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Abstract

Engineering entangled optical states is an important task in quantum-optics based quantum information

processing and computation. There are many devices that can be used as an optical field state entangler.

The most commonly used device in this regard is an optical beam splitter which is a passive device. For a

particular scenario of path entangled optical states, the input state of a beam splitter is splitted into two

parts which traverse different paths after passing through it. The output states of the beam splitter can

get entangled if and only if the input states exhibit a nonclassical nature. However, it is well known fact

that the outputs of a beam splitter cannot be entangled if the standard coherent states (Glauber coherent

states) are taken as the input state. In this dissertation we study the entanglement generation at outputs

of an optical beam splitter by considering a generalized coherent state, namely Barut-Girardello coherent

state, at input.

In our study, the Barut-Girardello (BG) coherent states are constructed and their optical realization,

namely Holstein-Primakoff (HP) realization, is considered. For the HP realization of BG coherent states,

the photon statistics and the photon-emission correlation are investigated by means of Mandel parameter

and second-order intensity correlation function, respectively. It is shown that, in contrast to the Glauber

coherent states, HP realization of BG states exhibit sub-Poissonian photon statistics and exhibit anti-

bunching photon correlation effect which are clearly the signatures of nonclassicality. Using BG coherent

states as the inputs, the entanglement is generated between the output states of a beam splitter. The

entanglement generation is analyzed by means of linear entropy. In our analysis, it is illustrated that

the output states of an optical beam splitter get entangled after passing through it, if the input state

exhibit a non-classical nature, otherwise, the input states appear at the outputs as separable states and

no entanglement is generated. The entanglement generation of these states depend on two parameters

Bargmann index k and the BG coherent states amplitude z. The variation in linear entropy by changing

these parameter k and z shows the variation in degree of entanglement.



Chapter 1

Introduction and outline

1.1 Introduction

Entanglement is a characteristic phenomenon of composite quantum systems, such that, when two or

more subsystems of a composite system interact with each other, they become correlated in such a way

that the quantum state of each subsystem can not be described independently. The correlation of this kind

is known as entanglement which do not have classical analogue. When a quantum system is composed of

two subsystems, this correlation is known as bipartite entanglement. Entanglement plays a crucial role

in many advanced areas, such as, quantum information processing quantum quantum computation [1],

quantum teleportation [2] and quantum cryptography [3, 4, 5]. Engineering entanglement in different

kinds of quantum systems is an interesting and an important task. In a particular scenario of quantum-

optics based quantum information processing, the generation of entanglement is investigated through

optical devices such as beam splitters and interferometers. The entanglement generation on the outputs

of such an optical device depends on the nature of the optical field injected to its inputs.

In this thesis we use an optical beam splitter as an entangler with a special kind of quantum states,

namely Barut-Girardello coherent states, at its inputs. A beam splitter is a passive optical device that

splits an input optical field in to two parts and transmit them to the out put ports which can be entangled

depending on the nature of the input optical field. In the following, we present a qualitative introduction

of the main concepts involved in our work being presented in the thesis.

1.2 Coherent states and their generalization

The coherent states are very important in mathematics [6] and physics [7], such as quantum optics [8, 9]

and quantum information [10, 11]. The coherent states were first introduced by Schrödinger in 1926,

for harmonic oscillator. He mentioned that these states are represented by Gaussian wave packet whose

centroid follows the classical trajectory of the harmonic oscillator. Moreover, these quantum mechanical

states minimize the Hiesenberg uncertainty relation and therefore known as minimum uncertainty states.

The minimum uncertainty states, introduced by Schrödinger, remained dormant for more than three

1
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decades till 1963. The coherent states are very popular among the mathematics and physics society after

the seminal work of Glauber R. J. in 1963. Among many expressive contributions, we mention the work

of Barut A.O. and Girardello L. [12] and Glauber R. J. [13, 14]. Glauber R. J. used these states in the

description of coherent electromagnetic field, named as coherent states. In fact, he defined these states

in a different way by making of the underlying algebra of harmonic oscillator, namely Heisenberg-Wyle

algebra [15, 16]. In its classical description, the energy of a single-mode electromagnetic field is expressed

by the Hamiltonian of a classical harmonic oscillator, also known as radiation oscillator. The canonical

quantization of the radiation oscillators give rise to the quantized radiation energy. An eigenstate of the

quantized oscillator Hamiltonian corresponds to a state of the field in which there are definite number

of photons. However, the photon number states do not express the actual state of the radiation field

because the expectation values of the electric field and the magnetic field vanish with respect to these

number states. Glauber coherent states (standard coherent states) are perfectly suitable to represent the

quantum mechanical state of the radiation field. In literature, the coherent states are define in three

equivalent ways:

1. eigenstates of the annihilation operators.

2. states constructed by the action of displacement operators on the vacuum state.

3. minimum-uncertainty states or, more generally, intelligent states for position and momentum.

The coherent states are constructed using the group algebra of harmonic oscillator, i.e, Heisenberg-

Weyl algebra based on the criteria (1) and (2). Initially these states are constructed for harmonic

oscillator known as standard coherent states or Glauber coherent states or canonical coherent states.

The coherent states are generalized for other systems using the algebra of corresponding systems [18].

Mostly the generalization of coherent states based on the first two definitions by replacing the Heisenberg-

Weyl algebra with the group algebra of the corresponding system for which coherent states are being

constructed [12].

The term generalized coherent state has also been used to construct coherent states for generals

(Lie) groups. Using quantum group and their associated algebra of corresponding system gave the

accountability to construct the generalized coherent states based on the first two definitions (1) the

eigenstates of the annihilation operator (2) states constructed by the action of displacement operators

on the vacuum state. Every generalization scheme has extended one of the above mentioned definition

of coherent states for general systems. Most of the early generalization were made by making use of

the definition based on the underlying algebra of the system [25, 26]. However, the generalization is

based on definition (3) as minimum uncertainty states, for more general coherent states adapted to a

local potential with at least one confined region [6]. There are two important and distinct classes of

generalized coherent states associated with SU(1,1) [25, 26, 27, 28] namely Barut-Girardello coherent
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states [12] which are eigenstates of the lowering operator and Gilmore-Perelomov coherent states [17, 18],

which can be produced by the action of a displacement operator on the vacuum state.

1.3 Barut-Girardello coherent states

In 1971, Barut and Girardello introduced new coherent states. They identified the lowering operator and

found eigenstates for this operator, this lowering operator deals to quantum group. The quantum groups

shows the mathematical depiction of Lie algebra, give the liability to construct new coherent states,

generalized coherent states known as Barut-Girardello coherent states. The Barut-Girardello coherent

state is the right eigenstate of lowering operator. In this work we present the construction of these states

using their optical realization, i.e., Holstein-Primakoff (HP) realization[21, 22]of SU(1,1) algebra.

Consequently, After this exploration, due to the importance of the nonclassicality of quantum states in

various theoretical and experimental fields of physics [19, 29] we naturally lead towards the entanglement

generation of the Barut-Girardello coherent states which is the most important and potential application

of coherent states in quantum information. It has been also required that the entangled output state

from a beam splitter requires nonclassicality in the input state from Reff.[51]. Glauber-Sudarshan P-

function [50] of coherent states are not positive and is more singular than delta function then these states

are nonclassical. The entanglement generation in Barut-Girardello coherent states after passing through

beam splitters is indication of its nonclassicality[47]. The entanglement present in a collection of states

is clearly an indication of nonclassicality and a lack of it can be consider as a signature of classicality.

1.4 Nonclassicality criteria for coherent states

nonclassicality is studied through a variety of measures including squeezing [30, 31, 32], sub-Poissonian

photon statistics [33], Negativity of Wigner function [44], Anti-bunching effects [8], violations of Cauchy-

Schwarz inequalities [34], complementarity between particle-like and wave-like features of entangled co-

herent states [35], violations of a Bell’s inequality [36, 37, 38, 39, 40, 41, 42] or Leggett’s inequality [43]

for testing local realism, and entanglement properties such as index of correlation [44], entanglement of

formation [45, 46, 47] and other measures [48]. In this work, we are using the sub-Poissonian photon

statistics [33] of our introduced states to show the non-classical nature of these states.

1.4.1 Sub-Poissonian statistics

Variance and mean is calculated for number operator of standard coherent states. In this case variance

and mean are equal. The photon number probability distribution is Poissonian distribution for standard

coherent states of harmonic oscillator. The Poissonian photon number distribution is often used as a

reference in the sense that any other given quantum state is classified as having a sub-Poissonian or

super-Poissonian photon number distribution. Variance is not equal to the mean for sub-Poissonian and
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super-Poissonian distribution. For sub-Poisson distribution variance is less than the mean and for super-

Poisson distribution variance is greater than the mean. In our case for Barut-Girardello coherent states

we have the sub-Poisson distribution which exhibit the non-classical nature of these states. For the sub-

possonian statistics, photon number distribution is narrower than for a coherent state of same average

photon number and the distribution is broader for a coherent states is said to possess super-Poissonian

statistics [44]. The statistical features of these states are photon number probability distributions and

Mandel’s Q parameter [49] depict the sub-Poisson nature of these states which exhibits the nonclassicality

in these states. The intensity correlation function [8] is also calculated to study the correlation properties

of these states.

1.4.2 Negativity of Wigner function

The Wigner function is

W (q, p) =
1

2Π~

∞∫
−∞

〈q +
1

2
x|ρ̂|q − 1

2
x〉eipx/~dx, (1.4.1)

negativity of Wigner-function shows that the states are nonclassical [44].

1.4.3 Quadrature squeezing

The quadrature operators are χ1 and χ2, for quadrature squeezing the conditions are:

〈(∆χ̂1)2〉 < 1

4
, (1.4.2)

〈(∆χ̂2)2〉 < 1

4
, (1.4.3)

for coherent states equality hold and same is for the vacuum state, but if one of the condition is holds

for state, the state is said to be squeezed state.

1.4.4 Amplitude squeezing

The number phase uncertainty relation is being valid in the regime of large average photon number.

∆φ∆n ≥ 1

2
, (1.4.4)

for standard coherent states of harmonic oscillator (∆n)2 = |z|2 = n̄ and (∆n) = n̄
1
2 ∆φ = 1

2n̄
1
2

.

Considering the definition of quadrature squeezing, if ∆n < n̄
1
2 the states are squeezed in number and

if ∆φ < 1

2n̄
1
2

the states are squeezed in phase. The phase squeezed states are difficult to characterize

the nonclassicality because it is difficult to have hermition operator representation of phase. Amplitude

squeezing is a photon number squeezing, variance can be written as

〈(∆n̂)2〉 = 〈n̂〉+ (〈â†2â2〉 − (〈â†â〉)2
), (1.4.5)

A state exhibiting amplitude squeezing holds the sub-possonian statistics, photon number distribution is

narrower than for a coherent state of same average photon number and the distribution is broader for a

coherent states is said to possess supr-Poissonian statistics.
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1.4.5 Anti-bunching effects

For bunch and anti-bunch light photons are coming in pairs towards the detector. The second order

correlation function g2(τ) [8] is determining the joint probability of detecting a photon followed by other

with time delayed τ . The probability of detecting a photon is 1 when they arrive independently, g2(τ) = 1.

If g2(τ) > g2(0) we have bunching effects. If g2(τ) < g2(0), we have anti-bunching effects.

1.5 Entanglement measures

There exists several measures of entanglement such as the , linear entropy [66, 67], the von Neumann

entropy [68, 69, 70], the concurrence [71, 72], positive partial transpose [73], the negativity [75, 76, 77] ,

Schmidt decomposition [74]. In this dissertation, we use the linear entropy as measure of entanglement.

1.5.1 Linear entropy

The linear entropy is use to characterize the entanglement of bipartite system. Linear entropy SL is

defined as

SL = 1− Tr(ρA2), (1.5.1)

where ρA, is the reduced density operator of the system A obtained by performing a partial trace over

system B of the density operator ρAB . The linear entropy is bounded by the factor N/(N − 1), where

N is the dimension of the state. In this work, we are interested in the spatial entanglement between the

two states. If N is infinite then the linear entropy is bound to unity. The system would be completely

disentangled when SL = 0. On the other hand, the system would be in the maximally entangled state if

SL = 1.

1.5.2 von Neumann entropy

von Neumann entropy is one of the entropy entanglement measure. It is define as

S(ρA) = −Tr{ρAlog2(ρA)}, (1.5.2)

Or

S(ρB) = −Tr{ρBlog2(ρB)}, (1.5.3)

where ρA and ρB are reduced density operators of composite system ρ = ρA
⊗
ρB . Reduced density

operator ρA and ρB are define as

ρA = −TrB{ρ}, (1.5.4)

and

ρB = −TrA{ρ}, (1.5.5)
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von Neumann entropy vanishes for pure state and it is maximum for fully mixed states. For pure state

von Neumann entropy is 0 and for mixed state it is 1.

E(ρ) = S(ρA) = S(ρB) = 1, (1.5.6)

the entropy of entanglement of mixed state is 1, state is maximally entangle.

1.5.3 Concurrence

Concurrence is also a measure of entanglement used in quantum information. For two-qubit pure states

|Ψ〉 = α|↑↑〉+ β|↑↓〉+ γ|↓↑〉+ δ|↓↓〉, (1.5.7)

If C = 2|αδ − βγ| > 0 the state is entangle and if C = 2|αδ − βγ| = 0 the state is not entangle. Entan-

glement is maximum when concurrence C = 1
2 . The concurrence is used to quantify the entanglement

when two-qbit systems are entangled and based on bit flip operation σy. For a single qbit state |Ψ〉, the

overlap with the σy-flipped state ˜|Ψ〉 = σy|Ψ〉, define the concurrence as c = |〈Ψ|Ψ̃〉|. We define a matrix

ρ̃

ρ̃(t) = ρ(t)(σy ⊗ σy)ρ∗(t)(σy ⊗ σy), (1.5.8)

ρ(t) is time dependent density matrix define for 2× 2 systems. The square roots of eigen values of 4× 4

matrix ρ̃ define the concurrence

C(t) = max[0,Λ(t)], (1.5.9)

where Λ(t) =
√
λ1(t) −

√
λ2(t) −

√
λ3(t) −

√
λ4(t), λi are the eigenvalues. Concurrence C(t) = 0 for

separable states and C(t) = 1 for maximally entangle states.

1.5.4 Tangle

Entropy and concurrence quantify the entanglement when two-qbit system are entangled. If three-qbit

system are entangle we use tangle to quantify the entanglement as measure of enta Lets consider three qbit

system ABC, there exist pairwise entanglement, i.e., system A is entangle with system Bor C, but there

is also three way entangled states that are not pairwise entangled. These various types of entanglement

are quantified through different measures of entanglement called tangle. We take the three-qbit state

starts with the avrage two tangle

τ2 =
C12

2 + C23
2 + C13

2

3
, (1.5.10)

entanglement can be measured by bipartite concurrence between one-qbit and both other qbits

Ci(jk) =
√

2(1− Tr(ρi2)), (1.5.11)

where ρi is density operator of qbit i, obtained by tracing over the other two j and k qbits If product

state ρ is pure, ρi is pure state, Tr(ρi
2) = 1, Ci(jk) = 0, ρ. If Tr(ρi

2) < 1, Ci(jk) > 0, ρ is entangled. For
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maximally entangle state Tr(ρi
2) = 1

2 , Ci(jk) = 1. The bipartite concurrence shows the entanglement of

qbit i is with the other two. It is the entanglement with one of them or with both. This is quantified

through three-tangle τ3, from bipartite concurrence we subtracts the pairwise entanglement of qbit i with

j and k to obtain three-way entanglement of a three-qbit state.

τ3 = Ci(jk)
2 − (Cij

2 + Cik
2). (1.5.12)

1.5.5 Positive partial transpose

The Positive Partial Transpose was introduced by Peres and by the Horodczkys. They introduced the

necessary condition for joint density matrix ρ of quantum mechanical system A and system B We write

the basis states|i〉 and |j〉 of system A and |k〉 and |l〉 of system B The density operator of the composite

system is written as

ρ =
∑
ijkl

pijkl|i〉|j〉 ⊗ |k〉|l〉, (1.5.13)

the partial transposition ρTB is interchanges the density matrix elements, e.g., system B only, as ρijklρijlk.

ρTB =
∑
ijkl

pijlk|i〉|j〉 ⊗ |l〉|k〉, (1.5.14)

the PPT criterion states if ρTB have negative eigen values, ρ is entangled

1.5.6 Negativity

The negativity is also a measure of entanglement based on PPT measure. PPT measure is used to quantify

the entanglement in two qbit systems of high dimensions. According to it, the negative eigenvalues of the

partial transposed matrix characterize the entanglement. For bipartite systems negativity is defined as

N(t) = −2
∑
i

λi, (1.5.15)

where λis are the negative values of PPT matrix, entanglement can be defined as

E = max[0, N(t)] (1.5.16)

1.5.7 Schmidt decomposition

There are several measures to characterize the entanglement in bipartite systems one of them is the

Schmidt decomposition. The composite state of bipartite system is written as

|Ψ〉AB =
∑
i

ci|ui〉A|vi〉B , (1.5.17)

|ui〉A and |vi〉B are the basis vectors defined for system Aand B respectively. The non zero eigenvalues

of the reduced density matrix ρA = TrB(ρAB) define schmidt number d. If Schmidt number d is 1, the

composite state of bipartite system is separable and system is entangled if d > 1.
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1.6 Layout of thesis

In chapter 2, two distinct class of coherent states are discussed. Firstly, we gave a brief description of

ordinary or standard coherent states of harmonic oscillator (Glauber coherent states) and their construc-

tion. The photon number probability distribution of these states are discussed. Their properties such as

over completeness, non-orthognality, temporal stability etc. are discussed. The graphical representation

of photon number probability distribution for these states are drawn to make the comparison of standard

coherent states with the results of the new coherent states. Secondly, we present the construction of

generalized coherent states known as Barut-Girardello coherent states using the optical realization of

these states. The photon number probability distribution of these states are discussed. The basic proper-

ties of Barut-Girardello coherent states over-completeness, non-orthognality, temporal stability etc. are

discussed.

Chapter 3 of this thesis presents, the work on optical beam splitters, engineering of beam splitters

and how the input modes are related to output modes of beam splitter. If various states are the inputs

of beam splitters.i.e., fock state, coherent states, Glauber coherent states etc., exhibit a very interesting

phonomenon. We define a particular criteria for optical beam splitter considering the optical beam splitter

as entangler. We demonstrate a condition for the output state of a optical beam splitter is entangled if

input state exhibit nonclassicality. We analyze that nonclassicality in the input states of beam splitter is

as a mandatory for entanglement.

Chapter 4 of this thesis presents, work on non-classical properties of Barut-Girardello coherent states.

Using the statistical features of Barut-Girardello coherent states we present that these states have sub-

Poisson distribution. Mandel Q parameter is calculated to investigate the sub-Poisson photon statistics of

these states which is indication of nonclassicality. The second order intensity correlation function is also

calculated to analyze the correlation properties of these states which exhibits the anti-bunching effects.

The nonclassicality in these states leads us towards the entanglement generation of Barut-Girardello

coherent states through optical device, via 50:50 beam splitter and quantification of entanglement using

linear entropy as measure of entanglement. Linear entropy measures the degree of entanglement of output

state. The entanglement generation of these states depend on two parameters Bargmann index k and

the BG coherent states amplitude z. The variation in linear entropy by changing these parameter k and

z shows the variation in degree of entanglement.

Finally chapter 5 presents the overall results, conclusion and discussion of the thesis.



Chapter 2

Optical coherent states: basic theory
to Barut-Girardello generalization

2.1 Introduction

The minimum uncertainty states of a harmonic oscillator, introduced by Schrödinger, were brilliantly

used by Roy Glauber to express the quantum states of coherent optical field, hence named as coherent

states. In literature these states are also termed as canonical coherent states or Glauber coherent states.

However, the notion of coherent states has been generalized for much more general situations than were

introduced by Schrödinger and Glauber. In this chapter, we first discuss the construction of Glauber

coherent states and then present a generalization of these coherent states known as Barut-Girardello

coherent states.

The chapter is organized as following. In section (2.2), we briefly discuss the construction of Glauber

coherent states. In order to construct these states we first discuss the Hamiltonian algebraic structure of

the harmonic oscillator, that is, Hiesenberg-whyl algebra [15], and then discuss the various ways of defining

coherent states. Afterwards, a set of basic characteristics of these states is presented. In Section (2.3) of

this chapter we present the construction Barut-Girardello coherent states using the Holstein-Primakoff

(HP) realization of su(1,1) Lie algebra [79] and their basic properties are also discussed.

2.2 Glauber coherent states

The ground breaking work of Glauber on quantum theory of optical coherences is based on a special kind

of quantum states of harmonic oscillator, known as coherent states. Glauber recieved the Nobel Prize

2005 in Physics for these states. In the following we discuss the construction and properties of these

states.

2.2.1 Construction

In order to construct the Glauber coherent states, first an algebraic structure of the harmonic oscillator

is needed. In the following we discuss the factorization of Hamiltonian and the underlying algebraic

9
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structure of the harmonic oscillator which will be followed by the construction of coherent states.

Harmonic oscillator Hamiltonian

The harmonic oscillator (HO) is the most important model system in quantum mechanics. Its Hamiltonian

is basically the sum of squares of two conjugate canonical variables that is

Ĥ =
p̂2

2m
+

1

2
mω2x̂2, (2.2.1)

where ω is the the angular frequency, operators x̂ and p̂ are, of course Hermition. Lets define two

non-Hermition operators

â =

√
mω

2~
(x̂+

ip̂

mω
), â† =

√
mω

2~
(x̂− ip̂

mω
), (2.2.2)

which are known as annihilation and creation operators respectively. The commutation relation

[â, â†] = I using canonical commutation relation

[â, â†] = (
1

2~
)(−i[x̂, p̂] + i[p̂, x̂]) = I. (2.2.3)

We also define another operator as N = â†â called number operator, which is obviously an hermition

operator N† = N . It is straightforward to show that

â†â = (
mω

2~
)(x̂2 +

p̂2

m2ω2
) +

i

2~
[x̂, p̂]

=
1

~ω
(
p̂2

2m
+

1

2
mω2x̂2)− 1

2

= (
Ĥ

~ω
− 1

2
),

as N̂ = â†â, so we have an important relation between number operator and Hamiltonian operator

Ĥ = ~ω(N̂ +
1

2
), (2.2.4)

this shows that Ĥ linearly depends on N̂ , N̂ is diagonalize simultaneously with Ĥ.

Algebraic structure of HO: Heisenberg-Weyl algebra

The annihilation operator â, creation operator â† and number operator N = â†â form Heisenberg-Weyl

Algebra which satisfy the following commutation relations:

[â, â†] = 1, [â†, â] = −1,

[N̂ , â†] = â†, [N̂ , â] = −â, (2.2.5)

[â, â] = 0, [â†, â†] = 0.

We will proceed to construct the Glauber coherent states using the Hiesenberg-Weyl algebra of harmonic

oscillator.
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Fock space

The Hilbert space spanned by the number eigenstates {|0〉, |1〉, |2〉, ...|n〉}, satisfying orthonormality

〈n|ń〉 = δnń, is known as Fock space. The number operator obeys eigenvalue equation

N̂ |n〉 = n |n〉 . (2.2.6)

Moreover, the operators â†, â act upon the number eigenstates as

â† |n〉 =
√
n+ 1 |n+ 1〉 (2.2.7)

and

â |n〉 =
√
n |n− 1〉 , (2.2.8)

where the condition

â|0〉 = 0 (2.2.9)

defines the ground state |0〉 of the oscillator. The Fock space {|n〉} may be obtained by repeated appli-

cation of the creation operator â† on the vacuum state |0〉 as

|1〉 = â†|0〉

|2〉 =
â†√

2
|1〉 =

(â†)2

√
2
|0〉,

.

.

.

|n〉 =
â†√
n!
|n− 1〉 =

(â†)n√
n!
|0〉. (2.2.10)

The Fock states thus obey completeness, ∑
n

|n〉 〈n| = Î . (2.2.11)

with Î being n-dimensional identity operator.

Construction of coherent states

Following the Glauber’s formalism, the coherent states can be constructed by using any one of three

definitions [13, 14, 17, 18, 12].

Definition 1: The coherent states |z〉 are the eigenstates of the harmonic oscillator annihilation oper-

ator â, i.e.,

â |z〉 = z |z〉 , (2.2.12)

where z is a complex number.

Definition 2: They are generated by applying a displacement operator D̂ (z) on the vacuum state |0〉 of

the harmonic oscillator,

|z〉 = D̂ (z) |0〉 , (2.2.13)
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where the displacement operator D̂(z) = ezâ
†−z∗â, with â† being the harmonic oscillator creation operator.

Definition 3: They are the quantum states minimizing uncertainties relationship, i.e.,

∆x∆p =
1

2
. (2.2.14)

This is easy to show by calculating the dispersions of position and momentum operators with respect to

the coherent coherent states as

(∆x)
2

= 〈z|x̂2|z〉 − 〈z|x̂|z〉2,

(∆p)
2

= 〈z|p̂2|z〉 − 〈z|p̂|z〉2,

where the position and momentum operators x̂, p̂ are expressed in terms of â, â† using equation (2.2.2).

Fock space representation of Glauber coherent states

In order to express the state of electromagnetic field, that can resemble to the corresponding classical

description, it is useful to construct a linear superposition of number states or Fock states. The coherent

states, defined above, can be expanded in terms of Fock basis as

|z〉 =

∞∑
n=0

cn|n〉, (2.2.15)

acting with â on each term we get

â|z〉 =

∞∑
n=0

cn
√
n|n− 1〉 = z

∞∑
n=0

cn|n〉, (2.2.16)

equating coefficients of |n〉 on both sides

cn =
z√
n
Cn−1, n = 1, 2, 3....

Now

c1 =
z√
1
co,

c2 =
z√
2
c1 =

z2

√
2.1

co,

c3 =
z√
3
c2 =

z2

√
3.2.1

co,

.

.

cn =
zn√
n!
co.

thus we have

|z〉 = co

∞∑
n=0

|z|n√
n!
|n〉. (2.2.17)

for normalization we require 〈z|z〉 = 1

|co|2
∞∑

n,m=0

|z|n|z|∗m√
n!m!

〈m|n〉 = 1 (2.2.18)
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for m=n, δ(m,n) = 1

|co|2
∞∑
n=0

|z|2n

n!
= 1,

|co| = exp

(
−|z|

2

2

)
,

the resulting normalized states are given by

|z〉 = exp

(
−|z|

2

2

) ∞∑
n=0

zn√
n!
|n〉, (2.2.19)

the Glauber coherent states are optical coherent states which are constructed for harmonic oscillator.

2.2.2 Properties

The Glauber coherent states satisfy the following set of properties.

Over Completeness:

Coherent states form an over-complete linearly dependent set. The resolution of the identity holds in the

form

1

π

∫
d2z|z〉〈z| =

∞∑
n=0

|n〉〈n| = I; d2z = d(<z)d(=z), (2.2.20)

a state vector|ψ〉 in Hilbert space of the quantized sngle-mode field can be expressed in terms of coherent

state as

1

π

∫
d2z|z〉〈z||ψ〉. (2.2.21)

|ψ〉, itself is the coherent state. There are more than enough states are available to represents coherent

states in terms of coherent states.

Non-orthonality

The coherent states are non-orthogonal

〈z′|z〉 = [exp (−|z|
2

2
) + (−|z

′|2

2
) + z′∗z], (2.2.22)

here we have,

〈z′|z〉 6= 0, (2.2.23)

Orthognalty condition is

〈z′|z〉 = 0. (2.2.24)

Temporal stability

The time evaluation of coherent states for a single mode free field [44] Ĥ = (n̂+ 1
2 )~ω. The time-evolved

coherent state is given by

|z, t〉 = exp

(
iĤt

~

)
|z〉 = e−

iωt
2 e−iωtn̂|z〉, (2.2.25)

|z, t〉 = e−
iωt
2 |ze−iωt〉, (2.2.26)

the coherent state remains a coherent state under free field time-evolution.
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2.3 Barut-Girardello coherent States

We can construct the generalized coherent states by replacing the algebra of harmonic oscillator with the

algebra of other systems based on definition (1) and (2). In this work we are constructing the generalized

coherent states namely as Barut-Girardello coherent states. The Barut-Girardello coherent states belong

to SU(1,1) group. For SU(1,1) group, there are two inequivalent ways to construct coherent states: (1)

eigenstates of the lowering operator and (2) as displaced vacuum state under the action of displacement

operator. To construct the Barut-Girardello Coherent States, we used the criteria(1) eigenstates of the

lowering operator [12]. We need su(1,1) Lie algebra because our lowering operator belongs to SU(1,1) Lie

group. We are constructing the Barut-Girardello coherent states using SU(1,1) Lie algebra considering

the Holstein-Primakoff (HP) realization of su(1,1) Lie algebra (in terms of a set of single mode bose

annihilation and creation operators) [79].

su(1,1) algebra

We give a brief review of SU(1,1) group, there are three generators in this group K1, K2 and K3. The

commutation relation for the Lie algebra corresponding to the Su(1, 1) group:

[K1,K2] = −iK3, [K2,K3] = iK1, [K3,K1] = iK2. (2.3.1)

where the operator K3 is considered as the generator of the geometrical rotation, while K1 and K2 are

the Lorentz transformation[88]. The raising and lowering generators of this group are K± = K1 ± iK2,

which satisfy the following commutation relations:

[K−,K+] = 2K3, [K3,K±] = ±K±, (2.3.2)

where its generators (K±,K3) obey Hermicity property

(K+)† = K−, (K−)† = K+, (K3)† = K3. (2.3.3)

casimir operator K2 for any irreducible representation is

K2 = (K3)2 − (K1)2 − (K2)2 = k(k − 1), (2.3.4)

real number k (called the Bergmann index). The state is spanned by the complete orthonormal basis

of the Bargmann-Hilbert space HB , |k,m〉, where m = 0, 1, 2....∞, m is quantum number of Hilbert

space. 〈k,m′|k,m〉 = δ′m,m ,
∞∑
m=0
|k,m〉〈m, k| = 1. We consider here only the representation known as the
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positive discrete series.

K2|k,m〉 = k(k − 1)|k,m〉, (2.3.5)

K3|k,m〉 = m|k,m〉, (2.3.6)

K±|k,m〉 =
√

(m± k)(m∓ k ± 1)|k,m± 1〉, (2.3.7)

or

K±|k,m〉 =
√

(m)(m∓ 2k ± 1)|k,m± 1〉, (2.3.8)

where k ∈ { 1
2 , 1,

3
2 , ....} is the Bargman index [23, 24, 25, 26, 27, 28].

Holstein-Primakoff (HP) realization of the su(1,1) Lie algebra

Bargmann (1970) gave the representations of Lie groups is constructed by realizing the operators of the

Lie algebra as amplitude-squared of the boson annihilation and creation operators â and â†. With these

boson operators represented by operators defined over a Hilbert space of entire analytic functions, the

Bargmann-Hilbert space HB , one can also construct group representations as Hilbert spaces of entire

analytic functions. One might expect that an alternative way of constructing a representation of a Lie

group on a Hilbert space of analytic functions is to exploit the generalised coherent states in a fashion

similar to the ordinary coherent states [79].

In the present work we concentrate on the SU(1,1) Lie group whose algebra has a number of realizations

related to the quantized light field. The most known of them are the single mode realization in terms

of the amplitude-squared boson operators[20, 21]. We consider here the Holstein-Primakoff (HP) single

mode realization of the su(1,1) Lie algebra given below.

K+(k) =
√
â†â+ 2k − 1â†, â†â = n,

K−(k) = â
√
â†â+ 2k − 1,

K3(k) = â†â+ k,

Here k is the Bargmann index labeling unitary irreducible representations of the SU(1,1) Lie group.

Various states associated with the (HP) SU(1,1) realization exist in the harmonic oscillator Hilbert

space. These states can be conveniently treated by using general group-theoretical techniques. One

can consider the generalized CS obtained as the eigenstates of the SU(1,1) lowering generator K−(k) (

the so-called Barut-Girardello states )and by the action of SU(1,1) group elements on the vacuum state

[123, 124, 125, 126, 127] (Perelemov coherent states).

2.3.1 Construction

The Barut-Girardello coherent states are the eigenstates of lowering operator K−

K−|z, k〉 = z|z, k〉 (2.3.9)
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z is a complex number. Here, we are only interested only in positive discrete series. The corresponding

state is spanned by the complete orthonormal basis of the Bergman space |k,m〉 of Hilbert Space [32].

K−|z, k〉 = K−(I|z, k〉), (2.3.10)

using the completeness relation
∞∑
m=0
|k,m〉〈m, k| = I

K−|z, k〉 = K−(

∞∑
m=0

|k,m〉〈m, k|z, k〉), (2.3.11)

as action of lowering operator K− on |k,m〉 from equation (2.3.9) is

K−|k,m〉 =
√

(m)(m+ 2k − 1)|m− 1, k〉. (2.3.12)

z|z, k〉 =

∞∑
m=0

√
(m)(m+ 2k − 1)|m− 1, k〉〈m, k|z, k〉, (2.3.13)

take inner product with 〈n, k| on both sides

z〈n, k|z, k〉 =

∞∑
m=0

√
(m)(m+ 2k − 1)〈n, k|m− 1, k〉〈m, k|z, k〉, (2.3.14)

we know that
∞∑
m=0
〈n, k|m− 1, k〉 = δ(n,m−1) = 1 If and only if m− 1 = n,

z〈m− 1, k|z, k〉 =
√

(m)(m+ 2k − 1)〈m, k|z, k〉,

〈m, k|z, k〉 =
z√

(m)(m+ 2k − 1)
〈m− 1, k|z, k〉, (2.3.15)

using these relations

(n+ 1)(n+ 2)...(n+ r) = (n+ r)(n+ r + 1)...(n+ 2)(n+ 1)
Γ(n+ 1)

Γ(n+ 1)
=

Γ(n+ r + 1)

Γ(n+ 1)
,

(m+ 2k)(m+ 2k − 1)(m+ 2k − 2)... =
Γ(m+ 2k)

Γ(2k)
, (m+ 2k − 1)! = Γ(m+ 2k),

we get after re-occurence procedure

〈m, k|z, k〉 =

∞∑
m=0

|z|m
√

Γ(2k)√
(m)!Γ(m+ 2k)

〈0, k|z, k〉. (2.3.16)

‖〈m, k|z, k〉‖2 =

∞∑
m=0

|z|2(m)Γ(2k)

(m)!Γ(m+ 2k)
‖〈0, k|z, k〉‖2, (2.3.17)

by normalizing to unity

〈z, k|z, k〉 = I (2.3.18)

Using completeness relation
∞∑
m=0
|m, k〉〈m, k| = I and

∞∑
m′=0

|m′, k〉〈m′, k| = I.

〈z, k|z, k〉 = I =

∞∑
m=0

∞∑
m′=0

〈z, k|m, k〉〈m, k|m′, k〉〈m′, k|z, k〉. (2.3.19)

As
∞∑

m′=0

〈m, k|m′, k〉 = δm,m′ = 1. if m = m′,then

〈z, k|z, k〉 =

∞∑
m=0

〈z, k|m, k〉
∞∑

m′=0

〈m, k|m′, k〉〈m′, k|z, k〉 = 1,

〈z, k|z, k〉 =

∞∑
m=0

‖〈z, k|m, k〉‖2 = 1,
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using normalization condition in equation (2.3.17), we get

∞∑
m=0

|z|2(m)Γ(2k)

(m)!Γ(m+ 2k)
‖〈0, k|z, k〉‖2 = 1, (2.3.20)

〈0, k|z, k〉 =

√
|z|2k−1

Γ(2k)I2k−1(2|z|)
, (2.3.21)

as the relation is
∞∑
m=0

|z|2m

(m)!Γ(m+ 2k)
=

1

|z|2k−1
I2k−1(2|z|). (2.3.22)

I(2k−1)(2|z|) is the modified Bessel’s function of first kind [36]. We can also write this relation in terms

of Hypergeometric function [36]

∞∑
n=0

Γ(2k)

n!Γ(n+ 2k)
|z|2n = 0F1(2k; |z|2), (2.3.23)

using the above relation in equation (2.3.16), we have the resultant equation

|z, k〉 =

√
|z|2k−1

I2k−1(2|z|)

∞∑
m=0

zm√
(m)!Γ(m+ 2k)

|m, k〉, (2.3.24)

|z, k〉 =

√
|z|2k−1

I2k−1(2|z|)

∞∑
n=0

zn√
n!Γ(n+ 2k)

|n〉. (2.3.25)

Normalization factor is

ℵ(|z|2) =

√
|z|2k−1

I2k−1(2|z|)
, (2.3.26)

|z, k〉 = ℵ(|z|2)

∞∑
n=0

zn√
n!Γ(n+ 2k)

|n〉, (2.3.27)

is the normalized Barut-Girardello coherent state, these states can also be written in terms of hypergeo-

metric function as

|z, k〉 =
1√

0F1(2k; |z|2)

∞∑
n=0

√
Γ(2k)

n!Γ(n+ 2k)
zn|n〉. (2.3.28)

0F1(k; |z|2), is Hypergeometric function usually expressed in terms of modified Bessel’s function[80].

2.3.2 Properties

The Barut-Girardello coherent states satisfy the following set of properties

Over completeness:

BGCS coherent states are over complete coherent states form an over-complete linearly dependent set[26].

The resolution of the identity holds in the form∫
dµ(z, k)|z, k〉〈z, k| = I =

∞∑
m=0

|k,m〉〈m, k|, (2.3.29)

dµ(z, k) =
2

Π
K2k−1(2|z|)I2k−1(2|z|)d2z; d2z = d(<z)d(=z), (2.3.30)

The function Kν(x) is ’ν order modified Bessel’s function’ of the second order. All the integrals are

performed over the whole complex z-plane

z = r exp(iφ), rε[0,∞], φε[0, 2Π]. (2.3.31)
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Non-orthognality:

Barut-Girardello Coherent States are non-orthogonal

|z, k〉 =

√
|z|2k−1

I2k−1(2|z|)

∞∑
m=0

zm√
(m)!Γ(m+ 2k)

|m, k〉, (2.3.32)

and

〈σ, k| =

√
|σ|2k−1

I2k−1(2|σ|)

∞∑
m′=0

σ∗m
′√

m′!Γ(m′ + 2k)
〉m′, k|, (2.3.33)

〈σ, k|z, k〉 = (

√
|z|2k−1

I2k−1(2|z|)
)(

√
|σ|2k−1

I2k−1(2|σ|)
)

∞∑
m′=0

|σ|m′√
m′!Γ(m′ + 2k)

∞∑
m=0

|z|m√
m!Γ(m+ 2k)

, (2.3.34)

If m′ = m,
∞∑
m=k

〈m′, k|m, k〉 = 1,

〈σ, k|z, k〉 =

√
|σ|2k−1|z|2k−1

I2k−1(2|σ|)I2k−1(2|z|)

I2k−1(2
√
σz)√

σ∗2k−1z2k−1︷ ︸︸ ︷
∞∑
m=0

|z|m|σ|∗m

m!Γ(m+ 2k)
, (2.3.35)

as it is ’modified Bessels function’ of first kind[92]. Finally we get,

〈σ, k|z, k〉 =
I2k−1(2

√
σ∗z)√

I2k−1(2|σ|)I2k−1(2|z|)
, (2.3.36)

this shows that BGCS are non orthognal.

Temporal stability:

The time evalution operator of BGCS coherent states is Hk the time-evolved coherent state is given by

|z, k; t〉 = exp

(
− i
~
Ĥkt

)
|z, k; 0〉. (2.3.37)

Considering specific system Psuedoharmonic harmonic oscillator system (PHO) [25] of SU(1,1),the Hamil-

tonian for PHO is Hk

Hk ≡ Hα = ~ωoHα
(red)(y) = ~ωo(2ν + 2K3 −

Mωo
~

ro
2), (2.3.38)

ν is vibrational Quantum number, Reduced Hamiltonia is

K3 =
1

2
Hα

(red)(y) =⇒ Hα
(red)(y) = 2K3,

the coherent state remains a coherent state under free field time-evolution.

Hk ≡ Hα = ~ωoHα
(red)(y) = ~ωo(2K3 −

Mωo
~

ro
2) = (2~ωoK3 −Mωo

2ro
2),

|z, k; t〉 = exp
i

~
(Mωo

2ro
2 − 2~ωoK3)t

√
|z|2k−1

I2k−1(2|z|)

∞∑
m=0

(ze−2iωot)
m√

(m)!Γ(m+ 2k)
|m, k〉, (2.3.39)
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|z, k; t〉 =

√
|z|2k−1

I2k−1(2|z|)

∞∑
m=0

zm(t)√
m!Γ(m+ 2k)

|m, k〉, (2.3.40)

ν = 0, for ground vibrational state

Eo = ~ωo2K3 −Mωo
2ro

2.

|z, t〉 = e−
i
~Eot|z(t), k〉, (2.3.41)

Hence the BGCS are the coherent state remains a coherent state under free field time-evolution.



Chapter 3

Engineering entanglement by optical
beam splitters

3.1 Introduction

The optical beam splitters play a crucial role in the understanding of many phenomena concerning optics

and their applications in advanced areas of research, such as, quantum optics, quantum information and

quantum computation. For example in the quantum information theory, these passive optical devices are

essentially used in entanglement generation, teleportation and Bell’s measurements. Moreover, they are

the constituent components of several other optical devices, such as, interferometers which are essentially

used in precision quantum measurements by observing the interference pattern.

Engineering entanglement is an important task in the quantum information theory that provides a

basis for a secure communication and a fast computation. In this chapter, we discuss the theory of beam

splitters in the context of entanglement generation. In particular, we try to find the circumstances under

which a beam splitter can be used as an entangler.

The chapter is organized as following. In section(3.2), we discuss the quantum mechanical descrip-

tion of optical beam splitters which provide the relationship between input modes and output modes.

Section(3.3) is focussed on the entanglement of output states of a beam splitter by injecting different

kinds of optical states through inputs. Finally, the section(3.4) deals with the description of a general

criterion for using a beam splitter as an entangler.

3.2 Quantum theory of optical beam splitters

Before proceeding to the quantum theory, let us recall the action of beam splitter when we consider

the classical scenario. Let us consider an optical field with complex amplitude E1 incident upon a beam

splitter [44]. E2 and E3 are the amplitudes of the reflected and transmitted beams respectively. If R and

T are the (complex) reflectance and transmittance respectively of the beam splitter, then it follows

E2 = RE1 and E3 = TE1, (3.2.1)

20
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for a 50:50 beam splitter we would have |R| = |T | = 1√
2
. However, for the sake of generality, we do not

impose this condition here. Since the beam splitter is assumed lossless, the intensity of the input beam

should equal the sum of the intensities of the two output beams as

E1 = E22 + E32, (3.2.2)

which requires that

|R|2 + |T |2 = 1. (3.2.3)

To treat the beam splitter quantum mechanically we might try replacing the classical complex field

amplitudes E by a set of annihilation operators âi(i = 1, 2, 3), in analogy with the classical case we might

try setting

â2 = Râ1 and â3 = T â1, (3.2.4)

In the classical picture of the beam splitter there is an unused port which is empty there is no field on

this port. However, in the quantum-mechanical picture, the unused port still contains a quantized field

mode in the vacuum state and we see that fluctuations of the vacuum exhibits important physical effects.

In Fig (3.1) we indicate all the modes required proper quantum description of the beam splitter. We now

write the beam-splitter transformations for the field operators as

Figure 3.1: Quantum-mechanical depiction of a beam splitter.

â3 = Râ2 + T ′â1,

â4 = T â2 +R′â1, (3.2.5)

or collectively as (
â3

â4

)
=

(
T ′ R
R′ T

)
∗
(
â1

â2

)
, (3.2.6)

where |R|′ = |R|, |T |′ = |T |, |R|2 + |T |2 = 1, Let us examine a couple of relevant examples. The phase

shifts of the reflected and transmitted beams depend on the construction of the beam splitter [82]. If the
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beam splitter is constructed as a single dielectric layer, the reflected and transmitted beams will differ

in phase by a factor of exp(± iπ2 ) = ±i, then our device in this case is called as 50:50 beam splitter,

assuming the reflected beam suffers a π
2 phase shift and also |R|2 + |T |2 = 1, the input and output modes

are related according to

â3 =
â1 + iâ2√

2
,

â4 =
iâ1 + â2√

2
, (3.2.7)

the inverse of this transformation is even easier to use

â1 =
â3 − iâ4√

2
,

â2 =
−iâ3 + â4√

2
. (3.2.8)

3.3 Optical beam splitting and entanglement

Using the optical beam splitter we study the entanglement generation of fock states and coherent states.

In this work, we focus on the analysis of the entangled states of single mode of the electromagnetic field.

Optical coherent states on the optical beam splitters get entangled or not. Here, we are considering the

ordinary or standard optical coherent state call as Glauber coherent states taken as one of the input on

optical beam splitter and vacuum state on other port of beam splitter and check the output state whether

it is entangled or not. Then we apply both Glauber coherent states on the both input ports of beam

splitter and examine whether it is entangled or not.

3.3.1 Fock states as inputs of beam splitter

We are taking the fock states as inputs of optical beam splitters. Firstly we are taking the multi-photon

states with vacuum state as inputs of beam splitter and generates the output state. Secondly, we are

taking the multi-photon states on the both input ports of beam splitter and generates the output.

A Single photon and vacuum state:

For a given input state to the beam splitter, what is the output state. Remembering that all photon

number states |n〉, hence any superposition or any statistical mixture of such states, may be constructed

by the action of n powers of the creation operator on the vacuum, we may use Eq (3.2.7) to construct the

output states from the action of the transformed creation operators on the vacuum states of the output

modes, it being obvious that an input vacuum transforms to an output vacuum |0〉1|0〉2 → |0〉3|0〉4

As an example, consider the single photon input state |1〉1|0〉2 which we may write as â†1|0〉1|0〉2, for the
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beam splitter described by

â1 =
â2 + iâ3√

2
,

â1
† =

â2
† + iâ3

†
√

2
,

â†1|0〉1|0〉2 BS
→

1√
2

(i|1〉3|0〉4 + |0〉3|1〉4), (3.3.1)

We analyzed that a single-photon incident on one of the input ports of the 50:50 beam splitter, the

other port containing only the vacuum, will be either transmitted or reflected with equal probability. Of

course, this is precisely as we earlier claimed and explains why no coincident counts are to be expected

with photon counters placed at the outputs of the beam splitter, as confirmed by the experiment of

Grangier et al. [87]. An other point needs to be made about the output state. It is an entangled state, it

cannot be written as a simple product of states of the individual modes 2 and 3. For the sake of generality

it is also written as

|out〉| = T |0〉3|1〉4 +R|1〉3|0〉4. (3.3.2)

Similar considerations will allow us to obtain the output corresponding to the Fock state as input state,

Input fields of same number of photons, coherent state and vacuum state as inputs and input fields of

same coherent states i.e.classical-like state, Glauber coherent states and non-classical, Barut Girardello

coherent states through the optical beam splitter. In order to obtain the output state as the result of a

optical beam splitter on theinput fields, we introduced the effect of a beam splitter on a number state

that is |ψ〉in = |n〉 with the vacuum at the second input port. Then take the input fields of same number

of photons at the input modes of beam splitter.

Multi-photon number state and vacuum state:

We firstly examine the results of beam splitter for number state. If we apply the number state (fock

state) |n〉, on the one input port of beam splitter and vacuum |0〉 on the other input port of beam splitter

[87, 88, 91, 92, 93].
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Figure 3.2: A beam splitter with a state |n〉, number state on the hone input port and a vacuum state
|0〉 on the other port

|ψ〉in = |n〉1|0〉2, (3.3.3)

all photon number states |n〉, hence any superposition or any statistical mixture of such states, may

be constructed by the action of n powers of the creation operator on the vacuum, the action of the

transformed creation operators on the vacuum states of the output modes, it being obvious that an input

vacuum transforms to an output vacuum |0〉1|0〉2 → |0〉3|0〉4. We construct the output state by first

rewriting

|ψ〉in =
(a1
†)
n

√
n!
|0〉1|0〉2,

=
1√
n!

(
a3
† + ia4

†
√

2
)n|0〉3|0〉4.

Apparently, the two or more photons emerge together such that photo-detectors placed in the output

beams should not register simultaneous counts. But unlike the case of a single incident photon, the

physical basis for obtaining no simultaneous counts is not a result of the particle-like nature of photons.

Rather, it is caused by interference (a wave-like effect) between two possible ways of obtaining the

(absent) output state the process where both photons are transmitted and the process where they are

both reflected. Note the indistinguishability of the two processes for the output state. There is a

simple and rather intuitive way of understanding this result. Recall Feynman’s rule [94] for obtaining

the probability for an outcome that can occur by several indistinguishable processes. One simply adds

the probability amplitudes of all the processes and then calculates the square of the modulus. It may

be attempting to interpret the result as owing to the bosonic nature of photons, a kind of clustering

in the sense of Bose Einstein condensation (BEC). Indeed, in the case of fermions, such as in neutron

interferometry, the output of a beam splitter for the corresponding input would find the fermions always

in different beams in accordance with the Pauli exclusion principle. Of course, this behavior and that of
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the photons are linked to the statistical properties of the particles. Using Binomial theorem

(x+ y)n =

∞∑
k=0

(
n

k

)
xky(n−k), (3.3.4)

we can expand (a3
†+ia4

†
√

2
)n Using binomial theorem so we have

|ψ〉out =

n∑
k=0

(
1√
n!

(
n

k

)
(

1√
2
a3
†)k(

i√
2
a4
†)n−k)|0〉3|0〉4,

=

n∑
k=0

(
1√
n!

(
n

k

)
(

1√
2

)k(a3
†)k(

i√
2

)(n−k)(a4
†)n−k)|0〉3|0〉4,

for 50:50 beam splitter, ( 1√
2
) = T and ( i√

2
) = R

|ψ〉out =

n∑
k=0

(
1√
n!

(
n

k

)
T k(a3

†)kR(n−k)(a4
†)n−k)|0〉3|0〉4, (3.3.5)

=

n∑
k=0

T kR(n−k) 1√
n!

(
n

k

)
(a3
†)k(a4

†)(n−k)|0〉3|0〉4, (3.3.6)

multiplying and dividing by
√
k!
√

(n− k)!

|ψ〉out =

n∑
k=0

T kR(n−k) 1√
n!

(
n

k

)√
k!
√

(n− k)!√
k!
√

(n− k)!
(a3
†)k.(a4

†)(n−k)|0〉3|0〉4,

aexpanding the binomial terms as
(
n
k

)
= n!

k!(n−k)! we get

|ψ〉out =

n∑
k=0

T kR(n−k) 1√
n!

n!

k!(n− k)!
.

√
k!
√

(n− k)!√
k!
√

(n− k)!
(a3
†)k(a4

†)(n−k)|0〉3|0〉4,

=

n∑
k=0

T kR(n−k)

√
n!

k!(n− k)!

(a3
†)k√
k!

.
(a4
†)(n−k)√

(n− k)!
|0〉3|0〉4,

=

n∑
k=0

T kR(n−k)

√
n!

k!(n− k)!

(a3
†)k√
k!
|0〉3

(a4
†)(n−k)√

(n− k)!
|0〉4

as we know that (a3
†)k√
k!
|0〉 = |k〉 and (a4

†)(n−k)√
(n−k)!

|0〉 = |n− k〉 hence we get the required output state

|ψ〉out BS
→

n∑
k=0

√(
n

k

)
T kR(n−k)|k〉3|n− k〉4

replace k with p

|ψ〉out BS
→

n∑
p=0

√(
n

p

)
T pR(n−p)|p〉3|n− p〉4,

we get

|ψ〉out BS
→

n∑
p=0

√(
n

p

)
(

1√
2

)p(
i√
2

)(n−p)|p〉3|n− p〉4, (3.3.7)

the measure of entanglement is a convex function with its maximum for a 50:50 beam splitter, i.e.,

R = T = 1√
2
. In particular, when n = 1 the output state is Û |1, 1〉 = 1√

2
|0, 2〉| + exp iφ|2, 0〉 for a 50:50

beam splitter [95, 96], it is entangled state.
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Multi-photon number states on both inputs:

If we have Multi-photon number states on both input ports of 50 : 50 beam splitter then the beam splitter

transformation is

Figure 3.3: A beam splitter with a state |n〉, number state on the one input port and an other number
state |m〉 on the other port

|ψ〉in = |n〉1|m〉2, (3.3.8)

then we construct the output state by first rewriting

|ψ〉in =
(a2
†)
n

√
n!

.
(a2
†)
m

√
m!
|0〉1|0〉2,

|ψ〉out =
1√
n!

(
a3
† + ia4

†
√

2
)n.

1√
m!

(
ia3
† + a4

†
√

2
)m|0〉3|0〉4,

using Binomial theorem (x+ y)n =
∞∑
k=0

(
n
k

)
xky(n−k), we can expand (a3

†+ia4
†

√
2

)n and ( ia3
†+a4

†
√

2
)m

|ψ〉out =

n∑
k=0

(
1√
n!

(
n

k

)
(

1√
2
a3
†)k(

i√
2
a4
†)n−k)

m∑
l=0

(
1√
m!

(
m

l

)
(
i√
2
a3
†)l ∗ (

1√
2
a4
†)m−l)|0〉3|0〉4,

= (

n∑
k=0

(
1√
n!

(
n

k

)
(

1√
2

)k(a3
†)k(

i√
2

)(n−k)(a4
†)n−k))

.(

m∑
l=0

(
1√
m!

(
m

k

)
(
i√
2

)l(a3
†)l(

1√
2

)(m−l)(a4
†)m−l))|0〉3|0〉4,

replace m with n we get

|ψ〉out =

n∑
k=0

n∑
l=0

1

n!

(
n

k

)(
n

l

)
(T )(k+n−l)(R)(n−k)+l

(a3
†)k+l(a4

†)n−k+n−l|0〉3|0〉4, (3.3.9)

put l + k = 2m and l = 2m− k as l : 0→ n then k : 0→ n m : 0→∞

|ψ〉out =

n∑
k=0

n∑
m=0

1

n!

(
n

k

)(
n

2m− k

)
(T )(n−2m+2k) ∗ (R)(n+2m−2k)

(a3
†)2m(a4

†)(2n−2m)|0〉3|0〉4,(3.3.10)
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multiplying and dividing by
√

2m!(2n− 2m)! and re-arranging the above equation, we get

|ψ〉out =

n∑
k=0

n∑
m=0

1

n!

(
n

k

)(
n

2m− k

)
(T )(n−2m+2k)(R)(n+2m−2k)

√
2m!(2n− 2m)!

(a3
†)2m

√
2m!

|0〉3
(a4
†)2n−2m√

(2n− 2m)!
|0〉4,

(a3
†)2m√
2m!
|0〉 = |2m〉 and (a4

†)(2n−2m)√
(2n−2m)!

|0〉 = |2n− 2m〉, so the resultant output state is

|ψ〉out =

n∑
k=0

n∑
m=0

(
n

k

)(
n

2m− k

)
(T )(n−2m+2k)(R)(n+2m−2k)

√
2m!(2n− 2m)!

n!
|2m〉3|2n− 2m〉4, (3.3.11)

hence the resultant output state when two number states are at the two input ports of beam splitter.

Replace k with variable p and m with m′ we get

|n〉|m〉 BS
→

n∑
p=0

n∑
m′=0

(
n

p

)(
n

2m′ − p

)
(T )(n−2m′+2p)(R)(n+2m′−2p)

√
2m′!(2n− 2m′)!

n!
|2m′〉3|2n− 2m′〉4. (3.3.12)

the resultant output state is entangled [51].

3.3.2 Coherent states as inputs of beam splitter

If we take the coherent states as input of beam splitter we will examine the output states. It will get

entangle or not after passing through the beam splitter.

A coherent state and vacuum state:

If we have the coherent state |z〉 on the one input port and vacuum state |0〉 at the other input port of

beam splitter then the effect of beam splitter on these state is as follows

Figure 3.4: A beam splitter with |z〉, coherent state on the one input port and a vacuum state |0〉 on the
other input port
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|ψ〉in = |z〉1|0〉2, (3.3.13)

Glauber coherent state is written as

|z〉 = exp

(
− |z|

2

2

) ∞∑
n=0

|z|n√
n!
|n〉 (3.3.14)

comparing with this equation

|z〉 =

∞∑
n=0

Cn|n〉 (3.3.15)

for Glauber coherent state Cn is

Cn = exp

(
− |z|

2

2

)
|z|n√
n!
,

now

|ψ〉in =

∞∑
n=0

Cn|n〉1|0〉2, (3.3.16)

where it is evident that we have a superposition of the product states |n〉1|0〉2, because the beam splitter

conserves the total number of photons, we deduce the beam-splitter transformation for the input states

|n〉1|0〉2. then we construct the output state by first rewriting

|ψ〉in =

∞∑
n=0

Cn
(a1
†)
n

√
n!
|n〉1|0〉2,

=

∞∑
n=0

Cn
1√
n!

(
a3
† + ia4

†
√

2
)n|0〉3|0〉4,

using Binomial theorem (x+ y)n =
∞∑
k=0

(
n
k

)
xky(n−k), we can expand (a3

†+ia4
†

√
2

)n

|ψ〉out =

∞∑
n=0

Cn

n∑
k=0

(
1√
n!

(
n

k

)
(

1√
2
a3
†)k(

i√
2
a4
†)n−k)|0〉3|0〉4,

=

∞∑
n=0

Cn

n∑
k=0

(
1√
n!

(
n

k

)
(

1√
2

)k(a3
†)k(

i√
2

)(n−k)(a4
†)n−k)|0〉3|0〉4,

( 1√
2
) = T and ( i√

2
) = R are the transmission and reflection coefficients for 50:50 beam splitter.

|ψ〉out =

∞∑
n=0

n∑
k=0

CnT
kR(n−k) 1√

n!

(
n

k

)
(a3
†)k.(a4

†)(n−k)|0〉3|0〉4 (3.3.17)

multiplying and dividing by
√
k!
√

(n− k)!

|ψ〉out =

∞∑
n=0

n∑
k=0

CnT
kR(n−k) 1√

n!

(
n

k

)√
k!
√

(n− k)!√
k!
√

(n− k)!
(a3
†)k ∗ (a4

†)(n−k)|0〉3|0〉4, (3.3.18)

as
(
n
k

)
= n!

k!(n−k)! ,

|ψ〉out =

∞∑
n=0

n∑
k=0

CnT
kR(n−k)

√
n!

k!(n− k)!
∗ (a3

†)k√
k!

(a4
†)(n−k)√

(n− k)!
|0〉3|0〉4,



Chapter 3. Engineering entanglement by optical beam splitters 29

as we know that (a3
†)k√
k!
|0〉 = |k〉 and (a4

†)(n−k)√
(n−k)!

|0〉 = |n− k〉, hence the required output state

|z〉1|0〉2 BS
→

∞∑
n=0

n∑
k=0

Cn

√(
n

k

)
T kR(n−k)|k〉3|n− k〉4, (3.3.19)

if we replace variable k with p then the resultant output state is

|z〉1|0〉2 BS
→

∞∑
n=0

n∑
p=0

Cn

√(
n

p

)
T pR(n−p)|p〉3|n− p〉4, (3.3.20)

hence the resultant output state when coherent state is at the one input port of beam splitter and

vacuum state is at the other input port of beam splitter. These are the general results for coherent state

and vacuum state at the inputs ports of beam splitter. In this chapter taking the different examples

of classical-like and non-classical states as input of optical beam splitter, we show wether the output

state of optical beam splitter is entangled or not. Let us consider two more examples of beam splitting.

First we consider a coherent state, a classical-like state, rather the opposite of the highly nonclassical

state, incident on the beam splitter with again only the vacuum in the other input port.e.g. When

Glauber coherent states and Vacuum States are at the Input Ports of Beam Splitter. Then we consider

non-classical state, Barut-Girardello coherent states incident on the beam splitter with again only the

vacuum in the other input port [47] which we discuss in next chapter. We are considering a coherent state,

Glauber coherent state a classical-like state, rather the opposite of the highly nonclassical single-photon

state, incident on the beam splitter with the vacuum in the other input port [91, 92].

Figure 3.5: A beam splitter with a state |z〉1, Glauber coherent state on the one input port and a vacuum
state |0〉 on the other input port

for Glauber coherent state Cn is

Cn = exp

(
− |z|

2

2

)
|z|n√
n!
,

where it is evident that we have a superposition of the product states |n〉1|0〉2. Because the beam splitter

conserves the total number of photons, we deduce the beam-splitter transformation for the input states
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|z〉1|0〉2. from equation (3.3.20)

|z〉1|0〉2 BS
→

∞∑
n=0

n∑
p=0

Cn

√(
n

p

)
T pR(n−p)|p〉3|n− p〉4, (3.3.21)

putting Cn = exp(− |z|
2

2 ) |z|
n

√
n!

we get the output state when Glauber coherent state and vacuum state is

at the input ports of beam splitter given as below

|z〉1|0〉 BS
→ exp(−|z|

2

2
)

∞∑
n=0

n∑
p=0

√(
n

p

)
|z|n√
n!
T pR(n−p)|p〉3|n− p〉4. (3.3.22)

We obtain the result expected for a classical light wave where the incident intensity is evenly divided

between the two output beams, e.g. half the incident average photon number exp(− |z|
2

2 ), emerges in each

beam. We also naturally obtain the phase shift for the reflected wave π
2 , as expected. What is about

the output state of beam splitter is it entangled or separable state. If the output state is separable (or

factorizable) then there is no entanglement. using output of beam splitter from equation (3.3.22)

|out〉 BS
→ exp(−|z|

2

2
)

∞∑
n=0

n∑
p=0

√(
n

p

)
|z|n√
n!
T pR(n−p)|p〉3|n− p〉4,

= exp(−|z|
2

2
)

∞∑
n=0

n∑
p=0

√
n!

p!(n− p)!
|z|n√
n!
T pR(n−p)|p〉3|n− p〉4,

= exp(−|z|
2

2
)

∞∑
p=0

|z|pT p√
p!
|p〉3

∞∑
(n−p)=0

|z|(n−p)R(n−p)√
(n− p!)

|n− p〉4,

= exp(−|z|
2

2
)

∞∑
p=0

|z|p( 1√
2
)p

√
p!

|p〉3
∞∑

(n−p)=0

|z|(n−p)( 1√
2
)(n−p)√

(n− p!)
|n− p〉4,

= | z√
2
〉3|

iz√
2
〉4,

the output state is written as simple product of the individual states [90]. There is no entanglement

generation because one of the input state on the input port of beam splitter is classical like with vacuum

state on the other port of beam splitter.

Coherent states on both inputs:

If coherent states are at the both input port of beam splitter.

|ψ〉in = |z〉1|z〉2, (3.3.23)
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Figure 3.6: A beam splitter with a state |z〉1, coherent state on the horizontal port and a coherent state
|z〉2 on the vertical port

|z〉1|z〉2 =

∞∑
n=0

Cn|n〉
∞∑
m=0

Cm|m〉, (3.3.24)

by calculation we get

|n〉1|m〉2 BS
→

n∑
p=0

n∑
m′=0

(
n

p

)(
n

2m′ − p

)
(T )(n−2m′)+2p(R)(n+2m′−2p)

√
2m′!(2n− 2m′)!

n!
|2m′〉3|2n− 2m′〉4, (3.3.25)

for both coherent states as input of 50:50 beam splitter

|z〉1|z〉2 BS
→

∞∑
n=0

∞∑
m=0

n∑
p=0

n∑
m′=0

CnCm

(
n

p

)(
n

2m′ − p

)
(T )(n−2m′+2p)(R)(n+2m′−2p)

√
2m′!(2n− 2m′)!

n!
|2m′〉3|2n− 2m′〉4. (3.3.26)

Hence, the resultant state when there are both coherent states in general on the two input ports of beam

splitter. If Glauber coherent states are on the both input port of beam splitter:

|ψ〉in = |z〉1|z〉2, (3.3.27)

Glauber coherent state is

|z〉1 = exp (−|z|
2

2
)

∞∑
n=0

|z|n√
n!
|n〉, (3.3.28)

comparing with the equation given below

|z〉 =

∞∑
n=0

Cn|n〉, (3.3.29)

we have

Cn = exp(−|z|
2

2
)
|z|n√
n!
.

And comparing with the equation given below

|z〉2 = exp (−|z|
2

2
)

∞∑
m=0

|z|m√
m!
|m〉 (3.3.30)
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we get

Cm = exp(−|z|
2

2
)
|z|m√
m!
, (3.3.31)

using the results of equation (3.3.26) putting Cn = exp(− |z|
2

2 ) |z|
n

√
n!

and Cm = exp(− |z|
2

2 ) |z|
m

√
m!

we get

output state

|z〉1|z〉2 BS
→ exp (−|z|2)

∞∑
n=0

∞∑
m=0

n∑
p=0

n∑
m′=0

|z|n√
n!
∗ |z|

m

√
m!(

n

p

)(
n

2m′ − p

)
(T )(n−2m′+2p) ∗ (R)(n+2m′−2p)√

2m′!(2n− 2m′)!

n!
|2m′〉3|2n− 2m′〉4, (3.3.32)

is the required output state. The output state is not entangled becuase both states are classical-like

states on the input ports of beam splitter.

3.4 Criteria for entanglement generation

There is some criteria for entanglement generation. The output state of beam splitter is entangled if

input state exhibiting nonclassicality in it. We illustrate this by beam splitter entangler theorem.

3.4.1 Theorem for the beam-splitter entangler

The Optical beam splitter is an optical device which is also act as entangler. The entangler properties

of a optical beam splitter have been studied in the past [89]. In particular, Kim et al. [45] studied the

entangler properties with many different input states, such as a Fock (number) state, a coherent state, a

squeezed state, and mixed states in Gaussian form [45]. We consider in terms of density matrix, ρin and

ρout are the density operators for the input and output states, respectively. Both of them are two-mode

states including mode a and mode b.

ρout = ÛρinÛ
†, (3.4.1)

Û† = Û−1, (3.4.2)

ρout = ÛρinÛ
−1, (3.4.3)

now action of beam-splitter operator on (two mode) vacuum state for both mode a and b.

Û |00〉 = |00〉, (3.4.4)

equation is due to the simple fact of no input, no output. Without any loss of generality, we can express

ρin in the P -representation in the following form:

ρout =

∫ ∞
−∞

P (za, zb, za
∗, zb

∗)|za, zb〉〈za, zb|d2zad
2zb, (3.4.5)

where |za, zb〉 is a coherent state in two-mode Fock space, i.e.

|za, zb〉 = D̂ab(za, zb)|00〉, (3.4.6)
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|za, zb〉 = D̂ab(za, zb)|00〉, (3.4.7)

D̂ab(za, zb) = eâ
†za−âza∗+b̂†zb−b̂zb∗ , (3.4.8)

so

|za, zb〉 = eâ
†za−âza∗+b̂†zb−b̂zb∗ |00〉, (3.4.9)

|za, zb〉 = eâ
†za−âza∗ |0〉 ∗ eb̂

†zb−b̂zb∗ |0〉, (3.4.10)

consider the identity (the disentangling theorem)

eÂ+B̂ = eÂeB̂e−
1
2 [Â,B̂], (3.4.11)

eÂ+B̂ = eB̂eÂe
1
2 [Â,B̂], (3.4.12)

[Â, B̂] = |za|2, (3.4.13)

so

D(za) = eâ
†za−âza∗

= e−
1
2 |za |2eâ

†zaeâza
∗
, (3.4.14)

as we know that eâza
∗ |0〉 = 0 and

eâ
†za |0〉 =

(zaâ
†)n

n!
|0〉, (3.4.15)

eâ
†za |0〉 =

∞∑
n=0

za
n

√
n!
|za〉, (3.4.16)

similarly

eb̂
†zb |0〉 =

∞∑
n=0

zb
n

√
n!
|zb〉, (3.4.17)

action of displacement operator on nvacuum state

D̂ab(za, zb)|00〉 = eâ
†za−âza∗ |0〉 ∗ eb̂

†zb−b̂zb∗ |0〉

= e−
1
2 |za|2

∞∑
0

za
n

√
n!
|za〉 ∗ e−

1
2 |zb|

2
∞∑
n=0

zb
n

√
n!
|zb〉

= |za〉|zb〉

= |za, zb〉, (3.4.18)

the given state ρ̂ of a quantum system is defined with Glauber-Sudarshan, P-representation using nor-

malization condition 1
π

∫
d2z|z〉〈z| = 1 as

ρout =
1

π2

∫
d2z

∫
d2z′|z〉〈z|ρ|z′〉〈z′, (3.4.19)

ρout =

∫
d2zP (z)|z〉〈z|, (3.4.20)

such that
∫
d2zP (z) = 1, The useful concept related to the Glauber-Sudarshan P-representation is the

notion of classicality and nonclassicality. Since P (z) ≥ 0 for all classical states and P (z) � 0 or can be
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highly singular than delta function for nonclassical states [90]. If ρin is a classical state, the distribution

function P (za, zb, za
∗, zb

∗) must be non-negative definite in the whole complex plane. In such a case, the

ouput state is

ρout =

∫ ∞
−∞

P (za, zb, za
∗, zb

∗)× Û |za, zb〉〈za, zb|Û−1d2zad
2zb, (3.4.21)

which is equivalent to

ρout =

∫ ∞
−∞

P (za, zb, za
∗, zb

∗)× ÛD̂ab(za, zb)Û
−1Û |00〉〈00|Û−1ÛD̂ab(za, zb)Û

†, (3.4.22)

using relation Û |00〉〈00|Û−1 = |00〉〈00| we can see that

ÛD̂ab(za, zb)Û
−1 = D̂ab(za

′, zb
′), (3.4.23)

and

(za
′, zb
′) = MU (za, zb), (3.4.24)

in short, the following equation can easily be obtained from

Û |za, zb〉〈za, zb|Û−1 = |za′, zb′〉〈za′, zb′|, (3.4.25)

since det MU = 1, we have the following formula for the output state

ρout =

∫ ∞
−∞

P (za, zb, za
∗, zb

∗)|za′, zb′〉〈za′, zb′|d2za
′d2zb

′, (3.4.26)

this is equivalent to

ρout =

∫ ∞
−∞

P ′(za, zb, za
∗, zb

∗)|za, zb〉〈za, zb|d2zad
2zb, (3.4.27)

and

P ′(za, zb, za
∗, zb

∗) = P (za
′′, zb

′′, za
′′∗, zb

′′∗), (3.4.28)

(za
′′, zb

′′) = M−1(za
′′, zb

′′) (3.4.29)

since P (za, zb, za
∗, zb

∗) ≥ 0, the function P ′(za, zb, za
∗, zb

∗) must also be non-negative. By the definition

of separability, the state at the output is must be separable. If such a representation can not found, i.e,

P (za, zb, za
∗, zb

∗) � 0 the state is entangled. It is realized by an optical beam splitter, is identified to

convert nonclassicality of a single-mode radiation field into bipartite entanglement. We show that the

amount of nonclassicality of a single-mode radiation field is strictly transformed into the same amount

of bipartite entanglement [45, 83, 84, 85, 86].



Chapter 4

Entanglement of Barut-Girardello
coherent states

4.1 Introduction

Entanglement is very dominating phenomenon in quantum optics and of quantum information such as

quantum computation and quantum teleportation [97], super-dense coding [98], cloning [99], quantum

cryptography [100, 101, 102] and quantum metrology [103]. Entanglement plays a crucial role in secure

communication. In quantum optics, fields are entangled but in quantum computation, qubits are entan-

gled. To test whether a given quantum state is entangled it is known as quantification of entanglement,

for the quantification of entanglement there are several measures of entanglement [113, 114, 115, 116, 117,

118, 119], such as, linear entropy [104, 105], concurrence [106, 107], von-Neuman entropy [108, 109, 110]

and negativity [111, 112]. We choose the linear entropy as best measure of entanglement [120, 121] in

this dissertation.

This chapter is organized as: section (4.2) is based on nonclassical properties of Barut-Girardello

coherent states. The photon number distribution of these states are drawn on photon number probability

distribution for a Glauber coherent state on the same average photon number which depicts the sub-

Poissonian photon statistics for BG coherent states. Using Sub-Poissonian photon statistics as criterion

to characterize the nonclassicality of BG coherent states. To gauge the nature of these states Mandel

Q parameter is calculated which depicts the sub-Poissonian nature for these states which exhibited the

nonclassiclity in these states. Also the second order intensity correlation function is calculated which

represents the anti-bunching effects of these states. Section (4.3) presents the entanglement generation

of Barut-Girardello coherent states by optical beam splitter. Section (4.4) presents the quantification of

entanglement using linear entropy as a best measure of entanglement .

35
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4.2 Nonclassical Properties of the Barut-Girardello coherent
states

Nonclassical light has attracted great attention in recent years in various areas of quantum optics and

quantum information. There are many criteria characterizing a nonclassical state put forth. In this

section, we discuss some of the criteria of nonclassicality which are usually used, and will be helpful

for investigating the nonclassicality exhibition of our introduced states leads us towards other aspects of

research. To achieve this aim, we refer to sub-Poissonian statistics . To mention the common feature of

this criteria we should indicate the quantum statistics of introduce state is sub-Poissonian. Using the

quantum statistics of these states we analyzed the Mandel Q parameter which depicts the sub-Poissonian

statistics which exhibits the signature of nonclassicality. We also calculated the intensity correlation

function to depict the nonclassical nature of these states.

4.2.1 Statistical properties

To check the nonclassicality sign in Barut-Girardello coherent states we used the quantum statistical

properties. The expectation values of number operator N̂ and N̂2 for these states are

〈z, k|N̂ |z, k〉 =
|z|2 0F1(2k + 1, |z|2)

2k 0F1(2k, |z|2)
,

〈N〉 =
|z|2 0F1(2k + 1, |z|2)

2k 0F1(2k, |z|2)
, (4.2.1)

and

〈z, k|N̂2|z, k〉 =
|z|4 0F1(2k + 2, |z|2)

2k(2k + 1) 0F1(2k, |z|2)
+
|z|2 0F1(2k + 1, |z|2)

2k 0F1(2k, |z|2)
,

〈N2〉 =
|z|4 0F1(2k + 2, |z|2)

2k(2k + 1) 0F1(2k, |z|2)
+
|z|2 0F1(2k + 1, |z|2)

2k 0F1(2k, |z|2)
, (4.2.2)

using these expectation values we calculate the variance of number operator given as

(∆N̂)2 = 〈N2〉 − 〈N〉2 =
|z|4 0F1(2k + 2, |z|2)

2k(2k + 1) 0F1(2k, |z|2)
+
|z|2 0F1(2k + 1, |z|2)

2k 0F1(2k, |z|2)

−|z|
2

0F1(2k + 1, |z|2)

2k 0F1(2k, |z|2)
, (4.2.3)
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Figure 4.1: The mean 〈N̂〉 (solid curve) and the variance (∆N̂)2 (dashed curve) as a function of the
coherent-state parameter |z| and k.

In the present work, knowing the mean and the variance are necessary for the probability distribution

of the coherent state. For example, in the case of standard coherent state of a harmonic oscillator, the

mean 〈N〉 and the variance (∆N̂)2 are equal which is a characteristic of the Poissonian distribution.

However, in the present case of Barut-Girardello coherent states (BGCS) the variance (∆N̂)2 is always

less than the mean 〈N〉, as shown in Fig. (4.1) This indicates that the Probability distribution is sub-

Poissonian in the present case.

Figure 4.2: Photon number probability distribution of Barut Girardello coherent states (BGCS)(dashed
line) and Glauber coherent states (red line) for |z|. k = 3, (a) |z| = 10 ,(b) |z| = 27 ,(c) |z| = 50 , (d)
|z| = 100

It is obvious from Fig. (4.2) that, for a particular value of n, the photon number probability distri-

bution for Barut-Girardello coherent states (BGCS) is narrower than the Poissonian distribution is sub-

Poissonian. We analyzed that as we increase coherent states amplitude |z|, the width of sub-Poissonian
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distribution is increased.

Figure 4.3: Photon number probability distribution of Barut Girardello coherent states (BGCS)(dashed
line) and Glauber coherent states (red line) for |z| = 9, (a) k = 0.5 ,(b) k = 1 ,(c) k = 5 , (d) k = 10

The photon number probability distribution of Barut-Girardello coherent states (BGCS) is decreases

as we increases the parameter (Bargmann index) k, taking the value of z as constant. We increasing

Bargmann index k, a limit came where sub-Possonian distribution approaches to Poissonian as shown in

Fig. (4.3) of (d).

4.2.2 Mandel Q parameter:

Using the quantum statistics of Barut-Girardello coherent states (BGCS), we calculate the Mandel Q

parameter [49], which can be generalized as:

Q =
〈N2〉 − 〈N〉2 − 〈N〉

〈N〉
, (4.2.4)

Q =
〈N2〉 − 〈N〉2

〈N〉
− 1. (4.2.5)

which is also written as

Q =
σ2

〈N〉
− 1. (4.2.6)

The quantum statistics of a state is Poissonian if Q = 0, super-Poissonian if Q > 0, and sub-Poissonian

if Q < 0 [47]. The coherent states for which Q parameter is zero, Q = 0 follows Poissonian statistics

(standard coherent states of harmonic oscillator ), e.g. Glauber coherent states. We plot Mandel Q

parameter as function of |z| and k shown in Fig. (4.4) Mandel Q parameter gets the lowest possible
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negative value, in this case Q < 0, Barut-Girardello coherent states have sub-Poisson photon statistics

and are non-classical states.

Figure 4.4: Mandel Q parameter for different |z| = 10 (blue), |z| = 27 (green), |z| = 50 (red), |z| = 100
(yellow)

Since we analyzed the results of photon number probability distribution for k = 3 shows the sub-

Poissonian photon statistics for these states for different values of |z|. In Q parameter we analyzed that

as we increases |z|, Q parameter get more negative values which reflects the more sub-Poissonian photon

statistics for these states. If we increase parameter k, and fixed the parameter |z| = 9 for different values

of k the Q parameter approaches to zero. From this we analyzed that photon statistics of (BGCS) are

no more sub-Poissonian for large limit of k.
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Figure 4.5: Mandel Q parameter for different k=0.5 (blue), k=1 (green), k=5 (yellow), k=10 (purple),
k=50 (red)

4.2.3 Second order intensity correlation function:

The expectation value for the number operator N̂ is defined as N |m, k〉 = m|m, k〉

g
(2)
(z,k)(0) =

〈N2〉(z,k) − 〈N〉(z,k)

〈N〉2(z,k)

=
I2k−1(2|z|)I2k+1(2|z|)

[I2k(2|z|)]2
. (4.2.7)

it is also written as

g
(2)
(z,k)(0) =

Q

< N >(z,k)
+ 1 (4.2.8)
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Figure 4.6: Second order correlation function g
(2)
(z,k) vs k, for |z| = 1, (solid line), |z| = 10 (dashed line),

|z| = 50 (dotted line)

If a state has sub-Poissonian or super-Poisonian distributions then the bunching and anti-bunching

effects [8] are involved. As g
(2)
(z,k)(0) > 1, corresponds to bunching effects and g

(2)
(z,k)(0) < 1, corresponds

to the anti-bunching effects. In our case g
(2)
(z,k)(0) < 1, which depicts the anti-bunching effects of these

states.

4.3 Entanglement of Barut-Girardello coherent states

If Barut-Girardello coherent state is on the one input port and a vacuum state is on the other input port

of beam splitter.

|ψ〉in = |z〉1|0〉2 (4.3.1)
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Figure 4.7: A state |z〉1, Barut-Girardello Coherent State on the horizontal port and a vacuum state |0〉2
on the vertical port of 50 : 50 beam splitter

Barut-Girardello coherent state is

|z, k〉BG =
1√

0F1(2k; |z|2)(2k; |z|2)

∞∑
n=0

√
Γ(2k)

n!Γ(n+ 2k)
zn|n〉, (4.3.2)

comparing with this equation

|z〉 =

∞∑
n=0

Cn|n〉, (4.3.3)

for Barut-Girardello coherent states Cn is

Cn =
1√

0F1(2k; |z|2)

√
Γ(2k)

n!Γ(n+ 2k)
zn,

because the beam splitter conserves the total number of photons ,we deduce the beam-splitter transfor-

mation for the input states |z〉1|0〉2. Using the result from equation (3.3.20)

|z〉BG1|0〉2 BS
→

∞∑
n=0

n∑
p=0

Cn

√(
n

p

)
T pR(n−p)|p〉3|n− p〉4 (4.3.4)

putting Cn = 1√
0F1(2k;|z|2)

√
Γ(2k)

n!Γ(n+2k)z
n the output is

|z〉BG1|0〉2 BS
→

1√
0F1(2k; |z|2)

∞∑
n=0

n∑
p=0

√
Γ(2k)

n!Γ(n+ 2k)
zn

√(
n

p

)
T pR(n−p)|p〉3|n− p〉4 (4.3.5)

the output state become entangled, it cannot be written as a simple product of states of the individual

modes 3 and 4. We write the density operatorρ for both modes.

4.4 Quantification of entanglement

There exists several measurements of entanglement such as the concurrence [105, 106], the von-Neumann

entropy [107, 108, 109] or the negativity [110, 111]. The linear entropy and the von-Neumann entropy

are frequently used to quantify entanglement in the quantum systems. These relations provide typical

information on the entanglement. Linear entropy is easier to compute, but gives a good indication on the

degree of entanglement. In this dissertation, we use the linear entropy [119, 120] to quantify entanglement.
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Linear entropy

In order to measure the degree of entanglement, we use the linear entropy [119, 120]. Starting with the

density operator ρ34 of a given output state as introduced before, the linear entropy SL is defined as

SL = 1− Tr(ρ3
2), (4.4.1)

where ρ3, is the reduced density operator of the system 3 obtained by performing a partial trace over

system 4 of the density operator ρ34. For an output state |Out〉3,4 created with a Barut-Girardello

coherent state as an input through a beam splitter,

|Out〉3,4 =
1√

0F1(2k; |z|2)

∞∑
n=0

n∑
p=0

√
Γ(2k)

n!Γ(n+ 2k)
zn

√(
n

p

)
T pR(n−p)|p〉3|n− p〉4, (4.4.2)

the density matrix of the output state is

ρ34 = |Out〉3,4〈Out|3,4, (4.4.3)

as 1√
0F1(2k;|z|2)

= (ℵ(| z |2)

ρ34 = (ℵ(| z |2)
2
∞∑
n=0

n∑
p=0

∞∑
n′=0

n′∑
p′=0

√
Γ(2k)

n!Γ(n+ 2k)

√
Γ(2k)

n′!Γ(n′+ 2k)

znz∗n′

√(
n

p

)√(
n′
p′

)
T pR(n−p)T ∗p′R∗(n′−p′)

|p〉3|n− p〉4〈p′|3〈n′ − p′|4, (4.4.4)

we make no measurement of say mode 4, mode 3 is then described by the reduced density matrix. This

reduced density matrix can be calculated taking the trace of measured mode with un-measured mode.

We are taking the inner product with
∞∑

n′′=0

n′′∑
p′′=0

〈n′′ − p′′|4|n′′ − p′′〉4 from left and right we get reduced

density matrixρ3

Tr4{ρ34} = (ℵ(| z |2)
2
∞∑
n=0

n∑
p=0

∞∑
n′=0

n′∑
p′=0

√
Γ(2k)

n!Γ(n+ 2k)

√
Γ(2k)

n′!Γ(n′+ 2k)

znz∗n′

√(
n

p

)√(
n′
p′

)
T pR(n−p)T ∗p′R∗(n′−p′)

∞∑
ń′′=0

n′′∑
p′′=0

〈n′′ − p′′|4(|p〉3|n− p〉4〈p′|3〈n′ − p′|4)|n′′ − p′′〉4, (4.4.5)

ρ3 is the reduced density matrix of the system 3 obtained by performing a partial trace over system 4 of

the density operator ρ34

ρ3 = (ℵ(| z |2)
2
∞∑
n=0

n∑
p=0

∞∑
n′=0

n′∑
p′=0

√
Γ(2k)

n!Γ(n+ 2k)

√
Γ(2k)

n′!Γ(n′+ 2k)

znz∗n′

√(
n

p

)√(
n′
p′

)
T pR(n−p)T ∗p′R∗(n′−p′)

∞∑
n′′=0

n′′∑
p′′=0

δ(n′′−p′′),(n−p)|p〉〈p′|δ(n′′−p′′),(n′−p′)), (4.4.6)
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if n′′ − p′′ = n − p and n′′ − p′′ = n′ − p′, n′′ = (n − p) + p′ and n′′ = (n′ − p′) + p′′,

n− p+ p′′ = n′ − p′ + p′′, n− p = n′ − p′, n = n′ and p = p′, using kronecker delta we get

ρ3 = (ℵ(| z |2)
2
∞∑
n=0

n∑
p=0

n∑
p′=0

√
n!Γ(2k)

n!Γ(n+ 2k)

√
n!Γ(2k)

n!Γ(n+ 2k)

|z|2n T
p

√
p!

R(n−p)√
(n− p)!

T ∗p′√
p′!

R∗(n−p′)√
(n− p′)!

|p〉〈p′|, (4.4.7)

replacing n − p = m, n − p = m′, n = m + p, n′ = m + p , as n : 0 → ∞, m : 0 → ∞,

m′ : 0→∞, p : 0→∞, p′ : 0→∞,

ρ3 = (ℵ(| z |2)
2
∞∑
m=0

∞∑
p=0

∞∑
p′=0

√
(m+ p)!Γ(2k)

(m+ p)!Γ(m+ p+ 2k)
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|z|2(m+p) T
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√
p!
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p′!
|R|2m

m!
|p〉〈p′|, (4.4.8)

taking square of ρ3 we get

ρ3
2 = (ℵ(| z |2)

4
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m=0
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p=0

∞∑
p′=0

∞∑
m′=0√

(m+ p)!Γ(2k)
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(m′+ p)!Γ(2k)

(m′+ p′)!Γ(m′+ p′+ 2k)

√
(m′+ p′′)!Γ(2k)

(m′+ p′′)!Γ(m′+ p′′+ 2k)

|z|2(m+p+m′+p′) T
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(|p, p′〉〈p′, p′′|), (4.4.9)

taking the trace of ρ3
2

Tr(ρ3
2) = (ℵ(| z |2)

4
∞∑
m=0

∞∑
p=0

∞∑
p′=0

∞∑
m′=0√

(m+ p)!Γ(2k)

(m+ p)!Γ(m+ p+ 2k)

√
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〈p, p′|p′, p′′〉, (4.4.10)
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If p = p′ and p = p′′, using kronecker delta,
∞∑
p′=0

∞∑
p′′=0
〈p, p′|p, p′′〉 = δ(p,p′)δ(p′,p′′) = 1, we get

Tr(ρ3
2) = (ℵ(| z |2)

4
∞∑
m=0

∞∑
p=0

∞∑
p′=0

∞∑
m′=0√
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√
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we calculate the linear entropy of output state at mode 3 is

SL = 1− Tr(ρ3
2), (4.4.12)

SL = 1− (ℵ(| z |2)
4
∞∑
m=0

∞∑
p=0

∞∑
p′=0

∞∑
m′=0√

(m+ p)!Γ(2k)

(m+ p)!Γ(m+ p+ 2k)

√
(m+ p′)!Γ(2k)

(m+ p′)!Γ(m+ p′+ 2k)√
(m′+ p)!Γ(2k)

(m′+ p)!Γ(m′+ p+ 2k)

√
(m′+ p′)!Γ(2k)

(m′+ p′)!Γ(m′+ p′+ 2k)

|z|2(m+p+m′+p′) |T |2(p+p′)

p!p′!
|R|2(m+m′)

m!m′!
. (4.4.13)

similarly we calculate the output on mode 4 and linear entropy for mode 4 which is same as calculated

for mode 3. In general, the degree of entanglement of the output state is highly dependent on the values

of the amplitude |z| and parameter k.

Figure 4.8: Linear entropy S(k) vs k for the Barut-Girardello coherent state as a function of k for |z| = 3,
|z| = 6, |z| = 10
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Figure 4.9: Linear entropy S(|z|) vs |z| for the Barut-Girardello coherent state as a function of k for
k = 0.5, k = 5, k = 7.5

We analyzed that linear entropy increases at the start for small values of k (Bargmann index) and

decreases for large values of k and get zero for the larger values of k. Since we also investigate that photon

number probability distribution is not more sub-Poissonian for large values of k as shown in Fig (4.3) part

(d), therefore the entanglement of Barut-Girardello coherent states approaches to zero for larger values

of k. Furthermore as we increases the coherent state amplitude |z|, the degree of entanglement increases.

It is investigated that the amount of nonclassicality of Barut-Girardello coherent states is converted into

same amount of entanglement by realizing the optical beam splitter transformation.



Chapter 5

Summary and conclusion

Barut-Girardello coherent states are constructed using the (HP) realization of SU(1,1) Lie algebra and

their properties are discussed. The non-classical properties of the Barut-Girardello coherent states are

investigated in this dissertation. Using the quantum statistical characteristics of the Barut-Girardello

coherent states we analyzed the sign of nonclassicality in these state. The mean and variance of number

operator are calculated for these states which showed a significant difference of these states from the

standard coherent states of harmonic oscillator (Glauber coherent states). For standard coherent states

of harmonic oscillator the mean and variance are equal which exhibits the Poissonian distribution but

for the Barut-Girardello coherent states variance is less than the mean which exhibits the sub-Poissonian

distribution, depicted the nonclassicality in these states. We calculated the photon number probability

distribution of these states and presented these results graphically in contrast to standard coherent states

(Glauber coherent states) of harmonic oscillator which distinguished these states from the standard

coherent states of harmonic oscillator. We investigated that the photon number probability distribution

is Poissonian distribution for standard coherent states. It is found that the graphical representation

of photon number probability distribution for both states, standard coherent states (Glauber coherent

states) and the Barut-Girardello coherent states indicated the significant difference in both distributions.

The distribution is narrower than the Poissonian distribution is the sub-Poissonian for Barut-Girardello

coherent states which is the cue of nonclassicality. Mandel Q parameter is calculated, it got the negative

values depicted the sub-Poissonian nature of these states which exhibited the sign of nonclassicality

in these states. Also the second order intensity correlation function is calculated which depicted the

anti-bunching effects (correlated photons) of these states.

Nonclassicality is the speciality of Barut-Girardello coherent states which leads us to explore an

important application of these states such as entanglement generation through optical beam splitters

in quantum information. We used the optical beam splitter to generate entanglement of these states.

Taking different examples as input states, i.e. fock states, Glauber coherent states and Barut-Girardello

coherent states on optical beam splitter we investigated wether these states are entangled or not. The

main idea of this dissertation is that taking the beam splitter as entangler we illustrated output state of

47
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beam splitter is entangled if and only if input state exhibited nonclassicality in it. We analyzed that one

of the input state is classical-like state with vacuum, or both of input states are classical-like there is no

entanglement in the output state. Output state of the optical beam splitter is written as simple product

of the individual states.

We analyzed that if one of the input state on beam splitter is exhibited noclassicality after passing

through beam splitter it is entangled. It is clearly showed that fock states are entangled after passing

through optical beam splitters so fock states are highly non-classical states and single state is maximally

entangled. The Barut-Girardello coherent states are non-classical state, entangled after passing through

optical beam splitter. It is realized by an optical beam splitter, is identified to convert nonclassicality

of a single-mode radiation field i.e., Barut-Girardello coherent states into bipartite entanglement. We

analyzed that the amount of nonclassicality of a single-mode radiation field is strictly transformed into the

same amount of bipartite entanglement. Entanglement generation of the Barut-Girardello coherent states

are measured using the linear entropy as measure of entanglement. We investigated that entanglement

of Barut-Girardello coherent states depended on two parameters, Bargmann index k and coherent states

amplitude z. We analyzed that entanglement goes to disappear for larger values of k. From the graphical

representation of probability distribution we also showed that for larger values of k, a limit came where

only the vacuum state is populated thats why entanglement tends to zero for larger values of k. Also the

degree of entanglement increases as we increases the Barut-Girardello coherent state amplitude z.

There are many more aspects of further research of the Barut-Girardello coherent states. If we

contracts the Lie algebra of these states on Heisenberg-Weyl algebra in the large limit of Bargmann

index k, the Barut-Girardello coherent states goes to classical-like standard coherent states (Glauber

coherent states) of harmonic oscillator. It is an other aspect of further research. If Lie algebras of the

Barut-Girardello coherent states are converted into deformed Lie algebras then these states are called the

deformed Barut-Girardello coherent states. The study on entanglement generation of deformed Barut-

Girardello coherent states is also an other aspect of further research.



Bibliography

[1] Ekert A. and Jozsa R., Quantum computation and Shors factoring algorithm, Rev. Mod. Phys. 68

733, (1996).

[2] Bennett C. H., Brassard G., Crepeau C., Jozsa R., Peres A. and Wootters W. K., Teleporting an

unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels, Phys. Rev. Lett.

70 (1895).

[3] Ekert A. K., Quantum cryptography based on Bell’s theorem, Phys. Rev. Lett. 67 661, (1991).

[4] Bennett C. H., Brassard G. and Mermin N. D., Quantum cryptography without Bells theorem, Phys.

Rev. Lett. 68, 557 (1992).

[5] Bennett C. H., Bessette F., Brassard G., Salvail L. and Smolin J., Introduction to modern cryptog-

raphy, J. Crypto. 53, 113 (1992).

[6] Klauder J. R. and Skagerstam B. S., Coherent states, applications in physics and mathematical

physics, (Singapore, World Scientific, 1985).

[7] Gazeau J. P., Coherent states in quantum physics, (New York, Wiley, 2009).

[8] Walls D. F. and Milburn G. J., Quantum optics, 2nd ed., (Berlin, Springer 2008).

[9] Glauber R. J., Quantum theory of optical coherences, (New York, Wiley 2007).

[10] Sanders B. C., Review of entangled coherent states, J. Phys. A: Math. Theor., 45, 244002 (2012).

[11] Schrödinger E., The study transition from micro to macro mechanics1, Naturwissenschaften 14, 664

(1926).

[12] Barut A. O. and Girardello L., New coherent states associated with non-compact groups, Commun.

Math. Phys. 21, 41 (1971).

[13] Glauber R. J., Coherent and incoherent states of the radiation field, Phys. Rev. 131, 2766 (1963).

[14] Titulaer U. M. and Glauber R. J., Density operators for coherent fields, Phys. Rev. 145, 1041 (1965)

1Der stetitge ubergarg von der mikro zur makromechanics

49



Bibliography 50

[15] Weyl H., The theory of groups and quantum mechanics (New York, Dover 1950).

[16] Sukrai J. J, Moderen quantum mechanics, (Addison-Wesley 1982).

[17] Perelomov A. M., Coherent states for arbirary Lie algebra Commun. Math. Phys.26 222 (1972).

[18] Perelomov A., Generalized coherent states and their applications, (New York, Springer 1986).

[19] Wen-Xing Y, Li-Xia J, Jia-Hua L, Generation of multicomponent motional coherent and squeezed

coherent states of N trapped ions by a dispersive interaction, Chin. Phys. Lett. 21, 1745 (2004).

[20] Gerry C. C.., Application of SU(1,1) coherent states to the interaction of squeezed light in an anhar-

monic oscillator, Phys. Rev A 35, 5 (1987).

[21] Gerry C. C., Dynamics of SU(1,1) coherent states, Phys. Rev. A 31, 4 (1985).

[22] Zhang W. M., Gilmore R. Coherent states: Theory and some Applications, Grav. Class. quantum

12, 803 (1995).

[23] Natig M. A., Maurice R. K. and Kurt B. W., SU(2) and SU(1,1) approaches to phase operators

and temporally stable phase states: applications to mutually unbiased bases and discrete fourier

transforms, Symmetry 2, 1461 (2010).

[24] Shi-Hai D., Factorization method in quantum mechanics, (Mexico springer, 2007).

[25] Batchler M.T., Gier J.de and Nienhuis B., The critical fugacity for surface adsorption of self-avoiding

walks on the honeycomb lattice J.Phys. A: Math. Gen. 34, 1 (2001).

[26] Chakrabarti R., Vasan S.S., On completeness of BarutGirardello coherent states of suq(1, 1) algebra,

J. Phys. A: Math. Gen. 37, 10561 (2004).

[27] Shanta P., Chaturvedi S., Srinivasan V., Jagannathan R., Unified approach to the analogues of single-

photon and multiphoton coherent states for generalized bosonic oscillators J. Phys. A: Math. Gen.

27, 6433 (1994).

[28] Wang X.G., Sanders, B.C., Pan, S.H., Entangled SU(2) and SU(1,1) coherent states, J. Phys. A:

Math. Gen. 33, 7451 (2000).

[29] Xue-li L., Lei S, Xi-wen Z., Preparation of two-mode nonclassical states in an ion trap by a quantized

laser beam, Chin. Phys. B 7, 488 (1998).

[30] Sanders B. C. and Rice D. A. , Nonclassical fields and the nonlinear interferometer, Phys. Rev. A

61, 013805 (2000).

[31] Chai C. L., Two-mode nonclassical state via superpositions of two-mode coherent states, Phys. Rev.

A 46, 7187 (1992).



Bibliography 51

[32] Zhang B. L. and Gao D.Y. , J. At., Proximal splitting methods in signal processing, Mol. Sci. 2, 155

(2011)

[33] Sanders B. C., Entangled coherent states, Phys. Rev. A 45, 6811 (1992) Phys. Rev. A 45, 6811

(1992).

[34] Sanders B. C., Entangled coherent states, Phys. Rev. A 45, 6811 (1992) Phys. Rev. A 46, 2966

(1992).

[35] Rice D. A. and Sanders B.C., Complementarity and entangled coherent states Phys. Rev. B 10, 3

(1997).

[36] Mann A., Sanders B. C., and Munro W. J., Bells inequality for an entanglement of nonorthogonal

states, Phys. Rev. A 51, 989 (1995).

[37] Milman P. , Auffeves A., Yamaguchi F., Brune M., Raimond J. M., and Haroche S., A proposal to

test Bell’s inequalities with mesoscopic non-local states in cavity QED, Phys. J: D 32, 233 (2005).

[38] Haroche S., M. Brune, and Raimond J. M., Protecting entangle states via environment, J. Mod. Opt.

54, 2101 (2007).

[39] Gerry C. C. , Mimih J., and Benmoussa A., Maximally entangled coherent states and strong violations

of Bell-type inequalities, Phys. Rev. A 80, 022111 (2009).

[40] Gilchrist A., Deuar P., and Reid M. D., Contradiction of quantum mechanics with local hidden

variables for quadrature phase measurements on pair-coherent states and squeezed macroscopic su-

perpositions of coherent states, Phys. Rev. A 60, 4259 (1999).

[41] Lee C.W., Paternostro M., and Jeong H., Faithful test of nonlocal realism with entangled coherent

states, Phys. Rev. A 83, 022102 (2011).

[42] Li S.B. and Xu J.B., Quantum probabilistic teleportation via entangled coherent states, Phys. Lett.

A 309, 321 (2003).

[43] Wang X., Sanders B. C. , and Pan S.H., Entangled coherent states for systems with SU(2) and

SU(1,1) symmetries, J. Phys. A: Math. Gen. 33, 7451 (2000).

[44] Gerry C. C., Knight P. Lehman College, City University of New York , chapter 3, Introductory

quantum optics (Imperial College London, Lehman College, City University of New Yorkand UK

National Physical Laboratory).

[45] Kim M.S., Son W., Buzek V., and Knight P.L.,Entanglement by a beam splitter: Nonclassicality as

a prerequisite for entanglement, Phys. Rev. A 65, 032323 (2002).



Bibliography 52

[46] Xiang-bin W., Theorem for the beam-splitter entangler, Phys. Rev. A 66, 024303 (2002).

[47] Gerry C. C. and Benmoussa A., Beam splitting and entanglement: Generalized coherent states, group

contraction, and the classical limit, Phys. Rev. A 71, 062319 (2005).

[48] Zhang J. S. and Xu J.B., Entanglement and nonlocality of photon-added entangled coherent states

and quantum probabilistic teleportation, Physica Scripta 79, 025008 (2009).

[49] Mandel L., Quantum statistics of linear and nonlinear phenomenon, Opt. Lett. 4, 205; C. K. Hong,

Z. Y. Ou, and L. Mandel, Measurement of subpicosecond time intervals between two photons by

interference, Phys. Rev. Lett. 59, 2044 (1979,1987).

[50] E. C. G. Sudarshan, Equivalence of semiclassical and quantum mechanical descriptions of statistical

light beams, Phys. Rev. Lett., 10, 277 (1963).

[51] Kim M. S. , Son W., Buzek V. and Knight P. L., Theorem for the beam-splitter entangler, Phys.

Rev. A 65, 032323 (2002).

[52] Asher P., Quantum theory, concepts and methods,(Kluwer New York, 1993).

[53] Nielsen, Michael A., Chuang, Isaac L., Quantum computation and quantum information, (Cambridge

University Press, 2000).

[54] Bennett C. H. , Bernstein H. J., Popescu S., and Schumacher B., On the measure of entanglement

for pure states, Phys. Rev. A 53, 2046 (1996)

[55] Tan S. M., Walls D. F. and Collett M. J., Nonlocality of a single photon, Phys. Rev. Lett. 66 252

(1991).

[56] Sanders B. C., Entangled coherent states, Phys. Rev. A 45 6811 (1992).

[57] Sanders B. C., Lee K. S. and Kim M. S., Optical homodyne measurements and entangled coherent

states, Phys. Rev. A 52 735 (1995).

[58] Paris M. G. A., Entanglement and visibility at the output of a Mach-Zehnder interferometer, Phys.

Rev. A 59 1615 (1999).

[59] Toth G., Simon C. and Cirac J. I., Entanglement detection based on interference and particle count-

ing, Phys. Rev. A 68 062310 (2003).

[60] Marian P., Marian T. A. and Scutaru H., Inseparability of mixed two-mode Gaussian states generated

with a SU(1,1) interferometer, J. Phys. A: Math. Gen. 34 6969 (2001).

[61] Rauschenbeutel A., Nogues G., Osnaghi S., Bertet P., Brune M., Raimond J. M. and Haroche S.,

Step by step engineered multiparticle entanglement, Science 288 2024 (2000).



Bibliography 53

[62] Zheng S. B. and Guo G. C., Efficient scheme for two-atom Entanglement and Quantum Information

Processing in Cavity QED, Phys. Rev. Lett. 85 2392 (2000).

[63] Gershenfeld N. and Chuang I. L, Bulk spin-resonance quantum computation, Science 275 350 (1995).

[64] Braunstein S. L, Caves C. M, Jozsa R., Linden N., Popescu S. and Schack R., Separability of very

noisy mixed states and implications for NMR quantum computing, Phys. Rev. Lett. 83 1054 (1999).

[65] Schleich W. P., Quantum Optics in Phase Space, (Berlin, Wiley 2001).

[66] Bose S. and Vedral V., Mixedness and teleportation, Phys. Rev. A 61 040101 (2000).

[67] Wei T-C, Nemoto K, Goldbart P. M., Kwiat P. G., Munro W. J. and Verstraete Frank, Maximal

entanglement versus entropy for mixed quantum states, Phys. Rev. A 67 022110 (2003).

[68] Jozsa R. and Schumacher B., Geometry of quantum states, J. Mod. Opt. 41 2343 (1994).

[69] Hausladen P., Jozsa R., Schumacher B., Westmoreland M., and Wootters W., Classical information

capacity of a quantum chanes, Phys. Rev. A 54 1869 (1996).

[70] Barnum H., Fuchs Ch., Jozsa R. , and Schumacher B., General fidelity limit for quantum channels,

Phys. Rev. A 54 4707 (1996).

[71] Wootters W. K., Entanglement formation and concurrence, Quantum Inf. Comput. 1 27 (2001).

[72] Wootters W. K., Entanglement of formation of an arbitrary state of two qubits, Phys. Rev. Lett. 80

2245 (1998).

[73] Rai S. and Luthra J. R., Negativity and concurrence as complete entanglement measures for two

arbitrary qubits, arXiv: quant-ph/0508045(2005).

[74] Knight P. L., Ekert A., Entangled quantum systems and the Schmidt decomposition, J. Phys A 63

415 (1995).

[75] Zyczkowski K., Horodecki P., Sanpera A., Lewenstein M., Volume of the set of separable states, Phys.

Rev. A 58 883 (1998).

[76] Vidal G., Werner R. F., Computable measure of entanglement, Phys. Rev. A 65 032314 (2002).

[77] Schumacher B., Quantum codeing, Phys. Rev. A 51 2738 (1995).

[78] Klauder I. R. and Sudarshan E. C. G., Fundamentals of quantum optics (New York Benjamin 1968).

[79] Holstein T. and Primakoff H. Field dependence of the intrinsic domain magnetization of a ferromag-

net, Phys. Rev. 58 1098 (1940).

[80] Bell W.W., Special function for scientist and engineers (D. Van Nostrand company Canada 1967).



Bibliography 54

[81] Sudarshan C.G., Nonclassicality in the statistics of noncommuting observables, nonclassical states

are more compatible than classical states, Phys. Rev. Lett. 10, 277 (1963).

[82] Hamilton M. W., Phase shifts in multilayer dielectric beam splitters, Am. J. phys. 68, 186 (2000)

Grangier P., Roger G., Experimental Evidence for a Photon anticorrelation effect on a beam splitter:

A new light on single-photon interferences, Phys. Lett.1 , 173 (1986).

[83] Aharonov Y., Falkoff D., Lerner E., and Pendleton H., A quantum characterization of classical

radiation, Ann. Phys. N.Y. 39, 498 (1966).

[84] Wang Xiang-bin, A theorem for the beam splitter entangler, Phys. Rev. A 66, 024303 (2002).

[85] Wolf M. M., Eisert J., and Plenio M. B., Entangling power of passive optical elementsPhys. Rev.

Lett. 90, 047904 (2003).

[86] Jiang Z., Lang M. D., and Caves C. M., Mixing nonclassical pure states in a linear-optical network

almost always generates model entanglement, Phys. Rev. A 88, 044301 (2013).

[87] Grangier P., Roger G. and Aspect A., Experimental evidence for a photon anticorrelation effect on

a beam splitter: A new Light on single-photon interferences, Europhys. Lett. 1, 173 (1986).

See M. W., Hamilton Am., Phase shift in multi layer diaelectric, Phys. 68, 186 (2000).

[88] Markham D. and Vedral V., Classicality of spin-coherent states via entanglement and distinguisha-

bility, Phys. rev. A 67, 042113 (2003).

[89] Tan S. M., Walls D. F., and Collett M. J., Decoherence entagnlement and information protection,

Phys. Rev. Lett. 77, 285(1990).

[90] Paris M. G. A., Entanglement and visibility at the output of a Mach-Zehnder interferometer, Phys.

Rev. A 59, 1615(1999).

[91] Berrada K., Benmoussa A., Hassouni Y., Entanglement generation with deformed Barut-Girardello

coherent states as input states in an unitary beam splitter, Quantum Inf Process 10, 575, (2011).

[92] Berrada K. Abdel-Khalek S., Eleuch H., Hassouni Y., Beam splitting and entanglement generation,

excited coherent states, Quantum Inf Process 12, 69 (2013).

[93] Berrada K., El Baz, Saif F., Hassouni Y. , Entanglement generation from deformed spin coherent

states using a beam splitter, J. Phys. A: Math. Theor. 42, 285306 (2009).

[94] Feynman R. P., Leighton R. B. and Sands M., The Feynman lectures on Physics, Vol. III, (Addison-

Wesley, 1965).



Bibliography 55

[95] Tan S. M., Walls D. F., and Collett M. J., Quantum measurements in optics, Phys. Rev. Lett. 77,

285 (1990).

[96] Loudon R., The quantum theory of light (Clarendon Oxford, 2000).

[97] Bennett C. H. and Wiesner S. J., Qunatum informatin processing, Phys. Rev. Lett. 69 2881 (1992).

[98] Bennett C. H. and Wiesner S. J., Communication via one and two particle operators on Einstein

Podolsky Rosen states, Phys. Rev. Lett. 69 2881 (1992).

[99] Murao M., Jonathan D., Plenio M.B. and Vedral V., Quantum telecloning and multiparticle entan-

glement, Phys. Rev. 59 156 (1999).

[100] Agrawal P., Pati A., Perfect teleportation and superdense coding with W-states, Phys. Rev. 74,

062320 (2006).

[101] Yin Z.Q., Security of counterfactual quantum cryptography, Phys. Rev. 82, 042335 (2010).

[102] Noh T.G., Counterfactual quantum cryptography. Phys. Rev. Lett. 103, 230501 (2009).

[103] Morimae T., Strong entanglement causes low gate fidelity in inaccurate one-way quantum compu-

tation. Phys. Rev. A 81, 060307 (2010).

[104] Bose S., Vedral V., Mixedness and teleportation. Phys. Rev. A 61, 040101 (2000).

[105] Wei T.C., Nemoto K., Goldbart P.M., Kwiat P.G., Munro W.J., Verstraete F., Maximal entangle-

ment versus entropy for mixed quantum states, Phys. Rev. A 67, 022110 (2003).

[106] Berrada K., Chafik A., Eleuch H., Hassouni Y., Concurrence in the framework of coherent states,

Quant. Inf. Process. 9, 13-26 (2010).

[107] Wootters, W.K., Entanglement of formation of an arbitrary state of two qubits, Phys. Rev. Lett.

80, 2245-2248 (1998).

[108] Rungta P. Buzek V. Caves C.M., Hillery M. Milburn G.J., Universal state inversion and concurrence

in arbitrary dimensions, Phys. Rev. A 64, 042315 (2001), Uhlmann, A., Fidelity and concurrence of

conjugated states, Phys. Rev. A 62, 032307 (2000).

[109] Popescu S., Rohrlich D., Thermodynamics and the measure of entanglement, Phys. Rev. A 56, R

3319-R 3321 (1997).

[110] Peres A., Separability criterion for density matrices, Phys. Rev. Lett. 77, 1413-1415 (1996).

[111] Vidal G., Werner R.F., Computable measure of entanglement, Phys. Rev. A 65, 032314 (2002).



Bibliography 56

[112] Nielsen M.A., Chuang I.L., Quantum Computation and Information, (Cambridge University Press,

Cambridge, UK 2000).

[113] Bennett C.H., Brassard G., Crepeau C., Jozsa R., Peres A., Wootters W.K., Teleporting an

unknown quantum state via dual classical and Einstein Podolsky Rosen channels, Phys. Rev. Lett.

70, 18951899 (1993).

[114] Schaffry M., et al., Quantum metrology with molecular ensembles, Phys. Rev. A 82, 042114 (2010).

[115] Wootters, W.K., Entanglement of formation and concurrence. Quantum Inf. Comput. 1, 27 (2001).

[116] Bennett C.H., Bernstein H.J., Popescu S., Schumacher B., Concentrating partial entanglement by

local operations, Phys. Rev. A 53, 2046 (1996).

[117] Popescu S., Rohrlich D., Thermodynamics and the measure of entanglement. Phys. Rev. A 56,

R3319 (1997).

[118] Zyczkowski K., Horodecki P., Sanpera A., LewensteinM., Volume of the set of separable states,

Phys. Rev. A 58, 883 (1998).

[119] Vidal, G., Werner R.F., Computable measure of entanglement, Phys. Rev. A 65, 032314 (2002).

[120] Berrada, K., El Baz M., Saif F., Hassouni Y., Mnia S., Entanglement generation from deformed

spin coherent states using a beam splitter, J. Phys. A: Math. Theor. 42, 285306 (2009).

[121] Jeong H., Kim M.S. and Lee J., Quantum information processing for a coherent superposition state

via a mixed entangled coherent channel, Phys. Rev. A 64 (2001) 052308.

[122] Ivan J.S. Mukunda N., Simon R., Generation of NPT entanglement from nonclassical photon statis-

tics, Quant-Ph/0603255.

[123] Perelomov A. M., Coherent states for arbitrary Lie group, Commun. Math. Phys. 26 222 (1972).

[124] Perelomov A. M., Generalized coherent states and some of their applications, Sov. Phys. Usp. 20

703 (1977).

[125] Perelomov A. M., Generalized coherent states and their applications (Berlin Springer, 1986).

[126] Vourdas A., Analytic representations in the unit disk and applications to phase states and squeezing,

Phys. Rev. A 45 1943 (1992).

[127] Vourdas A., Phase states: an analytic approach in the unit disc, Phys. Scr. T 48 84 (1993).


