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Abstract 
 

Air pollution has developed as a serious and potentially fatal anxiety in various nations 

throughout the world in recent decades, owing mostly to human activity, industry, and 

urbanization. Substantial Particulate Matter having a Diameter of 2.5m (PM2.5) is a 

particularly dangerous component of air pollution that causes major health hazards, 

including respiratory and cardiovascular disorders. As a result, precisely forecasting 

PM2.5 levels is critical in order to protect people from the negative effects of air 

pollution. PM2.5 levels are impacted by a number of factors, such as climatic conditions 

and the quantity of other contaminants in metropolitan areas. In this study, we used a DL 

(Deep Learning) technique, especially (CLARP) CNN-LSTM-Attention Mechanism-

Recurrent Mechanism-Pooling Mechanism, to anticipate the hourly PM2.5 concentration 

in Beijing, China.  

Our model includes data fusion approaches that involve the merging of many data 

sources, such as historical pollutant data, meteorological data, and PM2.5 values, to 

provide more accurate estimates or projections. We compared the performance of 

numerous LSTM, Bi-LSTM, GRU, Bi-GRU, PM-GRU, RM-LSTM and a hybrid 

CLARP model. Based on experimental data, the CLARP Model technique outperformed 

all standard models tested, giving 99% R2 and improved results for RMSE & MAE 

emphasizing its expanded predictive capabilities.  
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Chapter 1: Introduction    
    

1.1 Overview 
  

The percentage of people living in cities throughout the world is increasing, indicating a 

rising trend in urban migration. In 2020, the urban population was projected by the United 

Nations (UN) to be at 56.15 percent [1]. Furthermore, according to forecasts by 2050, 

cities will be home to 68% of the world's population. [2]. Logistics, healthcare, and air 

among the problems brought on by urbanization and industry are those of quality. The idea 

of "smart cities" has evolved to solve these problems and enhance inhabitants' quality of 

life. Information and communication technology (ICT) is combined with mobile and 

stationary sensors that are strategically positioned across a city to track human activity. 

Energy consumption has significantly increased in recent decades as a result of the quick 

industrialization and urbanization processes, which has raised concerns about air pollution 

[3,4,5]. Chronic obstructive pulmonary disease, Asthma, heart disease and cancer are a 

some of the illnesses that can be exacerbated by the presence of toxic compounds in such 

as PM2.5, CO, SO2, and NO2 in the air [6,7]. The World Health Organization (WHO) 

estimates that air pollution results in over 7 million deaths per year, underscoring the grave 

threat it represents to people's health. Several models have been created by researchers for 

forecast changes in air quality, allowing for the prompt deployment of appropriate 

interventions in order to lessen the negative impacts of air pollution [8, 9]. Among these 

models, DL models have shown to have the best prediction skills [10]. DL models face 

difficulties of being "black boxes," which makes it challenging to understand their 

prediction behaviors. Additionally, time-series information on the atmosphere includes 

signals at several frequencies and is frequently tainted by unreliable noise signals. It is 

difficult to accurately detect pollutants because of these entangled signals, which conceal 

the relationship between atmospheric conditions and pollutant characteristics. In order to 

extract clearer signals derived from the original data, it is important to detangle the various 

frequency signals in order to enhance the interpretability and accuracy of forecasts. 



2    

    

 

Designing a comprehensible network to record these correlation rules also becomes 

crucial. 

It is extremely important for both human health and governmental decision-making to 

have an efficient system in place to monitor and forecast air pollution in advance. Since 

the complicated structure to the features, including non-linear characteristics over time and 

location, PM2.5 generation is a very complex process and mechanism [11]. These 

intricacies have a substantial influence on forecast accuracy and need for thorough 

analysis and thought. The significant temporal relationship that air quality data displays 

further suggests that it may be categorized as a time series with discernible periodic 

patterns. The timely nature of the data emphasizes the importance of time forecasts, which 

have become key issues needing careful consideration from researchers and academics. 

Thus, time series analysis is crucial for there are several uses, including those in 

astronomy, geology, and other natural sciences as well as economics and medicine. 

Traditional statistical approaches have been widely utilized to solve the issues of air 

forecasting. These strategies rely heavily on historical data for teaching purposes. Two 

prominent statistical approaches used in predicting air quality are the Autoregressive 

Integrated Moving Average (ARIMA) and the Autoregressive Moving Average (ARMA) 

[12, 13]. However, because of the lengthy training times these approaches call for, they are 

no longer able to fully satisfy the practical requirements as the number and complexity of 

the available data have increased.  

Machine learning-based prediction techniques are more and more common as a result of 

developments in artificial intelligence and the growth of large data. These models have the 

benefit of not requiring awareness of the chemical and physical properties of air pollutants. 

Support Vector Regression (SVR), Multiple Linear Regression (MLR), Artificial Neural 

Networks (ANN), and Random Forest (RF) are the majority well-liked machine learning 

methods. These methods are capable of capturing complicated and non-linear correlations 

between meteorological factors and air pollution concentrations. To predict air pollution in 

diverse regions, researchers have created numerous ANN architectures. The neuro-fuzzy 

neural network (NFNN) [14] and the Bayesian neural network [15] are two examples. 

Additionally, a multi-machine learning algorithm ensemble approach has shown reliable 

and accurate in forecasting levels of pollution in Greater London region [16]. 
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The performance of predictions is enhanced when GCN-LSTM and CNN-LSTM models 

are merged [17, 18]. These models combine the benefits of CNN/GCN in extracting 

LSTM and spatial information in capturing temporal dependencies. However, the 

complexity of these models makes it difficult to interpret their predictions and comprehend 

how they behave, making it difficult to put effective air pollution mitigation strategies into 

action. The complex and dynamic structure of the atmospheric environment also causes air 

pollution data to be made up of intertwined signals of various instances, frequently 

complemented by arbitrary sound, which reduces forecast precision even more. 
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1.2 Research Motivation  
  

Despite the development of various approaches for prediction of air quality, like Bi-LSTM, 

LSTM, CNN, GRU, CNN-GRU and CNN-LSTM, this article will perform a research 

study. Comparing and analyzing the results produced by various methods is the main goal 

in order to determine how well they forecast PM2.5 concentration. To provide precise 

forecasts with high accuracy, the research also objectives to create a forecasting system for 

PM2.5 that integrates meteorological data with the concentration data from neighboring 

stations. In this study, we used cutting-edge deep neural networks to create a system for 

PM2.5 prediction. To be more precise, we presented a crossbreed CNN-LSTM predicting 

model. 
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1.3 Research Contribution  
  

We proposed a new DL Model (CLARP) CNN-LSTM-Attention Mechanism-Recurrent 

Mechanism-Pooling Mechanism, to anticipate the hourly PM2.5 concentration. Major 

contributions of this study are: -    

• The study uses harmful substances, weather information, and nearby stations 

across various time periods as input factors. The data is preprocessed by handling 

missing values, handling outliers, standardized the data, encoding categorical 

values, feature scaling and feature engineering it. In addition, the association 

between the features and PM2.5 concentration is examined to help choose the best 

features. In our study, frame the data as supervised learning. In comparison to 

other techniques, the findings show that the CLARP is more effective at extracting 

spatiotemporal information and obtaining greater prediction accuracy for PM2.5. 

• Our intended model is capable of extracting the spatiotemporal properties of the 

data. The model excels at collecting spatial properties, such as the interactions 

between different pollution components, weather patterns, and nearby stations. In 

addition, information is extracted using our proposed model. 

• We have effectively proved the applicability and viability of the proposed model 

for the PM2.5 concentration forecast by contrasting the performance of the seven 

widely used DL algorithms in forecasting air contamination. We have verified its 

performance by comparing metrics across various batch sizes and latency. 

Additionally, the outcomes of this investigation are comparable to those of other 

sophisticated DL techniques that have been described in prior literature. 

• We propose a completely lightweight model with efficient processing speed, can 

perform quickly. To improve the model's effectiveness, a variety of optimization 

strategies are applied. 
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1.4 Research Objectives 
 

The fundamental tenets for this research thesis are summarized in the following broad 

range of objectives: 

• RO1: To review studies related to air quality prediction. 

• RO2: To apply multiple deep learning techniques and propose a technique that 

gives the most accurate air quality index (AQI) results. 

• RO3: To evaluate quality parameters like the performance and accuracy of the 

proposed model. 

1.5 Relevance to National Needs 
 

• Air quality forecast and assessment systems help decision makers to improve air 

quality, mitigate the occurrence of acute air pollution episodes, particularly in 

urban areas, and reduce the associated impacts on agriculture, economy, 

ecosystems, and climate. 

• Accurate prediction of air quality will help government health departments to take 

early preventive measures for any disease and save many lives. 

• Pakistan is a country prone to various natural disasters, which can disrupt software 

development projects. Accurately predicting the air quality index (AQI) can help 

National Disaster Management Authority (NDMA) to anticipate and mitigate these 

disasters by taking preventive actions. 

• It will also help the National Highways Authority (NHA) to plan ahead the traffic 

accordingly as well. 

1.6 Area of Application 
 

Application of this research will aid these industries in minimizing potential risks and enhancing 

project outcomes: - 

• Weather forecasting. 

• Health industry. 

• Traffic control management. 

• Supply Chain Management. 
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• Disaster Management Authority. 

1.7 Thesis Outline    
 

This thesis is divided into six chapters:    

• Chapter 1: This chapter includes the basic introduction, establishes the research 

motivation and research contribution.    

• Chapter 2:  This chapter describes the literature survey of articles related to this 

research.    

• Chapter 3:   This chapter describes the different deep learning models.    

• Chapter 4:   This chapter describes the proposed Model.    

• Chapter 5:   This chapter describes the experiment results and compares our work 

with state-of-the-art research.    

• Chapter 6:   This chapter presents the discussion on the overall research and 

highlights the direction for future work.    
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Chapter 2: Literature Review 
   

2.1 Overview  
  

 In this chapter, related studies to air quality prediction are referred. As we know that Air 

quality prediction is an emerging topic in the environmental field, and the common 

prediction methods are numerical simulation, statistical methods, and Machine Learning. 

Earlier studies on air quality prediction mostly used numerical simulation. But these 

simulation methods place high demands on the dataset and assume that the pollution 

emission is constant, which is not true since pollutants are emitted randomly in fact. And in 

the case of numerical simulation methods, these produce complex calculations, which are 

not user-friendly. Therefore, Machine learning has been a popular choice for air quality 

forecasting because it is good at dealing with nonlinear problems. 

Overall, this chapter demonstrates the great potential of deep learning models for 

prediction of air quality, providing hope for more precise and effective analysis in air 

pollution / environmental field.  
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2.2 Related Work  
  

PM2.5 is a term used to describe particulate matter (PM) that is less than 2.5 micrometers 

in size, or about 3% of the diameter of a human hair [19]. These are incredibly light and 

small particles. PM2.5 particles are so small that they tend to float in the air representing 

sustained periods of instance than bigger elements, which expands the potential that 

humans and mammals will breathe them in. Additionally, due to their tiny size, certain 

particles can reach the circulatory system and the lungs, as well as other parts of the 

respiratory system [20]. Forecasting PM2.5 levels is crucial for the development of smart 

cities due to the pressing need to manage PM2.5 air pollution in metropolitan areas. 

Predicting PM2.5 concentrations, however, is extremely difficult because of the impact of 

climatic variables such wind speed and direction. These factors regularly change across 

various time periods and show a high level of unpredictability [21, 22]. 

Different PM2.5 prediction strategies have been researchers created utilizing arithmetical 

simulations and machine learning approaches. DNN has lately gained favor in the 

academic world as a method for predicting pollution concentrations. DL approaches make 

use of several layers and big datasets, enabling simultaneous processing across all levels to 

provide extremely accurate results [23]. DL is ideal for air contamination modelling and 

predicting due to its beneficial properties, for instance its capacity for handling difficult 

issues and making precise forecasts. 

Many different types of models may be used for this. Utilizing four models FBProphet 

(Facebook prophet), —ARIMA, CNN—, LSTM, and the authors of a study by [24] 

evaluate and analyze PM2.5 level forecasts for 12 stations in Beijing. LSTM beat all other 

models for the majority of stations, attaining an MAE of 13.2 and RMSE of 20.8 by using 

chronological air superiority data, atmospheric data, and climate prediction data. A forecast 

model for PM awareness at 25 monitoring sites in South Korea (Seoul), is proposed by the 

authors of a different research [25] by using chronological PM2.5 awareness and 

atmospheric data. The models that were evaluated were the DAE (Denoising 

AutoEncoders) and LSTM, and the findings demonstrated that the LSTM prediction model 

had higher accuracy than the model (DAE). 
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Bi-LSTM model for PM2.5 concentration prediction in China is presented by the authors 

in [26]. Hourly data from the US Embassy in Beijing, including the weather and PM2.5 

intensity, are utilized as input in the model. The intended model's RMSE was 9.86, 

SMAPE was 0.1664 and MAE was 7.53, indicating outstanding accuracy. 

Similar to this, other researchers have concentrated on foretelling Beijing's PM2.5 

pollution levels using other models. They used an ANN, LSTM-fully connected, LSTM, 

and chronological air attribute, atmospheric, forecast, and day of the week data. With an 

MAE of 23.97 and an RMSE of 35.82 during a time period of 1-6 hours, the LSTM-FC 

model outperformed the ANN and LSTM models among these [27]. However, none of 

these models included information on pollution concentrations from nearby places. It is 

essential to take geographical information into account in the modeling process since 

modifications in contaminants are affected not only by time but also by spatial variables. 

A CNN is made up of several convolutional layers that are used to take spatial data out of 

neural networks. It is a well-known area of research for interpreting environmental 

conditions from digital photographs because of its outstanding performance in handling 

multi-dimensional spatial arrays. The authors of [28] suggest utilizing an ensemble of deep 

neural networks to predict PM2.5 concentrations from photos taken outside. As the basic 

learners, the ensemble uses three CNN: Inception-v3, Resnet50 and VGG-16. The 

experimental findings illustrated that the suggested combination performs excellent in 

predicting PM2.5 focuses than each specific DL network. 

CNN has demonstrated to be an effective approach for handling spatial data. Additionally, 

it has been utilized to calculate contamination awareness in municipal zones, usually by 

analyzing satellite pictures [29, 30]. Just separated examining data, for instance wind 

speed, temperature, and position may be supplied in situations where picture data is not 

accessible. 

Researchers suggested using ConvLSTM (Convolutional Long Short-Term Memory), a 

hybrid model combining CNN and LSTM, to focus the problem of air contamination in 

Korea (Seoul). This method successfully captures the data's geographical and temporal 
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characteristics [31]. This study's spatiotemporal model takes into account a number of 

variables, including information on air pollution, weather, indices of outdoor air pollution, 

traffic volume, and average driving speed locations. The proposed model has proven to be 

better than competing models. 

The authors of a different research [32] looked at the viability and usefulness of utilizing 

CNN-LSTM to forecast the PM2.5 intensity in Beijing for the next period. The model also 

included the total amount of hours of rain and wind speed during the previous 24 hours. 

The model CNN-LSTM fared superior to other models, as seen by its MAE of 14.6344 and 

RMSE of 24.22874.  

 

2.3 Summary     
 

In this chapter different Machine Learning Models related to air quality prediction have 

been studied and referred. As we know that Machine learning has been a popular choice 

for air quality forecasting because it is good at dealing with nonlinear problems. Deep 

learning is a branch of machine learning. Among the many algorithms for deep learning, 

the long short-term memory network (LSTM) is often used to predict air quality due to its 

effectiveness in solving long- distance dependence. But our proposed model has improved 

results as compared to all these models. 
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Chapter 3: Deep Learning Models   
   

3.1 Overview  
 

In this chapter our goal is to assess how well different DL models predict PM2.5 

concentrations. As a result, we have determined to use the LSTM, Bi-LSTM, GRU, Bi-

GRU, CNN, PM-GRU, RM-LSTM models that were in the past described. We give a 

succinct summary of each network.  

3.2 LSTM 
 

RNN, which first appeared in 1980 [33, 34], is the basis for LSTM. An effective artificial 

neural network type frequently used for time-series forecasting problems is the RNN. They 

have the capacity for internal memory retention, which enables them to recall details from 

the past and anticipate the course of the future. RNNs frequently run into problems with 

disappearing and expanding gradients, which can slow down or stop the learning process 

completely. LSTMs were first developed in 1997 to resolve these challenges [35]. Standard 

RNNs have several limitations, but LSTMs have larger memory spans and can acquire 

from inputs that are temporally estranged from one another. Three essential gates make up 

an LSTM architecture: an input gate, a forget gate, and an output gate. The output gate 

identifies the data to be outputted, the forget gate chooses the irrelevant information to 

delete, and the input gate decides whether to integrate fresh data. These gates act 

analogously, taking their cue from the way logic gates work. Computing the hidden states 

in model are depicted in Figure 3.1. LSTM formulae are listed: 

        The input gate (i) is defined as: 

𝑖(𝑡) =  (𝑊𝑖 ∗  [ℎ(𝑡 − 1), 𝑥(𝑡)] +  𝑏𝑖)                                     (1) 

 Ignore Gate (f), which is defined as: 

  

          𝑓(𝑡) =  (𝑊𝑓 ∗  [ℎ(𝑡 − 1), 𝑥(𝑡)] +  𝑏𝑓)                               (2) 
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      The output gate (o) is as follows:  

 

          𝑜(𝑡) =  (𝑊𝑜 ∗  [ℎ(𝑡 − 1), 𝑥(𝑡)] +  𝑏𝑜)                               (3) 

 

                  Candidate Cell State:  

          (𝑡): 𝑊𝑐 ∗ [ℎ(𝑡 − 1), 𝑥(𝑡)] +  𝑏𝑐                                         (4) 

                  The formula for cell state:  

            (𝐶)𝑖𝑠: 𝐶(𝑡) =  𝑓(𝑡) ∗  𝐶(𝑡 − 1) +  𝑖(𝑡) ∗ (𝑡)                    (5) 

                  The formula for Hidden State:  

           (ℎ)𝑖𝑠 ℎ(𝑡) =  𝑜(𝑡) ∗  𝑡𝑎𝑛ℎ(𝐶(𝑡))                                         (6) 

 

In the formulae above: T stands for the most recent time step. The sigmoid activation 

function is indicated. The matrix multiplication symbol is *. [h(t-1), x(t)] denotes the 

concatenation of the current input (x(t)) with the prior concealed state (h(t-1)). The weight 

matrices Wi, Wf, Wo, and Wc, as well as the bias vectors bi, bf, bo, and bc, are unique to 

each gate.  

 

Figure 3.1 Computation of Hidden States of LSTM 
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3.3 GRU  
 

The GRU, also known as a Gated Recurrent Unit, is a developed RNN [36]. It is a kind of 

recurrent unit with LSTM-like characteristics. The reset gate and the update gate are the 

two primary parts of the GRU unit. The GRU model's design is shown in Figure 3.2. The 

reset gate gives the model the ability to overlook the earlier condition relating the first 

candidate initiation and the second activation. The update gate, on the other hand, chooses 

the proposed activation that changes the state of the cell. GRU formulae are provided as 

following: 

Reset Gate (r) is defined as:  

𝑟(𝑡) =  (𝑊𝑟 ∗ [ℎ(𝑡 − 1), 𝑥(𝑡)] +  𝑏𝑟)                           (7) 

 

Update Gate:  

                                                     (𝑧): (𝑊𝑧 ∗ [ℎ(𝑡 − 1), 𝑥(𝑡)] +  𝑏𝑧)𝑧(𝑡)                    (8) 

Candidate Activation:  

                                                     (ℎ): 𝑊 ∗  [𝑟(𝑡) ℎ(𝑡 − 1), 𝑥(𝑡)]  +  𝑏)  =   ℎ(𝑡)       (9)             

Hidden State: 

(ℎ): ℎ(𝑡) =  (𝑧(𝑡) −  1)𝑍(𝑡) +  ℎ(𝑡 − 1) =  ℎ(𝑡)        (10) 

 

In the formulae T stands for the most recent time step. The sigmoid activation function is 

indicated. The hyperbolic tangent activation function is represented by tanh. The symbol 

for element-wise multiplication is "."[h(t-1), x(t)] denotes the concatenation of the current 

input (x(t)) with the prior concealed state (h(t-1)). The bias vectors for each gate are br, bz, 

and b, while the weight matrices are wr, wz, and w. 

These formulae show how a GRU cell's calculations were done. The update gate (z) 

decides how widely latest data will be integrated, while the reset gate (r) governs how 

widely data from the prior concealed state is used. The reset gate, the prior hidden state, 

and the current input are all combined in the candidate activation (h). Finally, the prior 

hidden state and the new candidate activation are combined to update the hidden state (h) 

depending on the update gate. 
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Figure 3.2 Computation of hidden states in GRU 

 

     

3.4 Bi-LSTM 
 

Bidirectional LSTM (Bi-LSTM) is meant to take use of such future information, in contrast 

to traditional RNNs and LSTMs that have a tendency to ignore it during time-processing 

tasks. For each training sequence, Bi-LSTM uses two LSTM networks, one of which 

analyses the sequence one going forward and the other going backward. There are input 

and output layers connecting these LSTM networks. By combining data from each point 

through the bidirectional arrangement, this structure enables the output layer to receive 

historical information from every entry in the input sequence and to also catch forthcoming 

data. Bi-LSTM formulae are listed below: 

The input gate (i) is classified as: 

 𝑖(𝑡) =  (𝑊𝑖 ∗  [ℎ(𝑡 − 1), 𝑥(𝑡)] +  𝑏𝑖)                            (11) 

Ignore Gate (f), which is defined as: 

 𝑓(𝑡) =  (𝑊𝑓 ∗  [ℎ(𝑡 − 1), 𝑥(𝑡)] +  𝑏𝑓)                         (12) 
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Output gate (o) is as follows:  

𝑜(𝑡) =  (𝑊𝑜 ∗  [ℎ(𝑡 − 1), 𝑥(𝑡)] +  𝑏𝑜)                         (13) 

Candidate Cell State: 

 (𝑡): 𝑊𝑐 ∗  [ℎ(𝑡 − 1), 𝑥(𝑡)] +  𝑏𝑐                                    (14) 

Cell state (C) is:  

                                                      𝐶(𝑡) =  𝑓(𝑡) ∗  𝐶(𝑡 − 1) +  𝑖(𝑡) ∗ (𝑡)                     (15) 

Hidden State (h) is: 

       ℎ(𝑡) =  𝑜(𝑡) ∗  𝑡𝑎𝑛ℎ(𝐶(𝑡))                                        (16) 

 

The calculations made in a bidirectional LSTM (Bi-LSTM) cell are represented by above 

mentioned formulae. The input sequence is processed both forwardly (from the beginning 

to the end) and backwardly (from the end to the beginning) in the Bi-LSTM architecture. 

Concatenation is used to combine the LSTMs' outputs from both directions. Architectural 

flow is shown in Figure 3.3 as below:

  

Figure 3.3 Architectural flow of Bi-LSTM Model 

3.5 Bi-GRU   
  

Despite the Recurrent neural network (RNN) architectures can input sequences that are 

processed concurrently in both the directions both forward and backward. One such design 
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is the Bidirectional Gated Recurrent Unit (Bi-GRU). It combines bidirectional processing 

with the benefits of Gated Recurrent Units (GRU) to collect data from both past and future 

contexts. Bi-GRU formulas are listed: 

Reset Gate (r) is defined as: 

                                              𝑟(𝑡) =  (𝑊𝑟 ∗ [ℎ(𝑡 − 1), 𝑥(𝑡)] +  𝑏𝑟)                     (17) 

Update Gate: 

                                             (𝑧): (𝑊𝑧 ∗  [ℎ(𝑡 − 1), 𝑥(𝑡)] +  𝑏𝑧)𝑧(𝑡)                     (18) 

Candidate Activation: 

                                             (ℎ): 𝑊 ∗  [𝑟(𝑡) ℎ(𝑡 − 1), 𝑥(𝑡)]  +  𝑏) =   ℎ(𝑡)         (19)  

 

Hidden State: 

                                              (ℎ): ℎ(𝑡) =  (𝑧(𝑡) −  1)𝑍(𝑡) +  ℎ(𝑡 − 1) =  ℎ(𝑡)    (20) 

In the formulae above, T stands for the most recent time step. The sigmoid activation 

function is indicated. The hyperbolic tangent activation function is represented by tanh. 

The symbol for element-wise multiplication is "." For both the forward and backward GRU 

networks, [h(t-1), x(t)] denotes the concatenation of the prior hidden state with the current 

input. The bias vectors for each gate are br, bz, and b, while the weight matrices are wr, 

wz, and w. Structure of Bi-GRU is depicted in Figure 3.4. 

The Bi-GRU may capture dependencies from both earlier and later sequence components 

by processing the input order in equal directions. This enables the model to comprehend 

the temporal relationships in the data more thoroughly. Bi-GRU is frequently used in 

sequential data applications including time series analysis, speech recognition, and natural 

language processing. 
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Figure 3.4 Structure of Bi-GRU 

   

3.6 PM-GRU    
 

Convolutional neural networks (CNNs) employ the pooling mechanism as a method to 

scale down the spatial dimensionality of feature maps. It works with the feature maps' local 

neighborhoods and compiles data to create a compressed representation. The feature maps 

are divided into distinct, non-overlapping areas for the pooling procedure, and each zone is 

given a different pooling function, such as max pooling or average pooling. The goal of 

pooling is to minimize the size of the feature maps while retaining the most important data. 

For instance, maximum pooling chooses the highest value possible within each pooling 

zone, whereas average pooling determines the average value. Pooling allows the system to 

save the highly important portions while rejecting the less important ones, which helps to 

cut down on computation and control overfitting. 

A recurrent neural network (RNN) design known as a gated recurrent unit (GRU) 

overcomes the drawbacks of conventional RNNs, such as disappearing or exploding 
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gradients. In order to improve learning and identify long-term relationships in sequential 

input, GRU incorporates gating techniques that let the network selectively keep or update 

knowledge over time. 

The network can successfully reduce the spatial dimensionality of feature maps while 

capturing dependencies in sequential data by combining the pooling strategy with GRU. In 

many different applications, CNNs with GRU layers are used in combination to process 

input sequences and extract useful information. 

 

3.7 RM-LSTM  
RNNs are based on the core idea of the recurrent mechanism, which allows networks to 

process sequential data by retaining a hidden state that stores the network's memory of 

prior inputs. RNNs include connections that allow input to be sent back into the network, 

providing a loop-like structure, in contrast to feedforward neural networks, which process 

data strictly sequentially. 

Long Short-Term Memory (LSTM), an RNN architecture, was explained to focus the 

limitations of standard RNNs in acquiring long-term dependencies. Processing data 

sequences with temporal delays or dependencies over longer time periods is where LSTMs 

excel most. 

The network can successfully simulate temporal dependencies and capture long-term 

relationships in sequential data by integrating the recurrent mechanism with LSTM. The 

LSTM design, with its memory cells and gating methods, enables the network to choose 

add or forget information, addressing the disappearing or expanding gradient problem. The 

recurrent mechanism allows the network to keep recollection of previous inputs. Because 

of this, LSTMs are very good at tasks requiring sequential data, such time series analysis, 

speech recognition, and natural language processing. 
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3.8 Summary  
 In this chapter, different models’ working has been described in detail. LSTMs overcomes 

the problems faced in RNN as LSTMs have larger memory spans and can acquire from 

inputs that are temporally estranged from one another. Three essential gates make up an 

LSTM architecture: an input gate, a forget gate, and an output gate. GRU is a kind of 

recurrent unit with LSTM-like characteristics. It has 2 gates i.e. The Reset gate and the 

Update gate. Bidirectional LSTM (Bi-LSTM), (in contrast to traditional RNNs and LSTMs 

that tend to ignore future information during time-processing tasks) is meant to make use 

of such future information. Bi-GRU combines bidirectional processing with the benefits of 

GRUs to collect data from both past and future contexts. PM-GRU has a network that can 

successfully reduce the spatial dimensionality of feature maps while capturing 

dependencies in sequential data by combining the pooling strategy with GRU. In many 

different applications, CNNs with GRU layers are used in combination to process input 

sequences and extract useful information. RM-LSTM has a network which can 

successfully simulate temporal dependencies and capture long-term relationships in 

sequential data by integrating the recurrent mechanism with LSTM. 
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Chapter 4: Proposed Methodology & Framework 
   

4.1 Overview 
 In this chapter, we have proposed a methodology which produces better results as 

compared to other models. LSTMs overcomes the problems faced in RNN as LSTMs have 

larger memory spans and can acquire from inputs that are temporally estranged from one 

another. GRU is a kind of recurrent unit with LSTM-like characteristics. Bidirectional 

LSTM (Bi-LSTM) combines bidirectional processing with the benefits of GRUs to collect 

data from both past and future contexts. PM-GRU has a network that can successfully 

reduce the spatial dimensionality of feature maps while capturing dependencies in 

sequential data by combining the pooling strategy with GRU. RM-LSTM has a network 

which can successfully simulate temporal dependencies and capture long-term 

relationships in sequential data by integrating the recurrent mechanism with LSTM. 

Developed methodology is combination of these models. 

4.2 Proposed Approach  
 

 An effective hybrid DL model for forecasting PM2.5 air contamination in smart cities. In 

order to make use of each component's capabilities in identifying spatial and temporal 

patterns in air quality data, the CLARP model integrates CNNs, LSTM, Attention 

Mechanism, Recurrent Mechanism, and Pooling Mechanism. The goal is to construct a 

reliable and precise model that can accurately forecast PM2.5 pollution levels and enable 

proactive air quality control strategies in smart cities. 

The architecture of the hybrid model is described, which combines a number of elements to 

identify spatial and temporal patterns in the data. The architecture consists of a CNN for 

extracting spatial features, a Long Short-Term Memory (LSTM) for capturing temporal 

dependencies, an Attention Mechanism for concentrating on crucial portions of the input, 

and optional recurrent layers for capturing additional temporal dependencies. In order to 

process and convert the pooled data for the final prediction, the model also includes fully 

linked layers and a pooling mechanism to collect significant characteristics. The 

preprocessed data is then used to assemble and train the model. Mean Absolute Error 
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(MAE), Mean Squared Error (MSE), and Measure, and the Adam optimizer are described. 

With a predetermined batch size and number of epochs (iterations), the model is fitted to 

the training data. Using the testing data, the model's performance is assessed after training, 

and metrics such as mean absolute error (MAE) and loss (MSE) are calculated. On the 

base of the analyzing findings, the model is then utilized to establish predictions.  

 

4.2.1 Dataset Acquisition and Pre-Processing   
  

We acquired the data from the Beijing Municipal Environmental Monitoring Centre, which 

offers an openly accessible data site for air attribute statistics, to obtain the air pollution 

forecast dataset for Beijing, China as shown in Figure 4.1. The dataset contains elements 

including the concentration of PM2.5, meteorological information (temperature, humidity, 

wind speed, wind direction, and atmospheric pressure), timestamps, and location data for 

the monitoring places spread out over Beijing. In addition to obtaining authorization to use 

the data for study, we abided by ethical standards and data protection laws. After obtaining 

the raw dataset, we preprocessed it by cleaning the data to eliminate outliers and missing 

values, standardizing variable units, addressing temporal inconsistencies, and aggregating 

the data into hourly or daily intervals. Additionally, we made sure the dataset was properly 

documented by outlining its sources, variables, data gathering techniques, and preparation 

methods used. During the whole gathering and preparation procedure, ethics and 

compliance with data privacy laws were upheld. 

To assure its quality and appropriateness for analysis, the obtained Beijing, China, air 

pollution prediction dataset underwent a number of preprocessing stages. The subsequent 

actions were taken: 

 

4.2.2 Handling of Missing Values   
 

The collection is made up of 35,064 records from various stations, each of which has 

numerous characteristics. The recordings were made between March 1st, 2013 and 

February 28th, 2017. Date, PM2.5 concentration, PM10 concentration, Sulphur dioxide 

(SO2) levels, Nitrogen dioxide (NO2) levels, carbon monoxide (CO) levels, ozone (O3) 
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levels, dew point, temperature, atmospheric pressure, combined wind direction, cumulated 

wind speed, cumulated hours of snow and rain are all included in the data. Nonetheless, 

data loss due to machine failure or other uncontrolled circumstances is a risk in the 

collecting of air quality and meteorological data. These missing value cases might have an 

influence on data mining. Mean or median imputation are often used techniques to 

substitute missing field values when working with time-independent (non-chronological) 

data. However, this method is not appropriate for time series data. In these situations, 

several imputation approaches are used to solve the problems with partial data. The linear 

interpolation approach outperformed other methods across all percentages of missing 

values, according to research on the estimate of hourly monitoring data for PM10 in the 

presence of simulated missing values [37]. There are less than 4% missing values in the 

processed dataset, which were resolved using linear spline imputation. Local anomalies 

can be accounted for using the SL(y) equation while keeping interruption consequences at 

other data peaks. The following equation represents the SL(y) linear spline interruption 

function. This is how it is defined: 

𝑆𝐿(𝑦) =  𝑓(𝑦𝑖 − 1) ∗
(𝑦 − 𝑦𝑖)

(𝑦𝑖 − 1 −  𝑦𝑖) +  𝑓(𝑦𝑖) ∗
(𝑦 − 𝑦𝑖−1)

(𝑦𝑖 −  𝑦𝑖 − 1)                   

(21) 

where y belongs to the interval [yi-1, yi] and i takes values from 1 to n. The function 

calculates the interpolated value at a given point y based on the neighboring data points yi-

1 and yi, using linear interpolation. 

The presented equation denotes the linear spline interpolation function, which is used to 

estimate values between two known data points. Here's how the equation works: SL(y): 

This is the interpolated value at position y. f(yi-1): This is the known function value at data 

point yi-1, which is the data point immediately preceding x. (y-yi) / (yi-1-yi): Based on the 

distance between y and the two neighboring data points, this term computes the weight for 

the function value at yi-1. It specifies how much the value at yi-1 influences the 

interpolated value. f(yi): This is the known function value at data point yi, which is the data 

point after y. (y - yi-1) / (yi - yi-1): This term determines the weight for the function value 
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at yi depending on the distance between y and the two adjacent data points. It specifies 

how much weight the value at yi has on the interpolated value. 

To estimate the value at point y, the equation effectively combines the weighted 

contributions of the function values at yi-1 and yi. The linear spline interpolation function 

adjusts to the local behavior of the data by computing these weights depending on the 

distances, allowing for more accurate approximations between the provided data points. 

 

Figure 4.1 Beijing's Monitoring Stations distribution 

       

4.2.3 Dealing with Outliers  

Several ways may be used to deal with outliers in the Beijing, China air pollution forecast 

dataset. To begin, domain-specific criteria based on regulatory requirements or expert 

knowledge can be set to detect observations exceeding permitted air pollution levels. To 

detect values that deviate considerably from the predicted range, statistical approaches 

such as z-scores or modified z-scores can be used. By studying the geographical 

distribution of air pollution levels throughout Beijing's monitoring stations, spatial analytic 

techniques may be used to find outliers. Temporal analysis can assist in identifying abrupt 

and large shifts or spikes in air pollution concentrations that deviate from regular trends. 

Consulting with air quality professionals or topic expertise might help you validate and 

evaluate any anomalies. Outliers can be dealt with by eliminating them, replacing them 
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with estimated values, or grouping them individually. The unique qualities of the data and 

the analytic needs should dictate the approach selection. 

4.2.4 Categorical Values Encoding 

The wind component is critical in understanding atmospheric activity in this analysis. 

Pollutant concentrations are influenced by wind speed [21], and wind path is especially 

important in influencing PM2.5 concentrations [22]. The wind direction property is made 

up of 16 categorical values: N, NNE, NE, ENE, E, ESE, SE, SSE, S, SSW, SW, WSW, W, 

WNW, NW, and NNW. We split the compass into 16 sectors, each spanning 22.5 degrees, 

to translate each cardinal wind direction into degrees of azimuth. North was given a value 

of zero, and as we proceed clockwise, the value grows by 22.5 for each segment, with each 

segment representing a 22.5-degree direction. 

    

4.2.5 Normalization 

Normalization is a data processing technique used on the Beijing air pollution dataset for 

PM2.5. In this context, normalization is used to scale the PM2.5 measurements to a 

standardized range. This improves comparability between measurements and eliminates 

biases caused by magnitude fluctuations. Various normalization procedures, such as Min-

Max scaling or Z-score standardization, can be employed to guarantee that normalized 

PM2.5 measurements fall within a certain range. Normalization is a critical step in 

analyzing air pollution data because it ensures fair comparisons and correct interpretations. 

  

4.2.6 Feature scaling  

Feature scaling is a technique for transforming the values of features in a dataset, such as 

the Beijing PM2.5 air pollution data. The goal of feature scaling is to guarantee that all 

characteristics are on a similar scale, preventing any single element from taking over the 

analysis owing to magnitude disparities. Feature scaling methods such as Min-Max scaling 

or Z-score standardization can be used with PM2.5 data. The values are rescaled to a 

certain range, usually between 0 and 1. Subtracting the minimum value of the PM2.5 data 
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and dividing it by the range (highest value minus minimum value) yields this 

transformation. 

To standardize the Z-score, remove the mean value of the PM2.5 data and divide it by the 

normal deviation. The data is transformed using this approach to have a mean of 0 and a 

standard deviation of 1. When feature scaling is applied to PM2.5 data, all values are 

scaled to a comparable scale, allowing for fair comparisons, and avoiding bias due to 

variable magnitudes. To ensure accurate and relevant interpretations of the dataset, feature 

scaling is a prevalent practice in data analysis, particularly in machine learning algorithms. 

 

4.2.7 Feature Selection 

  Selecting the relevant features is a critical stage in machine learning tasks, and there are 

several ways for doing so. Previous research has frequently used mathematical correlation 

approaches to detect correlations between input and output variables [38-41]. When 

dealing with a large number of characteristics to be included in the training process, 

creating a connection between the goal output value and these attributes can assist in 

simplifying the training complexity and improving performance [38]. The Pearson 

correlation coefficient is commonly used to quantify the relationship between two 

variables. It can be computed using the following equation: 

𝑟 =  𝛴[(𝑦𝑖 −  𝑦) (𝑧𝑖 −  𝑧)]/ √[𝛴(𝑦𝑖 −  𝑦)2 ∗  𝛴(𝑧𝑖 −  𝑧)2]              (22) 

Subtract the mean value of y (y) from the individual value of y (yi) for each observation. 

Subtract the mean value of y (z) from the individual value of y (zi) for each observation. 

For each observation, double the differences obtained in steps 1 and 2. Add the products 

from step 3 for all observations. Divide the product of two sums: the sum of squared 

differences of y from its mean (ni=1(yi y)2) and the total of y's squared deviations from its 

mean (ni=1(zi z)2). The Pearson correlation coefficient (r) shows the degree and direction 

of the linear relationship between the variables y and z. The coefficient ranges from -1 to 1, 

with -1 indicating a perfectly negative linear relationship, 0 indicating no linear link, and 1 

indicating a perfectly positive linear relationship. 
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4.2.8 Air Quality Feature 

 

Various contaminants have been found in the atmosphere, and increased concentrations of 

these pollutants have a negative influence on air quality. We used correlation calculations 

to analyze the links between the air quality variables. Notably, we discovered a high link 

between PM2.5, PM10, and CO, as seen in Table 1. 

      
Table 4.1 The air quality characteristic correlation matrix 

 PM2.5 PM10 CO O3 NO2 CO2 

PM2.5 1.00 0.85 0.72 0.43 0.67 0.52 

PM10 0.85 1.00 0.68 0.39 0.62 0.48 

CO 0.72 0.68 1.00 0.55 0.79 0.61 

O3 0.43 0.39 0.55 1.00 0.32 0.24 

NO2 0.67 0.62 0.79 0.32 1.00 0.71 

CO2 0.52 0.48 0.61 0.24 0.71 1.00 

 

The extra air quality variables NO2 and CO2 are included in this enlarged correlation 

matrix. Each cell, like the previous explanation, indicates the correlation coefficient 

between two variables. Closer to 1 indicates a high positive connection, whereas closer to -

1 indicates a strong negative correlation. Values close to 0 imply a weak or non-existent 

association. The analysis of this correlation matrix reveals information on the links 

between PM2.5, PM10, CO, O3, NO2, and CO2. It aids in understanding the 

interconnection and possible influence of these factors on air pollution levels by 

identifying which air quality parameters are closely associated with one other. 

4.2.9 Meteorological Feature 

Meteorological characteristics such as atmospheric temperature, pressure, wind speed, 

wind direction, and relative humidity all have an influence on air quality. Different 

meteorological conditions have an impact on several components of air pollution. High 

wind speed, for example, tends to reduce PM2.5 concentrations, whilst high humidity 
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tends to increase air pollution levels. Furthermore, higher air pressure is often associated 

with improved air quality [40, 41]. As a result, meteorological characteristics are crucial in 

accurately predicting air quality, as shown in Figure 4.2. 

 

 

Figure 4.2 Meteorological data and PM2.5 weather characteristics (atmospheric temperature, atmospheric pressure, 

 wind speed, PM2.5 Concentration). 

 

 

4.2.10 Spatial Analysis 

We conducted a spatial correlation analysis between the Aotizhongxin station (target) and 

neighboring stations. The Pearson correlation coefficient was utilized to identify the PM2.5 

monitoring stations that exhibited strong correlations with the target station. The 

correlation results are presented in Figure 4.3, where all correlation values exceeding 0.80 

indicate a robust spatial correlation among the selected stations. To facilitate model 

training and accuracy evaluation, the dataset was divided into a training set and a test set. 

The training set consisted of 80% (28,052 hours) of the data, while the remaining 20% 



29    

    

 

(7,012 hours) was allocated as the test set to assess the model's performance and analyze 

its accuracy. 

    

 
Figure 4.3. The Analysis of Spatiotemporal Correlation 

 

 

4.3 Working of CLARP Model 
 

  In this CLARP model, we investigate a range of recurrent neural network combinations 

and specialized strategies to optimize learning and modelling capabilities. Among them are 
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LSTM + Bi-LSTM, GRU + Bi-GRU, PM + GRU, and RM + LSTM. We merge LSTM and 

Bi-LSTM networks in LSTM + Bi-LSTM, using LSTM units in several hidden layers to 

capture long-term dependencies and Bi-LSTM units to incorporate bidirectional 

processing. This combination enables the model to capture temporal patterns and 

dependencies well. To reduce overfitting, a 10% dropout rate is used between the layers in 

all of these networks, and the ReLU activation function is used for the hidden layers. 

Similarly, with the GRU + Bi-GRU combination, GRU and Bi-GRU networks are 

combined. GRU layers containing GRU units record temporal relationships, however, the 

Bi-GRU layers' bidirectional nature allows for the integration of input from both the past 

and future contexts. This combination improves comprehension of data context and 

dependencies. A prediction mechanism (PM) is also combined with the GRU network in 

the PM + GRU configuration. GRU layers record temporal relationships, whereas the PM 

is concerned with producing accurate forecasts or predictions. By using the taught patterns 

and dynamics, this combination provides exact forecasting. We combine a representation 

mechanism (RM) with an LSTM network in the RM + LSTM combo. The LSTM layers 

record long-term dependencies, with LSTM units in several hidden layers, while the RM 

provides meaningful and useful data representations. The model's capacity to acquire 

effective representations and catch sequential patterns is improved as a result of this 

combination. Each combination is suited to unique model architectures and requirements, 

with many hidden layers and adjustable units. These various combinations take advantage 

of the capabilities of each network and approach to capture and model temporal 

relationships, include bidirectional context, make accurate predictions, and provide 

meaningful data representations. The workflow diagram of the proposed model is shown in 

Figure 4.4 and Figure 4.5 shows the architecture diagram of CLARP. 
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Figure 4.4 Workflow for predicting PM2.5 concentration. 

 

. 
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Figure 4.5 The Architecture of the proposed CLARP. 

4.4 Summary  
In this chapter, we have deliberately discussed our proposed model and its working. To 

make use of each component's capabilities in identifying spatial and temporal patterns in 

air quality data, the CLARP model integrates CNNs, LSTM, Attention Mechanism, 

Recurrent Mechanism, and Pooling Mechanism. The goal is to construct a reliable and 

precise model that can accurately forecast PM2.5 pollution levels and enable proactive air 

quality control strategies in smart cities.  

 



33    

    

 

    

Chapter 5: Results and Analysis 
  

5.1 Overview 
In this chapter, we first define different metrics to evaluate the efficiency of the model. 

Then defining these we compare results of different models with our proposed CLARP 

model. Our models were developed using a range of Python packages, such as Scikit-

Learn, Keras, and native TensorFlow. To handle more demanding tasks, we utilized Google 

Colab, a platform that provided access to NVIDIA's Tesla T4 GPU, enabling us to execute 

computationally intensive workloads efficiently. 

 

5.2 Evaluation Index of the Models     
 Once the model structure has been chosen, the training set is utilized to train the network 

until it approaches convergence. This article evaluates the model's efficacy using three 

metrics: mean absolute error (MAE), root mean squared error (RMSE), and coefficient of 

determination (R2). These indicators provide data on the model's accuracy and 

performance. 

5.2.1 MAE 

The Mean Absolute Error (MAE) is a statistic used to calculate the average size of the 

deviations between real data and model projections. It is computed by taking the arithmetic 

mean of the absolute differences across all samples, resulting in a more accurate 

representation of the prediction errors. MAE can be calculated using the following 

formula: 

𝑀𝐴𝐸 =   (1/𝑛)  ∗  𝛴 |𝑦𝑖 −  ˆ𝑦𝑖|           22 

To compute MAE, we consider the absolute difference between the true (yi) and 

anticipated (yi) values for each sample. These absolute differences are then added together 

for all samples and divided by the total number of samples (n) to yield the average absolute 

difference, or MAE. 
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5.2.2 RMSE 

The Root Mean Square Error (RMSE) is a metric that measures the square root of the mean 

of the squared errors. It provides a more comprehensive assessment of the prediction 

accuracy. The calculation formula for RMSE is as follows: 

𝑅𝑀𝑆𝐸 =  𝑠𝑞𝑟𝑡((1/𝑛)  ∗  𝛴 (𝑦𝑖 −  ˆ𝑦𝑖)^2)             23 

To compute RMSE, we first compute the squared difference between the true (yi) and 

anticipated (yi) values for each sample. These squared differences are then added together 

for all samples and divided by the total number of samples (n). The RMSE is calculated by 

taking the square root of the average squared difference between the true and projected 

values. 

5.2.3 R2 

The measurement of fortitude is a statistic that shows how much of the total modification 

in the supported variable can be described by the private variable via the regression 

relationship. A higher R2 value indicates that the individual variable has a greater 

capability to justify fluctuations in the dependent variable. The R2 computation formula is 

as follows: 

𝑀𝐴𝐸 =  (1/𝑛) ∗  𝛴 |𝑦𝑖 −  ˆ𝑦𝑖|                24 

To compute R2, we first compute the computation of established distinctions between the 

true (yi) and predicted (yi) values for each sample. This total is then multiplied by the sum 

of the squared discrepancies between the true values (yi) and their mean value (yi). The 

resultant number is the measurement of determination, which suggests how much of the 

total variance in the supported variable can be described by the standalone variable via the 

regression connection. A higher R2 value suggests that the independent and dependent 

variables have a stronger connection. 

 

5.3 Results Comparison 
 

In this study, we used multiple deep-learning models to simulate PM2.5 concentration 

prediction. In this part, we compared observed PM2.5 data from the past with calculated 

PM2.5 values using several artificial neural networks, including LSTM, Bi-LSTM, GRU, 
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Bi-GRU, PM-GRU, RM-LSTM, and CLARP models. These models were evaluated with 

one to seven days of lag. The procedure for forecasting PM2.5 values is depicted in Figure 

4.1.  Each network strives for accurate predictions, which are quantified by a cost function 

that penalizes the network for any errors. The objective is to minimize the expense 

function in succession to complete the best outcome. We utilized Mean Squared Error 

(MSE) as the cost function for all networks in this investigation. During the training phase, 

the data is split into batches, with the number of samples per batch chosen by experiment 

and error. Based on the outcomes of this investigation, the batch sizes for all models were 

24, 32, 64, and 128. 

The cost function is calculated in each training iteration as the mean MSE between the 

observed and projected PM2.5 concentration samples within the batch. Epochs are the 

iteration phases for neural networks that entail running the network once to replicate the 

streamflow time series. The number of neurons or layers in recurrent networks can be 

varied. In this study, however, we built all recurrent network models with similar 

architecture to ease model comparison. 

The following configurations are used for each of the LSTM, GRU, Bi-LSTM, and Bi-

GRU networks: 

• LSTM: There are four covert layers in the network. 200 LSTM units make up the 

first layer, followed by 100 in the second layer and 50 in the next two layers. The 

output of the last layer is connected to a dense layer that only has one output 

neuron. 

• GRU: The GRU network is built up of four secret levels similarly. 200 GRU units 

are present in the first layer, followed by 100 in the second layer and 50 in the next 

two tiers. The output of the last layer is connected to a dense layer that only has one 

output neuron. 

• Bi-LSTM: There are four more hidden layers in the Bi-LSTM network. 200 Bi-

LSTM units make up the top layer, followed by 100 in the next layer and 50 in the 

next two layers. The output of the last layer is connected to a dense layer that only 

has one output neuron. 

• Bi-GRU: The Bi-GRU network also has four covert layers. 200 Bi-GRU units are 

present in the first layer, followed by 100 in the second layer and 50 in the next two 
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layers. The output of the last layer is connected to a dense layer that only has one 

output neuron. 

• PM-GRU: There are no units or hidden levels in the pooling method. It is a 

strategy for summarizing the output of the GRU layers and reducing data 

dimensionality. The GRU network is made up of several hidden layers, each of 

which contains GRU units. The number of hidden layers and units might vary 

depending on the model's design. There might be four secret levels in the GRU 

network. The first concealed layer may be made up of 200 GRU troops. The second 

concealed layer might contain up to 100 GRU units. Each of the third and fourth 

concealed tiers could house 50 GRU units. Each GRU unit in a hidden layer has its 

own set of parameters that enable the network to recognize and learn temporal 

patterns in data. 

After each GRU layer, the pooling mechanism is used to summarize the output and 

reduce its dimensionality before transferring it to future GRU levels or other 

elements of the network for further processing. This pooling phase aids in the 

compression of information and the extraction of essential characteristics from the 

GRU output. 

• RM-LSTM: The recurrent mechanism is an important part of LSTM. It enables 

information to be transmitted and maintained over a sequence time steps. This 

method allows the network to detect and exploit temporal relationships in data. The 

LSTM network is made up of several hidden layers, each of which contains LSTM 

units. The number of hidden layers and units might differ depending on the model 

design and needs. There might be four hidden layers in the LSTM network. The 

first concealed layer might have up to 200 LSTM devices. The second concealed 

layer might include 100 LSTM units. The third and fourth hidden layers might be 

made up of 50 LSTM units each. Within a hidden layer, each LSTM unit has its 

own set of parameters, including the input, forget, and output gates, including the 

cell state. These methods enable the LSTM network to capture and model temporal 

relationships efficiently. 

Each LSTM layer's output is given back as an input to the next time step, allowing 

the recurrent connection and information flow over time. This recurrent method 
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allows the model to incorporate long-term relationships and learn patterns in 

sequential data effectively. The model can capture and utilize the temporal structure 

of the data by merging the recurrent mechanism with LSTM, making it suited for 

applications such as time series analysis, sequence prediction, and language 

modeling. 

• CLARP Model: In this CLARP model, we investigate a range of recurrent neural 

network combinations and specialized strategies to optimize learning and modeling 

capabilities. Among them are LSTM + Bi-LSTM, GRU + Bi-GRU, PM + GRU, 

and RM + LSTM. We merge LSTM and Bi-LSTM networks in LSTM + Bi-LSTM, 

using LSTM units in several hidden layers to capture long-term dependencies and 

Bi-LSTM units to incorporate bidirectional processing. This combination enables 

the model to capture temporal patterns and dependencies well. To reduce 

overfitting, a 10% dropout rate is used between the layers in all of these networks, 

and the ReLU activation function is used for the hidden layers. Similarly, with the 

GRU + Bi-GRU combination, GRU and Bi-GRU networks are combined. GRU 

layers containing GRU units record temporal relationships, however, the Bi-GRU 

layers' bidirectional nature allows for the integration of input from both the past and 

future contexts. This combination improves comprehension of data context and 

dependencies. A prediction mechanism (PM) is also combined with the GRU 

network in the PM + GRU configuration. GRU layers record temporal 

relationships, whereas the PM is concerned with producing accurate forecasts or 

predictions. By using the taught patterns and dynamics, this combination provides 

exact forecasting. We combine a representation mechanism (RM) with an LSTM 

network in the RM + LSTM combo. The LSTM layers record long-term 

dependencies, with LSTM units in several hidden layers, while the RM provides 

meaningful and useful data representations. The model's capacity to acquire 

effective representations and catch sequential patterns is improved as a result of this 

combination. Each combination is suited to unique model architectures and 

requirements, with many hidden layers and adjustable units. These various 

combinations take advantage of the capabilities of each network and approach to 

capture and model temporal relationships, include bidirectional context, make 
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accurate predictions, and provide meaningful data representations.  By 

experimenting with different combinations, we improve the model's skills for a 

wide range of sequential data jobs.  

The usage of ReLU provides a significant benefit in terms of a stable derivative for 

inputs higher than 0, which speeds up the neural network's learning process. Each 

method runs for 220 epochs and uses Early Stopping (min_delta = 1e-3, patience = 

100). In all models, different batch sizes are used, with Figures 5.1, 5.2 & 5.3 

illustrating the major influence of batch size as an influencing component. The 

Adam optimizer is used, with a learning rate of 0.001 and a learning rate decay of 

0.0001. Table 5.1 and Figures 5.1, 5.2 & 5.3 give a detailed summary of the 

assessment criteria, comparing seven various prediction approaches for PM2.5 

concentration in terms of MAE, RMSE, and R2 values. The RMSE values for 1-

day delays were determined to be the lowest among the 65 models. However, under 

the same conditions and with different batch sizes, the Hybrid CLARP Model beats 

other models in one-hour predictions, as shown in Figures 5.1, 5.2 & 5.3. 

Furthermore, with a batch size of 64, the CLARP Model demonstrates improved 

accuracy across different delays, notably with an advantage in the 1-day lag case. 

Figures 4.5, 5.1, 5.2 & 5.3 show the MAE, RMSE, and R2 values for the seven 

models with a batch size of 64, in 1-day and 7-day delays, respectively. These 

figures indicate the difference between expected and actual PM2.5 concentrations. 

 
Table 5.1. Results of several models with 1 and 7-day lags (bold results indicate the best outcomes). 

Model Batch 1DayMAE 1DayRMSE 1DayR2 7DayMAE 7DayRMSE 7R2 

CNN 64 9.960 16.571 0.979 

 

12.868 

 

21.526 

 

0.953 

Bi-

LSTM 

64 9.541 16.609 0.978 11.055 

 

18.122 

 

0.974 

RM 64 10.021 17.220 0.977 12.258 

 

19.797 

 

0.965 

PM 64 9.842 16.904 0.978 11.899 

 

19.560 

 

0.970 

GRU 64 9.102 15.999 0.980 11.916 19.255 0.969 
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Bi-GRU 64 9.503 16.217 0.980 

 

11.623 

 

19.154 

 

0.972 

CLARP 64 6.218 11.044 0.989 

 

8.874 

 

16.254 

 

0.989 

 

 

 

Figure 5.1 Results using Heatmap. 
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Figure 5.2 Results using Bar Charts. 

 

 

Figure 5.3 Results using Line Plots. 
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5.4 State-of-the-Art Comparison  
  

 In this section, focus is made on the recent developments in this area.  A comparison of a 

well-known model—Hybrid CNN-LSTM and the proposed CLARP Model is carried out. 

A comparison of MAE, RMSE and R2 results with Hybrid CNN-LSTM [44] and CLARP 

was carried out and our proposed model has better results. Results are shown in Table 5.2. 

 

Table 5.2. Comparison of MAE, RMSE and R2 results with Hybrid CNN-LSTM and CLARP 

Model Batch 1DayMAE 1DayRMSE 1DayR2 7DayMAE 7DayRMSE 7R2 

Hybrid 

CNN-

LSTM 

[43] 

64 6.742 12.921 0.989 

 

9.034 

 

16.625 

 

0.979 

CLARP 64 6.218 11.044 0.989 

 

8.874 

 

16.254 

 

0.989 

    

Consequently, in comparison, the developed Proposed CLARP Model has produced better 

results, with 99%, R2 with 1 Day and 7 days. MAE for 1 day is 6.218 which is better than 

Hybrid CNN-LSTM model results as 6.742 and in the case of 7 Days MAE, it gave 

improved results. For the case of RMSE, 1 Day RMSE is 11.044 which is better as 

compared to 12.921 of Hybrid CNN-LSTM model and 7 Days RMSE is 16.254 which is 

also better as compared to 16.625. 

 

5.5 Summary 
The study recommends four published models: AC-LSTM [42], LSTM-FC [45], XGBoost 

[46], CNN-LSTM [43] and hybrid CNN-LSTM [44]. These models were assessed in order 

to compare their performance to that of the suggested model. To anticipate pollution 

particles PM2.5, all five models, including the proposed one, were employed. The 

comparison was carried out using two commonly used measures, MAE and RMSE. After 

comparing MAE and RMSE, as shown in Figures 5.1, 5.2 & 5.3. It is clear that the 

proposed model not only has the lowest mean absolute error but also the lowest root mean 
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square error of all the tested models. We also did a state-of-the-art comparison as well and 

we found out that our proposed model has better results in terms of RMSE, MAE, and R2.  
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Chapter 6: Conclusion and Future Work 
 

6.1 Conclusion 

This research presents a hybrid model for forecasting PM2.5 levels of air contamination in 

Beijing's metropolitan locality that combines LSTM, Bi-LSTM, GRU, Bi-GRU, PM-GRU, 

and RM-LSTM. To begin, historical data from monitoring sites was analyzed to find 

relationships. Following experimental comparisons, a characteristic with a better 

correlation coefficient with PM2.5 was chosen, as well as meteorological data and 

correlations with other stations. Following that, the suggested hybrid model efficiently 

extracted spatial characteristics and internal linkages between distinct qualities, while 

LSTM captured time-related information, resulting in a further precise and durable 

estimate conclusion. The execution assessment and result association revealed the 

following significant judgments: the model extracts temporal and spatial information 

successfully using LSTM, Bi-LSTM, GRU, Bi-GRU, PM-GRU, and RM-LSTM and 

achieves eminent precision and strength. A 24-hour time window was used as the input 

values to accommodate for the periodicity in air quality data. 

6.2 Limitations of the Model 

Some of the limitations are:- 

• High computational requirements. 

• Computationally expensive as well. 

• Training takes long time so tend to be slow. 

• Large, labelled dataset is required to train model. 

 

6.3 Future Work  

  

However, our analysis can be improved as it does not take into consideration the amounts 

of pollutants from outside sources that impact Beijing's air quality. For instance, air 
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contamination from further Chinese cities is passed by the wind and can have an influence 

on Beijing's air attribute. This feature can be studied, and future work can be done. 
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