
Prediction of Axial Bearing Capacity of Piles using Sophisticated ML

Algorithms Tuned through Random and Grid Search

By

Syed Jamal Arbi

(Registration No: 00000328433)

Department of Geotechnical Engineering

NUST Institute of Civil Engineering

School of Civil and Environmental Engineering

National University of Sciences & Technology (NUST)

Islamabad, Pakistan

(2024)

ii

Prediction of Axial Bearing Capacity of Piles using Sophisticated ML

Algorithms Tuned through Random and Grid Search

By

Syed Jamal Arbi

(Registration No: 00000328433)

A thesis submitted to the National University of Sciences and Technology, Islamabad, in partial

fulfillment of the requirements for the degree of

Master of Science in Geotechnical Engineering

Thesis Supervisor: Dr. Tariq Mahmood Bajwa

NUST Institute of Civil Engineering

School of Civil and Environmental Engineering

National University of Sciences & Technology (NUST) Islamabad, Pakistan

iii

iv

v

vi

vii

viii

DEDICATED

To

MY MOTHER

ix

ACKNOWLEDGEMENTS

All praise to Almighty Allah, who gave me the courage and power to complete this research

work and gratitude to the last Prophet MUHAMMAD (P.B.U.H).

I extend my wholehearted gratitude to my revered supervisor, Dr. Tariq Mahmood Bajwa,

for his technical guidance, indelible help and valuable feedback throughout this study. I also

express my utmost gratitude to GEC members Dr. Nauman Khurshid, Dr. Umer Saeed, and Dr.

Syed Muhammad Jamil for providing helpful feedback on various aspects of this study from time

to time.

I would like to acknowledge my colleagues Nazeer Alam, Muhammad Rashid, Waqar

Saleem, Muhammad Shahroz Khalid, and Rana Noman for their support and for making my stay

at NUST pleasant and memorable. I also thank my life partner, Syeda Arifa, for her continuous

support in completing my studies.

i

ABSTRACT

Pile foundations support structures by transferring loads to deep sub-surface strata, designed to

bear the maximum design load without failure. Recent studies are focused on developing

innovative models to estimate the pile capacity on efficient ground in less time. The pile load tests

are difficult to perform and time-consuming. So, this study aims to address existing gaps in

geotechnical engineering research, specifically in pile strength estimation, by deploying advanced

machine learning algorithms, namely Random Forest (RF), Support Vector Regression (SVR), and

Xtreme Gradient Boost (XG Boost), which are meticulously fine-tuned using hyperparameter

optimization techniques, such as Grid Search (GS) and Random Search (RS). The models were

formulated in a high-level programming language, namely Python. The model's efficacy was

assessed through Root Mean Square Error (RMSE), Coefficient of Determination (R2), and

Standard Deviation (SD). The test results show that each model performs well; however, the

XGBoost algorithm shows higher efficacy, with high accuracy on the data sets (R2 = 0.933).

Keywords: Machine learning, Pile bearing capacity, Driven piles, Pile load test, Hyperparameter

tuning.

Page | ii

TABLE OF CONTENTS

ABSTRACT .. i

LIST OF FIGURES .. v

LIST OF TABLES .. vii

LIST OF CODE SNIPPETS .. viii

LIST OF SYMBOLS, ABBREVIATIONS AND ACRONYMS .. 1

1 Chapter 1: Introduction .. 1

1.1 General ... 1

1.2 Need of research ... 3

1.3 Contribution to industry ... 3

1.4 Objective of the research work ... 3

1.5 Scheme of chapters ... 4

2 Chapter 2: Literature Review .. 6

2.1 General ... 6

2.2 Overview of Piles ... 6

2.3 Techniques for Pile Bearing Capacity Estimation .. 7

2.4 Background of Machine Learning .. 7

2.4.1 What are Machine Learning Algorithms? ... 8

2.5 Different Machine Learning Algorithms .. 10

2.5.1 Random Forest Algorithm .. 10

2.5.2 Support Vector Regression (SVR) .. 13

2.5.3 XGBoost Algorithm .. 16

2.6 Model Parameters ... 19

2.6.1 What are Hyperparameters in Machine Learning? ... 19

2.6.2 Techniques to Tune Hyperparameters: .. 20

2.6.3 Random Forest Regressor Hyperparameters: ..20

2.6.4 Support Vector Regression (SVR) Hyperparameters: ...20

2.6.5 XGBoost Regressor Hyperparameters: ..21

2.6.6 Random Search for Hyperparameters: .. 21

Page | iii

2.6.7 Grid Search for Hyperparameters: .. 23

2.7 Model Evaluation ... 26

2.7.1 Cross-Validation: ... 26

2.7.2 Model Metrics: .. 30

2.7.3 Validation Curves: ... 31

2.7.4 Learning Curves: ... 32

2.8 Already Research ... 34

3 Chapter 3: Methodology .. 38

3.1 Data Collection ... 38

3.2 Outlier Detection and Rectification Using Gaussian Approximation: 40

3.3 Data Normalization: ... 41

3.4 Data Partition: .. 41

3.5 Machine Learning Models ... 42

3.6 Hyperparameter Tunning Through Random and Grid Search 42

3.7 Tunned Model Evaluation Through Learning Curves .. 46

3.8 Evaluation of Tunned Models Through Cross Validation Scores 49

3.9 Evaluation of Tuned Models on Validation Data ... 49

4 Chapter 4: Results and discussion ... 51

4.1 Preprocessed data ... 51

4.1.1 Central Tendency Measures .. 51

4.1.2 Data Distribution ... 51

4.1.3 Range .. 51

4.1.4 Variable-specific Observations ... 52

4.2 Normalized Data .. 54

4.3 Data Splitting.. 54

4.4 Results for Evaluation of Tunned Models Through Learning Curves 56

4.4.1 Evaluation of Learning Curves for Random Forest .. 56

4.4.2 Evaluation of Learning Curves for SVR ... 58

4.4.3 Evaluation of Learning Curves for XGBoost ... 60

4.5 Results of Evaluation for Tunned Models Through Cross Validation Scores 62

4.6 Evaluation of Models on Validation Data .. 65

Page | iv

4.7 Benefits ... 68

4.8 Limitations ... 68

5 Chapter 5: Conclusions .. 69

5.1 Development of Predictive Model ... 69

5.2 Transparent Mapping: .. 69

5.3 Establishment of Robust Models.. 69

5.4 Comparison of Machine Learning Models ... 69

5.5 Effective Tuning and Validation ... 69

5.6 Future Recommendations ... 70

5.6.1 Exploration of Other Algorithms .. 70

5.6.2 Advanced Hyperparameter Tuning ... 70

5.6.3 Feature Engineering .. 70

5.6.4 Cross-Domain Application.. 70

5.6.5 Incorporation of Domain Knowledge ... 70

5.6.6 Evaluation with More Diverse Data ... 70

References ... 71

Page | v

LIST OF FIGURES

Figure 1.1: Dynamic load test and static load test at the site ... 2

Figure 1.2: Scheme of chapters .. 5

Figure 2.1: Categories of machine learning algorithms ... 8

Figure 2.2: Random Forest prediction model (Random Forests. Random Forests Is a Powerful

Machine… | by Dr. Roi Yehoshua | Medium, n.d.) ... 11

Figure 2.3: SVR algorithm model (Support Vector Regression (SVR) | Analytics Vidhya, n.d.) 14

Figure 2.4: XGBoost (Jiang et al., 2021) ... 17

Figure 2.5: Techniques for hyperparameter tunning .. 21

Figure 2.6: Random Search layout (A Comparison of Grid Search and Randomized Search Using

Scikit Learn | by Peter Worcester | Medium, n.d.) .. 22

Figure 2.7: Grid Search layout (A Comparison of Grid Search and Randomized Search Using

Scikit Learn | by Peter Worcester | Medium, n.d.) .. 24

Figure 2.8: Grid Search CV ... 25

Figure 2.9: Process of Cross Validation ... 27

Figure 2.10: K-Fold ... 28

Figure 2.11: Stratified K-Fold process ... 28

Figure 2.12: Time-Series Split process .. 29

Figure 2.13: Group K-Fold process ... 30

Figure 2.14: Types of Validation Curves ... 32

Figure 2.15: Types of Learning Curves ... 33

Figure 3.1: Illustration of experimental layout ... 40

Figure 4.1: Graphical statistical summary before and after outlier removal for ‘Zp’ 52

Figure 4.2: Graphical statistical summary before and after outlier removal for ‘Z2’ 53

Figure 4.3: Graphical statistical summary before and after outlier removal for ‘Nsh’ 53

Figure 4.4: Graphical statistical summary before and after outlier removal for ‘Nt’ 53

Figure 4.5: Learning Curves for RF during RS tunning .. 58

Figure 4.6: Learning Curves for RF during GS tunning .. 58

Figure 4.7: Learning Curves for SVR during RS tunning ... 59

Figure 4.8: Learning Curves for XGBoost during RS tunning .. 62

Figure 4.9: Learning Curves for XGBoost during GS tunning ... 62

Page | vi

Figure 4.10: Predictions vs real values for RS-RF & GS-RF .. 64

Figure 4.11: Predictions vs real values for RS-SVR & GS-SVR .. 64

Figure 4.12: Predictions vs real values for RS-XGBoost & GS-XGBoost.................................. 64

Figure 4.13: Predictions vs real values for RS-RF & GS-RF .. 67

Figure 4.14: Predictions vs real values for RS-SVR & GS-SVR .. 67

Figure 4.15: Predictions vs real values for RS-XGBoost & GS-XGBoost.................................. 67

Figure 4.16: Taylor Diagram .. 68

Page | vii

LIST OF TABLES

Table 3.1: Introduction of input parameters ... 38

Table 3.2: Statistical summary of input data .. 39

Table 3.3: Hyperparameters for RF .. 43

Table 3.4: Hyperparameters for SVR ... 43

Table 3.5: Hyperparameters for XGBoost ... 43

Table 4.1: Statistical summary of data after outlier removal ... 53

Table 4.2: Statistical summary of normalized data .. 54

Table 4.3: Statistical summary of training and testing data ... 54

Table 4.4: Statistical summary of validation data .. 55

Table 4.5: Optimal hyperparameters for RF selected through GS and RS 55

Table 4.6: Optimal hyperparameters for SVR selected through GS and RS 55

Table 4.7: Optimal hyperparameters for XGBoost selected through GS and RS 56

Table 4.8: Results for Cross Validation Scores .. 64

Table 4.9: ML models predictions on validation data .. 66

Table 4.10: Proposed models comparison with literature .. 66

Page | viii

LIST OF CODE SNIPPETS

Code Snippet 2.1: Random Forest implementation in Python .. 13

Code Snippet 2.3: SVR implementation in Python ... 16

Code Snippet 2.4: XGBoost implementation in Python.. 19

Code Snippet 2.5: Randomized Search CV implementation in Python 23

Code Snippet 2.6: GridSearchCV() implementation in Python .. 26

Code Snippet 3.1: Splitting of data into training and validation ... 41

Code Snippet 3.2: Random Search Snippet for Random Forest ... 44

Code Snippet 3.3: Grid Search Snippet for Random Forest ... 44

Code Snippet 3.4: Random Search Snippet for SVR .. 45

Code Snippet 3.5: Grid Search Snippet for SVR .. 45

Code Snippet 3.6: Random Search Snippet for XGBoost ... 46

Code Snippet 3.7: Grid Search Snippet for XGBoost ... 46

Code Snippet 3.8: Learning Curve with R2 on Y-axis for Random Forest Tuned with RS 47

Code Snippet 3.9: Learning Curve with RMSE on Y-axis for Random Forest Tuned with RS .. 48

Code Snippet 3.10: Learning Curve with R2 on Y-axis for SVR Tuned with GS 48

Code Snippet 3.11: Mean, std for train & test scores of all algorithms 49

Code Snippet 3.12: Evaluation of tunned model on validation data ... 50

Page | 1

LIST OF SYMBOLS, ABBREVIATIONS AND ACRONYMS

No. Abbreviations Description

1 ML Machine Learning

2 SVR Support Vector Regression

3 RF Random Forest

4 PSO Particle Swarm Optimization

5 WOA Whale Optimization Algorithms

6 ANN Artificial Neural Network

7 DNN Deep Neural Network

8 GA Genetic Algorithm

9 DLNN Deep Learning Neural Networks

10 RMSE Root Mean Square Error

11 R2 Coefficient of Determination

12 MAE Mean Absolute Error

13 SPT Standard Penetration Test

14 LSSVR Least Squares Support Vector Regression

15 OBDFP Opposition-Based Differential Flower Pollination

16 MARS Multivariate Adaptive Regression Splines

17 RBFNN Radial Basis Function Neural Network

Page | 1

1 Chapter 1: Introduction

1.1 General

In the world of construction and civil engineering, when we refer to the term "foundation," we are

speaking about the element of a structure that connects it to the ground, ensuring stability and

strength. While there are different types of foundations, piles stand out as one of the most integral

components, especially for structures in challenging terrains or with specific load requirements.

Piles are long, slender, cylindrical structural elements made from materials like steel, concrete, or

timber. They serve to transfer the weight of a structure deep into the ground, bypassing weak or

compressible soil layers that are inadequate for supporting the structure's weight.

(Adi Pusat Pengelolaan Sumberdaya Lahan et al., 2009) explains that piles are used to transfer

loads from shallow depths to deeper, more supportive layers of soil. They can be bearing piles,

which penetrate a stratum of good bearing capacity, or friction piles, which rely on friction on the

sides of the pile for support. By doing so, piles ensure the building or infrastructure remains stable

and secure. (Verma & Gill, 2018) discusses different types of pile foundations, including bored

pre-cast piles and driven steel piles. Piles are needed for high load structures, waterfront structures,

expansion of existing structures and areas prone to natural calamities.

The bearing capacity of a pile is the maximum load a pile can support without risking structural

failure or excessive settlement. In essence, determining the correct bearing capacity is of

paramount importance. (You-xiang, 2008) emphasizes the importance of rational and economical

pile foundation design, including the selection of the appropriate pile pattern and length. An

underestimate might lead to structural failures, while an overestimate could lead to overspending

on unnecessary materials or depth. (Chao et al., 2020) explains that pile load tests are a reliable

method for determining the ultimate bearing capacity of a single pile and accurately reflecting its

stress condition and deformation characteristics. Essentially, it is a procedure used to evaluate the

behavior of a pile under various load conditions. By understanding this behavior, engineers and

geotechnical experts can determine the ultimate load carrying capacity of the pile and its suitability

for a specific project. The test also aids in ascertaining any potential settlement or recovery the pile

might experience under the applied loads. (Rajapakse, 2008) discusses the general procedures and

equipment required for conducting pile load tests, including driven piles, hydraulic jacks, and load

Page | 2

indicators. The pile load test can be categorized into two primary types based on the nature of the

load: Static Load Test and Dynamic Load Test. The Static Load Test involves applying a gradual

load to a pile to determine its bearing capacity, revealing the pile-soil interaction over time. It's

precise but time-consuming and costly, suitable for detailed assessments of pile performance under

actual loading conditions. In contrast, the Dynamic Load Test rapidly assesses a pile's capacity by

analyzing its response to a high-speed impact, offering a quicker and less expensive option, though

it requires calibration against more accurate tests for precise interpretation. This method is ideal

for initial evaluations and large-scale projects where time and cost efficiency are paramount.

Figure 1.1: Dynamic load test and static load test at the site

The pile load test is indispensable for ensuring the reliability of pile foundations. It's a proactive

measure, confirming whether the design assumptions align with the ground realities. By providing

a clear picture of how a pile responds to loads, the test aids in averting potential structural failures,

ensuring the longevity and safety of the construction. (Stirrat, 1959) emphasizes the importance of

pile loading tests in determining the allowable bearing capacity of piles and achieving cost savings

in construction projects.

This study focuses on exploring and enhancing the methods of pile strength estimation by utilizing

machine learning algorithms, namely Random Forest (RF) (Breiman, 2001), Support Vector

Regression (SVR), and Xtreme Gradient Boost (XGBoost) . Each of these algorithms has its roots

in prior research. We have turned to hyperparameter optimization methods to refine these

algorithms, specifically Grid Search (GS) and Random Search (RS). Having been validated in

prior studies, these techniques show promise in optimizing intricate models. During optimization,

Page | 3

hyperparameter selection is performed through detailed research from the literature. After this,

range for each hyperparameter is selected through trial and error. During this process, the

hyperparameters are also validated through validation curves. Learning curves are also made for

optimal models against training samples to keep the process in control. This way, it can be observed

that either the tunned models are overestimated or underestimated. All this process is done, and

models are again validated on unseen data which was never shown to models during training.

Using a blend of machine learning techniques, our objective is to craft a model that encapsulates

accuracy, resilience, and reliability. To achieve this, we delve deep into Grid Search and Random

Search methods to refine the hyperparameters of diverse machine learning frameworks. Rigorous

evaluations, including learning and validation curves and cross-validation metrics anchor our

approach. The goal is to augment the dependability of pile load tests and address the nuances

overlooked in prior research.

1.2 Need of research

Machine learning methods for estimating pile strength have shown potential but also presented

various challenges. Previous techniques have sometimes been limited by the specific conditions

or locations for which they were developed. While a method might excel in one environment, it

might not perform as well in another due to each terrain's distinct complexities. Solely depending

on single machine learning tools or individual metaheuristic optimizers like GA, PSO, or WOA

can lead to suboptimal results. This might result from getting stuck in local minima or the inherent

complexities of tuning these optimizers. Hence, there's a need to explore diverse optimization

methods and consider multiple pathways for model refinement.

1.3 Contribution to industry

Recently, in a year, the artificial intelligence revolution has amazed the world. In no time, it will

change every industry and not only fasten the outcomes but also change the human ideas for

industry. By observing the upcoming wave, this research pushes civil engineering to the next step.

It is not the one-end solution but one of the steps to a new future.

1.4 Objective of the research work

This study is centered around advancing the potential of machine learning models like Random

Forest (RF), Support Vector Regression (SVR), and Xtreme Gradient Boost (XG Boost), each fine-

Page | 4

tuned using hyperparameter optimization with Grid Search (GS) and Random Search (RS). The

main highlights and directions of this research include:

1) Utilizing multiple modelling techniques, emphasizing the advantage of merging various models.

This fusion potentially enhances predictive accuracy.

2) Detailing every research step, from the specifics of hyperparameter adjustments to validation

stages, ensures a roadmap for reproducibility, facilitating future scientific endeavours.

3) An exhaustive model evaluation is conducted, rectifying limitations seen in earlier studies. This

method promises accurate outcomes and the models' adaptability in diverse contexts.

4) Implementing cross-validation and validating against novel data showcases our dedication to

creating models that generalize well—a critical aspect for applications in geotechnical

engineering.

1.5 Scheme of chapters

The details about the chapters are given below. The scheme of the chapters is also shown in Figure

1.2.

Chapter. 1: This chapter highlights the precise summary of the research work.

Chapter. 2: This chapter reports a literature review of pile-bearing capacity determination

techniques, machine learning in geotechnical engineering, and previous research on pile load tests.

Chapter. 3: This chapter discusses research methods involved in the formulation of machine

learning algorithms, and model evaluations, etc.

Chapter. 4: This chapter discusses the experimental setup to achieve the research objectives.

Chapter. 4: This chapter reports the results and discussions.

Chapter. 5: This chapter summarizes the conclusions and key recommendations from the study.

Page | 5

Figure 1.2: Scheme of chapters

S
ch

em
e

o
f

C
h
ap

te
rs

Chapter 1: Introduction

Chapter 2: Literature Review

Chapter 3: Methodology

Chapter 4: Experimental Setup

Chapter 5: Results and Discussions

Chapter 6: Conclusions and Future
Recomdenations

Chapter 7: References

Page | 6

2 Chapter 2: Literature Review

2.1 General

Pile foundations, commonly utilized to anchor structures deep within the earth, are pivotal in many

construction ventures. The precise prediction of their load-bearing capacity is a pressing task faced

by geotechnical engineers. Over the years, an assortment of methodologies has been introduced to

gauge this capacity. The gamut of these methods includes static analyses, dynamic methodologies,

empirical formulations, and in-situ tests, each with its own merits and demerits.

2.2 Overview of Piles

Piles transfer structural loads to stronger soil layers or rock strata deep below the surface. These

elongated columns, commonly formed from materials like steel, concrete, or wood, are critical in

supporting structures where surface soil conditions are unsuitable for conventional shallow

foundations. The selection and design of piles hinge significantly on the understanding of soil

mechanics and site geology. Engineers consider factors such as soil type, whether it be clay, sand,

silt, or gravel, and properties like cohesion, density, and shear strength. There are various types of

piles, each with distinct characteristics and application scenarios. Driven piles, for instance, are

hammered into the ground and are often used for their durability and strength, while bored piles,

created by excavating a hole and filling it with concrete, are preferred in urban areas to reduce

noise and vibration.

The installation of piles is a critical phase, involving methods like driving, drilling, or screwing,

each having a unique impact on the surrounding soil and the overall stability of the foundation.

The load transfer mechanism is a key aspect of pile design; end-bearing piles rely on a firm stratum

at a certain depth to bear the load, whereas friction piles transfer loads through skin friction along

their length. The integrity and performance of piles are ensured through rigorous testing methods,

such as load tests and integrity tests, to verify that they meet the design specifications and safety

standards. Additionally, environmental, and economic considerations play a vital role in shaping

decision-making strategies. The impact of pile installation on groundwater, soil, and the

surrounding ecosystem, along with factors like cost-effectiveness and longevity, are crucial in the

selection of the appropriate pile type.

Page | 7

The field of pile foundation engineering continuously evolves, addressing challenges like

unexpected soil conditions and integrating innovations such as the use of recycled materials or

advanced sensing technologies for real-time monitoring of pile health. This dynamic nature of

geotechnical engineering underscores its significance in the realm of construction and

infrastructure development, ensuring structures stand on solid foundations capable of withstanding

various environmental and load conditions.

2.3 Techniques for Pile Bearing Capacity Estimation

Empirical Formulas are derived from a wealth of past data and observations. Liu et al. (2019)

emphasized the potential pitfalls of relying on these alone, citing the myriad of variables involved

– from soil mechanics to geotechnical circumstances. The diverse nature of these factors can

occasionally lead to inaccuracies in empirical results. Static and dynamic field test present a more

hands-on approach, assessing piles under specific conditions. While they bring forth real-time

evaluations, the complexities involved can sometimes lead to discrepancies. H. Nguyen et al.

(2023) and Shooshpasha et al. (2013) lauded the pile load test (method that evaluates complete

pile settlements under a static load). The accuracy of this test is largely attributed to its reflection

of real-world driven pile installations. However, Hoang et al. (2022) pointed out that its high cost

and lengthy execution time might deter its use in smaller projects.

Since the 1970s, there's been a surge in in-situ test methods to measure soil properties. Notably,

the Standard Penetration Test (SPT) stands out for its widespread utilization in determining the

bearing capacities of piles. Studies for example, by Ammar et al. (2013) and Bouafia & Bouafia

(2002) have reinforced the value of the SPT in this realm, emphasizing its potential as a more

practical alternative to costly pile load testing.

2.4 Background of Machine Learning

Machine Learning, a branch of artificial intelligence, emphasizes the creation of algorithms and

models enabling computers to undertake tasks autonomously, without the need for specific

programming for each task. Basically, a machine learns from data to find patterns, and make

predictions or decisions without any human interference. These machine learning algorithms have

shown immense potential in solving complex problems across various domains. (Pulina, 2010)

suggests the application of diverse machine learning algorithm portfolios for tackling intricate

Page | 8

tasks in robotics and automated reasoning. Unlike traditional algorithms that follow a strict set of

instructions, ML algorithms adapt and learn from the data they're provided. This means they can

discover hidden patterns or subtle relationships in vast amounts of data that might be challenging

or time-consuming for humans to discern. Once trained, many ML models can adapt over time by

learning from new data, allowing them to stay relevant in changing environments. ML algorithms

are designed to take a broad view from the training data to unseen scenarios, which means they

can handle a variety of situations do not present in the initial training set. Deep learning models,

which fall under the umbrella of ML, have the capability to autonomously extract features from

unprocessed data, eliminating the need for manual feature engineering. This attribute renders them

highly effective in tasks such as image and speech recognition. ML models, especially specific

types like RF or Neural Networks (NN), can handle high-dimensional data effectively, capturing

interactions between various features. For tasks like data clustering or image recognition, manually

defining rules or patterns would be cumbersome. ML models can automatically and efficiently

handle these tasks after being trained on representative data.

2.4.1 What are Machine Learning Algorithms?

Machine learning algorithms consist of specific rules and procedures employed by AI systems to

execute various tasks. These tasks frequently include discovering fresh insights and patterns within

data, or forecasting outcomes based on a given set of input data. The general categorization of

machine learning algorithms are summarized in Figure 2.1 and explained below.

Figure 2.1: Categories of machine learning algorithms

Machine Learning Algorithims

Supervised
Learning

Linear
Regression

Decision Trees

Support Vector
Regression

Neural Netwroks

Unsupervised
Learning

Clustering
Methods

Association
Algorithms

PCA

Semi-Supervised
Learning

Reinforcement
Learning

Q-Learning

Deep Q Network (DQN)

Policy
Gradients

Transfer
Learning

Ensemble
Methods

Bagging

Boosting

Stacking

Page | 9

1. Supervised Learning: In supervised learning, algorithms learn from labeled data, where the

desired output is known. Once trained, they aim to make predictions for new, unseen data.

Examples are as follows:

• Neural Networks

• Decision Trees

• Support Vector Machines

• Linear Regression

2. Unsupervised Learning: Algorithms that work with unlabeled data, focusing on finding patterns

or structures. Examples are as follows:

• Clusters (K-Means)

• Association Algorithms like Apriori

• Dimensionality Reduction Methods (Principal Component Analysis)

3. Semi-Supervised Learning: These algorithms employ a combination of labeled and unlabeled

data during the training phase, typically utilizing a smaller quantity of labeled data alongside a

more substantial volume of unlabeled data.

4. Reinforcement Learning: Algorithms designed to learn through interaction with their

environment rely on feedback mechanisms, where they receive either rewards or penalties to guide

their learning process. Examples are as follows:

• Q-Learning

• Deep Q Network (DQN)

• Policy Gradients

5. Transfer Learning: Instead of starting the learning process from scratch, these methods leverage

knowledge from a previously trained model on a different but related task.

6. Ensemble Methods: These algorithms integrate various machine learning methods into a single

predictive model, aiming to reduce variance and bias, or to enhance the accuracy of predictions.

Examples are as follows:

• Bagging (Bootstrap Aggregating) like Random Forest

• Boosting like AdaBoost, Gradient Boosting Machines (GBM), and XGBoost

Page | 10

• Stacking

Different algorithms possess their unique advantages and limitations, making them suitable for

specific kinds of tasks. The selection of an algorithm typically hinges on factors like the data size,

quality, and characteristics, the nature of the task at hand, and the expected results. ML, a notable

arm of artificial intelligence, has shown promise in reshaping the paradigm of geotechnical

engineering. At its core, ML delves into historical data, discerning patterns and insights akin to

human cognitive processes. Several studies in current years have supported the use of machine

learning as a potential surrogate for traditional empirical and field test methods in estimating

structural load capacities. Researchers such as (Alwanas et al., 2019; Mangalathu et al., 2022) have

explored its potential advantages.

A crucial and first step in ML is data processing, that transforms raw data into a clean and

structured format for model training (Y et al., 2022). Proper data preprocessing improves the

accuracy and efficiency of models. Given the saying "garbage in, garbage out", without proper

preprocessing, even the most sophisticated models may perform poorly or give misleading results.

Data preprocessing includes techniques like data cleaning, normalization, transformation, and

feature selection (Bilal et al., 2022; Lawatre, 2021; Mundargi et al., 2023; Y et al., 2022).

2.5 Different Machine Learning Algorithms

2.5.1 Random Forest Algorithm

It is a versatile and widely used algorithm which belongs to the ensemble learning category. It uses

a collection of decision trees to perform regression and classification tasks (Liu et al., 2012) and a

graphical visualization of RF model is shown in Figure 2.2. RF has been applied to many domains,

including image classification, generating continuous field datasets, detection of spam mails,

detection of credit card fraud, classification of genes, detection of network intrusion, email spam

detection, gene classification, credit card fraud detection, and text classification (Horning, 2010;

Zakariah, 2014).

Page | 11

Figure 2.2: Random Forest prediction model (Random Forests. Random Forests Is a Powerful

Machine… | by Dr. Roi Yehoshua | Medium, n.d.)

Random Forest was introduced by Leo Breiman in 2001. It's an extension of his earlier work on

bootstrap aggregating (or bagging) (Bbeiman, 1996).

2.5.1.1 Mathematical Formulas in the Background:

• Entropy:

It's a measure of disorder or impurity. For a binary classification with probabilities 𝑝 and 1 − 𝑝:

𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆) = −𝑝 log2(𝑝) − (1 − 𝑝) log2(1 − 𝑝) (2.1)

Gini Impurity:

Another measure of impurity. For a binary classification:

𝐺𝑖𝑛𝑖(𝑆) = 1 − [𝑝2 + (1 − 𝑝)2] (2.2)

Information Gain:

The information that can increase the level of certainty after splitting.

Page | 12

𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝐺𝑎𝑖𝑛(𝑆, 𝐴) = 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆) − ∑
|𝑆𝑣|

|𝑆|𝑣𝜀𝑉𝑎𝑙𝑢𝑒𝑠(𝐴)
× 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆𝑣) (2.3)

2.5.1.2 How Does It Work to Solve Problems?

• Bootstrap Sampling:

Randomly samples the dataset with replacement to create multiple subsets.

• Building Trees:

For each subset, it grows a decision tree. When splitting nodes, instead of searching for the best

feature, it searches among a random subset of features for the best feature.

In summary, RF builds multiple decision trees using bootstrap samples of the training data. It uses

random feature selection to determine splits in the trees, which reduces correlation between trees

(Mohana et al., 2021).

• Prediction:

• Classification: Each tree casts a ‘vote’ for the class, and the class with the

highest votes is the winner and tagged as ‘prediction’.

• Regression: The average prediction of all the trees is the forest's prediction.

2.5.1.3 How Does Scikit-Learn Implementation of Random Forest Work?

Random Forest implementation is designed to be user-friendly and efficient. Here's a simplified

breakdown:

1. Initialization: When you create a `Random Forest Classifier` or `Random Forest Regressor`,

you can specify parameters like the number of trees (`n_estimators`), criteria for splitting

(`criterion` can be "gini" or "entropy" for classification), maximum depth of trees, etc.

2. Fitting: When you call the `fit` method, it begins the process of bootstrap sampling and building

individual trees.

3. Prediction: The `predict` method aggregates predictions from individual trees. For

classification, it uses majority voting, and for regression, it averages the results.

Page | 13

4. Feature Importance: Scikit-learn provides an attribute `feature_importances_` which

computes the importance of each feature based on the frequency and the depth it appears in all

trees.

Here's a basic example in Code Snippet 2.1.

Code Snippet 2.1: Random Forest implementation in Python

Fundamentally, RF operates as an ensemble of decision trees, collaborating to yield more stable

and precise predictive outcomes. Its ensemble nature makes it less prone to overfitting, and its

versatility allows it to be used for both classification and regression tasks.

2.5.2 Support Vector Regression (SVR)

It’s a type of Support Vector Machine which is used for regression tasks. And SVM is mainly

known for classification, SVR is its adaptation for predicting continuous values. SVR, or Support

Vector Regression, learns directly from the data how important different variables are in explaining

the connection between inputs and outputs. This is a step away from older regression methods,

which often rely on assumptions that might not match the real-world data perfectly. SVR stands

out because it figures out the value of variables directly through the data it analyzes, offering a

more tailored approach to understanding data relationships and shown in Figure 2.3. SVR has been

applied successfully to analyze brain imaging data and reveal patterns through multiple brain

regions for various disorders (Zhang & O’Donnell, 2020).

Page | 14

Figure 2.3: SVR algorithm model (Support Vector Regression (SVR) | Analytics Vidhya, n.d.)

SVM, which encompass SVR, were introduced by Vladimir N. Vapnik and Alexey Ya.

Chervonenkis in the 1960s. The concept was later refined and popularized in the 1990s, with the

regression adaptation (SVR) also gaining traction.

2.5.2.1 Mathematical Background:

• Linear SVR:

 The main objective is to identify a function 𝑓(𝓍) that deviates minimally, by no more than ε,

from the actual training responses 𝑦𝑖 across all the training data, while also maintaining as much

simplicity or flatness as possible.

In simpler terms, SVR tries to fit the best line/hyperplane within a margin of ε where the loss is

equal to zero.

• Loss Function:

 SVR uses the ε-insensitive loss:

𝐿ε (𝑦, 𝑓(𝑥)) = 𝑚𝑎𝑥(0, |𝑦 − 𝑓(𝑥)| − ε) (2.4)

• Objective:

• Minimize:

Page | 15

1

2
||𝑤||2 + 𝐶 ∑ 𝜉𝑖𝜉𝑖

∗
𝑛

𝑖=1
 (2.5)

• Subject to:

𝑦𝑖 − 𝑓(𝑥𝑖) ≤ 𝜀 + 𝜉𝑖
(2.6)

𝑓(𝑥𝑖) − 𝑦𝑖 ≤ 𝜀 + 𝜉𝑖
∗

(2.7)

𝜉𝑖 , 𝜉𝑖
∗ ≥ 0

(2.8)

Where:

𝑤 is the weight vector,

𝐶 is the regularization parameter,

𝜉𝑖 and 𝜉𝑖
∗ are slack variables.

• Kernel Trick:

In non-linear SVR, data is mapped to a higher-dimensional space where it's linearly separable.

This mapping is done using kernel functions.

2.5.2.2 How Does It Work to Solve Problems?

• Margin and Buffer:

SVR aims to draw a line (in a 2D space) or a hyperplane (when dealing with more dimensions)

through the data so that as many data points as possible fall within a specified buffer, or margin,

around this line or plane. The goal is to have this buffer—imagine it as a kind of safety zone—be

just the right size: not too wide, but wide enough to include a lot of points. This method helps to

ensure the model is both accurate and flexible, catching the essence of the data without being too

strict or too lenient. This buffer is where the loss is considered zero.

• Slack Variables:

For points outside this margin, slack variables measure the magnitude of the deviation. These are

penalized in the objective function to ensure minimal deviation.

Page | 16

2.5.2.3 Scikit-Learn Implementation:

SVR from sklearn is implemented in python as follows:

Initialization: You can initialize SVR with the desired kernel, regularization parameter 𝐶, and

other parameters.

Fitting: The `fit` method is used to train the SVR model on the data.

Prediction: The `predict` method is used for making predictions on new, unseen data.

Here's a basic example using Scikit-learn's SVR shown in Code Snippet 2.3:

Code Snippet 2.2: SVR implementation in Python

In summary, SVR is a powerful regression method, especially for datasets with non-linear

relationships. By transforming features into higher-dimensional space (when necessary) and by

defining an 𝜀-insensitive loss, SVR is designed to predict continuous values while considering

both flatness and deviations.

2.5.3 XGBoost Algorithm

XGBoost, short for eXtreme Gradient Boosting, is a powerful tool that takes gradient boosting to

the next level. It's crafted to work quickly and adaptively, making it a go-to for tackling big data

challenges. Essentially, it's like having a supercharged engine for your data analysis, capable of

handling tasks with speed and agility that traditional methods can't match (Chen & Guestrin, 2016).

It works for both regression and classification problems. A flow chart diagram of XGBoost is

shown in Figure 2.4.

Page | 17

Figure 2.4: XGBoost (Jiang et al., 2021)

While gradient boosting was a technique existed before, XGBoost brought several optimizations

and became popular due to its performance and speed (Chen & Guestrin, 2016).

2.5.3.1 Mathematical Background

• Objective Function

At each iteration, XGBoost adds a new tree to minimize the following objective:

𝑂𝑏𝑗 = ∑ 𝑙(𝑦𝑖 , 𝑦�̂�
(𝑡)

)

𝑛

𝑖=1

+ ∑ Ω(𝑓𝑖)
𝑡

𝑖=1
 (2.9)

 Where:

• 𝑙 = Loss function.

• Ω = Regularization term.

• 𝑓𝑖 represents each tree.

• Regularization Term:

Ω(𝑓) = 𝛾𝛵 +
1

2
𝜆 ∑ 𝑤𝑗

2
𝑇

𝑗=1
 (2.10)

Where:

• 𝑇 = Number of leaves in the tree.

• 𝑤𝑗 = Score on leaf 𝑗.

• 𝛾 and 𝜆 are regularization parameters.

Page | 18

• Gradient and Hessian:

Instead of calculating the best split points directly, XGBoost calculates approximations using the

gradient and hessian.

2.5.3.2 How Does It Work to Solve Problems?

• Boosting:

XGBoost is a boosting algorithm. It builds trees sequentially. Each new tree tries to correct the

errors made by the previous ones.

• Regularization:

XGBoost includes L1 (Lasso) and L2 (Ridge) regularization terms in its objective function. This

prevents overfitting, making it a regularized form of boosting.

• Handling Missing Data:

XGBoost has an in-built routine to handle missing values. When a value is missing in a split

column, it assigns a default direction (left or right) to handle the missing value.

• Parallel Processing:

One of the reasons for XGBoost's popularity is its capability to parallelize the construction of trees,

making it faster.

• Tree Pruning:

Unlike other gradient boosting methods that grow trees to their maximum depth and then prune,

XGBoost uses "max_depth" parameter to grow trees to a certain depth and then starts pruning.

2.5.3.3 Scikit-Learn Implementation of XGBoost:

Although XGBoost has its own Python library, it offers an API compatible with Scikit-Learn. This

means you can use XGBoost models just like you would use any other model in Scikit-Learn. The

basic example is shown in Code Snippet 2.4.

Page | 19

Code Snippet 2.3: XGBoost implementation in Python

In conclusion, XGBoost is a robust and efficient gradient boosting algorithm that's especially

useful for structured/tabular data. Its performance, speed, and scalability have made it a go-to

algorithm for many Kaggle competitions and real-world applications.

2.6 Model Parameters

2.6.1 What are Hyperparameters in Machine Learning?

Machine learning models have model parameters that are learned during training, such as neural

network weights. In contrast, hyperparameters, which define the model's architecture, must be

predefined before training (Yang & Shami, 2020). Hyperparameters are parameters that are not

learned directly from the data but are set before training. They influence the behavior and

performance of the learning algorithm. Examples include the learning rate, regularization

coefficients, tree depth, and number of hidden layers in a neural network. Hyperparameters shape

the model's ability to learn. Incorrect values can lead to underfitting (model is too simple) or

overfitting (model is too complex). Using default values for model hyperparameters may lead to

reduced prediction accuracy as they do not consider the dataset's dimensionality (size) or its

specific features (Probst et al., 2018).

Page | 20

2.6.2 Techniques to Tune Hyperparameters:

Researchers have proposed various search strategies to navigate this complex space, including

random search, grid search, and Bayesian optimization (Claesen & Moor, 2015; Peskova &

Neruda, 2019). A graphical summary of hyperparameter techniques is shown in Figure 2.5. Due to

the simplicity of search-based algorithms, they are commonly used in problems with small

response spaces and were evaluating hyperparameters is less resource intensive (Seifi & Niaki,

2023).

2.6.2.1 Grid Search:

Systematically go through multiple combinations of hyperparameter values, train a model for each

combination, and select the best combination based on performance. In this method, all parameters

have an equal probability of impacting the process (Alibrahim & Ludwig, 2021).

2.6.2.2 Random Search:

Randomly sample hyperparameter combinations from given ranges. Surprisingly, this can

sometimes be more effective than grid search because it can explore more unique values and

doesn't spend time on less influential ones (Andradóttir, 2006).

2.6.2.3 Bayesian Optimization:

Bayesian Optimization (BO) is a statistical method for efficiently optimizing expensive, noisy

"black-box" functions with few evaluations (Garnett, 2023). Model the objective function using a

Gaussian process and choose hyperparameters to evaluate by selecting those that maximize the

expected improvement.

2.6.2.4 Gradient-based Optimization:

Applicable when hyperparameters are continuous. Computes gradients of the validation

performance with respect to hyperparameters and adjusts them accordingly (Bengio, 2000).

2.6.2.5 Evolutionary Algorithms:

An Evolutionary Algorithm (EA) falls within the realm of evolutionary computation and is

classified as one of the broader categories of stochastic search algorithms (Vikhar, 2017) . Treat

hyperparameter optimization as a genetic algorithm problem, which maintains a population of

hyperparameter sets and evolve them over time.

Page | 21

2.6.2.6 Early Stopping:

For algorithms like neural networks or gradient boosting, train for a large number of iterations but

stop early if validation performance stops improving.

Figure 2.5: Techniques for hyperparameter tunning

2.6.3 Random Search for Hyperparameters:

RS is like exploring a treasure map without knowing exactly where X marks the spot. Instead of

systematically checking every location, you randomly pick spots across the map, trying out

different combinations of clues (or in this case, hyperparameters) for a set number of tries. With

each attempt, you build and test a model based on these randomly chosen settings. It's a way of

stumbling upon the best solution by chance, mixing a bit of luck with strategy to find the treasure

(or the optimal model settings) more efficiently than checking every possible option and a layout

is shown in Figure 2.6. As (Garnett, 2023) explains, random search sacrifices the guarantee of an

optimal solution for finding a good solution quickly.

Hyperparameter
Tunning Techniques

Grid Search

Random Search

Bayesian
Optimization

Gradient Based
Optimization

Evolutionary
Algorithims

Early Stopping

Page | 22

Figure 2.6: Random Search layout (A Comparison of Grid Search and Randomized Search

Using Scikit Learn | by Peter Worcester | Medium, n.d.)

2.6.3.1 How Random Search Works:

1. Define a hyperparameter space for each hyperparameter.

2. Randomly sample from this space.

3. Train a model with the selected combination.

4. Evaluate the model using a validation set or cross-validation.

5. Repeat the process for a fixed number of iterations.

6. Select the best hyperparameters based on the performance on the validation set or cross-

validation.

2.6.3.2 Randomized Search Cross Validation (RSCV):

RSCV is an implementation of random search with cross-validation. Instead of just evaluating one

model for a set of hyperparameters, it evaluates the model performance across multiple folds of

the data. This helps ensure that the model's performance is consistent and not the result of a specific

random split of the data. In literature, there are many researchers which shows the use of RSCV

as an optimization tool (Takkala et al., 2022; Vishnu et al., 2023). It works in following steps:

Page | 23

1. Specify a parameter grid: For each hyperparameter, define the range or distribution of values.

2. Choose the number of iterations: This determines how many different combinations to try.

3. Use cross-validation: Split the data into train/test sets multiple times and evaluate performance.

4. For each iteration, RSCV samples hyperparameters, trains the model using cross-validation, and

records the performance.

5. Once all iterations are complete, RSCV provides the best set of hyperparameters and their

corresponding performances. Also, here's a simple example shown in Code Snnipet 2.5 using

RSCV to tune hyperparameters for a RF Regressor:

Code Snippet 2.4: Randomized Search CV implementation in Python

Here, `RSCV` will perform 100 iterations, each time randomly selecting hyperparameters from

`param_dist`, training the RF Regressor, and evaluating it using 5-fold cross-validation.

2.6.4 Grid Search for Hyperparameters:

Grid Search (GS) is a method for hyperparameter tuning that systematically works through

multiple combinations of hyperparameter by searching over a space (Liashchynskyi &

Liashchynskyi, 2019), cross-validating as it goes to determine which tune gives the best

Page | 24

performance. The traditional way of performing hyperparameter tuning is to use a loop nested

inside another loop, which tries every single combination exhaustively as shown in Figure 2.7.

Figure 2.7: Grid Search layout (A Comparison of Grid Search and Randomized Search Using

Scikit Learn | by Peter Worcester | Medium, n.d.)

2.6.4.1 How Grid Search Works:

It works in following steps:

1. Define a set of possible values for each hyperparameter.

2. Create a grid of all possible hyperparameter combinations.

3. For each combination:

• Set the hyperparameters.

• Train the model.

• Evaluate the model using a validation set or cross-validation.

4. Select the best hyperparameters based on model performance.

2.6.4.2 Grid Search CV:

Grid Search CV (GSCV) is Scikit-Learn's implementation of grid search with cross-validation. For

each combination of hyperparameters, GSCV trains the model using cross-validation and

Page | 25

computes a score for each fold of the data. This provides a more robust metric compared to a single

train/test split and process is shown in Figure 2.8.

Figure 2.8: Grid Search CV

Following steps are involved in its functionality:

• Specify a parameter grid: Define a dictionary where keys are the hyperparameters, and

values are lists of parameter settings to try.

• Use cross-validation: GSCV will split the data multiple times and train/test on these

splits to evaluate each hyperparameter combination.

• For each combination in the grid, GSCV:

• Sets the hyperparameters to:

o Train the model using cross-validation.

o Compute a score for each fold.

o Record the average score.

Once all combinations are evaluated, GSCV identifies the best hyperparameters and their

corresponding performance. Also, here's an example in Code Snippet 2.6 using GSCV to tune

hyperparameters for an SV Regressor:

Page | 26

Code Snippet 2.5: GridSearchCV() implementation in Python

This example systematically evaluates each combination of the `kernel`, `C`, and `gamma`

hyperparameters for an SVR, using 5-fold cross-validation, and finds the best performing

combination.

2.7 Model Evaluation

Model evaluation is like a check-up for your machine learning model, ensuring it's smart enough

to handle new, unseen data. It's about tweaking its learning settings and making sure it's not just

memorizing but truly understanding, ready to face real-world challenges.

2.7.1 Cross-Validation:

It involves partitioning the original training dataset into a set of subsets, holding out one as a

validation set, and training the model on the rest. This process is repeated multiple times, with

different subsets held out as the validation set. It is used to assess how well a model generalizes to

Page | 27

new data and avoids overfitting (Dinov, 2018). The procedure involved in cross validation is shown

in Figure 2.9.

Figure 2.9: Process of Cross Validation

2.7.1.1 Different Types of Cross-Validation:

• K-Fold Cross-Validation:

The process involved in K-Fold can be explained in following steps:

• The data is divided into 'k' subsets.

• Each time, the k-1 subsets are used as a training set and one of the k subsets is

used for the validation set.

• The final model performance is the average of the k models' validation

performances. The procedure is shown in Figure 2.10.

Page | 28

Figure 2.10: K-Fold

• Stratified K-Fold Cross-Validation:

The process involved in Stratified K-Fold Cross-Validation can be explained in following steps:

• Similar to K-Fold, but each fold is made by preserving the percentage of

samples for each class.

• Stratified cross validation aims to preserve the target class distribution in each

fold (Kärkkäinen, 2014). The process is shown in Figure 2.11.

Figure 2.11: Stratified K-Fold process

Page | 29

• Leave-One-Out (LOO):

Leave-One-Out is also one of the simple cross-validation.

• Leave-One-Out (LOO) cross-validation is a detailed check-up for each data

point in your dataset. Imagine you have N pieces of data; LOO will set up N

unique learning sessions. In each session, it uses all but one data piece for

training, reserving that lone piece for testing. It's like giving every single data

point its moment in the spotlight to truly test the model's understanding.

• Leave-P-Out (LPO):

Leave-P-out is similar to Leave-one-out. This involves training on all combinations of N-P

samples and validating on the remaining P samples.

• Time-Series Cross-Validation:

Time-Series Split (TSS) is the variation of K-Fold. This approach is specifically for cross

validation of time series data. In this approach, the training set only includes observations prior to

the validation set in time. The process involved in Time-Series CV technique is shown in Figure

2.12.

Figure 2.12: Time-Series Split process

Page | 30

• Group K-Fold:

Group K-Fold is a variation of K-Fold where the validation sets should consist of entire groups,

useful when there are groups of correlated samples. It makes sure that same group data is not used

for training and validation. The training and validation split procedure is shown in Figure 2.13.

Figure 2.13: Group K-Fold process

To utilize these methods in machine learning, libraries like Scikit-Learn provide built-in functions.

For instance, `KFold()`, `StratifiedKFold()`, and `TimeSeriesSplit()` are all classes within Scikit-

Learn that can be used to perform these respective types of cross-validation.

2.7.2 Model Metrics:

There are two types of model metrics. One is for regression and the second is for classification.

The regression metrics are given below.

𝑅𝑀𝑆𝐸 = √(
1

𝑛
) × ∑ [𝑝𝑖 − 𝑦𝑖]2

𝑛

𝑖=1
 (2.11)

𝑀𝐴𝐸 =
1

𝑛
× ∑ (|𝑝𝑖 − 𝑦𝑖|)

𝑛

𝑖=1
 (2.12)

Page | 31

𝑅2 = 1 −
∑ (𝑦𝑖 − 𝑝𝑖)

2𝑛
𝑖=1

∑ (𝑦𝑖 − �̅�)2𝑛
𝑖=1

 (2.13)

Where:

𝑛 = sample size

𝑝𝑖 = predicted values

𝑦𝑖 = actual values

𝑦𝑖 = average of actual values

These metrics are typically specific to the context of a study and depend on the data's nature, the

model's complexity, and the field of application. Generally, for R², a value closer to 1 indicates a

better fit, while for RMSE, a lower value indicates a better fit. However, standard reference values

may not be universal and can vary based on the domain or specific application.

2.7.3 Validation Curves:

Validation curves are graphical representations that show the performance of a machine learning

model as a function of one of its hyperparameters. These curves are crucial tools for understanding

the search range of hyperparameters which helps in hyperparameter tuning (Xie et al., 2018).

Typically, validation curves are categorized based on the type of metric plotted and the nature of

the change observed:

Learning Curves: These plot the model's performance (like accuracy or error) on the training set

and the validation set as a function of the number of training examples (or iterations). Indicate how

much the model benefits from adding more data.

Hyperparameter Validation Curves: These curves plot the model's performance as a function of

various hyperparameter values. For instance, plotting performance with different values of `C` in

a SVM or `max_depth` in a Decision Tree.

Page | 32

Figure 2.14: Types of Validation Curves

2.7.3.1 Indications:

There are few indications associated with validation curves which can be observed and are shortly

summarized below.

2.7.3.2 Underfitting:

• Training and validation errors converge and are high.

• The model is too simple to capture patterns in the data.

2.7.3.3 Good Fit:

• Training and validation curves are close.

• The model generalizes well to unseen data.

2.7.3.4 Hyperparameter Optimization:

• Helps identify values of hyperparameters where the validation performance is

maximized.

• Helps in striking a balance between bias and variance.

In practice, tools like Scikit-Learn offer utilities to plot validation curves easily, aiding in making

informed decisions regarding model complexity and hyperparameter values.

2.7.4 Learning Curves:

Learning Curves (LC) are plots that show changes in learning performance over time in terms of

experience. More specifically, in the context of machine learning, they are used to assess the

performance of ML algorithm against any resource, for example, training sample etc. (Mohr & van

Rijn, 2022). LC allows you to diagnose if your model is overfitting or underfitting.

Validation
Curves

Learning
Curves

Hyperparameter
Validation

Curves

Page | 33

By examining learning curves, you can determine if the model would benefit from more data. If

the validation performance continues to improve as more data is added, it's a sign that acquiring

more data might be beneficial. They provide insight into how quickly a machine learning model

can converge to a particular level of error, and can be helpful in tuning the training process, for

instance, in deciding the size of mini-batches in mini-batch gradient descent.

2.7.4.1 Types of Learning Curves:

Typically, LC have two types which are explained below and shown in Figure 2.15.

Training Curve: Plots the training error as the number of instances (or training iterations)

increases.

Validation Curve: Plots the validation error as the number of instances (or training iterations)

increases. These curves are typically plotted on the same graph for direct comparison.

Figure 2.15: Types of Learning Curves

2.7.4.2 What They Indicate:

• Underfitting (High Bias):

• Both training and validation errors are high and converge.

• The model lacks the complexity needed to fit the data well.

• Overfitting (High Variance):

• The training error is low, but there's a substantial gap between the training and

validation errors.

• The model is excessively complex and fits the training data's noise.

• Ideal Learning Curve:

• The validation error decreases and converges to a point close to the training

error.

Learning Curves

Training Curve

Validation Curve

Page | 34

• The gap between the curves is minimal, indicating that the model generalizes

well.

• Plateau in Learning:

• If the validation curve plateaus, no matter how much more training data you

add, the model might not improve. This can be an indication that more training

data might not be beneficial.

In essence, learning curves provide a visual method to gauge a model's performance relative to its

amount of training. By analyzing the gap between the training and validation curves and their

convergence behaviors, one can gain insights into the model's bias-variance trade-off and its data

requirements.

2.8 Already Research

Goh's (Goh et al., 2005) pioneering efforts flashed a spotlight on the potential of Artificial Neural

Networks (ANNs), constructing an intricate ANN model, which was designed for deducing the

frictional dynamics of piles set within clayey terrains, using field data as the bedrock for their

predictions. Later endeavors by researchers like (Shahin, 2010) extrapolated on the ANN model,

utilizing a vast trove of data to prognosticate the bearing capacity of piles. Armaghani et al.'s

(Armaghani et al., 2020) audacious research led to the birth of a hybridized model, intertwining

the intricacies of ANN with the nuanced capabilities of particle swarm optimization (PSO) to craft

predictions regarding pile settlements.

In their 2023 study, Nguyen (Nguyen et al., 2023) and colleagues introduced an innovative

approach that marries the power of XGBoost, a cutting-edge machine learning technique, with the

whale optimization algorithm (WOA) to predict how much weight concrete piles can support. The

magic of their method lies in using XGBoost to make the final predictions based on data from

experiments, while WOA hunts down the best XGBoost settings to make these predictions as

accurate and reliable as possible. They put their model to the test with data from 472 real-world

tests on concrete piles in Vietnam and found that their hybrid approach consistently beat both the

standard XGBoost setup and traditional deep neural network models. After 20 trials, their model

not only showed a remarkable improvement in accuracy but also stood out in tests against other

methods, proving to be exceptionally well-suited for figuring out the capacity of concrete piles.

Page | 35

This breakthrough suggests that their hybrid model could be a valuable tool in civil engineering,

offering a new way to ensure the safety and effectiveness of construction projects.

Tuan et al. (Pham, Tran, et al., 2020a) focused on using evolutionary algorithms like genetic

algorithms (GA) to optimize deep learning neural networks (DLNN) for predicting the axial

bearing capacity of driven piles. The authors collected a database of 472 driven pile static load test

reports from construction sites in Vietnam. The data includes parameters like pile diameter, pile

length, soil properties from SPT blow counts, etc. A GA model was used for feature selection to

identify the most significant input features from the 10 original features. This reduced the features

from 10 to 4 most important ones. A GA-DLNN, hybrid model, uses GA to optimize the DLNN

architecture by selecting optimal parameters like number of hidden layers, neurons per layer,

activation functions, training algorithms, etc. The reduced 4-input GA-DLNN model gave the best

accuracy compared to models with all 10 inputs. It had R2 of 0.923 on validation set and 0.887 on

test set. The GA-DLNN model performed better than just DLNN model, demonstrating the benefit

of using GA to optimize DLNN parameters. The results show that evolutionary algorithms like GA

can effectively optimize DLNN models for predicting pile bearing capacity based on real-world

test data. The hybrid GA-DLNN approach outperformed regular DLNN and other models.

According to Pham et. al (Pham & Tran, 2022), determining the axial load capacity of piles is

crucial for foundation design. Yet, field methods to determine this are often expensive and lengthy.

This research aims to devise a hybrid machine-learning approach to predict this capacity. Two

prominent optimization techniques, Particle Swarm Optimization (PSO) and Genetic Algorithm

(GA), were applied to fine-tune the Random Forest (RF) model architecture. The study utilized a

dataset with 472 pile load test outcomes from Ha Nam province in Vietnam. This dataset was split

into 80% training and 20% testing segments. The model's efficacy was assessed through the

Absolute Mean Error (MAE), Root Mean Square Error (RMSE), and Coefficient of Determination

(R2). Outcomes indicated that GA outperformed PSO in optimizing the RF model. When pitted

against the standard RF model, the GA-enhanced RF version showcased the most reliable results,

presenting equilibrium between training and testing segments, which signifies reduced overfitting

risks. These findings can guide the application of machine learning in the broader realm of

engineering, especially within geotechnical sectors.

Page | 36

Tuan et al. (Pham, Ly, et al., 2020) developed machine learning models using ANN and RF to

predict the axial bearing capacity of driven piles. The models were trained and tested on a large

dataset of 2314 pile load test reports, which is claimed to be the largest dataset used for this

purpose. The input variables included pile geometry factors like diameter and segment lengths, as

well as soil properties like average standard penetration test (SPT) values along the pile shaft and

at the pile tip. The RF model outperformed the ANN model in accuracy based on error metrics like

R-squared, RMSE and MAE. RF also outperformed traditional empirical equations and multi-

variable regression. Sensitivity analysis using the RF model showed that the average SPT value

along the pile shaft and the pile tip elevation were the most important factors affecting the predicted

bearing capacity. The RF model provides an accurate and fast numerical tool for estimating pile

bearing capacity compared to traditional methods. Further improvement in accuracy using hybrid

ML methods is suggested as future work.

Nhat-Duc et al. (Hoang et al., 2022) proposes a new data-driven model for predicting the axial

bearing capacity of piles. The model uses a hybrid approach combining machine learning and

metaheuristic optimization. The machine learning method used is Least Squares Support Vector

Regression (LSSVR). LSSVR can handle multivariate data and model nonlinear relationships

between inputs and outputs. The metaheuristic used is opposition-based differential flower

pollination (ODFP). ODFP is used to optimize the hyperparameters of the LSSVR model. The

model uses 10 input variables related to pile characteristics and soil conditions to predict pile

bearing capacity. The model was trained and tested on a dataset of 472 static load tests of reinforced

concrete piles. Experimental results showed the ODFP-LSSVR model achieved good accuracy in

predicting pile bearing capacity, outperforming several benchmark machine learning methods.

Statistical tests confirmed the superior performance of ODFP-LSSVR compared to other models.

The study demonstrates the promise of using a hybrid metaheuristic-machine learning approach

for estimating pile bearing capacity. The ODFP optimization helps improve the predictive accuracy

of the LSSVR model.

Maaz et al. (Amjad et al., 2022) proposed machine learning models to predict the axial bearing

capacity (Pu) of driven piles. The models are based on data from 200 pile load tests conducted in

Ha Nam province, Vietnam. The models use 10 input parameters related to pile geometry, pile

material, and soil properties. The key parameters are pile diameter, depths of soil layers, pile

elevations, and SPT blow counts along the pile shaft and at the pile tip. Five machine learning

Page | 37

algorithms are tested: XGBoost, Adaptive Boosting (AdaBoost), RF, Decision Tree, and SVM.

The XGBoost model performs the best, with high accuracy on the test set (R2 = 0.955, low errors).

XGBoost outperforms the other methods due to its regularization and use of multiple decision

trees. Sensitivity analysis shows the SPT blow count along the pile shaft has the greatest influence

on predicted pile capacity. The study demonstrates machine learning can accurately estimate pile

capacity using common soil properties and pile geometry data. The data driven XGBoost model

outperformed traditional empirical and analytical methods. The authors conclude that the XGBoost

model can be readily updated with new data and provides a practical alternative to costly pile load

testing. It shows promise for estimating pile capacity for geotechnical design.

A new ensemble AI model proposed by (Cao et al., 2022), termed the Intelligence Multivariate

Neural Network Inference Model (IMNNIM), is introduced in this research to provide efficient

and precise pile bearing capacity predictions. The IMNNIM merges the Equilibrium Optimization

Algorithm (EO) with a blend of Multivariate Adaptive Regression Splines (MARS) and Radial

Basis Neural Network (RBFNN). The model refines predictions by dynamically amalgamating

outputs from MARS and RBFNN, while also adjusting weights and tuning parameter values of its

learning components. Using 472 static pile load test records, the IMNNIM's efficacy was assessed.

Utilizing a 10-fold cross-validation approach, the model showcased superior predictive accuracy,

producing top scores for MAPE (7.24%), RMSE (90.92 kN), MAE (67.98 kN), and R2 (0.930),

coupled with the most consistent results. The t-test method affirmed the model's heightened

capability in estimating pile bearing capacities.

Page | 38

3 Chapter 3: Methodology

3.1 Data Collection

The study draws on data from 472 field tests involving pre-cast reinforced concrete piles, carried

out in Ha Nam Province, Vietnam, by researchers Pham and Tran (Pham, Tran, et al., 2020b) and

illustration of experimental layout is shown in Figure 3.1. The piles featured in the study were

square in cross-section and designed with closed tips. They were installed into the ground using

hydraulic machines that applied a continuous force, ensuring a steady installation rate. The testing

protocol involved gradually increasing vertical loads to 100%, 150%, and 200% of the load design,

over periods of approximately 6 hours, 12 hours, and 24 hours, respectively.

Two principles were followed for pile bearing capacity determination: either the settlement of pile

top at the current load level was at least 5 times that of settlement at the previous load level, or a

linear load-settlement curve was observed. The bearing capacity was defined as the load level at

which the settlement exceeded 10% of the pile diameter. This comprehensive dataset of static load

tests on pre-cast reinforced concrete piles is substantial and forms a robust foundation for

developing and validating advanced machine learning models, which is a key aspect of this

research. The introduction of parameters is given in Table 3.1 and statistical summary of input is

given in Table 3.2.

Table 3.1: Introduction of input parameters

Parameters Symbols Count

Diameter of Pile D 472

Length of soil first layer Z1 472

Length of soil second layer Z2 472

Length of soil third layer Z3 472

Elevation of pile top Zp 472

Elevation of ground level Zg 472

Page | 39

Elevation of pile extra segment of pile top Zt 472

Elevation of pile tip Zm 472

The avg. SPT blow count along pile length Nsh 472

The avg. SPT blow count at the pile tip Nt 472

Bearing capacity of piles Pu 472

Table 3.2: Statistical summary of input data

 D Z1 Z2 Z3 Zp Zg Zt Zm Nsh Nt Pu

Unit mm M m m M m m m - - kN

1 400 3.54 7.6 0.3 2.95 3.65 2.95 14.7 11.75 7.59 1017.9

2 400 4.25 8 0 2.15 3.56 2.16 15.4 13.25 7.67 1152

3 400 4.25 8 0 2.15 3.58 2.16 15.42 13.27 7.68 1344

- - - - - - - - - - - -

- - - - - - - - - - - -

471 300 3.4 5.26 0 3.4 3.49 3.43 12.06 8.66 6.75 508.9

472 400 3.85 7.6 0 2.95 3.67 3.27 14.4 11.45 7.15 1425

Mean
361.

745

3.80

179

6.815

817
0.346 2.815 3.495 2.936

13.78

1

10.96

5

7.17

7
1005.5

Std.
48.6

55

0.47

6
1.286 0.458 0.623 0.066 0.601 1.464 2.032

0.40

0
347.58

Min 300 3.4 5.15 0 1.95 3.34 1.96 11.95 8.55 6.71 407.2

Max 400 4.75 8 1.22 3.4 3.7 4.35 15.62 13.63 7.75 1551

Page | 40

Figure 3.1: Illustration of experimental layout

3.2 Outlier Detection and Rectification Using Gaussian Approximation:

In analyzing the current dataset, we employed the statistical methodology of Gaussian

approximation. Leveraging the Python library, Feature-engine (version 1.6), this technique

identifies and addresses outliers. Gaussian approximation is rooted in the properties of the

Gaussian (or normal) distribution. For a standard normal distribution - the data reveals a pattern

where around 68% is clustered within one standard deviation from the average, suggesting a tight

grouping around the mean. About 95% of the data extends to within two standard deviations,

indicating a broader but still consistent range. Impressively, nearly 99.7% of the observations fall

within three standard deviations, showcasing an exceptionally high level of consistency across the

dataset. Harnessing this statistical knowledge, the Gaussian approximation approach detects

Page | 41

outliers as observations that lie beyond three standard deviations from the mean. Any data point

that falls outside this range is considered an aberration from the expected norm. The Feature-

engine library automates this procedure, effectively identifying and excluding these outliers from

both the upper and lower limits of the distribution. Such a systematic curation ensures that the

resulting dataset is more robust and less susceptible to the distortions that outliers can introduce.

3.3 Data Normalization:

Initially, the raw dataset undergoes a preprocessing phase, where it is normalized using the function

MinMaxScaler. This preprocessing technique re-scales each feature in the dataset to the range of

0 to 1, thereby ensuring that the features have the same scale. This crucial step mitigates the

potential for feature dominance and facilitates a more balanced learning process for the algorithms

used.

3.4 Data Partition:

Once the dataset is meticulously preprocessed, the next step is its splitting into distinct sets for

model training and validation. The partitioning was carried out using the `train_test_split()`

function from the Scikit-learn library. This function not only ensures a random distribution of data

points into the two sets but also guarantees consistency in this random division. The result is a

balanced and representative split that highlights effective model training and validation. For the

current dataset, the data is split with a ratio of 90:10 and reasons are:

• 90% of the data is allocated towards the comprehensive process encompassing

hyperparameter optimization, training, and internal validation of the model settings. This

data is labeled as “training and testing data” and it will ensure that the model has enough

information to understand and capture relationships and patterns.

• The remaining 10% is reserved for validation purposes of proposed tuned models and

labeled as “validation data”.

• The code implementation is given in Code Snippet 3.1 below.

Code Snippet 3.1: Splitting of data into training and validation

Page | 42

3.5 Machine Learning Models

For the current research, machine learning models like RF, SVR and XGBoost are used. These

models are implemented through Scikit-learn (Pedregosa FABIANPEDREGOSA et al., 2011) in

Python version 3.11.6. It is designed for Python and is a widely used, open-source machine

learning framework. It's famous for making data analysis and model building, both straightforward

and effective. The library supports various learning algorithms, both supervised and unsupervised,

and is developed on top of the SciPy (Scientific Python) environment, enhancing its versatility and

user-friendly nature.

It is an open-source machine learning library for Python that offers simple and efficient tools for

data analysis and modeling. It provides a range of supervised and unsupervised learning

algorithms, is built upon the SciPy (Scientific Python) library and is known for its ease-of-use and

versatility. RF Regressor, SVR, and XGBoost are carefully imported in python.

3.6 Hyperparameter Tunning Through Random and Grid Search

The hyperparameter tuning of machine learning algorithms is performed through GS and RS

techniques. The tunning of hyperparameters through GS technique is done through

`GridSearchCV()` which basically comes with integrated cross-validation capabilities. This tool

establishes a rigorous framework for hyperparameter optimization, gauging model efficacy, and

safeguarding the model's adaptability to data it hasn't encountered before. Within

`GridSearchCV()`, there's a specific argument termed 'param_grid'. This argument accepts a

dictionary which has keys representing hyperparameters and arrays denoting corresponding values

to be assessed for each hyperparameter. The choice for 'param_grid' is informed by a

comprehensive review of hyperparameters from existing literature. Initially, a broad search space

is designated, which is subsequently refined, converging towards a more targeted range for

hyperparameter exploration (Belete & Huchaiah, 2021).

The tunning of hyperparameter through RS is done through `RandomizedSearchCV()` which

utilizes the "param_distributions" parameter. This allows for a specified number of parameter

configurations, determined by the `n_iter` parameter, to be drawn from the provided distributions.

By integrating cross-validation through the "cv" parameter, it ensures an optimal mix of

computational resource management and dependable performance evaluation. RSCV has been

Page | 43

reported in literature (Sarajcev & Meglic, 2022). Both hyperparameters tunning techniques require

a set and range of hyperparameters for tunning. So, hyperparameters are selected for each

algorithm which are shown in Table 3.3, 3.4, and 3.5.

Table 3.3: Hyperparameters for RF

Hyperparameter param_grid

n_estimators [200, 400, 1000]

max_depth [10, 20, , 50, None]

min_samples_split [2, 5, 10]

min_samples_leaf [1, 2, 4]

max_features ['auto', 'sqrt']

Table 3.4: Hyperparameters for SVR

Hyperparameter param_grid

C
[1.00000000e+00, 3.72759372e+00, 1.38949549e+01, 5.17947468e+01,

1.93069773e+02, 7.19685673e+02, 2.68269580e+03, 1.00000000e+04]

Epsilon [0.001, 0.01, 0.1, 1, 2, 4]

Kernel ['rbf', 'poly','sigmoid','linear']

Table 3.5: Hyperparameters for XGBoost

Hyperparameter param_grid

max_depth [5, 6, 9, 11, 12, 13, 14]

n_estimators [50, 80, 100, 150, 200, 300]

reg_alpha [0, 0.1, 0.4, 0.8, 1.6, 3.2, 6.4, 12.8, 25.6]

reg_lambda [0, 0.1, 0.4, 0.8, 1.6, 6.4, 12.8, 51.2, 102.4]

After selection of hyperparameters, the next step is to write code for each algorithm separately and

some parts of Code Snippets for algorithms tunning through GS and RS are shown in Code

Snippets 3.2, 3.3, 3.4, 3.5, 3.6, and 3.7.

Page | 44

Code Snippet 3.2: Random Search Snippet for Random Forest

Code Snippet 3.3: Grid Search Snippet for Random Forest

Page | 45

Code Snippet 3.4: Random Search Snippet for SVR

Code Snippet 3.5: Grid Search Snippet for SVR

Page | 46

Code Snippet 3.6: Random Search Snippet for XGBoost

Code Snippet 3.7: Grid Search Snippet for XGBoost

3.7 Tunned Model Evaluation Through Learning Curves

To make our process cleaner and more transparent, the hyperparameters are again evaluated against

metrics by looking at learning curves. In our case, by using these performances in learning curves,

we can get valuable insights on the performance and behavior of our optimized machine learning

model. By visualizing learning curves, we can decide about hyperparameter tunning, data

sufficiency and model complexity. These curves are plotted through ‘learning_curves’, and Code

Snippets 3.8, 3.9, and 3.10. and some parts of these codes are represented below.

Page | 47

Code Snippet 3.8: Learning Curve with R2 on y-axis for RF tuned with RS

Page | 48

Code Snippet 3.9: Learning Curve with RMSE on y-axis for RF tuned with RS

Code Snippet 3.10: Learning Curve with R2 on y-axis for SVR tuned with GS

Page | 49

3.8 Evaluation of Tunned Models Through Cross Validation Scores

All the tunning process goes through cross validation which is basically integrated within libraries.

Mean train score and mean test score helps in assessing the performance of different

hyperparameters combination during grid and random search of hyperparameters selection. Mean

train score is the average performance score of models on training data across all folds for each

hyperparameter combination. Mean test score is the average performance score of models on

testing data across all folds. These scores help in understanding of how well the model is learning

from the training data and performing on testing data. Some parts of Code Snippet 3.11 are shown

below.

Code Snippet 3.11: Mean, std for train & test scores of all algorithms

3.9 Evaluation of Tuned Models on Validation Data

After a long process, all the models along with their respective tunned hyperparameters are

evaluated for real world problems through determining evaluation metrics on validation data. For

this final evaluation process, Code Snippet 3.12 is as follows.

Page | 50

Code Snippet 3.12: Evaluation of tunned model on validation data

Page | 51

4 Chapter 4: Results and discussion

4.1 Preprocessed data

The process of outlier removal often yields noteworthy changes in the structure and characteristics

of a dataset. When assessing the impact of outlier removal, it is vital to consider not just the data's

shape, but also its statistical properties, such as the measures of central tendency and the dispersion

metrics. After the removal of outliers, the dataset's shape transformed to (447,8), which suggests a

significant refinement of the data points and statistical summary of data after outlier removal is

given in Table 4.1. The subsequent statistical analysis provides further insights into the

modifications introduced:

4.1.1 Central Tendency Measures

Measures like the mean, median, and mode help to understand the central location of the data. The

post-outlier removal dataset displayed slight variations in the mean. Such a trend can be attributed

to the sensitivity of the mean to extreme values. Conversely, the median and mode, which are more

resilient to outliers, remained largely unchanged. This consistent behavior of median and mode

suggests that the core structure of the dataset has been preserved.

4.1.2 Data Distribution

Skewness is an essential metric for understanding the symmetry of data distribution. A skewness

of positive, negative and zero indicates right-skewed, left-skewed, and perfect symmetry

respectively. Upon examination:

• For variables such as Z1, Z3, Nsh, and Nt, a decrease in skewness towards zero

highlights a progression towards symmetrical distribution.

• For Z2 and Zp, an increase in skewness indicates a shift in data distribution,

albeit still moving closer to symmetry.

• The variable Nt stands out with its substantial change, transitioning from a

heavily left-skewed distribution to near-perfect symmetry.

4.1.3 Range

An essential metric to understand the spread of data, the range consistently shrunk for most

variables. This reduction is a direct consequence of the outlier removal, indicating that extreme

Page | 52

values, which previously extended the data's breadth, have been effectively excluded, leading to a

more concise dataset.

4.1.4 Variable-specific Observations

• Z1: The mean dipped slightly, but there was a move towards symmetry.

• Z2: Exhibited an increased mean, with skewness moving closer to symmetry.

• Z3: Though the mean saw a slight increment, the distribution became more

symmetrical.

• Zp: A negligible change in mean, accompanied by a shift towards symmetric

distribution.

• Nsh: Notable increase in mean and a stronger push towards symmetry.

• Nt: Significant alteration towards symmetric distribution.

• Pu: The mean inclined slightly, with a minor shift towards a negatively skewed

distribution.

In wrapping up, the modifications introduced by outlier removal have been beneficial. The

consistent reduction in range indicates the effective exclusion of extreme values, leading to a

dataset that's more concentrated around its central values. Additionally, the measures of skewness,

for most variables, are converging to zero, suggesting improved symmetry. Such refinements

underline the importance of outlier management in preserving the inherent structure of the data

while eliminating noise and extreme values. The graphical presentation of data is given in Figure

4.1, 4.2, 4.3, and 4.4.

Figure 4.1: Graphical statistical summary before and after outlier removal for ‘Zp’

Page | 53

Figure 4.2: Graphical statistical summary before and after outlier removal for ‘Z2’

Figure 4.3: Graphical statistical summary before and after outlier removal for ‘Nsh’

Figure 4.4: Graphical statistical summary before and after outlier removal for ‘Nt’

Table 4.1: Statistical summary of data after outlier removal

 D Z1 Z2 Z3 Zp Nsh Nt Pu

Count 447 447 447 447 447 447 447 447

Mean 361.74 3.801 6.815 0.346 2.815 10.965 7.177 1005.519

Std. 48.65 0.476 1.286 0.458 0.623 2.032 0.400 347.581

Page | 54

min 300 3.4 5.15 0 1.95 8.55 6.71 407.2

max 400 4.75 8 1.22 3.4 13.63 7.75 1551

4.2 Normalized Data

For each input parameter, minimum and maximum values are changed. After data normalization,

the rescaled data is shown in the Table 4.2.

Table 4.2: Statistical summary of normalized data

 D Z1 Z2 Z3 Zp Nsh Nt

Unit mm m m m m - -

Mean 0.617 0.297 0.584 0.283 0.596 0.475 0.449

Std. 0.486 0.352 0.451 0.375 0.430 0.400 0.385

Min 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Max 1.000 1.000 1.000 1.000 1.000 1.000 1.000

4.3 Data Splitting

In this research, the data is split differently than usual. Instead of the common 70:30 or 80:20 split,

we're using a 90:10 ratio. We'll use 90% of the data for finding the best settings (hyperparameter

search), training, and testing these settings through cross-validation. The remaining 10% is

reserved for checking how well the final machine learning models work. The statistical summary

for both splits of data is given in Table 4.3 and 4.4.

Table 4.3: Statistical summary of training and testing data

 D Z1 Z2 Z3 Zp Nsh Nt Pu

unit Mm m m m M - - kN

Count 402 402 402 402 402 402 402 402

Mean 0.616 0.302 0.585 0.289 0.591 0.478 0.451 1003.14

Std. 0.486 0.355 0.451 0.378 0.432 0.401 0.386 347.88

min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 407.2

max 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1551.0

Page | 55

Table 4.4: Statistical summary of validation data

 D Z1 Z2 Z3 Zp Nsh Nt Pu

unit Mm m m M m - - kN

Count 45 45 45 45 45 45 45 45

Mean 0.622 0.255 0.574 0.236 0.639 0.446 0.433 1026.68

Std. 0.490 0.333 0.456 0.347 0.412 0.387 0.375 347.98

min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 508.90

max 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1473.00

Results for Hyperparameter Tunning: The machine learning models are tuned through grid and

random search separately to find their respective best set of hyperparameters. Same Range of

hyperparameters is given for both random and grid search for same model. After tunning, the

optimal set for each model is shown in table 4.5, 4.6, and 4.7. These hyperparameters optimize the

ML models to give the best predictions.

Table 4.5: Optimal hyperparameters for RF selected through GS and RS

Random Forest

Hyperparameter Grid Search Optimal Value Random Search Optimal Value

n_estimators 600 800

min_samples_split 10 5

min_samples_leaf 1 4

max_features log2 log2

max_depth 10 None

Bootstrap True True

Table 4.6: Optimal hyperparameters for SVR selected through GS and RS

Support Vector Machine

Hyperparameter Grid Search Optimal Value Random Search Optimal Value

C 10000.00 2628.69

Degree 1 4

epsilon 4 4

Page | 56

gamma 1 1.0

kernel Rbf Rbf

Table 4.7: Optimal hyperparameters for XGBoost selected through GS and RS

XGBoost

Hyperparameter Grid Search Optimal Value Random Search Optimal Value

Gamma 0.8 12.8

learning_rate 0.25 0.03

max_depth 5 6

n_estimators 80 300

reg_alpha 0.4 3.2

reg_lamda 102.4 51.2

4.4 Results for Evaluation of Tunned Models Through Learning Curves

4.4.1 Evaluation of Learning Curves for Random Forest

In our analysis, we examined the learning curves of a Random Forest model under two different

hyperparameter tuning methods: RS and GS. The insights got from these learning curves provide

a clear understanding of the model's performance and potential areas for enhancement and learning

curves are shown in Figure 4.5 and 4.6.

4.4.1.1 Analysis of Learning Curves with Optimal Hyperparameters via Random Search:

Training Score Curve: Starting at an R2 score of 0.93 and concluding around 0.96 indicates a

robust fit to the training data. Such a trend reflects the model's capability to capture the underlying

patterns within the training set. The marginal decrease followed by a plateau in the curve suggests

that the model's performance on the training set reaches a stable point as more data is incorporated.

Validation Score Curve: Initiating below 0.88 and capping around 0.93 showcases the model's

improving generalization capabilities with an increase in training data. However, a discernable gap

between the training and validation scores indicates a mild overfitting scenario, where the model

might be too attuned to the training data, affecting its performance on unseen data. Additionally,

when we inspect the model's performance using the RMSE (Root Mean Square Error) on the y-

Page | 57

axis, similar trends are observed. RMSE effectively quantifies the error magnitude, offering a

complementary perspective to the R2 score.

In summary, we can conclude that the model has a good fit to the data, as the training and validation

scores are both high and stable. The model is likely generalizing well to new data, and the

performance is consistent across different training sets (as indicated by the narrow confidence

intervals). It also suggests that the model's capacity to learn from additional data is reaching a

limit, as indicated by the plateauing of the validation score.

4.4.1.2 Analysis of Learning Curves with Optimal Hyperparameters via Grid Search:

The R2 score is a metric that indicates the proportion of variance in the dependent variable that is

predictable from the independent variables. In this context, it's used to evaluate the fit quality of

the model. The higher the R2 score, the better the model is at making predictions. The learning

curve shows that both the training score (solid line) and the validation score (dashed line) start off

with a strong R2 score, even with a smaller number of training samples. The training score remains

relatively stable and high as the number of training samples increases, suggesting that the model

has a consistent performance and is not overfitting. Overfitting would typically be indicated by a

high training score but a low validation score. The validation score, on the other hand, starts lower

but increases with more data, a pattern that is generally indicative of a model that could benefit

from more data points. The fact that the validation curve's trajectory is mildly upward as the

number of training samples increases is encouraging. It suggests that the model is learning and

generalizing well from the added data, which is the desired outcome when tuning a model. The

performance of the hyperparameters identified by the RS appears to be on par with those found by

the GR, which is significant because RS is often more computationally efficient than GR.

Considering the slight improvement in the validation score with more data, it's plausible that the

model's generalization could further improve with additional training samples. This suggests that

data augmentation or collection of more data could be beneficial strategies for enhancing model

performance.

Overall, the learning curves suggest that the tuned model has a good fit to the data, as indicated by

high R2 values. The GS method, despite being more exhaustive, does not appear to provide a

significantly better set of hyperparameters than RS, which can be a point in favor of using RS due

Page | 58

to its efficiency. The model shows potential for improved generalization with more data, pointing

towards data acquisition as a possible next step in model refinement.

In summary, utilizing both the R2 score and RMSE for analyzing learning curves furnishes a

comprehensive view of the model's dynamics. While the R2 metric offers insights into the data fit

quality, the RMSE quantifies the error's magnitude. Armed with these insights, we can make

informed decisions regarding model refinements, data augmentation, or hyperparameter

adjustments.

Figure 4.5: Learning Curves for RF during RS tunning

Figure 4.6: Learning Curves for RF during GS tunning

4.4.2 Evaluation of Learning Curves for SVR

Support Vector Regression (SVR), part of the Support Vector Machines (SVM) framework,

employs the principle of maximizing margins to generate predictive models for continuous

outputs. In this evaluation, we've dissected the learning curves of an SVR model optimized via

Page | 59

two distinct hyperparameter tuning techniques: RS and GS as shown in Figure 4.7. The patterns

depicted in these curves shed light on the model's efficacy and potential areas of refinement.

4.4.2.1 Analysis of Learning Curves with Optimal Hyperparameters via Random Search:

• Characteristic dips at 190 samples: Both the training and validation curves exhibit

synchronized dips when trained on approximately 190 samples. Such synchronized

perturbations suggest a challenge faced by the SVR model in fitting to or generalizing from

this specific batch of data. The reason for this behavior can be multifaceted: anomalies,

inherent noise, or unique attributes within this data subset could be potential culprits.

• Validation curve trend: As the data samples increase, the validation curve presents a

declining trend towards the latter part. Such a decline in performance on the validation set,

in juxtaposition with the training sets consistent or improving performance, is indicative of

a potential overfitting scenario. The persistent difference between the training and

validation scores further accentuates this overfitting concern. The model might be

capturing intricate patterns from the training data, which aren't necessarily generalizable,

thereby diminishing its performance on unseen or validation data.

• The insights from the learning curves of the SVR model, optimized with both Random and

Grid Search methods, underscore the importance of vigilant data inspection and potential

model refinement. Recognizing challenges at specific data intervals and addressing

overfitting tendencies can guide the fine-tuning of the model or instigate further

investigations into the data's characteristics.

Figure 4.7: Learning Curves for SVR during RS tunning

Page | 60

4.4.3 Evaluation of Learning Curves for XGBoost

By delving into the learning curves of an XGBoost model, we can gauge XGBoost model

performance on optimal set of hyperparameters and understand how different hyperparameter

tuning strategies impact its behavior. Below, we present a meticulous analysis based on two

hyperparameter tuning strategies: RS and GS as shown in Figure 4.8 and 4.9.

4.4.3.1 Analysis of Learning Curve with Optimal Hyperparameters via Random Search:

Training score curve: Start at a score of 0.85, the training curve experiences a gradual ascent,

eventually plateauing at 0.95. Starting from a lower baseline but reaching a high plateau, suggests

that the model is capable of learning effectively from the training data without overfitting, as

indicated by the convergence of training and validation scores.

Validation score curve: Starting at 0.812, the validation curve mirrors a steady climb to finally

stabilize at 0.93 which indicates good generalization. However, the initial steep slope followed by

a plateau suggests that additional data points beyond a certain threshold do not yield significant

improvements in validation performance.

The RMSE for both training and validation decreases as more data is provided, which is desirable.

However, the validation RMSE appears to plateau, indicating that while the model’s error rate is

decreasing, it might require further improvements to achieve lower errors on unseen data.

Gap Analysis: A consistent and narrow divergence between the training and validation curves

throughout the learning process is evident. This modest gap is encouraging, suggesting that the

model achieves a harmonious balance between bias and variance. In layman's terms, the model is

well-tuned, avoiding pitfalls of both significant overfitting and underfitting. This harmonization

reflects the model's robustness in generalizing to unseen data.

4.4.3.2 Analysis of Learning Curve with Optimal Hyperparameters via Grid Search:

Training curve insight: The curve kicks off from an impressive 0.925, which could suggest that

the Grid Search method has identified a set of hyperparameters that allow the model to learn

effectively from the outset. It undergoes a slight trough when encountering around 100 samples,

but this deviation isn't profound. It then marches forward to stabilize at a commendable 0.970.

Validation curve insight: The validation trajectory starts from 0.825, with a minor dip observed

around the 225-sample mark could be an anomaly or reflect a particular characteristic of the data

Page | 61

set that is difficult for the model to learn. Despite this, it makes a comeback to stabilize around

0.93.

The RMSE curve shows a decrease in error as more data is provided, with a more gradual

convergence between training and validation scores compared to RS. The smaller gap between the

curves suggests that the GS model might be slightly more stable and less prone to overfitting than

the RS model.

Gap analysis: As the model understands more data, the separation gap between the training and

validation curves diminishes. However, a final split of approximately 0.04 persists. While not vast,

this lingering gap suggests that the model, although fine-tuned, might be mildly overfitting. It's a

subtle indication that the model could be capturing certain nuances of the training data that may

not necessarily translate to optimal performance on validation or unseen datasets. The modest gaps

between the training and validation curves suggest that both models are balanced in terms of bias

and variance, achieving a harmonious fit to the data without overfitting or underfitting excessively.

In summary, RS-XGBoost shows good learning capabilities and generalization, with performance

improvements as more data is added. The model demonstrates stability, but the plateauing

validation score suggests a limit to the benefits of additional data. The GS-XGBoost, starts off with

a strong fit and maintains stability throughout the learning process. The minor fluctuations indicate

that it is sensitive to the training data's nuances but overall suggests a robust model with a good

balance between performance on training and unseen data.

The learning curves for both models indicate that both hyperparameter tuning methods have

yielded stable and well-generalized models. However, the GS approach may offer a slight edge in

stability and predictive performance, as suggested by the tighter convergence of its learning curves

and lower RMSE. Further experimentation with a larger dataset or more diverse hyperparameter

space could potentially lead to further improvements in model performance and stability.

Page | 62

Figure 4.8: Learning Curves for XGBoost during RS tunning

Figure 4.9: Learning Curves for XGBoost during GS tunning

4.5 Results of Evaluation for Tunned Models Through Cross Validation Scores

All models are trained and tested for finding the optimum set of hyperparameters. During this

process, the GridSearchCV() and RandomizedSearchCV() provides results against each set which

are saved as cv_results. Out of all these results, the regression metrics are exported and shown in

Table 4.8. There's a noticeable, as seen in Table 4.8, though not substantial, difference between the

mean training and mean test scores (R2, RMSE, MAE) of five folds. This hints at slight overfitting,

suggesting that the model might be capturing some noise present in the training data. The standard

deviation between results of folds is calculated. When a model shows a lower standard deviation,

it means its performance is reliably consistent, maintaining similar levels of accuracy or

effectiveness across various segments of the data. The standard deviations of the metrics across

the five folds, particularly for the test scores, hint at the model's stability. An R² value close to 1 in

regression analysis is associated with good performance based on the high goodness of fit provided

Page | 63

by the squared multiple correlation coefficient. Train R2 is higher than test R2 which indicates there

is some indication of the model capturing noise or overfitting, albeit not severely.

The RF model shows a higher mean training R2 score and lower RMSE by using GS

hyperparameters compared to RS hyperparameters , indicating better training performance with

GS. However, the testing scores are quite similar for both methods, suggesting comparable

generalization capabilities. Similar to RF, SVR exhibits better training performance with GS

hyperparameters but shows negligible differences in testing performance between the two

methods. This suggests that while GS may lead to better optimization during training, it doesn't

significantly affect the generalization ability of model. In the case of XGBoost, the model

demonstrates the highest training R2 scores among all, particularly with GS hyperparameters, and

maintains lower RMSE scores compared to the other models. The testing scores, however, are

comparable between Grid and Random Search methods.

In summary, while GS generally leads to slightly better training performance, the differences in

testing scores between two approaches are minimal. This indicates that both hyperparameter tuning

methods are effective, with gs potentially offering more finely tuned models at the cost of higher

computational resources.

The Standard Deviation (SD) for RF is relatively low for both training and testing scores,

indicating consistent performance across different folds. This consistency is desirable, as it implies

the model's robustness. For SVR, the standard deviation is higher, especially in testing scores, it

might indicate that the model's performance is more variable and less predictable across different

datasets. This could be a concern for generalization. In the end, XGBoost, the SD provides insight

into model stability under different hyperparameter resulting from both searches. A lower SD in

either method would suggest more consistent performance, which is advantageous.

In general, models with lower SDs in testing scores are preferable, as they indicate more reliable

performance when faced with new, unseen data. This aspect should be considered along with the

mean scores to get a thorough understanding of each model's efficiency. The scatter plots for the

pile loading capacity are shown in Figures 4.10, 4.11, and 4.12.

Page | 64

Figure 4.10: Predictions vs real values for RS-RF & GS-RF

Figure 4.11: Predictions vs real values for RS-SVR & GS-SVR

Figure 4.12: Predictions vs real values for RS-XGBoost & GS-XGBoost

Table 4.8: Results for Cross Validation Scores

Model
GS-Hyperparameters RS-Hyperparameters

Train Test Train Test

 R2 RMSE R2 RMSE R2 RMSE R2 RMSE

Page | 65

Random

Forest

0.957

(+/-

0.003)

71.631

(+/-

2.287)

0.929

(+/-

0.019)

91.122

(+/-

10.760)

0.949

 (+/-

0.003)

78.237

 (+/-

2.533)

0.928

(+/-

0.017)

91.928

(+/- 9.679)

SVR

0.936

(+/-

0.003)

87.460

(+/-

2.295)

0.921

(+/-

0.020)

96.238

(+/-

11.393)

0.934

(+/-

0.004)

89.046

(+/-

2.731)

0.921

(+/-

0.016)

96.341

(+/- 8.761)

XGBoost

0.967

(+/-

0.002)

62.683

(+/-

2.288)

0.933

(+/-

0.0194)

88.479

(+/-

11.166)

0.953

(+/-

0.003)

74.66

 (+/-

2.474)

0.931

 (+/-

0.019)

89.888

(+/- 10.802)

4.6 Evaluation of Models on Validation Data

In order to evaluate the effectiveness of hyperparameter tuning methods - GS and RS - across three

different machine learning models: RF, SVR, and XGBoost, are trained on validation data which

was separated in the start. The result for that evaluation is evaluated by regression metrics which

are shown in Table 4.9.

It highlights that GS generally outperforms RS in refining model accuracy. This is evident from

the higher R2 values and lower error rates (MAE, RMSE, MSE) observed with GS. XGBoost,

when optimized using GS, showed particularly impressive results, achieving an R2 value of 0.952

and an RMSE of 75.26 kN, slightly better than its performance with Random Search (R2 = 0.950,

RMSE = 76.45 kN). This indicates XGBoost's superior predictive capability among the three

models. The results of RS-XGBoost and GS-XGBoost are compared with proposed models in

literature as shown in Table 4.10. It clearly outperforms the other models showing supremacy of

RS and GS techniques.

The differences between the two tuning methods, while being modest, are still noteworthy. Despite

RS undergoing more iterations, GS provided slightly better outcomes. This finding is critical for

selecting the most suitable models and tuning approaches in machine learning projects, underlining

the importance of strategic model choice and hyperparameter optimization.

Visual comparisons of the predicted values against the actual values were also performed shown

in Figures 4.13, 4.14, and 4.15. Each algorithm, tuned with RandomSearchCV(), was placed side

by side against its GridSearchCV() which is basically tunning counter of it . Additionally, a Taylor

Page | 66

diagram was employed to analyze the predictions of each model and shown in Figure 4.16. The

gap between forecasted and actual or reference points reflects the precision of predictive models

(Jeon & Rahman, 2008). Here it can be observed that models tuned with Grid Search, particularly

XGBoost and RF, demonstrated superior performance, showing high correlation coefficients

(0.977 and 0.9769, respectively) and lower SD. This reinforces their strong linear relationship with

actual values and minimal prediction errors. The GS-tuned XGBoost (GS-XGBoost) model stood

out as the most effective, displaying the highest correlation and the lowest RMSE among all

evaluated models. This underscores its exceptional ability to accurately capture data trends,

making it a highly reliable option for similar prediction tasks. Overall, this analysis offers valuable

insights into the effectiveness of different tuning methods in optimizing machine learning models.

Table 4.9: ML models predictions on validation data

Validation Data

Model
GS-Hyperparameters RS-Hyperparameters

R2 RMSE MSE R2 RMSE MSE

Random Forest 0.9499 76.982 5926.357 0.9369 86.368 7459.54

SVR 0.9464 79.639 6342.45 0.9424 82.54 6812.85

XGBoost 0.9561 72.07 0.9464 0.9522 75.1834 75.1834

Table 4.10: Proposed models comparison with literature

Model R2 RMSE (kN)

WOA-XGBoost (Nguyen et al., 2023) 0.92 87.72

RF-PSO (Pham & Tran, 2022) 0.924 93.91

RF (Pham, Ly, et al., 2020) 0.866 98.161

ODFP-LSSVR (Hoang et al., 2022) 0.93 92.19

XGBoost (Amjad et al., 2022) 0.955 80.653

IMNNIM (Cao et al., 2022) 0.933 88.5

RS-XGBoost 0.952 75.18

GS-XGBoost 0.956 72.07

Page | 67

Figure 4.13: Predictions vs real values for RS-RF & GS-RF

Figure 4.14: Predictions vs real values for RS-SVR & GS-SVR

Figure 4.15: Predictions vs real values for RS-XGBoost & GS-XGBoost

Page | 68

Figure 4.16: Taylor Diagram

4.7 Benefits

The current study highlights the power of machine learning in transforming how we estimate the

bearing capacity of concrete piles, making the process faster, more accurate, and cost-effective.

By using advanced algorithms, engineers can predict pile behavior more reliably, reducing the

need for expensive field tests. This approach not only speeds up project timelines but is also

economical for small projects.

4.8 Limitations

The current study has one significant constraint which is the minimal consideration of material

properties within the dataset. It can influence the accuracy of bearing capacity predictions in

diverse geological and environmental conditions. Additionally, the focus on a singular criterion for

bearing capacity—specifically, the settlement is less than 10% of the pile diameter are

considered—narrows the scope of these models. This limitation restricts the models' applicability

to a wider range of practical scenarios where settlement criteria may vary, potentially affecting

their utility in real-world engineering challenges.

Page | 69

5 Chapter 5: Conclusions

5.1 Development of Predictive Model

 The research successfully developed a predictive model to understand the intricate relationships

between axial bearing capacity and its influencing factors. Various machine learning algorithms,

including Random Forest (RF), Support Vector Regressor (SVR), and XGBoost, were employed

and fine-tuned to enhance the model's performance.

5.2 Transparent Mapping:

 The research transparently mapped out each phase, providing a clear and comprehensive insight

into the complexities of hyperparameter tuning and validation processes. This transparency

ensures the replicability and reliability of the research findings.

5.3 Establishment of Robust Models

 The models established have demonstrated solid generalization capabilities. They have shown

consistent and reliable performance, ensuring their applicability to diverse and unseen data, which

is crucial for real-world applications. RS-RF (R2= 0.93 , RMSE=86.63), GS-RF (R2= 0.949,

RMSE=76.98), RS-SVR (R2= 0.942 , RMSE=82.54), GS-SVR (R2= 0.946 , RMSE=79.63), RS-

XGBoost (R2= 0.952 , RMSE=75.18), and GS-XGBoost (R2= 0.956 , RMSE=72.07) shows

satisfactory results proving generalization of tuned models.

5.4 Comparison of Machine Learning Models

 A thorough comparison of RF, SVR, and XGBoost was conducted. The evaluation on validation

data, along with the analysis of validation and learning curves, revealed that all the models

performed commendably. Among them, XGBoost (RS-XGBoost and GS-XGBoost) stood out for

its superior performance, affirming its effectiveness in handling the task at hand.

5.5 Effective Tuning and Validation

 The use of GridSearchCV() and RandomizedSearchCV() for hyperparameter tuning, despite

being a trial-and-error process, proved to be beneficial. The models' performance was optimized,

and their robustness was validated through various curves and evaluations.

Page | 70

5.6 Future Recommendations

5.6.1 Exploration of Other Algorithms

Future research could explore other machine learning or deep learning algorithms to ascertain if

better performance metrics can be achieved. Algorithms like neural networks or ensemble methods

could be investigated.

5.6.2 Advanced Hyperparameter Tuning

Employing more advanced hyperparameter tuning methods, such as Bayesian Optimization, could

potentially enhance the model's performance further.

5.6.3 Feature Engineering

 Delving deeper into feature engineering could unveil more intricate relationships and improve the

model's predictive power. It is recommended to explore various feature selection and extraction

techniques.

5.6.4 Cross-Domain Application

The models can be tested on other related domains to evaluate their adaptability and scalability,

ensuring their broad applicability.

5.6.5 Incorporation of Domain Knowledge

 Integrating domain-specific knowledge and expertise can refine the model, making it more

attuned to the nuances of axial bearing capacity and its influencing factors.

5.6.6 Evaluation with More Diverse Data

 It is crucial to evaluate the models with a more diverse and extensive dataset to ensure their

robustness and reliability in various scenarios and conditions.

By following these recommendations, future research can build upon the current findings,

enhancing the predictive models and contributing further to the understanding of axial bearing

capacity and its influencing factors.

Page | 71

References

A Comparison of Grid Search and Randomized Search Using Scikit Learn | by Peter Worcester |

Medium. (n.d.). Retrieved September 18, 2023, from

https://medium.com/@peterworcester_29377/a-comparison-of-grid-search-and-randomized-

search-using-scikit-learn-29823179bc85

Adi Pusat Pengelolaan Sumberdaya Lahan, S., dan Mitigasi Bencana Deputi TPSA, W.,

Teknologi Jl Thamrin No, B. M., & Pusat, J. (2009). PENGKAJIAN KAPASITAS DAYA

DUKUNG TANAH GAMBUT DIDAERAH PENGEMBANGAN IRIGASI DI

KALIMANTAN TENGAH. Jurnal Air Indonesia, 5(2).

https://doi.org/10.29122/JAI.V5I2.2438

Alwanas, A. A. H., Al-Musawi, A. A., Salih, S. Q., Tao, H., Ali, M., & Yaseen, Z. M. (2019).

Load-carrying capacity and mode failure simulation of beam-column joint connection:

Application of self-tuning machine learning model. Engineering Structures, 194, 220–229.

https://doi.org/10.1016/J.ENGSTRUCT.2019.05.048

Amjad, M., Ahmad, I., Ahmad, M., Wróblewski, P., Kamiński, P., & Amjad, U. (2022).

Prediction of Pile Bearing Capacity Using XGBoost Algorithm: Modeling and Performance

Evaluation. Applied Sciences 2022, Vol. 12, Page 2126, 12(4), 2126.

https://doi.org/10.3390/APP12042126

Andradóttir, S. (2006). Chapter 20 An Overview of Simulation Optimization via Random Search.

Handbooks in Operations Research and Management Science, 13(C), 617–631.

https://doi.org/10.1016/S0927-0507(06)13020-0

Armaghani, D. J., Asteris, P. G., Fatemi, S. A., Hasanipanah, M., Tarinejad, R., Rashid, A. S. A.,

& Huynh, V. Van. (2020). On the Use of Neuro-Swarm System to Forecast the Pile

Settlement. Applied Sciences 2020, Vol. 10, Page 1904, 10(6), 1904.

https://doi.org/10.3390/APP10061904

Bbeiman, L. (1996). Bagging Predictors. 24, 123–140.

Belete, D. M., & Huchaiah, M. D. (2021). Grid search in hyperparameter optimization of

machine learning models for prediction of HIV/AIDS test results.

Https://Doi.Org/10.1080/1206212X.2021.1974663, 44(9), 875–886.

https://doi.org/10.1080/1206212X.2021.1974663

Bengio, Y. (2000). Gradient-Based Optimization of Hyperparameters. Neural Computation,

12(8), 1889–1900. https://doi.org/10.1162/089976600300015187

Bilal, M., Ali, G., Iqbal, M. W., Anwar, M., Malik, M. S. A., & Kadir, R. A. (2022). Auto-Prep:

Efficient and Automated Data Preprocessing Pipeline. IEEE Access, 10, 107764–107784.

https://doi.org/10.1109/ACCESS.2022.3198662

Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32.

https://doi.org/10.1023/A:1010933404324/METRICS

Page | 72

Cao, M. T., Nguyen, N. M., & Wang, W. C. (2022). Using an evolutionary heterogeneous

ensemble of artificial neural network and multivariate adaptive regression splines to predict

bearing capacity in axial piles. Engineering Structures, 268, 114769.

https://doi.org/10.1016/J.ENGSTRUCT.2022.114769

Chao, Y., Yong, Z. X., & Wen, Z. S. (2020). Research on static load test of foundation piles by

self-blance method. IOP Conference Series: Materials Science and Engineering, 794(1),

012034. https://doi.org/10.1088/1757-899X/794/1/012034

Chen, T., & Guestrin, C. (2016). XGBoost: A Scalable Tree Boosting System. Proceedings of the

22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,

13-17-August-2016, 785–794. https://doi.org/10.1145/2939672.2939785

Claesen, M., & Moor, B. (2015). Hyperparameter Search in Machine Learning. ArXiv.

Dinov, I. D. (2018). Prediction and Internal Statistical Cross Validation. Data Science and

Predictive Analytics, 697–734. https://doi.org/10.1007/978-3-319-72347-1_21

Garnett, R. (2023). Bayesian Optimization. Bayesian Optimization.

https://doi.org/10.1017/9781108348973

Goh, A. T. C., Kulhawy, F. H., & Chua, C. G. (2005). Bayesian Neural Network Analysis of

Undrained Side Resistance of Drilled Shafts. Journal of Geotechnical and

Geoenvironmental Engineering, 131(1), 84–93. https://doi.org/10.1061/(ASCE)1090-

0241(2005)131:1(84)

Hoang, N. D., Tran, X. L., & Huynh, T. C. (2022). Prediction of Pile Bearing Capacity Using

Opposition-Based Differential Flower Pollination-Optimized Least Squares Support Vector

Regression (ODFP-LSSVR). Advances in Civil Engineering, 2022.

https://doi.org/10.1155/2022/7183700

Horning, N. (2010). Random Forests : An algorithm for image classification and generation of

continuous fields data sets.

Jeon, J., & Rahman, M. S. (2008). Fuzzy Neural Network Models for Geotechnical Problems.

Jiang, J., Pan, H., Li, M., Qian, B., Lin, X., & Fan, S. (2021). Predictive model for the 5-year

survival status of osteosarcoma patients based on the SEER database and XGBoost

algorithm. Scientific Reports, 11(1). https://doi.org/10.1038/S41598-021-85223-4

Kärkkäinen, T. (2014). On cross-validation for MLP model evaluation. Lecture Notes in

Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture

Notes in Bioinformatics), 8621 LNCS, 291–300. https://doi.org/10.1007/978-3-662-44415-

3_30/COVER

Lawatre, P. (2021). An efficient data pre-processing model for machine learning.

Liashchynskyi, P., & Liashchynskyi, P. (2019). Grid Search, Random Search, Genetic Algorithm:

A Big Comparison for NAS. http://arxiv.org/abs/1912.06059

Page | 73

Liu, Y., Wang, Y., & Zhang, J. (2012). New Machine Learning Algorithm: Random Forest.

Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial

Intelligence and Lecture Notes in Bioinformatics), 7473 LNCS, 246–252.

https://doi.org/10.1007/978-3-642-34062-8_32

Mangalathu, S., Karthikeyan, K., Feng, D. C., & Jeon, J. S. (2022). Machine-learning

interpretability techniques for seismic performance assessment of infrastructure systems.

Engineering Structures, 250, 112883. https://doi.org/10.1016/J.ENGSTRUCT.2021.112883

Mohana, R. M., Reddy, C. K. K., Anisha, P. R., & Murthy, B. V. R. (2021). WITHDRAWN:

Random forest algorithms for the classification of tree-based ensemble. Materials Today:

Proceedings. https://doi.org/10.1016/J.MATPR.2021.01.788

Mohr, F., & van Rijn, J. N. (2022). Learning Curves for Decision Making in Supervised Machine

Learning -- A Survey. https://arxiv.org/abs/2201.12150v1

Mundargi, Z., Bhatti, S., Chandra, A., Kamble, A., Jiby, B., & Arole, R. (2023). PrePy - A

Customize Library for Data Preprocessing in Python. 2023 International Conference for

Advancement in Technology (ICONAT).

https://doi.org/10.1109/ICONAT57137.2023.10080134

Nguyen, H., Cao, M. T., Tran, X. L., Tran, T. H., & Hoang, N. D. (2023). A novel whale

optimization algorithm optimized XGBoost regression for estimating bearing capacity of

concrete piles. Neural Computing and Applications, 35(5), 3825–3852.

https://doi.org/10.1007/S00521-022-07896-W/TABLES/10

Pedregosa FABIANPEDREGOSA, F., Michel, V., Grisel OLIVIERGRISEL, O., Blondel, M.,

Prettenhofer, P., Weiss, R., Vanderplas, J., Cournapeau, D., Pedregosa, F., Varoquaux, G.,

Gramfort, A., Thirion, B., Grisel, O., Dubourg, V., Passos, A., Brucher, M., Perrot

andÉdouardand, M., Duchesnay, andÉdouard, & Duchesnay EDOUARDDUCHESNAY,

Fré. (2011). Scikit-learn: Machine Learning in Python Gaël Varoquaux Bertrand Thirion

Vincent Dubourg Alexandre Passos PEDREGOSA, VAROQUAUX, GRAMFORT ET AL.

Matthieu Perrot. Journal of Machine Learning Research, 12, 2825–2830. http://scikit-

learn.sourceforge.net.

Peskova, K., & Neruda, R. (2019). Hyperparameters search methods for machine learning linear

workflows. Proceedings - 18th IEEE International Conference on Machine Learning and

Applications, ICMLA 2019, 1205–1210. https://doi.org/10.1109/ICMLA.2019.00199

Pham, T. A., Ly, H. B., Tran, V. Q., Giap, L. Van, Vu, H. L. T., & Duong, H. A. T. (2020).

Prediction of Pile Axial Bearing Capacity Using Artificial Neural Network and Random

Forest. Applied Sciences 2020, Vol. 10, Page 1871, 10(5), 1871.

https://doi.org/10.3390/APP10051871

Pham, T. A., & Tran, V. Q. (2022). Developing random forest hybridization models for

estimating the axial bearing capacity of pile. PLOS ONE, 17(3), e0265747.

https://doi.org/10.1371/JOURNAL.PONE.0265747

Page | 74

Pham, T. A., Tran, V. Q., Vu, H. L. T., & Ly, H. B. (2020a). Design deep neural network

architecture using a genetic algorithm for estimation of pile bearing capacity. PLOS ONE,

15(12), e0243030. https://doi.org/10.1371/JOURNAL.PONE.0243030

Pham, T. A., Tran, V. Q., Vu, H. L. T., & Ly, H. B. (2020b). Design deep neural network

architecture using a genetic algorithm for estimation of pile bearing capacity. PLOS ONE,

15(12), e0243030. https://doi.org/10.1371/JOURNAL.PONE.0243030

Probst, P., Boulesteix, A., & Bischl, B. (2018). Tunability: Importance of Hyperparameters of

Machine Learning Algorithms. J. Mach. Learn. Res.

Pulina, L. (2010). Engineering portfolios of Machine Learning algorithms to solve complex tasks

in Robotics and Automated Reasoning. AI Commun., 23(1), 61–63.

https://doi.org/10.3233/AIC-2010-0471

Rajapakse, R. (2008). Pile Load Tests. Pile Design and Construction Rules of Thumb, 389–393.

https://doi.org/10.1016/B978-0-7506-8763-8.00026-X

Random Forests. Random forests is a powerful machine… | by Dr. Roi Yehoshua | Medium.

(n.d.). Retrieved September 26, 2023, from https://medium.com/@roiyeho/random-forests-

98892261dc49

Sarajcev, P., & Meglic, A. (2022). Error analysis of multi-step day-ahead PV production

forecasting with chained regressors. Journal of Physics: Conference Series, 2369(1),

012051. https://doi.org/10.1088/1742-6596/2369/1/012051

Seifi, F., & Niaki, S. T. A. (2023). Extending the hypergradient descent technique to reduce the

time of optimal solution achieved in hyperparameter optimization algorithms. International

Journal of Industrial Engineering Computations, 14(3), 501–510.

https://doi.org/10.5267/j.ijiec.2023.4.004

Shahin, M. A. (2010). Intelligent computing for modeling axial capacity of pile foundations.

Canadian Geotechnical Journal, 47(2), 230–243. https://doi.org/10.1139/T09-

094/ASSET/IMAGES/T09-094E19H.GIF

Sipper, M. (2022). High Per Parameter: A Large-Scale Study of Hyperparameter Tuning for

Machine Learning Algorithms. Algorithms. https://doi.org/10.48550/ARXIV.2207.06028

Stirrat, A. (1959). Test loading piles.

Support Vector Regression (SVR) | Analytics Vidhya. (n.d.). Retrieved September 26, 2023, from

https://medium.com/analytics-vidhya/support-vector-regression-svr-model-a-regression-

based-machine-learning-approach-f4641670c5bb

Takkala, H. R., Khanduri, V., Singh, A., Somepalli, S. N., Maddineni, R., & Patra, S. (2022).

Kyphosis Disease Prediction with help of RandomizedSearchCV and AdaBoosting. 2022

13th International Conference on Computing Communication and Networking

Technologies, ICCCNT 2022. https://doi.org/10.1109/ICCCNT54827.2022.9984343

Tang, L. (2008). C Cross-validation Historical Background Scientific Fundamentals.

Page | 75

verma, Mr. T., & Gill, D. (2018). TO STUDY VARIOUS TYPES OF SOIL FOR PILE

FOUNDATION.

Vikhar, P. A. (2017). Evolutionary algorithms: A critical review and its future prospects.

Proceedings - International Conference on Global Trends in Signal Processing, Information

Computing and Communication, ICGTSPICC 2016, 261–265.

https://doi.org/10.1109/ICGTSPICC.2016.7955308

Vishnu, M. K., Vishal Rupak, V. R., Vedhapriyaa, S., Sangeetha, M., Manjuladevi, R., & Sagana,

C. (2023). Recurrent Gastric Cancer Prediction Using Randomized Search Cv Optimizer.

2023 International Conference on Computer Communication and Informatics, ICCCI 2023.

https://doi.org/10.1109/ICCCI56745.2023.10128409

Xie, Y., Zhu, C., Zhou, W., Li, Z., Liu, X., & Tu, M. (2018). Evaluation of machine learning

methods for formation lithology identification: A comparison of tuning processes and model

performances. Journal of Petroleum Science and Engineering, 160, 182–193.

https://doi.org/10.1016/J.PETROL.2017.10.028

Y, C., Kiran, P., & P B, M. (2022). The Novel Method for Data Preprocessing CLI. Advances in

Intelligent Systems and Technologies, 117–120. https://doi.org/10.53759/AIST/978-9914-

9946-1-2_21

Yang, L., & Shami, A. (2020). On hyperparameter optimization of machine learning algorithms:

Theory and practice. Neurocomputing, 415, 295–316.

https://doi.org/10.1016/J.NEUCOM.2020.07.061

You-xiang, M. (2008). Discussion on Pile Foundation.

Zakariah, M. (2014). Classification of large datasets using Random Forest Algorithm in various

applications: Survey.

Zhang, F., & O’Donnell, L. J. (2020). Support vector regression. Machine Learning: Methods

and Applications to Brain Disorders, 123–140. https://doi.org/10.1016/B978-0-12-815739-

8.00007-9

