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Abstract

Entanglement is an amazing feature of quantum mechanics which is non trivial

non-local correlation between the states. Discrete and continuous are two variables

used to study quantum communication protocol. To study the spin of electrons

and polarization of photon etc, we use discrete variables. To study the quadrature

of electromagnetic field, we use continuous variables. The efficient and compact

information processing is done with the help of continuous variables. It is worthwhile

to study quantum information with continuous variables which is robust against

decoherence. In this thesis we reviewed the distribution of entanglement between

two parties using ancilla which remain have separable throughout process. In

this scheme Gaussian states are used, which are easy to generate and analyzed

mathematically using covariance matrix phase space formalism. We have extended

the two partite entanglement distribution to three parties using two ancilla.
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1

Introduction

20th century has brought radical changes in the world of science. Max Plank, while

explaining the Black body radiation proposed that energy emitted could be thought

as consisting of discrete packets of energy. These are called Quantas [1]. His effort

proved successful when Einstein employed his idea for explaining photoelectric

effect and was granted the Nobel prize in 1921. He also used this idea for explaining

specific heat at low temperature [2]. In 1913, Bohr postulated that electrons had

confined set of orbits. He successfully explained the spectral lines for hydrogen and

helium[3, 4]. Explanation of extremely small things has found many applications

like laser and superconductivity.

By the end of 19th century majority of the scientists agreed that light has a

wave nature and the supporting experiment was Young’s double-slit experiment.

Einstein’s work on Photo-electric effect proved the particle nature. Compton effect

in 1923 was another proof of particle nature of light [5]. Both these explanation

initiated a new concept of wave particle duality. de Broglie postulated that not

only light has dual behavior but all the particles should have a wave nature [6].
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10 1. INTRODUCTION

Devisson confirmed his hypothesis by proving the wave nature of electron of nickel

crystal [7].

Proving the quantum effects led to think about the formalism through which

we used to explain quantum effects. All the efforts on this proved successful after a

few years and it brought out two new formalism. The first one was developed by

Heisenberg and the second one developed by Schrodinger. First formalism is known

as Heisenberg ’s matrix mechanics which he developed with Born and Jordan [8].

This was purely mathematical approach, so not well appreciated by Most of the

physicist. This is known as Schrodinger wave equation and it is well appreciated

[9].

Schrodinger applied law of conservation of energy and used de Broglie’s concept

in his derivation. Born further added to the Schrodinger concept that the square

of wave function gives the probability of wave function at a given state [10]. Now

this probabilistic world has proved when Heisenberg discovered the uncertainty

principle in 1927. Most of the scientists rejected the idea of probabilistic world.

Most of the physicist believed that quantum mechanics should be deterministic.

In 1935 Schrodinger proposed a thought experiment known as cat’s experiment.

In this thought experiment he imagined a cat in a box with radioactive element

in the box and a counter that initiate the radio active element having poison

fumes. This poison kills the cat as the radioactive element is in the superposition

of decaying and not decaying states and hence cat also is in the superposition of

live and dead state. The response of the Copenhagen interpretation to this paradox

was that the act of observation collapses the wave function in one of both states of

the cat.

In 1935 first time Schrodinger used the term entanglement. Quantum entangle-
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ment is the phenomenon that occurs when two particles are interacted physically. In

1964 John Bell derived his famous inequality which is known as Bell’s Inequality[11].

The first Bell test was tested in 1972 by Freedman[12].

All this progress in the fundamentals of quantum mechanics finally led to use

entanglement as a resource in quantum information processes in 1980’s. These

protocols were mainly based on discrete variables which were prone to noise. In

the beginning of 21st century, continuous variable quantum information flourished,

which is more robust to noise. We study how to create one resource of continuous

variable quantum information, which is quantum entanglement.

In the rest of the chapter we discuss the basics needed for our problem. In

section 1.2, we define the qubit which plays a vital role in defining a quantum

system and play their role as the carrier of information. In section 1.3, we discuss

the quadrature and define the position and momentum quadrature for continuous

variable system. In section 1.4, we discuss the action of beam splitter on quantum

states and its role in the entanglement which differentiates the classical and quantum

case.

1.1 Qubit

The basic unit of classical information is bit. It is the carrier of information. All

the information is encoded in qubit. This qubit may be in the form of spin of

particles or polarization of particles. In case of continuous variable qubit takes the

form of position and momentum. It can have two possible states which are “0” and

“1” . A qubit is simply a quantum system that contains a two level quantum state.

All the information of a quantum system is encoded in the state vector. Now if
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we want to extract the required information of the system, we use corresponding

operator that gives the information. We realize a classical bit as a mechanical

switch which has two distinct states. Mathematically the state of a qubit can be

written as the superposition of |0〉 and |1〉

|ψ〉 = α |0〉+ β |1〉 (1.1)

where α and β are the probabilities amplitudes of the states and hence the total

probabilities is equal to one i.e.

|α|2 + |β|2 = 1 (1.2)

The square of probability amplitude is known as probability in the corresponding

state. On measurement, the state collapses into |0〉 with probability |α|2 and into

state |1〉 with probability |β|2 .

1.2 Quadrature

Quadrature are the objects that are 90 degree apart from each other. In this context

the position and momentum operator are 90 degree apart from each other in a

complex plane that is why they are called quadrature operator. Position and mo-

mentum operators are continuous. These quadratures are mathematically written as

X̂ = 1√
2
(a+ a†)

P̂ = 1√
2i

(a− a†)
(1.3)

In the next section we are going to discuss the action of beam spliter and its
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role in the entanglement.

1.3 Beam Splitter

It is an optical device that splits a beam of light. It is the essential part of

interferometer. Many quantum operation can be implemented by optical beam

spliter. It is the most general SU(2) operator. It is an entangling agent between

the input states. Beam splitter plays vital role in the study of many aspects of

optics especially entanglement.

1.3.1 Classical View of Beam Splitter

First, I explain the lossless beam splitter on the basses of classical physics. Consider

a classical light with complex amplitude incident on lossless beam splitter as shown

in figure(1.1)

Figure 1.1: classical description of Beam Splitter having one input ε1 and two
output ε2 and ε3

ε2 = rε1, ε3 = tε1, (1.4)
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where r is the reflectance and t is the transmittance and ε1 , ε2 and ε3 are the

complex amplitude of incidence, reflected and transmitted beams. The total

intensity of reflected and transmitted intensities must be equal to incident intensity.

|ε1|2 = |ε2|2 + |ε3|2 (1.5)

which results into,

|r|2 + |t|2 = 1 (1.6)

giving the probability of reflection and transmission to be one.

1.3.2 Quantum View of Beam Splitter

Now we use quantum mechanical model to explain this problem. In quantum

approach we replace complex amplitude with annihilation operator as

â2 = râ1, â3 = tâ1 (1.7)

These operators must satisfy the commutation relation that are given below,

[
âi, â

†
j

]
= δij (1.8)

[âi, âj] = 0 =
[
â†i , â

†
j

]
(1.9)

[
â2, â

†
2

]
= |r|2

[
â1, â

†
1

]
= |r|2 (1.10)
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Figure 1.2: wrong description of Quantum beam splitter having one input and two
output

Figure 1.3: Quantum beam splitter with two input and two output

[
â3, â

†
3

]
= |t|2

[
â1, â

†
1

]
= |t|2 (1.11)[

â2, â
†
3

]
= rt∗ 6= 0 (1.12)

These transformation with only one output do not preserve the commutation
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relation and hence quantum mechanical approach cannot give the correct result.

The failure of this lies in that we are not using the port which is correct according

to classical physics. But according to quantum physics it is not correct. In quantum

mechanical picture, the output port that we are not using still contains a quantized

field that is vacuum state,

â2 = tâ1 + r
′
â0 (1.13)

â3 = t
′
â1 + râ0 (1.14) â2

â3

 =

 t
′
r

r
′
t


 â0

â1

 (1.15)

These relations are called reciprocity relations [13].

In the next section, I will discuss entanglement and also classical and quantum

view of entanglement.

1.4 Entanglement

If a system consists of more than one subsystem, then this mixture exhibits a

very interesting feature which is known as entanglement. Entanglement is an

important property of quantum mechanical system which plays a vital role in

the field of quantum computation and quantum information. It is perhaps the

main difference between classical and quantum cases. The thought experiment

described by Einstein, Podolsky and Rosen argued that laws of quantum mechanics

are incomplete. This thought experiment is known as EPR-Paradox[14]. Classical

and quantum correlation are different from manipulation point of view.
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1.4.1 Classical correlation

Classical correlation are well explained and understood by using conservation laws.

For example, in pair production a photon having rest mass zero splits into a particle

and its anti-particles in opposite direction. If we calculate the momentum of first

particle then we can guess the antiparticle’s momentum by using law of conservation

of momentum.

1.4.2 Quantum correlation

Now if we have a system of two entangled state and we have a system having total

spin zero that can be written as

|ψ〉 =
1√
2

(|1A0B〉+ |0A1B〉), (1.16)

When |1〉 is spin up state and |0〉 is the spin down state. Where we measure

the spin state of one of the system them we find the state of second system without

measuring it. The difference lies in the superposition of sates that makes the

result be quite random. As we measure the system, state collapses. An immediate

transfer happens from one state if the states are separated very far from each other.

As the transfer occurs within no time then it is thought that perhaps this transfer

violates special relativity that put a bound on the speed of traveling of information

that no information can travel faster than the speed of light. But we can say that

in this case useful information is traveled between two parties. This can be thought

of as the entanglement is prepared between the states and when the states move

apart from each other, the information is spreads over the Hilbert space and hence
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during measurement no information is traveled.

In the next section, I discuss the outline of the thesis.

1.5 Thesis Outline

In this thesis we distribute entanglement between three parties Alice, Bob and

Charlie using two helping bit that are separable through out the whole process. We

use continuous variables that are vulnerable to decoherence. This thesis is arranged

as follows.

In chapter two, I have discussed continuous variable entanglement by first explaining

the continuous variables , differentiating them from discrete variable and outlining

advantages over discrete case.I discuss different cases staring from number states,

Gaussian states and then the squeezed states. Then I explain the covariance matrix

and its importance in the entanglement and then explain how it is used to guess

weather a system is entangled or separable by computing the symplectic eigenvalues

of that covariance matrix with respect to different parties.

In the third chapter I review the previous technique to apply on different system to

check entanglement. First I review when two vacuum states added on 50:50 beam

splitter then we add a squeeze state and vacuum state on beam splitter and at

last I add two squeeze vacuum state on beam splitter and discuss the results i.e.

In sec 3.1 I added two vacuum state of 50:50 beam splitter. In sec 3.2, I checked

the entanglement when we add one vacuum state and the second squeeze vacuum

state. In sec 3.3, I discussed check the entanglement when we add two single mode

squeeze vacuum states.

In fourth chapter, I review the entanglement between Alice and Bob with the
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help of Charlie which plays the role of helping bit and carrier of information. This

chapter is the review of [15].

In chapter five, I distribute the entanglement between between three parties

Alice, Bob and charlie with the help of two helping qubits D1 and D2.



2

Continuous Variable Quantum

Information

2.1 Continuous Variable in Quantum Optics

Continuous variables are those variables whose possible values are infinite and

continuous. When we are encoding the quantum information, there are two set

of coordinate that are continuous and discrete variable but continuous variables

have a lot of advantages over discrete variables. These variables can take any value.

Variables that have finite set of states are called discrete variables. The main

differences of continuous and discrete variables are

1. In Contionuous varible the set of possible states are infinite while in discrete

variables the set of possile states are finite.

2. Posion amd momentum are the operators instead of lowering and raising

operators.

20
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3. An example of discrete variables is polarization states of photon while an

example of continuos variable is quantized hormonic oscillator

When a transition is made from classical to quantum mechanics the observable of

particles of a system can turn into non hermitian operators in the Hamiltonian of

that system. The electromagnetic modes of the system correspond to quantum

harmonic oscillators and the quadrature of that mode plays the role of position and

momentum of the oscillators. In addition to these, continuous variable quantum

information has many practical advantages over its quantum-bit quantum informa-

tion as

1. Current optical sources of entangled qubits do not succeed in generating

entanglement on demand. System comprising qubits are easy to manipulate

but single photons are hard to produce on demand.

2. Continuous variable quantum states can be relatively easily generated [16].

3. The measurement in the basis of entangled states is not unconditional.

The generation, manipulation and measurement of entangled states makes continuous-

variable quantum information even more interesting. Gaussian states and Gaussian

operation are most extensively used in quantum information technology in these

days. These states are manipulated by using continuous variable. Also Gaussian

sates are easily understood hence it is also an advantage.

In the next section, we define and explain the importance of covariance matrix and
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also explain how we calculate the covariance matrix when the density matrix are

given.

2.2 Covariance Matrix

The covariance matrix is quantum state description that is an alternative to a

density matrix or wave function. It contains all the information about the system

just like the wave function or density matrix . The complete description of a

Gaussian state is done by their first and second moments. First moments give

the values of canonical variable and the second moments are collected in a real,

symmetric covariance matrix [17]. The vector of quadratures is written as,

χ̂ = (x̂1, p̂1, x̂2, p̂2, ......, x̂N , p̂N)T (2.1)

For a state with density matrix ρ covariance matrix is defined as, [18]

γij :=
1

2
〈{∆χ̂i,∆χ̂j}〉 = Tr[ρ̂(∆χ̂i∆χ̂j + ∆χ̂j∆χ̂i)/2], (2.2)

where,

∆χ̂i = χ̂i − 〈χ̂i〉 (2.3)

and for zero mean values this becomes equal to χ̂i.

When we need to take partial transpose of a mode with respect to rest of modes,

then covariance matrix transforms from γ to γTA as,

γ(TA) = ΛAγΛA (2.4)
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where ΛA are the diagonal matrix, that are written for the system consisting of

three parties x , y and z,

Λx = σz ⊕ 1⊕ 1

Λy = 1⊕ σz ⊕ 1

Λz = 1⊕ 1⊕ σz

(2.5)

with σz being the Pauli diagonal matrix which is written as,

σz = diag{1,−1}

and 1 is the 2x2 identity matrix.

Now I explain covariance matrix with one example. Let’s take the density matrix

of simple system that is number states that is written as,

ρ = |n〉 〈n| (2.6)

and x and p are the quadrature of this state. The first element of covariance can

be briefly calculated as,

γ11 = Tr(|n〉 〈n| ξ1ξ1)

γ11 = Tr(|n〉 〈n|XX)
(2.7)

here

ξ = (x1, p1, x2, p2, ..., xN , pN) (2.8)

are the quadrature operators defined previously and X and P quadrature are
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written is raising and lowering operator as,

X = 1√
2
(â+ â†)

P = 1√
2
(â− â†)

(2.9)

Now putting these values in the above equation and giving the operators in

order form as,

γ11 = Tr[|n〉 〈n| (â2 + ââ† + â†â+ â†)]

γ11 = Tr[|n〉 〈n| (â2 + â†â+ 1 + â†â+ â†)]
(2.10)

Now operating the lowering and raising operator, in a manner as their operation

is discussed in the previous section, and tracing out the sates,

γ11 = 2n+ 1 (2.11)

On the same lines we can calculate the other element of the covariance matrix. γ12

and γ21 are brought to be zero and γ22 is calculated as −2n− 1. So the covariance

matrix is written as,

γ =

 2n+ 1 0

0 −2n− 1

 , (2.12)

which is the covariance matrix of number state. In the next section, I discuss

how these variables are used to manipulate the Gaussian states.
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2.3 Gaussian State

Gaussian states are the states whose Wigner function is Gaussian. These states are

minimum uncertainty state. These states are very useful in quantum information,

as they are easily prepared [19] and also vulnerable to decoherence[20]. These

states are frequently used in quantum information protocols. These states are

easily displaced, rotated and measured. The ground state and thermal states of

bosonic systems are Gaussian.

Vacuum state is the most frequently used Gaussian state. This state contains zero

photon having eigenvalue zero of annihilation operator.

2.4 Number State

Number states are the basis for all squeezed and coherent states. The operator

product â†â has a special significance and is called the number operator, which

we denote as |n〉. The eigenstates of the number operator is called the number

state, which is also the energy eigenstate of the single mode field with the energy

eigenvalue En such that

Ĥ |n〉 = ~ω(â†â+
1

2
) |n〉 (2.13)

n̂ |n〉 = n |n〉 (2.14)

â |0〉 = 0 (2.15)

â |n〉 =
√
n− 1 |n− 1〉 (2.16)

â† |n〉 =
√
n+ 1 |n+ 1〉 (2.17)



26 2. CONTINUOUS VARIABLE QUANTUM INFORMATION

|n〉 =

[
(â†)

n

√
n!

]
|0〉 (2.18)

The number states are orthogonal and complete, satisfying the following or-

thogonality and completeness conditions

〈n| m〉 = δn,m (2.19)

∞∑
n=0

|n〉 〈n| = I (2.20)

. In the next section we explain the squeezed states.

2.5 Squeezed State

Squeezing is a process that decreases the variance of one continuous variable[18].

The minimum uncertainty states are called Squeezed States. It has a less variance

in one quadrature while grater variance in the other quadrature. The squeezed

states are called as such because the quadrature variance of one quadrature is

smaller than
1

4
. This reduced or squeezed quadrature means that the variance of

the other quadrature must be larger than
1

4
, such that the variance product of the

two quadratures is still governed by the Heisenberg uncertainty relation.

〈
(∆x̂k)

2〉 〈(∆p̂k)2〉 ≥ 1

4
|[x̂k, p̂k]|2 =

1

16
(2.21)

where, 〈
(∆x̂k)

2〉 ≡ 〈(x̂k − 〈x̂k〉)2〉 = 〈x̂2k〉 − 〈x̂k〉
2〈

(∆p̂k)
2〉 ≡ 〈(p̂k − 〈p̂k〉)2〉 = 〈p̂2k〉 − 〈p̂k〉

2
(2.22)
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Most generally a state is called squeezed if the covariance matrix has eigenvalue

smaller than one as shown in figure. The simplest single mode squeeze state can

be written as [21]

|ζ, 0〉 = S(ζ) |0〉 , (2.23)

where |0〉 is the vacuum.

Squeezed state is generated by squeezing operator that is written as,

Figure 2.1: Squeezed vacuum state and vacuum state.

S(ζ) = exp(
1

2
(ζ∗â2 − ζâ†2)) (2.24)

This Squeezing operator is unitary as

Ŝ(ξ)Ŝ†(ξ) = Ŝ†(ξ)Ŝ(ξ) = 1 (2.25)

The covariance matrix for squeeze vacuum state can be written as,

γSV (d) =

 e−d 0

0 ed

 γ0

 e−d 0

0 ed

 =

 e−2d 0

0 e2d

 (2.26)
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Where e−2d is the variance of position and e2d is the variance of momentum.

Position noise is increased when d is negative and opposite is true in case of

momentum.

The squeeze state can be written in ordered form as [22],

S(ξ) =
1√

cosh(ξ)
×exp(−a

†2

2
eiφ tanh(ξ)) exp(−a†a(ln cosh(ξ))) exp(

1

2
a2eiφ tanh(ξ))

(2.27)

2.6 Density Matrix

A density matrix is, just like a state vector, a state representation. Just like state

vector, it contains all the information about the system. If we have a system

that consists of more than one quantum states then statistical mixture can be

represented by density matrix. It is a powerful tool to distinguish between pure

and mixed states. The density matrix of a pure state is written as,

ρ = |ψ〉 〈ψ| (2.28)

If system has mixture of states then their density matrix is written as,

ρ =
∑
n

pn |ψn〉 〈ψn| , (2.29)

where pn is the probability of the system to be in the state ψn

The density matrix has following properties [23, 24],
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1. The density matrix is always non-negative as,

ρ ≥ 0 (2.30)

2. The expectation value of any operator Â using density matrix is computed

as,

〈A〉ρ = Tr(ρA) (2.31)

3. The Density matrix is normalized that can be written as,

Tr(ρ) = 1 (2.32)

4. The Density matrix representing a pure state iff

Tr(ρ2) = 1 (2.33)

5. The Density matrix representing a mixed state iff

0 < Tr(ρ2) < 1 (2.34)

In the next section, I am going to discuss the covariance matrix of different states.

2.6.1 Vacuum State

It is a quantum state which has the lowest possible energy. In phase space

representation the vacuum state is the vacuum states lies at the origin as shown in

figure 3.1.
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Its covariance matrix can be written as,

 1 0

0 1

 (2.35)

2.6.2 Coherent State

These states are minimum uncertainty state. A coherent state |α〉 is an eigenstate

of annihilation operator â.

â |α〉 = α |α〉 (2.36)

α is a complex number.

Coherent state is generated by the action of displacement operator on the

vacuum state as,

|α〉 = D(α) |0〉 (2.37)

D(α) is the displacement operator that is written as,

D(α) = eαâ
†−α∗â (2.38)

Coherent states are not orthogonal and cannot satisfy the completeness relation.

The covariance matrix of coherent state is also identity matrix.

2.6.3 Squeezed State

It is the minimum uncertainty state. The squeeze state is generated by unitary

squeezing operator

S(χ) = exp[
1

2
(χ∗â2 − χâ†2)] (2.39)
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where χ = re2iθ , r and θ are the squeezing parameter and squeezing angle

respectively.

We define squeezing parameter as,

|0, χ〉 = S(χ) |0〉 (2.40)

An arbitrary squeezed state is obtained by squeezing the state first and then

displace it,

|α, χ〉 = D(α)S(χ) |0〉 (2.41)

Hence the covariance matrix for squeezed state is written as,

 e−d 0

0 ed

 (2.42)

Where d = 2r, d is the squeezing parameter. The effect of this operator is to

squeeze one of the quadrature while the uncertainty of the other quadrature is

increased.

In the next section, we are going to calculate the symplectic eigenvalues and

show how these eigenvalues are helpful in distinguishing between entangled and

separable states. We discuss the role of symplectic eigenvalue to check whether a

state is entangled or not.
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2.7 Symplectic Eigenvalues of a Covariance Ma-

trix

For Unitary operator U |U †U = I in Hilbert space, there is Symplectic one

S|SJST = J in phase space, where J is an antisymmetric matrix. The unitary

operator maps the density matrix to ρ 7→ UρU †, whereas the corresponding sym-

plectic matrix maps the covariance matrix γ to γ 7→ SγS†. Symplectic eigenvalues

η of γ are defined as the positive roots of the polynomial [25]

|γ − iηJN | = 0 (2.43)

where jN is the N -mode symplectic matrix,

JN =
N
⊕
j=1

 0 1

−1 0

 , (2.44)

The density matrix representing a physical state must be positive definite, hence its

eigenvalues must be positive. This condition in the phase space translates as [25]

1. state is physical if η ≥ 1.

2. state is non-physical if η < 1.

These eigenvalues play a vital role in determining whether a state is entangled or

separable.
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2.7.1 Separability Criteria

The Positive Partial Transpose (PPT) criteria for the separability of two states

can be translated to phase space. Partial transpose is a non-unitary operation and

after this operation state remains physical only if it was separable before. The

state becomes unphysical if it was entangled. So the separability criteria leads to a

condition on symplectic eigenvalue η of partial transposed state γTx , i.e. positive

root η of the polynomial [25].

∣∣γTx − iηJN ∣∣ = 0 (2.45)

1. If η ≥ 1, then state x is separable from rest of the parties

2. If η < 1 then state x is entangled to the rest of the parties

This criteria applies to separability of one-many parties.

Having explained covariance matrix in this chapter, in next chapter I will

explain bi-bipartite entanglement with reference to covariance matrix.
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Bipartite Entanglement

In this chapter I will explain that how two states becomes entangled. I will use

symplectic eigenvalue technique to check the state that whether it is entangled or

not. In section 3.1, I will add two vacuum states on beam splitter. In sec. 3.2, I

add a squeeze sates and one vacuum state on beam splitter. In sec. 3.3, I add two

squeeze states on beam splitter and using the symplectic eigenvalue criteria check

that whether these state are entangled or not.

3.1 Addition of Two Vacuum states on Beam

Splitter

The covariance matrix of vacuum in matrix form can be written as

γ =

 1 0

0 1

 (3.1)

34
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The combined state of two vacuum state is

γAB =



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


(3.2)

Now if we want to join two vacuum states on a 50:50 beam splitter then as the

unitary matrix describing the beam splitter action is,

UAB =



1√
2

0 1√
2

0

0 1√
2

0 1√
2

1√
2

0 − 1√
2

0

0 1√
2

0 − 1√
2


(3.3)

Applying the beam splitter on the two vacuum states as,

γ2 = UAB.γAB.UAB
T (3.4)

After the action of balance beams splitter, the state stays the same.

γ2 =



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


(3.5)

Now to check whether the state is entangled or not, we calculate the symplectic

eigenvalues of the system that reads as 1 that tells that these states are separable.
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In the next section we explain the action of beam splitter on two single mode

squeeze vacuum states.

3.2 Addition of Two Squeeze Vacuum States on

Beam Splitter

Now we are adding the two squeezed states on a balance beam splitter. Single

mode squeezed vacuum state in ordered form can be written as,

|ψA〉 = e−
1
2
eiθ. tanh(r)a

†

e−
1
2
(a†a+a†a) ln(cosh(r)) |0〉 (3.6)

Also the state of second single mode squeeze vacuum is

|ψB〉 = e−
1
2
eiθ. tanh(r)b

†

e−
1
2
(b†b+b†b) ln(cosh(r)) |0〉 (3.7)

Now tensor product of these sates can be written as,

|ψAB〉 = |ψA〉 ⊗ |ψB〉 (3.8)

Now for a and b as the input states and c and d are the output states, the action

of beam splitter can be written as,

a = c+ id (3.9)

b = ic+ d (3.10)
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a† = c† + id† (3.11)

b† = ic† + d† (3.12)

Putting the states together, final state is ,

|ψAB〉 = e
1
2
eiθ tanh(r)[a†

2
+b†

2
]e− ln(cosh(r)) 1

2
(aa†+a†a+b†b+bb†) |0〉A |0〉B

After applying beam splitter on the above state, it becomes

|ψAB〉 = e
1
2
eiθ tanh(r)[( c

†+id†√
2

)
2

+( ic
†+d†√

2
)
2

]

e
− ln(cosh(r)) 1

2
(( c+id√

2
)( c
†+id†√

2
)+( c

†+id†√
2

)( c+id√
2
)+( ic

†+d†√
2

)( ic+d√
2
)+( ic+d√

2
)( ic
†+d†√

2
)) |0〉 |0〉 (3.13)

Multiplying the operators and simplifying the above state by using the binomial

formula

(x+ y)n =
n∑
k=0

 n

k

xn−kyk, (3.14)

We get two mode squeezed state as,

|ψAB〉 =
√

1− tanh r2
∞∑
n=0

(tanh r)n |n〉 |n〉 (3.15)

The beam splitter operation graphically as shown in figure 3.1

The density matrix of the combined system is

ρAB = |ψAB〉 〈ψAB|

ρAB = (1− tanh(r)2)
∞∑
n=0

∞∑
m=0

[tanh(r)]n+m |n〉 |n〉 〈m| 〈m|
(3.16)

Now using this density matrix, we can calculate the covariance matrix that
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Figure 3.1: Adition of two squeeze vacuum state on beam splitter. Here the input
states are squeeze vacuum state which on addition to beam splitter give rise to
2MSV states as output sate.

after some calculation comes out to be,

γAB =



cosh(2t) 0 sinh(2t) 0

0 cosh(2t) 0 − sinh(2t)

sinh(2t) 0 cosh(2t) 0

0 − sinh(2t) 0 cosh(2t)


(3.17)

Now computing the symplectic eigenvalues of the above two mode squeeze state.

The lowest symplectic eigenvalue can be written as e−2t < 1, when t > 0, as shown

in Fig. 3.2. This confirms that both sates are entangled.

I have explained how the entanglement can be established between two parties

using beam splitter and how the same can be checked using symplectic eigenvalues.

In the next chapter, I will explain how this technique can be applied to the
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Figure 3.2: Addition of two squeeze vacuum state on beam splitter. As the lowest
symplectic eigenvalue is less than one for non zero squeezing, hence the state is
entangled.

distribution of entanglement between two parties using separable ancilla.
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Distribution of Entanglement

between Two Parties using

Separable States

In this chapter, I review a scheme to distribute the entanglement between two

parties using a helping ancilla [15]. In this scheme we have two parties A (Alice)

and C(Charlie) that are in squeeze vacuum state and B (Bob) is in vacuum state.

The scheme for this work is shown in Fig. 4.1. In this model we distribute the

entanglement between Alice and Bob with the help of Charlie which remains

separable at each step. We are using two 50:50 beam splitter that are entangling

agent.

At the first step, we add Alice and Charlie on the beam splitter which gives two

40
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Figure 4.1: Entanglement sharing scheme between two parties using separable state.
Here a mode as A and C are in squeeze vacuum sate while Bob’s distant mode is
in vacuum state. Mixing A and C on balanced beam splitter entangles A and BC
while C remains separable after this step. Mixing the mode B and C on the second
beam splitter that entangles A and B while C remains separable

mode squeeze vacuum state that is written as ,

γAC =



cosh [2t] 0 sinh [2t] 0

0 cosh [2t] 0 − sinh [2t]

sinh [2t] 0 cosh [2t] 0

0 − sinh [2t] 0 cosh [2t]


, (4.1)

where t ≥ 0 is the squeezing parameter.

Now computing the symplectic eigenvalues of the above covariance matrix, which



42 4. DISTRIBUTION OF ENTANGLEMENT BETWEEN TWO PARTIES

is shown in Fig. 4.2. As the symplectic eigenvalue is less than one when squeezing

Figure 4.2: Entanglement sharing between two parties. Here the graph of lowest
symplectic eigenvalue (along y-axis) and squeezing parameter (along x-axis). Lowest
symplectic eigenvalue is less than one for non zero squeezing that is the indication
of entanglement between A and C.

parameter is greater than zero, this shows that mode A and C are entangled.

Now adding the state B which is a vacuum state, the entire system comes out to

be,

γABC =



cosh[2t] 0 0 0 sinh[2t] 0

0 cosh[2t] 0 0 0 −sinh[2t]

0 0 1 0 0 0

0 0 0 1 0 0

sinh[2t] 0 0 0 cosh[2t] 0

0 − sinh[2t] 0 0 0 cosh[2t]


(4.2)

Now to make the state C separable, we add a noise matrix to the above
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covariance matrix which can disentangle C from AB and entangle the modes A

and B. We try the noise matrix,

Q =



1 0 −2 0 −1 0

0 1 0 2 0 1

−2 0 4 0 2 0

0 2 0 4 0 2

−1 0 2 0 1 0

0 1 0 2 0 1


, (4.3)

This noise matrix is obtained by computing the eigenvector corresponding the

negative eigenvalue of the matrix γAB − iJ̃ [26]. Extending this eigenvector and

sum this state. The eigenvector is written in the form as, qα = q1 + iq2 . Where

q1 = {0, 1, 0, 1}T , q2 = {1, 0,−1, 0}T . The extended vector is written as,

q̃1 = {0, 1, 0, 2, 0, 1}T ,

q̃2 = {−1, 0, 2, 0, 1, 0}T
(4.4)

So the noise matrix is finally written as,

Q = q̃1q̃
T
1 + q̃2q̃

T
2 (4.5)

Now adding the noise matrix to the γAB, finally the state becomes γAB +xQ where
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x ≥ 0 and is written as,



x+ cosh [2t] 0 −2x 0 −x+ sinh [2t] 0

0 x+ cosh [2t] 0 2x 0 x− sinh [2t]

−2x 0 1 + 4x 0 2x 0

0 2x 0 1 + 4x 0 2x

−x+ sinh [2t] 0 2x 0 x+ cosh [2t] 0

0 x− sinh [2t] 0 2x 0 x+ cosh [2t]


(4.6)

The noise matrix destroys the initial entanglement between mode A and C. Now

taking the partial transpose of the covariance matrix with respect to C. When we

are dealing with covariance matrix then we take the transposition with respect to

mode ”A” as,

γTA = ΛAγΛA (4.7)

This partial transposition transforms the covariance matrix from γ to γTA .

Where ΛA are the diagonal matrices,

ΛA = σZ ⊕ 1⊕ 1,

ΛB = 1⊕ σZ ⊕ 1,

ΛC = 1⊕ 1⊕ σZ .

(4.8)

σZ is the pauli’s matrix that is written as σZ = diag(1,−1) and 1 is the 2x2 identity

matrix .

ΛB is the partial transposition in Bob’s mode only. This transformation only

effects the Bob’s state while do not effect the Allice’s and Charlie’s state [26] .

Now the main task is to separate mode C from A and B. The partial transpose is
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positive when the symplectic eigenvalue λ of the covariance matrix is

λ ≥ 1 (4.9)

. The lowest symplectic eigenvalues with respect to mode C is written as,

1

2
e−2t

(
1− e2t (1 + 2x) + et

√
2 + e−2t + 12x+ e2t (1 + 12x+ 4x2)

)
(4.10)

In order to make the state C separable, the symplectic eigenvalue must be equal

Figure 4.3: Entanglement sharing scheme between two parties using separable
state. The lowest symplectic eigenvalue og mode C w.r.t mode AB. As the lowest
symplectic eigenvalue is less than one for non-zero x which is the indication that C
is still entangled with AC.

or greater than one. For that purpose we make the lowest symplectic eigenvalue

equal to one.

1

2
e−2t

(
1− e2t (1 + 2x) + et

√
2 + e−2t + 12x+ e2t (1 + 12x+ 4x2)

)
= 1 (4.11)
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When we simplify this relation the result comes out to be,

xsep =
1

2

(
−1 + e2t

)
(4.12)

This is the separability condition. Now if x is greater than or equal to xsep. then

the state is separable. Now checking the entanglement between mode A and B by

computing the lower symplectic eigenvalue γ
(TA)
2 which does not come out to be

less than 1. So although this noise makes C separable but this disentangles A and

B as well.

Now we use another noise matrix as given in [15].

q1 = {0,−1, 0, 2, 0,−1}T , q2 = {1, 0, 2, 0,−1, 0}T (4.13)

and follow the same procedure. This noise disentangles C and entangles A and B

as shown in Fig. 4.4 for the same xsep = 1
2

(−1 + e2t) as for the previous noise.

Figure 4.4: Entanglement of mode A with B.
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I have explained how the entanglement can be distributed between two parties.

In the next chapter I explain how this technique can be applied to the distribution

of entanglement between three parties using separable.



5

Distribution of Entanglement

Between Three Parties

In this chapter I explain our work on distribution of entanglement between three

parties. Our scheme is based on two partite entanglement describes in chapter 4.

However it is innovative and novel in extending the existing scheme to three partite

case.

5.1 System and Scheme

We propose to use two ancilla D1 and D2 to distribute entanglement between three

parties. In this case A and D2 are in squeeze vacuum state while B , C and D1

are in vacuum state. The scheme that we follow is shown in figure. In step 1,

we add two squeeze vacuum states on the balanced beam splitter. This entangles

A and D2. B is then added and the noise term is determined that can make D2

separable. In step-3, D2 is separable and A is entangled with BD2. Now at step-3,

48
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Figure 5.1: Distribution of entanglement between three parties with two helping
bit. Here D2 and A are in squeeze state while B, C and D1 are in vacuum state.

mixing the states D2 and B on a beam splitter entangles A and B while D2 remains

separable. As the state D2 is separable so we can take the reduced state of AB. In

step-4, mixing D1 on the balanced beam splitter with A, entangles D1 with AB.

Adding the third party C and with the help of noise term separates D1. Mixing C

and D1 on the balanced beam splitter entangles ABC while D1 remains separable

throughout whole step.

When we combine two squeezed states of A and D1 on the balanced beam

splitter, then the beam splitting operation results in two mode squeeze vacuum
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state that can be written in matrix form as

γAD2 =



cosh [2t] 0 sinh [2t] 0

0 cosh [2t] 0 − sinh [2t]

sinh [2t] 0 cosh [2t] 0

0 − sinh [2t] 0 cosh [2t]


, (5.1)

where t is the squeezing parameter and t ≥0. When we check the symplectic

eigenvalues [15] of the above covariance matrix, then the lowest symplectic eigen

value is shown in Fig. 5.2 As the symplectic eigenvalues is less than one which

Figure 5.2: The lowest symplectic eigenvalue os A w.r.t D2 showing the entangle-
ment between A and D2

indicates that there is entanglement between these two states. Now by adding

the mode B in this sates which is vacuum state and the entire covariance can be
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written as

γABD2 =



cosh [2t] 0 0 0 sinh [2t] 0

0 cosh [2t] 0 0 0 − sinh [2t]

0 0 1 0 0 0

0 0 0 1 0 0

sinh [2t] 0 0 0 cosh [2t] 0

0 − sinh [2t] 0 0 0 cosh [2t]


(5.2)

In order to destroy entanglement between AB and D2 , we add a noise term

to the above state. Now addition of noise term is done by taking the eigenvector

corresponding to negative eigenvalue of the matrix γ − iJ̃A [26], where J̃A =

ΛAJNΛA

and

JN =
N
⊕
J=1

 0 1

−1 0

 (5.3)

The negative eigen vector can be written as

Qλ = Q1 + iQ2

where q1 = {0,−1, 0,−1} and q2 = {1, 0,−1, 0}. as Q = q1q1
T +iq2q2

T . The matrix

Q is positive by construction. we can make extensions of q1 and q2 as

q1 = (0,−1, 0, 2, 0,−1)T

q2 = (1, 0, 2, 0,−1, 0)T
(5.4)

Now adding a sufficiently large non-negative multiple xQ to the covariance
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matrix destroys the initial entanglement between mode A and D2. After adding

the noise term, the covariance is

γABD2 =


(x+ cosh [2t])1 2xσz (x+ sinh [2t])σz

2xσz (1 + 4x)1 −2x1

(x+ sinh [2t])σz −2x1 (x+ cosh [2t])1

 (5.5)

Now taking partial transpose with respect to D2. The corresponding covariance

matrix can be written as

ΛD2 =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 −1


(5.6)

Computing the lowest symplectic eigenvalue with respect to D2, which is written

as

−1

2
e−2t

(
−1 + e2t (1 + 2x) + et

√
2 + e−2t + 12x+ e2t (1 + 12x+ 4x2)

)
(5.7)

Now to make the state separable , the lowest symplectic eigen values must be

equal or grater than one. So,

−1

2
e−2t

(
−1 + e2t (1 + 2x) + et

√
2 + e−2t + 12x+ e2t (1 + 12x+ 4x2)

)
= 1 (5.8)
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When the lowest symplectic eigenvalue is equal to one and the threshold is written

as

xsep →
1

2

(
−1 + e2t

)
(5.9)

So the D2 is separable when x ≥ xsep where

xsep =
1

2

(
−1 + e2t

)
(5.10)

Now in order to check the the entanglement between B and AD2, we compute the

lowest symplectic eigenvalue w.r.t the state D2 , which is

1 + 6x+ e−2t −
√

(1 + 2x− e−2t)2 + 32x2

2
(5.11)

and its graphical representation is shown as in Fig. 5.3. As the symplectic eigenval-

Figure 5.3: The lowest symplectic eigenvalue of mode B w.r.t AD2 showing the
entanglement between B and AD2 .

ues are less than one for non-zero squeezing, so mode A is entangled with D2B.

Now mixing the state B with D2 of beam splitter BSD2B that is mathematically
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written as,

UBD2 =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1√
2

0 1√
2

0

0 0 0 1√
2

0 1√
2

0 0 1√
2

0 −1√
2

0

0 0 0 1√
2

0 −1√
2


. (5.12)

Now the entire 6× 6 matrix can be written as
A B E

B C D

E D F

 (5.13)

where, A = diag(a, a), B = diag(b,−b), C = diag(c, c), D = diag(d, d), E =

diag(−e, e) and F = diag(f, f) with

a = x+ cosh [2t] , b =
−3x+ sinh [2t]√

2
,

c =
1

2
(1 + 9x+ cosh [2t]) , d =

1

2
(1 + 3x− cosh [2t]) ,

e =
x+ sinh [2t]√

2
, f =

1

2
(1 + x+ cosh [2t]) .

As state D2 is separable from A and B so we can reduce the state as



x+ cosh [2t] 0 x+sinh[2t]√
2

0

0 x+ cosh [2t] 0 −x+sinh[2t]√
2

x+sinh[2t]√
2

0 x+ cosh [2t] 0

0 −x+sinh[2t]√
2

0 x+ cosh [2t]


(5.14)
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We computed symplectic eigenvalues with respect to B and these being less than

1 prove that A and B are entangled, as shown by eigenvalue graph in Fig. 5.4 Now

Figure 5.4: Symplectic Eigenvalue Symplectic Eigenvalue (y-axis) vs squeezing
parameter t (x-axis) of the reduced state (γAB) w.r.t B showing the enatnglement
between A and B

adding the ancilla D1 in vacuum state , the covariance matrix can now become

γABD1 =



x+ cosh [2t] 0 x+sinh[2t]√
2

0 0 0

0 x+ cosh [2t] 0 −x+sinh[2t]√
2

0 0

x+sinh[2t]√
2

0 x+ cosh [2t] 0 0 0

0 −x+sinh[2t]√
2

0 x+ cosh [2t] 0 0

0 0 0 0 1 0

0 0 0 0 0 1


(5.15)
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Applying a beam splitter AD1 which is written as

UAD1 =


1√
2
I 0 1√

2
I

0 I 0

1√
2
I 0 − 1√

2
I

 (5.16)

,

where I is an 2× 2 identity matrix. Finally state become


A1 B1 C1

B1 D1 B1

C1 B1 A1

 (5.17)

where A1 = diag(a, a), B1 = diag(b,−b), C1 = diag(c,−c), D1 = diag(d, d),

with

a =
1

2
+

1

2
(x+ cosh [2t]) ; , b = 1/2(x+ sinh[2t]); ,

c = −(1/2) + 1/2(x+ cosh[2t]); , d = x+ cosh [2t] ; .

Now computing symplectic eigenvalues with respect to state D1, the graph of lowest

symplectic eigenvalue, is shown in Fig 5.5. The next step is to entangle C with the

system, which is done by combining C and D1 on a balanced beam splitter. The

same value of symplectic eigen value is obtained for A, B and C w.r.t. the rest. At

this point all three parties along with D1 are found to be entangled for the range

0 < t < 0.5.

Now we have to make the state D1 separable by computing the eigenvectors

corresponding to the negative eigenvalues of γABD1 after attaching system C with
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Figure 5.5: Symplectic Eigenvalue (y-axis) vs squeezing parameter t (x-axis) w.r.t.
D1 with AB
. Then same plot is achieved after entangling C and computing symplectic eigen
value w.r.t. A, B and C w.r.t. the rest.

it. To compute the noise term and making D1 separable requires calculation of a

bigger system which is computationally tedious. We aim to do it numerically and

compute the entanglement at different values of t.



6

Conclusion

Continuous variable quantum information is interesting as it is more robust against

decoherence. Lately a lot of research has been done to use continuous variable

quantum entanglement as a resource in various quantum information protocols. The

continuos variables are the position and momentum quadratures, which can take

continuous infinite values. We have studied the use of Gaussian states to establish

entanglement between distant parties. Gaussian states are easier to prepare and

their analysis is simplified in phase space using symplectic formalism. In phase

space, the tensor products of unitary operators are replaced by the direct sum

in symplectic operators. The covariance matrix representation of quantum states

needs only to track the evolution of covariance matrix with quantum operations.

With the tools of covariance matrix approach and symplectic operations in

phase space in hand, we have analyzed the distribution of continuous variable

entanglement between two and three distant parties. First we have reviewed the

distribution of entanglement between two parties using ancilla, which remains

separable throughout the process [15]. The initial states of three parties are
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taken as Gaussian, the coherent or squeezed states. Entanglement is generated by

beam splitting action between ancilla and the two parties to be entangled. The

interesting feature of this analysis is the deliberate addition of noise to make the

ancilla separable. The noise is added in such a way that it makes the ancilla

separable but keeps entangles the two parties. We have found that the general

recommended noise, though disentangles the ancilla but it also disentangles the

two legitimate parties. We have then added the modified noise as in [15], which

serves the purpose.

We have also extended the procedure to three party entanglement distribution,

where we have proposed to use two ancilla to distribute the entanglement. One

ancilla is first entangled with first and a bipartite entanglement is established first

as in the previous case. The ancilla is then made separable by adding noise. The

first party is then entangled with the second ancilla. We have found that the

second ancilla gets entangled only for range of squeezing parameter 0 < t < 0.5.

The ancilla is then entangled with the third party by combining the two on beam

splitter. They are entangled for the same range, which is a very positive result.

Now all three parties and the second ancilla are entangled. The task to make the

second ancilla separable becomes tedious as the system and hence the matrix size

becomes bigger. We intend to further solve it numerically.

The three partite entanglement distribution system can be analyzed for various

combinations of input states and the range of squeezing parameter for which system

is entangled may be increased. We intend to further analyze the system in this

respect.
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