σ

2τ2 (Q10)
∗Q9 + e−σ

2τ2 (Q11)
∗Q9 + e−3σ

2τ2 (Q12)
∗Q9+

e−7σ
2τ2 (Q1)

∗Q10 + e−5σ
2τ2 (Q2)

∗Q10 + e−6σ
2τ2 (Q3)

∗Q10 + e−2σ
2τ2 (Q4)

∗Q10+

e−3σ
2τ2 (Q5)

∗Q10 + e−σ
2τ2 (Q6)

∗Q10 + e−7σ
2τ2 (Q7)

∗Q10 + e−σ
2τ2 (Q8)

∗Q10+

e−4σ
2τ2 (Q9)

∗Q10 + (Q10)
∗Q10 + e−3σ

2τ2 (Q11)
∗Q10 + e−σ

2τ2 (Q12)
∗Q10+

e−8σ
2τ2 (Q1)

∗Q11 + e−9σ
2τ2 (Q2)

∗Q11 + e−5σ
2τ2 (Q3)

∗Q11 + e−7σ
2τ2 (Q4)

∗Q11+

e−3σ
2τ2 (Q5)

∗Q11 + e−4σ
2τ2 (Q6)

∗Q11 + e−3σ
2τ2 (Q7)

∗Q11 + e−6σ
2τ2 (Q8)

∗Q11+

e−σ
2τ2 (Q9)

∗Q11 + e−3σ
2τ2 (Q10)

∗Q11 + (Q11)
∗Q11 + e−σ

2τ2 (Q12)
∗Q11+

e−9σ
2τ2 (Q1)

∗Q12 + e−8σ
2τ2 (Q2)

∗Q12 + e−7σ
2τ2 (Q3)

∗Q12 + e−5σ
2τ2 (Q4)

∗Q12+

e−4σ
2τ2 (Q5)

∗Q12 + e−3σ
2τ2 (Q6)

∗Q12 + e−6σ
2τ2 (Q7)

∗Q12 + e−3σ
2τ2 (Q8)

∗Q12+

e−3σ
2τ2 (Q9)

∗Q12 + e−σ
2τ2 (Q10)

∗Q12 + e−σ
2τ2 (Q11)

∗Q12 + (Q12)
∗Q12.

(B.15)

Where Q’s are the probability coefficients and are given as

Q1 = U13U23U
2
31; Q2 = U13U23U

2
31; Q3 = U11U23U31U33; Q4 = U13U21U31U33;

Q5 = U11U23U31U33; Q6 = U13U21U31U33; Q7 = U11U23U31U33; Q8 = U13U21U31U33;
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Q9 = U11U23U31U33; Q10 = U13U21U31U33; Q11 = U11U21U
2
33; Q12 = U11U21U

2
33.

(B.16)

The coincidence probability plot against the time-delays introduced between
the arrival of the photons at the input of the balanced beam-splitter is shown in
Fig.(B.4). The coincidence probability plot shows that the coincidence probability
of getting a bi-photon click at output port-3 and single-photon clicks at output
port-1 and output port-2 is maximum and equal the value of the permanent of
adjacent scattering matrix, when the time-delays introduced between the arrival
of the photons at input ports of the balanced beam-splitter. The coincidence
probability starts decreasing as the length of the time-delay increases and gradually
drops to zero when length reaches a specific point.

Figure B.4: (with T (τ1, τ2, τ3, τ4) = T (−τ, 0, τ, 2τ), σo = 0.1 and
Ω(α1, α2, α3, β1, β2, β3, γ1γ2) = Ω(0, 0, 0, π/2, π/2, π/2, 0, 0))

B.5 Tri-Photon Click on Output-1, Single-Photon Click on
Output-3 and no click on Output-2

In this case, we shall discuss second output in Fig.(3.12, in which we get a tri-photon
click at output port-1, a single-photon click at output port-3 and no click at output
detector-2. The Input state has already been defined in Eq.(3.23) and the output
operators for this case are defined as,

Π1 =

∫ ∞
−∞

â†1(ω5)â
†
1(ω8)â

†
1(ω11) |000〉 〈000| â1(ω5)â1(ω8)â1(ω11)dω5dω8dω11,

(B.17)
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and

Π3 =

∫ ∞
−∞

â†3(ω7) |0〉 〈0| â†3(ω7)dω7, (B.18)

the coincidence probability for this case ca be written as

P202,301 = s 〈1111|U †Π1 ⊗ Π3U |1111〉s , (B.19)

the probability coefficients (F’s) have already been defined in Eq.(3.37). The
coincidence probability is

P202,301 =F1 (F2)
∗e−σ

2τ2 + F1 (F3)
∗e−3σ

2τ2 + F1 (F4)
∗e−6σ

2τ2 + F2 (F1)
∗e−σ

2τ2+

F2 (F3)
∗e−σ

2τ2 + F2 (F4)
∗e−3σ

2τ2 + F3 (F1)
∗e−3σ

2τ2 + F3 (F2)
∗e−σ

2τ2+

F3 (F4)
∗e−σ

2τ2 + F4 (F1)
∗e−6σ

2τ2 + F4 (F2)
∗e−3σ

2τ2 + F4 (F3)
∗e−σ

2τ2+

F1 (F1)
∗ + F2 (F2)

∗ + F3 (F3)
∗ + F4 (F4)

∗. (B.20)

The coincidence probability plot against the time-delays introduced between the
arrival of the photons at input ports of the balanced beam-splitter is shown in
Fig.(B.5). The coincidence probability plot against the time-delays introduced
between the arrival of the photons at the input ports of the balanced beam-splitte
shows that the probability of having the above defined output coincidence pattern
is maximum and is equal to the value of the permanent of the adjacent scattering
matrix, when there is no time-delays introduced between the arrival of the photons.
The coincidence probability starts decreasing with the increase in the length of
the time-delays introduced between the arrival of the photons at input ports of
the balanced beam-splitter and gradually become zero when the length of the
time-delays increases to a specific point.

B.6 Tri-Photon Click on Output-2, Single-Photon Click on
Output-1 and no click on Output-3

In this case, we shall discuss the coincidence probability of having a tri-photon click
at output port-2 and a single-photon click at output port-1 as shown in Fig.(3.12).
The input state for this specific case is same as defined in Eq3.23 and the output
operators are defined as,

Π1 =

∫ ∞
−∞

â†1(ω5) |0〉 〈0| â1(ω5)dω5, (B.21)

and

Π2 =

∫ ∞
−∞

â†2(ω6)â
†
2(ω9)â

†
2(ω12) |000〉 〈000| â†2(ω6)â2(ω9)â2(ω12)dω6dω9dω12,

(B.22)
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Figure B.5: (with T (τ1, τ2, τ3, τ4) = T (−τ, 0, τ, 2τ), σo = 0.1 and
Ω(α1, α2, α3, β1, β2, β3, γ1γ2) = Ω(0, 0, 0, π/2, π/2, π/2, 0, 0))

the coincidence probability for this case can be written as,

P202,130 = s 〈1111|U †Π1 ⊗ Π2U |1111〉s , (B.23)

the probability coefficients (F’s) have already been defined in Eq.(3.37). The
coincidence probability is

P202,130 =F13 (F14)
∗e−σ

2τ2 + F13 (F15)
∗e−3σ

2τ2 + F13 (F16)
∗e−6σ

2τ2+

F14 (F13)
∗e−σ

2τ2 + F14 (F15)
∗e−σ

2τ2 + F14 (F16)
∗e−3σ

2τ2+

F15 (F13)
∗e−3σ

2τ2 + F15 (F14)
∗e−σ

2τ2 + F15 (F16)
∗e−σ

2τ2+

F16 (F13)
∗e−6σ

2τ2 + F16 (F14)
∗e−3σ

2τ2 + F16 (F15)
∗e−σ

2τ2+

F13 (F13)
∗ + F14 (F14)

∗ + F15 (F15)
∗ + F16 (F16)

∗. (B.24)

The plot of the coincidence probability for this case against the time-delays in-
troduced between the arrival of the photon at input ports is shown in Fig.(B.6).
This plot of coincidence probability of having a tri-photon click at output port-2
and single-photon click at output port-2 shows that the coincidence probability
is minimum and equal to the value of the permanent of the adjacent scattering
matrix, when the time-delays τ introduced between the arrival of the photons at
input ports of the balanced bean-splitter is zero. This coincidence probability of
having the above-mentioned output coincidence pattern increases with the increase
in the length of the time-delays τ till a specific value of the time-delays and then
again decreases with any further increase in the length of the time-delays.
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Figure B.6: (with T (τ1, τ2, τ3, τ4) = T (−τ, 0, τ, 2τ), σo = 0.1 and
Ω(α1, α2, α3, β1, β2, β3, γ1γ2) = Ω(0, 0, 0, π/2, π/2, π/2, 0, 0))

B.7 Tri-Photon Click on Output-2, Single-Photon Click on
Output-3 and no click on Output-1

In this case, we shall discuss the coincidence probability of having a tri-photon click
at output port-2 and a single-photon click at output port-3 as shown in Fig.(3.12).
The input state for this case is the same as defined in Eq.(3.23) and the output
operators are defined as,

Π3 =

∫ ∞
−∞

â†3(ω7) |0〉 〈0| â3(ω7)dω7, (B.25)

and

Π2 =

∫ ∞
−∞

â†2(ω6)â
†
2(ω9)â

†
2(ω12) |000〉 〈000| â†2(ω6)â2(ω9)â2(ω12)dω6dω9dω12,

(B.26)
the coincidence probability for this case can be written as,

P202,031 = s 〈1111|U †Π2 ⊗ Π3U |1111〉s , (B.27)

the probability coefficients (F’s) have already been defined in Eq.(3.37). The
coincidence probability is

P202,031 =F17 (F18)
∗e−σ

2τ2 + F17 (F19)
∗e−3σ

2τ2 + F17 (F20)
∗e−6σ

2τ2+

F18 (F17)
∗e−σ

2τ2 + F18 (F19)
∗e−σ

2τ2 + F18 (F20)
∗e−3σ

2τ2+
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F19 (F17)
∗e−3σ

2τ2 + F19 (F18)
∗e−σ

2τ2 + F19 (F20)
∗e−σ

2τ2+

F20 (F17)
∗e−6σ

2τ2 + F20 (F18)
∗e−3σ

2τ2 + F20 (F19)
∗e−σ

2τ2+

F17 (F17)
∗ + F18 (F18)

∗ + F19 (F19)
∗ + F20 (F20)

∗ (B.28)

The coincidence probability plot of having a tri-photon click at output port-2 and
single-photon click at output port-3 against the time-delays τ introduced between
the arrival of the photons at input ports is shown in Fig.(B.7). The plot shows that
the coincidence probability of having the above defined output coincidence pattern
is relatively high and equal to the value of the permanent of the adjacent scattering
matrix, when time-delays τ introduced between the arrival of the incident photons
at input ports is zero. The coincidence probability slightly increases as we increase
the length of the time-delays τ then after a specific increase in the length of the
time-delay, coincidence probability starts to decrease and become zero when the
time-delays increases to a specific value.

Figure B.7: (with T (τ1, τ2, τ3, τ4) = T (−τ, 0, τ, 2τ), σo = 0.1 and
Ω(α1, α2, α3, β1, β2, β3, γ1γ2) = Ω(0, 0, 0, π/2, π/2, π/2, 0, 0))

B.8 Tri-Photon Click on Output-3, Single-Photon Click on
Output-1 and no click on Output-2

In this case, we shall discuss the coincidence probability of the output coincidence
pattern shown in Fig.(3.12), in which we get a tri-photon click at output port-3
and a single-photon click at output port-1. The input state is same as defined in
Eq.(3.23) and the output operator for this case are defined as
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Π1 =

∫ ∞
−∞

â†1(ω5) |0〉 〈0| â1(ω5)dω5, (B.29)

and

Π3 =

∫ ∞
−∞

â†3(ω7)â
†
3(ω10)â

†
3(ω13) |000〉 〈000| â†3(ω7)â3(ω10)â3(ω13)dω7dω10dω13,

(B.30)
the coincidence probability for this case can be written as

P202,103 = s 〈1111|U †Π1 ⊗ Π3U |1111〉s , (B.31)

the probability coefficients (F’s) have already been defined in Eq.(3.37). The
coincidence probability is

P202,103 =F5 (F6)
∗e−σ

2τ2 + F5 (F7)
∗e−3σ

2τ2 + F5 (F8)
∗e−6σ

2τ2 + F6 (F5)
∗e−σ

2τ2+

F6 (F7)
∗e−σ

2τ2 + F6 (F8)
∗e−3σ

2τ2 + F7 (F5)
∗e−3σ

2τ2 + F7 (F6)
∗e−σ

2τ2+

F7 (F8)
∗e−σ

2τ2 + F8 (F5)
∗e−6σ

2τ2 + F8 (F6)
∗e−3σ

2τ2 + F8 (F7)
∗e−σ

2τ2+

F5 (F5)
∗ + F6 (F6)

∗ + F7 (F7)
∗ + F8 (F8)

∗. (B.32)

The coincidence probability plot against the time-delays introduced between the
arrival of the photons at input ports of the balanced beam-splitter is shown in
Fig.(B.8). The coincidence probability plot shows that the probability of having
the above defined output coincidence pattern is maximum and is equal to the value
of the permanent of the adjacent matrix, when there is no time-delays introduced
between the arrival of the photons at input ports. The probability coincidence
starts decreasing with the increase in the length of the time-delays τ introduced
between the arrival of the photons at input ports of the balanced beam-splitter and
gradually become zero when the length of the time-delays increases to a specific
point.

B.9 Tri-Photon Click on Output-3, Single-Photon Click on
Output-2 and no click on Output-1

In this case, we shall discuss the coincidence probability of the output coincidence
pattern shown in Fig.(3.12) in which we get a tri-photon click at output port-3
and a single-photon click at output port-2. The input state will same as defined in
Eq.(3.23) and the output operator for the case are defined as

Π2 =

∫ ∞
−∞

â†2(ω6) |0〉 〈0| â2(ω6)dω6, (B.33)
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Figure B.8: (with T (τ1, τ2, τ3, τ4) = T (−τ, 0, τ, 2τ), σo = 0.1 and
Ω(α1, α2, α3, β1, β2, β3, γ1γ2) = Ω(0, 0, 0, π/2, π/2, π/2, 0, 0))

and

Π3 =

∫ ∞
−∞

â†3(ω7)â
†
3(ω10)â

†
3(ω13) |000〉 〈000| â†3(ω7)â3(ω10)â3(ω13)dω7dω10dω13,

(B.34)
the coincidence probability for this case can be written as

P202,013 = s 〈1111|U †Π2 ⊗ Π3U |1111〉s , (B.35)

the probability coefficients for this case have already been defined in Eq.(3.37).
The coincidence probability is

P202,013 =F21 (F22)
∗e−σ

2τ2 + F21 (F23)
∗e−3σ

2τ2 + F21 (F24)
∗e−6σ

2τ2+

F22 (F21)
∗e−σ

2τ2 + F22 (F23)
∗e−σ

2τ2 + F22 (F24)
∗e−3σ

2τ2+

F23 (F21)
∗e−3σ

2τ2 + F23 (F22)
∗e−σ

2τ2 + F23 (F24)
∗e−σ

2τ2+

F24 (F21)
∗e−6σ

2τ2 + F24 (F22)
∗e−3σ

2τ2 + F24 (F23)
∗e−σ

2τ2+

F21 (F21)
∗ + F22 (F22)

∗ + F23 (F23)
∗ + F24 (F24)

∗. (B.36)

The coincidence probability plot against the time-delays introduced between the
arrival of the photons at input ports of the balanced beam-splitter is shown in
Fig.(B.9). The plot shows that the coincidence probability of having the above
defined output coincidence pattern is relatively high and equal to the value of the
permanent of the adjacent matrix, when time-delays τ introduced between the
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arrival of the incident photons is zero. The coincidence probability slightly increases
as we increase the length of the time-delays τ than after a specific increase in the
length of the time-delay, coincidence probability starts to decrease and become
zero when the time-delays τ increases to a specific value.

Figure B.9: (with T (τ1, τ2, τ3, τ4) = T (−τ, 0, τ, 2τ), σo = 0.1 and
Ω(α1, α2, α3, β1, β2, β3, γ1γ2) = Ω(0, 0, 0, π/2, π/2, π/2, 0, 0))

B.10 Tetra-Photon Click on Output-2 and no Click on
Output-1 and Output-3

In this case, we shall discuss the coincidence probability for the case when we get
a tetra-photon click at output port-2 and no click at output port-1 and output
port-3, as shown in Fig.(3.14). For this case the input state will same as defined in
Eq.(3.23) and the output operators are defined as,

Π2 =

∫ ∞
−∞

â†2(ω6)â
†
2(ω9)â

†
2(ω12)â

†
1(ω15) |0000〉 〈0000|

â2(ω6)â2(ω9)â2(ω12)â2(ω15)dω6dω9dω12dω15, (B.37)

the coincidence probability for this case can be written as,

P202,040 = s 〈1111|U †Π2U |1111〉s , (B.38)

and the probability coefficient for this case are defined as,

V5 = U2
21U

2
23; (B.39)
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so, the coincidence probability for this case is

P202,040 = V5 (V5)
∗. (B.40)

We can clearly see that, the coincidence probability for this case do not depend on
the time-delays τ introduced between the arrival of the photon at the input ports
of the balanced beam-splitter.

B.11 Tetra-Photon Click on Output-3 and no Click on
Output-1 and Output-2

In this case, we shall discuss the coincidence probability for the case when we get
a tetra-photon pulse at output port-3 and no click at output port-1 and output
port-2, as shown in Fig.(3.14). For this case the input state will same as defined in
Eq.(3.23) and the output operators are defined as,

Π3 =

∫ ∞
−∞

â†3(ω7)â
†
3(ω10)â

†
3(ω13)â

†
3(ω16) |0000〉 〈0000|

â3(ω7)â3(ω10)â3(ω13)â3(ω16)dω7dω10dω13dω16, (B.41)

the coincidence probability for this case can be written as,

P202,004 = s 〈1111|U †Π3U |1111〉s , (B.42)

and the probability coefficient for this case are defined as,

V6 = U2
31U

2
33; (B.43)

so, the coincidence probability for this case is

P202,004 = V6 (V6)
∗. (B.44)

We can clearly see that, the coincidence probability for this case do not depend on
the time-delays τ introduced between the arrival of the photon at the input ports
of the balanced beam-splitter.

C Rest of the Cases of Section 3.3

In this case, we have injected a bi-photon input pulse at input port 2, input port 3
and nothing input port 1 of a six port passive quantum optical interferometer and
then calculate and plotted the coincidence probabilities of all output coincidence
patterns as shown in Fig.3.15, Fig.3.17,Fig.3.19 and Fig.3.21.
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C.1 Bi-Photon Click on Output-1 and Output-3 and no
Click on Output-2

In this case, we shall discuss second output coincidence pattern in which we get a bi-
photon click at output port-1 and output port-3 for the case where we have injected
a bi-photon pulse in input port-2 and port-3 as shown in Fig.(3.15). The output
operators for this specific case are the same as defined in Eq.(3.2) and Eq.(3.4),
the input state is same as defined in Eq.(3.42) and the coincidence probability is

P022,202 = s 〈1111|U †Π1 ⊗ Π3U |1111〉s , (C.1)

the probability coefficients have already been defined in Eq.(3.44) and the coinci-
dence probability is

P022,202 =C7 (C8)
∗e−σ

2τ2 + C7 (C9)
∗e−3σ

2τ2 + C7 (C10)
∗e−3σ

2τ2 + C7 (C11)
∗e−5σ

2τ2+

C7 (C12)
∗e−8σ

2τ2 + C8 (C7)
∗e−σ

2τ2 + C8 (C9)
∗e−σ

2τ2 + C8 (C10)
∗e−σ

2τ2+

C8 (C11)
∗e−2σ

2τ2 + C8 (C12)
∗e−5σ

2τ2 + C9 (C7)
∗e−3σ

2τ2 + C9 (C8)
∗e−σ

2τ2+

C9 (C10)
∗e−2σ

2τ2 + C9 (C11)
∗e−σ

2τ2 + C9 (C12)
∗e−3σ

2τ2 + C10 (C7)
∗e−3σ

2τ2+

C10 (C8)
∗e−σ

2τ2 + C10 (C9)
∗e−2σ

2τ2 + C10 (C11)
∗e−σ

2τ2 + C10 (C12)
∗e−3σ

2τ2+

C11 (C7)
∗e−5σ

2τ2 + C11 (C8)
∗e−2σ

2τ2 + C11 (C9)
∗e−σ

2τ2 + C11 (C10)
∗e−σ

2τ2+

C11 (C12)
∗e−σ

2τ2 + C12 (C7)
∗e−8σ

2τ2 + C12 (C8)
∗e−5σ

2τ2 + C12 (C9)
∗e−3σ

2τ2+

C12 (C10)
∗e−3σ

2τ2 + C12 (C11)
∗e−σ

2τ2 + C7 (C7)
∗ + C8 (C8)

∗ + C9 (C9)
∗+

C10 (C10)
∗ + C11 (C11)

∗ + C12 (C12)
∗. (C.2)

The plot of the coincidence probability against the time-delay τ introduced
between the arrival of the photons at input ports is shown in Fig.(C.1). This plot
shows that the coincidence probability of getting a bi-photon click at output port-1
and output port-2 is minimum and is equal to the value of the permanent of the
adjacent scattering matrix but not zero when there is no time-delay introduced
between the arrival of the photons at input ports. The coincidence probability of
having this output increases with the increase in length of the time-delay τ but at
specific point it gradually becomes constant.

C.2 Bi-Photon Click on Output-2 and Output-3 and no
Click on Output-1

In this case, we shall discuss the third output coincidence pattern in which we get
a bi-photon click at output port-2 and output port-3 and no click at output port-1.
The input state is the same as define in Eq.(3.42). The output operators for this
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Figure C.1: (with T (τ1, τ2, τ3, τ4) = T (−τ, 0, τ, 2τ), σo = 0.1 and
Ω(α1, α2, α3, β1, β2, β3, γ1γ2) = Ω(0, 0, 0, π/2, π/2, π/2, 0, 0))

case are defined in Eq.(3.3) and Eq.(3.4) and the coincidence probability for this
case can be written as

P022,022 = s 〈1111|U †Π2 ⊗ Π3U |1111〉s , (C.3)

where C’s are the probability coefficients and are already been defined in Eq.(3.44)
and the coincidence probability is

P022,022 =C13 (C14)
∗e−σ

2τ2 + C13 (C15)
∗e−3σ

2τ2 + C13 (C16)
∗e−3σ

2τ2 + C13 (C17)
∗e−5σ

2τ2+

C13 (C18)
∗e−8σ

2τ2 + C14 (C13)
∗e−σ

2τ2 + C14 (C15)
∗e−σ

2τ2 + C14 (C16)
∗e−σ

2τ2+

C14 (C17)
∗e−2σ

2τ2 + C14 (C18)
∗e−5σ

2τ2 + C15 (C13)
∗e−3σ

2τ2 + C15 (C14)
∗e−σ

2τ2+

C15 (C16)
∗e−2σ

2τ2 + C15 (C17)
∗e−σ

2τ2 + C15 (C18)
∗e−3σ

2τ2 + C16 (C13)
∗e−3σ

2τ2+

C16 (C14)
∗e−σ

2τ2 + C16 (C15)
∗e−2σ

2τ2 + C16 (C17)
∗e−σ

2τ2 + C16 (C18)
∗e−3σ

2τ2+

C17 (C13)
∗e−5σ

2τ2 + C17 (C14)
∗e−2σ

2τ2 + C17 (C15)
∗e−σ

2τ2 + C17 (C16)
∗e−σ

2τ2+

C17 (C18)
∗e−σ

2τ2 + C18 (C13)
∗e−8σ

2τ2 + C18 (C14)
∗e−5σ

2τ2 + C18 (C15)
∗e−3σ

2τ2+

C18 (C16)
∗e−3σ

2τ2 + C18 (C17)
∗e−σ

2τ2 + C13 (C13)
∗ + C14 (C14)

∗ + C15 (C15)
∗+

C16 (C16)
∗ + C17 (C17)

∗ + C18 (C18)
∗. (C.4)

The plot of coincidence probability against the time-delays τ introduced between
the arrival of the photons at input ports of the balanced beam-splitter is shown in
Fig.(C.2). The plot shows that the coincidence probability of having a bi-photon
click at output port-2 and output port-3, when we have injection a bi-photon
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pulse in input port-2 and input port-3 is maximum and is equal to the value of
the permanent of the adjacent scattering matrix when there are no time-delays
τ introduced between the arrival of the photons at input ports of the balanced
beam-splitter. The coincidence probability starts decreasing when the length of
time-delays introduced between the arrival of the photons at input ports increases,
first sharply then slowly and after a specific increase in the length of the time-delay
the coincidence probability becomes zero.

Figure C.2: (with T (τ1, τ2, τ3, τ4) = T (−τ, 0, τ, 2τ), σo = 0.1 and
Ω(α1, α2, α3, β1, β2, β3, γ1γ2) = Ω(0, 0, 0, π/2, π/2, π/2, 0, 0))

C.3 Bi-Photon Click on Output-2 and Single-Photon Click
on Output-1 and Output-3

In the case, we shall discuss the coincidence probability of the second output
coincidence pattern as shown in Fig.(3.17). In this case we get a bi-photon click at
output port-2 and single-photon clicks at output port-1 and port-3 and the input
state has already been defined in Eq.(3.42) and output operators are defined as

Π1 =

∫ ∞
−∞

â†1(ω5) |0〉 〈0| â1(ω5)dω5, (C.5)

Π2 =

∫ ∞
−∞

â†2(ω6)â
†
2(ω9) |00〉 〈00| â2(ω6)â2(ω9)dω6dω9, (C.6)

and

Π3 =

∫ ∞
−∞

â†3(ω7) |0〉 〈0| â3(ω7)dω7, (C.7)



104 APPENDIX A. APPENDIX

the coincidence probability for this case can be written as

P022,121 = 〈1111|s U †Π1 ⊗ Π2 ⊗ Π3U |1111〉s , (C.8)

so the coincidence probability for this case is,

P022,121 = (S1)
∗S1 + e−σ

2τ2 (S2)
∗S1 + e−σ

2τ2 (S3)
∗S1 + e−3σ

2τ2 (S4)
∗S1+

e−3σ
2τ2 (S5)

∗S1 + e−4σ
2τ2 (S6)

∗S1 + e−3σ
2τ2 (S7)

∗S1 + e−6σ
2τ2 (S8)

∗S1+

e−5σ
2τ2 (S9)

∗S1 + e−7σ
2τ2 (S10)

∗S1 + e−8σ
2τ2 (S11)

∗S1 + e−9σ
2τ2 (S12)

∗S1+

e−σ
2τ2 (S1)

∗S2 + (S2)
∗S2 + e−3σ

2τ2 (S3)
∗S2 + e−σ

2τ2 (S4)
∗S2+

e−4σ
2τ2 (S5)

∗S2 + e−3σ
2τ2 (S6)

∗S2 + e−6σ
2τ2 (S7)

∗S2 + e−3σ
2τ2 (S8)

∗S2+

e−7σ
2τ2 (S9)

∗S2 + e−5σ
2τ2 (S10)

∗S2 + e−9σ
2τ2 (S11)

∗S2 + e−8σ
2τ2 (S12)

∗S2+

e−σ
2τ2 (S1)

∗S3 + e−3σ
2τ2 (S2)

∗S3 + (S3)
∗S3 + e−4σ

2τ2 (S4)
∗S3+

e−σ
2τ2 (S5)

∗S3 + e−3σ
2τ2 (S6)

∗S3 + e−σ
2τ2 (S7)

∗S3 + e−7σ
2τ2 (S8)

∗S3+

e−2σ
2τ2 (S9)

∗S3 + e−6σ
2τ2 (S10)

∗S3 + e−5σ
2τ2 (S11)

∗S3 + e−7σ
2τ2 (S12)

∗S3+

e−3σ
2τ2 (S1)

∗S4 + e−σ
2τ2 (S2)

∗S4 + e−4σ
2τ2 (S3)

∗S4 + (S4)
∗S4+

e−3σ
2τ2 (S5)

∗S4 + e−σ
2τ2 (S6)

∗S4 + e−7σ
2τ2 (S7)

∗S4 + e−σ
2τ2 (S8)

∗S4+

e−6σ
2τ2 (S9)

∗S4 + e−2σ
2τ2 (S10)

∗S4 + e−7σ
2τ2 (S11)

∗S4 + e−5σ
2τ2 (S12)

∗S4+

e−3σ
2τ2 (S1)

∗S5 + e−4σ
2τ2 (S2)

∗S5 + e−σ
2τ2 (S3)

∗S5 + e−3σ
2τ2 (S4)

∗S5+

(S5)
∗S5 + e−σ

2τ2 (S6)
∗S5 + e−2σ

2τ2 (S7)
∗S5 + e−5σ

2τ2 (S8)
∗S5+

e−σ
2τ2 (S9)

∗S5 + e−3σ
2τ2 (S10)

∗S5 + e−3σ
2τ2 (S11)

∗S5 + e−4σ
2τ2 (S12)

∗S5+

e−4σ
2τ2 (S1)

∗S6 + e−3σ
2τ2 (S2)

∗S6 + e−3σ
2τ2 (S3)

∗S6 + e−σ
2τ2 (S4)

∗S6+

e−σ
2τ2 (S5)

∗S6 + (S6)
∗S6 + e−5σ

2τ2 (S7)
∗S6 + e−2σ

2τ2 (S8)
∗S6+

e−3σ
2τ2 (S9)

∗S6 + e−σ
2τ2 (S10)

∗S6 + e−4σ
2τ2 (S11)

∗S6 + e−3σ
2τ2 (S12)

∗S6+

e−3σ
2τ2 (S1)

∗S7 + e−6σ
2τ2 (S2)

∗S7 + e−σ
2τ2 (S3)

∗S7 + e−7σ
2τ2 (S4)

∗S7+

e−2σ
2τ2 (S5)

∗S7 + e−5σ
2τ2 (S6)

∗S7 + (S7)
∗S7 + e−9σ

2τ2 (S8)
∗S7+

e−σ
2τ2 (S9)

∗S7 + e−7σ
2τ2 (S10)

∗S7 + e−3σ
2τ2 (S11)

∗S7 + e−6σ
2τ2 (S12)

∗S7+

e−6σ
2τ2 (S1)

∗S8 + e−3σ
2τ2 (S2)

∗S8 + e−7σ
2τ2 (S3)

∗S8 + e−σ
2τ2 (S4)

∗S8+

e−5σ
2τ2 (S5)

∗S8 + e−2σ
2τ2 (S6)

∗S8 + e−9σ
2τ2 (S7)

∗S8 + (S8)
∗S8+

e−7σ
2τ2 (S9)

∗S8 + e−σ
2τ2 (S10)

∗S8 + e−6σ
2τ2 (S11)

∗S8 + e−3σ
2τ2 (S12)

∗S8+

e−5σ
2τ2 (S1)

∗S9 + e−7σ
2τ2 (S2)

∗S9 + e−2σ
2τ2 (S3)

∗S9 + e−6σ
2τ2 (S4)

∗S9+

e−σ
2τ2 (S5)

∗S9 + e−3σ
2τ2 (S6)

∗S9 + e−σ
2τ2 (S7)

∗S9 + e−7σ
2τ2 (S8)

∗S9+
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(S9)
∗S9 + e−4σ

2τ2 (S10)
∗S9 + e−σ

2τ2 (S11)
∗S9 + e−3σ

2τ2 (S12)
∗S9+

e−7σ
2τ2 (S1)

∗S10 + e−5σ
2τ2 (S2)

∗S10 + e−6σ
2τ2 (S3)

∗S10 + e−2σ
2τ2 (S4)

∗S10+

e−3σ
2τ2 (S5)

∗S10 + e−σ
2τ2 (S6)

∗S10 + e−7σ
2τ2 (S7)

∗S10 + e−σ
2τ2 (S8)

∗S10+

e−4σ
2τ2 (S9)

∗S10 + (S10)
∗S10 + e−3σ

2τ2 (S11)
∗S10 + e−σ

2τ2 (S12)
∗S10+

e−8σ
2τ2 (S1)

∗S11 + e−9σ
2τ2 (S2)

∗S11 + e−5σ
2τ2 (S3)

∗S11 + e−7σ
2τ2 (S4)

∗S11+

e−3σ
2τ2 (S5)

∗S11 + e−4σ
2τ2 (S6)

∗S11 + e−3σ
2τ2 (S7)

∗S11 + e−6σ
2τ2 (S8)

∗S11+

e−σ
2τ2 (S9)

∗S11 + e−3σ
2τ2 (S10)

∗S11 + (S11)
∗S11 + e−σ

2τ2 (S12)
∗S11+

e−9σ
2τ2 (S1)

∗S12 + e−8σ
2τ2 (S2)

∗S12 + e−7σ
2τ2 (S3)

∗S12 + e−5σ
2τ2 (S4)

∗S12+

e−4σ
2τ2 (S5)

∗S12 + e−3σ
2τ2 (S6)

∗S12 + e−6σ
2τ2 (S7)

∗S12 + e−3σ
2τ2 (S8)

∗S12+

e−3σ
2τ2 (S9)

∗S12 + e−σ
2τ2 (S10)

∗S12 + e−σ
2τ2 (S11)

∗S12 + (S12)
∗S12.

(C.9)

Where S’s are the probability coefficients and are defined as

S1 = U13U
2
22U33; S2 = U13U

2
22U33; S3 = U12U22U23U33; S4 = U13U22U23U32;

S5 = U12U22U23U33; S6 = U13U22U23U32; S7 = U12U22U23U33; S8 = U13U22U23U32;

S9 = U12U22U23U33; S10 = U13U22U23U32; S11 = U12U
2
23U32; S12 = U12U

2
23U32; .
(C.10)

The plot of coincidence probability against the time-delays introduced between
the arrival of the photons at input ports of the balanced beam-splitter is shown in
Fig.(C.3). This Coincidence probability plot shows that the probability of having
the above defined output coincidence pattern is minimum and is equal to the value
of the permanent of the adjacent scattering matrix but not zero when there is no
time-delays τ introduced between the arrival of the photon at the input ports. The
coincidence probability increases with the increase in the length of the time-delays
introduced between the arrival of the photons till specific point and then again
starts decreasing.

C.4 Bi-Photon Click on Output-3 and Single-Photon Click
on Output-1 and Output-2

In the case, we shall discuss the coincidence probability of the third output coinci-
dence pattern shown in Fig.(3.17). In this case we get a bi-photon click at output
port-3 and single-photon clicks at output port-1 and output port-2. Input state
has already been defined in Eq.(3.23) and output operators are defined as

Π1 =

∫ ∞
−∞

â†1(ω5) |0〉 〈0| â1(ω5)dω5, (C.11)
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Figure C.3: (with T (τ1, τ2, τ3, τ4) = T (−τ, 0, τ, 2τ), σo = 0.1 and
Ω(α1, α2, α3, β1, β2, β3, γ1γ2) = Ω(0, 0, 0, π/2, π/2, π/2, 0, 0))

Π2 =

∫ ∞
−∞

â†2(ω6)â
†
2(ω9) |00〉 〈00| â2(ω6)â2(ω9)dω6dω9, (C.12)

and

Π3 =

∫ ∞
−∞

â†3(ω7)â
†
3(ω10) |00〉 〈00| â3(ω7)â3(ω10)dω7dω10, (C.13)

the coincidence probability for this case can be written as

P022,112 = 〈1111|s U †Π1 ⊗ Π2 ⊗ Π3U |1111〉s , (C.14)

so the coincidence probability for this case is,

P022,112 = (T1)
∗T1 + e−σ

2τ2 (T2)
∗T1 + e−σ

2τ2 (T3)
∗T1 + e−3σ

2τ2 (T4)
∗T1+

e−3σ
2τ2 (T5)

∗T1 + e−4σ
2τ2 (T6)

∗T1 + e−3σ
2τ2 (T7)

∗T1 + e−6σ
2τ2 (T8)

∗T1+

e−5σ
2τ2 (T9)

∗T1 + e−7σ
2τ2 (T10)

∗T1 + e−8σ
2τ2 (T11)

∗T1 + e−9σ
2τ2 (T12)

∗T1+

e−σ
2τ2 (T1)

∗T2 + (T2)
∗T2 + e−3σ

2τ2 (T3)
∗T2 + e−σ

2τ2 (T4)
∗T2+

e−4σ
2τ2 (T5)

∗T2 + e−3σ
2τ2 (T6)

∗T2 + e−6σ
2τ2 (T7)

∗T2 + e−3σ
2τ2 (T8)

∗T2+

e−7σ
2τ2 (T9)

∗T2 + e−5σ
2τ2 (T10)

∗T2 + e−9σ
2τ2 (T11)

∗T2 + e−8σ
2τ2 (T12)

∗T2+

e−σ
2τ2 (T1)

∗T3 + e−3σ
2τ2 (T2)

∗T3 + (T3)
∗T3 + e−4σ

2τ2 (T4)
∗T3+

e−σ
2τ2 (T5)

∗T3 + e−3σ
2τ2 (T6)

∗T3 + e−σ
2τ2 (T7)

∗T3 + e−7σ
2τ2 (T8)

∗T3+

e−2σ
2τ2 (T9)

∗T3 + e−6σ
2τ2 (T10)

∗T3 + e−5σ
2τ2 (T11)

∗T3 + e−7σ
2τ2 (T12)

∗T3+
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e−3σ
2τ2 (T1)

∗T4 + e−σ
2τ2 (T2)

∗T4 + e−4σ
2τ2 (T3)

∗T4 + (T4)
∗T4+

e−3σ
2τ2 (T5)

∗T4 + e−σ
2τ2 (T6)

∗T4 + e−7σ
2τ2 (T7)

∗T4 + e−σ
2τ2 (T8)

∗T4+

e−6σ
2τ2 (T9)

∗T4 + e−2σ
2τ2 (T10)

∗T4 + e−7σ
2τ2 (T11)

∗T4 + e−5σ
2τ2 (T12)

∗T4+

e−3σ
2τ2 (T1)

∗T5 + e−4σ
2τ2 (T2)

∗T5 + e−σ
2τ2 (T3)

∗T5 + e−3σ
2τ2 (T4)

∗T5+

(T5)
∗T5 + e−σ

2τ2 (T6)
∗T5 + e−2σ

2τ2 (T7)
∗T5 + e−5σ

2τ2 (T8)
∗T5+

e−σ
2τ2 (T9)

∗T5 + e−3σ
2τ2 (T10)

∗T5 + e−3σ
2τ2 (T11)

∗T5 + e−4σ
2τ2 (T12)

∗T5+

e−4σ
2τ2 (T1)

∗T6 + e−3σ
2τ2 (T2)

∗T6 + e−3σ
2τ2 (T3)

∗T6 + e−σ
2τ2 (T4)

∗T6+

e−σ
2τ2 (T5)

∗T6 + (T6)
∗T6 + e−5σ

2τ2 (T7)
∗T6 + e−2σ

2τ2 (T8)
∗T6+

e−3σ
2τ2 (T9)

∗T6 + e−σ
2τ2 (T10)

∗T6 + e−4σ
2τ2 (T11)

∗T6 + e−3σ
2τ2 (T12)

∗T6+

e−3σ
2τ2 (T1)

∗T7 + e−6σ
2τ2 (T2)

∗T7 + e−σ
2τ2 (T3)

∗T7 + e−7σ
2τ2 (T4)

∗T7+

e−2σ
2τ2 (T5)

∗T7 + e−5σ
2τ2 (T6)

∗T7 + (T7)
∗T7 + e−9σ

2τ2 (T8)
∗T7+

e−σ
2τ2 (T9)

∗T7 + e−7σ
2τ2 (T10)

∗T7 + e−3σ
2τ2 (T11)

∗T7 + e−6σ
2τ2 (T12)

∗T7+

e−6σ
2τ2 (T1)

∗T8 + e−3σ
2τ2 (T2)

∗T8 + e−7σ
2τ2 (T3)

∗T8 + e−σ
2τ2 (T4)

∗T8+

e−5σ
2τ2 (T5)

∗T8 + e−2σ
2τ2 (T6)

∗T8 + e−9σ
2τ2 (T7)

∗T8 + (T8)
∗T8+

e−7σ
2τ2 (T9)

∗T8 + e−σ
2τ2 (T10)

∗T8 + e−6σ
2τ2 (T11)

∗T8 + e−3σ
2τ2 (T12)

∗T8+

e−5σ
2τ2 (T1)

∗T9 + e−7σ
2τ2 (T2)

∗T9 + e−2σ
2τ2 (T3)

∗T9 + e−6σ
2τ2 (T4)

∗T9+

e−σ
2τ2 (T5)

∗T9 + e−3σ
2τ2 (T6)

∗T9 + e−σ
2τ2 (T7)

∗T9 + e−7σ
2τ2 (T8)

∗T9+

(T9)
∗T9 + e−4σ

2τ2 (T10)
∗T9 + e−σ

2τ2 (T11)
∗T9 + e−3σ

2τ2 (T12)
∗T9+

e−7σ
2τ2 (T1)

∗T10 + e−5σ
2τ2 (T2)

∗T10 + e−6σ
2τ2 (T3)

∗T10 + e−2σ
2τ2 (T4)

∗T10+

e−3σ
2τ2 (T5)

∗T10 + e−σ
2τ2 (T6)

∗T10 + e−7σ
2τ2 (T7)

∗T10 + e−σ
2τ2 (T8)

∗T10+

e−4σ
2τ2 (T9)

∗T10 + (T10)
∗T10 + e−3σ

2τ2 (T11)
∗T10 + e−σ

2τ2 (T12)
∗T10+

e−8σ
2τ2 (T1)

∗T11 + e−9σ
2τ2 (T2)

∗T11 + e−5σ
2τ2 (T3)

∗T11 + e−7σ
2τ2 (T4)

∗T11+

e−3σ
2τ2 (T5)

∗T11 + e−4σ
2τ2 (T6)

∗T11 + e−3σ
2τ2 (T7)

∗T11 + e−6σ
2τ2 (T8)

∗T11+

e−σ
2τ2 (T9)

∗T11 + e−3σ
2τ2 (T10)

∗T11 + (T11)
∗T11 + e−σ

2τ2 (T12)
∗T11+

e−9σ
2τ2 (T1)

∗T12 + e−8σ
2τ2 (T2)

∗T12 + e−7σ
2τ2 (T3)

∗T12 + e−5σ
2τ2 (T4)

∗T12+

e−4σ
2τ2 (T5)

∗T12 + e−3σ
2τ2 (T6)

∗T12 + e−6σ
2τ2 (T7)

∗T12 + e−3σ
2τ2 (T8)

∗T12+

e−3σ
2τ2 (T9)

∗T12 + e−σ
2τ2 (T10)

∗T12 + e−σ
2τ2 (T11)

∗T12 + (T12)
∗T12.

(C.15)

Where T’s are the probability coefficients and are defined as

T1 = U13U23U
2
32; T2 = U13U23U

2
32; T3 = U12U23U32U33; T4 = U13U22U32U33;
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T5 = U12U23U32U33; T6 = U13U22U32U33; T7 = U12U23U32U33; T8 = U13U22U32U33;

T9 = U12U23U32U33; T10 = U13U22U32U33; T11 = U12U22U
2
33; T12 = U12U22U

2
33; .

(C.16)

The plot of coincidence probability against the time-delays introduced between
the arrival of the photons at the input port of the balanced beam-splitter is shown
in Fig.(C.4). This Coincidence probability plot shows that the probability of having
the above defined output coincidence pattern is minimum and is equal to the value
of the permanent of the adjacent scattering matrix but not zero when there is no
time-delays τ introduced between the arrival of the photon at the input ports. The
coincidence probability increases with the increase in the length of the time-delays
introduced between the arrival of the photons till specific point and then again
starts decreasing.

Figure C.4: (with T (τ1, τ2, τ3, τ4) = T (−τ, 0, τ, 2τ), σo = 0.1 and
Ω(α1, α2, α3, β1, β2, β3, γ1γ2) = Ω(0, 0, 0, π/2, π/2, π/2, 0, 0))

C.5 Tri-Photon Click on Output-1, Single-Photon Click on
Output-3 and no click on Output-2

In this case, we shall discuss second output coincidence pattern as shown in Fig.(3.19,
in which we get a tri-photon click at output port-1, a single-photon click at output
port-3 and no click at output port-2. The Input state will be the same as defined
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in Eq.(3.42) and the output operators for this case are defined as,

Π1 =

∫ ∞
−∞

â†1(ω5)â
†
1(ω8)â

†
1(ω11) |000〉 〈000| â1(ω5)â1(ω8)â1(ω11)dω5dω8dω11,

(C.17)
and

Π3 =

∫ ∞
−∞

â†3(ω7) |0〉 〈0| â†3(ω7)dω7, (C.18)

the coincidence probability for this case can be written as

P202,301 = s 〈1111|U †Π1 ⊗ Π3U |1111〉s , (C.19)

Where G’s are the probability coefficient and are defined in Eq.(3.52). So the
coincidence probability is

P202,301 =G13 (G14)
∗e−σ

2τ2 +G13 (G15)
∗e−3σ

2τ2 +G13 (G16)
∗e−6σ

2τ2+

G14 (G13)
∗e−σ

2τ2 +G14 (G15)
∗e−σ

2τ2 +G14 (G16)
∗e−3σ

2τ2+

G15 (G13)
∗e−3σ

2τ2 +G15 (G14)
∗e−σ

2τ2 +G15 (G16)
∗e−σ

2τ2+

G16 (G13)
∗e−6σ

2τ2 +G16 (G14)
∗e−3σ

2τ2 +G16 (G15)
∗e−σ

2τ2+

G13 (G13)
∗ +G14 (G14)

∗ +G15 (G15)
∗ +G16 (G16)

∗. (C.20)

The plot of coincidence probability against the time-delays introduced between
the arrival of the photons at input ports of the balanced beam-splitter is shown
in Fig.(C.5). This plot shows that the probability of having the desired output is
relatively high and is equal to the value of the permanent of the adjacent scattering
matrix when the time-delays τ introduced between the arrival of the photon at
inputs of the beam-splitter is zero. The coincidence probability slightly increases
with the increase in the length of the time-delays τ and then gradually decreases
to zero with further increase in the length of the time-delays τ .

C.6 Tri-Photon Click on Output-2, Single-Photon Click on
Output-1 and no click on Output-3

In this case, we shall discuss third output coincidence pattern as shown in Fig.(3.19,
in which we get a tri-photon click at output port-2, a single-photon click at output
port-1 and no click at output port-3. The Input state will be the same as defined
in Eq.(3.42) and the output operators for this case are defined as,

Π2 =

∫ ∞
−∞

â†2(ω6)â
†
2(ω9)â

†
2(ω12) |000〉 〈000| â2(ω6)â2(ω9)â2(ω12)dω6dω9dω12,

(C.21)



110 APPENDIX A. APPENDIX

Figure C.5: (with T (τ1, τ2, τ3, τ4) = T (−τ, 0, τ, 2τ), σo = 0.1 and
Ω(α1, α2, α3, β1, β2, β3, γ1γ2) = Ω(0, 0, 0, π/2, π/2, π/2, 0, 0))

and

Π1 =

∫ ∞
−∞

â†1(ω5) |0〉 〈0| â†1(ω5)dω5, (C.22)

the coincidence probability for this case ca be written as

P022,130 = s 〈1111|U †Π2 ⊗ Π3U |1111〉s , (C.23)

Where G’s are the probability coefficients and are defined in Eq.(3.52). So the
coincidence probability is

P202,130 =G17 (G18)
∗e−σ

2τ2 +G17 (G19)
∗e−3σ

2τ2 +G17 (G20)
∗e−6σ

2τ2+

G18 (G17)
∗e−σ

2τ2 +G18 (G19)
∗e−σ

2τ2 +G18 (G20)
∗e−3σ

2τ2+

G19 (G17)
∗e−3σ

2τ2 +G19 (G18)
∗e−σ

2τ2 +G19 (G20)
∗e−σ

2τ2+

G20 (G17)
∗e−6σ

2τ2 +G20 (G18)
∗e−3σ

2τ2 +G20 (G19)
∗e−σ

2τ2+

G17 (G17)
∗ +G18 (G18)

∗ +G19 (G19)
∗ +G20 (G20)

∗ (C.24)

The plot of coincidence probability against the time-delays introduced between
the arrival of the photons at input ports of the balanced beam-splitter is shown
in Fig.(C.6). This plot shows that the probability of having the desired output is
relatively high and is equal to the value of the permanent of the adjacent scattering
matrix when the time-delays τ introduced between the arrival of the photon at
inputs of the beam-splitter is zero. The coincidence probability slightly increases
with the increase in the length of the time-delays τ and then gradually decreases
to zero with further increase in the length of the time-delays τ .
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Figure C.6: (with T (τ1, τ2, τ3, τ4) = T (−τ, 0, τ, 2τ), σo = 0.1 and
Ω(α1, α2, α3, β1, β2, β3, γ1γ2) = Ω(0, 0, 0, π/2, π/2, π/2, 0, 0))

C.7 Tri-Photon Click on Output-2, Single-Photon Click on
Output-3 and no click on Output-1

In this case, we shall discuss forth output coincidence pattern as shown in Fig.(3.19,
in which we get a tri-photon click at output port-2, a single-photon click at output
port-3 and no click at output port-1. The Input state will be the same as defined
in Eq.(3.42) and the output operators for this case are defined as,

Π2 =

∫ ∞
−∞

â†2(ω6)â
†
2(ω9)â

†
2(ω12) |000〉 〈000| â2(ω6)â2(ω9)â2(ω12)dω6dω9dω12,

(C.25)
and

Π3 =

∫ ∞
−∞

â†3(ω7) |0〉 〈0| â†3(ω7)dω7, (C.26)

the coincidence probability for this case ca be written as

P022,031 = s 〈1111|U †Π2 ⊗ Π3U |1111〉s , (C.27)

Where G’s are the probability coefficients and are defined in Eq.(3.52). So the
coincidence probability is

P202,031 =G1 (G2)
∗e−σ

2τ2 +G1 (G3)
∗e−3σ

2τ2 +G1 (G4)
∗e−6σ

2τ2 +G2 (G1)
∗e−σ

2τ2+

G2 (G3)
∗e−σ

2τ2 +G2 (G4)
∗e−3σ

2τ2 +G3 (G1)
∗e−3σ

2τ2 +G3 (G2)
∗e−σ

2τ2+

G3 (G4)
∗e−σ

2τ2 +G4 (G1)
∗e−6σ

2τ2 +G4 (G2)
∗e−3σ

2τ2 +G4 (G3)
∗e−σ

2τ2+
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G1 (G1)
∗ +G2 (G2)

∗ +G3 (G3)
∗ +G4 (G4)

∗. (C.28)

The plot of coincidence probability against the time-delays introduced between
the arrival of the photons at input ports of the balanced beam-splitter is shown in
Fig.(C.7). The plot shows that the coincidence probability of having the above-
mentioned output coincidence patter is maximum and is equal to the value of
the permanent of the adjacent scattering matrix when time-delays τ introduced
between the arrival of the incident photons is zero. The coincidence probability
decreases with the increase in the length of the time-delays τ introduced between
the arrival of the photons at input ports of the balanced beam-splitter increases
and eventually becomes zero at a specific value of the time-delay τ .

Figure C.7: (with T (τ1, τ2, τ3, τ4) = T (−τ, 0, τ, 2τ), σo = 0.1 and
Ω(α1, α2, α3, β1, β2, β3, γ1γ2) = Ω(0, 0, 0, π/2, π/2, π/2, 0, 0))

C.8 Tri-Photon Click on Output-3, Single-Photon Click on
Output-1 and no click on Output-2

In this case, we shall discuss fifth output coincidence pattern as shown in Fig.(3.19,
in which we get a tri-photon click at output port-3, a single-photon click at output
port-1 and no click at output port-2. The Input state will be the same as defined
in Eq.(3.42) and the output operators for this case are defined as,

Π1 =

∫ ∞
−∞

â†1(ω5) |0〉 〈0| â1(ω5)dω5, (C.29)
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and

Π3 =

∫ ∞
−∞

â†3(ω7)â
†
3(ω10)â

†
3(ω13) |000〉 〈000| â†3(ω7)â3(ω10)â3(ω13)dω7dω10dω13,

(C.30)
the coincidence probability for this case can be written as

P022,103 = s 〈1111|U †Π1 ⊗ Π3U |1111〉s , (C.31)

where G’s are the probability coefficients and are defined in Eq.(3.52). So the
coincidence probability is

P202,103 =G21 (G22)
∗e−σ

2τ2 +G21 (G23)
∗e−3σ

2τ2 +G21 (G24)
∗e−6σ

2τ2+

G22 (G21)
∗e−σ

2τ2 +G22 (G23)
∗e−σ

2τ2 +G22 (G24)
∗e−3σ

2τ2+

G23 (G21)
∗e−3σ

2τ2 +G23 (G22)
∗e−σ

2τ2 +G23 (G24)
∗e−σ

2τ2+

G24 (G21)
∗e−6σ

2τ2 +G24 (G22)
∗e−3σ

2τ2 +G24 (G23)
∗e−σ

2τ2+

G21 (G21)
∗ +G22 (G22)

∗ +G23 (G23)
∗ +G24 (G24)

∗ (C.32)

The plot of coincidence probability against the time-delays introduced between
the arrival of the photons at input ports of the balanced beam-splitter is shown
in Fig.(C.8). This plot shows that the probability of having the desired output is
relatively high and is equal to the value of the permanent of the adjacent scattering
matrix when the time-delays τ introduced between the arrival of the photon at
inputs of the beam-splitter is zero. The coincidence probability slightly increases
with the increase in the length of the time-delays τ and then gradually decreases
to zero with further increase in the length of the time-delays τ .

C.9 Tri-Photon Click on Output-3, Single-Photon Click on
Output-2 and no click on Output-1

In this case, we shall discuss last output coincidence pattern as shown in Fig.(3.19,
in which we get a tri-photon click at output port-3, a single-photon click at output
port-2 and no click at output port-1. The Input state will be the same as defined
in Eq.(3.42) and the output operators for this case are defined as,

Π2 =

∫ ∞
−∞

â†2(ω6) |0〉 〈0| â2(ω6)dω6, (C.33)

and

Π3 =

∫ ∞
−∞

â†3(ω7)â
†
3(ω10)â

†
3(ω13) |000〉 〈000| â†3(ω7)â3(ω10)â3(ω13)dω7dω10dω13,

(C.34)
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Figure C.8: (with T (τ1, τ2, τ3, τ4) = T (−τ, 0, τ, 2τ), σo = 0.1 and
Ω(α1, α2, α3, β1, β2, β3, γ1γ2) = Ω(0, 0, 0, π/2, π/2, π/2, 0, 0))

the coincidence probability for this case can be written as

P022,013 = s 〈1111|U †Π2 ⊗ Π3U |1111〉s , (C.35)

where G’s are the probability coefficients and are defined in Eq.(3.52). So the
coincidence probability is

P202,013 =G5 (G6)
∗e−σ

2τ2 +G5 (G7)
∗e−3σ

2τ2 +G5 (G8)
∗e−6σ

2τ2 +G6 (G5)
∗e−σ

2τ2+

G6 (G7)
∗e−σ

2τ2 +G6 (G8)
∗e−3σ

2τ2 +G7 (G5)
∗e−3σ

2τ2 +G7 (G6)
∗e−σ

2τ2+

G7 (G8)
∗e−σ

2τ2 +G8 (G5)
∗e−6σ

2τ2 +G8 (G6)
∗e−3σ

2τ2 +G8 (G7)
∗e−σ

2τ2+

G5 (G5)
∗ +G6 (G6)

∗ +G7 (G7)
∗ +G8 (G8)

∗. (C.36)

The plot of coincidence probability against the time-delays introduced between
the arrival of the photons at input ports of the balanced beam-splitter is shown in
Fig.(C.9). The plot shows that the coincidence probability of having the above-
mentioned output coincidence patter is maximum and is equal to the value of
the permanent of the adjacent scattering matrix when time-delays τ introduced
between the arrival of the incident photons is zero. The coincidence probability
decreases with the increase in the length of the time-delays τ introduced between
the arrival of the photons at input ports of the balanced beam-splitter increases
and eventually becomes zero at a specific value of the time-delay τ .
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Figure C.9: (with T (τ1, τ2, τ3, τ4) = T (−τ, 0, τ, 2τ), σo = 0.1 and
Ω(α1, α2, α3, β1, β2, β3, γ1γ2) = Ω(0, 0, 0, π/2, π/2, π/2, 0, 0))

C.10 Tetra-Photon Click on Output-2 and no Click on
Output-1 and Output-3

In this case, we shall discuss the coincidence probability of the second output
coincidence pattern as shown Fig.(3.21) which shows that we get a tetra-photon
pulse at output port-2 and no clicks at output-1 and at output-3. The input state
for this case is same as defined in Eq.(3.42) and the output operator is define as,

Π2 =

∫ ∞
−∞

â†2(ω6)â
†
2(ω9)â

†
2(ω12)â

†
1(ω15) |0000〉 〈0000|

â2(ω6)â2(ω9)â2(ω12)â2(ω15)dω6dω9dω12dω15, (C.37)

the coincidence probability for this case can be written as,

P022,040 = s 〈1111|U †Π2U |1111〉s , (C.38)

and the probability coefficient for this case are defined as,

V8 = U2
22U

2
23; (C.39)

so, the coincidence probability for this case is

P202,040 = V8 (V8)
∗. (C.40)

We can clearly see that, the coincidence probability for this case do not depend on
the time-delays introduced between the arrival of the photon at the input ports of
the balanced beam-splitter.
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C.11 Tetra-Photon Click on Output-3 and no Click on
Output-1 and Output-2

In this case, we shall discuss the coincidence probability of the third output
coincidence pattern as shown Fig.(3.21) which shows that we get a tetra-photon
pulse at output port-3 and no clicks at output-1 and at output-2. The input state
for this case is same as defined in Eq.(3.42) and the output operator is define as,

Π3 =

∫ ∞
−∞

â†3(ω7)â
†
3(ω10)â

†
3(ω13)â

†
3(ω16) |0000〉 〈0000|

â3(ω7)â3(ω10)â3(ω13)â3(ω16)dω7dω10dω13dω16, (C.41)

the coincidence probability for this case can be written as,

P022,004 = s 〈1111|U †Π3U |1111〉s , (C.42)

and the probability coefficient for this case are defined as,

V9 = U2
32U

2
33; (C.43)

so, the coincidence probability for this case is

P022,004 = V9 (V9)
∗. (C.44)

We can clearly see that, the coincidence probability for this case do not depend on
the time-delays introduced between the arrival of the photon at the input ports of
the balanced beam-splitter.
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