
Prediction of Axial Bearing Capacity of Piles using Sophisticated ML 

Algorithms Tuned through Random and Grid Search 

 

 
By 

 

Syed Jamal Arbi 

(Registration No: 00000328433) 

Department of Geotechnical Engineering 

NUST Institute of Civil Engineering 

School of Civil and Environmental Engineering 

National University of Sciences & Technology (NUST) 

Islamabad, Pakistan 

(2024) 

 



ii 

 

Prediction of Axial Bearing Capacity of Piles using Sophisticated ML 

Algorithms Tuned through Random and Grid Search 

 

By 

Syed Jamal Arbi 

(Registration No: 00000328433) 

 
A thesis submitted to the National University of Sciences and Technology, Islamabad, in partial 

fulfillment of the requirements for the degree of 

Master of Science in Geotechnical Engineering 

Thesis Supervisor: Dr. Tariq Mahmood Bajwa 

NUST Institute of Civil Engineering 

School of Civil and Environmental Engineering 

National University of Sciences & Technology (NUST) Islamabad, Pakistan 



iii 

 



iv 

 

 



v 

 



vi 

 

 



vii 

 



viii 

 

 

 

 

 

DEDICATED 

To 

MY MOTHER 

 

 



ix 

 

ACKNOWLEDGEMENTS 

All praise to Almighty Allah, who gave me the courage and power to complete this research 

work and gratitude to the last Prophet MUHAMMAD (P.B.U.H). 

I extend my wholehearted gratitude to my revered supervisor, Dr. Tariq Mahmood Bajwa, 

for his technical guidance, indelible help and valuable feedback throughout this study. I also 

express my utmost gratitude to GEC members Dr. Nauman Khurshid, Dr. Umer Saeed, and Dr. 

Syed Muhammad Jamil for providing helpful feedback on various aspects of this study from time 

to time. 

I would like to acknowledge my colleagues Nazeer Alam, Muhammad Rashid, Waqar 

Saleem,  Muhammad Shahroz Khalid, and Rana Noman for their support and for making my stay 

at NUST pleasant and memorable. I also thank my life partner, Syeda Arifa, for her continuous 

support in completing my studies. 

 



i 

 

ABSTRACT 

Pile foundations support structures by transferring loads to deep sub-surface strata, designed to 

bear the maximum design load without failure. Recent studies are focused on developing 

innovative models to estimate the pile capacity on efficient ground in less time. The pile load tests 

are difficult to perform and time-consuming. So, this study aims to address existing gaps in 

geotechnical engineering research, specifically in pile strength estimation, by deploying advanced 

machine learning algorithms, namely Random Forest (RF), Support Vector Regression (SVR), and 

Xtreme Gradient Boost (XG Boost), which are meticulously fine-tuned using hyperparameter 

optimization techniques, such as Grid Search (GS) and Random Search (RS). The models were 

formulated in a high-level programming language, namely Python. The model's efficacy was 

assessed through Root Mean Square Error (RMSE), Coefficient of Determination (R2), and 

Standard Deviation (SD).  The test results show that each model performs well; however, the 

XGBoost algorithm shows higher efficacy, with high accuracy on the data sets (R2 = 0.933).  

Keywords: Machine learning, Pile bearing capacity, Driven piles, Pile load test, Hyperparameter 

tuning. 
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1 Chapter 1: Introduction 

1.1 General 

In the world of construction and civil engineering, when we refer to the term "foundation," we are 

speaking about the element of a structure that connects it to the ground, ensuring stability and 

strength. While there are different types of foundations, piles stand out as one of the most integral 

components, especially for structures in challenging terrains or with specific load requirements. 

Piles are long, slender, cylindrical structural elements made from materials like steel, concrete, or 

timber. They serve to transfer the weight of a structure deep into the ground, bypassing weak or 

compressible soil layers that are inadequate for supporting the structure's weight. 

(Adi Pusat Pengelolaan Sumberdaya Lahan et al., 2009) explains that piles are used to transfer 

loads from shallow depths to deeper, more supportive layers of soil. They can be bearing piles, 

which penetrate a stratum of good bearing capacity, or friction piles, which rely on friction on the 

sides of the pile for support. By doing so, piles ensure the building or infrastructure remains stable 

and secure. (Verma & Gill, 2018) discusses different types of pile foundations, including bored 

pre-cast piles and driven steel piles. Piles are needed for high load structures, waterfront structures, 

expansion of existing structures and areas prone to natural calamities. 

The bearing capacity of a pile is the maximum load a pile can support without risking structural 

failure or excessive settlement. In essence, determining the correct bearing capacity is of 

paramount importance. (You-xiang, 2008) emphasizes the importance of rational and economical 

pile foundation design, including the selection of the appropriate pile pattern and length. An 

underestimate might lead to structural failures, while an overestimate could lead to overspending 

on unnecessary materials or depth. (Chao et al., 2020) explains that pile load tests are a reliable 

method for determining the ultimate bearing capacity of a single pile and accurately reflecting its 

stress condition and deformation characteristics. Essentially, it is a procedure used to evaluate the 

behavior of a pile under various load conditions. By understanding this behavior, engineers and 

geotechnical experts can determine the ultimate load carrying capacity of the pile and its suitability 

for a specific project. The test also aids in ascertaining any potential settlement or recovery the pile 

might experience under the applied loads. (Rajapakse, 2008) discusses the general procedures and 

equipment required for conducting pile load tests, including driven piles, hydraulic jacks, and load 
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indicators. The pile load test can be categorized into two primary types based on the nature of the 

load: Static Load Test and Dynamic Load Test. The Static Load Test involves applying a gradual 

load to a pile to determine its bearing capacity, revealing the pile-soil interaction over time. It's 

precise but time-consuming and costly, suitable for detailed assessments of pile performance under 

actual loading conditions. In contrast, the Dynamic Load Test rapidly assesses a pile's capacity by 

analyzing its response to a high-speed impact, offering a quicker and less expensive option, though 

it requires calibration against more accurate tests for precise interpretation. This method is ideal 

for initial evaluations and large-scale projects where time and cost efficiency are paramount. 

 

Figure 1.1: Dynamic load test and static load test at the site 

The pile load test is indispensable for ensuring the reliability of pile foundations. It's a proactive 

measure, confirming whether the design assumptions align with the ground realities. By providing 

a clear picture of how a pile responds to loads, the test aids in averting potential structural failures, 

ensuring the longevity and safety of the construction. (Stirrat, 1959) emphasizes the importance of 

pile loading tests in determining the allowable bearing capacity of piles and achieving cost savings 

in construction projects. 

This study focuses on exploring and enhancing the methods of pile strength estimation by utilizing 

machine learning algorithms, namely Random Forest (RF) (Breiman, 2001), Support Vector 

Regression (SVR), and Xtreme Gradient Boost (XGBoost) . Each of these algorithms has its roots 

in prior research. We have turned to hyperparameter optimization methods to refine these 

algorithms, specifically Grid Search (GS) and Random Search (RS). Having been validated in 

prior studies, these techniques show promise in optimizing intricate models. During optimization, 
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hyperparameter selection is performed through detailed research from the literature. After this, 

range for each hyperparameter is selected through trial and error. During this process, the 

hyperparameters are also validated through validation curves. Learning curves are also made for 

optimal models against training samples to keep the process in control. This way, it can be observed 

that either the tunned models are overestimated or underestimated. All this process is done, and 

models are again validated on unseen data which was never shown to models during training.  

Using a blend of machine learning techniques, our objective is to craft a model that encapsulates 

accuracy, resilience, and reliability. To achieve this, we delve deep into Grid Search and Random 

Search methods to refine the hyperparameters of diverse machine learning frameworks. Rigorous 

evaluations, including learning and validation curves and cross-validation metrics anchor our 

approach. The goal is to augment the dependability of pile load tests and address the nuances 

overlooked in prior research. 

1.2 Need of research 

Machine learning methods for estimating pile strength have shown potential but also presented 

various challenges. Previous techniques have sometimes been limited by the specific conditions 

or locations for which they were developed. While a method might excel in one environment, it 

might not perform as well in another due to each terrain's distinct complexities. Solely depending 

on single machine learning tools or individual metaheuristic optimizers like GA, PSO, or WOA 

can lead to suboptimal results. This might result from getting stuck in local minima or the inherent 

complexities of tuning these optimizers. Hence, there's a need to explore diverse optimization 

methods and consider multiple pathways for model refinement. 

1.3 Contribution to industry 

Recently, in a year, the artificial intelligence revolution has amazed the world. In no time, it will 

change every industry and not only fasten the outcomes but also change the human ideas for 

industry. By observing the upcoming wave, this research pushes civil engineering to the next step. 

It is not the one-end solution but one of the steps to a new future. 

1.4 Objective of the research work 

This study is centered around advancing the potential of machine learning models like Random 

Forest (RF), Support Vector Regression (SVR), and Xtreme Gradient Boost (XG Boost), each fine-
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tuned using hyperparameter optimization with Grid Search (GS) and Random Search (RS). The 

main highlights and directions of this research include: 

1) Utilizing multiple modelling techniques, emphasizing the advantage of merging various models. 

This fusion potentially enhances predictive accuracy. 

2) Detailing every research step, from the specifics of hyperparameter adjustments to validation 

stages, ensures a roadmap for reproducibility, facilitating future scientific endeavours. 

3) An exhaustive model evaluation is conducted, rectifying limitations seen in earlier studies. This 

method promises accurate outcomes and the models' adaptability in diverse contexts. 

4) Implementing cross-validation and validating against novel data showcases our dedication to 

creating models that generalize well—a critical aspect for applications in geotechnical 

engineering.  

1.5 Scheme of chapters 

The details about the chapters are given below. The scheme of the chapters is also shown in Figure 

1.2. 

Chapter. 1: This chapter highlights the precise summary of the research work.  

Chapter. 2: This chapter reports a literature review of pile-bearing capacity determination 

techniques, machine learning in geotechnical engineering, and previous research on pile load tests. 

Chapter. 3: This chapter discusses research methods involved in the formulation of  machine 

learning algorithms, and model evaluations, etc. 

Chapter. 4: This chapter discusses the experimental setup to achieve the research objectives. 

Chapter. 4: This chapter reports the results and discussions.  

Chapter. 5: This chapter summarizes the conclusions and key recommendations from the study.   
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Figure 1.2: Scheme of chapters
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2 Chapter 2: Literature Review 

2.1 General 

Pile foundations, commonly utilized to anchor structures deep within the earth, are pivotal in many 

construction ventures. The precise prediction of their load-bearing capacity is a pressing task faced 

by geotechnical engineers. Over the years, an assortment of methodologies has been introduced to 

gauge this capacity. The gamut of these methods includes static analyses, dynamic methodologies, 

empirical formulations, and in-situ tests, each with its own merits and demerits. 

2.2 Overview of Piles 

Piles transfer structural loads to stronger soil layers or rock strata deep below the surface. These 

elongated columns, commonly formed from materials like steel, concrete, or wood, are critical in 

supporting structures where surface soil conditions are unsuitable for conventional shallow 

foundations. The selection and design of piles hinge significantly on the understanding of soil 

mechanics and site geology. Engineers consider factors such as soil type, whether it be clay, sand, 

silt, or gravel, and properties like cohesion, density, and shear strength. There are various types of 

piles, each with distinct characteristics and application scenarios. Driven piles, for instance, are 

hammered into the ground and are often used for their durability and strength, while bored piles, 

created by excavating a hole and filling it with concrete, are preferred in urban areas to reduce 

noise and vibration. 

The installation of piles is a critical phase, involving methods like driving, drilling, or screwing, 

each having a unique impact on the surrounding soil and the overall stability of the foundation. 

The load transfer mechanism is a key aspect of pile design; end-bearing piles rely on a firm stratum 

at a certain depth to bear the load, whereas friction piles transfer loads through skin friction along 

their length. The integrity and performance of piles are ensured through rigorous testing methods, 

such as load tests and integrity tests, to verify that they meet the design specifications and safety 

standards. Additionally, environmental, and economic considerations play a vital role in shaping 

decision-making strategies. The impact of pile installation on groundwater, soil, and the 

surrounding ecosystem, along with factors like cost-effectiveness and longevity, are crucial in the 

selection of the appropriate pile type. 
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The field of pile foundation engineering continuously evolves, addressing challenges like 

unexpected soil conditions and integrating innovations such as the use of recycled materials or 

advanced sensing technologies for real-time monitoring of pile health. This dynamic nature of 

geotechnical engineering underscores its significance in the realm of construction and 

infrastructure development, ensuring structures stand on solid foundations capable of withstanding 

various environmental and load conditions. 

2.3 Techniques for Pile Bearing Capacity Estimation 

Empirical Formulas are derived from a wealth of past data and observations. Liu et al. (2019) 

emphasized the potential pitfalls of relying on these alone, citing the myriad of variables involved 

– from soil mechanics to geotechnical circumstances. The diverse nature of these factors can 

occasionally lead to inaccuracies in empirical results. Static and dynamic field test  present a more 

hands-on approach, assessing piles under specific conditions. While they bring forth real-time 

evaluations, the complexities involved can sometimes lead to discrepancies. H. Nguyen et al. 

(2023) and Shooshpasha et al. (2013) lauded the pile load test (method that evaluates complete 

pile settlements under a static load). The accuracy of this test is largely attributed to its reflection 

of real-world driven pile installations. However, Hoang et al. (2022) pointed out that its high cost 

and lengthy execution time might deter its use in smaller projects. 

Since the 1970s, there's been a surge in in-situ test methods to measure soil properties. Notably, 

the Standard Penetration Test (SPT) stands out for its widespread utilization in determining the 

bearing capacities of piles. Studies for example, by Ammar et al. (2013) and Bouafia & Bouafia 

(2002) have reinforced the value of the SPT in this realm, emphasizing its potential as a more 

practical alternative to costly pile load testing.  

2.4 Background of Machine Learning 

Machine Learning, a branch of artificial intelligence, emphasizes the creation of algorithms and 

models enabling computers to undertake tasks autonomously, without the need for specific 

programming for each task. Basically, a machine learns from data to find patterns, and make 

predictions or decisions without any human interference. These machine learning algorithms have 

shown immense potential in solving complex problems across various domains. (Pulina, 2010) 

suggests the application of diverse machine learning algorithm portfolios for tackling intricate 
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tasks in robotics and automated reasoning. Unlike traditional algorithms that follow a strict set of 

instructions, ML algorithms adapt and learn from the data they're provided. This means they can 

discover hidden patterns or subtle relationships in vast amounts of data that might be challenging 

or time-consuming for humans to discern. Once trained, many ML models can adapt over time by 

learning from new data, allowing them to stay relevant in changing environments. ML algorithms 

are designed to take a broad view from the training data to unseen scenarios, which means they 

can handle a variety of situations do not present in the initial training set. Deep learning models, 

which fall under the umbrella of ML, have the capability to autonomously extract features from 

unprocessed data, eliminating the need for manual feature engineering. This attribute renders them 

highly effective in tasks such as image and speech recognition. ML models, especially specific 

types like RF or Neural Networks (NN), can handle high-dimensional data effectively, capturing 

interactions between various features. For tasks like data clustering or image recognition, manually 

defining rules or patterns would be cumbersome. ML models can automatically and efficiently 

handle these tasks after being trained on representative data. 

2.4.1 What are Machine Learning Algorithms? 

Machine learning algorithms consist of specific rules and procedures employed by AI systems to 

execute various tasks. These tasks frequently include discovering fresh insights and patterns within 

data, or forecasting outcomes based on a given set of input data. The general categorization of 

machine learning algorithms are summarized in Figure 2.1 and explained below. 

 

Figure 2.1: Categories of machine learning algorithms 
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1. Supervised Learning: In supervised learning, algorithms learn from labeled data, where the 

desired output is known. Once trained, they aim to make predictions for new, unseen data. 

Examples are as follows: 

• Neural Networks 

• Decision Trees 

• Support Vector Machines 

• Linear Regression 

2. Unsupervised Learning: Algorithms that work with unlabeled data, focusing on finding patterns 

or structures. Examples are as follows: 

• Clusters (K-Means) 

• Association Algorithms like Apriori 

• Dimensionality Reduction Methods (Principal Component Analysis) 

3. Semi-Supervised Learning: These algorithms employ a combination of labeled and unlabeled 

data during the training phase, typically utilizing a smaller quantity of labeled data alongside a 

more substantial volume of unlabeled data. 

4. Reinforcement Learning: Algorithms designed to learn through interaction with their 

environment rely on feedback mechanisms, where they receive either rewards or penalties to guide 

their learning process. Examples are as follows: 

• Q-Learning 

• Deep Q Network (DQN) 

• Policy Gradients 

5. Transfer Learning: Instead of starting the learning process from scratch, these methods leverage 

knowledge from a previously trained model on a different but related task. 

6. Ensemble Methods: These algorithms integrate various machine learning methods into a single 

predictive model, aiming to reduce variance and bias, or to enhance the accuracy of predictions. 

Examples are as follows: 

• Bagging (Bootstrap Aggregating) like Random Forest 

• Boosting like AdaBoost, Gradient Boosting Machines (GBM), and XGBoost 
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• Stacking  

Different algorithms possess their unique advantages and limitations, making them suitable for 

specific kinds of tasks. The selection of an algorithm typically hinges on factors like the data size, 

quality, and characteristics, the nature of the task at hand, and the expected results. ML, a notable 

arm of artificial intelligence, has shown promise in reshaping the paradigm of geotechnical 

engineering. At its core, ML delves into historical data, discerning patterns and insights akin to 

human cognitive processes. Several studies in current years have supported the use of machine 

learning as a potential surrogate for traditional empirical and field test methods in estimating 

structural load capacities. Researchers such as (Alwanas et al., 2019; Mangalathu et al., 2022) have 

explored its potential advantages. 

A crucial and first step in ML is data processing, that transforms raw data into a clean and 

structured format for model training (Y et al., 2022). Proper data preprocessing improves the 

accuracy  and efficiency of models. Given the saying "garbage in, garbage out", without proper 

preprocessing, even the most sophisticated models may perform poorly or give misleading results. 

Data preprocessing includes techniques like data cleaning, normalization, transformation, and 

feature selection (Bilal et al., 2022; Lawatre, 2021; Mundargi et al., 2023; Y et al., 2022). 

2.5 Different Machine Learning Algorithms 

2.5.1 Random Forest Algorithm 

It is a versatile and widely used algorithm which belongs to the ensemble learning category. It uses 

a collection of decision trees to perform regression and classification tasks (Liu et al., 2012) and a 

graphical visualization of RF model is shown in Figure 2.2. RF has been applied to many domains, 

including image classification, generating continuous field datasets, detection of spam mails, 

detection of credit card fraud, classification of genes, detection of network intrusion, email spam 

detection, gene classification, credit card fraud detection, and text classification (Horning, 2010; 

Zakariah, 2014). 
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Figure 2.2:  Random Forest prediction model (Random Forests. Random Forests Is a Powerful 

Machine… | by Dr. Roi Yehoshua | Medium, n.d.) 

Random Forest was introduced by Leo Breiman in 2001. It's an extension of his earlier work on 

bootstrap aggregating (or bagging) (Bbeiman, 1996). 

2.5.1.1 Mathematical Formulas in the Background: 

• Entropy:  

It's a measure of disorder or impurity. For a binary classification with probabilities 𝑝 and 1 − 𝑝: 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆) = −𝑝 log2(𝑝) − (1 − 𝑝) log2(1 − 𝑝) (2.1) 

Gini Impurity: 

Another measure of impurity. For a binary classification: 

𝐺𝑖𝑛𝑖(𝑆) = 1 − [𝑝2 + (1 − 𝑝)2] (2.2) 

Information Gain: 

The information that can increase the level of certainty after splitting. 
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𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝐺𝑎𝑖𝑛(𝑆, 𝐴) = 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆) − ∑
|𝑆𝑣|

|𝑆|𝑣𝜀𝑉𝑎𝑙𝑢𝑒𝑠(𝐴)
×  𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆𝑣) (2.3) 

2.5.1.2 How Does It Work to Solve Problems? 

• Bootstrap Sampling: 

Randomly samples the dataset with replacement to create multiple subsets. 

• Building Trees: 

For each subset, it grows a decision tree. When splitting nodes, instead of searching for the best 

feature, it searches among a random subset of features for the best feature. 

In summary, RF builds multiple decision trees using bootstrap samples of the training data. It uses 

random feature selection to determine splits in the trees, which reduces correlation between trees 

(Mohana et al., 2021). 

• Prediction: 

• Classification: Each tree casts a ‘vote’ for the class, and the class with the 

highest votes is the winner and tagged as ‘prediction’. 

• Regression: The average prediction of all the trees is the forest's prediction. 

2.5.1.3 How Does Scikit-Learn Implementation of Random Forest Work? 

Random Forest implementation is designed to be user-friendly and efficient. Here's a simplified 

breakdown: 

1. Initialization: When you create a `Random Forest Classifier` or `Random Forest Regressor`, 

you can specify parameters like the number of trees (`n_estimators`), criteria for splitting 

(`criterion` can be "gini" or "entropy" for classification), maximum depth of trees, etc. 

2. Fitting: When you call the `fit` method, it begins the process of bootstrap sampling and building 

individual trees. 

3. Prediction: The `predict` method aggregates predictions from individual trees. For 

classification, it uses majority voting, and for regression, it averages the results. 
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4. Feature Importance: Scikit-learn provides an attribute `feature_importances_` which 

computes the importance of each feature based on the frequency and the depth it appears in all 

trees. 

Here's a basic example in Code Snippet 2.1. 

 

Code Snippet 2.1: Random Forest implementation in Python 

Fundamentally, RF operates as an ensemble of decision trees, collaborating to yield more stable 

and precise predictive outcomes. Its ensemble nature makes it less prone to overfitting, and its 

versatility allows it to be used for both classification and regression tasks. 

2.5.2 Support Vector Regression (SVR) 

It’s a type of Support Vector Machine which is used for regression tasks. And SVM is mainly 

known for classification, SVR is its adaptation for predicting continuous values. SVR, or Support 

Vector Regression, learns directly from the data how important different variables are in explaining 

the connection between inputs and outputs. This is a step away from older regression methods, 

which often rely on assumptions that might not match the real-world data perfectly. SVR stands 

out because it figures out the value of variables directly through the data it analyzes, offering a 

more tailored approach to understanding data relationships and shown in Figure 2.3. SVR has been 

applied successfully to analyze brain imaging data and reveal patterns through multiple brain 

regions for various disorders (Zhang & O’Donnell, 2020). 
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Figure 2.3: SVR algorithm model (Support Vector Regression (SVR) | Analytics Vidhya, n.d.) 

SVM, which encompass SVR, were introduced by Vladimir N. Vapnik and Alexey Ya. 

Chervonenkis in the 1960s. The concept was later refined and popularized in the 1990s, with the 

regression adaptation (SVR) also gaining traction. 

2.5.2.1 Mathematical Background: 

• Linear SVR: 

  The main objective is to identify a function 𝑓(𝓍) that deviates minimally, by no more than ε, 

from the actual training responses 𝑦𝑖 across all the training data, while also maintaining as much 

simplicity or flatness as possible.  

In simpler terms, SVR tries to fit the best line/hyperplane within a margin of ε where the loss is 

equal to zero. 

• Loss Function: 

   SVR uses the ε-insensitive loss: 

𝐿ε (𝑦, 𝑓(𝑥)) = 𝑚𝑎𝑥(0, |𝑦 − 𝑓(𝑥)| − ε ) (2.4) 

• Objective: 

• Minimize: 
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1

2
||𝑤||2 + 𝐶 ∑ 𝜉𝑖𝜉𝑖

∗
𝑛

𝑖=1
 (2.5) 

 

• Subject to: 

𝑦𝑖 − 𝑓(𝑥𝑖) ≤ 𝜀 + 𝜉𝑖 
(2.6) 

𝑓(𝑥𝑖) − 𝑦𝑖 ≤ 𝜀 + 𝜉𝑖
∗ 

(2.7) 

𝜉𝑖 , 𝜉𝑖
∗ ≥ 0 

(2.8) 

Where: 

𝑤 is the weight vector,  

𝐶 is the regularization parameter,  

𝜉𝑖 and 𝜉𝑖
∗ are slack variables. 

• Kernel Trick: 

In non-linear SVR, data is mapped to a higher-dimensional space where it's linearly separable. 

This mapping is done using kernel functions. 

2.5.2.2 How Does It Work to Solve Problems? 

• Margin and Buffer: 

SVR aims to draw a line (in a 2D space) or a hyperplane (when dealing with more dimensions) 

through the data so that as many data points as possible fall within a specified buffer, or margin, 

around this line or plane. The goal is to have this buffer—imagine it as a kind of safety zone—be 

just the right size: not too wide, but wide enough to include a lot of points. This method helps to 

ensure the model is both accurate and flexible, catching the essence of the data without being too 

strict or too lenient. This buffer is where the loss is considered zero. 

• Slack Variables: 

For points outside this margin, slack variables measure the magnitude of the deviation. These are 

penalized in the objective function to ensure minimal deviation. 
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2.5.2.3 Scikit-Learn Implementation: 

SVR from sklearn is implemented in python as follows:  

Initialization: You can initialize SVR with the desired kernel, regularization parameter 𝐶, and 

other parameters. 

Fitting: The `fit` method is used to train the SVR model on the data. 

Prediction: The `predict` method is used for making predictions on new, unseen data. 

Here's a basic example using Scikit-learn's SVR shown in Code Snippet 2.3: 

 

Code Snippet 2.2: SVR implementation in Python 

In summary, SVR is a powerful regression method, especially for datasets with non-linear 

relationships. By transforming features into higher-dimensional space (when necessary) and by 

defining an 𝜀-insensitive loss, SVR is designed to predict continuous values while considering 

both flatness and deviations. 

2.5.3 XGBoost Algorithm 

XGBoost, short for eXtreme Gradient Boosting, is a powerful tool that takes gradient boosting to 

the next level. It's crafted to work quickly and adaptively, making it a go-to for tackling big data 

challenges. Essentially, it's like having a supercharged engine for your data analysis, capable of 

handling tasks with speed and agility that traditional methods can't match (Chen & Guestrin, 2016). 

It works for both regression and classification problems. A flow chart diagram of XGBoost is 

shown in Figure 2.4. 
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Figure 2.4: XGBoost (Jiang et al., 2021) 

While gradient boosting was a technique existed before, XGBoost brought several optimizations 

and became popular due to its performance and speed (Chen & Guestrin, 2016). 

2.5.3.1 Mathematical Background 

• Objective Function 

At each iteration, XGBoost adds a new tree to minimize the following objective: 

𝑂𝑏𝑗 = ∑ 𝑙(𝑦𝑖 , 𝑦�̂�
(𝑡)

)

𝑛

𝑖=1

+ ∑ Ω(𝑓𝑖)
𝑡

𝑖=1
 (2.9) 

 

   Where: 

• 𝑙 = Loss function. 

• Ω = Regularization term. 

• 𝑓𝑖 represents each tree. 

• Regularization Term: 

Ω(𝑓) = 𝛾𝛵 +
1

2
𝜆 ∑ 𝑤𝑗

2
𝑇

𝑗=1
 (2.10) 

Where: 

• 𝑇 = Number of leaves in the tree. 

• 𝑤𝑗 = Score on leaf 𝑗. 

• 𝛾 and 𝜆 are regularization parameters. 
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• Gradient and Hessian: 

Instead of calculating the best split points directly, XGBoost calculates approximations using the 

gradient and hessian. 

2.5.3.2 How Does It Work to Solve Problems? 

• Boosting:  

XGBoost is a boosting algorithm. It builds trees sequentially. Each new tree tries to correct the 

errors made by the previous ones. 

• Regularization: 

XGBoost includes L1 (Lasso) and L2 (Ridge) regularization terms in its objective function. This 

prevents overfitting, making it a regularized form of boosting. 

• Handling Missing Data: 

XGBoost has an in-built routine to handle missing values. When a value is missing in a split 

column, it assigns a default direction (left or right) to handle the missing value. 

• Parallel Processing: 

One of the reasons for XGBoost's popularity is its capability to parallelize the construction of trees, 

making it faster. 

• Tree Pruning: 

Unlike other gradient boosting methods that grow trees to their maximum depth and then prune, 

XGBoost uses "max_depth" parameter to grow trees to a certain depth and then starts pruning. 

2.5.3.3 Scikit-Learn Implementation of XGBoost: 

Although XGBoost has its own Python library, it offers an API compatible with Scikit-Learn. This 

means you can use XGBoost models just like you would use any other model in Scikit-Learn. The 

basic example is shown in Code Snippet 2.4. 
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Code Snippet 2.3: XGBoost implementation in Python 

In conclusion, XGBoost is a robust and efficient gradient boosting algorithm that's especially 

useful for structured/tabular data. Its performance, speed, and scalability have made it a go-to 

algorithm for many Kaggle competitions and real-world applications. 

2.6 Model Parameters 

2.6.1 What are Hyperparameters in Machine Learning? 

Machine learning models have model parameters that are learned during training, such as neural 

network weights. In contrast, hyperparameters, which define the model's architecture, must be 

predefined before training (Yang & Shami, 2020). Hyperparameters are parameters that are not 

learned directly from the data but are set before training. They influence the behavior and 

performance of the learning algorithm. Examples include the learning rate, regularization 

coefficients, tree depth, and number of hidden layers in a neural network. Hyperparameters shape 

the model's ability to learn. Incorrect values can lead to underfitting (model is too simple) or 

overfitting (model is too complex). Using default values for model hyperparameters may lead to 

reduced prediction accuracy as they do not consider the dataset's dimensionality (size) or its 

specific features (Probst et al., 2018). 
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2.6.2 Techniques to Tune Hyperparameters: 

Researchers have proposed various search strategies to navigate this complex space, including 

random search, grid search, and Bayesian optimization (Claesen & Moor, 2015; Peskova & 

Neruda, 2019). A graphical summary of hyperparameter techniques is shown in Figure 2.5. Due to 

the simplicity of search-based algorithms, they are commonly used in problems with small 

response spaces and were evaluating hyperparameters is less resource intensive (Seifi & Niaki, 

2023). 

2.6.2.1 Grid Search: 

Systematically go through multiple combinations of hyperparameter values, train a model for each 

combination, and select the best combination based on performance. In this method, all parameters 

have an equal probability of impacting the process (Alibrahim & Ludwig, 2021). 

2.6.2.2 Random Search:  

Randomly sample hyperparameter combinations from given ranges. Surprisingly, this can 

sometimes be more effective than grid search because it can explore more unique values and 

doesn't spend time on less influential ones (Andradóttir, 2006). 

2.6.2.3 Bayesian Optimization: 

Bayesian Optimization (BO) is a statistical method for efficiently optimizing expensive, noisy 

"black-box" functions with few evaluations (Garnett, 2023). Model the objective function using a 

Gaussian process and choose hyperparameters to evaluate by selecting those that maximize the 

expected improvement. 

2.6.2.4 Gradient-based Optimization:  

Applicable when hyperparameters are continuous. Computes gradients of the validation 

performance with respect to hyperparameters and adjusts them accordingly (Bengio, 2000). 

2.6.2.5 Evolutionary Algorithms:  

An Evolutionary Algorithm (EA) falls within the realm of evolutionary computation and is 

classified as one of the broader categories of stochastic search algorithms (Vikhar, 2017) . Treat 

hyperparameter optimization as a genetic algorithm problem, which maintains a population of 

hyperparameter sets and evolve them over time. 
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2.6.2.6 Early Stopping:  

For algorithms like neural networks or gradient boosting, train for a large number of iterations but 

stop early if validation performance stops improving.  

 

Figure 2.5: Techniques for hyperparameter tunning 

2.6.3 Random Search for Hyperparameters: 

RS is like exploring a treasure map without knowing exactly where X marks the spot. Instead of 

systematically checking every location, you randomly pick spots across the map, trying out 

different combinations of clues (or in this case, hyperparameters) for a set number of tries. With 

each attempt, you build and test a model based on these randomly chosen settings. It's a way of 

stumbling upon the best solution by chance, mixing a bit of luck with strategy to find the treasure 

(or the optimal model settings) more efficiently than checking every possible option and a layout 

is shown in Figure 2.6. As (Garnett, 2023) explains, random search sacrifices the guarantee of an 

optimal solution for finding a good solution quickly. 

Hyperparameter 
Tunning Techniques

Grid Search

Random Search

Bayesian 
Optimization

Gradient Based 
Optimization

Evolutionary 
Algorithims

Early Stopping
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Figure 2.6: Random Search layout (A Comparison of Grid Search and Randomized Search 

Using Scikit Learn | by Peter Worcester | Medium, n.d.) 

2.6.3.1 How Random Search Works: 

1. Define a hyperparameter space for each hyperparameter. 

2. Randomly sample from this space. 

3. Train a model with the selected combination. 

4. Evaluate the model using a validation set or cross-validation. 

5. Repeat the process for a fixed number of iterations. 

6. Select the best hyperparameters based on the performance on the validation set or cross-

validation. 

2.6.3.2 Randomized Search Cross Validation (RSCV): 

RSCV is an implementation of random search with cross-validation. Instead of just evaluating one 

model for a set of hyperparameters, it evaluates the model performance across multiple folds of 

the data. This helps ensure that the model's performance is consistent and not the result of a specific 

random split of the data. In literature, there are many researchers which shows the use of RSCV 

as an optimization tool (Takkala et al., 2022; Vishnu et al., 2023). It works in following steps:  
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1. Specify a parameter grid: For each hyperparameter, define the range or distribution of values. 

2. Choose the number of iterations: This determines how many different combinations to try. 

3. Use cross-validation: Split the data into train/test sets multiple times and evaluate performance. 

4. For each iteration, RSCV samples hyperparameters, trains the model using cross-validation, and 

records the performance. 

5. Once all iterations are complete, RSCV provides the best set of hyperparameters and their 

corresponding performances. Also, here's a simple example shown in Code Snnipet 2.5 using 

RSCV to tune hyperparameters for a RF Regressor: 

 

Code Snippet 2.4: Randomized Search CV implementation in Python 

Here, `RSCV` will perform 100 iterations, each time randomly selecting hyperparameters from 

`param_dist`, training the RF Regressor, and evaluating it using 5-fold cross-validation. 

2.6.4 Grid Search for Hyperparameters: 

Grid Search (GS) is a method for hyperparameter tuning that systematically works through 

multiple combinations of hyperparameter by searching over a space (Liashchynskyi & 

Liashchynskyi, 2019), cross-validating as it goes to determine which tune gives the best 
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performance. The traditional way of performing hyperparameter tuning is to use a loop nested 

inside another loop, which tries every single combination exhaustively as shown in Figure 2.7. 

 

Figure 2.7: Grid Search layout (A Comparison of Grid Search and Randomized Search Using 

Scikit Learn | by Peter Worcester | Medium, n.d.) 

2.6.4.1 How Grid Search Works: 

It works in following steps: 

1. Define a set of possible values for each hyperparameter. 

2. Create a grid of all possible hyperparameter combinations. 

3. For each combination: 

• Set the hyperparameters. 

• Train the model. 

• Evaluate the model using a validation set or cross-validation. 

4. Select the best hyperparameters based on model performance. 

2.6.4.2 Grid Search CV: 

Grid Search CV (GSCV) is Scikit-Learn's implementation of grid search with cross-validation. For 

each combination of hyperparameters, GSCV trains the model using cross-validation and 
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computes a score for each fold of the data. This provides a more robust metric compared to a single 

train/test split and process is shown in Figure 2.8. 

 

Figure 2.8: Grid Search CV 

Following steps are involved in its functionality:  

• Specify a parameter grid: Define a dictionary where keys are the hyperparameters, and 

values are lists of parameter settings to try. 

• Use cross-validation: GSCV will split the data multiple times and train/test on these 

splits to evaluate each hyperparameter combination. 

• For each combination in the grid, GSCV: 

• Sets the hyperparameters to: 

o Train the model using cross-validation. 

o Compute a score for each fold. 

o Record the average score. 

Once all combinations are evaluated, GSCV identifies the best hyperparameters and their 

corresponding performance. Also, here's an example in Code Snippet 2.6 using GSCV to tune 

hyperparameters for an SV Regressor: 
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Code Snippet 2.5: GridSearchCV() implementation in Python 

This example systematically evaluates each combination of the `kernel`, `C`, and `gamma` 

hyperparameters for an SVR, using 5-fold cross-validation, and finds the best performing 

combination. 

2.7 Model Evaluation 

Model evaluation is like a check-up for your machine learning model, ensuring it's smart enough 

to handle new, unseen data. It's about tweaking its learning settings and making sure it's not just 

memorizing but truly understanding, ready to face real-world challenges. 

2.7.1 Cross-Validation: 

It involves partitioning the original training dataset into a set of subsets, holding out one as a 

validation set, and training the model on the rest. This process is repeated multiple times, with 

different subsets held out as the validation set. It is used to assess how well a model generalizes to 
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new data and avoids overfitting (Dinov, 2018). The procedure involved in cross validation is shown 

in Figure 2.9. 

 

Figure 2.9: Process of Cross Validation 

2.7.1.1 Different Types of Cross-Validation: 

• K-Fold Cross-Validation: 

The process involved in K-Fold can be explained in following steps:  

• The data is divided into 'k' subsets. 

• Each time, the k-1 subsets are used as a training set and one of the k subsets is 

used for the validation set. 

• The final model performance is the average of the k models' validation 

performances. The procedure is shown in Figure 2.10. 
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Figure 2.10: K-Fold 

• Stratified K-Fold Cross-Validation: 

The process involved in Stratified K-Fold Cross-Validation can be explained in following steps:  

• Similar to K-Fold, but each fold is made by preserving the percentage of 

samples for each class. 

• Stratified cross validation aims to preserve the target class distribution in each 

fold (Kärkkäinen, 2014). The process is shown in Figure 2.11. 

 

Figure 2.11: Stratified K-Fold process 
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• Leave-One-Out (LOO): 

Leave-One-Out is also one of the simple cross-validation.  

• Leave-One-Out (LOO) cross-validation is a detailed check-up for each data 

point in your dataset. Imagine you have N pieces of data; LOO will set up N 

unique learning sessions. In each session, it uses all but one data piece for 

training, reserving that lone piece for testing. It's like giving every single data 

point its moment in the spotlight to truly test the model's understanding. 

• Leave-P-Out (LPO): 

Leave-P-out is similar to Leave-one-out.  This involves training on all combinations of N-P 

samples and validating on the remaining P samples. 

• Time-Series Cross-Validation: 

Time-Series Split (TSS) is the variation of K-Fold. This approach is specifically for cross 

validation of time series data. In this approach, the training set only includes observations prior to 

the validation set in time. The process involved in Time-Series CV technique is shown in Figure 

2.12. 

 

Figure 2.12: Time-Series Split process 
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• Group K-Fold: 

Group K-Fold is a variation of K-Fold where the validation sets should consist of entire groups, 

useful when there are groups of correlated samples. It makes sure that same group data is not used 

for training and validation. The training and validation split procedure is shown in Figure 2.13. 

 

Figure 2.13: Group K-Fold process 

To utilize these methods in machine learning, libraries like Scikit-Learn provide built-in functions. 

For instance, `KFold()`, `StratifiedKFold()`, and `TimeSeriesSplit()` are all classes within Scikit-

Learn that can be used to perform these respective types of cross-validation. 

2.7.2 Model Metrics: 

There are two types of model metrics. One is for regression and the second is for classification. 

The regression metrics are given below. 

𝑅𝑀𝑆𝐸 =  √(
1

𝑛
) × ∑ [𝑝𝑖 − 𝑦𝑖]2

𝑛

𝑖=1
 (2.11) 

𝑀𝐴𝐸 =
1

𝑛
× ∑ (|𝑝𝑖 − 𝑦𝑖|)

𝑛

𝑖=1
 (2.12) 
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𝑅2 = 1 −
∑ (𝑦𝑖 − 𝑝𝑖)

2𝑛
𝑖=1

∑ (𝑦𝑖 − �̅�)2𝑛
𝑖=1

 (2.13) 

Where: 

𝑛 = sample size 

𝑝𝑖 = predicted values 

𝑦𝑖 = actual values 

𝑦𝑖 = average of actual values 

These metrics are typically specific to the context of a study and depend on the data's nature, the 

model's complexity, and the field of application. Generally, for R², a value closer to 1 indicates a 

better fit, while for RMSE, a lower value indicates a better fit. However, standard reference values 

may not be universal and can vary based on the domain or specific application. 

2.7.3 Validation Curves: 

Validation curves are graphical representations that show the performance of a machine learning 

model as a function of one of its hyperparameters. These curves are crucial tools for understanding 

the search range of hyperparameters which  helps in hyperparameter tuning (Xie et al., 2018). 

Typically, validation curves are categorized based on the type of metric plotted and the nature of 

the change observed: 

Learning Curves: These plot the model's performance (like accuracy or error) on the training set 

and the validation set as a function of the number of training examples (or iterations). Indicate how 

much the model benefits from adding more data. 

Hyperparameter Validation Curves: These curves plot the model's performance as a function of 

various hyperparameter values. For instance, plotting performance with different values of `C` in 

a SVM or `max_depth` in a Decision Tree. 
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Figure 2.14: Types of Validation Curves 

2.7.3.1 Indications: 

There are few indications associated with validation curves which can be observed and are shortly 

summarized below. 

2.7.3.2 Underfitting: 

• Training and validation errors converge and are high. 

• The model is too simple to capture patterns in the data. 

2.7.3.3 Good Fit: 

• Training and validation curves are close. 

• The model generalizes well to unseen data. 

2.7.3.4 Hyperparameter Optimization: 

• Helps identify values of hyperparameters where the validation performance is 

maximized. 

• Helps in striking a balance between bias and variance. 

In practice, tools like Scikit-Learn offer utilities to plot validation curves easily, aiding in making 

informed decisions regarding model complexity and hyperparameter values. 

2.7.4 Learning Curves: 

Learning Curves (LC) are plots that show changes in learning performance over time in terms of 

experience. More specifically, in the context of machine learning, they are used to assess the 

performance of ML algorithm against any resource, for example, training sample etc. (Mohr & van 

Rijn, 2022). LC allows you to diagnose if your model is overfitting or underfitting. 
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By examining learning curves, you can determine if the model would benefit from more data. If 

the validation performance continues to improve as more data is added, it's a sign that acquiring 

more data might be beneficial. They provide insight into how quickly a machine learning model 

can converge to a particular level of error, and can be helpful in tuning the training process, for 

instance, in deciding the size of mini-batches in mini-batch gradient descent. 

2.7.4.1 Types of Learning Curves: 

Typically, LC have two types which are explained below and shown in Figure 2.15. 

Training Curve: Plots the training error as the number of instances (or training iterations) 

increases. 

Validation Curve:  Plots the validation error as the number of instances (or training iterations) 

increases. These curves are typically plotted on the same graph for direct comparison. 

 

Figure 2.15: Types of Learning Curves 

2.7.4.2 What They Indicate: 

• Underfitting (High Bias): 

• Both training and validation errors are high and converge. 

• The model lacks the complexity needed to fit the data well. 

• Overfitting (High Variance): 

• The training error is low, but there's a substantial gap between the training and 

validation errors. 

• The model is excessively complex and fits the training data's noise. 

• Ideal Learning Curve: 

• The validation error decreases and converges to a point close to the training 

error. 

Learning Curves

Training Curve

Validation Curve
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• The gap between the curves is minimal, indicating that the model generalizes 

well. 

• Plateau in Learning: 

• If the validation curve plateaus, no matter how much more training data you 

add, the model might not improve. This can be an indication that more training 

data might not be beneficial. 

In essence, learning curves provide a visual method to gauge a model's performance relative to its 

amount of training. By analyzing the gap between the training and validation curves and their 

convergence behaviors, one can gain insights into the model's bias-variance trade-off and its data 

requirements. 

2.8 Already Research 

Goh's (Goh et al., 2005) pioneering efforts flashed a spotlight on the potential of Artificial Neural 

Networks (ANNs), constructing an intricate ANN model, which was designed for deducing the 

frictional dynamics of piles set within clayey terrains, using field data as the bedrock for their 

predictions. Later endeavors by researchers like (Shahin, 2010) extrapolated on the ANN model, 

utilizing a vast trove of data to prognosticate the bearing capacity of piles. Armaghani et al.'s 

(Armaghani et al., 2020) audacious research led to the birth of a hybridized model, intertwining 

the intricacies of ANN with the nuanced capabilities of particle swarm optimization (PSO) to craft 

predictions regarding pile settlements. 

In their 2023 study, Nguyen (Nguyen et al., 2023)  and colleagues introduced an innovative 

approach that marries the power of XGBoost, a cutting-edge machine learning technique, with the 

whale optimization algorithm (WOA) to predict how much weight concrete piles can support. The 

magic of their method lies in using XGBoost to make the final predictions based on data from 

experiments, while WOA hunts down the best XGBoost settings to make these predictions as 

accurate and reliable as possible. They put their model to the test with data from 472 real-world 

tests on concrete piles in Vietnam and found that their hybrid approach consistently beat both the 

standard XGBoost setup and traditional deep neural network models. After 20 trials, their model 

not only showed a remarkable improvement in accuracy but also stood out in tests against other 

methods, proving to be exceptionally well-suited for figuring out the capacity of concrete piles. 



Page | 35 

This breakthrough suggests that their hybrid model could be a valuable tool in civil engineering, 

offering a new way to ensure the safety and effectiveness of construction projects.  

Tuan et al. (Pham, Tran, et al., 2020a) focused on using evolutionary algorithms like genetic 

algorithms (GA) to optimize deep learning neural networks (DLNN) for predicting the axial 

bearing capacity of driven piles. The authors collected a database of 472 driven pile static load test 

reports from construction sites in Vietnam. The data includes parameters like pile diameter, pile 

length, soil properties from SPT blow counts, etc. A GA model was used for feature selection to 

identify the most significant input features from the 10 original features. This reduced the features 

from 10 to 4 most important ones. A GA-DLNN, hybrid model, uses GA to optimize the DLNN 

architecture by selecting optimal parameters like number of hidden layers, neurons per layer, 

activation functions, training algorithms, etc. The reduced 4-input GA-DLNN model gave the best 

accuracy compared to models with all 10 inputs. It had R2 of 0.923 on validation set and 0.887 on 

test set. The GA-DLNN model performed better than just DLNN model, demonstrating the benefit 

of using GA to optimize DLNN parameters. The results show that evolutionary algorithms like GA 

can effectively optimize DLNN models for predicting pile bearing capacity based on real-world 

test data. The hybrid GA-DLNN approach outperformed regular DLNN and other models. 

According to Pham et. al (Pham & Tran, 2022), determining the axial load capacity of piles is 

crucial for foundation design. Yet, field methods to determine this are often expensive and lengthy. 

This research aims to devise a hybrid machine-learning approach to predict this capacity. Two 

prominent optimization techniques, Particle Swarm Optimization (PSO) and Genetic Algorithm 

(GA), were applied to fine-tune the Random Forest (RF) model architecture. The study utilized a 

dataset with 472 pile load test outcomes from Ha Nam province in Vietnam. This dataset was split 

into 80% training and 20% testing segments. The model's efficacy was assessed through the 

Absolute Mean Error (MAE), Root Mean Square Error (RMSE), and Coefficient of Determination 

(R2). Outcomes indicated that GA outperformed PSO in optimizing the RF model. When pitted 

against the standard RF model, the GA-enhanced RF version showcased the most reliable results, 

presenting equilibrium between training and testing segments, which signifies reduced overfitting 

risks. These findings can guide the application of machine learning in the broader realm of 

engineering, especially within geotechnical sectors. 
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Tuan et al. (Pham, Ly, et al., 2020) developed machine learning models using ANN and RF to 

predict the axial bearing capacity of driven piles. The models were trained and tested on a large 

dataset of 2314 pile load test reports, which is claimed to be the largest dataset used for this 

purpose. The input variables included pile geometry factors like diameter and segment lengths, as 

well as soil properties like average standard penetration test (SPT) values along the pile shaft and 

at the pile tip. The RF model outperformed the ANN model in accuracy based on error metrics like 

R-squared, RMSE and MAE. RF also outperformed traditional empirical equations and multi-

variable regression. Sensitivity analysis using the RF model showed that the average SPT value 

along the pile shaft and the pile tip elevation were the most important factors affecting the predicted 

bearing capacity. The RF model provides an accurate and fast numerical tool for estimating pile 

bearing capacity compared to traditional methods. Further improvement in accuracy using hybrid 

ML methods is suggested as future work. 

Nhat-Duc et al. (Hoang et al., 2022) proposes a new data-driven model for predicting the axial 

bearing capacity of piles. The model uses a hybrid approach combining machine learning and 

metaheuristic optimization. The machine learning method used is Least Squares Support Vector 

Regression (LSSVR). LSSVR can handle multivariate data and model nonlinear relationships 

between inputs and outputs. The metaheuristic used is opposition-based differential flower 

pollination (ODFP). ODFP is used to optimize the hyperparameters of the LSSVR model. The 

model uses 10 input variables related to pile characteristics and soil conditions to predict pile 

bearing capacity. The model was trained and tested on a dataset of 472 static load tests of reinforced 

concrete piles. Experimental results showed the ODFP-LSSVR model achieved good accuracy in 

predicting pile bearing capacity, outperforming several benchmark machine learning methods. 

Statistical tests confirmed the superior performance of ODFP-LSSVR compared to other models. 

The study demonstrates the promise of using a hybrid metaheuristic-machine learning approach 

for estimating pile bearing capacity. The ODFP optimization helps improve the predictive accuracy 

of the LSSVR model. 

Maaz et al. (Amjad et al., 2022) proposed machine learning models to predict the axial bearing 

capacity (Pu) of driven piles. The models are based on data from 200 pile load tests conducted in 

Ha Nam province, Vietnam. The models use 10 input parameters related to pile geometry, pile 

material, and soil properties. The key parameters are pile diameter, depths of soil layers, pile 

elevations, and SPT blow counts along the pile shaft and at the pile tip. Five machine learning 
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algorithms are tested: XGBoost, Adaptive Boosting (AdaBoost), RF, Decision Tree, and SVM. 

The XGBoost model performs the best, with high accuracy on the test set (R2 = 0.955, low errors). 

XGBoost outperforms the other methods due to its regularization and use of multiple decision 

trees. Sensitivity analysis shows the SPT blow count along the pile shaft has the greatest influence 

on predicted pile capacity. The study demonstrates machine learning can accurately estimate pile 

capacity using common soil properties and pile geometry data. The data driven XGBoost model 

outperformed traditional empirical and analytical methods. The authors conclude that the XGBoost 

model can be readily updated with new data and provides a practical alternative to costly pile load 

testing. It shows promise for estimating pile capacity for geotechnical design. 

A new ensemble AI model proposed by (Cao et al., 2022), termed the Intelligence Multivariate 

Neural Network Inference Model (IMNNIM), is introduced in this research to provide efficient 

and precise pile bearing capacity predictions. The IMNNIM merges the Equilibrium Optimization 

Algorithm (EO) with a blend of Multivariate Adaptive Regression Splines (MARS) and Radial 

Basis Neural Network (RBFNN). The model refines predictions by dynamically amalgamating 

outputs from MARS and RBFNN, while also adjusting weights and tuning parameter values of its 

learning components. Using 472 static pile load test records, the IMNNIM's efficacy was assessed. 

Utilizing a 10-fold cross-validation approach, the model showcased superior predictive accuracy, 

producing top scores for MAPE (7.24%), RMSE (90.92 kN), MAE (67.98 kN), and R2 (0.930), 

coupled with the most consistent results. The t-test method affirmed the model's heightened 

capability in estimating pile bearing capacities.
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3 Chapter 3: Methodology 

3.1 Data Collection 

The study draws on data from 472 field tests involving pre-cast reinforced concrete piles, carried 

out in Ha Nam Province, Vietnam, by researchers Pham and Tran (Pham, Tran, et al., 2020b) and 

illustration of experimental layout is shown in Figure 3.1. The piles featured in the study were 

square in cross-section and designed with closed tips. They were installed into the ground using 

hydraulic machines that applied a continuous force, ensuring a steady installation rate. The testing 

protocol involved gradually increasing vertical loads to 100%, 150%, and 200% of the load design, 

over periods of approximately 6 hours, 12 hours, and 24 hours, respectively.  

Two principles were followed for pile bearing capacity determination: either the settlement of pile 

top at the current load level was at least 5 times that of settlement at the previous load level, or a 

linear load-settlement curve was observed. The bearing capacity was defined as the load level at 

which the settlement exceeded 10% of the pile diameter. This comprehensive dataset of static load 

tests on pre-cast reinforced concrete piles is substantial and forms a robust foundation for 

developing and validating advanced machine learning models, which is a key aspect of this 

research. The introduction of parameters is given in Table 3.1 and statistical summary of input is 

given in Table 3.2. 

Table 3.1: Introduction of input parameters 

Parameters Symbols Count 

Diameter of Pile D 472 

Length of soil first layer Z1 472 

Length of soil second layer Z2 472 

Length of soil third layer Z3 472 

Elevation of pile top Zp 472 

Elevation of ground level Zg 472 
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Elevation of pile extra segment of pile top Zt 472 

Elevation of pile tip Zm 472 

The avg. SPT blow count along pile length Nsh 472 

The avg. SPT blow count at the pile tip Nt 472 

Bearing capacity of piles Pu 472 

 

Table 3.2: Statistical summary of input data 

 D Z1 Z2 Z3 Zp Zg Zt Zm Nsh Nt Pu 

Unit mm M m m M m m m - - kN 

1 400 3.54 7.6 0.3 2.95 3.65 2.95 14.7 11.75 7.59 1017.9 

2 400 4.25 8 0 2.15 3.56 2.16 15.4 13.25 7.67 1152 

3 400 4.25 8 0 2.15 3.58 2.16 15.42 13.27 7.68 1344 

- - - - - - - - - - - - 

- - - - - - - - - - - - 

471 300 3.4 5.26 0 3.4 3.49 3.43 12.06 8.66 6.75 508.9 

472 400 3.85 7.6 0 2.95 3.67 3.27 14.4 11.45 7.15 1425 

Mean 
361.

745 

3.80

179 

6.815

817 
0.346 2.815 3.495 2.936 

13.78

1 

10.96

5 

7.17

7 
1005.5 

Std. 
48.6

55 

0.47

6 
1.286 0.458 0.623 0.066 0.601 1.464 2.032 

0.40

0 
347.58 

Min 300 3.4 5.15 0 1.95 3.34 1.96 11.95 8.55 6.71 407.2 

Max 400 4.75 8 1.22 3.4 3.7 4.35 15.62 13.63 7.75 1551 
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Figure 3.1:  Illustration of experimental layout 

3.2 Outlier Detection and Rectification Using Gaussian Approximation: 

In analyzing the current dataset, we employed the statistical methodology of Gaussian 

approximation. Leveraging the Python library, Feature-engine (version 1.6), this technique 

identifies and addresses outliers. Gaussian approximation is rooted in the properties of the 

Gaussian (or normal) distribution. For a standard normal distribution - the data reveals a pattern 

where around 68% is clustered within one standard deviation from the average, suggesting a tight 

grouping around the mean. About 95% of the data extends to within two standard deviations, 

indicating a broader but still consistent range. Impressively, nearly 99.7% of the observations fall 

within three standard deviations, showcasing an exceptionally high level of consistency across the 

dataset. Harnessing this statistical knowledge, the Gaussian approximation approach detects 
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outliers as observations that lie beyond three standard deviations from the mean. Any data point 

that falls outside this range is considered an aberration from the expected norm. The Feature-

engine library automates this procedure, effectively identifying and excluding these outliers from 

both the upper and lower limits of the distribution. Such a systematic curation ensures that the 

resulting dataset is more robust and less susceptible to the distortions that outliers can introduce. 

3.3 Data Normalization: 

Initially, the raw dataset undergoes a preprocessing phase, where it is normalized using the function 

MinMaxScaler. This preprocessing technique re-scales each feature in the dataset to the range of 

0 to 1, thereby ensuring that the features have the same scale. This crucial step mitigates the 

potential for feature dominance and facilitates a more balanced learning process for the algorithms 

used. 

3.4 Data Partition: 

Once the dataset is meticulously preprocessed, the next step is its splitting into distinct sets for 

model training and validation. The partitioning was carried out using the `train_test_split()` 

function from the Scikit-learn library. This function not only ensures a random distribution of data 

points into the two sets but also guarantees consistency in this random division. The result is a 

balanced and representative split that highlights effective model training and validation. For the 

current dataset, the data is split with a ratio of 90:10 and reasons are:  

• 90% of the data is allocated towards the comprehensive process encompassing 

hyperparameter optimization, training, and internal validation of the model settings. This 

data is labeled as “training and testing data” and it will ensure that the model has enough 

information to understand and capture relationships and patterns. 

• The remaining 10% is reserved for validation purposes of proposed tuned models and 

labeled as “validation data”. 

• The code implementation is given in Code Snippet 3.1 below. 

Code Snippet 3.1: Splitting of data into training and validation 
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3.5 Machine Learning Models 

For the current research, machine learning models like RF, SVR and XGBoost are used. These 

models are implemented through Scikit-learn (Pedregosa FABIANPEDREGOSA et al., 2011) in 

Python version 3.11.6. It is designed for Python and is a widely used, open-source machine 

learning framework. It's famous for making data analysis and model building, both straightforward 

and effective. The library supports various learning algorithms, both supervised and unsupervised, 

and is developed on top of the SciPy (Scientific Python) environment, enhancing its versatility and 

user-friendly nature. 

It is an open-source machine learning library for Python that offers simple and efficient tools for 

data analysis and modeling. It provides a range of supervised and unsupervised learning 

algorithms, is built upon the SciPy (Scientific Python) library and is known for its ease-of-use and 

versatility. RF Regressor, SVR, and XGBoost are carefully imported in python. 

3.6 Hyperparameter Tunning Through Random and Grid Search 

The hyperparameter tuning of machine learning algorithms is performed through GS and RS 

techniques. The tunning of hyperparameters through GS technique is done through 

`GridSearchCV()` which basically comes with integrated cross-validation capabilities. This tool 

establishes a rigorous framework for hyperparameter optimization, gauging model efficacy, and 

safeguarding the model's adaptability to data it hasn't encountered before. Within 

`GridSearchCV()`, there's a specific argument termed 'param_grid'. This argument accepts a 

dictionary which has keys representing hyperparameters and arrays denoting corresponding values 

to be assessed for each hyperparameter. The choice for 'param_grid' is informed by a 

comprehensive review of hyperparameters from existing literature. Initially, a broad search space 

is designated, which is subsequently refined, converging towards a more targeted range for 

hyperparameter exploration (Belete & Huchaiah, 2021). 

The tunning of hyperparameter through RS is done through `RandomizedSearchCV()` which 

utilizes the "param_distributions" parameter. This allows for a specified number of parameter 

configurations, determined by the `n_iter` parameter, to be drawn from the provided distributions. 

By integrating cross-validation through the "cv" parameter, it ensures an optimal mix of 

computational resource management and dependable performance evaluation. RSCV has been 
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reported in literature (Sarajcev & Meglic, 2022). Both hyperparameters tunning techniques require 

a set and range of hyperparameters for tunning. So, hyperparameters are selected for each 

algorithm which are shown in Table 3.3, 3.4, and 3.5. 

Table 3.3: Hyperparameters for RF 

Hyperparameter param_grid 

n_estimators [200, 400, 1000] 

max_depth [10, 20, , 50, None] 

min_samples_split [2, 5, 10] 

min_samples_leaf [1, 2, 4] 

max_features ['auto', 'sqrt'] 

Table 3.4: Hyperparameters for SVR 

Hyperparameter param_grid 

C 
[1.00000000e+00, 3.72759372e+00, 1.38949549e+01, 5.17947468e+01, 

1.93069773e+02, 7.19685673e+02, 2.68269580e+03, 1.00000000e+04] 

Epsilon [0.001, 0.01, 0.1, 1, 2, 4] 

Kernel ['rbf', 'poly','sigmoid','linear'] 

Table 3.5: Hyperparameters for XGBoost  

Hyperparameter param_grid 

max_depth [5, 6, 9, 11, 12, 13, 14] 

n_estimators [50, 80, 100, 150, 200, 300] 

reg_alpha [0, 0.1, 0.4, 0.8, 1.6, 3.2, 6.4, 12.8, 25.6] 

reg_lambda [0, 0.1, 0.4, 0.8, 1.6, 6.4, 12.8, 51.2, 102.4] 

After selection of hyperparameters, the next step is to write code for each algorithm separately and 

some parts of Code Snippets for algorithms tunning through GS and RS are shown in Code 

Snippets 3.2, 3.3, 3.4, 3.5, 3.6, and 3.7. 
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Code Snippet 3.2: Random Search Snippet for Random Forest 

 

Code Snippet 3.3: Grid Search Snippet for Random Forest 
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Code Snippet 3.4: Random Search Snippet for SVR 

 

Code Snippet 3.5: Grid Search Snippet for SVR 
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Code Snippet 3.6: Random Search Snippet for XGBoost 

 

Code Snippet 3.7: Grid Search Snippet for XGBoost 

3.7 Tunned Model Evaluation Through Learning Curves 

To make our process cleaner and more transparent, the hyperparameters are again evaluated against 

metrics by looking at learning curves. In our case, by using these performances in learning curves, 

we can get valuable insights on the performance and behavior of our optimized machine learning 

model. By visualizing learning curves, we can decide about hyperparameter tunning, data 

sufficiency and model complexity.  These curves are plotted through ‘learning_curves’, and Code 

Snippets 3.8, 3.9, and 3.10. and some parts of these codes are represented below. 
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Code Snippet 3.8: Learning Curve with R2 on y-axis for RF tuned with RS 
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Code Snippet 3.9: Learning Curve with RMSE on y-axis for RF tuned with RS 

 

Code Snippet 3.10: Learning Curve with R2 on y-axis for SVR tuned with GS 



Page | 49 

3.8 Evaluation of Tunned Models Through Cross Validation Scores 

All the tunning process goes through cross validation which is basically integrated within libraries. 

Mean train score and mean test score helps in assessing the performance of different 

hyperparameters combination during grid and random search of hyperparameters selection. Mean 

train score is the average performance score of models on training data across all folds for each 

hyperparameter combination. Mean test score is the average performance score of models on 

testing data  across all folds. These scores help in understanding of how well the model is learning 

from the training data and performing on testing data. Some parts of Code Snippet 3.11 are shown 

below. 

 

Code Snippet 3.11: Mean, std for train & test scores of all algorithms 

3.9 Evaluation of Tuned Models on Validation Data 

After a long process, all the models along with their respective tunned hyperparameters are 

evaluated for real world problems through determining evaluation metrics on validation data. For 

this final evaluation process, Code Snippet 3.12 is as follows. 
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Code Snippet 3.12: Evaluation of tunned model on validation data 
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4 Chapter 4: Results and discussion 

4.1 Preprocessed data 

The process of outlier removal often yields noteworthy changes in the structure and characteristics 

of a dataset. When assessing the impact of outlier removal, it is vital to consider not just the data's 

shape, but also its statistical properties, such as the measures of central tendency and the dispersion 

metrics. After the removal of outliers, the dataset's shape transformed to (447,8), which suggests a 

significant refinement of the data points and statistical summary of data after outlier removal is 

given in Table 4.1. The subsequent statistical analysis provides further insights into the 

modifications introduced: 

4.1.1 Central Tendency Measures 

Measures like the mean, median, and mode help to understand the central location of the data. The 

post-outlier removal dataset displayed slight variations in the mean. Such a trend can be attributed 

to the sensitivity of the mean to extreme values. Conversely, the median and mode, which are more 

resilient to outliers, remained largely unchanged. This consistent behavior of median and mode 

suggests that the core structure of the dataset has been preserved. 

4.1.2 Data Distribution 

Skewness is an essential metric for understanding the symmetry of data distribution. A skewness 

of positive, negative and zero indicates right-skewed, left-skewed, and perfect symmetry 

respectively. Upon examination: 

• For variables such as Z1, Z3, Nsh, and Nt, a decrease in skewness towards zero 

highlights a progression towards symmetrical distribution. 

• For Z2 and Zp, an increase in skewness indicates a shift in data distribution, 

albeit still moving closer to symmetry. 

• The variable Nt stands out with its substantial change, transitioning from a 

heavily left-skewed distribution to near-perfect symmetry. 

4.1.3 Range 

An essential metric to understand the spread of data, the range consistently shrunk for most 

variables. This reduction is a direct consequence of the outlier removal, indicating that extreme 
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values, which previously extended the data's breadth, have been effectively excluded, leading to a 

more concise dataset. 

4.1.4 Variable-specific Observations 

• Z1: The mean dipped slightly, but there was a move towards symmetry. 

• Z2: Exhibited an increased mean, with skewness moving closer to symmetry. 

• Z3: Though the mean saw a slight increment, the distribution became more 

symmetrical. 

• Zp: A negligible change in mean, accompanied by a shift towards symmetric 

distribution. 

• Nsh: Notable increase in mean and a stronger push towards symmetry. 

• Nt: Significant alteration towards symmetric distribution. 

• Pu: The mean inclined slightly, with a minor shift towards a negatively skewed 

distribution. 

In wrapping up, the modifications introduced by outlier removal have been beneficial. The 

consistent reduction in range indicates the effective exclusion of extreme values, leading to a 

dataset that's more concentrated around its central values. Additionally, the measures of skewness, 

for most variables, are converging to zero, suggesting improved symmetry. Such refinements 

underline the importance of outlier management in preserving the inherent structure of the data 

while eliminating noise and extreme values. The graphical presentation of data is given in Figure 

4.1, 4.2, 4.3, and 4.4. 

 

Figure 4.1: Graphical statistical summary before and after outlier removal for ‘Zp’ 
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Figure 4.2: Graphical statistical summary before and after outlier removal for ‘Z2’ 

 

Figure 4.3: Graphical statistical summary before and after outlier removal for ‘Nsh’ 

 

Figure 4.4: Graphical statistical summary before and after outlier removal for ‘Nt’ 

Table 4.1: Statistical summary of data after outlier removal 

 D Z1 Z2 Z3 Zp Nsh Nt Pu 

Count 447 447 447 447 447 447 447 447 

Mean 361.74 3.801 6.815 0.346 2.815 10.965 7.177 1005.519 

Std. 48.65 0.476 1.286 0.458 0.623 2.032 0.400 347.581 
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min 300 3.4 5.15 0 1.95 8.55 6.71 407.2 

max 400 4.75 8 1.22 3.4 13.63 7.75 1551 

4.2 Normalized Data 

For each input parameter, minimum and maximum values are changed. After data normalization, 

the rescaled data is shown in the Table 4.2. 

Table 4.2: Statistical summary of normalized data 

 D Z1 Z2 Z3 Zp Nsh Nt 

Unit mm m m m m - - 

Mean 0.617 0.297 0.584 0.283 0.596 0.475 0.449 

Std. 0.486 0.352 0.451 0.375 0.430 0.400 0.385 

Min 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Max 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

 

4.3 Data Splitting 

In this research, the data is split differently than usual. Instead of the common 70:30 or 80:20 split, 

we're using a 90:10 ratio. We'll use 90% of the data for finding the best settings (hyperparameter 

search), training, and testing these settings through cross-validation. The remaining 10% is 

reserved for checking how well the final machine learning models work. The statistical summary 

for both splits of data is given in Table 4.3 and 4.4. 

Table 4.3: Statistical summary of training and testing data 

 D Z1 Z2 Z3 Zp Nsh Nt Pu 

unit Mm m m m M - - kN 

Count 402 402 402 402 402 402 402 402 

Mean 0.616 0.302 0.585 0.289 0.591 0.478 0.451 1003.14 

Std. 0.486 0.355 0.451 0.378 0.432 0.401 0.386 347.88 

min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 407.2 

max 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1551.0 
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Table 4.4: Statistical summary of validation data 

 D Z1 Z2 Z3 Zp Nsh Nt Pu 

unit Mm m m M m - - kN 

Count 45 45 45 45 45 45 45 45 

Mean 0.622 0.255 0.574 0.236 0.639 0.446 0.433 1026.68 

Std. 0.490 0.333 0.456 0.347 0.412 0.387 0.375 347.98 

min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 508.90 

max 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1473.00 

Results for Hyperparameter Tunning: The machine learning models are tuned through grid and 

random search separately to find their respective best set of hyperparameters. Same Range of 

hyperparameters is given for both random and grid search for same model. After tunning, the 

optimal set for each model is shown in table 4.5, 4.6, and 4.7. These hyperparameters optimize the 

ML models to give the best predictions. 

Table 4.5: Optimal hyperparameters for RF selected through GS and RS 

Random Forest 

Hyperparameter Grid Search Optimal Value Random Search Optimal Value 

n_estimators 600 800 

min_samples_split 10 5 

min_samples_leaf 1 4 

max_features log2 log2 

max_depth 10 None 

Bootstrap True True 

Table 4.6: Optimal hyperparameters for SVR selected through GS and RS 

Support Vector Machine 

Hyperparameter Grid Search Optimal Value Random Search Optimal Value 

C 10000.00 2628.69 

Degree 1 4 

epsilon 4 4 
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gamma 1 1.0 

kernel Rbf Rbf 

Table 4.7: Optimal hyperparameters for XGBoost selected through GS and RS 

XGBoost 

Hyperparameter Grid Search Optimal Value Random Search Optimal Value 

Gamma 0.8 12.8 

learning_rate 0.25 0.03 

max_depth 5 6 

n_estimators 80 300 

reg_alpha 0.4 3.2 

reg_lamda 102.4 51.2 

4.4 Results for Evaluation of Tunned Models Through Learning Curves 

4.4.1 Evaluation of Learning Curves for Random Forest 

In our analysis, we examined the learning curves of a Random Forest model under two different 

hyperparameter tuning methods: RS and GS. The insights got from these learning curves provide 

a clear understanding of the model's performance and potential areas for enhancement and learning 

curves are shown in Figure 4.5 and 4.6. 

4.4.1.1 Analysis of Learning Curves with Optimal Hyperparameters via Random Search: 

Training Score Curve: Starting at an R2 score of 0.93 and concluding around 0.96 indicates a 

robust fit to the training data. Such a trend reflects the model's capability to capture the underlying 

patterns within the training set. The marginal decrease followed by a plateau in the curve suggests 

that the model's performance on the training set reaches a stable point as more data is incorporated. 

Validation Score Curve: Initiating below 0.88 and capping around 0.93 showcases the model's 

improving generalization capabilities with an increase in training data. However, a discernable gap 

between the training and validation scores indicates a mild overfitting scenario, where the model 

might be too attuned to the training data, affecting its performance on unseen data. Additionally, 

when we inspect the model's performance using the RMSE (Root Mean Square Error) on the y-
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axis, similar trends are observed. RMSE effectively quantifies the error magnitude, offering a 

complementary perspective to the R2 score. 

In summary, we can conclude that the model has a good fit to the data, as the training and validation 

scores are both high and stable. The model is likely generalizing well to new data, and the 

performance is consistent across different training sets (as indicated by the narrow confidence 

intervals). It also suggests that the model's capacity to learn from additional data is reaching a 

limit, as indicated by the plateauing of the validation score. 

4.4.1.2 Analysis of Learning Curves with Optimal Hyperparameters via Grid Search: 

The R2 score is a metric that indicates the proportion of variance in the dependent variable that is 

predictable from the independent variables. In this context, it's used to evaluate the fit quality of 

the model. The higher the R2 score, the better the model is at making predictions. The learning 

curve shows that both the training score (solid line) and the validation score (dashed line) start off 

with a strong R2 score, even with a smaller number of training samples. The training score remains 

relatively stable and high as the number of training samples increases, suggesting that the model 

has a consistent performance and is not overfitting. Overfitting would typically be indicated by a 

high training score but a low validation score. The validation score, on the other hand, starts lower 

but increases with more data, a pattern that is generally indicative of a model that could benefit 

from more data points. The fact that the validation curve's trajectory is mildly upward as the 

number of training samples increases is encouraging. It suggests that the model is learning and 

generalizing well from the added data, which is the desired outcome when tuning a model. The 

performance of the hyperparameters identified by the RS appears to be on par with those found by 

the GR, which is significant because RS is often more computationally efficient than GR. 

Considering the slight improvement in the validation score with more data, it's plausible that the 

model's generalization could further improve with additional training samples. This suggests that 

data augmentation or collection of more data could be beneficial strategies for enhancing model 

performance. 

Overall, the learning curves suggest that the tuned model has a good fit to the data, as indicated by 

high R2 values. The GS method, despite being more exhaustive, does not appear to provide a 

significantly better set of hyperparameters than RS, which can be a point in favor of using RS due 
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to its efficiency. The model shows potential for improved generalization with more data, pointing 

towards data acquisition as a possible next step in model refinement. 

In summary, utilizing both the R2 score and RMSE for analyzing learning curves furnishes a 

comprehensive view of the model's dynamics. While the R2 metric offers insights into the data fit 

quality, the RMSE quantifies the error's magnitude. Armed with these insights, we can make 

informed decisions regarding model refinements, data augmentation, or hyperparameter 

adjustments. 

  

Figure 4.5: Learning Curves for RF during RS tunning 

  

Figure 4.6: Learning Curves for RF during GS tunning 

4.4.2 Evaluation of Learning Curves for SVR 

Support Vector Regression (SVR), part of the Support Vector Machines (SVM) framework, 

employs the principle of maximizing margins to generate predictive models for continuous 

outputs. In this evaluation, we've dissected the learning curves of an SVR model optimized via 



Page | 59 

two distinct hyperparameter tuning techniques: RS and GS as shown in Figure 4.7. The patterns 

depicted in these curves shed light on the model's efficacy and potential areas of refinement. 

4.4.2.1 Analysis of Learning Curves with Optimal Hyperparameters via Random Search: 

• Characteristic dips at 190 samples: Both the training and validation curves exhibit 

synchronized dips when trained on approximately 190 samples. Such synchronized 

perturbations suggest a challenge faced by the SVR model in fitting to or generalizing from 

this specific batch of data. The reason for this behavior can be multifaceted: anomalies, 

inherent noise, or unique attributes within this data subset could be potential culprits. 

• Validation curve trend: As the data samples increase, the validation curve presents a 

declining trend towards the latter part. Such a decline in performance on the validation set, 

in juxtaposition with the training sets consistent or improving performance, is indicative of 

a potential overfitting scenario. The persistent difference between the training and 

validation scores further accentuates this overfitting concern. The model might be 

capturing intricate patterns from the training data, which aren't necessarily generalizable, 

thereby diminishing its performance on unseen or validation data. 

• The insights from the learning curves of the SVR model, optimized with both Random and 

Grid Search methods, underscore the importance of vigilant data inspection and potential 

model refinement. Recognizing challenges at specific data intervals and addressing 

overfitting tendencies can guide the fine-tuning of the model or instigate further 

investigations into the data's characteristics. 

  

Figure 4.7: Learning Curves for SVR during RS tunning 
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4.4.3 Evaluation of Learning Curves for XGBoost 

By delving into the learning curves of an XGBoost model, we can gauge XGBoost model 

performance on optimal set of hyperparameters and understand how different hyperparameter 

tuning strategies impact its behavior. Below, we present a meticulous analysis based on two 

hyperparameter tuning strategies: RS and GS as shown in Figure 4.8 and 4.9.  

4.4.3.1 Analysis of Learning Curve with Optimal Hyperparameters via Random Search: 

Training score curve: Start at a score of 0.85, the training curve experiences a gradual ascent, 

eventually plateauing at 0.95. Starting from a lower baseline but reaching a high plateau, suggests 

that the model is capable of learning effectively from the training data without overfitting, as 

indicated by the convergence of training and validation scores. 

Validation score curve: Starting at 0.812, the validation curve mirrors a steady climb to finally 

stabilize at 0.93 which indicates good generalization. However, the initial steep slope followed by 

a plateau suggests that additional data points beyond a certain threshold do not yield significant 

improvements in validation performance. 

The RMSE for both training and validation decreases as more data is provided, which is desirable. 

However, the validation RMSE appears to plateau, indicating that while the model’s error rate is 

decreasing, it might require further improvements to achieve lower errors on unseen data. 

Gap Analysis: A consistent and narrow divergence between the training and validation curves 

throughout the learning process is evident. This modest gap is encouraging, suggesting that the 

model achieves a harmonious balance between bias and variance. In layman's terms, the model is 

well-tuned, avoiding pitfalls of both significant overfitting and underfitting. This harmonization 

reflects the model's robustness in generalizing to unseen data. 

4.4.3.2 Analysis of Learning Curve with Optimal Hyperparameters via Grid Search: 

Training curve insight: The curve kicks off from an impressive 0.925, which could suggest that 

the Grid Search method has identified a set of hyperparameters that allow the model to learn 

effectively from the outset. It undergoes a slight trough when encountering around 100 samples, 

but this deviation isn't profound. It then marches forward to stabilize at a commendable 0.970. 

Validation curve insight: The validation trajectory starts from 0.825, with a minor dip observed 

around the 225-sample mark could be an anomaly or reflect a particular characteristic of the data 
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set that is difficult for the model to learn. Despite this, it makes a comeback to stabilize around 

0.93. 

The RMSE curve shows a decrease in error as more data is provided, with a more gradual 

convergence between training and validation scores compared to RS. The smaller gap between the 

curves suggests that the GS model might be slightly more stable and less prone to overfitting than 

the RS model. 

Gap analysis: As the model understands more data, the separation gap between the training and 

validation curves diminishes. However, a final split of approximately 0.04 persists. While not vast, 

this lingering gap suggests that the model, although fine-tuned, might be mildly overfitting. It's a 

subtle indication that the model could be capturing certain nuances of the training data that may 

not necessarily translate to optimal performance on validation or unseen datasets. The modest gaps 

between the training and validation curves suggest that both models are balanced in terms of bias 

and variance, achieving a harmonious fit to the data without overfitting or underfitting excessively. 

In summary, RS-XGBoost shows good learning capabilities and generalization, with performance 

improvements as more data is added. The model demonstrates stability, but the plateauing 

validation score suggests a limit to the benefits of additional data. The GS-XGBoost, starts off with 

a strong fit and maintains stability throughout the learning process. The minor fluctuations indicate 

that it is sensitive to the training data's nuances but overall suggests a robust model with a good 

balance between performance on training and unseen data. 

The learning curves for both models indicate that both hyperparameter tuning methods have 

yielded stable and well-generalized models. However, the GS approach may offer a slight edge in 

stability and predictive performance, as suggested by the tighter convergence of its learning curves 

and lower RMSE. Further experimentation with a larger dataset or more diverse hyperparameter 

space could potentially lead to further improvements in model performance and stability. 
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Figure 4.8: Learning Curves for XGBoost during RS tunning 

  

Figure 4.9: Learning Curves for XGBoost during GS tunning 

4.5 Results of Evaluation for Tunned Models Through Cross Validation Scores 

All models are trained and tested for finding the optimum set of hyperparameters. During this 

process, the GridSearchCV() and RandomizedSearchCV() provides results against each set which 

are saved as cv_results. Out of all these results,  the regression metrics are exported and shown in 

Table 4.8. There's a noticeable, as seen in Table 4.8, though not substantial, difference between the 

mean training and mean test scores (R2, RMSE, MAE) of five folds. This hints at slight overfitting, 

suggesting that the model might be capturing some noise present in the training data. The standard 

deviation between results of folds is calculated. When a model shows a lower standard deviation, 

it means its performance is reliably consistent, maintaining similar levels of accuracy or 

effectiveness across various segments of the data. The standard deviations of the metrics across 

the five folds, particularly for the test scores, hint at the model's stability. An R² value close to 1 in 

regression analysis is associated with good performance based on the high goodness of fit provided 
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by the squared multiple correlation coefficient. Train R2 is higher than test R2 which indicates there 

is some indication of the model capturing noise or overfitting, albeit not severely. 

The RF model shows a higher mean training R2 score and lower RMSE by using GS 

hyperparameters compared to RS hyperparameters , indicating better training performance with 

GS. However, the testing scores are quite similar for both methods, suggesting comparable 

generalization capabilities. Similar to RF, SVR exhibits better training performance with GS 

hyperparameters but shows negligible differences in testing performance between the two 

methods. This suggests that while GS may lead to better optimization during training, it doesn't 

significantly affect the generalization ability of model. In the case of XGBoost, the model 

demonstrates the highest training R2 scores among all, particularly with GS hyperparameters, and 

maintains lower RMSE scores compared to the other models. The testing scores, however, are 

comparable between Grid and Random Search methods. 

In summary, while GS generally leads to slightly better training performance, the differences in 

testing scores between two approaches are minimal. This indicates that both hyperparameter tuning 

methods are effective, with gs potentially offering more finely tuned models at the cost of higher 

computational resources. 

The Standard Deviation (SD) for RF is relatively low for both training and testing scores, 

indicating consistent performance across different folds. This consistency is desirable, as it implies 

the model's robustness. For SVR, the standard deviation is higher, especially in testing scores, it 

might indicate that the model's performance is more variable and less predictable across different 

datasets. This could be a concern for generalization. In the end, XGBoost, the SD provides insight 

into model stability under different hyperparameter resulting from both searches. A lower SD in 

either method would suggest more consistent performance, which is advantageous. 

In general, models with lower SDs in testing scores are preferable, as they indicate more reliable 

performance when faced with new, unseen data. This aspect should be considered along with the 

mean scores to get a thorough understanding of each model's efficiency. The scatter plots for the 

pile loading capacity  are shown in Figures 4.10, 4.11, and 4.12. 
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Figure 4.10: Predictions vs real values for RS-RF & GS-RF 

  

Figure 4.11: Predictions vs real values for RS-SVR & GS-SVR 

  

Figure 4.12: Predictions vs real values for RS-XGBoost & GS-XGBoost 

Table 4.8: Results for Cross Validation Scores 

Model 
GS-Hyperparameters RS-Hyperparameters 

Train Test Train Test 

 R2 RMSE R2 RMSE R2 RMSE R2 RMSE 
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Random 

Forest 

0.957  

(+/- 

0.003) 

71.631 

(+/- 

2.287) 

0.929  

(+/- 

0.019) 

91.122 

(+/- 

10.760) 

0.949 

 (+/- 

0.003) 

78.237 

 (+/- 

2.533) 

0.928  

(+/- 

0.017) 

91.928  

(+/- 9.679) 

SVR 

0.936  

(+/- 

0.003) 

87.460  

(+/- 

2.295) 

0.921  

(+/- 

0.020) 

96.238  

(+/- 

11.393) 

0.934  

(+/- 

0.004) 

89.046  

(+/- 

2.731) 

0.921  

(+/- 

0.016) 

96.341  

(+/- 8.761) 

XGBoost 

0.967  

(+/- 

0.002) 

62.683  

(+/- 

2.288) 

0.933  

(+/- 

0.0194) 

88.479  

(+/- 

11.166) 

0.953  

(+/- 

0.003) 

74.66 

 (+/- 

2.474) 

0.931 

 (+/- 

0.019) 

89.888  

(+/- 10.802) 

4.6 Evaluation of Models on Validation Data 

In order to evaluate the effectiveness of hyperparameter tuning methods - GS and RS - across three 

different machine learning models: RF, SVR, and XGBoost, are trained on validation data which 

was separated in the start. The result for that evaluation is evaluated by regression metrics which 

are shown in Table 4.9. 

It highlights that GS generally outperforms RS in refining model accuracy. This is evident from 

the higher R2 values and lower error rates (MAE, RMSE, MSE) observed with GS. XGBoost, 

when optimized using GS, showed particularly impressive results, achieving an R2 value of 0.952 

and an RMSE of 75.26 kN, slightly better than its performance with Random Search (R2 = 0.950, 

RMSE = 76.45 kN). This indicates XGBoost's superior predictive capability among the three 

models. The results of RS-XGBoost and GS-XGBoost are compared with proposed models in 

literature as shown in Table 4.10. It clearly outperforms the other models showing supremacy of 

RS and GS techniques. 

The differences between the two tuning methods, while being modest, are still noteworthy. Despite 

RS undergoing more iterations, GS provided slightly better outcomes. This finding is critical for 

selecting the most suitable models and tuning approaches in machine learning projects, underlining 

the importance of strategic model choice and hyperparameter optimization. 

Visual comparisons of the predicted values against the actual values were also performed shown 

in Figures 4.13, 4.14, and 4.15. Each algorithm, tuned with RandomSearchCV(), was placed side 

by side against its GridSearchCV() which is basically tunning counter of it . Additionally, a Taylor 
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diagram was employed to analyze the predictions of each model and shown in Figure 4.16. The 

gap between forecasted and actual or reference points reflects the precision of predictive models 

(Jeon & Rahman, 2008). Here it can be observed that models tuned with Grid Search, particularly 

XGBoost and RF, demonstrated superior performance, showing high correlation coefficients 

(0.977 and 0.9769, respectively) and lower SD. This reinforces their strong linear relationship with 

actual values and minimal prediction errors. The GS-tuned XGBoost (GS-XGBoost) model stood 

out as the most effective, displaying the highest correlation and the lowest RMSE among all 

evaluated models. This underscores its exceptional ability to accurately capture data trends, 

making it a highly reliable option for similar prediction tasks. Overall, this analysis offers valuable 

insights into the effectiveness of different tuning methods in optimizing machine learning models. 

Table 4.9: ML models predictions on validation data 

Validation Data 

Model 
GS-Hyperparameters RS-Hyperparameters 

R2 RMSE MSE R2 RMSE MSE 

Random Forest 0.9499 76.982 5926.357 0.9369 86.368 7459.54 

SVR 0.9464 79.639 6342.45 0.9424 82.54 6812.85 

XGBoost 0.9561 72.07 0.9464 0.9522 75.1834 75.1834 

Table 4.10: Proposed models comparison with literature 

Model R2 RMSE (kN) 

WOA-XGBoost (Nguyen et al., 2023) 0.92 87.72 

RF-PSO (Pham & Tran, 2022) 0.924 93.91 

RF (Pham, Ly, et al., 2020) 0.866 98.161 

ODFP-LSSVR (Hoang et al., 2022) 0.93 92.19 

XGBoost (Amjad et al., 2022) 0.955 80.653 

IMNNIM (Cao et al., 2022) 0.933 88.5 

RS-XGBoost 0.952 75.18 

GS-XGBoost 0.956 72.07 
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Figure 4.13: Predictions vs real values for RS-RF & GS-RF 

 

Figure 4.14: Predictions vs real values for RS-SVR & GS-SVR 

 

Figure 4.15: Predictions vs real values for RS-XGBoost & GS-XGBoost 
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Figure 4.16: Taylor Diagram 

 

4.7 Benefits 

The current study highlights the power of machine learning in transforming how we estimate the 

bearing capacity of concrete piles, making the process faster, more accurate, and cost-effective. 

By using advanced algorithms, engineers can predict pile behavior more reliably, reducing the 

need for expensive field tests. This approach not only speeds up project timelines but is also 

economical for small projects. 

 

4.8 Limitations 

The current study has one significant constraint which is the minimal consideration of material 

properties within the dataset. It can influence the accuracy of bearing capacity predictions in 

diverse geological and environmental conditions. Additionally, the focus on a singular criterion for 

bearing capacity—specifically, the settlement is less than 10% of the pile diameter are 

considered—narrows the scope of these models. This limitation restricts the models' applicability 

to a wider range of practical scenarios where settlement criteria may vary, potentially affecting 

their utility in real-world engineering challenges. 
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5 Chapter 5: Conclusions 

5.1 Development of Predictive Model 

 The research successfully developed a predictive model to understand the intricate relationships 

between axial bearing capacity and its influencing factors. Various machine learning algorithms, 

including Random Forest (RF), Support Vector Regressor (SVR), and XGBoost, were employed 

and fine-tuned to enhance the model's performance. 

5.2 Transparent Mapping: 

  The research transparently mapped out each phase, providing a clear and comprehensive insight 

into the complexities of hyperparameter tuning and validation processes. This transparency 

ensures the replicability and reliability of the research findings. 

5.3 Establishment of Robust Models 

   The models established have demonstrated solid generalization capabilities. They have shown 

consistent and reliable performance, ensuring their applicability to diverse and unseen data, which 

is crucial for real-world applications. RS-RF ( R2= 0.93 , RMSE=86.63 ), GS-RF (R2= 0.949, 

RMSE=76.98), RS-SVR (R2= 0.942 , RMSE=82.54), GS-SVR (R2= 0.946 , RMSE=79.63), RS-

XGBoost (R2= 0.952 , RMSE=75.18), and GS-XGBoost (R2= 0.956 , RMSE=72.07) shows 

satisfactory results proving generalization of tuned models. 

5.4 Comparison of Machine Learning Models 

   A thorough comparison of RF, SVR, and XGBoost was conducted. The evaluation on validation 

data, along with the analysis of validation and learning curves, revealed that all the models 

performed commendably. Among them, XGBoost (RS-XGBoost and GS-XGBoost) stood out for 

its superior performance, affirming its effectiveness in handling the task at hand. 

5.5 Effective Tuning and Validation 

   The use of GridSearchCV() and RandomizedSearchCV() for hyperparameter tuning, despite 

being a trial-and-error process, proved to be beneficial. The models' performance was optimized, 

and their robustness was validated through various curves and evaluations. 
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5.6 Future Recommendations 

5.6.1 Exploration of Other Algorithms 

Future research could explore other machine learning or deep learning algorithms to ascertain if 

better performance metrics can be achieved. Algorithms like neural networks or ensemble methods 

could be investigated. 

5.6.2 Advanced Hyperparameter Tuning 

Employing more advanced hyperparameter tuning methods, such as Bayesian Optimization, could 

potentially enhance the model's performance further. 

5.6.3 Feature Engineering 

 Delving deeper into feature engineering could unveil more intricate relationships and improve the 

model's predictive power. It is recommended to explore various feature selection and extraction 

techniques. 

5.6.4 Cross-Domain Application 

The models can be tested on other related domains to evaluate their adaptability and scalability, 

ensuring their broad applicability. 

5.6.5 Incorporation of Domain Knowledge 

   Integrating domain-specific knowledge and expertise can refine the model, making it more 

attuned to the nuances of axial bearing capacity and its influencing factors. 

5.6.6 Evaluation with More Diverse Data 

   It is crucial to evaluate the models with a more diverse and extensive dataset to ensure their 

robustness and reliability in various scenarios and conditions. 

By following these recommendations, future research can build upon the current findings, 

enhancing the predictive models and contributing further to the understanding of axial bearing 

capacity and its influencing factors. 
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